c
o
D
m
s,
c
@
E
£
o
)
d
d
)
-
m
o
S
-
m
O
O
ng'z

W3C

Scalable Vector Graphics (SVG) 1.1
Specification

W3C Candidate Recommendation 30 April 2002

This version:
http://www.w3.0rg/TR/2002/CR-SVG11-20020430/

(Available in PDF and zipped HTML)
Latest version:
http://www.w3.0rg/TR/SVG11/
Previous version:
http://www.w3.0rg/TR/2002/WD-SVG11-20020215/
Editors:
Dean Jackson, W3C/CSIRO <dean@w3.org> (for version 1.1)
Jon Ferraiolo, Adobe Systems <jferraio@adobe.com> (for version 1.0)
Jun Fujisawa, Canon <fujisawa.jun@canon.co.jp> (for modularization and
DTD)

Authors:
See author list

Copyright ©1998, 1999, 2000, 2001, 2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C
liability, trademark, document use and software licensing rules apply.

Abstract

This specification defines the features and syntax for Scalable Vector Graphics
(SVG) Version 1.1, a modularized language for describing two-dimensional vector
and mixed vector/raster graphics in XML.

Status of this document

http://www.w3.org/
http://www.w3.org/TR/2002/CR-SVG11-20020430/
http://www.w3.org/TR/2002/CR-SVG11-20020430/CR-SVG11-20020430.pdf
http://www.w3.org/TR/2002/CR-SVG11-20020430/CR-SVG11-20020430.zip
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/2002/WD-SVG11-20020215/
mailto:dean@w3.org
mailto:jferraio@adobe.com
mailto:fujisawa.jun@canon.co.jp
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this document
series is maintained at the W3C.

This document is the Candidate Recommendation of the SVG 1.1 specification. It
serves two purposes: to provide a modularization of SVG based on SVG 1.0 and to
include the errata found so far in SVG 1.0. The SVG Working Group believe this
document addresses all last call comments (W3C Members only), can be

considered stable and should be used as a basis for implementation. The list of
changes made in this version of the document is available.

The exit criteria for the Candidate Recommendation phase is at least two
interoperable implementations over every feature. This phase will close at 2359Z on
23 June 2002.

We explicitly invite comments on this specification. Please send them to www-
svg@wa3.org: the public email list for issues related to vector graphics on the Web.
This list is archived and only subscribers to the list are allowed to post. To subscribe

send an email to ww+ svg-r equest @\3. or g with the word subscri be in the
subject line.

This document has been produced by the W3C SVG Working Group as part of the
Graphics Activity within the W3C Document Formats Domain. The goals of the W3C
SVG Working Group are discussed in the W3C SVG Charter (W3C Members only).

The W3C SVG Working Group has maintained a public Web page,
http://www.w3.0rg/Graphics/SVG/, which contains further background information.

The authors of this document are the SVG Working Group participants.

Publication of this document does not imply endorsement by the W3C membership.
A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.0rg/TR/. W3C publications may be updated, replaced, or

obsoleted by other documents at any time. It is inappropriate to cite a W3C Working
Draft as anything other than a "work in progress."

Available languages

The English version of this specification is the only normative version. However, for
translations in other languages see http://www.w3.0rg/Graphics/SVG/svg-

http://www.w3.org/2002/03/svg11-mobile-comments.html
http://www.w3.org/TR/2002/CR-SVG11-20020430/changes.html
http://www.w3.org/TR/2002/CR-SVG11-20020430/changes.html
mailto:svg-comments@w3.org
mailto:svg-comments@w3.org
http://lists.w3.org/Archives/Public/www-svg/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/Activity
http://www.w3.org/DF/
http://www.w3.org/Graphics/SVG/Group/SVGcharter2.html
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/
http://www.w3.org/Graphics/SVG/svg-updates/translations.html

updates/translations.html.

Table of Contents

. Expanded Table of Contents
. Copyright notice

. 1 Introduction

. 2 Concepts

. 3 Rendering Model

. 4 Basic Data Types and Interfaces

. 5 Document Structure

. 6 Styling

. 7 Coordinate Systems, Transformations and Units
. 8 Paths

. 9 Basic Shapes

. 10 Text

. 11 Painting: Filling, Stroking and Marker Symbols
. 12 Color

. 13 Gradients and Patterns

. 14 Clipping, Masking and Compositing
. 15 Filter Effects

. 16 Interactivity

. 17 Linking

. 18 Scripting

« 19 Animation

. 20 Fonts

. 21 Metadata

. 22 Backwards Compatibility

. 23 Extensibility

. Appendix A: DTD

. Appendix B: SVG Document Object Model (DOM)
. Appendix C: IDL Definitions

. Appendix D: Java Language Binding

. Appendix E: ECMAScript Language Binding

. Appendix F: Implementation Requirements

http://www.w3.org/Graphics/SVG/svg-updates/translations.html

. Appendix G: Conformance Criteria

. Appendix H: Accessibility Support

. Appendix I: Internationalization Support

. Appendix J: Minimizing SVG File Sizes

. Appendix K: References

. Appendix L: Element Index

. Appendix M: Attribute Index

. Appendix N: Property Index

. Appendix O: Feature Strings

. Appendix P: Index

The authors of the SVG 1.1 specification are the people who participated in the
SVG Working Group as members or alternates.

Authors:

O O

Ola Andersson, ZOOMON AB

Phil Armstrong, Corel Corporation

Benoit Bézaire, Corel Corporation

Craig Brown, Canon Information Systems Research Australia
Mike Bultrowicz, Savage Software

Tolga Capin, Nokia

Mathias Larsson Carlander, Ericsson

Jakob Cederquist, ZOOMON AB

Lee Cole, Quark

Don Cone, America Online Inc.

Alex Danilo, Canon Information Systems Research Australia
Thomas DeWeese, Eastman Kodak

Jon Ferraiolo, Adobe Systems Inc.

Darryl Fuller, Schema Software

Jun Fujisawa, Canon

Rick Graham, BitFlash

Vincent Hardy, Sun Microsystems Inc.

Takanari Hayama, KDDI Research Labs

Lofton Henderson, OASIS

Masayasu Ishikawa, W3C

Dean Jackson, W3C/CSIRO (W3C Team Contact)
Christophe Jolif, ILOG S.A.

Lee Klosterman, Hewlett-Packard

Arei Kobayashi, KDDI Research Labs
Thierry Kormann, ILOG S.A.

Yuri Khramov, Schema Software

Chris Lilley, W3C (Working Group Chair)
Philip Mansfield, Schema Software
Mitsuru Minakuchi, Sharp Corporation
Luc Minnebo, Agfa-Gevaert N.V.
Suichiro Ono, Sharp Corporation
Antoine Quint, ILOG S.A.

Takeshi Sagara, KDDI Research Labs
Hirotaka Ueda, Sharp Corporation

Rick Yardumian, Canon Development Americas
Charles Ying, Openwave Systems Ltd

O O O O O O O O O O O O O

Acknowledgments

The SVG Working Group would like to acknowledge the great many people outside
of the SVG Working Group who help with the process of developing the SVG 1.1
specification. These people are too numerous to list individually. They include but
are not limited to the early implementers of the SVG 1.0 and 1.1 languages
(including viewers, authoring tools, and server-side transcoders), developers of
SVG content, people who have contributed on the www-svg@w3.org and svg-
developers@yahoogroups.com email lists, other Working Groups at the W3C, and
the W3C Team. SVG 1.1 is truly a cooperative effort between the SVG Working
Group, the rest of the W3C, and the public and benefits greatly from the pioneering
work of early implementers and content developers, feedback from the public, and
help from the W3C team.

previous next contents elements attributes properties index

W3C X0 WAC cesyp

http://validator.w3.org/
http://jigsaw.w3.org/css-validator

previous next contents elements attributes properties index

30 April 2002

Expanded Table of Contents

Expanded Table of Contents

Copyright notice
o W3C Document Copyright Notice and License
o W3C Software Copyright Notice and License

c
o
D
m
s,
c
@
E
£
o
)
d
d
)
-
m
o
S
-
m
O
O
ng'z

. 1 Introduction
o 1.1 About SVG
« 1.1.1 Modularization
« 1.1.2 Element and Attribute Collections
« 1.1.3 Profiling the SVG specification
s 1.2 SVG MIME type, file name extension and Macintosh file type
o 1.3 SVG Namespace, Public Identifier and System ldentifier
o 1.4 Compatibility with Other Standards Efforts
o 1.5 Terminology
o 1.6 Definitions
. 2 Concepts
o 2.1 Explaining the name: SVG
o 2.2 Important SVG concepts
o 2.3 Options for using SVG in Web pages
. 3 Rendering Model
o 3.1 Introduction
o 3.2 The painters model
o 3.3 Rendering Order
o 3.4 How groups are rendered
o 3.5 How elements are rendered
o 3.6 Types of graphics elements
« 3.6.1 Painting shapes and text
« 3.6.2 Painting raster images

o 3.7 Filtering painted regions
o 3.8 Clipping, masking and object opacity
o 3.9 Parent Compositing
. 4 Basic Data Types and Interfaces
o 4.1 Basic data types
o 4.2 Recognized color keyword names
o 4.3 Basic DOM interfaces
. 5 Document Structure
o 5.1 Defining an SVG document fragment: the 'svg' element
« 5.1.1 Overview
« 5.1.2 The 'svg' element
o 5.2 Grouping: the 'g' element
« 5.2.1 Overview
= 5.2.2 The 'g' element
o 5.3 References and the 'defs' element
« 5.3.1 Overview
« 5.3.2 URI reference attributes
« 5.3.3 The 'defs' element
o 5.4 The 'desc' and 'title’ elements
o 5.5 The 'symbol' element
o 5.6 The 'use' element
o 5.7 The 'image' element
o 5.8 Conditional processing
= 5.8.1 Conditional processing overview
« 5.8.2 The 'switch' element
« 5.8.3 The requiredFeatures attribute
= 5.8.4 The requiredExtensions attribute
= 5.8.5 The systemLanguage attribute
« 5.8.6 Applicability of test attributes
5.9 Specifying whether external resources are required for proper

O

rendering
o 5.10 Common attributes

« 5.10.1 Attributes common to all elements: id and xml:base
« 5.10.2 The xml:lang and xml:space attributes

o 5.11 Core Attribute Module

o 5.12 Structure Module

o 5.13 Basic Structure Module

o 5.14 Container Attribute Module
o 5.15 Conditional Processing Module
o 5.16 Image Module
o 5.17 DOM interfaces
. 6 Styling
o 6.1 SVG's styling properties
o 6.2 Usage scenarios for styling
o 6.3 Alternative ways to specify styling properties
o 6.4 Specifying properties using the presentation attributes
o 6.5 Entity definitions for the presentation attributes
o 6.6 Styling with XSL
o 6.7 Styling with CSS
o 6.8 Case sensitivity of property names and values
o 6.9 Facilities from CSS and XSL used by SVG
o 6.10 Referencing external style sheets
o 6.11 The 'style’ element
o 6.12 The class attribute
o 6.13 The style attribute
o 6.14 Specifying the default style sheet language
o 6.15 Property inheritance
o 6.16 The scope/range of styles
o 6.17 User agent style sheet
o 6.18 Aural style sheets
o 6.19 Style Module
o 6.20 DOM interfaces
. 7 Coordinate Systems, Transformations and Units
o 7.1 Introduction
o 7.2 The initial viewport
o 7.3 The initial coordinate system
o 7.4 Coordinate system transformations
o 7.5 Nested transformations
o 7.6 The transform attribute
o 7.7 The viewBox attribute
o 7.8 The preserveAspectRatio attribute
o 7.9 Establishing a new viewport
o 7.10 Units
o 7.11 Object bounding box units

o 7.12 Geographic Coordinate Systems

o 7.13 Viewport Attribute Module

o 7.14 DOM interfaces

8 Paths

o 8.1 Introduction

o 8.2 The 'path' element

o 8.3 Path Data
« 8.3.1 General information about path data
« 8.3.2 The "moveto" commands
= 8.3.3 The "closepath" command
« 8.3.4 The "lineto" commands
« 8.3.5 The curve commands
= 8.3.6 The cubic Bézier curve commands
« 8.3.7 The quadratic Bézier curve commands
= 8.3.8 The elliptical arc curve commands
« 8.3.9 The grammar for path data

o 8.4 Distance along a path

o 8.5 DOM interfaces

. 9 Basic Shapes

o 9.1 Introduction

o 9.2 The 'rect' element

o 9.3 The 'circle’ element

o 9.4 The 'ellipse' element

o 9.5 The 'line' element

o 9.6 The 'polyline' element

o 9.7 The 'polygon’' element

o 9.8 The grammar for points specifications in 'polyline' and 'polygon'

elements
o 9.9 Shape Module
o 9.10 DOM interfaces
. 10 Text

o 10.1 Introduction

n 10.2 Characters and their corresponding glyphs

o 10.3 Fonts, font tables and baselines

o 10.4 The 'text' element

o 10.5 The 'tspan' element

o 10.6 The 'tref' element

o 10.7 Text layout
« 10.7.1 Text layout introduction
« 10.7.2 Setting the inline-progression-direction
« 10.7.3 Glyph orientation within a text run
« 10.7.4 Relationship with bidirectionality
o 10.8 Text rendering order
o 10.9 Alignment properties
« 10.9.1 Text alignment properties
= 10.9.2 Baseline alignment properties
o 10.10 Font selection properties
o 10.11 Spacing properties
o 10.12 Text decoration
o 10.14 Text on a path
« 10.14.1 Introduction to text on a path
« 10.14.2 The 'textPath' element
= 10.14.3 Text on a path layout rules
o 10.14 Alternate glyphs
o 10.15 White space handling
o 10.16 Text selection and clipboard operations
o 10.17 Text Module
o 10.18 Basic Text Module
o 10.19 DOM interfaces
11 Painting: Filling, Stroking and Marker Symbols
o 11.1 Introduction
o 11.2 Specifying paint
o 11.3 Fill Properties
o 11.4 Stroke Properties
o 11.5 Controlling visibility
o 11.6 Markers
« 11.6.1 Introduction
« 11.6.2 The 'marker' element
« 11.6.3 Marker properties
« 11.6.4 Details on how markers are rendered
o 11.7 Rendering properties
« 11.7.1 Color interpolation properties: 'color-interpolation' and

‘color-interpolation-filters'
« 11.7.2 The 'color-rendering' property

« 11.7.3 The 'shape-rendering' property

« 11.7.4 The 'text-rendering' property

= 11.7.5 The 'image-rendering' property
11.8 Inheritance of painting properties

11.9 Paint Attribute Module

11.10 Opacity Attribute Module

11.11 Graphics Attribute Module

11.12 Basic Graphics Attribute Module

11.13 Marker Module

11.14 DOM interfaces

12 Color

O

O

0

0

O

12.1 Introduction

12.2 The 'color' property

12.3 Color profile descriptions

« 12.3.1 Overview of color profile descriptions
« 12.3.2 Alternative ways for defining a color profile description

« 12.3.3 The 'color-profile’ element
« 12.3.4 @color-profile when using CSS styling
« 12.3.5 'color-profile’ property

12.4 Color Profile Module

12.7 DOM interfaces

13 Gradients and Patterns

0

O

0

O

O

0

13.1 Introduction

13.2 Gradients

« 13.2.1 Introduction

« 13.2.2 Linear gradients

« 13.2.3 Radial gradients

« 13.2.4 Gradient stops
13.3 Patterns

13.4 Gradient Module

13.5 Pattern Module

13.6 DOM interfaces

14 Clipping, Masking and Compositing

O

0

O

14.1 Introduction

14.2 Simple alpha compositing

14.3 Clipping paths

« 14.3.1 Introduction

« 14.3.2 The initial clipping path
« 14.3.3 The 'overflow' and 'clip' properties
= 14.3.4 Clip to viewport vs. clip to viewBox
« 14.3.5 Establishing a new clipping path
o 14.4 Masking
o 14.5 Object and group opacity: the 'opacity' property
o 14.6 Clip Module
o 14.7 Basic Clip Module
o 14.8 Mask Module
o 14.9 DOM interfaces
. 15 Filter Effects
o 15.1 Introduction
o 15.2 An example
o 15.3 The 'filter' element
o 15.4 The 'filter' property
o 15.5 Filter effects region
o 15.6 Accessing the background image
o 15.7 Filter primitives overview
« 15.7.1 Overview
« 15.7.2 Common attributes
= 15.7.3 Filter primitive subregion
o 15.8 Light source elements and properties
« 15.8.1 Introduction
= 15.8.2 Light source 'feDistantLight'
« 15.8.3 Light source 'fePointLight'
« 15.8.4 Light source 'feSpotLight'
= 15.8.5 The 'lighting-color' property
o 15.9 Filter primitive 'feBlend'
o 15.10 Filter primitive 'feColorMatrix'
o 15.11 Filter primitive 'feComponentTransfer'
o 15.12 Filter primitive 'feComposite’
o 15.13 Filter primitive 'feConvolveMatrix'
o 15.14 Filter primitive 'feDiffuseLighting’
o 15.15 Filter primitive 'feDisplacementMap'
o 15.16 Filter primitive 'feFlood'
o 15.17 Filter primitive 'feGaussianBlur'
o 15.18 Filter primitive 'felmage'

o 15.19 Filter primitive 'feMerge’

o 15.20 Filter primitive 'feMorphology"

o 15.21 Filter primitive 'feOffset’

o 15.22 Filter primitive 'feSpecularLighting’

o 15.23 Filter primitive 'feTile'

o 15.24 Filter primitive 'feTurbulence'

o 15.25 Filter Module

o 15.26 Basic Filter Module

o 15.27 DOM interfaces

. 16 Interactivity

o 16.1 Introduction

o 16.2 Complete list of supported events

o 16.3 User interface events

o 16.4 Pointer events

o 16.5 Processing order for user interface events

o 16.6 The 'pointer-events' property

o 16.7 Magnification and panning

o 16.8 Cursors
« 16.8.1 Introduction to cursors
« 16.8.2 The 'cursor' property
«» 16.8.3 The 'cursor' element

o 16.9 Document Events Attribute Module

o 16.10 Graphical Events Attribute Module

o 16.11 Animation Events Attribute Module

o 16.12 Cursor Module

o 16.13 DOM interfaces

. 17 Linking

o 17.1 Links out of SVG content: the 'a’ element

o 17.2 Linking into SVG content: URI fragments and SVG views
« 17.2.1 Introduction: URI fragments and SVG views
« 17.2.2 SVG fragment identifiers
« 17.2.3 Predefined views: the 'view' element

o 17.3 Hyperlinking Module

o 17.4 Xlink Attribute Module

o 17.5 ExternalResourcesRequired Attribute Module

o 17.6 View Module

o 17.7 DOM interfaces

. 18 Scripting
18.1 Specifying the scripting language
= 18.1.1 Specifying the default scripting language
= 18.1.2 Local declaration of a scripting language
18.2 The 'script' element
18.3 Event handling
18.4 Event attributes
18.5 Scripting Module
18.6 DOM interfaces
19 Animation

0

0

O

19.1 Introduction

19.2 Animation elements

« 19.2.1 Overview

« 19.2.2 Relationship to SMIL Animation

= 19.2.3 Animation elements example

« 19.2.4 Attributes to identify the target element for an animation

« 19.2.5 Attributes to identify the target attribute or property for an

animation

« 19.2.6 Attributes to control the timing of the animation

« 19.2.7 Attributes that define animation values over time

« 19.2.8 Attributes that control whether animations are additive

« 19.2.9 Inheritance

« 19.2.10 The

‘animate' element

= 19.2.11 The

'set' element

» 19.2.12 The

‘animateMotion' element

« 19.2.13 The

‘animateColor' element

= 19.2.14 The

‘animateTransform' element

« 19.2.15 Elements, attributes and properties that can be

animated

o 19.3 Animation using the SVG DOM
19.4 Animation Module
19.5 DOM interfaces

O

0

O

20 Fonts

20.1 Introduction

o 20.2 Overview of SVG fonts
o 20.3 The 'font' element
o 20.4 The 'glyph' element

o 20.5 The 'missing-glyph' element
20.6 Glyph selection rules
o 20.7 The 'hkern' and 'vkern' elements
o 20.8 Describing a font
« 20.8.1 Overview of font descriptions
« 20.8.2 Alternative ways for providing a font description
« 20.8.3 The 'font-face' element
o 20.9 Full Font Module
o 20.10 Basic Font Module
o 20.11 DOM interfaces
. 21 Metadata
o 21.1 Introduction
o 21.2 The 'metadata’ element
o 21.3 An example
o 21.4 DOM interfaces
. 22 Backwards Compatibility
. 23 Extensibility
n 23.1 Foreign namespaces and private data
o 23.2 Embedding foreign object types
o 23.3 The 'foreignObject' element
o 23.4 An example
o 23.5 Adding private elements and attributes to the DTD
o 23.6 Extensibility Module
o 23.7 DOM interfaces

O

Appendix A: DTD

» A.1 SVG 1.1 DTD Module Implementations
« A.1l.1 Modular Framework Module
« A.1.2 Datatypes Module
= A.1.3 Qualified Name Module
« A.1.4 Core Attribute Module
« A.1.5 Container Attribute Module
= A.1.6 Viewport Attribute Module
A.1.7 Paint Attribute Module
A.1.8 Paint Opacity Attribute Module

« A.1.9 Graphics Attribute Module
« A.1.10 Basic Graphics Attribute Module
« A.1.11 Document Events Attribute Module
« A.1.12 Graphical Element Events Attribute Module
A.1.13 Animation Events Attribute Module
A.1.14 XLink Attribute Module
A.1.15 External Resources Attribute Module
A.1.16 Structure Module
A.1.17 Basic Structure Module
« A.1.18 Conditional Processing Module
« A.1.19 Image Module
= A.1.20 Style Module
« A.1.21 Shape Module
A.1.22 Text Module
A.1.23 Basic Text Module
A.1.24 Marker Module
A.1.25 Color Profile Module
« A.1.26 Gradient Module
« A.1.27 Pattern Module
« A.1.28 Clip Module
= A.1.29 Basic Clip Module
« A.1.30 Mask Module
A.1.31 Filter Module
A.1.32 Basic Filter Module
A.1.33 Cursor Module
A.1.34 Hyperlinking Module
A.1.35 View Module
« A.1.36 Scripting Module
« A.1.37 Animation Module
« A.1.38 Font Module
« A.1.39 Basic Font Module
« A.1.40 Extensibility Module
» A.2 SVG 1.1 Document Type Definition
« A.2.1 SVG 1.1 DTD Driver
« A.2.2 SVG 1.1 Document Model

O

O
. Appendix B: SVG Document Object Model (DOM)

o B.1 SVG DOM Overview

o B.2 Naming Conventions

o B.3 Interface SVGException

o B.4 Feature strings for the hasFeature method call

o B.5 Relationship with DOM?2 events

» B.6 Relationship with DOM2 CSS object model (CSS OM)

B.6.1 Introduction

B.6.2 User agents that do not support styling with CSS

B.6.3 User agents that support styling with CSS

B.6.4 Extended interfaces

o B.7 Invalid values

. Appendix C: IDL Definitions

. Appendix D: Java Language Binding

» D.1 Using SVG with Java

. Appendix E: ECMAScript Language Binding

. Appendix F: Implementation Requirements

o F.1 Introduction

1 F.2 Error processing

» F.3 Version control

o F.4 Clamping values which are restricted to a particular range

o F.5 'path' element implementation notes

o F.6 Elliptical arc implementation notes

F.6.1 Elliptical arc syntax

F.6.2 Out-of-range parameters

F.6.3 Parameterization alternatives

F.6.4 Conversion from center to endpoint parameterization

F.6.5 Conversion from endpoint to center parameterization

F.6.6 Correction of out-of-range radii

o F.7 Text selection implementation notes

o F.8 Printing implementation notes

. Appendix G: Conformance Criteria

n G.1 Introduction

o G.2 Conforming SVG Document Fragments

o G.3 Conforming SVG Stand-Alone Files

o G.4 Conforming SVG Included Document Fragments

o G.5 Conforming SVG Generators

o G.6 Conforming SVG Interpreters

o G.7 Conforming SVG Viewers
Appendix H: Accessibility Support

o H.1 WAI Accessibility Guidelines

o H.2 SVG Content Accessibility Guidelines
Appendix I. Internationalization Support

o |1 Introduction

o 1.2 Internationalization and SVG

o 1.3 SVG Internationalization Guidelines
Appendix J: Minimizing SVG File Sizes
Appendix K: References

o K.1 Normative references

o K.2 Informative references
Appendix L: Element Index
Appendix M: Attribute Index
Appendix N: Property Index
Appendix O: Feature Strings
Appendix P: Index

previous next contents elements attributes properties

index

c
o
=
m
s,
c
@
=
£
o
)
@
d
)
=
m
o
o
c
m
o
O
R
=

previous next contents elements attributes properties index

30 April 2002

Copyright Notice

Copyright © 2002 World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and
License. The bindings within this document are published under the W3C Software
Copyright Notice and License. The software license requires "Notice of any changes
or modifications to the W3C files, including the date changes were made."
Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL binding, the pragma prefix
can no longer be 'w3c.org’; in the case of the Java binding, the package names can
no longer be in the 'org.w3c' package.

W3C Document Copyright Notice and License

Note: This section is a copy of the W3C Document Notice and License and could
be found at http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2002 World Wide Web Consortium, (Massachusetts Institute

of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the
following license. The software or Document Type Definitions (DTDs) associated
with W3C specifications are governed by the Software Notice. By using and/or
copying this document, or the W3C document from which this statement is linked,
you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-software.html

Permission to use, copy, and distribute the contents of this document, or the W3C
document from which this statement is linked, in any medium for any purpose and
without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the document, or portions thereof, that you use:

1. Alink or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn't exist, a
notice of the form: "Copyright © [$date-of-document] World Wide Web

Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatigue et en Automatique, Keio University). All Rights

Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but
a textual representation is permitted.)
3. Ifit exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided.
We request that authorship attribution be provided in any software, documents, or
other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted
pursuant to this license. However, if additional requirements (documented in the
Copyright FAQ) are satisfied, the right to create modifications or derivatives is

sometimes granted by the W3C to individuals complying with those requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;
THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE
CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to this document or its contents without specific, written prior

http://www.w3.org/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

permission. Title to copyright in this document will at all times remain with copyright
holders.

W3C Software Copyright Notice and License

Note: This section is a copy of the W3C Software Copyright Notice and License and
could be found at http://www.w3.org/Consortium/Legal/copyright-software-

19980720

Copyright © 1994-2002 World Wide Web Consortium, (Massachusetts Institute

of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being
provided by the copyright holders under the following license. By obtaining, using
and/or copying this work, you (the licensee) agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or
without modification, for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications, that you make:

1. The full text of this NOTICE in a location viewable to users of the redistributed
or derivative work.

2. Any pre-existing intellectual property disclaimers. If none exist, then a notice
of the following form: "Copyright © [$date-of-software] World Wide Web
Consortium, (Massachusetts Institute of Technology, Institut National de
Recherche en Informatique et en Automatique, Keio University). All Rights

Reserved. http://www.w3.org/Consortium/Legal/."

3. Notice of any changes or modifications to the W3C files, including the date
changes were made. (We recommend you provide URIs to the location from
which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND
COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/

MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission. Title to
copyright in this software and any associated documentation will at all times remain
with copyright holders.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

1 Introduction

Contents

. 1.1 About SVG
o 1.1.1 Modularization
o 1.1.2 Element and Attribute Collections
o 1.1.3 Profiling the SVG specification
1.2 SVG MIME type, file name extension and Macintosh file type
1.3 SVG Namespace, Public Identifier and System Identifier
. 1.4 Compatibility with Other Standards Efforts
. 1.5 Terminology
. 1.6 Definitions

c
o
=
48
o
c
]
=
=
o
L)
@
o
W
-+
4
o
s,
c
8]
o
.
:2

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics
SVG).

SVG is a language for describing two-dimensional graphics in XML [XML10]. SVG
allows for three types of graphic objects: vector graphic shapes (e.g., paths
consisting of straight lines and curves), images and text. Graphical objects can be
grouped, styled, transformed and composited into previously rendered objects. The
feature set includes nested transformations, clipping paths, alpha masks, filter
effects and template objects.

SVG drawings can be interactive and dynamic. Animations can be defined and

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/REC-xml

triggered either declaratively (i.e., by embedding SVG animation elements in SVG
content) or via scripting.

Sophisticated applications of SVG are possible by use of a supplemental scripting
language which accesses SVG Document Object Model (DOM), which provides

complete access to all elements, attributes and properties. A rich set of event
handlers such as onmouseover and onclick can be assigned to any SVG graphical
object. Because of its compatibility and leveraging of other Web standards, features
like scripting can be done on XHTML and SVG elements simultaneously within the
same Web page.

SVG is a language for rich graphical content. For accessibility reasons, if there is an
original source document containing higher-level structure and semantics, it is
recommended that the higher-level information be made available somehow, either
by making the original source document available, or making an alternative version
available in an alternative format which conveys the higher-level information, or by
using SVG's facilities to include the higher-level information within the SVG content.
For suggested techniques in achieving greater accessibility, see Accessibility.

1.1.1 Modularization

The modularization of SVG included here is a decomposition of SVG 1.0 and a
small set of new features or errata into a collection of abstract modules that provide
specific types of functionality. These modules may be combined with each other and
with modules defined in other specifications (such as XHTML) to create SVG subset
and extension document types that qualify as members of the SVG family of
document types. See Conformance for a description of SVG family documents, and

[XHTMLplusMathMLplusSVG] for a profile that combines XHTML, MathML and
SVG.

Each major section of the SVG specification produces a module named after that
section, e.g. "Text Module" or "Basic Structure Module". A module without the
"Basic" prefix implies that the module includes the complete set of elements and
attributes, with no restrictions, from the corresponding section of the specification. If
there is a need to provide a subset of the functionality of the complete module, then
a Basic module is created with the "Basic" prefix added to the name of the complete
module.

It is an error for a profile of SVG 1.1 to include the complete module and the basic
subset of that module (e.g. the Text Module and the Basic Text Module).

1.1.2 Element and Attribute collections

Most modules define a named collection of elements or attributes. These collections
are used as a shorthand when describing the set of attributes allowed on an element
or the set of elements allowed as children of an element. All collections have names
that begin with an uppercase character.

In the case where an element or attribute collection is referred to, but the module
that defines the collection has not been included in the profile, then the collection is
defined to be empty. The exception to this is the collection PresentationAttrsAll,
which is the union of all the presentation attribute collections (i.e. all the attribute
collections with the string "Presentation” in their name).

A subset module (ie. a Basic module) may define a different named collection from a
superset module. Since it is an error to include a subset and superset module of the
same group in a profile, all attribute and element collections will either be defined
once by the module that includes them, or will have their default empty value.

1.1.3 Profiling the SVG specification

The modularization of SVG 1.1 allows profiles to be described by listing the SVG
modules they allow and possibly a small number of restrictions or extensions on the
elements provided by those modules.

The Full profile of SVG 1.1 is the collection of all the complete modules listed in this
specification.

When applied to conformance, the unqualified term "SVG" implies the Full profile of
SVG 1.1 defined by this specification. If an implementation does not implement the
Full profile, it must state either the profile to which it conforms, or that it implements
a subset of SVG.

1.2 SVG MIME type, file name extension and Macintosh
file type

The MIME type for SVG is "i mage/ svg+xm " (see [REC3023]). The registration of
this MIME type is in progress at the W3C.

It is recommended that SVG files have the extension " . svg" (all lowercase) on all
platforms. It is recommended that gzip-compressed SVG files have the extension

".svgz" (all lowercase) on all platforms.

It is recommended that SVG files stored on Macintosh HFS file systems be given a
file type of "svg " (all lowercase, with a space character as the fourth letter). It is
recommended that gzip-compressed SVG files stored on Macintosh HFS file

systems be given a file type of “svgz" (all lowercase).

1.3 SVG Namespace, Public Identifier and System
Identifier

The following are the SVG 1.1 namespace, public identifier and system identifier:

SVG Namespace:
http://www.w3.0rg/2000/svg

Public Identifier for SVG 1.1:
PUBLIC "-//W3C//DTD SVG 1.1//EN"

System ldentifier for this draft of SVG 1.1:
http://www.w3.0rg/Graphics/SVG/1.1/DTD/svg11.dtd

The following is an example document type declaration for an SVG document:

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1// EN'
"http://ww. w3. org/ Gaphi cs/ SVE@ 1. 1/ DTD/ svgll. dt d" >

1.4 Compatibility with Other Standards Efforts

SVG leverages and integrates with other W3C specifications and standards efforts.
By leveraging and conforming to other standards, SVG becomes more powerful and
makes it easier for users to learn how to incorporate SVG into their Web sites.

http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.w3.org/TR/REC-xml#sec-prolog-dtd

The following describes some of the ways in which SVG maintains compatibility
with, leverages and integrates with other W3C efforts:

. SVG is an application of XML and is compatible with the "Extensible Markup
Language (XML) 1.0" Recommendation [XML10]

. SVG is compatible with the "Namespaces in XML" Recommendation [XML-
NS]

. SVG utilizes "XML Linking Language (XLink)" [XLINK] for URI referencing and
requires support for base URI specifications defined in "XML Base" [XML-
BASE].

. SVG's syntax for referencing element IDs is a compatible subset of the ID
referencing syntax in "XML Pointer Language (XPointer)" [XPTR].

. SVG content can be styled by either CSS (see "Cascading Style Sheets
(CSS) level 2" specification [CSS2]) or XSL (see "XSL Transformations
(XSLT) Version 1.0" [XSLT]). (See Styling with CSS and Styling with XSL)

. SVG supports relevant properties and approaches common to CSS and XSL,
plus selected semantics and features of CSS (see SVG's styling properties
and SVG's Use of Cascading Style Sheets).

. External style sheets are referenced using the mechanism documented in
"Associating Style Sheets with XML documents Version 1.0" [XML-SS].

. SVG includes a complete Document Object Model (DOM) and conforms to
the "Document Object Model (DOM) level 1" Recommendation [DOM1]. The
SVG DOM has a high level of compatibility and consistency with the HTML
DOM that is defined in the DOM Level 1 specification. Additionally, the SVG
DOM supports and incorporates many of the facilities described in "Document
Object Model (DOM) level 2" [DOMZ2], including the CSS object model and
event handling.

SVG incorporates some features and approaches that are part of the
"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification”
[SMIL1], including the 'switch' element and the systemlLanguage attribute.
SVG's animation features (see Animation) were developed in collaboration
with the W3C Synchronized Multimedia (SYMM) Working Group, developers
of the Synchronized Multimedia Integration Language (SMIL) 1.0
Specification [SMIL1]. SVG's animation features incorporate and extend the
general-purpose XML animation capabilities described in the "SMIL
Animation” specification [SMILANIM].

. SVG has been designed to allow future versions of SMIL to use animated or
static SVG content as media components.

SVG attempts to achieve maximum compatibility with both HTML 4 [HTML4]

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xmlbase
http://www.w3.org/TR/xmlbase
http://www.w3.org/TR/xptr
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/2001/REC-smil-animation-20010904/
http://www.w3.org/TR/html401/

and XHTML(tm) 1.0 [XHTML]. Many of SVG's facilities are modeled directly
after HTML, including its use of CSS [CSS2], its approach to event handling,
and its approach to its Document Object Model [DOM?2].

. SVG is compatible with W3C work on internationalization. References (W3C
and otherwise) include: [UNICODE] and [CHARMOD)]. Also, see

Internationalization Support.
. SVG is compatible with W3C work on Web Accessibility [WAI]. Also, see
Accessibility Support.

In environments which support [DOM2] for other XML grammars (e.g., XHTML
[XHTML]) and which also support SVG and the SVG DOM, a single scripting
approach can be used simultaneously for both XML documents and SVG graphics,
in which case interactive and dynamic effects will be possible on multiple XML
namespaces using the same set of scripts.

1.5 Terminology

Within this specification, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" are to be interpreted as described in RFC 2119 (see [RFC2119]).
However, for readability, these words do not appear in all uppercase letters in this
specification.

At times, this specification recommends good practice for authors and user agents.
These recommendations are not normative and conformance with this specification
does not depend on their realization. These recommendations contain the
expression "We recommend ...", "This specification recommends ...", or some
similar wording.

1.6 Definitions

basic shape
Standard shapes which are predefined in SVG as a convenience for common
graphical operations. Specifically: 'rect’, ‘circle’, 'ellipse’, 'line', 'polyline’,
‘polygon'.

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/DOM-Level-2/
http://www.unicode.org/unicode/standard/versions/
http://www.w3.org/TR/charmod/
http://www.w3.org/WAI/
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/xhtml1/
http://www.ietf.org/rfc/rfc2119.txt

canvas
A surface onto which graphics elements are drawn, which can be real
physical media such as a display or paper or an abstract surface such as a
allocated region of computer memory. See the discussion of the SVG canvas

in the chapter on Coordinate Systems, Transformations and Units.

clipping path
A combination of 'path’, 'text' and basic shapes which serve as the outline of a
(in the absence of anti-aliasing) 1-bit mask, where everything on the "inside"
of the outline is allowed to show through but everything on the outside is
masked out. See Clipping paths.

container element
An element which can have graphics elements and other container elements
as child elements. Specifically: 'svg’, 'g', 'defs' 'symbol’, ‘clipPath’, 'mask’,
'pattern’, 'marker’, 'a’ and 'switch'.

current innermost SVG document fragment
The XML document sub-tree which starts with the most immediate ancestor
'svg' element of a given SVG element.

current SVG document fragment
The XML document sub-tree which starts with the outermost ancestor 'svg’
element of a given SVG element, with the requirement that all container
elements between the outermost 'svg' and this element are all elements in the
SVG language.

current transformation matrix (CTM)
Transformation matrices define the mathematical mapping from one
coordinate system into another using a 3x3 matrix using the equation [x'y' 1]
=[x y 1] * matrix. The current transformation matrix (CTM) defines the
mapping from the user coordinate system into the viewport coordinate
system. See Coordinate system transformations.

fill
The operation of painting the interior of a shape or the interior of the character
glyphs in a text string.

font

A font represents an organized collection of glyphs in which the various glyph
representations will share a common look or styling such that, when a string
of characters is rendered together, the result is highly legible, conveys a

particular artistic style and provides consistent inter-character alignment and
spacing.

glyph
A glyph represents a unit of rendered content within a font. Often, there is a
one-to-one correspondence between characters to be drawn and
corresponding glyphs (e.g., often, the character "A" is rendered using a single
glyph), but other times multiple glyphs are used to render a single character
(e.g., use of accents) or a single glyph can be used to render multiple
characters (e.g., ligatures). Typically, a glyph is defined by one or more
shapes such as a path, possibly with additional information such as rendering
hints that help a font engine to produce legible text in small sizes.

graphics element
One of the element types that can cause graphics to be drawn onto the target
canvas. Specifically: 'path’, 'text’, 'rect’, ‘circle’, 'ellipse’, 'line', 'polyline’,
'polygon’, 'image’ and 'use'.

graphics referencing element
A graphics element which uses a reference to a different document or
element as the source of its graphical content. Specifically: 'use’ and 'image'.

local URI reference
A Uniform Resource Identifier [URI] that does not include an <absoluteURI> or

<relativeURI> and thus represents a reference to an element within the current
document. See References and the 'defs' element.

mask
A container element which can contain graphics elements or other container

elements which define a set of graphics that is to be used as a semi-
transparent mask for compositing foreground objects into the current
background. See Masks.

non-local URI reference
A Uniform Resource Identifier [URI] that includes an <absoluteURI> or

<relativeURI> and thus (usually) represents a reference to a different
document or an element within a different document. See References and the

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

'‘defs' element.

paint
A paint represents a way of putting color values onto the canvas. A paint
might consist of both color values and associated alpha values which control
the blending of colors against already existing color values on the canvas.
SVG supports three types of built-in paint: color, gradients and patterns.

presentation attribute
An XML attribute on an SVG element which specifies a value for a given
property for that element. See Styling.

property
A parameter that helps specify how a document should be rendered. A
complete list of SVG's properties can be found in Property Index. Properties

are assigned to elements in the SVG language either by presentation
attributes on elements in the SVG language or by using a styling language
such as CSS [CSS2]. See Styling.

shape
A graphics element that is defined by some combination of straight lines and
curves. Specifically: 'path’, 'rect’, 'circle’, 'ellipse’, 'line', 'polyline’, '‘polygon’.

stroke
The operation of painting the outline of a shape or the outline of character
glyphs in a text string.

SVG canvas
The canvas onto which the SVG content is rendered. See the discussion of

the SVG canvas in the chapter on Coordinate Systems, Transformations and

Units.

SVG document fragment
The XML document sub-tree which starts with an 'svg' element. An SVG
document fragment can consist of a stand-alone SVG document, or a
fragment of a parent XML document enclosed by an 'svg' element. When an

'svg' element is a descendant of another 'svg' element, there are two SVG
document fragments, one for each 'svg' element. (One SVG document
fragment is contained within another SVG document fragment.)

http://www.w3.org/TR/REC-CSS2/

SVG viewport
The viewport within the SVG canvas which defines the rectangular region into

which SVG content is rendered. See the discussion of the SVG viewport in
the chapter on Coordinate Systems, Transformations and Units.

text content element
One of SVG's elements that can define a text string that is to be rendered
onto the canvas. SVG's text content elements are the following: 'text’, 'tspan’,

'tref', 'textPath' and 'altGlyph'.

transformation
A modification of the current transformation matrix (CTM) by providing a
supplemental transformation in the form of a set of simple transformations
specifications (such as scaling, rotation or translation) and/or one or more
transformation matrices. See Coordinate system transformations.

transformation matrix
Transformation matrices define the mathematical mapping from one
coordinate system into another using a 3x3 matrix using the equation [x'y' 1]
=[x y 1] * matrix. See current transformation matrix (CTM) and Coordinate

system transformations.

URI Reference
A Uniform Resource Identifier [URI] which serves as a reference to a file or to

an element within a file. See References and the 'defs' element.

user agent

The general definition of a user agent is an application that retrieves and
renders Web content, including text, graphics, sounds, video, images, and
other content types. A user agent may require additional user agents that
handle some types of content. For instance, a browser may run a separate
program or plug-in to render sound or video. User agents include graphical
desktop browsers, multimedia players, text browsers, voice browsers, and
assistive technologies such as screen readers, screen magnifiers, speech
synthesizers, onscreen keyboards, and voice input software.

A "user agent" may or may not have the ability to retrieve and render SVG
content; however, an "SVG user agent" retrieves and renders SVG content.

user coordinate system

http://www.ietf.org/rfc/rfc2396.txt

In general, a coordinate system defines locations and distances on the
current canvas. The current user coordinate system is the coordinate

system that is currently active and which is used to define how coordinates
and lengths are located and computed, respectively, on the current canvas.

See initial user coordinate system and Coordinate system transformations.

user space
A synonym for user coordinate system.

user units
A coordinate value or length expressed in user units represents a coordinate
value or length in the current user coordinate system. Thus, 10 user units

represents a length of 10 units in the current user coordinate system.

viewport
A rectangular region within the current canvas onto which graphics elements
are to be rendered. See the discussion of the SVG viewport in the chapter on
Coordinate Systems, Transformations and Units.

viewport coordinate system
In general, a coordinate system defines locations and distances on the
current canvas. The viewport coordinate system is the coordinate system

that is active at the start of processing of an 'svg' element, before processing
the optional viewBox attribute. In the case of an SVG document fragment that

Is embedded within a parent document which uses CSS to manage its layout,
then the viewport coordinate system will have the same orientation and
lengths as in CSS, with the origin at the top-left on the viewport. See The

initial viewport and Establishing a new viewport.

viewport space
A synonym for viewport coordinate system.

viewport units
A coordinate value or length expressed in viewport units represents a
coordinate value or length in the viewport coordinate system. Thus, 10
viewport units represents a length of 10 units in the viewport coordinate
system.

previous next contents elements attributes properties index

c
o
=
m
s,
c
@
=
£
o
)
@
d
)
=
m
o
o
c
m
o
O
R
=

previous next contents elements attributes properties index

30 April 2002

2 Concepts

Contents

. 2.1 Explaining the name: SVG
. 2.2 Important SVG concepts
. 2.3 Options for using SVG in Web pages

2.1 Explaining the name: SVG

SVG stands for Scalable Vector Graphics, an XML grammar for stylable graphics,
usable as an XML namespace.

Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics,
scalable means not being limited to a single, fixed, pixel size. On the Web, scalable
means that a particular technology can grow to a large number of files, a large
number of users, a wide variety of applications. SVG, being a graphics technology
for the Web, is scalable in both senses of the word.

SVG graphics are scalable to different display resolutions, so that for example
printed output uses the full resolution of the printer and can be displayed at the
same size on screens of different resolutions. The same SVG graphic can be
placed at different sizes on the same Web page, and re-used at different sizes on
different pages. SVG graphics can be magnified to see fine detail, or to aid those
with low vision.

SVG graphics are scalable because the same SVG content can be a stand-alone
graphic or can be referenced or included inside other SVG graphics, thereby

allowing a complex illustration to be built up in parts, perhaps by several people.
The symbol, marker and font capabilities promote re-use of graphical components,
maximize the advantages of HTTP caching and avoid the need for a centralized
registry of approved symbols.

Vector

Vector graphics contain geometric objects such as lines and curves. This gives
greater flexibility compared to raster-only formats (such as PNG and JPEG) which
have to store information for every pixel of the graphic. Typically, vector formats can
also integrate raster images and can combine them with vector information such as
clipping paths to produce a complete illustration; SVG is no exception.

Since all modern displays are raster-oriented, the difference between raster-only
and vector graphics comes down to where they are rasterized; client side in the
case of vector graphics, as opposed to already rasterized on the server. SVG gives
control over the rasterization process, for example to allow anti-aliased artwork
without the ugly aliasing typical of low quality vector implementations. SVG also
provides client-side raster filter effects, so that moving to a vector format does not

mean the loss of popular effects such as soft drop shadows.

Graphics

Most existing XML grammars represent either textual information, or represent raw
data such as financial information. They typically provide only rudimentary graphical
capabilities, often less capable than the HTML 'img' element. SVG fills a gap in the
market by providing a rich, structured description of vector and mixed vector/raster
graphics; it can be used stand-alone, or as an XML namespace with other

grammars.

XML

XML, a W3C Recommendation for structured information exchange, has become

extremely popular and is both widely and reliably implemented. By being written in
XML, SVG builds on this strong foundation and gains many advantages such as a
sound basis for internationalization, powerful structuring capability, an object model,
and so on. By building on existing, cleanly-implemented specifications, XML-based
grammars are open to implementation without a huge reverse engineering effort.

Namespace

file:///TR/REC-xml

It is certainly useful to have a stand-alone, SVG-only viewer. But SVG is also
intended to be used as one component in a multi-namespace XML application. This
multiplies the power of each of the namespaces used, to allow innovative new
content to be created. For example, SVG graphics may be included in a document
which uses any text-oriented XML namespace - including XHTML. A scientific
document, for example, might also use MathML for mathematics in the document.

The combination of SVG and SMIL leads to interesting, time based, graphically rich
presentations.

SVG is a good, general-purpose component for any multi-namespace grammar that
needs to use graphics.

Stylable

The advantages of style sheets in terms of presentational control, flexibility, faster
download and improved maintenance are now generally accepted, certainly for use
with text. SVG extends this control to the realm of graphics.

The combination of scripting, DOM and CSS is often termed "Dynamic HTML" and
Is widely used for animation, interactivity and presentational effects. SVG allows the
same script-based manipulation of the document tree and the style sheet.

2.2 Important SVG concepts

Graphical Objects

With any XML grammar, consideration has to be given to what exactly is being
modelled. For textual formats, modelling is typically at the level of paragraphs and
phrases, rather than individual nouns, adverbs, or phonemes. Similarly, SVG
models graphics at the level of graphical objects rather than individual points.

SVG provides a general path element, which can be used to create a huge variety
of graphical objects, and also provides common basic shapes such as rectangles

and ellipses. These are convenient for hand coding and may be used in the same
ways as the more general path element. SVG provides fine control over the
coordinate system in which graphical objects are defined and the transformations
that will be applied during rendering.

http://www.w3.org/TR/MathML2/

Symbols

It would have been possible to define some standard symbols that SVG would
provide. But which ones? There would always be additional symbols for electronics,
cartography, flowcharts, etc., that people would need that were not provided until
the "next version". SVG allows users to create, re-use and share their own symbols
without requiring a centralized registry. Communities of users can create and refine
the symbols that they need, without having to ask a committee. Designers can be
sure exactly of the graphical appearance of the symbols they use and not have to
worry about unsupported symbols.

Symbols may be used at different sizes and orientations, and can be restyled to fit
in with the rest of the graphical composition.

Raster Effects

Many existing Web graphics use the filtering operations found in paint packages to
create blurs, shadows, lighting effects and so on. With the client-side rasterization
used with vector formats, such effects might be thought impossible. SVG allows the
declarative specification of filters, either singly or in combination, which can be
applied on the client side when the SVG is rendered. These are specified in such a
way that the graphics are still scalable and displayable at different resolutions.

Fonts

Graphically rich material is often highly dependent on the particular font used and
the exact spacing of the glyphs. In many cases, designers convert text to outlines to
avoid any font substitution problems. This means that the original text is not present
and thus searchability and accessibility suffer. In response to feedback from
designers, SVG includes font elements so that both text and graphical appearance
are preserved.

Animation

Animation can be produced via script-based manipulation of the document, but
scripts are difficult to edit and interchange between authoring tools is harder. Again
in response to feedback from the design community, SVG includes declarative
animation elements which were designed collaboratively by the SVG and SYMM
Working Groups. This allows the animated effects common in existing Web
graphics to be expressed in SVG.

2.3 Options for using SVG in Web pages

There are a variety of ways in which SVG content can be included within a Web
page. Here are some of the options:

. A stand-alone SVG Web page
In this case, an SVG document (i.e., a Web resource whose MIME type is
"I mge/ svg+xm ") is loaded directly into a user agent such as a Web
browser. The SVG document is the Web page that is presented to the user.
. Embedding by reference
In this case, a parent Web page references a separately stored SVG
document and specifies that the given SVG document should be embedded
as a component of the parent Web page. For HTML or XHTML, here are
three options:

o The HTML/XHTML 'img' element is the most common method for using
graphics in HTML pages. For faster display, the width and height of the
image can be given as attributes. One attribute that is required is alt,
used to give an alternate textual string for people browsing with images
off, or who cannot see the images. The string cannot contain any
markup. A longdesc attribute lets you point to a longer description -
often in HTML - which can have markup and richer formatting.

o The HTML/XHTML 'object' element can contain other elements nested
within it, unlike 'img’, which is empty. This means that several different
formats can be offered, using nested 'object' elements, with a final
textual alternative (including markup, links, etc). The outermost
element which can be displayed will be used.

o The HTML/XHTML 'applet’ element which can invoke a Java applet to
view SVG content within the given Web page. These applets can do
many things, but a common task is to use them to display images,
particularly ones in unusual formats or which need to be presented
under the control of a program for some other reason.

. Embedding inline
In this case, SVG content is embedded inline directly within the parent Web
page. An example is an XHTML Web page with an SVG document fragment
textually included within the XHTML.

. External link, using the HTML 'a’ element
This allows any stand-alone SVG viewer to be used, which can (but need not)
be a different program to that used to display HTML. This option typically is
used for unusual image formats.

. Referenced from a CSS2 or XSL property

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/

When a user agent supports CSS-styled XML content or XSL Formatting
Objects and the user agent is a Conforming SVG Viewer, then that user

agent must support the ability to reference SVG resources wherever CSS or
XSL properties allow for the referencing of raster images, including the ability
to tile SVG graphics wherever necessary and the ability to composite the
SVG into the background if it has transparent portions. Examples include the
'‘background-image' and 'list-style-image' properties that are included in both
CSS and XSL.

previous next contents elements attributes properties index

http://www.w3.org/TR/REC-CSS2/colors.html#propdef-background-image
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-list-style-image

-
o
o
m
o
c
@
E
£
o
)
@
d
W
=t
m
=
°
=
m
o
)
:'*gﬁ

previous next contents elements attributes properties index

30 April 2002

3 Rendering Model

Contents

3.1 Introduction

. 3.2 The painters model

. 3.3 Rendering Order

. 3.4 How groups are rendered

. 3.5 How elements are rendered

. 3.6 Types of graphics elements
o 3.6.1 Painting shapes and text
o 3.6.2 Painting raster images

. 3.7 Filtering painted regions

. 3.8 Clipping, masking and object opacity

. 3.9 Parent Compositing

3.1 Introduction

Implementations of SVG are expected to behave as though they implement a
rendering (or imaging) model corresponding to the one described in this chapter. A
real implementation is not required to implement the model in this way, but the
result on any device supported by the implementation shall match that described by
this model.

The appendix on conformance requirements describes the extent to which an actual

implementation may deviate from this description. In practice an actual
implementation will deviate slightly because of limitations of the output device (e.g.

only a limited range of colors might be supported) and because of practical
limitations in implementing a precise mathematical model (e.g. for realistic
performance curves are approximated by straight lines, the approximation need
only be sufficiently precise to match the conformance requirements).

3.2 The painters model

SVG uses a "painters model” of rendering. Paint is applied in successive operations

to the output device such that each operation paints over some area of the output
device. When the area overlaps a previously painted area the new paint partially or
completely obscures the old. When the paint is not completely opaque the result on
the output device is defined by the (mathematical) rules for compositing described
under Alpha Blending.

3.3 Rendering Order

Elements in an SVG document fragment have an implicit drawing order, with the
first elements in the SVG document fragment getting "painted” first. Subsequent
elements are painted on top of previously painted elements.

3.4 How groups are rendered

Grouping elements such as the 'g’ (see container elements) have the effect of
producing a temporary separate canvas initialized to transparent black onto which
child elements are painted. Upon the completion of the group, any filter effects
specified for the group are applied to create a modified temporary canvas. The
modified temporary canvas is composited into the background, taking into account
any group-level masking and opacity settings on the group.

3.5 How elements are rendered

Individual graphics elements are rendered as if each graphics element represented

its own group; thus, the effect is as if a temporary separate canvas is created for
each graphics element. The element is first painted onto the temporary canvas (see
Painting shapes and text and Painting raster images below). Then any filter effects

specified for the graphics element are applied to create a modified temporary
canvas. The modified temporary canvas is then composited into the background,
taking into account any clipping, masking and object opacity settings on the

graphics element.

3.6 Types of graphics elements

SVG supports three fundamental types of graphics elements that can be rendered
onto the canvas:

. Shapes, which represent some combination of straight line and curves

. Text, which represents some combination of character glyphs

. Raster images, which represent an array of values that specify the paint color
and opacity (often termed alpha) at a series of points on a rectangular grid.
(SVG requires support for specified raster image formats under conformance

requirements.)

3.6.1 Painting shapes and text

Shapes and text can be filled (i.e., apply paint to the interior of the shape) and
stroked (i.e., apply paint along the outline of the shape). A stroke operation is

centered on the outline of the object; thus, in effect, half of the paint falls on the
interior of the shape and half of the paint falls outside of the shape.

For certain types of shapes, marker symbols (which themselves can consist of any
combination of shapes, text and images) can be drawn at selected vertices. Each
marker symbol is painted as if its graphical content were expanded into the SVG
document tree just after the shape object which is using the given marker symbol.
The graphical contents of a marker symbol are rendered using the same methods
as graphics elements. Marker symbols are not applicable to text.

The fill is painted first, then the stroke, and then the marker symbols. The marker
symbols are rendered in order along the outline of the shape, from the start of the
shape to the end of the shape.

Each fill and stroke operation has its own opacity settings; thus, you can fill and/or
stroke a shape with a semi-transparently drawn solid color, with different opacity
values for the fill and stroke operations.

The fill and stroke operations are entirely independent painting operations; thus, if
you both fill and stroke a shape, half of the stroke will be painted on top of part of
the fill.

SVG supports the following built-in types of paint which can be used in fill and
stroke operations:

. Solid color
. Gradients (linear and radial)
. Patterns

3.6.2 Painting raster images

When a raster image is rendered, the original samples are "resampled"” using
standard algorithms to produce samples at the positions required on the output
device. Resampling requirements are discussed under conformance requirements.

3.7 Filtering painted regions

SVG allows any painting operation to be filtered. (See Filter Effects.)

In this case the result must be as though the paint operations had been applied to
an intermediate canvas initialized to transparent black, of a size determined by the
rules given in Filter Effects then filtered by the processes defined in Filter Effects.

3.8 Clipping, masking and object opacity

SVG allows any painting operation to be limited to a subregion of the output device
by clipping and masking. This is described in Clipping, Masking and Compositing.

Clipping uses a path to define a region of the output device to which paint can be
applied. Any painting operation executed within the scope of the clipping must be
rendered such that only those parts of the device that fall within the clipping region
are affected by the painting operation. A clipping path can be thought of as a mask
wherein those pixels outside the clipping path are black with an alpha value of zero
and those pixels inside the clipping path are white with an alpha value of one.
"Within" is defined by the same rules used to determine the interior of a path for
painting. The clipping path is typically anti-aliased on low-resolution devices (see
'shape-rendering'). Clipping is described in Clipping paths.

Masking uses the luminance of the color channels and alpha channel in a
referenced SVG element to define a supplemental set of alpha values which are

multiplied to the alpha values already present in the graphics to which the mask is
applied. Masking is described in Masking.

A supplemental masking operation may also be specified by applying a "global*
opacity to a set of rendering operations. In this case the mask is infinite, with a color
of white and an alpha channel of the given opacity value. (See 'opacity' property.)

In all cases the SVG implementation must behave as though all painting and
filtering is first performed to an intermediate canvas which has been initialized to
transparent black. Then, alpha values on the intermediate canvas are multiplied by
the implicit alpha values from the clipping path, the alpha values from the mask, and
the alpha values from the 'opacity’ property. The resulting canvas is composited into
the background using simple alpha blending. Thus if an area of the output device is
painted with a group opacity of 50% using opaque red paint followed by opaque
green paint the result is as though it had been painted with just 50% opaque green
paint. This is because the opaque green paint completely obscures the red paint on
the intermediate canvas before the intermediate as a whole is rendered onto the
output device.

3.9 Parent Compositing

SVG document fragments can be semi-opaque. In many environments (e.g., Web
browsers), the SVG document fragment has a final compositing step where the
document as a whole is blended translucently into the background canvas.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

4 Basic Data Types and Interfaces

Contents

. 4.1 Basic data types
. 4.2 Recognized color keyword names
. 4.3 Basic DOM interfaces

c
o
=
[+
s
c
]
=
=
o
L
@
o
)
-
(%]
©
°
c
[{v]
)
O
™
=

4.1 Basic data types
The common data types for SVG's properties and attributes fall into the following categories:

. <integer>: An <integer> is specified as an optional sign character ('+' or '-') followed by one or more
digits "0" to "9". If the sign character is not present, the number is non-negative.
Unless stated otherwise for a particular attribute or property, the range for a <integer> encompasses
(at a minimum) -2147483648 to 2147483647.
Within the SVG DOM, an <integer> is represented as an long or an SVGAnimatedInteger.

. <number> (real number value): The specification of real number values is different for property
values than for XML attribute values.

o CSS2 [CSS2?] states that a property value which is a <number> is specified in decimal
notation (i.e., a <decimal-number>), which consists of either an <integer>, or an optional sign
character followed by zero or more digits followed by a dot (.) followed by one or more digits.
Thus, for conformance with CSS2, any property in SVG which accepts <number> values is
specified in decimal notation only.

o For SVG's XML attributes, to provide as much scalability in numeric values as possible, real
number values can be provided either in decimal notation or in scientific notation (i.e., a
<scientific-number>), which consists of a <decimal-number> immediately followed by the letter
"e" or "E" immediately followed by an <integer>.

Unless stated otherwise for a particular attribute or property, a <number> has the capacity for at
least a single-precision floating point number (see [ICC32]) and has a range (at a minimum) of -
3.4e+38F to +3.4e+38F.

It is recommended that higher precision floating point storage and computation be performed on
operations such as coordinate system transformations to provide the best possible precision and to
prevent round-off errors.

Conforming High-Quality SVG Viewers are required to use at least double-precision floating point

(see [ICC32]) for intermediate calculations on certain numerical operations.
Within the SVG DOM, a <number> is represented as a float or an SVGAnimatedNumber.
. <length>: A length is a distance measurement. The format of a <length> is a <number> optionally

http://www.w3.org/TR/REC-CSS2/
http://www.color.org/ICC-1A_1999-04.PDF
http://www.color.org/ICC-1A_1999-04.PDF

followed immediately by a unit identifier. (Note that the specification of a <number> is different for
property values than for XML attribute values.)

If the <length> is expressed as a value without a unit identifier (e.g., 48), then the <length>
represents a distance in the current user coordinate system.

If one of the unit identifiers is provided (e.g., 12mm), then the <length> is processed according to the
description in Units.

Percentage values (e.g., 10%) depend on the particular property or attribute to which the percentage
value has been assigned. Two common cases are: (a) when a percentage value represents a
percent of the viewport (refer to the section that discusses Units in general), and (b) when a
percentage value represents a percent of the bounding box on a given object (refer to the section
that describes Object bounding box units).

Within the SVG DOM, a <length> is represented as an SVGLength or an SVGAnimatedLength.
<coordinate>: A <coordinate> represents a <length> in the user coordinate system that is the given
distance from the origin of the user coordinate system along the relevant axis (the x-axis for X
coordinates, the y-axis for Y coordinates).

Within the SVG DOM, a <coordinate> is represented as an SVGLength or an
SVGAnimatedLength since both values have the same syntax.

<list of xxx> (where xxx represents a value of some type): A list consists of a separated sequence
of values. The specification of lists is different for property values than for XML attribute values.

o Lists in property values are either comma-separated, with optional white space before or after
the comma, or space-separated, as specified either in the CSS2 specification (if the property
is defined there) or in this specification (if the property is not defined in the CSS2
specification).

o Unless explicitly described differently, lists within SVG's XML attributes can be either comma-
separated, with optional white space before or after the comma, or white space-separated.

White space in lists is defined as one or more of the following consecutive characters: "space"
(Unicode code 32), "tab" (9), "line feed" (10), "carriage return” (13) and "form-feed" (12).
Within the SVG DOM, a <list of xxx> is represented by various custom interfaces, such as
SVGTransformList.

Here is a description of the grammar for a <list of xxx>:

Li st OF XXX:
XXX
| XXX comma-wsp Li st OF XXX

conma- Wsp:
(wsp+ comma? wsp*) | (comma wsp*)

coma.:

wsp:
(#x20 | #x9 | #xD | #xA)

where XXX represents a particular type of value.

<number-optional-number>: A special case of <list of xxx> where there are at least one and at
most two entries in the list and the entries are of type <number>.
<angle>: An angle value is a <number> optionally followed immediately with an angle unit identifier.
Angle unit identifiers are:

o deg: degrees

o grad: grads

http://www.w3.org/TR/REC-CSS2/

o rad: radians
For properties defined in [CSS2], an angle unit identifier must be provided. For SVG-specific
attributes and properties, the angle unit identifier is optional. If not provided, the angle value is
assumed to be in degrees.
The corresponding SVG DOM interface definition for <angle> is an SVGAngle or an
SVGAnimatedAngle.
<color>: The basic type <color> is a CSS2-compatible specification for a color in the SRGB color
space [SRGB]. <color> applies to SVG's use of the 'color' property and is a component of the
definitions of properties 'fill’, 'stroke’ 'stop-color’, 'solid-color’, 'flood-color’ and 'lighting-color', which
also offer optional ICC-based color specifications.
SVG supports all of the syntax alternatives for <color> defined in [CSS2-color-types], with the
exception that SVG contains an expanded list of recognized color keywords names.
A <color> is either a keyword (see Recognized color keyword names) or a numerical RGB
specification.
In addition to these color keywords, users may specify keywords that correspond to the colors used
by objects in the user's environment. The normative definition of these keywords is [CSS2 system

colors].

The format of an RGB value in hexadecimal notation is a '# immediately followed by either three or
six hexadecimal characters. The three-digit RGB notation (#rgb) is converted into six-digit form
(#rrggbb) by replicating digits, not by adding zeros. For example, #fb0 expands to #ffbb00. This
ensures that white (#ffffff) can be specified with the short notation (#fff) and removes any
dependencies on the color depth of the display. The format of an RGB value in the functional
notation is 'rgb(’ followed by a comma-separated list of three numerical values (either three integer
values or three percentage values) followed by ')'. The integer value 255 corresponds to 100%, and
to F or FF in the hexadecimal notation: rgh(255,255,255) = rgh(100%,100%,100%) = #FFF. White
space characters are allowed around the numerical values. All RGB colors are specified in the
SRGB color space (see [SRGB]). Using sRGB provides an unambiguous and objectively measurable
definition of the color, which can be related to international standards (see [COLORIMETRY]).

The corresponding SVG DOM interface definitions for <color> are defined in [DOM2-CSS]; in
particular, see the [DOM2-CSS-RGBCOLOR]. SVG's extension to color, including the ability to
specify ICC-based colors, are represented in DOM interface SVGColor.

<paint>: The values for properties 'fill' and 'stroke' are specifications of the type of paint to use
when filling or stroking a given graphics element. The available options and syntax for <paint> are
described in Specifying paint.

Within the SVG DOM, <paint> is represented as an SVGPaint.

<percentage>: The format of a percentage value is a <number> immediately followed by a '%'.
Percentage values are always relative to another value, for example a length. Each attribute or
property that allows percentages also defines the reference distance measurement to which the
percentage refers.

Within the SVG DOM, a <percentage> is usually represented as an SVGLength or an
SVGAnimatedLength.

<transform-list> : The detailed description of the possible values for a <transform-list> are detailed
in Modifying the User Coordinate System: the transform attribute.

Within the SVG DOM, <transform-list> is represented as an SVGTransformList or an
SVGAnimatedTransformList.

<uri> (Uniform Resource Identifiers [URI] references): A URI is the address of a resource on the
Web. For the specification of URI references in SVG, see URI references.

Within the SVG DOM, <uri> is represented as a DOMString or an SVGAnimatedString.
<frequency>: Frequency values are used with aural properties. The normative definition of

http://www.w3.org/TR/REC-CSS2/
http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.iec.ch/nr1899.htm
http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/publ/abst/15-2-86.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-RGBColor

frequency values can be found in [CSS2-AURAL]. A frequency value is a <number> immediately
followed by a frequency unit identifier. Frequency unit identifiers are:

o Hz: Hertz

o kHz: kilo Hertz
Frequency values may not be negative.
The corresponding SVG DOM interface definitions for <frequency> are defined in [DOM2-CSS].
<time>: A time value is a <number> immediately followed by a time unit identifier. Time unit
identifiers are:

o ms: milliseconds

o s:seconds
Time values are used in CSS properties and may not be negative.
The corresponding SVG DOM interface definitions for <time> are defined in [DOM2-CSS].

4.2 Recognized color keyword names

The following is the list of recognized color keywords that can be used as a keyword value for data type

. mediumvioletred

<color>:

[]aliceblue rgb(240, 248, 255)

[antiquewhite rgh(250, 235, 215) L1lightpink rgh(255, 182, 193)
[aqua rgb(0, 255, 255) [ightsaimon rgh(255, 160, 122)
D aquamarine rgh(127, 255, 212) . lightseagreen rgb(32, 178, 170)
[Jazure rgb(240, 255, 255) L] lightskyblue rgb(135, 206, 250)
[beige rgh(245, 245, 220) [lightslategray rgb(119, 136, 153)
[bisque rgb(255, 228, 196) L lightslategrey rgh(119, 136, 153)
Bl black rgb(0, 0, 0) [iightsteelblue rgb(176, 196, 222)
[]blanchedalmond rgh(255, 235, 205) [Tiightyeliow rgh(255, 255, 224)
M oie rgh(0, 0, 255) [ime rgb(0, 255, 0)

Il biueviolet rgb(138, 43, 226) [limegreen rgb(50, 205, 50)
Bl brown rgb(165, 42, 42) [Jtinen rgb(250, 240, 230)
[[] burlywood rgb(222, 184, 135) Il magenta rgb(255, 0, 255)
[cadetblue rgb(95,158, 160) IMmaroon rgb(128, 0. 0)

[chartreuse rgh(127, 255, 0) [[] mediumaquamarine rgb(102, 205, 170)
I chocolate rgb(210, 105,30) I mediumblue rgb(0, 0, 205)

I coral rgb(255, 127, 80) [mediumorchid rgb(186, 85, 211)
] cornflowerblue rgb(100, 149, 237) [mediumpurple rgb(147, 112, 219)
[] cornsilk rgh(255, 248, 220)] mediumseagreen rgb(60, 179, 113)
[l crimson rgh(220, 20, 60)] mediumslateblue rgb(123, 104, 238)
D cyan rgh(0, 255, 255) |:| mediumspringgreen rgb(0, 250, 154)
B darkblue rgb(0, 0, 139) [[] mediumturquoise rgb(72, 209, 204)

rgh(199, 21, 133)

http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html

. darkcyan

. darkgoldenrod
|:| darkgray

. darkgreen

D darkgrey

[] darkkhaki

. darkmagenta
. darkolivegreen
. darkorange
. darkorchid
. darkred

|:| darksalmon
D darkseagreen
. darkslateblue
. darkslategray
. darkslategrey
. darkturquoise
. darkviolet

. deeppink

. deepskyblue
. dimgray

. dimgrey

. dodgerblue
B firebrick

D floralwhite
. forestgreen
. fuchsia

|:| gainsboro
D ghostwhite

D gold

D goldenrod
[gray

[grey

B green

D greenyellow
|:| honeydew
[hotpink

. indianred

rgb(0, 139, 139)
rgb(184, 134, 11)
rgb(169, 169, 169)
rgb(0, 100, 0)
rgb(169, 169, 169)
rgh(189, 183, 107)
rgb(139, 0, 139)
rgb(85, 107, 47)
rgb(255, 140, 0)
rgh(153, 50, 204)
rgb(139, 0, 0)
rgh(233, 150, 122)
rgb(143, 188, 143)
rgb(72, 61, 139)
rgb(47,79, 79)
rgb(47,79, 79)
rgb(0, 206, 209)
rgb(148, 0, 211)
rgb(255, 20, 147)
rgb(0, 191, 255)
rgb(105, 105, 105)
rgb(105, 105, 105)
rgb(30, 144, 255)
rgb(178, 34, 34)
rgb(255, 250, 240)
rgb(34, 139, 34)
rgb(255, 0, 255)
rgb(220, 220, 220)
rgb(248, 248, 255)
rgb(255, 215, 0)
rgb(218, 165, 32)
rgb(128, 128, 128)
rgb(128, 128, 128)
rgb(0, 128, 0)
rgb(173, 255, 47)
rgb(240, 255, 240)
rgb(255, 105, 180)
rgb(205, 92, 92)

B nidnightolue
|:| mintcream
|:| mistyrose
|:| moccasin
|:| navajowhite
By

|:| oldlace

. olive

. olivedrab
[]orange

. orangered

. orchid

|:| palegoldenrod

|:| palegreen
|:| paleturquoise
. palevioletred
|:| papayawhip
|:| peachpuff
[peru

|:| pink

|:| plum

|:| powderblue
. purple

. red

. rosybrown

. royalblue
.saddlebrown

|:|salmon

|:| sandybrown

. seagreen
|:| seashell

. sienna
|:| silver

|:| skyblue
. slateblue
. slategray
. slategrey

[]snow

rgb(25, 25, 112)
rgb(245, 255, 250)
rgh(255, 228, 225)
rgb(255, 228, 181)
rgb(255, 222, 173)
rgb(0, 0, 128)
rgb(253, 245, 230)
rgb(128, 128, 0)
rgb(107, 142, 35)
rgb(255, 165, 0)
rgb(255, 69, 0)
rgb(218, 112, 214)
rgb(238, 232, 170)
rgb(152, 251, 152)
rgb(175, 238, 238)
rgb(219, 112, 147)
rgb(255, 239, 213)
rgb(255, 218, 185)
rgb(205, 133, 63)
rgb(255, 192, 203)
rgb(221, 160, 221)
rgb(176, 224, 230)
rgb(128, 0, 128)
rgb(255, 0, 0)
rgb(188, 143, 143)
rgb(65, 105, 225)
rgb(139, 69, 19)
rgb(250, 128, 114)
rgb(244, 164, 96)
rgb(46, 139, 87)
rgb(255, 245, 238)
rgb(160, 82, 45)
rgb(192, 192, 192)
rgb(135, 206, 235)
rgb(106, 90, 205)
rgb(112, 128, 144)
rgb(112, 128, 144)
rgb(255, 250, 250)

. indigo

rgh(75, 0, 130)

Dspringgreen

rgb(0, 255, 127)

[Jivory rgb(255, 255, 240) [l steelblue rgb(70, 130, 180)
[]khaki rgb(240, 230, 140) []tan rgb(210, 180, 140)
[]1avender rgb(230, 230, 250) [l teal rgb(0, 128, 128)
[]lavenderblush rgb(255, 240, 245) [_]thistle rgb(216, 191, 216)
[]1awngreen rgb(124, 252, 0) [tomato rgb(255, 99, 71)
[_]lemonchiffon rgb(255, 250, 205) [[]turquoise rgb(64, 224, 208)
[lightblue rgb(173, 216, 230) [] violet rgb(238, 130, 238)
[[] tightcoral rgb(240, 128,128) [_]wheat rgb(245, 222, 179)
[]lightcyan rgb(224, 255, 255) [white rgb(255, 255, 255)
|:| lightgoldenrodyellow rgb(250, 250, 210) thitesmoke rgb(245, 245, 245)
[]lightgray rgb(211, 211, 211) [_]yellow rgb(255, 255, 0)
[]lightgreen rgb(144, 238, 144) []yellowgreen rgb(154, 205, 50)
[lightgrey rgb(211, 211, 211)

4.3 Basic DOM interfaces

The following interfaces are defined below: SVGElement, SVGAnimatedBoolean, SVGAnimatedString,
SVGStringList, SVGAnimatedEnumeration, SVGAnimatedinteger, SVGNumber, SVGAnimatedNumber,
SVGNumberList, SVGAnimatedNumberList, SVGLength, SVGAnimatedLength, SVGLengthList,
SVGAnimatedLengthList, SVGAngle, SVGAnimatedAngle, SVGColor, SVGICCColor, SVGRect,
SVGAnimatedRect, SVGUnitTypes, SVGStylable, SVGLocatable, SVGTransformable, SVGTests,
SVGLangSpace, SVGExternalResourcesRequired, SVGFitToViewBox, SVGZoomAndPan,
SVGViewSpec, SVGURIReference, SVGCSSRule, SVGRenderinglntent.

Interface SVGElement

All of the SVG DOM interfaces that correspond directly to elements in the SVG language (e.g., the
SVGPathElement interface corresponds directly to the 'path' element in the language) are derivative from
base class SVGElement.

IDL Definition

i nterface SVCGEl enent El ement {
attribute DOVString id;
/'l raises DOVException on setting
attribute DOVString xm base;
/1 rai ses DOVException on setting
readonly attri bute SVGSVCEl ement owner SVGEl enent ;
readonly attribute SVCGEl enent vi ewportEl ement;

};

Attributes
DOMString id
The value of the id attribute on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
DOMString xmlbase
Corresponds to attribute xml:base on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
readonly SVGSVGEIement ownerSVGElement
The nearest ancestor 'svg' element. Null if the given element is the outermost 'svg' element.
readonly SVGElement viewportElement
The element which established the current viewport. Often, the nearest ancestor 'svg'
element. Null if the given element is the outermost 'svg' element.

Interface SVGAnimatedBoolean

Used for attributes of type boolean which can be animated.

IDL Definition

i nterface SVGAni mat edBool ean {

attribute bool ean baseVal ;
/'l rai ses DOVException on setting
readonly attri bute bool ean ani nval ;

};

Attributes
boolean baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
readonly boolean animVal
If the given attribute or property is being animated, contains the current animated value of the

attribute or property. If the given attribute or property is not currently being animated, contains
the same value as 'baseVal'.

Interface SVGAnimatedString

Used for attributes of type DOMString which can be animated.

IDL Definition

i nterface SVGAni mat edString {

attribute DOVString baseVal ;
/'l raises DOVException on setting
readonly attri bute DOVBtring ani nval ;

i

Attributes

DOMString baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

readonly DOMString animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated, contains
the same value as 'baseVval'.

Interface SVGStringList
This interface defines a list of DOMString objects.

SVGStringList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

interface SVGStringLi st {
readonly attribute unsigned | ong nunber O | t ens;

voi d clear ()
rai ses(DOVException);
DOVBtring initialize (in DOVString newlitem)
rai ses(DOVException, SVGException);
DOVBtring getltem (in unsigned |ong index)
rai ses(DOVException);
DOVString insertltenBefore (in DOVBtring newtem in unsigned | ong index)

rai ses(DOVException, SVGException);
DOVBtring replaceltem (in DOVString newtem in unsigned |ong index)
rai ses(DOVException, SVGException);
DOVString renpveltem (in unsigned | ong index)
rai ses(DOVException);
DOVStri ng appendltem (in DOVString newltem)
rai ses(DOVException, SVGException);

Attributes
readonly unsigned long numberOfltems
The number of items in the list.

Methods
clear
Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
initialize
Clears all existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters
in DOMString newltem The item which should become the only member of the list.
Return value
DOMString The item being inserted into the list.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.
getltem
Returns the specified item from the list.
Parameters

in unsigned long index The index of the item from the list which is to be returned. The
first item is number O.

Return value
DOMString The selected item.
Exceptions

DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
insertltemBefore
Inserts a new item into the list at the specified position. The first item is number 0. If newltem
is already in a list, it is removed from its previous list before it is inserted into this list.
Parameters

in DOMString newltem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be
inserted. The first item is number 0.
If the index is equal to 0, then the new item is inserted at the
front of the list. If the index is greater than or equal to
numberOfltems, then the new item is appended to the end of
the list.
Return value
DOMString The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.
replaceltem
Replaces an existing item in the list with a new item. If newltem is already in a list, it is

removed from its previous list before it is inserted into this list.
Parameters

in DOMString newltem The item which is to be inserted into the list.
in unsigned long index The index of the item which is to be replaced. The first item is
number 0.
Return value
DOMString The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.

INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.

removeltem
Removes an existing item from the list.
Parameters

in unsigned long index The index of the item which is to be removed. The first item is
number 0.

Return value
DOMString The removed item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
appendltem

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters
in DOMString newltem The item which is to be inserted into the list. The first item is
number 0.

Return value

DOMString The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.

Interface SVGAnimatedEnumeration

Used for attributes whose value must be a constant from a particular enumeration and which can be
animated.

IDL Definition

i nterface SVGAni mat edEnuneration {

attribute unsigned short baseVal;
/'l rai ses DOVException on setting
readonly attribute unsigned short aninval;

};

Attributes
unsigned short baseVal
The base value of the given attribute before applying any animations.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
readonly unsigned short animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated, contains
the same value as 'baseVal'.

Interface SVGAnimatedInteger

Used for attributes of basic type ‘integer' which can be animated.

IDL Definition

i nterface SVGAni nat edl nt eger {

attribute | ong baseVal ;

/'l rai ses DOVException on setting
readonly attribute | ong aninval;

};

Attributes
long baseVal
The base value of the given attribute before applying any animations.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

readonly long animVal
If the given attribute or property is being animated, contains the current animated value of the

attribute or property. If the given attribute or property is not currently being animated, contains
the same value as 'baseVal'.

Interface SVGNumber

Used for attributes of basic type 'number".

IDL Definition

i nterface SVG\unber {

attribute float val ue;
/'l rai ses DOVException on setting

Attributes
float value
The value of the given attribute.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGAnimatedNumber

Used for attributes of basic type 'number' which can be animated.

IDL Definition

i nterface SVGAni mat edNunber {

attribute float baseVal;
/'l rai ses DOVException on setting
readonly attribute float aninval;

};

Attributes

float baseVal
The base value of the given attribute before applying any animations.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

readonly float animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated, contains
the same value as 'baseVal'.

Interface SVGNumberList
This interface defines a list of SVGNumber objects.

SVGNumberList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

i nterface SVG\unber Li st {
readonly attribute unsigned | ong nunber O | t ens;

voi d clear ()
rai ses(DOVException);

SVG\Nunber initialize (in SVGNunber newltem)
rai ses(DOVException, SVGException);

SVG\unber getltem (in unsigned |ong index)
rai ses(DOVException);

SVG\Nunber insertltenBefore (in SVGNunber newmtem in unsigned |ong index)
rai ses(DOVException, SVGException);

SVGNunber replaceltem (in SVG\Nunber newitem in unsigned |ong index)
rai ses(DOVException, SVGException);

SVG\unber renmoveltem (in unsigned | ong index)
rai ses(DOVException);

SVG\unber appendltem (in SVG\Nunber newltem)
rai ses(DOVException, SVGException);

1

Attributes
readonly unsigned long numberOfltems
The number of items in the list.
Methods
clear
Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
initialize
Clears all existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters

in SVGNumber newltem The item which should become the only member of the list.
Return value
SVGNumber The item being inserted into the list.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.

getltem
Returns the specified item from the list.
Parameters

in unsigned long index The index of the item from the list which is to be returned. The
first item is number 0.

Return value
SVGNumber The selected item.

Exceptions
DOMEXxception INDEX_SIZE_ERR: Raised if the index number is negative or greater

than or equal to numberOfltems.
insertltemBefore
Inserts a new item into the list at the specified position. The first item is number 0. If newltem

is already in a list, it is removed from its previous list before it is inserted into this list.
Parameters

in SVGNumber newltem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be
inserted. The first item is number O.
If the index is equal to O, then the new item is inserted at the
front of the list. If the index is greater than or equal to
numberOfltems, then the new item is appended to the end of
the list.

Return value
SVGNumber The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.
replaceltem
Replaces an existing item in the list with a new item. If newltem is already in a list, it is
removed from its previous list before it is inserted into this list.
Parameters
in SVGNumber newltem The item which is to be inserted into the list.
in unsigned long index The index of the item which is to be replaced. The first item
is number 0.

Return value
SVGNumber The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot

be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater

than or equal to numberOfltems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.
removeltem
Removes an existing item from the list.
Parameters
in unsigned long index The index of the item which is to be removed. The first item is
number 0.

Return value
SVGNumber The removed item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
appendltem

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters
in SVGNumber newltem The item which is to be inserted into the list. The first item is
number 0.

Return value
SVGNumber The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.

Interface SVGAnimatedNumberList

Used for attributes which take a list of numbers and which can be animated.

IDL Definition

i nterface SVGAni mat edNunber Li st {

readonly attribute SVGNunberLi st baseVal;
readonly attribute SVG@G\unberLi st ani nmval ;

B

Attributes

readonly SVGNumberList baseVal
The base value of the given attribute before applying any animations.

readonly SVGNumberList animVal
If the given attribute or property is being animated, then this attribute contains the current
animated value of the attribute or property, and both the object itself and its contents are
readonly. If the given attribute or property is not currently being animated, then this attribute
contains the same value as 'baseVal'.

Interface SVGLength

The SVGLength interface corresponds to the <length> basic data type.

IDL Definition

interface SVG.ength {

/1 Length Unit Types

const unsi gned short SVG_LENGTHTYPE_UNKNOWN
const unsi gned short SVG LENGTHTYPE NUVBER
const unsi gned short SVG LENGTHTYPE_ PERCENTAGE
const unsi gned short SVG LENGTHTYPE_ ENMS
const unsi gned short SVG LENGTHTYPE EXS
const unsigned short SVG LENGTHTYPE_PX
const unsigned short SVG LENGTHTYPE CM
const unsi gned short SVG _LENGTHTYPE_ MM
const unsi gned short SVG LENGTHTYPE | N
const unsi gned short SVG LENGTHTYPE PT
const unsi gned short SVG LENGTHTYPE_PC

I T T TR TR TR TR TR TR
POO~NDURNWNREO

[ShE

readonly attribute unsigned short unit T Type;
attribute float val ue;
/'l rai ses DOVException on setting
attribute fl oat val uel nSpeci fiedUnits;

/'l raises DOVException on setting
attribute DOVStri ng val ueAsStri ng;
/1 raises DOVException on setting

voi d newal ueSpeci fiedUnits (in unsigned short unitType, in float
val uel nSpeci fiedUnits);
voi d convert ToSpecifiedUnits (in unsigned short unitType);

};

Definition group Length Unit Types
Defined constants

SVG_LENGTHTYPE_UNKNOWN The unit type is not one of predefined unit types. It is
invalid to attempt to define a new value of this type or
to attempt to switch an existing value to this type.

SVG_LENGTHTYPE_NUMBER No unit type was provided (i.e., a unitless value was
specified), which indicates a value in user units.

SVG_LENGTHTYPE_PERCENTAGE A percentage value was specified.

SVG_LENGTHTYPE_EMS A value was specified using the "em" units defined in
CSS2.

SVG_LENGTHTYPE_EXS A value was specified using the "ex" units defined in
CSS2.

SVG_LENGTHTYPE_PX A value was specified using the "px" units defined in
CSS2.

SVG_LENGTHTYPE_CM A value was specified using the "cm" units defined in
CSS2.

SVG_LENGTHTYPE_MM A value was specified using the "mm" units defined in
CSS2.

SVG_LENGTHTYPE_IN A value was specified using the "in" units defined in
CSS2.

SVG_LENGTHTYPE_PT A value was specified using the "pt" units defined in
CSS2.

SVG_LENGTHTYPE_PC A value was specified using the "pc" units defined in
CSS2.

Attributes

readonly unsigned short unitType
The type of the value as specified by one of the constants specified above.

float value
The value as an floating point value, in user units. Setting this attribute will cause
valuelnSpecifiedUnits and valueAsString to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float valuelnSpecifiedUnits
The value as an floating point value, in the units expressed by unitType. Setting this attribute
will cause value and valueAsString to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

DOMString valueAsString
The value as a string value, in the units expressed by unitType. Setting this attribute will
cause value and valuelnSpecifiedUnits to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Methods
newValueSpecifiedUnits
Reset the value as a number with an associated unitType, thereby replacing the values for all
of the attributes on the object.
Parameters

in unsigned short unitType The unitType for the value (e.g.,
SVG_LENGTHTYPE_MM).

in float valuelnSpecifiedUnits The new value.

No Return Value
No Exceptions

convertToSpecifiedUnits
Preserve the same underlying stored value, but reset the stored unit identifier to the given
unitType. Object attributes unitType, valueAsSpecified and valueAsString might be modified
as a result of this method. For example, if the original value were "0.5cm" and the method was
invoked to convert to millimeters, then the unitType would be changed to
SVG_LENGTHTYPE_MM, valueAsSpecified would be changed to the numeric value 5 and
valueAsString would be changed to "5mm".
Parameters

in unsigned short
unitType

No Return Value

No Exceptions

The unitType to switch to (e.g., SVG_LENGTHTYPE_MM).

Interface SVGAnimatedLength

Used for attributes of basic type 'length’ which can be animated.

IDL Definition

i nterface SVGAni mat edLengt h {

readonly attri bute SVG.ength baseVal ;
readonly attri bute SVG.ength ani nval ;

B

Attributes
readonly SVGLength baseVal

The base value of the given attribute before applying any animations.

readonly SVGLength animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGLengthList
This interface defines a list of SVGLength objects.

SVGLengthList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

i nterface SVG.engt hLi st {
readonly attribute unsigned | ong nunber O | t ens;

voi d clear ()
rai ses(DOVException);

SVG.ength initialize (in SVGength newtem)
rai ses(DOVException, SVGException);

SVG.ength getltem (in unsigned |ong index)
rai ses(DOVException);

SVG.ength insertltenBefore (in SVG.ength newltem in unsigned |Iong index)
rai ses(DOVException, SVGException);

SVG.ength replaceltem (in SVG.ength newitem in unsigned |ong index)
rai ses(DOVException, SVGException);

SVG.ength renmoveltem (in unsigned | ong index)
rai ses(DOVException);

SVG.engt h appendltem (in SVG.ength newltem)
rai ses(DOVException, SVGException);

li5

Attributes
readonly unsigned long numberOfltems
The number of items in the list.
Methods
clear
Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.

initialize

Clears all existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters
in SVGLength newltem The item which should become the only member of the list.
Return value
SVGLength The item being inserted into the list.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.
getltem
Returns the specified item from the list.
Parameters
in unsigned long index The index of the item from the list which is to be returned. The
first item is number 0.
Return value
SVGLength The selected item.
Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
insertltemBefore
Inserts a new item into the list at the specified position. The first item is number 0. If newltem

is already in a list, it is removed from its previous list before it is inserted into this list.
Parameters

in SVGLength newltem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be
inserted. The first item is number 0.
If the index is equal to 0, then the new item is inserted at the
front of the list. If the index is greater than or equal to

numberOfltems, then the new item is appended to the end of
the list.

Return value
SVGLength The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.
replaceltem
Replaces an existing item in the list with a new item. If newltem is already in a list, it is

removed from its previous list before it is inserted into this list.
Parameters

in SVGLength newltem The item which is to be inserted into the list.

in unsigned long index The index of the item which is to be replaced. The first item is
number O.
Return value

SVGLength The inserted item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.
removeltem
Removes an existing item from the list.
Parameters
in unsigned long index The index of the item which is to be removed. The first item is
number O.
Return value
SVGLength The removed item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
appendltem

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters
in SVGLength newltem The item which is to be inserted into the list. The first item is
number 0.
Return value
SVGLength The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the
wrong type of object for the given list.

Interface SVGAnimatedLengthList

Used for attributes of type SVGLengthList which can be animated.

IDL Definition

i nterface SVGAni mat edLengt hLi st {

readonly attribute SVG.engthLi st baseVal
readonly attribute SVG.engthLi st ani nval ;

};

Attributes
readonly SVGLengthList baseVal
The base value of the given attribute before applying any animations.
readonly SVGLengthList animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGAngle

The SVGAnNgle interface corresponds to the <angle> basic data type.

IDL Definition

i nterface SVGAngl e {

/1l Angle Unit Types

const unsigned short SVG ANGLETYPE_UNKNOMN
const unsigned short SVG ANGLETYPE_UNSPECI FI ED
const unsi gned short SVG ANGLETYPE_DEG

const unsi gned short SVG ANGLETYPE RAD

const unsi gned short SVG ANGLETYPE GRAD

|1 O B
PONPFEO

readonly attribute unsigned short unit T Type;
attribute fl oat val ue;
/'l rai ses DOVException on setting
attribute fl oat val uel nSpeci fi edUnits;
/'l rai ses DOVException on setting
attribute DOVBtring val ueAsString;
/'l rai ses DOVException on setting

voi d newval ueSpeci fi edUnits (in unsigned short unitType, in float
val uel nSpeci fiedUnits);
voi d convert ToSpecifiedUnits (in unsigned short unitType);

}s

Definition group Angle Unit Types
Defined constants

SVG_ANGLETYPE_UNKNOWN The unit type is not one of predefined unit types. It is
invalid to attempt to define a new value of this type or to
attempt to switch an existing value to this type.

SVG_ANGLETYPE_UNSPECIFIED No unit type was provided (i.e., a unitless value was
specified). For angles, a unitless value is treated the
same as if degrees were specified.

SVG_ANGLETYPE_DEG The unit type was explicitly set to degrees.

SVG_ANGLETYPE_RAD The unit type is radians.
SVG_ANGLETYPE_GRAD The unit type is grads.

Attributes
readonly unsigned short unitType
The type of the value as specified by one of the constants specified above.
float value
The angle value as a floating point value, in degrees. Setting this attribute will cause
valuelnSpecifiedUnits and valueAsString to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

float valuelnSpecifiedUnits
The angle value as a floating point value, in the units expressed by unitType. Setting this
attribute will cause value and valueAsString to be updated automatically to reflect this setting.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

DOMString valueAsString
The angle value as a string value, in the units expressed by unitType. Setting this attribute will
cause value and valuelnSpecifiedUnits to be updated automatically to reflect this setting.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
Methods
newValueSpecifiedUnits
Reset the value as a number with an associated unitType, thereby replacing the values for all
of the attributes on the object.
Parameters
in unsigned short unitType The unitType for the angle value (e.g.,
SVG_ANGLETYPE_DEG).
in float valuelnSpecifiedUnits The angle value.
No Return Value
No Exceptions
convertToSpecifiedUnits
Preserve the same underlying stored value, but reset the stored unit identifier to the given
unitType. Object attributes unitType, valueAsSpecified and valueAsString might be modified
as a result of this method.
Parameters

in unsigned short unitType The unitType to switch to (e.g., SVG_ANGLETYPE_DEG).

No Return Value
No Exceptions

Interface SVGAnimatedAngle

Corresponds to all properties and attributes whose values can be basic type ‘angle' and which are
animatable.

IDL Definition

i nterface SVGAni mat edAngl e {

readonly attribute SVGAngl e baseVal ;
readonly attribute SVGAngl e ani nval ;

};

Attributes
readonly SVGAngle baseVal
The base value of the given attribute before applying any animations.
readonly SVGAngle animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGColor

The SVGColor interface corresponds to color value definition for properties 'stop-color', 'flood-color' and
'lighting-color' and is a base class for interface SVGPaint. It incorporates SVG's extended notion of color,
which incorporates ICC-based color specifications.

Interface SVGColor does not correspond to the <color> basic data type. For the <color> basic data type,
the applicable DOM interfaces are defined in [DOM2-CSS]; in particular, see the [DOM2-CSS-

RGBCOLOR].

IDL Definition
i nterface SVGCol or : css:: CSSVal ue {
/1 Col or Types
const unsi gned short SVG COLORTYPE UNKNOWN = 0;
const unsi gned short SVG COLORTYPE RGBCOLOR = 1;
const unsi gned short SVG COLORTYPE RGBCOLOR | CCCOLOR = 2;
const unsi gned short SVG COLORTYPE CURRENTCOLOR =1 3
readonly attribute unsigned short col or Type;
readonly attribute css::RG@Col or rgbCol or;
readonly attri bute SVGA CCCol or i ccCol or;
voi d set RGBCol or (in DOVString rgbCol or)
rai ses(SVGException);
voi d set RGBCol or | CCCol or (in DOVString rgbColor, in DOVBtring iccColor)
rai ses(SVCGException);
voi d set Col or (in unsigned short col orType, in DOVString rgbColor, in
DOVBtring iccCol or)
rai ses(SVCGException);
I

Definition group Color Types
Defined constants

SVG_COLORTYPE_UNKNOWN The color type is not one of predefined
types. Itis invalid to attempt to define a new
value of this type or to attempt to switch an
existing value to this type.

SVG_COLORTYPE_RGBCOLOR An sRGB color has been specified without
an alternative ICC color specification.

SVG_COLORTYPE_RGBCOLOR_ICCCOLOR An sRGB color has been specified along
with an alternative ICC color specification.

SVG_COLORTYPE_CURRENTCOLOR Corresponds to when keyword ‘currentColor'
has been specified.
Attributes
readonly unsigned short colorType
The type of the value as specified by one of the constants specified above.
readonly css::RGBColor rghColor
The color specified in the sSRGB color space.
readonly SVGICCColor iccColor
The alternate ICC color specification.
Methods
setRGBColor
Modifies the color value to be the specified SRGB color without an alternate ICC color
specification.
Parameters
in DOMString rgbColor The new color value.

No Return Value
Exceptions
SVGEXxception SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an
invalid value.
setRGBColorICCColor
Modifies the color value to be the specified SRGB color with an alternate ICC color
specification.
Parameters
in DOMString rgbColor The new color value.

in DOMString iccColor The alternate ICC color specification.

No Return Value
Exceptions

SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an
invalid value.
setColor

Sets the colorType as specified by the parameters. If col or Type requires an RGBColor,

then r gbCol or must be a valid RGBColor object; otherwise, r gbCol or must be null. If

col or Type requires an SVGICCColor, then i ccCol or must be a valid SVGICCColor object;

otherwise, i ccCol or must be null.

Parameters

in unsigned short colorType One of the defined constants for colorType.

in DOMString rgbColor The specification of an sRGB color, or null.

in DOMString iccColor The specification of an ICC color, or null.
No Return Value
Exceptions
SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an
invalid value.

Interface SVGICCColor

The SVGICCColor interface expresses an ICC-based color specification.

IDL Definition

i nterface SVGA CCCol or {

attribute DOVString col orProfil e;
/'l rai ses DOVException on setting

readonly attribute SVG\unberList col ors;
}s

Attributes
DOMString colorProfile

The name of the color profile, which is the first parameter of an ICC color specification.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

readonly SVGNumberList colors

The list of color values that define this ICC color. Each color value is an arbitrary floating point
number.

Interface SVGRect

Rectangles are defined as consisting of a (x,y) coordinate pair identifying a minimum X value, a minimum Y
value, and a width and height, which are usually constrained to be non-negative.

IDL Definition

i nterface SVGRect ({

attribute float x;

/'l rai ses DOVException on setting
attribute float vy;

/'l rai ses DOVException on setting
attribute float w dth;

/'l rai ses DOVException on setting
attribute fl oat height;

/1 raises DOVException on setting

I
Attributes
float x
Corresponds to attribute x on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y
Corresponds to attribute y on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float width
Corresponds to attribute width on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float height

Corresponds to attribute height on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGAnimatedRect

Used for attributes of type SVGRect which can be animated.

IDL Definition

i nterface SVGAni mat edRect {

readonly attribute SVGRect baseVal ;
readonly attribute SVGRect aninVval;

i

Attributes
readonly SVGRect baseVal
The base value of the given attribute before applying any animations.
readonly SVGRect animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGUnIitTypes

The SVGUnitTypes interface defines a commonly used set of constants and is a base interface used by
SVGGradientElement, SVGPatternElement, SVGClipPathElement, SVGMaskElement, and

SVGFilterElement.

IDL Definition

i nterface SVGUnit Types {

[l Unit Types

const unsi gned short SVG UNI T_TYPE_ UNKNOVW

const unsi gned short SVG UNI T_TYPE USERSPACEONUSE
const unsigned short SVG UNI T_TYPE_ OBJECTBOUNDI NGBOX

(TR
W= e

Definition group Unit Types
Defined constants

SVG_UNIT_TYPE_UNKNOWN The type is not one of predefined types. It is
invalid to attempt to define a new value of this
type or to attempt to switch an existing value
to this type.

SVG_UNIT_TYPE_USERSPACEONUSE Corresponds to value userSpaceOnUse.
SVG_UNIT_TYPE_OBJECTBOUNDINGBOX Corresponds to value objectBoundingBox.

Interface SVGStylable

IDL Definition

interface SVGStyl abl e {

readonly attribute SVGAni mat edStri ng cl assNane;
readonly attribute css::CSSStyl eDecl aration styl e;

css: : CSSVal ue get Presentati onAttribute (in DOVBtring nanme);
5

Attributes
readonly SVGAnimatedString className
Corresponds to attribute class on the given element.
readonly css::CSSStyleDeclaration style
Corresponds to attribute style on the given element. If the user agent does not support styling
with CSS, then this attribute must always have the value of null.
Methods
getPresentationAttribute
Returns the base (i.e., static) value of a given presentation attribute as an object of type
CSSValue. The returned obiject is live; changes to the objects represent immediate changes
to the objects to which the CSSValue is attached.
Parameters
in DOMString name Retrieves a "presentation attribute” by name.
Return value
css::CSSValue The static/base value of the given presentation attribute as a
CSSValue, or NULL if the given attribute does not have a specified
value.

No Exceptions

Interface SVGLocatable

Interface SVGLocatable is for all elements which either have a transform attribute or don't have a
transform attribute but whose content can have a bounding box in current user space.

IDL Definition

interface SVG.ocat abl e {

readonly attribute SVCGEl enent near est Vi ewport El enent ;
readonly attribute SVCGEl enent farthest Vi ewport El enent ;

SVGRect getBBox ();

SVGwatrix getCTM () ;

SVGWatri x get ScreenCTM () ;

SVGWAt ri x get Transf or mloEl enent (i n SVGEl enent el enent)
rai ses(SVCGException);

Attributes
readonly SVGElement nearestViewportElement
The element which established the current viewport. Often, the nearest ancestor 'svg'
element. Null if the current element is the outermost 'svg' element.
readonly SVGElement farthestViewportElement

The farthest ancestor 'svg' element. Null if the current element is the outermost 'svg' element.
Methods

getBBox
Returns the tight bounding box in current user space (i.e., after application of the transform

attribute, if any) on the geometry of all contained graphics elements, exclusive of stroke-width
and filter effects).

No Parameters
Return value

SVGRect An SVGRect object that defines the bounding box.
No Exceptions
getCTM
Returns the transformation matrix from current user units (i.e., after application of the

transform attribute, if any) to the viewport coordinate system for the nearestViewportElement.
No Parameters

Return value
SVGMatrix An SVGMatrix object that defines the CTM.
No Exceptions
getScreenCTM
Returns the transformation matrix from current user units (i.e., after application of the
transform attribute, if any) to the parent user agent's notice of a "pixel". For display devices,
ideally this represents a physical screen pixel. For other devices or environments where

physical pixel sizes are not known, then an algorithm similar to the CSS2 definition of a "pixel"
can be used instead.

No Parameters
Return value
SVGMatrix An SVGMatrix object that defines the given transformation matrix.
No Exceptions
getTransformToElement
Returns the transformation matrix from the user coordinate system on the current element
(after application of the transform attribute, if any) to the user coordinate system on parameter
el enent (after application of its transform attribute, if any).
Parameters
in SVGElement element The target element.
Return value
SVGMatrix An SVGMatrix object that defines the transformation.
Exceptions

SVGException SVG_MATRIX_NOT_INVERTABLE: Raised if the currently defined
transformation matrices make it impossible to compute the given
matrix (e.g., because one of the transformations is singular).

Interface SVGTransformable

Interface SVGTransformable contains properties and methods that apply to all elements which have
attribute transform.

IDL Definition

i nterface SVGIransformable : SVG.ocat abl e {

readonly attri bute SVGAni mat edTransfornli st transform
b

Attributes
readonly SVGAnimatedTransformList transform
Corresponds to attribute transform on the given element.

Interface SVGTests

Interface SVGTests defines an interface which applies to all elements which have attributes
requiredFeatures, requiredExtensions and systemLanguage.

IDL Definition

interface SVGIests {

readonly attribute SVGStringLi st requiredFeatures;
readonly attribute SVGStringLi st requiredExt ensi ons;
readonly attribute SVGStringLi st systenlLanguage;

bool ean hasExtension (in DOVString extension);

}s

Attributes
readonly SVGStringList requiredFeatures

Corresponds to attribute requiredFeatures on the given element.
readonly SVGStringList requiredExtensions

Corresponds to attribute requiredExtensions on the given element.
readonly SVGStringList systemLanguage

Corresponds to attribute systemLanguage on the given element.
Methods

hasExtension
Returns true if the user agent supports the given extension, specified by a URI.
Parameters

in DOMString extension The name of the extension, expressed as a URI.
Return value

boolean True or false, depending on whether the given extension is supported.
No Exceptions

Interface SVGLangSpace

Interface SVGLangSpace defines an interface which applies to all elements which have attributes xml:lang
and xml:space.

IDL Definition

i nterface SVG@.angSpace {

attribute DOVString xm | ang;

/'l raises DOVException on setting
attribute DOVString xm space;

/'l rai ses DOVException on setting

Attributes
DOMString xmllang
Corresponds to attribute xml:lang on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
DOMString xmlspace
Corresponds to attribute xml:space on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGExternalResourcesRequired

Interface SVGExternalResourcesRequired defines an interface which applies to all elements where this
element or one of its descendants can reference an external resource.

IDL Definition

i nt erface SVCGEXxt er nal Resour cesRequi red {

readonly attribute SVGAni nmat edBool ean ext er nal Resour cesRequi r ed;

i

Attributes
readonly SVGAnimatedBoolean externalResourcesRequired
Corresponds to attribute externalResourcesRequired on the given element.

Interface SVGFitToViewBox

Interface SVGFitToViewBox defines DOM attributes that apply to elements which have XML attributes
viewBox and preserveAspectRatio.

IDL Definition

i nterface SVGFit ToVi ewBox {

readonly attribute SVGAni mat edRect Vi ewBox;
readonly attri bute SVGAni mat edPr eserveAspect Rati o preserveAspect Rati o;
[E
Attributes

readonly SVGAnimatedRect viewBox
Corresponds to attribute viewBox on the given element.

readonly SVGAnimatedPreserveAspectRatio preserveAspectRatio
Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGZoomAndPan

The SVGZoomAndPan interface defines attribute "zoomAndPan" and associated constants.

IDL Definition

i nterface SV&ZoomAndPan {

/1 Zoom and Pan Types

const unsi gned short SVG ZOOVANDPAN UNKNOWN
const unsi gned short SVG ZOOVANDPAN DI SABLE
const unsi gned short SVG ZOOVANDPAN MAGNI FY

NP

attribute unsigned short zoomAndPan;
/'l rai ses DOVException on setting

Definition group Zoom and Pan Types
Defined constants
SVG_ZOOMANDPAN_UNKNOWN The enumeration was set to a value that is not one of
predefined types. It is invalid to attempt to define a new
value of this type or to attempt to switch an existing
value to this type.

SVG_ZOOMANDPAN_DISABLE Corresponds to value disable.
SVG_ZOOMANDPAN_MAGNIFY Corresponds to value magnify.

Attributes
unsigned short zoomAndPan
Corresponds to attribute zoomAndPan on the given element. The value must be one of the
zoom and pan constants specified above.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGViewSpec

The interface corresponds to an SVG View Specification.

IDL Definition

i nterface SVGVi ewSpec :
SVGZoomAndPan,
SVGFi t ToVi ewBox {

readonly attribute SVGIransfornli st transform

readonly attribute SVCGEl enent Vi ewTar get ;
readonly attribute DOVBtring vi ewBoxStri ng;
readonly attribute DOVString preserveAspect Rati oStri ng;
readonly attribute DOVString transforntString;
readonly attribute DOVString vi ewTar get Stri ng;
1
Attributes

readonly SVGTransformList transform
Corresponds to the transform setting on the SVG View Specification.
readonly SVGElement viewTarget
Corresponds to the viewTarget setting on the SVG View Specification.
readonly DOMString viewBoxString
Corresponds to the viewBox setting on the SVG View Specification.
readonly DOMString preserveAspectRatioString
Corresponds to the preserveAspectRatio setting on the SVG View Specification.

readonly DOMString transformString

Corresponds to the transform setting on the SVG View Specification.
readonly DOMString viewTargetString

Corresponds to the viewTarget setting on the SVG View Specification.

Interface SVGURIReference

Interface SVGURIReference defines an interface which applies to all elements which have the collection
of XLink attributes, such as xlink:href, which define a URI reference.

IDL Definition

i nterface SVAURI Ref erence {

readonly attri bute SVGAni matedString href;
b

Attributes
readonly SVGAnimatedString href
Corresponds to attribute xlink:href on the given element.

Interface SVGCSSRule

SVG extends interface CSSRule with interface SVGCSSRule by adding an SVGColorProfileRule rule to
allow for specification of ICC-based color.

It is likely that this extension will become part of a future version of CSS and DOM.

IDL Definition

i nterface SVGCSSRul e : css:: CSSRul e {
/1 Additional CSS Rul eType to support |CC col or specifications
const unsi gned short COLOR PROFI LE RULE = 7;

i

Definition group Additional CSS RuleType to support ICC color specifications
Defined constants

COLOR_PROFILE_RULE The rule is an @color-profile.

Interface SVGRenderingIntent

The SVGRenderinglintent interface defines the enumerated list of possible values for 'rendering-intent’
attributes or descriptors.

IDL Definition

const
const
const
const
const
const

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

short
short
short
short
short
short

i nterface SVGRenderi ngl ntent {

/'l Rendering Intent Types

RENDERI NG_| NTENT_UNKNOWN

RENDERI NG_| NTENT_AUTO

RENDERI NG_| NTENT_PERCEPTUAL

RENDERI NG_| NTENT_RELATI VE_COLORI METRI C
RENDERI NG_| NTENT_SATURATI ON

RENDERI NG _| NTENT_ABSOLUTE_COLORI METRI C

G E

Definition group Rendering Intent Types
Defined constants

RENDERING_INTENT_UNKNOWN

RENDERING_INTENT_AUTO
RENDERING_INTENT_PERCEPTUAL

The type is not one of predefined
types. Itis invalid to attempt to
define a new value of this type or to
attempt to switch an existing value to
this type.

Corresponds to a value of auto.

Corresponds to a value of
perceptual.

RENDERING_INTENT_RELATIVE_COLORIMETRIC Corresponds to a value of relative-

RENDERING_INTENT_SATURATION

colorimetric.

Corresponds to a value of
saturation.

RENDERING_INTENT_ABSOLUTE_COLORIMETRIC Corresponds to a value of absolute-

colorimetric.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

5 Document Structure

Contents

. 5.1 Defining an SVG document fragment: the 'svg' element
o 5.1.1 Overview
o 5.1.2 The 'svg' element
. 5.2 Grouping: the 'g' element
o 5.2.1 Overview
o 5.2.2 The 'g’ element
. 5.3 References and the 'defs’ element
o 5.3.1 Overview
o 5.3.2 URI reference attributes
o 5.3.3 The 'defs' element
. 5.4 The 'desc' and 'title' elements
. 5.5 The 'symbol' element
. 5.6 The 'use' element
. 5.7 The 'image' element
. 5.8 Conditional processing
o 5.8.1 Conditional processing overview
o 5.8.2 The 'switch' element
o 5.8.3 The requiredFeatures attribute
o 5.8.4 The requiredExtensions attribute
o 5.8.5 The systemLanguage attribute
o 5.8.6 Applicability of test attributes
. 5.9 Specifying whether external resources are required for proper rendering
. 5.10 Common attributes
o 5.10.1 Attributes common to all elements: id and xml:base
o 5.10.2 The xml:lang and xml:space attributes
. 5.11 Core Attribute Module
. 5.12 Structure Module
. 5.13 Basic Structure Module
. 5.14 Container Attribute Module
. 5.15 Conditional Processing Module
. 5.16 Image Module
. 5.17 DOM interfaces

c
o
=
4%
=
C
Q
=
=
[®)
5]
Q
o
Q
-
[1*]
=
=
c
[4v]
()
)
(48]
=

5.1 Defining an SVG document fragment: the 'svg' element

5.1.1 Overview
An SVG document fragment consists of any number of SVG elements contained within an 'svg' element.
An SVG document fragment can range from an empty fragment (i.e., no content inside of the 'svg' element),

to a very simple SVG document fragment containing a single SVG graphics element such as a 'rect’, to a
complex, deeply nested collection of container elements and graphics elements.

An SVG document fragment can stand by itself as a self-contained file or resource, in which case the SVG
document fragment is an SVG document, or it can be embedded inline as a fragment within a parent XML
document.

The following example shows simple SVG content embedded inline as a fragment within a parent XML
document. Note the use of XML namespaces to indicate that the 'svg' and ‘ellipse’ elements belong to the
SVG namespace:

<?xm version="1.0" standal one="yes" ?>
<parent xm ns="http://exanple.org"
xm ns:svg="http://ww. w3. or g/ 2000/ svg" >
<!-- parent contents here -->
<svg: svg wi dt h="4cm' hei ght="8cn{ version="1.1">
<svg:ellipse cx="2cm' cy="4cm' rx="2cm ry="1cnm />
</ svg: svg>
<l-- ... -->
</ par ent >

This example shows a slightly more complex (i.e., it contains multiple rectangles) stand-alone, self-
contained SVG document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ Gaphics/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="5cn{ hei ght="4cnf version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>Four separate rectangl es
</ desc>
<rect x="0.5cm y="0.5cn w dth="2cni hei ght="1cni/>
<rect x="0.5cm' y="2cnm wi dth="1cni hei ght="1.5cnl/>
<rect x="3cni y="0.5cnm w dth="1.5cn height="2cn'/>
<rect x="3.5cnm' y="3cm w dth="1cn hei ght="0.5cn/>

<I-- Show outline of canvas using 'rect' element -->
<rect x=".0lcnt' y=".01lcm wi dth="4.98cnt hei ght="3.98cnt
fill="none" stroke="blue" stroke-w dth=".02cn" />
</ svg>

View this example as SVG (SVG-enabled browsers only)

'svg' elements can appear in the middle of SVG content. This is the mechanism by which SVG document
fragments can be embedded within other SVG document fragments.

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/StandAlone01.svg

Another use for 'svg' elements within the middle of SVG content is to establish a new viewport. (See
Establishing a new viewport.)

In all cases, for compliance with the "Namespaces in XML" Recommendation [XML-NS], an SVG
namespace declaration must be provided so that all SVG elements are identified as belonging to the SVG
namespace. The following are possible ways to provide a namespace declaration. An xmins attribute
without a namespace prefix could be specified on an 'svg' element, which means that SVG is the default
namespace for all elements within the scope of the element with the xmIns attribute:

<svg xm ns="http://ww. w3. org/ 2000/ svg"...>
<rect .../>
</ svg>

If a namespace prefix is specified on the xmins attribute (e.qg.,
xm ns: svg="http://ww. w3. org/ 2000/ svg") , then the corresponding namespace is not the default
namespace, so an explicit namespace prefix must be assigned to the elements:

<svg:svg xm ns:svg="http://ww. w3. org/ 2000/ svg"...>
<svg:rect .../>
</ svg: svg>

Namespace prefixes can be specified on ancestor elements (illustrated in the above example). For more
information, refer to the "Namespaces in XML" Recommendation [XML-NS].

5.1.2 The 'svg' element

<IENTI TY % SVG svg. el enent "I NCLUDE" >
<I[%BVG svg. el ement ; [
<IENTI TY % SVG svg. cont ent
"(Y%8VG Description.class; | %VG Ani mation.cl ass; %8VG Structure. cl ass;
%8VG Condi tional .class; %8VG | mage. cl ass; %8VG Styl e. cl ass;
%6VG. Shape. cl ass; %BVG Text.cl ass; %SVG Marker. cl ass; %8VG Profil e. cl ass;
%8VG G adi ent. cl ass; %6GVG Pattern. class; %6VG dip.cl ass;
Y8VG Mask. cl ass; YSVG Filter.class; %BVG Cursor.cl ass;
%8VG Hyperlink. class; %SVG Vi ew. cl ass; %SVG Scri pt. cl ass;
%8VG. Font . cl ass;)*"

>
<! ELEMENT %8VG svg. gnane; %5VG svg. content; >
<I-- end of SVG svg.elenent -->]]>

<IENTITY % SVG svg. attlist "INCLUDE" >
<I[%BVG svg. attlist;[
<I ATTLI ST %8VG svg. gnane;
%SVG xm ns. attrib;
%SVG Core. attrib;
%SVG Condi tional . attrib;
”%SVG Style.attrib;
%SVG Presentation. attrib;
%SVG Docunent Event s. attri b;
Y%8VG. G aphi cal Events. attrib;
%SVG External . attrib;
X % Coor di nat e. dat at ype; #l VPLI ED

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

y %Coordi nat e. dat at ype; #l MPLI ED

wi dt h %.engt h. dat at ype; #l MPLI ED

hei ght %.engt h. dat at ype; #l MPLI ED

vi ewBox %/i ewBoxSpec. dat at ype; #| MPLI ED

preserveAspect Rati o %°r eser veAspect Rati oSpec. dat at ype; 'xM dYM d neet’
zoomAndPan (disable | magnify) 'magnify'

versi on %N\unber. dat at ype; #FI XED ' 1. 1'

baseProfil e %lext.datatype; #l MPLI ED

content Scri pt Type % Cont ent Type. dat at ype; 'text/ecmascript'

content Styl eType % Cont ent Type. dat at ype; 'text/css'

Attribute definitions:

xm ns [:prefix] = "resource-name"
Standard XML attribute for identifying an XML namespace. Refer to the "Namespaces in XML"
Recommendation [XML-NS].
Animatable: no.

ver si on ="<number>"
Indicates the SVG language version to which this document fragment conforms.
In SVG 1.0, this attribute was fixed to the value "1.0". For SVG 1.1, the attribute should have the
value "1.1".
Animatable: no.

basePr of i | e = profile-name
Describes the minimum SVG language profile that the author believes is necessary to correctly
render the content. The attribute does not specify any processing restrictions; It can be considered
metadata. For example, the value of the attribute could be used by an authoring tool to warn the user
when they are modifying the document beyond the scope of the specified baseProfile. Each SVG
profile should define the text that is appropriate for this attribute.
If the attribute is not specified, the effect is as if a value of "none" were specified.
Animatable: no.

X ="<coordinate>"
(Has no meaning or effect on outermost 'svg' elements.)
The x-axis coordinate of one corner of the rectangular region into which an embedded 'svg' element
is placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y ="<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.)

The y-axis coordinate of one corner of the rectangular region into which an embedded 'svg' element
is placed.

If the attribute is not specified, the effect is as if a value of "0" were specified.

Animatable: yes.

wi dt h = "<length>"
For outermost 'svg' elements, the intrinsic width of the SVG document fragment. For embedded 'svg’
elements, the width of the rectangular region into which the 'svg' element is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "100%" were specified.
Animatable: yes.

hei ght ="<length>"
For outermost 'svg' elements, the intrinsic height of the SVG document fragment. For embedded 'svg’

http://www.w3.org/TR/REC-xml-names/

elements, the height of the rectangular region into which the 'svg' element is placed.

A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "100%" were specified.

Animatable: yes.

If an SVG document is likely to be referenced as a component of another document, the author will often
want to include a viewBox attribute on the outermost 'svg' element of the referenced document. This

attribute provides a convenient way to design SVG documents to scale-to-fit into an arbitrary viewport.
5.2 Grouping: the 'g’' element

5.2.1 Overview

The 'g' element is a container element for grouping together related graphics elements.

Grouping constructs, when used in conjunction with the 'desc' and 'title’ elements, provide information about
document structure and semantics. Documents that are rich in structure may be rendered graphically, as
speech, or as braille, and thus promote accessibility.

A group of elements, as well as individual objects, can be given a name using the id attribute. Named
groups are needed for several purposes such as animation and re-usable objects.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SV@ 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="5cni" hei ght="5cn' version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>Two groups, each of two rectangles
</ desc>
<g id="groupl" fill="red" >
<rect x="1cni y="1cn' wi dth="1cnt hei ght="1cn />
<rect x="3cni y="1lcm' width="1cni' hei ght="1cnm' />
</ g>
<g id="group2" fill="blue" >
<rect x="1cni y="3cm' wi dth="1cni' hei ght="1cnm' />
<rect x="3cm' y="3cm' wi dth="1cnl hei ght="1cnl />

</ g>
<l-- Show outline of canvas using 'rect' element -->
<rect x=".0lcn!' y=".01lcm wi dth="4.98cnt hei ght ="4.98cnt
fill="none" stroke="blue" stroke-w dth=".02cn" />
</ svg>

View this example as SVG (SVG-enabled browsers only)

A 'g' element can contain other 'g' elements nested within it, to an arbitrary depth. Thus, the following is
possible:

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/grouping01.svg

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dth="4in" height="3in" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>G oups can nest
</ desc>
<g>
<g>
<g>
</ g>
</ g>
</ g>
</ svg>

Any element that is not contained within a 'g' is treated (at least conceptually) as if it were in its own group.
5.2.2 The 'g' element

<IENTITY % SVG g. el ement "I NCLUDE" >
<I[¥%8VG g. el enent; [
<IENTI TY % SVG. g. cont ent
"(9%BVG Description.class; | %SVG Aninmation.class; %BVG Structure.class;

%SVG Condi tional . class; % VG | mage. cl ass; %8VG Styl e. cl ass;

%SVG. Shape. cl ass; %BVG Text.cl ass; %SVG Marker. cl ass; %8VG Profile. cl ass;
Y%8VG Gradi ent.class; %6VG Pattern.class; %6VG dip.cl ass;

Y%SVG Mask. cl ass; %GVG Filter.class; %VG Cursor.cl ass;

%6VG Hyperlink.class; %6VG Vi ew. cl ass; %BVG Scri pt. cl ass;

%8VG. Font . cl ass;)*"

>
<l ELEMENT %BVG g. gnanme; %BVG g.content; >
<I-- end of SVG g.elenment -->]]>

<IENTITY % SVG g. attlist "INCLUDE" >
<I[¥BVG g. attlist;]
<I ATTLI ST %8VG. g. gnhaneg;
%SVG Core. attrib;
%SVG Condi tional . attrib;
Y%6VG Style.attrib;
%8VG Presentation.attrib;
Y%8VG. G aphi cal Events. attrib;
Y%SVG External . attrib;
transform %lransfornii st. dat atype; #l MPLI ED

5.3 References and the 'defs' element

5.3.1 Overview

SVG makes extensive use of URI references [URI] to other objects. For example, to fill a rectangle with a

http://www.ietf.org/rfc/rfc2396.txt

linear gradient, you first define a 'linearGradient’ element and give it an ID, as in:
<linearGadient id="MyGadient">. ..</linearG adi ent >

You then reference the linear gradient as the value of the 'fill' property for the rectangle, as in:
<rect style="fill:url (#WGadient)"/>

URI references are defined in either of the following forms:

<URI - r ef erence>
<URI -r ef erence>

"))]

[<absoluteURI > | <relativeURI>] ["#" <elenentlD>] -or-
[<absoluteURI > | <relativeURI>] ["#xpointer(id(" <el enentlD>

where <elementID> is the ID of the referenced element.

(Note that the two forms above (i.e., #<elementID> and #xpointer(id(<elementID>))) are formulated in
syntaxes compatible with "XML Pointer Language (XPointer)" [XPTR]. These two formulations of URI
references are the only XPointer formulations that are required in SVG 1.0 user agents.)

SVG supports two types of URI references:

. local URI references, where the URI reference does not contain an <absoluteURI> or <relativeURI>
and thus only contains a fragment identifier (i.e., #<elementID> or #xpointer(id<elementID>))
. nhon-local URI references, where the URI reference does contain an <absoluteURI> or <relativeURI>

The following rules apply to the processing of URI references:

. URI references to nodes that do not exist shall be treated as invalid references.
. URI references to elements which are inappropriate targets for the given reference shall be treated as
invalid references (see list below for appropriate targets). For example, the 'clip-path’ property can

only refer to ‘clipPath’ elements. The property setting clip-path:url(#MyElement) is an invalid reference

if the referenced element is not a 'clipPath'.
. URI references that directly or indirectly reference themselves are treated as invalid circular
references.

The following list describes the elements and properties that allow URI references and the valid target types
for those references:

. the 'a’ element can reference any local or non-local resource

. the 'altGlyph' element must reference either an 'altGlyphDef' element or a 'glyph’ element

. the 'animate’ element (see ldentifying the target element for an animation for reference rules)

. the 'animateColor' element (see Identifying the target element for an animation for reference rules)

. the 'animateMotion' element (see Identifying the target element for an animation for reference rules)

. the 'animateTransform' element (see ldentifying the target element for an animation for reference
rules)

. the 'clip-path' property must reference a 'clipPath’ element

. the 'color-profile’ element must reference an ICC profile resource

. the 'color-profile’ property must reference an ICC profile resource or a 'color-profile’ element

. the 'src’' descriptor on an @color-profile definition must reference an ICC profile resource or a 'color-

http://www.w3.org/TR/xptr

profile’ element
. the 'cursor' element must reference a resource that can provide an image for the cursor graphic
. the 'cursor' property must reference a resource that can provide an image for the cursor graphic
. the 'feimage’ element must reference any local or non-local resource
. the 'fill' property (see Specifying paint for reference rules)
. the ‘filter’ element must reference a ‘filter’ element
. the 'filter' property must reference a ‘filter’ element
. the'image’ element must reference any local or non-local resource
. the'linearGradient' element must reference a 'linearGradient’ or 'radialGradient’ element
. the 'marker','marker-start','marker-mid' and 'marker-end' properties must reference a 'marker' element.
. the 'mask’ property must reference a 'mask’' element
. the 'pattern’ element must reference a 'pattern’ element
. the 'radialGradient' element must reference a 'linearGradient’ or 'radialGradient’ element
. the 'script’ element must reference an external resource that provides the script content
. the 'stroke' property (see Specifying paint for reference rules)
. the 'textpath’' element must reference a ‘path’ element
. the 'tref’ element can reference any SVG element
. the 'set’ element (see Identifying the target element for an animation for reference rules)
. the 'use’ element can reference any local or non-local resource

The following rules apply to the processing of invalid URI references:

. Aninvalid local URI reference (i.e., an invalid references to a hode within the current document)
represents an error (see Error processing), apart from the xlink:href attribute on the 'a’ element and

the properties that allow for backup values in the case where the URI reference is invalid (see 'fill'
and 'stroke").

. Aninvalid circular URI reference represents an error (see Error processing).

. When attribute externalResourcesRequired has been set to true on the referencing element or one of

its ancestors, then an unresolved external URI reference (i.e., a resource that cannot be located)
represents an error (see Error processing).

It is recommended that, wherever possible, referenced elements be defined inside of a 'defs’ element.
Among the elements that are always referenced: 'altGlyphDef', ‘clipPath’, 'cursor', 'filter', 'linearGradient’,
'marker’, 'mask’, ‘pattern’, 'radialGradient’ and 'symbol'. Defining these elements inside of a 'defs’ element
promotes understandability of the SVG content and thus promotes accessibility.

5.3.2 URI reference attributes

A URI reference is specified within an href attribute in the XLink [XLINK] namespace. If the default prefix of

'xlink:" is used for attributes in the XLink namespace, then the attribute will be specified as xlink:href. The
value of this attribute is a URI reference for the desired resource (or resource fragment).

The value of the href attribute must be a URI reference as defined in [RFC2396], or must result in a URI

reference after the escaping procedure described below is applied. The procedure is applied when passing
the URI reference to a URI resolver.

Some characters are disallowed in URI references, even if they are allowed in XML; the disallowed
characters include all non-ASCII characters, plus the excluded characters listed in Section 2.4 of
[REC2396], except for the number sign (#) and percent sign (%) and the square bracket characters re-

http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

allowed in [RFC2732]. Disallowed characters must be escaped as follows:
1. Each disallowed character is converted to UTF-8 [RFC2279] as one or more bytes.

2. Any bytes corresponding to a disallowed character are escaped with the URI escaping mechanism
(that is, converted to %1H, where HH is the hexadecimal notation of the byte value).

3. The original character is replaced by the resulting character sequence.

Because it is impractical for any application to check that a value is a URI reference, this specification
follows the lead of [RFC2396] in this matter and imposes no such conformance testing requirement on SVG

applications.

If the URI reference is relative, its absolute version must be computed by the method of [XML-Base] before
use.

For locators into XML resources, the format of the fragment identifier (if any) used within the URI reference
is specified by the XPointer specification [XPTR].

Additional XLink attributes can be specified that provide supplemental information regarding the referenced
resource. These additional attributes are included in the DTD in the following entities. The three entity
definitions differ only in the value of xlink:show, which has the value other in the first two entities and the
value embed in the third. The first two entity definitions are used in most element definitions which reference
resources. The third entity definition is used by elements 'use’, 'image’ and 'felmage’'.

<IENTITY % SVG XLi nk. extra.attrib "" >

<IENTITY % SVG XLink.attrib
"OXLINK. xm ns. attrib;
9XLI NK. pf x; type (sinple) #FIXED 'sinple'
9Ll NK. pf x; href %UJRI . dat at ype; #l MPLI ED
9XLI NK. pf x; rol e %JRI . dat at ype; #l MPLI ED
9XLI NK. pf x; arcrol e %Rl . dat at ype; #| MPLI ED

9XLI NK. pf x; titl e CDATA #| MPLI ED

9XLI NK. pf x; show (other) 'other’

oXLI NK. pf x; actuate (onLoad) #FI XED ' onLoad'
Y8VG XLi nk. extra.attrib;"

>
<IENTI TY % SVG XLi nkRequi red. extra.attrib "" >

<IENTI TY % SVG XLi nkRequi red. attrib
"OXLINK. xm ns. attrib;
XLl NK. pfx;type (sinple) #FIXED 'sinple'
9XLI NK. pf x; href %JRI . dat at ype; #REQUI RED
9XLI NK. pf x; rol e %JRI . dat at ype; #| MPLI ED
9XLI NK. pf x; arcrol e %JRI . dat at ype; #l MPLI ED

UXLI NK. pfx; titl e CDATA #l MPLI ED

9%XLI NK. pf x; show (other) 'other'

XLl NK. pf x; actuate (onLoad) #FI XED ' onLoad’
%6VG XLi nkRequi red. extra. attrib; "

http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xptr

<IENTITY % SVG XLi nkEnbed. extra. attrib "" >

<IENTI TY % SVG XLi nkEnbed. attrib
"OXLI NK. xm ns. attrib;
9XLI NK. pf x; type (sinple) #FIXED 'sinple'
XLl NK. pf x; href %URI . dat at ype; #REQUI RED
9XLI NK. pf x; rol e %JRI . dat at ype; #l VPLI ED
9XLI NK. pf x; arcrol e %JRI . dat at ype; #l MPLI ED

OXLI NK. pfx;title CDATA #l MPLI ED

9%XLI NK. pf x; show (enbed) 'enbed'

XLl NK. pf x; actuate (onLoad) #FI XED ' onLoad'
%SVG XLi nkEnbed. extra. attrib; ™

>

<IENTI TY % SVG XLi nkRepl ace. extra.attrib "" >

<IENTI TY % SVG XLi nkRepl ace. attrib
"OXLINK. xm ns. attrib;
XLl NK. pf x;type (sinple) #FIXED 'sinple'
oXLI NK. pf x; href %JRI . dat at ype; #REQUI RED
9XLI NK. pf x; rol e %JRI . dat at ype; #l MPLI ED
9XLI NK. pf x; arcrol e %Rl . dat at ype; #l MPLI ED

OXLI NK. pfx; title CDATA #l MPLI ED

9XLI NK. pf x; show (new | replace) 'replace'

XLl NK. pf x; actuate (onRequest) #FI XED ' onRequest'
%SVG XLi nkRepl ace. extra. attrib;"

xm ns [:prefix] = "resource-name"
Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLinK]
namespace available to the current element. Refer to the "Namespaces in XML" Recommendation

[XML-NS].

Animatable: no.

xli nk: type ="simple'
Identifies the type of XLink being used. In SVG, only simple links are available. Refer to the "XML
Linking Language (XLink)" [XLink].
Animatable: no.

Xl i nk: rol e ="<uri>'
A URI reference that identifies some resource that describes the intended property. The value must
be a URI reference as defined in [RFC2396], except that if the URI scheme used is allowed to have
absolute and relative forms, the URI portion must be absolute. When no value is supplied, no
particular role value is to be inferred. Disallowed URI reference characters in these attribute values
must be specially encoded as described earlier in this section. Refer to the "XML Linking Language
(XLink)" [XLink].
Animatable: no.

xl'i nk: arcrol e ="<uri>'
A URI reference that identifies some resource that describes the intended property. The value must
be a URI reference as defined in [RFC2396], except that if the URI scheme used is allowed to have
absolute and relative forms, the URI portion must be absolute. When no value is supplied, no
particular role value is to be inferred. Disallowed URI reference characters in these attribute values
must be specially encoded as described earlier in this section. The arcrole attribute corresponds to
the [RDF] notion of a property, where the role can be interpreted as stating that "starting-resource

http://www.w3.org/TR/xlink//
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xlink/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-rdf-syntax/

HAS arc-role ending-resource." This contextual role can differ from the meaning of an ending
resource when taken outside the context of this particular arc. For example, a resource might
generically represent a "person,” but in the context of a particular arc it might have the role of
"mother" and in the context of a different arc it might have the role of "daughter.” Refer to the "XML
Linking Language (XLink)" [XLinK].
Animatable: no.

xlink:title="<string>'
The title attribute is used to describe the meaning of a link or resource in a human-readable fashion,
along the same lines as the role or arcrole attribute. A value is optional; if a value is supplied, it
should contain a string that describes the resource. The use of this information is highly dependent
on the type of processing being done. It may be used, for example, to make titles available to
applications used by visually impaired users, or to create a table of links, or to present help text that
appears when a user lets a mouse pointer hover over a starting resource. Refer to the "XML Linking
Language (XLink)" [XLink].
Animatable: no.

x| i nk: show="embed'
An application traversing to the ending resource should load its presentation in place of the
presentation of the starting resource. Refer to the "XML Linking Language (XLink)" [XLinK].
Animatable: no.

xli nk: act uat e ='onLoad'
Indicates that the application should traverse to the ending resource immediately on loading the
starting resource. Refer to the "XML Linking Language (XLink)" [XLinK].

Animatable: no.

In all cases, for compliance with the "Namespaces in XML" Recommendation [XML-NS], an explicit XLink

namespace declaration must be provided whenever one of the above XLink attributes is used within SVG
content. One simple way to provide such an XLink namespace declaration is to include an xmins attribute
for the XLink namespace on the outermost 'svg' element for content that uses XLink attributes. For
example:

<svg xm ns: xlink="http://ww.w3.org/ 1999/ xlink"...>

<i mage xlink:href="foo.png.gif" .../>
</ svg>

5.3.3 The 'defs' element

The 'defs' element is a container element for referenced elements. For understandability and accessibility
reasons, it is recommended that, whenever possible, referenced elements be defined inside of a 'defs'.

The content model for 'defs’ is the same as for the 'g’ element; thus, any element that can be a child of a 'g*
can also be a child of a 'defs’, and vice versa.

Elements that are descendants of a 'defs' are not rendered directly; they are prevented from becoming part
of the rendering tree just as if the 'defs' element were a 'g' element and the 'display’' property were set to
none. Note, however, that the descendants of a 'defs' are always present in the source tree and thus can
always be referenced by other elements; thus, the value of the 'display’ property on the ‘defs' element or
any of its descendants does not prevent those elements from being referenced by other elements.

http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/REC-xml-names/

<IENTITY % SVG. defs. el enent "I NCLUDE" >
<I[%8VG def s. el enent; [
<I ENTI TY % SVG. def s. cont ent
"(%BVG Description.class; | %SVG Animation. class; %BVG Structure. cl ass;
%8VG Condi tional . class; %SVG | mage. cl ass; %8VG Styl e. cl ass;
Y%8VG. Shape. cl ass; %8VG Text.cl ass; %SVG Marker. cl ass; %SVG Profil e. cl ass;
Y8VG G adi ent. cl ass; %6GVG Pattern. class; %8VG d i p.cl ass;
%6VG Mask. cl ass; %6VG Filter.class; %VG Cursor. cl ass;
%8VG Hyperlink.class; %8VG Vi ew. cl ass; %VG Scri pt. cl ass;
%8VG Font . cl ass;)*"

>
<! ELEMENT %8VG defs. gnane; %8VG defs.content; >
<!-- end of SVG defs.elenent -->]]>

<IENTITY % SVG. defs.attlist "I|NCLUDE" >
<I[%SVG defs. attlist;]
<| ATTLI ST %8VG def s. gnane;

%SVG Core. attrib;

%SVG Condi tional . attrib;

Y8VG Style.attrib;

%SVG Presentation. attrib;

%8VG. Graphi cal Events. attrib;

%SVG External . attrib;

transform %lransfornii st. dat atype; #l MPLI ED

To provide some SVG user agents with an opportunity to implement efficient implementations in streaming
environments, creators of SVG content are encouraged to place all elements which are targets of local URI
references within a 'defs' element which is a direct child of one of the ancestors of the referencing element.
For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="8cni hei ght="3cnt
xm ns="http://ww.w3. org/ 2000/ svg" >
<desc>Local URI references within ancestor's 'defs' el enent.</desc>
<def s>
<linear Gradi ent id="G adient0l">
<stop of fset="20% stop-col or="#39F" />
<stop of fset="90% stop-color="#F3F" />
</linear G adi ent >

</ def s>
<rect x="1lcn!' y="1cm' wi dt h="6cnm' hei ght="1cnf
fill="url (#G adient01)" />
<l-- Show outline of canvas using 'rect' element -->
<rect x=".01lcnf y=".0lcni width="7.98cn hei ght="2.98cnt
fill="none" stroke="blue" stroke-w dth=".02cn" />
</ svg>

View this example as SVG (SVG-enabled browsers only)

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/defs01.svg

In the document above, the linear gradient is defined within a 'defs' element which is the direct child of the
'svg' element, which in turn is an ancestor of the 'rect' element which references the linear gradient. Thus,
the above document conforms to the guideline.

5.4 The 'desc' and 'title' elements

Each container element or graphics element in an SVG drawing can supply a 'desc' and/or a 'title’
description string where the description is text-only. When the current SVG document fragment is rendered
as SVG on visual media, 'desc' and 'title' elements are not rendered as part of the graphics. User agents
may, however, for example, display the ‘'title' element as a tooltip, as the pointing device moves over
particular elements. Alternate presentations are possible, both visual and aural, which display the 'desc' and
'title’ elements but do not display 'path’ elements or other graphics elements. This is readily achieved by
using a different (perhaps user) style sheet. For deep hierarchies, and for following 'use’ element
references, it is sometimes desirable to allow the user to control how deep they drill down into descriptive
text.

<IENTITY % SVG desc. el enrent "I NCLUDE" >

<I[%BVG desc. el enent ; [

<IENTI TY % SVG desc. content "(#PCDATA)" >

<! ELEMENT %8VG desc. gnane; %SVG desc. content; >

<I-- end of SVG desc.elenment -->]]>

<IENTITY % SVG desc. attlist "I|NCLUDE" >
<I[%BVG desc. attlist;|
<I ATTLI ST %8VG desc. gnane;

%8VG Core. attrib;

Y8VG Style.attrib;

<IENTITY % SVG title.elenment "INCLUDE" >

<I[%VG title.element;]

<IENTITY % SVG title.content "(#PCDATA)" >
<IELEMENT %6VG title.gnane; %GVG title.content; >
<l-- end of SVGtitle.elenment -->]]>

<IENTITY % SVG title.attlist "INCLUDE" >
<I[%VG title.attlist;]
<I ATTLI ST %8VG titl e. gnane;

%8VG Core. attrib;

Y8VG Style.attrib;

The following is an example. In typical operation, the SVG user agent would not render the 'desc' and 'title'
elements but would render the remaining contents of the 'g’ element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg SYSTEM "http://ww. w3. or g/ Graphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dth="4in" height="3in" version="1.1"

xm ns="http://ww. w3. or g/ 2000/ svg" >

<g>
<title>
Conpany sal es by region
</[title>
<desc>
This is a bar chart which shows
conpany sal es by region.
</ desc>
<l-- Bar chart defined as vector data -->
</ g>
</ svg>

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xm version="1.0" standal one="yes"?>
<svg wi dth="4in" height="3in" version="1.1"
xm ns="http://ww. w3. org/ 2000/ svg" >
<desc xm ns: nydoc="http://exanpl e. org/ nydoc" >
<nydoc:title>This is an exanple SVG file</nydoc:title>
<nmydoc: para>The gl obal description uses markup fromthe
<nydoc: enph>nydoc</ mydoc: enph> nanespace. </ nydoc: par a>
</ desc>
<g>
<l-- the picture goes here -->
</ g>
</ svg>

Authors should always provide a 'title' child element to the outermost 'svg' element within a stand-alone
SVG document. The 'title' child element to an 'svg' element serves the purposes of identifying the content of

the given SVG document fragment. Since users often consult documents out of context, authors should
provide context-rich titles. Thus, instead of a title such as "Introduction”, which doesn’t provide much
contextual background, authors should supply a title such as "Introduction to Medieval Bee-Keeping"
instead. For reasons of accessibility, user agents should always make the content of the 'title’ child element
to the outermost 'svg' element available to users. The mechanism for doing so depends on the user agent

(e.g., as a caption, spoken).

The DTD definitions of many of SVG's elements (particularly, container and text elements) place no
restriction on the placement or number of the 'desc' and 'title' sub-elements. This flexibility is only present so

that there will be a consistent content model for container elements, because some container elements in
SVG allow for mixed content, and because the mixed content rules for XML [XML-MIXED] do not permit the

desired restrictions. Representations of future versions of the SVG language might use more expressive
representations than DTDs which allow for more restrictive mixed content rules. It is strongly recommended
that at most one 'desc' and at most one 'title' element appear as a child of any particular element, and that

these elements appear before any other child elements (except possibly 'metadata’ elements) or character
data content. If user agents need to choose among multiple 'desc' or 'title' elements for processing (e.g., to
decide which string to use for a tooltip), the user agent shall choose the first one.

5.5 The 'symbol' element

The 'symbol' element is used to define graphical template objects which can be instantiated by a 'use’
element.

http://www.w3.org/TR/REC-xml#sec-mixed-content

The use of 'symbol' elements for graphics that are used multiple times in the same document adds structure
and semantics. Documents that are rich in structure may be rendered graphically, as speech, or as braille,
and thus promote accessibility.

The key distinctions between a 'symbol and a 'g" are:

. A'symbol' element itself is not rendered. Only instances of a 'symbol' element (i.e., a reference to a
'symbol’ by a 'use' element) are rendered.

. A'symbol' element has attributes viewBox and preserveAspectRatio which allow a 'symbol' to scale-to-
fit within a rectangular viewport defined by the referencing 'use' element.

Closely related to the 'symbol' element are the 'marker' and 'pattern’ elements.

<IENTI TY % SVG. synbol . el enent "I NCLUDE" >
<I[¥8VG synbol . el ement ; [
<IENTI TY % SVG synbol . cont ent
"(%8VG Description.class; | %SVG Ani mation.cl ass; %6VG Structure. cl ass;

%8VG Condi tional .class; %BVG | mage. cl ass; %SVG Styl e. cl ass;

%8VG Shape. cl ass; %BVG Text . cl ass; %SVG Marker. cl ass; %GVG Profile. cl ass;
Y%SVG Gradi ent.class; %VG Pattern.class; %6VG Cip.class;

Y%8VG Mask. cl ass; %6VG Filter.class; %VG Cursor. cl ass;

%8VG Hyperlink.class; %BVG Vi ew. cl ass; %BVG Scri pt.cl ass;

%8VG Font . cl ass;)*"

>
<! ELEMENT %6VG synbol . gnane; %SVG synbol . content; >
<l-- end of SVG synbol .elenment -->]]>

<IENTI TY % SVG synbol . attlist "I NCLUDE" >
<I[%8VG synbol . attlist;[
<I ATTLI ST %8VG synbol . gnane;

%SVG Core. attrib;

Y8VG Style.attrib;

%SVG Presentation. attrib;
Y%8VG. G aphi cal Events. attrib;
%SVG External . attrib;

vi ewBox /i ewBoxSpec. dat at ype; #l MPLI ED
preserveAspect Rati o %Pr eserveAspect Rati oSpec. dat at ype; 'xM dYM d neet'

'symbol' elements are never rendered directly; their only usage is as something that can be referenced
using the 'use' element. The 'display’ property does not apply to the 'symbol’ element; thus, 'symbol’
elements are not directly rendered even if the 'display’ property is set to a value other than none, and
'symbol" elements are available for referencing even when the 'display’ property on the ‘'symbol’ element or
any of its ancestors is set to none.

5.6 The 'use' element

Any 'svg’, 'symbol’, 'g’, graphics element or other ‘use’ is potentially a template object that can be re-used
(i.e., "instanced") in the SVG document via a 'use’ element. The 'use’ element references another element
and indicates that the graphical contents of that element is included/drawn at that given point in the
document.

Unlike 'image’, the 'use' element cannot reference entire files.

The 'use' element has optional attributes x, y, width and height which are used to map the graphical
contents of the referenced element onto a rectangular region within the current coordinate system.

The effect of a 'use' element is as if the contents of the referenced element were deeply cloned into a
separate non-exposed DOM tree which had the 'use' element as its parent and all of the 'use’ element's
ancestors as its higher-level ancestors. Because the cloned DOM tree is non-exposed, the SVG Document
Object Model (DOM) only contains the 'use' element and its attributes. The SVG DOM does not show the
referenced element's contents as children of 'use' element.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced element into a
non-exposed DOM tree also copies any property values resulting from the CSS cascade [CSS2-CASCADE]

on the referenced element and its contents. CSS2 selectors can be applied to the original (i.e., referenced)
elements because they are part of the formal document structure. CSS2 selectors cannot be applied to the
(conceptually) cloned DOM tree because its contents are not part of the formal document structure.

Property inheritance, however, works as if the referenced element had been textually included as a deeply
cloned child of the 'use' element. The referenced element inherits properties from the 'use' element and the
'use' element’'s ancestors. An instance of a referenced element does not inherit properties from the
referenced element's original parents.

If event attributes are assigned to referenced elements, then the actual target for the event will be the
SVGElementinstance object within the "instance tree" corresponding to the given referenced element.

The behavior of the 'visibility' property conforms to this model of property inheritance. Thus, specifying
'visibility:hidden' on a 'use' element does not guarantee that the referenced content will not be rendered. If
the 'use' element specifies 'visibility:hidden' and the element it references specifies 'visibility:hidden' or
'visibility:inherit', then that one element will be hidden. However, if the referenced element instead specifies
'visibility:visible', then that element will be visible even if the 'use' element specifies 'visibility:hidden'.

Animations on a referenced element will cause the instances to also be animated.

A 'use' element has the same visual effect as if the 'use’' element were replaced by the following generated
content:

. Ifthe'use' element references a 'symbol' element:

In the generated content, the 'use’ will be replaced by 'g’, where all attributes from the 'use' element
except for x, y, width, height and xlink:href are transferred to the generated 'g' element. An additional
transformation translate(x,y) is appended to the end (i.e., right-side) of the transform attribute on the
generated 'g’, where x and y represent the values of the x and y attributes on the 'use’ element. The
referenced 'symbol' and its contents are deep-cloned into the generated tree, with the exception that
the 'symbol' is replaced by an 'svg'. This generated 'svg' will always have explicit values for attributes
width and height. If attributes width and/or height are provided on the 'use’ element, then these

http://www.w3.org/TR/REC-CSS2/cascade.html

attributes will be transferred to the generated 'svg'. If attributes width and/or height are not specified,
the generated 'svg' element will use values of 100% for these attributes.

. If the 'use’ element references an 'svg’ element:

In the generated content, the ‘use’ will be replaced by 'g’, where all attributes from the ‘use’ element
except for x, y, width, height and xlink:href are transferred to the generated 'g' element. An additional
transformation translate(x,y) is appended to the end (i.e., right-side) of the transform attribute on the
generated 'g’, where x and y represent the values of the x and y attributes on the 'use’ element. The
referenced 'svg' and its contents are deep-cloned into the generated tree. If attributes width and/or
height are provided on the 'use’ element, then these values will override the corresponding attributes
on the 'svg' in the generated tree.

. Otherwise:

In the generated content, the ‘use’ will be replaced by 'g’, where all attributes from the ‘use’ element
except for x, y, width, height and xlink:href are transferred to the generated 'g' element. An additional
transformation translate(x,y) is appended to the end (i.e., right-side) of the transform attribute on the
generated 'g’, where x and y represent the values of the x and y attributes on the 'use’ element. The
referenced object and its contents are deep-cloned into the generated tree.

For user agents that support Styling with CSS, the generated 'g' element carries along with it the
"cascaded" property values on the 'use’ element which result from the CSS cascade [CSS2-CASCADE].

Additionally, the copy (deep clone) of the referenced resource carries along with it the "cascaded"” property
values resulting from the CSS cascade on the original (i.e., referenced) elements. Thus, the result of various
CSS selectors in combination with the class and style attributes are, in effect, replaced by the functional

equivalent of a style attribute in the generated content which conveys the "cascaded" property values.

Example Use01 below has a simple 'use' on a 'rect'.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ Gaphi cs/ SVG 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="10cn' hei ght="3cm' vi ewBox="0 0 100 30" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" xm ns: x| i nk="http://ww. w3. org/ 1999/ xl i nk">
<desc>Exanpl e Use0Ol - Sinple case of 'use' on a 'rect'</desc>

<def s>
<rect id="MyRect" w dth="60" height="10"/>
</ def s>
<rect x=".1" y=".1" width="99.8" height="29.8"
fill="none" stroke="blue" stroke-w dth=".2" />
<use x="20" y="10" xlink:href="#WRect" />
</ svg>

http://www.w3.org/TR/REC-CSS2/cascade.html

Example Use01

View this example as SVG (SVG-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SV@ 1. 1/ DTD/ svgll. dtd">
<svg wi dt h="10cn' hei ght="3cm' vi ewBox="0 0 100 30"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e Use01- Gener atedContent - Sinple case of 'use' on a 'rect'</desc>
<l-- 'defs' section left out -->

<rect x=".1" y=".1" w dth="99.8" height="29.8"
fill="none" stroke="blue" stroke-w dth=".2" />

<l-- Start of generated content. Replaces 'use' -->
<g transform="transl ate(20, 10)">
<rect w dth="60" hei ght="10"/>
</ g>
<l-- End of generated content -->

</ svg>

View this example as SVG (SVG-enabled browsers only)

Example Use02 below has a 'use’ on a 'symbol’.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd">
<svg wi dt h="10cm' hei ght="3cni vi ewBox="0 0 100 30" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" xm ns: xli nk="http://ww. w3. org/ 1999/ xI i nk" >

<desc>Exanpl e Use02 - 'use' on a 'synbol'</desc>
<def s>
<synbol id="M/Synbol" viewBox="0 0 20 20">
<desc>MySynbol - four rectangles in a grid</desc>

<rect x="1" y="1" w dth="8" hei ght="8"/>
<rect x="11" y="1" wi dth="8" height="8"/>
<rect x="1" y="11" wi dth="8" hei ght="8"/>
<rect x="11" y="11" wi dth="8" height="8"/>

</ synmbol >
</ def s>
<rect x=".1" y=".1" wi dth="99.8" height="29.8"
fill="none" stroke="blue" stroke-w dth=".2" />

<use x="45" y="10" wi dt h="10" hei ght="10"
xlink: href="#MySynbol " />
</ svg>

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/Use01.svg
http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/Use01-GeneratedContent.svg

Example Use02

View this example as SVG (SVG-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="10cm' hei ght ="3cnf vi ewBox="0 0 100 30"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e Use02- Gener atedContent - 'use' on a 'synbol'</desc>

<l-- "defs' section |left out -->

<rect x=".1" y=".1" width="99.8" height="29.8"

fill="none" stroke="blue" stroke-w dth=".2" />
<l-- Start of generated content. Replaces 'use' -->
<g transforn="transl ate(45, 10)" >
<I-- Start of referenced 'synbol'. 'synbol' replaced by 'svg',

with x,y,w dth, hei ght=0, 0, 100% 100% - - >
<svg wi dt h="10" hei ght="10"
vi ewBox="0 0 20 20">
<rect x="1" y="1" width="8" height="8"/>
<rect x="11" y="1" wi dth="8" height="8"/>
<rect x="1" y="11" wi dth="8" height="8"/>
<rect x="11" y="11" w dt h="8" height="8"/>

</ svg>
<l-- End of referenced synbol -->
</ g>
<l-- End of generated content -->
</ svg>

View this example as SVG (SVG-enabled browsers only)

Example Use03 illustrates what happens when a 'use' has a transform attribute.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd">
<svg wi dt h="10cm" hei ght ="3cm' vi ewBox="0 0 100 30" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" xm ns: xl i nk="http://ww.w3. org/ 1999/ x|l i nk" >
<desc>Exanpl e Use03 - 'use' with a 'transform attribute</desc>

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/Use02.svg
http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/Use02-GeneratedContent.svg

<def s>
<rect id="MyRect" x="0" y="0" w dth="60" hei ght="10"/>

</ def s>
<rect x=".1" y=".1" w dth="99. 8" hei ght="29. 8"
fill="none" stroke="blue" stroke-w dth=".2" />

<use xlink: href="#M/Rect"
transforme"transl ate(20,2.5) rotate(10)" />
</ svg>

Example Use03

View this example as SVG (SVG-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN"
"http://ww. w3. org/ Gaphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="10cnm hei ght ="3cnt vi ewBox="0 0 100 30"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e Use03- GeneratedContent - 'use' with a 'transform attribute</desc>

<l-- "defs' section left out -->

<rect x=".1" y=".1" w dth="99.8" hei ght="29. 8"
fill="none" stroke="blue" stroke-w dth=".2" />

<I-- Start of generated content. Replaces 'use' -->
<g transforne"transl ate(20,2.5) rotate(10)">
<rect x="0" y="0" wi dth="60" height="10"/>
</ g>
<l-- End of generated content -->

</ svg>

View this example as SVG (SVG-enabled browsers only)

Example Use04 illustrates a 'use' element with various methods of applying CSS styling.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ Gaphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="12cnf hei ght="3cm' vi ewBox="0 0 1200 300" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg"” xm ns: x|l i nk="http://ww. w3. org/ 1999/ xl i nk">
<desc>Exanpl e Use04 - 'use' with CSS styling</desc>

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/Use03.svg
http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/Use03-GeneratedContent.svg

<defs style=" /* rule 9 */ stroke-mterlimt: 10" >
<path id="MPath" d="M300 50 L900 50 L900 250 L300 250"
cl ass="M/Pat hCl ass"
style=" /* rule 10 */ stroke-dasharray: 300, 100" />

</ def s>
<style type="text/css">
<! [CDATA]
/[* rule 1 */ #MyUse { fill: blue }
[* rule 2 */ #MyPath { stroke: red }
[* rule 3 */ use { fill-opacity: .5}
/* rule 4 */ path { stroke-opacity: .5}
/* rule 5 */ .M/UseC ass { stroke-Ilinecap: round }
/* rule 6 */ .M/PathC ass { stroke-linejoin: bevel }
/* rule 7 */ use > path { shape-rendering: optimzeQality }
/* rule 8 */ g > path { visibility: hidden }
11>
</styl e>

<rect x="0" y="0" w dth="1200" hei ght="300"
style="fill:none; stroke:blue; stroke-w dth:3"/>

<g style=" /* rule 11 */ stroke-w dth:40">

<use id="MyUse" xlink:href="#MPath"

class="MyUseC ass"
style="/* rule 12 */ stroke-dashoffset:50" />

</ g>

</ svg>

Example Use04

View this example as SVG (SVG-enabled browsers only)

The visual effect would be equivalent to the following document. Observe that some of the style rules above
apply to the generated content (i.e., rules 1-6, 10-12), whereas others do not (i.e., rules 7-9). The rules
which do not affect the generated content are:

. Rules 7 and 8: CSS selectors only apply to the formal document tree, not on the generated tree; thus,
these selectors will not yield a match.

. Rule 9: The generated tree only inherits from the ancestors of the 'use' element and does not inherit
from the ancestors of the referenced element; thus, this rule does not affect the generated content.

In the generated content below, the selectors that yield a match have been transferred into inline 'style’
attributes for illustrative purposes.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/Use04.svg

"http://ww.w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="12cnt hei ght="3cnm' vi ewBox="0 0 1200 300"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e Use04- GeneratedContent - 'use' with a 'transforni

<lI-- 'style' and 'defs' sections left out -->

<rect x="0" y="0" wi dth="1200" hei ght ="300"
style="fill:none; stroke:blue; stroke-w dth:3"/>
<g style="/* rule 11 */ stroke-w dth: 40">

<l-- Start of generated content. Replaces 'use'" -->
<g style="/* rule 1 */ fill:blue;
[* rule 3 */ fill-opacity:.5;

/* rule 5 */ stroke-linecap:round;
/* rule 12 */ stroke-dashoffset:50" >
<path d="M30O 50 L900 50 L900 250 L300 250"
style="/* rule 2 */ stroke:red
/* rule 4 */ stroke-opacity:.5;
/* rule 6 */ stroke-linejoin: bevel;
/* rule 10 */ stroke-dasharray: 300,100" />
</ g>
<l-- End of generated content -->

</ g>
</ svg>

View this example as SVG (SVG-enabled browsers only)

attri but e</ desc>

When a 'use’ references another element which is another 'use' or whose content contains a 'use' element,

then the deep cloning approach described above is recursive.

<IENTI TY % SVG use. el enent "I NCLUDE" >
<I[¥%BVG use. el ement ; [
<IENTI TY % SVG use. cont ent
"((98VG Description.class;)*, (%SVG Animation.class;)*)"

>
<! ELEMENT %86VG use. gnhane; %BVG use. content; >
<!-- end of SVG use.elenment -->]]>

<IENTITY % SVG use. attlist "INCLUDE" >
<I[%BVG use. attlist;[
<I ATTLI ST %8VG use. gnane;
%SVG Core. attrib;
%SVG Condi tional . attrib;
Y8VG Style.attrib;
%8VG. Presentation.attrib;
Y%8VG. G aphi cal Events. attrib;
%SVG XLi nkEnbed. attri b;
%SVG External . attrib;
X % Coor di nat e. dat at ype; #l MPLI ED
y %Coor di nat e. dat at ype; #l MPLI ED

http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/struct/Use04-GeneratedContent.svg

wi dt h %.engt h. dat at ype; #| MPLI ED
hei ght % .engt h. dat at ype; #l MPLI ED
transf orm %r ansf or nlLi st . dat at ype; #| VMPLI ED

Attribute definitions:

X = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced element is
placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
y ="<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the referenced element is
placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
wi dt h ="<length>"
The width of the rectangular region into which the referenced element is placed.
Animatable: yes.
hei ght ="<length>"
The height of the rectangular region into which the referenced element is placed.
Animatable: yes.
x| i nk: href ="<uri>"
A URI reference to an element/fragment within an SVG document.
Animatable: yes.

5.7 The 'image' element

The 'image' element indicates that the contents of a complete file are to be rendered into a given rectangle
within the current user coordinate system. The 'image' element can refer to raster image files such as PNG
or JPEG or to files with MIME type of "image/svg+xml". Conforming SVG viewers need to support at least

PNG, JPEG and SVG format files.

The result of processing an 'image' is always a four-channel RGBA result. When an 'image’ element
references a raster image file such as PNG or JPEG files which only has three channels (RGB), then the
effect is as if the object were converted into a 4-channel RGBA image with the alpha channel uniformly set
to 1. For a single-channel raster image, the effect is as if the object were converted into a 4-channel RGBA
image, where the single channel from the referenced object is used to compute the three color channels
and the alpha channel is uniformly set to 1.

An 'image' element establishes a new viewport for the referenced file as described in Establishing a new
viewport. The bounds for the new viewport are defined by attributes x, y, width and height. The placement
and scaling of the referenced image are controlled by the preserveAspectRatio attribute on the 'image’
element.

If the value of the preserveAspectRatio attribute on the 'image' element starts with 'defer' then the referenced

content should be examined to see if it contains a definition for preserveAspectRatio, in the case of
referenced SVG content this would be the presence of the preserveAspectRatio attribute on the root SVG
element. If the referenced content contains a definition for preserveAspectRatio then it should be used as
the value of preserveAspectRatio (ignoring the rest of the preserveAspectRatio attribute on the image

element). If the referenced content does not contain a definition for
preserveAspectRatio then the remainder of the preserveAspectRatio attribute on the 'image' element should

be used as the value of the preserveAspectRatio attribute.

Note that when an 'image’ element references an SVG image, the processing rules described in the
previous paragraph mean that the preserveAspectRatio attribute as well as the clip and overflow properties
on the root element in the referenced SVG image are ignored (like the X, y, width and height attributes are
ignored).”

Instead, the preserveAspectRatio attribute on the referencing 'image’ element defines how the SVG image

content is fitted into the viewport and the clip and overflow properties on the 'image' element define how the
SVG image content is clipped (or not) relative to the viewport.

The value of the 'viewBox' attribute to use when evaluating the preserveAspectRatio attribute is defined by
the referenced content. For content that clearly identifies a viewBox (e.g. an SVG file with the 'viewBox'
attribute on the outermost svg element) that value should be used, for most raster content (PNG, JPEG) the
bounds of the image should be used, where no value is readily available (e.g. an SVG file with no 'viewBox'
attribute on the outermost 'svg' element) the preserveAspectRatio attribute is ignored, and only the translate
due to the 'x' & 'y' attributes of the viewport is used to display the content.

For example, if the image element referenced a PNG or JPEG and preserveAspectRatio="xMinYMin meet",
then the aspect ratio of the raster would be preserved (which means that the scale factor from image's
coordinates to current user space coordinates would be the same for both X and Y), the raster would be
sized as large as possible while ensuring that the entire raster fits within the viewport, and the top/left of the
raster would be aligned with the top/left of the viewport as defined by the attributes 'x', 'y', 'width" and 'height’
on the 'image' element. If the value of preserveAspectRatio was

'none' then aspect ratio of the image would not be preserved. The image would be fitted such that the
top/left corner of the raster exactly aligns with coordinate (x, y) and the bottom/right corner of the raster

exactly aligns with coordinate (x+width,y+height).

The resource referenced by the 'image’ element represents a separate document which generates its own
parse tree and document object model (if the resource is XML). Thus, there is no inheritance of properties
into the image.

Unlike 'use’, the 'image' element cannot reference elements within an SVG file.

<IENTITY % SVG i nage. el enent " | NCLUDE" >
<I[%BVG i mage. el enent ; [
<IENTITY % SVG i nage. cont ent
"((%8VG Description.class;)*, (%8VG Aninmation.class;)*)"

>
<! ELEMENT %8VG i mage. gnanme; %5VG i mage.content; >
<I-- end of SVGinmmge.elenment -->]]>

<IENTI TY % SVG i mage. attlist "INCLUDE" >
<I[%BVG i mage. attlist;]|
<I ATTLI ST %8VG i mage. gnane;
%8VG Core. attrib;
%SVG Condi tional . attrib;
”%SVG Style.attrib;
%SVG Vi ewport.attrib;
%SVG Col or. attrib;
Y8VG Qpacity. attrib;
%8VG G aphics.attrib;
%SVG Profile.attrib;
YSVG dip.attrib;
%SVG Mask. attrib;
YSVG Filter.attrib;
Y%8VG. G aphi cal Events. attrib;
%SVG Cursor. attrib;
%SVG XLi nkEnbed. attri b;
%SVG External . attrib;
X 9%Coor di nat e. dat at ype; #l MPLI ED
y %Coordi nat e. dat at ype; #l MPLI ED
wi dt h %.engt h. dat at ype; #REQUI RED
hei ght %.engt h. dat at ype; #REQUI RED
preserveAspect Rati o %r eser veAspect Rat i oSpec. dat atype; 'xM dYM d neet'
transform %lransfornii st. dat atype; #l MPLI ED

Attribute definitions:

X = "<coordinate>"
The x-axis coordinate of one corner of the rectangular region into which the referenced document is
placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
y ="<coordinate>"
The y-axis coordinate of one corner of the rectangular region into which the referenced document is
placed.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
w dt h ="<length>"
The width of the rectangular region into which the referenced document is placed.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.

Animatable: yes.
hei ght ="<length>"

The height of the rectangular region into which the referenced document is placed.

A negative value is an error (see Error processing). A value of zero disables rendering of the element.
Animatable: yes.

x| i nk: href ="<uri>"
A URI reference.
Animatable: yes.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dth="4in" height="3in" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" xm ns: xli nk="http://ww. w3. org/ 1999/ xI i nk" >
<desc>This graphic links to an external image
</ desc>
<i mage x="200" y="200" wi dt h="100px" hei ght="100px"
xl'i nk: href="nyi mage. png. gi f">
<title>My inmage</title>
</i mage>
</ svg>

5.8 Conditional processing

5.8.1 Conditional processing overview

SVG contains a 'switch' element along with attributes requiredFeatures, requiredExtensions and

systemLanguage to provide an ability to specify alternate viewing depending on the capabilities of a given
user agent or the user's language.

<IENTITY % SVG Condi tional .extra.attrib "" >

<IENTITY % SVG Condi tional .attrib

"requiredFeat ures %-eaturelist. datatype; #l MPLI ED
requi r edext ensi ons %kxt ensi onLi st . dat at ype; #l MPLI ED

syst enLanguage % .anguageCodes. dat at ype; #| MPLI ED
%8VG Conditional .extra.attrib;"

Attributes requiredFeatures, requiredExtensions and systemlLanguage act as tests and return either true or

false results. The 'switch' renders the first of its children for which all of these attributes test true. If the given
attribute is not specified, then a true value is assumed.

Similar to the 'display' property, conditional processing attributes only affect the direct rendering of elements
and do not prevent elements from being successfully referenced by other elements (such as via a 'use’).

In consequence:

. requiredFeatures, requiredExtensions and systemlLanguage attributes affect 'a’, 'altGlyph’,
‘foreignObject’, 'textPath’, 'tref', and 'tspan’ elements.

. requiredFeatures, requiredExtensions and systemlLanguage attributes will have no effect on 'mask’,
‘clipPath’, and 'pattern’ elements.

. requiredFeatures, requiredExtensions and systemLanguage attributes do not apply to the 'defs’, and
‘cursor' elements because they are not part of the rendering tree.

. requiredFeatures, requiredExtensions and systemlLanguage attributes affect 'animate’, 'animateColor’,
‘animateMotion’, 'animateTransform', and 'set' elements. If the conditional statement on these
animation elements fails, the animation will never be triggered.

5.8.2 The 'switch' element

The 'switch' element evaluates the requiredFeatures, requiredExtensions and systemLanguage attributes on
its direct child elements in order, and then processes and renders the first child for which these attributes
evaluate to true. All others will be bypassed and therefore not rendered. If the child element is a container
element such as a 'g’, then the entire subtree is either processed/rendered or bypassed/not rendered.

Note that the values of properties 'display' and 'visibility' have no effect on 'switch' element processing. In
particular, setting 'display’ to none on a child of a 'switch’ element has no effect on true/false testing
associated with 'switch' element processing.

<IENTITY % SVG swi tch. el enent "I NCLUDE" >
<I[%BVG swi tch. el ement ; [
<IENTITY % SVG sw t ch. cont ent
"((9%8VG Description.class;)*, (%8VG svg.gnane; | %8VG g. gnane;
| %BVG use. gnane; | %6VG text.gnanme; | %SVG Ani mation. cl ass;
%8VG Condi tional . class; %BVG | mage. cl ass; %SVG Shape. cl ass;
%8VG Hyperlink. class; %B8VG Extensibility.class;)*)"

>
<! ELEMENT %8VG swi t ch. gnane; %SVG switch. content; >
<I-- end of SVG sw tch.elenment -->]]>

<IENTITY % SVG switch.attlist "I NCLUDE" >
<I[Y%VG switch.attlist;]
<I ATTLI ST %8VG swi t ch. gnane;

%SVG Core. attrib;

%SVG Condi tional . attrib;

Y8VG Style.attrib;

%SVG Presentation. attrib;

Y%SVG. G aphi cal Events. attrib;

%SVG External . attrib;

transform %lransfornii st. dat atype; #l MPLI ED

For more information and an example, see Embedding foreign object types.

5.8.3 The requiredFeatures attribute
Definition of r equi r edFeat ur es:

requi r edFeat ur es = list-of-features
The value is a list of feature strings, with the individual values separated by white space. Determines
whether all of the named features are supported by the user agent. Only feature strings defined in the
Feature String appendix are allowed. If all of the given features are supported, then the attribute
evaluates to true; otherwise, the current element and its children are skipped and thus will not be
rendered.
Animatable: no.

If the attribute is not present, then its implicit return value is "true”. If a null string or empty string value is
given to attribute requiredFeatures, the attribute returns "false".

requiredFeatures is often used in conjunction with the 'switch' element. If the requiredFeatures is used in
other situations, then it represents a simple switch on the given element whether to render the element or
not.

5.8.4 The requiredExtensions attribute

The requiredExtensions attribute defines a list of required language extensions. Language extensions are
capabilities within a user agent that go beyond the feature set defined in this specification. Each extension is
identified by a URI reference.

Definition of r equi r edExt ensi ons:

requi r edext ensi ons = list-of-extensions
The value is a list of URI references which identify the required extensions, with the individual values
separated by white space. Determines whether all of the named extensions are supported by the
user agent. If all of the given extensions are supported, then the attribute evaluates to true; otherwise,
the current element and its children are skipped and thus will not be rendered.
Animatable: no.

If a given URI reference contains white space within itself, that white space must be escaped.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is
given to attribute requiredExtensions, the attribute returns "false".

requiredExtensions is often used in conjunction with the 'switch' element. If the requiredExtensions is used in
other situations, then it represents a simple switch on the given element whether to render the element or
not.

The URI names for the extension should include versioning information, such as
"http://lexample.org/SVGExtensionXYZ/1.0", so that script writers can distinguish between different versions
of a given extension.

5.8.5 The systemLanguage attribute
The attribute value is a comma-separated list of language names as defined in [RFC3066].

Evaluates to "true" if one of the languages indicated by user preferences exactly equals one of the
languages given in the value of this parameter, or if one of the languages indicated by user preferences
exactly equals a prefix of one of the languages given in the value of this parameter such that the first tag
character following the prefix is "-".

Evaluates to "false" otherwise.

Note: This use of a prefix matching rule does not imply that language tags are assigned to languages in
such a way that it is always true that if a user understands a language with a certain tag, then this user will
also understand all languages with tags for which this tag is a prefix.

The prefix rule simply allows the use of prefix tags if this is the case.

Implementation note: When making the choice of linguistic preference available to the user, implementers
should take into account the fact that users are not familiar with the details of language matching as
described above, and should provide appropriate guidance. As an example, users may assume that on
selecting "en-gb", they will be served any kind of English document if British English is not available. The
user interface for setting user preferences should guide the user to add "en" to get the best matching
behavior.

Multiple languages MAY be listed for content that is intended for multiple audiences. For example, content
that is presented simultaneously in the original Maori and English versions, would call for:

<text systenlanguage="m, en"><!-- content goes here --></text>

However, just because multiple languages are present within the object on which the systemLanguage test
attribute is placed, this does not mean that it is intended for multiple linguistic audiences. An example would
be a beginner's language primer, such as "A First Lesson in Latin," which is clearly intended to be used by
an English-literate audience. In this case, the systemLanguage test attribute should only include "en".

Authoring note: Authors should realize that if several alternative language objects are enclosed in a 'switch’,

and none of them matches, this may lead to situations where no content is displayed. It is thus
recommended to include a "catch-all" choice at the end of such a 'switch' which is acceptable in all cases.

For the systemLanguage attribute: Animatable: no.

If the attribute is not present, then its implicit return value is "true". If a null string or empty string value is
given to attribute systemLanguage, the attribute returns "false".

systemLanguage is often used in conjunction with the 'switch' element. If the systemLanguage is used in

other situations, then it represents a simple switch on the given element whether to render the element or
not.

5.8.6 Applicability of Test Attributes

http://www.ietf.org/rfc/rfc3066.txt

The following list describes the applicability of the test attributes to the elements that do not directly produce
rendering.

. the test attributes do not effect the 'mask’, ‘clipPath’, 'gradient' and 'pattern' elements. The test
attributes on a referenced element do not affect the rendering of the referencing element.

. the test attributes do not effect the 'defs’, and 'cursor' elements as they are not part of the rendering
tree.

. an animation element (‘animate’, 'animateMotion', '‘animateTransform’, '‘animateColor' and 'set’) will
never be triggered if it has a test attribute that evaluates to false.

5.9 Specifying whether external resources are required for proper
rendering

Documents often reference and use the contents of other files (and other Web resources) as part of their
rendering. In some cases, authors want to specify that particular resources are required for a document to

be considered correct.

Attribute externalResourcesRequired is available on all container elements and to all elements which
potentially can reference external resources. It specifies whether referenced resources that are not part of
the current document are required for proper rendering of the given container element or graphics element.

Attribute definition:

ext er nal Resour cesRequi r ed = "false | true"

false
(The default value.) Indicates that resources external to the current document are optional.
Document rendering can proceed even if external resources are unavailable to the current
element and its descendants.

true

Indicates that resources external to the current document are required. If an external resource
is not available, progressive rendering is suspended, the document's SVGLoad event is not

fired and the animation timeline does not begin until that resource and all other required
resources become available, have been parsed and are ready to be rendered. If a timeout
event occurs on a required resource, then the document goes into an error state (see Error

processing). The document remains in an error state until all required resources become
available.

This attribute applies to all types of resource references, including style sheets, color profiles (see Color
profile descriptions) and fonts specified by a URI reference using a 'font-face' element or a CSS @font-face

specification. In particular, if an element sets externalResourcesRequired="true", then all style sheets must
be available since any style sheet might affect the rendering of that element.

Attribute externalResourcesRequired is not inheritable (from a sense of attribute value inheritance), but if set
on a container element, its value will apply to all elements within the container.

Because setting externalResourcesRequired="true" on a container element can have the effect of disabling
progressive display of the contents of that container, tools that generate SVG content are cautioned against
using simply setting externalResourcesRequired="true" on the outermost 'svg' element on a universal basis.

Instead, it is better to specify externalResourcesRequired="true" on those particular graphics elements or
container elements which specify need the availability of external resources in order to render properly.

For externalResourcesRequired: Animatable: no.

5.10 Common attributes

5.10.1 Attributes common to all elements: id and xml:base
The id and xml:base attributes are available on all SVG elements:
Attribute definitions:

i d="name"
Standard XML attribute for assigning a unique name to an element. Refer to the "Extensible Markup
Language (XML) 1.0" Recommendation [XML10].
Animatable: no.

xm : base ="<uri>"
Specifies a base URI other than the base URI of the document or external entity. Refer to the "XML
Base" specification [XML-BASE].
Animatable: no.

5.10.2 The xml:lang and xml:space attributes

Elements that might contain character data content have attributes xml:lang and xml:space:

<IENTITY % SVG id.attrib
"id I D # MPLI ED'

>

<IENTITY % SVG base. attrib
"xml : base %JRI . dat at ype; #| MPLI ED"

>

<IENTITY % SVG. l ang. attrib
"xm : |l ang %.anguageCode. dat at ype; #| MPLI ED"

>

<IENTI TY % SVG space. attrib
"xm :space (default | preserve) #l MPLI ED"

>
<IENTITY % SVG Core.extra.attrib "" >

<IENTITY % SVG Core. attrib
"UBVG id.attrib;
Y%8VG. base. attri b;

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlbase/

8VG |l ang. attrib;
9Y8VG space. attrib;
U86VG Core.extra.attrib;"

Attribute definitions:

xm : | ang = "languagelD"
Standard XML attribute to specify the language (e.g., English) used in the contents and attribute
values of particular elements. Refer to the "Extensible Markup Language (XML) 1.0"

Recommendation [XML10].
Animatable: no.

xm : space = "{default | preserve}"
Standard XML attribute to specify whether white space is preserved in character data. The only
possible values are default and preserve. Refer to the "Extensible Markup Language (XML) 1.0"
Recommendation [XML10] and to the discussion white space handling in SVG.

Animatable: no.

5.11 Core Attribute Module

The Core Attribute Module defines the attribute set StdAttrs that is the core set of attributes that can be
present on any element.

Collection Name |Attributes in Collection

StdAttrs id, xml:base, xml:lang, xml:space

5.12 Structure Module

Elements |Attributes

svg

StdAttrs, TestAttrs, StyleAttrs, x, y, width, height,
viewBox, preserveAspectRatio, zoomAndPan, version,
baseProfile, contentScriptType, contentStyleType,
ExternalResourcesRequiredAttrs, PresentationAttrsAll,
GraphicsElementEvents, DocumentEvents

Content Model

(DescriptionElements |
StructureElements |
GraphicalElements | ImageElements
| ViewElements |
ConditionalElements |
HyperlinkingElements |
TextElements | ScriptElements |
StyleElements | MarkerElements |
ClipElements | MaskElements |
GradientElements | PatternElements
| FilterElements | CursorElements |
FontElements | AnimationElements |
ColorElements)*

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

defs

desc
title
metadata

symbol

use

StdAttrs, TestAttrs, StyleAttrs,
ExternalResourcesRequiredAttrs, PresentationAttrsAll,
GraphicsElementEvents, transform

StdAttrs, TestAttrs, StyleAttrs,
ExternalResourcesRequiredAttrs, PresentationAttrsAll,
GraphicsElementEvents, transform

StdAttrs, StyleAttrs
StdAttrs, StyleAttrs
StdAttrs

StdAttrs, StyleAttrs, ExternalResourcesRequiredAttrs,
viewBox, preserveAspectRatio, PresentationAttrsAll,
GraphicsElementEventAttrs

StdAttrs, StyleAttrs, TestAttrs, transform, X, y, width,
height, xlink:href, XLinkRefAttrs, PresentationAttrsAll,
GraphicsElementEventAttrs

(DescriptionElements |
StructureElements |
GraphicalElements | ImageElements
| ViewElements |
ConditionalElements |
HyperlinkingElements |
TextElements | ScriptElements |
StyleElements | MarkerElements |
ClipElements | MaskElements |
GradientElements | PatternElements
| FilterElements | CursorElements |
FontElements | AnimationElements |
ColorElements)*

(DescriptionElements |
StructureElements |
GraphicalElements | ImageElements
| ViewElements |
ConditionalElements |
HyperlinkingElements |
TextElements | ScriptElements |
StyleElements | MarkerElements |
ClipElements | MaskElements |
GradientElements | PatternElements
| FilterElements | CursorElements |
FontElements | AnimationElements |
ColorElements)*

(PCDATA)*
(PCDATA)*
(PCDATA)*

(DescriptionElements |
StructureElements |
GraphicalElements | ImageElements
| ViewElements |
ConditionalElements |
HyperlinkingElements |
TextElements | ScriptElements |
StyleElements | MarkerElements |
ClipElements | MaskElements |
GradientElements | PatternElements
| FilterElements | CursorElements |
FontElements | AnimationElements |
ColorElements)*

(DescriptionElements |
AnimationElements)*

5.12.1 Structure Content Sets

The Structure Module defines the DescriptionElements, StructureElements and UseElements content sets.

Content Set Name Elements in Content Set
DescriptionElements |desc, title, metadata

UseElements use

StructureElements |svg, g, defs, symbol, UseElements

5.13 Basic Structure Module

Elements |Attributes

StdAttrs, TestAttrs, StyleAttrs, x, y, width, height,
viewBox, preserveAspectRatio, zoomAndPan, version,
svg baseProfile, contentScriptType, contentStyleType,
ExternalResourcesRequiredAttrs, PresentationAttrsAll,
GraphicsElementEvents, DocumentEvents

StdAttrs, TestAttrs, StyleAttrs,
g ExternalResourcesRequiredAttrs, PresentationAttrsAll,
GraphicsElementEvents, transform

StdAttrs, TestAttrs, StyleAttrs,
defs ExternalResourcesRequiredAttrs, PresentationAttrsAll,
GraphicsElementEvents, transform

Content Model

(DescriptionElements |
StructureElements |
GraphicalElements | ImageElements
| ViewElements |
ConditionalElements |
HyperlinkingElements |
TextElements | ScriptElements |
StyleElements | MarkerElements |
ClipElements | MaskElements |
GradientElements | PatternElements
| FilterElements | CursorElements |
FontElements | AnimationElements |
ColorElements)*

(DescriptionElements |
StructureElements |
GraphicalElements | ImageElements
| ViewElements |
ConditionalElements |
HyperlinkingElements |
TextElements | ScriptElements |
StyleElements | MarkerElements |
ClipElements | MaskElements |
GradientElements | PatternElements
| FilterElements | CursorElements |
FontElements | AnimationElements |
ColorElements)*

(DescriptionElements |
StructureElements |
GraphicalElements | ImageElements
| ViewElements |
ConditionalElements |
HyperlinkingElements |
TextElements | ScriptElements |
StyleElements | MarkerElements |
ClipElements | MaskElements |
GradientElements | PatternElements
| FilterElements | CursorElements |
FontElements | AnimationElements |
ColorElements)*

desc StdAttrs, StyleAttrs (PCDATA)*

title 'StdAttrs, StyleAttrs (PCDATA)*
metadata |StdAttrs (PCDATA)*
StdAttrs, StyleAttrs, TestAttrs, transform, X, y, width, (DescriptionElements |
use height, xlink:href, XLinkRefAttrs, PresentationAttrsAll,) p N
! AnimationElements)
GraphicsElementEventAttrs

5.13.1 Basic Structure Content Sets

The Basic Structure Module defines the DescriptionElements, StructureElements and UseElements content
sets.

|Content Set Name]Elements in Content Set
]DescriptionEIements]desc, title, metadata
|UseEIements]use

StructureElements svg, g, defs, UseElements

5.14 Container Attribute Module

The Container Attribute Module defines the ContainerPresentationAttrs attribute set.

Collection Name Attributes in Collection
|ContainerPresentationAttrs]enable-background

5.15 Conditional Processing Module

|Elements |Attributes |Content Model

(DescriptionElements |

StdAttrs, TestAttrs, ExternalResourcesRequiredAttrs, GraphicalElements | TextElements |
. : StructureElements | ImageElements |
switch StyleAttrs, transform, PresentationAttrsAll, HyperlinkingElements |
GraphicsElementsEventsAttrs yp g

ExtensibilityElements |
AnimationElements)*

5.15.1 Conditional Processing Content Set

The Conditional Processing Module defines the ConditionalElements content set.

|Content Set Name]Elements in Content Set
]ConditionaIEIements]switch

5.15.2 Conditional Processing Attribute Set

The Conditional Processing Module defines the TestAttrs attribute set.

Collection Name |Attributes in Collection

TestAttrs requiredFeatures, requiredExtensions, systemLanguage, requiredFeatureList

5.16 Image Module

Elements |Attributes Content Model

StdAttrs, XLinkRefAttrs, TestAttrs, StyleAttrs,
ExternalResourcesRequiredAttrs,
GraphicsElementsEventsAttrs, preserveAspectRatio,
ColorPresentationAttrs, OpacityPresentationAttrs,

image GraphicsPresentationAttrs, CursorPresentationAttrs,
FilterPresentationAttrs, MaskPresentationAttrs,
PointerEventsPresentationAttrs, ClipPresentationAttrs,
ImagePresentationAttrs, ViewportPresentationAttrs,
transform, x, y, width, height, xlink:href

(DescriptionElements |
AnimationElements)*

5.16.1 Image Content Set

The Image Module defines the ImageElements content set.

Content Set Name |[Elements in Content Set
ImageElements image

5.17 DOM interfaces

The following interfaces are defined below: SVGDocument, SVGSVGElement, SVGGElement,
SVGDefsElement, SVGDescElement, SVGTitleElement, SVGSymbolElement, SVGUseElement,
SVGElementinstance, SVGElementinstanceList, SVGlImageElement, SVGSwitchElement,
GetSVGDocument.

Interface SVGDocument

When an 'svg' element is embedded inline as a component of a document from another namespace, such
as when an 'svg' element is embedded inline within an XHTML document [XHTML], then an SVGDocument

object will not exist; instead, the root object in the document object hierarchy will be a Document object of a
different type, such as an HTMLDocument object.

However, an SVGDocument object will indeed exist when the root element of the XML document hierarchy
is an 'svg' element, such as when viewing a stand-alone SVG file (i.e., a file with MIME type

"image/svg+xml"). In this case, the SVGDocument object will be the root object of the document object
model hierarchy.

In the case where an SVG document is embedded by reference, such as when an XHTML document has
an 'object' element whose href attribute references an SVG document (i.e., a document whose MIME type is
"Image/svg+xml" and whose root element is thus an 'svg' element), there will exist two distinct DOM
hierarchies. The first DOM hierarchy will be for the referencing document (e.g., an XHTML document). The
second DOM hierarchy will be for the referenced SVG document. In this second DOM hierarchy, the root
object of the document object model hierarchy is an SVGDocument object.

The SVGDocument interface contains a similar list of attributes and methods to the HTMLDocument
interface described in the Document Object Model (HTML) Level 1 chapter of the [DOM1] specification.

IDL Definition

i nterface SVGocunent
Docunent ,
event s: : Docunent Event {

readonly attribute DOVString title;

readonly attri bute DOVString referrer;
readonly attribute DOVString domai n;
readonly attribute DOVString URL;
readonly attri bute SVGSVGElI enent root El enent;
1
Attributes

readonly DOMString title
The title of a document as specified by the title sub-element of the 'svg' root element (i.e.,
<svg><title>Here is the title</title>...</svg>)
readonly DOMString referrer
Returns the URI of the page that linked to this page. The value is an empty string if the user
navigated to the page directly (not through a link, but, for example, via a bookmark).
readonly DOMString domain
The domain name of the server that served the document, or a null string if the server cannot
be identified by a domain name.
readonly DOMString URL
The complete URI of the document.
readonly SVGSVGElement rootElement
The root 'svg' element in the document hierarchy.

Interface SVGSVGElement

A key interface definition is the SVGSVGElement interface, which is the interface that corresponds to the
'svg' element. This interface contains various miscellaneous commonly-used utility methods, such as matrix
operations and the ability to control the time of redraw on visual rendering devices.

SVGSVGEIement extends ViewCSS and DocumentCSS to provide access to the computed values of
properties and the override style sheet as described in DOM2.

http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html

IDL Definition

i nt erface SVGSVGEl enent

readonly attri
readonly attri
readonly attri
readonly attri

attri

attri

readonly attri
readonly attri
readonly attri
readonly attri
readonly attri

attri

readonly attri
attri

readonly attri

unsi gned | ong
voi d

voi d
voi d
voi d
voi d
bool ean
f | oat
voi d
NodelLi st

SVCGEl enent ,

SVGTest s,

SVGE.angSpace,

SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,

SVCGLocat abl e,

SVGFi t ToVi ewBox,
SVGZoomAndPan,

event s: : Event Tar get ,
event s: : Docunent Event ,
css: : Vi ewCSS,

css: : Docunent CSS {

but e SVGAni mat edLengt h x;
but e SVGAni mat edLengt h y;
but e SVGAni mat edLengt h wi dt h;
but e SVGAni mat edLengt h hei ght ;
bute DOVBtri ng cont ent Scri pt Type;
/] raises DOVException on setting
but e DOVBtri ng cont ent Styl eType;
/1 raises DOVException on setting
but e SVCRect Vi ewport ;
bute fl oat pixelUnitToMIIineterX;
bute float pixelUnitToMIIineterY;
bute fl oat screenPi xel TOM | |i neterX;
bute fl oat screenPi xel TOMIIineterY,;
but e bool ean useCurrent Vi ew,
/] raises DOVException on setting
but e SVGVi ewSpec current Vi ew,
bute fl oat current Scal e;
/] raises DOVException on setting
but e SVGPoi nt current Transl at e;

suspendRedraw (in unsigned long max_wait _mlliseconds);

unsuspendRedraw (in unsigned | ong suspend_handle id)
rai ses(DOVException);

unsuspendRedrawAl | ();

forceRedraw ();

pauseAni mations ();

unpauseAni mations ();

ani mat i onsPaused ();

getCurrentTime ();

setCurrentTinme (in float seconds);

getlntersectionList (in SVCGRect rect, in SVGEl enent

ref erenceEl enent);

NodelLi st
)
bool ean
bool ean
voi d
SVG@\umnber
SVG.engt h
SVGANgl e

get Encl osureList (in SVGRect rect, in SVGEl enent referenceEl enent

checkl ntersection (in SVGEl enent el enent, in SVGRect rect);
checkEncl osure (in SVCEl enent el enent, in SVCRect rect);
desel ectAll ();
creat eSVG\unber ();
createSVG.ength ();
createSVGAngle ();

SVGPoi nt creat eSVGPoint ();
SVGVat ri x createSVGvatrix ();
SVGRect creat eSVGRect ();
SVGTr ansf orm createSVGIransform ();
SVGIr ansf or m creat eSVGIr ansfornFromvatrix (in SVGVatrix matrix);
El enent getEl ementByld (in DOVString elenmentld);
3
Attributes

readonly SVGAnimatedLength x

Corresponds to attribute x on the given 'svg' element.
readonly SVGAnimatedLength y

Corresponds to attribute y on the given 'svg' element.
readonly SVGAnimatedLength width

Corresponds to attribute width on the given 'svg' element.
readonly SVGAnimatedLength height

Corresponds to attribute height on the given 'svg' element.
DOMString contentScriptType

Corresponds to attribute contentScriptType on the given 'svg' element.

Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
DOMString contentStyleType
Corresponds to attribute contentStyleType on the given 'svg' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

readonly SVGRect viewport

The position and size of the viewport (implicit or explicit) that corresponds to this 'svg' element.
When the user agent is actually rendering the content, then the position and size values
represent the actual values when rendering. The position and size values are unitless values in
the coordinate system of the parent element. If no parent element exists (i.e., 'svg' element
represents the root of the document tree), if this SVG document is embedded as part of
another document (e.g., via the HTML 'object' element), then the position and size are unitless
values in the coordinate system of the parent document. (If the parent uses CSS or XSL layout,
then unitless values represent pixel units for the current CSS or XSL viewport, as described in
the CSS2 specification.) If the parent element does not have a coordinate system, then the
user agent should provide reasonable default values for this attribute.

The object itself and its contents are both readonly.

readonly float pixelUnitToMillimeterX
Size of a pixel units (as defined by CSS2) along the x-axis of the viewport, which represents a
unit somewhere in the range of 70dpi to 120dpi, and, on systems that support this, might
actually match the characteristics of the target medium. On systems where it is impossible to
know the size of a pixel, a suitable default pixel size is provided.

readonly float pixelUnitToMillimeterY
Corresponding size of a pixel unit along the y-axis of the viewport.

readonly float screenPixelToMillimeterX

User interface (Ul) events in DOM Level 2 indicate the screen positions at which the given Ul
event occurred. When the user agent actually knows the physical size of a "screen unit", this
attribute will express that information; otherwise, user agents will provide a suitable default
value such as .28mm.

readonly float screenPixelToMillimeterY
Corresponding size of a screen pixel along the y-axis of the viewport.

boolean useCurrentView
The initial view (i.e., before magnification and panning) of the current innermost SVG document
fragment can be either the "standard" view (i.e., based on attributes on the 'svg' element such
as fitBoxToViewport) or to a "custom" view (i.e., a hyperlink into a particular 'view' or other
element - see Linking into SVG content: URI fragments and SVG views). If the initial view is the
"standard" view, then this attribute is false. If the initial view is a "custom” view, then this
attribute is true.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

readonly SVGViewSpec currentView
The definition of the initial view (i.e., before magnification and panning) of the current innermost
SVG document fragment. The meaning depends on the situation:
« If the initial view was a "standard" view, then:

« the values for viewBox, preserveAspectRatio and zoomAndPan within
currentView will match the values for the corresponding DOM attributes that are
on SVGSVGElement directly

« the values for transform and viewTarget within currentView will be null

« If the initial view was a link into a 'view' element, then:

« the values for viewBox, preserveAspectRatio and zoomAndPan within
currentView will correspond to the corresponding attributes for the given 'view'
element

« the values for transform and viewTarget within currentView will be null

« If the initial view was a link into another element (i.e., other than a 'view'), then:

« the values for viewBox, preserveAspectRatio and zoomAndPan within
currentView will match the values for the corresponding DOM attributes that are
on SVGSVGElement directly for the closest ancestor 'svg' element

« the values for transform within currentView will be null

« the viewTarget within currentView will represent the target of the link

« If the initial view was a link into the SVG document fragment using an SVG view
specification fragment identifier (i.e., #svgView(...)), then:

« the values for viewBox, preserveAspectRatio, zoomAndPan, transform and
viewTarget within currentView will correspond to the values from the SVG view
specification fragment identifier

The object itself and its contents are both readonly.

float currentScale
This attribute indicates the current scale factor relative to the initial view to take into account
user magnification and panning operations, as described under Magnification and panning.
DOM attributes currentScale and currentTranslate are equivalent to the 2x3 matrix [ab c d e f]
= [currentScale 0 0 currentScale currentTranslate.x currentTranslate.y]. If "magnification” is
enabled (i.e., zoomAndPan="magnify"), then the effect is as if an extra transformation were
placed at the outermost level on the SVG document fragment (i.e., outside the outermost 'svg'
element).
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

readonly SVGPoint currentTranslate

The corresponding translation factor that takes into account user "magnification”.
Methods

suspendRedraw
Takes a time-out value which indicates that redraw shall not occur until: (a) the corresponding
unsuspendRedraw(suspend_handle_id) call has been made, (b) an unsuspendRedrawAll() call
has been made, or (c) its timer has timed out. In environments that do not support interactivity
(e.g., print media), then redraw shall not be suspended. suspend_handle_id =
suspendRedraw(max_wait_milliseconds) and unsuspendRedraw(suspend_handle_id) must be
packaged as balanced pairs. When you want to suspend redraw actions as a collection of SVG
DOM changes occur, then precede the changes to the SVG DOM with a method call similar to
suspend_handle_id = suspendRedraw(max_wait_milliseconds) and follow the changes with a
method call similar to unsuspendRedraw(suspend_handle_id). Note that multiple
suspendRedraw calls can be used at once and that each such method call is treated
independently of the other suspendRedraw method calls.
Parameters

in unsigned long max_wait_milliseconds The amount of time in milliseconds to hold off
before redrawing the device. Values greater
than 60 seconds will be truncated down to 60
seconds.

Return value

unsigned long A number which acts as a unique identifier for the given
suspendRedraw() call. This value must be passed as the parameter to
the corresponding unsuspendRedraw() method call.
No Exceptions
unsuspendRedraw

Cancels a specified suspendRedraw() by providing a unique suspend_handle_id.
Parameters

in unsigned long suspend_handle_id A number which acts as a unique identifier for the
desired suspendRedraw() call. The number
supplied must be a value returned from a
previous call to suspendRedraw()
No Return Value
Exceptions

DOMException This method will raise a DOMException with value NOT_FOUND_ERR
if an invalid value (i.e., no such suspend_handle_id is active) for
suspend_handle_id is provided.

unsuspendRedrawAll
Cancels all currently active suspendRedraw() method calls. This method is most useful at the
very end of a set of SVG DOM calls to ensure that all pending suspendRedraw() method calls
have been cancelled.
No Parameters
No Return Value
No Exceptions
forceRedraw
In rendering environments supporting interactivity, forces the user agent to immediately redraw
all regions of the viewport that require updating.
No Parameters
No Return Value

No Exceptions
pauseAnimations
Suspends (i.e., pauses) all currently running animations that are defined within the SVG
document fragment corresponding to this 'svg' element, causing the animation clock
corresponding to this document fragment to stand still until it is unpaused.
No Parameters
No Return Value
No Exceptions
unpauseAnimations
Unsuspends (i.e., unpauses) currently running animations that are defined within the SVG
document fragment, causing the animation clock to continue from the time at which it was
suspended.
No Parameters
No Return Value
No Exceptions
animationsPaused
Returns true if this SVG document fragment is in a paused state.
No Parameters
Return value
boolean Boolean indicating whether this SVG document fragment is in a paused state.
No Exceptions
getCurrentTime
Returns the current time in seconds relative to the start time for the current SVG document
fragment.
No Parameters
Return value
float The current time in seconds.
No Exceptions
setCurrentTime

Adjusts the clock for this SVG document fragment, establishing a new current time.
Parameters

in float seconds The new current time in seconds relative to the start time for the
current SVG document fragment.
No Return Value
No Exceptions
getintersectionList
Returns the list of graphics elements whose rendered content intersects the supplied rectangle,
honoring the 'pointer-events' property value on each candidate graphics element.
Parameters

in SVGRect rect The test rectangle. The values are in the initial
coordinate system for the current 'svg' element.

in SVGElement referenceElement If not null, then only return elements whose drawing
order has them below the given reference element.
Return value
NodelList A list of Elements whose content intersects the supplied rectangle.
No Exceptions
getEnclosureList
Returns the list of graphics elements whose rendered content is entirely contained within the
supplied rectangle, honoring the 'pointer-events' property value on each candidate graphics
element.
Parameters

in SVGRect rect The test rectangle. The values are in the initial
coordinate system for the current 'svg' element.
in SVGElement referenceElement If not null, then only return elements whose drawing

order has them below the given reference element.
Return value

NodelList A list of Elements whose content is enclosed by the supplied rectangle.
No Exceptions
checkintersection

Returns true if the rendered content of the given element intersects the supplied rectangle,
honoring the 'pointer-events' property value on each candidate graphics element.

Parameters
in SVGElement element The element on which to perform the given test.
in SVGRect rect The test rectangle. The values are in the initial coordinate

system for the current 'svg' element.
Return value
boolean True or false, depending on whether the given element intersects the supplied
rectangle.
No Exceptions
checkEnclosure
Returns true if the rendered content of the given element is entirely contained within the
supplied rectangle, honoring the 'pointer-events' property value on each candidate graphics

element.
Parameters
in SVGElement element The element on which to perform the given test.
in SVGRect rect The test rectangle. The values are in the initial coordinate

system for the current 'svg' element.
Return value

boolean True or false, depending on whether the given element is enclosed by the
supplied rectangle.
No Exceptions
deselectAll
Unselects any selected objects, including any selections of text strings and type-in bars.
No Parameters
No Return Value
No Exceptions
createSVGNumber
Creates an SVGNumber object outside of any document trees. The object is initialized to a
value of zero.
No Parameters
Return value

SVGNumber An SVGNumber object.

No Exceptions
createSVGLength
Creates an SVGLength object outside of any document trees. The object is initialized to the
value of 0 user units.
No Parameters
Return value

SVGLength An SVGLength object.

No Exceptions
createSVGAngle

Creates an SVGANgle object outside of any document trees. The object is initialized to the
value 0 degrees (unitless).
No Parameters
Return value
SVGAnNgle An SVGAnNgle object.
No Exceptions
createSVGPoint
Creates an SVGPoint object outside of any document trees. The object is initialized to the point
(0,0) in the user coordinate system.
No Parameters
Return value

SVGPoint An SVGPoint object.
No Exceptions
createSVGMatrix

Creates an SVGMatrix object outside of any document trees. The object is initialized to the
identity matrix.
No Parameters
Return value
SVGMatrix An SVGMatrix object.
No Exceptions
createSVGRect
Creates an SVGRect object outside of any document trees. The object is initialized such that
all values are set to 0 user units.
No Parameters
Return value
SVGRect An SVGRect object.
No Exceptions
createSVGTransform
Creates an SVGTransform object outside of any document trees. The object is initialized to an
identity matrix transform (SVG_TRANSFORM_MATRIX).
No Parameters
Return value
SVGTransform An SVGTransform object.
No Exceptions
createSVGTransformFromMatrix
Creates an SVGTransform object outside of any document trees. The object is initialized to the
given matrix transform (i.e., SVG_TRANSFORM_MATRIX).
Parameters
in SVGMatrix matrix The transform matrix.
Return value
SVGTransform An SVGTransform object.
No Exceptions
getElementByld
Searches this SVG document fragment (i.e., the search is restricted to a subset of the
document tree) for an Element whose id is given by elementld. If an Element is found, that
Element is returned. If no such element exists, returns null. Behavior is not defined if more than
one element has this id.
Parameters

in DOMString elementld The unigue id value for an element.

Return value
Element The matching element.
No Exceptions

Interface SVGGElement

The SVGGElement interface corresponds to the 'g' element.

IDL Definition

i nterface SVGCGElI enent
SVCGEl enent
SVGrTest s,
SVG@.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events:: Event Target {};

Interface SVGDefsElement

The SVGDefsElement interface corresponds to the 'defs' element.

IDL Definition

i nterface SVGDef sEl enent :
SVCEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGIr ansf or mabl e,
events:: Event Target {};

Interface SVGDescElement

The SVGDescElement interface corresponds to the 'desc’ element.

IDL Definition

i nterface SV@escEl enent :
SVGEl enent ,
SVG@.angSpace,
SVGStyl able {};

Interface SVGTitleElement

The SVGTitleElement interface corresponds to the 'title' element.

IDL Definition

i nterface SVGTi t| eEl enent
SVGEl enent
SVG@.angSpace,
SVGStyl able {};

Interface SVGSymbolElement

The SVGSymbolElement interface corresponds to the 'symbol' element.

IDL Definition

i nterface SVGSynbol El ement
SVCE!l ement ,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed
SVGSt yl abl e,
SVGFi t ToVi ewBox,
events:: Event Target {};

Interface SVGUseElement

The SVGUseElement interface corresponds to the 'use’ element.

IDL Definition

i nterface SVGUseEl enent
SVGEl enent ,
SVGURI Ref er ence,
SVGrTest s,
SVG@.angSpace,
SVGEXt er nal Resour cesRequi red
SVGSt yl abl e,
SVGTIr ansf or mabl e,
events: : Event Target ({

readonly attribute SVGAni mat edLengt h X;

readonly attri bute SVGAni nat edLengt h Y,

readonly attribute SVGAni mat edLength wi dt h;

readonly attri bute SVGAni mat edLengt h hei ght ;

readonly attribute SVGEl enent | nstance instanceRoot;
readonly attri bute SVGEl enent | nstance ani mat edl nst anceRoot ;

Attributes

readonly SVGAnimatedLength x
Corresponds to attribute x on the given 'use’ element.

readonly SVGAnimatedLength y
Corresponds to attribute y on the given 'use' element.

readonly SVGAnimatedLength width
Corresponds to attribute width on the given 'use' element.

readonly SVGAnimatedLength height
Corresponds to attribute height on the given 'use' element.

readonly SVGElementinstance instanceRoot
The root of the "instance tree". See description of SVGElementinstance for a discussion on
the instance tree.

readonly SVGElementinstance animatedIinstanceRoot
If the 'href' attribute is being animated, contains the current animated root of the "instance
tree". If the 'href* attribute is not currently being animated, contains the same value as
'instanceRoot'". The root of the “instance tree". See description of SVGElementinstance for a

discussion on the instance tree.

Interface SVGElementinstance

For each 'use’ element, the SVG DOM maintains a shadow tree (the "instance tree") of objects of type
SVGElementinstance. A SVGElementinstance represents a single node in the instance tree. The root
object in the instance tree is pointed to by the instanceRoot attribute on the SVGUseElement object for the
corresponding 'use' element.

If the 'use' element references a simple graphics element such as a 'rect’, then there is only a single
SVGElementinstance object, and the correspondingElement attribute on this SVGElementinstance object
is the SVGRectElement that corresponds to the referenced 'rect' element.

If the 'use’ element references a 'g’ which contains two 'rect’ elements, then the instance tree contains three
SVGElementinstance objects, a root SVGElementinstance object whose correspondingElement is the
SVGGEIlement object for the 'g’, and then two child SVGElementinstance objects, each of which has its
correspondingElement that is an SVGRectElement object.

If the referenced object is itself a 'use’, or if there are 'use’ subelements within the referenced object, the
instance tree will contain recursive expansion of the indirect references to form a complete tree. For
example, if a 'use’ element references a 'g’, and the 'g’ itself contains a 'use’, and that 'use’ references a
‘rect’, then the instance tree for the original (outermost) 'use’ will consist of a hierarchy of
SVGElementinstance objects, as follows:

SVCEl ement | nst ance #1 (parent Node=null, firstChild=#2, correspondi ngEl enment is the
'9')
SVGEl enent | nstance #2 (parent Node=#1, firstChild=#3, correspondi ngEl enent is the
ot her 'use')
SVCEl enent | nst ance #3 (par ent Node=#2, firstChild=null, corresponding Elenment is
the 'rect')

IDL Definition

i nterface SVCGEl enent | nstance : events::Event Target {
readonly attri bute SVGEl enent correspondi ngEl enent ;
readonly attribute SVGUseEl enent correspondi ngUseEl enent ;
readonly attribute SVGEl enent | nst ance parent Node;
readonly attribute SVGEl enent | nstancelLi st chil dNodes;
readonly attribute SVGEl enentl nstance firstChild;
readonly attribute SVGEl enent | nstance | ast Chil d;
readonly attribute SVGEl ement| nstance previ ousSi bling;
readonly attri bute SVGEl enent| nstance next Si bli ng;

Attributes

readonly SVGElement correspondingElement
The corresponding element to which this object is an instance. For example, if a 'use’ element
references a 'rect’ element, then an SVGElementinstance is created, with its
correspondingElement being the SVGElementinstance object for the 'rect’ element.

readonly SVGUseElement correspondingUseElement
The corresponding ‘use’ element to which this SVGElementinstance object belongs. When
‘'use’ elements are nested (e.g., a 'use’ references another 'use’ which references a graphics

element such as a 'rect’), then the correspondingUseElement is the outermost 'use’ (i.e., the
one which indirectly references the 'rect’, not the one with the direct reference).

readonly SVGElementinstance parentNode
The parent of this SVGElementinstance within the instance tree. All SVGElementinstance
objects have a parent except the SVGElementinstance which corresponds to the element
which was directly referenced by the 'use’ element, in which case parentNode is null.

readonly SVGElementinstancelList childNodes
An SVGElementinstancelList that contains all children of this SVGElementinstance within
the instance tree. If there are no children, this is an SVGElementinstanceList containing no
entries (i.e., an empty list).

readonly SVGElementinstance firstChild
The first child of this SVGElementIinstance within the instance tree. If there is no such
SVGElementinstance, this returns null.

readonly SVGElementinstance lastChild
The last child of this SVGElementinstance within the instance tree. If there is no such
SVGElementinstance, this returns null.

readonly SVGElementinstance previousSibling
The SVGElementinstance immediately preceding this SVGElementinstance. If there is no
such SVGElementlnstance, this returns null.

readonly SVGElementinstance nextSibling
The SVGElementinstance immediately following this SVGElementinstance. If there is no
such SVGElementlnstance, this returns null.

Interface SVGElementinstanceList

The SVGElementinstanceList interface provides the abstraction of an ordered collection of
SVGElementinstance objects, without defining or constraining how this collection is implemented.

IDL Definition

i nterface SVGEl enent | nst anceli st {
readonly attribute unsigned |ong | ength;

SVCGEl ement | nstance item (in unsigned | ong index);

};

Attributes
readonly unsigned long length
The number of SVGElIementinstance objects in the list. The range of valid child indices is 0 to
length-1 inclusive.
Methods
item

Returns the indexth item in the collection. If index is greater than or equal to the number of
nodes in the list, this returns null.

Parameters
in unsigned long index Index into the collection.
Return value

SVGElementinstance The SVGElementinstance object at the indexth position in the
SVGElementinstancelList, or null if that is not a valid index.

No Exceptions

Interface SVGImageElement

The SVGImageElement interface corresponds to the 'image’ element.

IDL Definition

i nterface SVA nageEl enent
SVCGEl enent ,
SVGURI Ref er ence,
SVGTest s,
SVGE.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
events:: Event Target {

readonly attribute SVGAni mat edLength x;

readonly attribute SVGAni mat edLength vy;

readonly attri bute SVGAni mat edLength wi dt h;

readonly attribute SVGAni mat edLengt h hei ght;

readonly attribute SVGAni mat edPreserveAspect Rati o preserveAspect Rati o;

Attributes

readonly SVGAnimatedLength x

Corresponds to attribute x on the given 'image’ element.
readonly SVGAnimatedLength y

Corresponds to attribute y on the given 'image’ element.
readonly SVGAnimatedLength width

Corresponds to attribute width on the given ‘image' element.
readonly SVGAnimatedLength height

Corresponds to attribute height on the given 'image’ element.
readonly SVGAnimatedPreserveAspectRatio preserveAspectRatio

Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGSwitchElement

The SVGSwitchElement interface corresponds to the 'switch' element.

IDL Definition

i nterface SVGSwi t chEl enent
SVCGEl enent ,
SVGrTest s,
SVG@.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTIr ansf or mabl e,
events:: Event Target {};

Interface GetSVGDocument

In the case where an SVG document is embedded by reference, such as when an XHTML document has
an 'object’ element whose href (or equivalent) attribute references an SVG document (i.e., a document
whose MIME type is "image/svg+xml" and whose root element is thus an 'svg' element), the SVG user
agent is required to implement the GetSVGDocument interface for the element which references the SVG
document (e.g., the HTML 'object’ or comparable referencing elements).

IDL Definition

i nterface Get SVGocunent {

SVGocunent get SVGocunent ()
rai ses(DOVException);
3

Methods
getSVGDocument

Returns the SVGDocument object for the referenced SVG document.

No Parameters
Return value

SVGDocument The SVGDocument object for the referenced SVG document.
Exceptions
DOMException NOT_SUPPORTED_ERR: No SVGDocument object is available.

previous next contents elements attributes properties index

=
o
=
4]
o
=
@
=
E
o
L
]
(o'
W
e
m
o
o
=
4¥]
o
O
™
=

previous next contents elements attributes properties index

30 April 2002

6 Styling

Contents

6.1 SVG's styling properties

6.2 Usage scenarios for styling

6.3 Alternative ways to specify styling properties

6.4 Specifying properties using the presentation attributes

6.5 Entity definitions for the presentation attributes

6.6 Styling with XSL

6.7 Styling with CSS

6.8 Case sensitivity of property names and values

6.9 Facilities from CSS and XSL used by SVG

6.10 Referencing external style sheets

6.11 The 'style' element

6.12 The class attribute

6.13 The style attribute

6.14 Specifying the default style sheet language

6.15 Property inheritance

6.16 The scope/range of styles

6.17 User agent style sheet

6.18 Aural style sheets

6.19 Style Module

6.20 DOM interfaces

6.1 SVG's styling properties

SVG uses styling properties to describe many of its document parameters. Styling properties define
how the graphics elements in the SVG content are to be rendered. SVG uses styling properties for the
following:

Parameters which are clearly visual in nature and thus lend themselves to styling. Examples
include all attributes that define how an object is "painted,"” such as fill and stroke colors, linewidths
and dash styles.

Parameters having to do with text styling such as 'font-family' and 'font-size'.

Parameters which impact the way that graphical elements are rendered, such as specifying
clipping paths, masks, arrowheads, markers and filter effects.

SVG shares many of its styling properties with CSS [CSS2] and XSL [XSL]. Except for any additional

SVG-specific rules explicitly mentioned in this specification, the normative definition of properties that are
shared with CSS and XSL is the definition of the property from the CSS2 specification [CSS2].

The following properties are shared between CSS2 and SVG. Most of these properties are also defined in
XSL:

. Font properties:
o 'font-family’
o 'font-size'
o 'font-size-adjust'
o 'font-stretch’
o 'font-style’
o ‘font-variant'
o 'font-weight'
. Text properties:
o 'direction’
o 'letter-spacing'
o 'text-decoration’
o ‘'unicode-bidi’
o 'word-spacing'
. Other properties for visual media:
o ‘clip’ (Only applicable to outermost 'svg’)
o 'color' is used to provide a potential indirect value (currentColor) for the 'fill', 'stroke’, 'stop-
color', 'flood-color', 'lighting-color' properties. (The SVG properties which support color allow
a color specification which is extended from CSS2 to accommodate color definitions in
arbitrary color spaces. See Color profile descriptions.
o ‘'cursor’
o 'display’
o 'overflow' (Only applicable to elements which establish a new viewport)
o 'visibility'

The following SVG properties are not defined in [CSS2]. The complete normative definitions for these
properties are found in this specification:

. Clipping, Masking and Compositing properties:
o 'clip-path’
o 'clip-rule’
o 'mask’
o 'opacity’
. Filter Effects properties:
o 'enable-background'
o Cfilter'
o 'flood-color’
o 'flood-opacity’
o 'lighting-color
. Gradient properties:
o 'stop-color’

http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/

o 'stop-opacity’

. Interactivity properties:
o 'pointer-events'

. Color and Painting properties:
o ‘'color-interpolation’
o 'color-interpolation-filters'
o 'color-profile’
o 'color-rendering'
o il
o 'fill-opacity’
o ‘fill-rule’
o 'image-rendering’
o ‘marker’
o 'marker-end’
o ‘marker-mid'
o 'marker-start'
o 'shape-rendering’
o 'stroke’
o 'stroke-dasharray'
o 'stroke-dashoffset
o 'stroke-linecap'
o 'stroke-linejoin’
o 'stroke-miterlimit’
o 'stroke-opacity’
o 'stroke-width'
o 'text-rendering'

. Text properties:
o ‘alignment-baseline’
o 'baseline-shift'
o 'dominant-baseline’
o 'glyph-orientation-horizontal'
o 'glyph-orientation-vertical'
o 'kerning'
o 'text-anchor'

o 'writing-mode'

A table that lists and summarizes the styling properties can be found in the Property Index.

6.2 Usage scenarios for styling

SVG has many usage scenarios, each with different needs. Here are three common usage scenarios:
1. SVG content used as an exchange format (style sheet language-independent):

In some usage scenarios, reliable interoperability of SVG content across software tools is the main
goal. Since support for a particular style sheet language is not guaranteed across all
implementations, it is a requirement that SVG content can be fully specified without the use of a
style sheet language.

2.

SVG content generated as the output from XSLT [XSLT]:

XSLT offers the ability to take a stream of arbitrary XML content as input, apply potentially complex
transformations, and then generate SVG content as output. XSLT can be used to transform XML
data extracted from databases into an SVG graphical representation of that data. It is a
requirement that fully specified SVG content can be generated from XSLT.

SVG content styled with CSS [CSS2]:

CSS is a widely implemented declarative language for assigning styling properties to XML content,
including SVG. It represents a combination of features, simplicity and compactness that makes it
very suitable for many applications of SVG. It is a requirement that CSS styling can be applied to
SVG content.

6.3 Alternative ways to specify styling properties

Styling properties can be assigned to SVG elements in the following two ways:

.

Presentation attributes

Styling properties can be assigned using SVG's presentation attributes. For each styling property
defined in this specification, there is a corresponding XML presentation attribute available on all
relevant SVG elements. Detailed information on the presentation attributes can be found in
Specifying properties using the presentation attributes.

The presentation attributes are style sheet language independent and thus are applicable to usage
scenario 1 above (i.e., tool interoperability). Because it is straightforward to assign values to XML
attributes from XSLT, the presentation attributes are well-suited to usage scenario 2 above (i.e.,
SVG generation from XSLT). (See Styling with XSL below.)

Conforming SVG Interpreters and Conforming SVG Viewers are required to support SVG's
presentation attributes.

CSS

To support usage scenario 3 above, SVG content can be styled with CSS. For more information,
see Styling with CSS.

Conforming SVG Interpreters and Conforming SVG Viewers that support CSS styling of generic
(i.e., text-based) XML content are required to support CSS styling of SVG content.

6.4 Specifying properties using the presentation attributes

For each styling property defined in this specification (see Property Index), there is a corresponding XML

http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-CSS2/

attribute (the presentation attribute) with the same name that is available on all relevant SVG elements.
For example, SVG has a 'fill' property that defines how to paint the interior of a shape. There is a
corresponding presentation attribute with the same name (i.e., fill) that can be used to specify a value for
the 'fill' property on a given element.

The following example shows how the 'fill' and 'stroke’ properties can be assigned to a rectangle using
the fill and stroke presentation attributes. The rectangle will be filled with red and outlined with blue:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww.w3. org/ Graphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="10cm' hei ght="5cm' vi ewBox="0 0 1000 500"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<rect x="200" y="100" wi dt h="600" hei ght="300"
fill="red" stroke="blue" stroke-w dth="3"/>

</ svg>

View this example as SVG (SVG-enabled browsers only)

The presentation attributes offer the following advantages:

. Broad support. All versions of Conforming SVG Interpreters and Conforming SVG Viewers are
required to support the presentation attributes.

. Simplicity. Styling properties can be attached to elements by simply providing a value for the
presentation attribute on the proper elements.

. Restyling. SVG content that uses the presentation attributes is highly compatible with downstream
processing using XSLT [XSLT] or supplemental styling by adding CSS style rules to override some
of the presentation attributes.

. Convenient generation using XSLT [XSLT]. In some cases, XSLT can be used to generate fully
styled SVG content. The presentation attributes are compatible with convenient generation of SVG
from XSLT.

In some situations, SVG content that uses the presentation attributes has potential limitations versus
SVG content that is styled with a style sheet language such as CSS (see Styling with CSS). In other
situations, such as when an XSLT style sheet generates SVG content from semantically rich XML source
files, the limitations below may not apply. Depending on the situation, some of the following potential
limitations may or may not apply to the presentation attributes:

. Styling attached to content. The presentation attributes are attached directly to particular
elements, thereby diminishing potential advantages that comes from abstracting styling from
content, such as the ability to restyle documents for different uses and environments.

. Flattened data model. In and of themselves, the presentation attributes do not offer the higher
level abstractions that you get with a styling system, such as the ability to define named collections
of properties which are applied to particular categories of elements. The result is that, in many
cases, important higher level semantic information can be lost, potentially making document reuse
and restyling more difficult.

. Potential increase in file size. Many types of graphics use similar styling properties across
multiple elements. For example, a company organization chart might assign one collection of
styling properties to the boxes around temporary workers (e.g., dashed outlines, red fill), and a
different collection of styling properties to permanent workers (e.qg., solid outlines, blue fill). Styling

http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/styling/PresentationAttributes.svg
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

systems such as CSS allow collections of properties to be defined once in a file. With the styling
attributes, it might be necessary to specify presentation attributes on each different element.

. Potential difficulty when embedded into a CSS-styled parent document. When SVG content is
embedded in other XML, and the desire is to style all aspects of the compound document with
CSS, use of the presentation attributes might introduce complexity and difficulty. In this case, it is
sometimes easier if the SVG content does not use the presentation attributes and instead is styled
using CSS facilities.

For user agents that support CSS, the presentation attributes must be translated to corresponding CSS
style rules according to rules described in section 6.4.4 of the CSS2 specification, Precedence of non-
CSS presentational hints, with the additional clarification that the presentation attributes are conceptually
inserted into a new author style sheet which is the first in the author style sheet collection. The
presentation attributes thus will participate in the CSS2 cascade as if they were replaced by
corresponding CSS style rules placed at the start of the author style sheet with a specificity of zero. In
general, this means that the presentation attributes have lower priority than other CSS style rules
specified in author style sheets or style attributes.

User agents that do not support CSS must ignore any CSS style rules defined in CSS style sheets and
style attributes. In this case, the CSS cascade does not apply. (Inheritance of properties, however, does
apply. See Property inheritance.)

An limportant declaration within a presentation attribute definition is an error.

Animation of presentation attributes is equivalent to animating the corresponding property. Thus, the
same effect occurs from animating the presentation attribute with attributeType="XML" as occurs with
animating the corresponding property with attributeType="CSS".

6.5 Entity definitions for the presentation attributes
The following entities are defined in the DTD for all of the presentation attributes in SVG:

<IENTITY % SVG Core. attrib "" >
<IENTITY % SVG Container.attrib "" >
<IENTITY % SVG Conditional .attrib "" >
<IENTITY % SVG Style.attrib "" >
<IENTITY % SVG Vi ewport.attrib "" >
<IENTITY % SVG Text.attrib "" >
<IENTITY % SVG Text Content.attrib "" >
<IENTITY % SVG Font . attrib "" >
<IENTITY % SVG Paint.attrib "" >
<IENTITY % SVG Color.attrib "" >
<IENTITY % SVG OQpacity.attrib "" >
<IENTITY % SVG G aphics.attrib "" >
<IENTITY % SVG Marker.attrib "" >
<IENTITY % SVG Profile.attrib "" >
<IENTITY % SVG G adient.attrib "" >
<IENTITY % SVG dip.attrib "" >

http://www.w3.org/TR/REC-CSS2/cascade.html#q12
http://www.w3.org/TR/REC-CSS2/cascade.html#q12
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/cascade.html#important-rules

<IENTITY % SVG Mask.attrib "" >

<IENTITY % SVG Filter.attrib "" >
<IENTITY % SVG FilterColor.attrib "" >
<IENTITY % SVG Docunent Events.attrib "" >
<IENTITY % SVG G aphi cal Events. attrib "" >
<IENTITY % SVG Cursor.attrib "" >
<IENTITY % SVG XLi nkEnbed. attrib "" >
<IENTITY % SVG External .attrib "" >

6.6 Styling with XSL

XSL style sheets (see [XSLT]) define how to transform XML content into something else, usually other

XML. When XSLT is used in conjunction with SVG, sometimes SVG content will serve as both input and
output for XSL style sheets. Other times, XSL style sheets will take non-SVG content as input and
generate SVG content as output.

The following example uses an external XSL style sheet to transform SVG content into modified SVG
content (see Referencing external style sheets). The style sheet sets the 'fill' and 'stroke' properties on alll

rectangles to red and blue, respectively:

nmystyl e. xsl

<?xm version="1.0" standal one="no"?>
<xsl:stylesheet xm ns:xsl="http://ww.w3.org/1999/ XSL/ Tr ansf orni' versi on="1.0">

<xsl : out put net hod="xmn "
doct ype-public="-//WBC// DID SVG 1. 1//EN'
doct ype-systenm="http://ww. w3. org/ Graphi cs/ SV@ 1. 1/ DTD/ svgll. dtd"/ >

<xsl :tenplate match="/">
<xsl : appl y-tenpl at es/ >
</ xsl:tenpl at e>

<I-- Add version to topnost 'svg' elenent -->
<xsl :tenpl ate match="/svg">
<xsl : copy>
<xsl :copy-of select="@"/>
<xsl :attribute name="version">1.1</xsl:attribute>
</ xsl : copy>
</ xsl:tenpl at e>

<l-- Add styling to all 'rect' elenents -->
<xsl:tenplate match="rect">
<xsl : copy>
<xsl : copy-of select="@"/>
<xsl:attribute name="fill">red</xsl:attribute>
<xsl:attribute nane="stroke">bl ue</xsl:attribute>
<xsl:attribute nane="stroke-w dt h">3</xsl:attribute>
</ xsl : copy>
</ xsl:tenpl at e>

<l-- default is to copy input elenment -->
<xsl:tenplate match="*| @|text()">

http://www.w3.org/TR/xslt
http://www.w3.org/1999/XSL/Transform

<xsl : copy>
<xsl:apply-tenplates select="*|@|text()"/>
</ xsl : copy>
</ xsl:tenpl at e>
</ xsl : styl esheet >

SVG file to be transforned by nmystyl e. xsl

<?xm version="1.0" standal one="no"?>
<svg w dt h="10cnm" hei ght ="5cnt
xm ns="http://ww. w3. or g/ 2000/ svg" >
<rect x="2cm' y="1lcnt wi dt h="6cni" hei ght="3cni/>
</ svg>

SVG content after applying nmystyle.xs

<?xm version="1.0" encodi ng="utf-8"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ Gaphi cs/ SVE 1. 1/ DTD/ svgl1l. dtd" >
<svg wi dt h="10cm hei ght ="5cn version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<rect x="2cm' y="1lcnt wi dth="6cnt' hei ght="3cni fill="red" stroke="blue" stroke-
wi dt h="3"/>
</ svg>

6.7 Styling with CSS

SVG implementations that support CSS are required to support the following:

. External CSS style sheets referenced from the current document (see Referencing external style
sheets)

. Internal CSS style sheets (i.e., style sheets embedded within the current document, such as within
an SVG 'style’ element)
. Inline style (i.e., CSS property declarations within a style attribute on a particular SVG element)

The following example shows the use of an external CSS style sheet to set the 'fill' and 'stroke' properties
on all rectangles to red and blue, respectively:

nmystyl e.css
rect {
fill: red;

stroke: bl ue;
stroke-wi dth: 3

}

SVG file referencing mystyle.css

<?xm version="1.0" standal one="no"?>
<?xm - styl esheet href="nystyle.css" type="text/css"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="10cm' hei ght="5cm' vi ewBox="0 0 1000 500"

xm ns="http://ww. wW3. org/ 2000/ svg" version="1.1">
<rect x="200" y="100" wi dth="600" hei ght="300"/>
</ svg>

View this example as SVG (SVG-enabled browsers only)

CSS style sheets can be embedded within SVG content inside of a 'style' element. The following example
uses an internal CSS style sheet to achieve the same result as the previous example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ Gaphi cs/ SVE 1. 1/ DTD/ svgll. dtd">
<svg wi dt h="10cnm' hei ght="5cm' vi ewBox="0 0 1000 500"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">

<def s>
<style type="text/css"><![CDATA|
rect {
fill: red;

stroke: bl ue;
stroke-wi dth: 3

}
]1]1></styl e>
</ def s>
<rect x="200" y="100" wi dth="600" hei ght="300"/>
</ svg>

View this example as SVG (SVG-enabled browsers only)

Note how the CSS style sheet is placed within a CDATA construct (i.e., <! [CDATA[...]]>). Placing
internal CSS style sheets within CDATA blocks is sometimes necessary since CSS style sheets can
include characters, such as ">", which conflict with XML parsers. Even if a given style sheet does not use
characters that conflict with XML parsing, it is highly recommended that internal style sheets be placed
inside CDATA blocks.

Implementations that support CSS are also required to support CSS inline style. Similar to the style
attribute in HTML, CSS inline style can be declared within a style attribute in SVG by specifying a
semicolon-separated list of property declarations, where each property declaration has the form "name:
value".

The following example shows how the 'fill' and 'stroke' properties can be assigned to a rectangle using
the style attribute. Just like the previous example, the rectangle will be filled with red and outlined with
blue:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww.w3. org/ G aphi cs/ SVGE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="10cm' hei ght="5cm' vi ewBox="0 0 1000 500"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<rect x="200" y="100" wi dth="600" hei ght="300"
style="fill:red; stroke:blue; stroke-w dth:3"/>

http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/styling/ExternalCSSStyleSheet.svg
http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/styling/InternalCSSStyleSheet.svg
http://www.w3.org/TR/REC-xml#sec-cdata-sect
http://www.w3.org/TR/html401/present/styles.html#h-14.2.2
http://www.w3.org/2000/svg

</ svg>

View this example as SVG (SVG-enabled browsers only)

In an SVG user agent that supports CSS style sheets, the following facilities from [CSS2] must be
supported:

. CSS2 selectors within style sheets (reference: [Selectors]). Because SVG is intended to be used

as one component in a multiple namespace XML application and CSS2 is not namespace aware,
type selectors will only match against the local part of the element's qualified name.
. External CSS style sheets [XML-SS], CSS style sheets within 'style' elements and CSS declaration

blocks within style attributes attached to specific SVG elements.
CSS2 rules for assigning property values, cascading and inheritance.

. @font-face, @media, @import and @charset rules within style sheets.
CSS2's dynamic pseudo-classes :hover, :active and :focus and pseudo-classes :first-child, :visited,
Jlink and :lang. The remaining CSS2 pseudo-classes, including those having to do with generated
content, are not part of the SVG language definition. (Note: an SVG element gains focus when it is
selected. See Text selection.)

For the purposes of aural media, SVG represents a CSS-stylable XML grammar. In user agents
that support aural style sheets, CSS aural style properties can be applied as defined in [CSS2].

(See Aural style sheets.)
CSS style sheets defined within a 'style’ element can be immediate character data content of the
'style' element or can be embedded within a CDATA block.

SVG defines an @color-profile at-rule [CSS2-ATRULES] for defining color profiles so that ICC color
profiles can be applied to CSS-styled SVG content.

Note the following about relative URIs and external CSS style sheets: The CSS2 specification [CSS-URI]
says that relative URIs (as defined in [RFEC2396]) within style sheets are resolved such that the base URI
is that of the style sheet, not that of the referencing document.

6.8 Case sensitivity of property names and values

Property declarations via presentation attributes are expressed in XML [XML10], which is case-sensitive.
CSS property declarations specified either in CSS style sheets or in a style attribute, on the other hand,
are generally case-insensitive with some exceptions (see section 4.1.3 Characters and case in the CSS2
specification).

Because presentation attributes are expressed as XML attributes, presentation attributes are case-
sensitive and must match the exact name as listed under "Entity definitions for the presentation
attributes”, above. When using a presentation attribute to specify a value for the 'fill' property, the
presentation attribute must be specified as 'fill' and not '"FILL" or 'Fill'. Keyword values, such as "italic" in
font-style="italic", are also case-sensitive and must be specified using the exact case used in the
specification which defines the given keyword. For example, the keyword "sRGB" must have lowercase
"s" and uppercase "RGB".

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/styling/StyleAttribute.svg
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/media.html#at-media-rule
http://www.w3.org/TR/REC-CSS2/cascade.html#at-import
http://www.w3.org/TR/REC-CSS2/syndata.html#x66
http://www.w3.org/TR/REC-CSS2/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/REC-CSS2/selector.html#q15
http://www.w3.org/TR/REC-CSS2/generate.html
http://www.w3.org/TR/REC-CSS2/generate.html
http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-xml#sec-cdata-sect
http://www.w3.org/TR/REC-CSS2/syndata.html#at-rules
http://www.w3.org/TR/REC-CSS2/syndata.html#uri
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-CSS2/syndata.html#q4

Property declarations within CSS style sheets or in a style attribute must only conform to CSS rules,
which are generally more lenient with regard to case sensitivity. However, to promote consistency across
the different ways for expressing styling properties, it is strongly recommended that authors use the exact
property names (usually, lowercase letters and hyphens) as defined in the relevant specification and
express all keywords using the same case as is required by presentation attributes and not take
advantage of CSS's ability to ignore case.

6.9 Facilities from CSS and XSL used by SVG

SVG shares various relevant properties and approaches common to CSS and XSL, plus the semantics of
many of the processing rules.

SVG shares the following facilities with CSS and XSL:

. Shared properties. Many of SVG's properties are shared between CSS2, XSL and SVG. (See list
of shared properties).
Syntax rules. (The normative references are [CSS2 syntax and basic data types] and [The
grammar of CSS2].)

. Allowable data types. (The normative reference is [CSS2 syntax and basic data types]), with the
exception that SVG allows <length> and <angle> values without a unit identifier. See Units.)

. Inheritance rules.

. The color keywords from CSS2 that correspond to the colors used by objects in the user's
environment. (The normative reference is [CSS2 system colors].)

. For implementations that support CSS styling of SVG content, then that styling must be compatible
with various other rules in CSS. (See Styling with CSS.)

6.10 Referencing external style sheets

External style sheets are referenced using the mechanism documented in "Associating Style Sheets with
XML documents Version 1.0" [XML-SS].

6.11 The 'style' element

The 'style' element allows style sheets to be embedded directly within SVG content. SVG's 'style’ element
has the same attributes as the corresponding element in HTML (see HTML's 'style' element).

http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/grammar.html
http://www.w3.org/TR/REC-CSS2/grammar.html
http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/ui.html#system-colors
http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/html401/present/styles.html#h-14.2.3

<IENTITY % SVG styl e. el ement "1 NCLUDE" >
<I[%BVG styl e. el ement; [
<IENTITY % SVG styl e.content "(#PCDATA)" >

<I ELEMENT %8VG styl e. gnane; %SVG styl e. content;

<!-- end of SVG style.elenment -->]]>

<IENTITY % SVG style.attlist "INCLUDE" >
<I[¥BVG style.attlist;]
<I ATTLI ST %8VG styl e. gnane;
xm : space (preserve) #FIXED ' preserve'
¥8VG Core. attrib;
type % Cont ent Type. dat at ype; #REQUI RED
medi a %vedi aDesc. dat at ype; #l MPLI ED
title %ext.datatype; #l MPLI ED

Attribute definitions:

t ype = content-type

This attribute specifies the style sheet language of the element's contents. The style sheet
language is specified as a content type (e.g., "text/css"), as per [RFEC2045]. Authors must supply a

value for this attribute; there is no default value.
Animatable: no.

nmedi a = media-descriptors

This attribute specifies the intended destination medium for style information. It may be a single
media descriptor or a comma-separated list. The default value for this attribute is "all". The set of
recognized media-descriptors are the list of media types recognized by CSS2 [CSS2 Recognized

media types].

Animatable: no.
title=advisory-title

(For compatibility with [HTML4]) This attribute specifies an advisory title for the 'style' element.

Animatable: no.

>

The syntax of style data depends on the style sheet language.

Some style sheet languages might allow a wider variety of rules in the 'style’ element than in the style
attribute. For example, with CSS, rules can be declared within a 'style’ element that cannot be declared

within a style attribute.

An example showing the 'style' element is provided above (see example).

6.12 The class attribute

Attribute definitions:

http://www.ietf.org/rfc/rfc2045.txt
http://www.w3.org/TR/REC-CSS2/media.html#media-types
http://www.w3.org/TR/REC-CSS2/media.html#media-types
http://www.w3.org/TR/html401/

cl ass =list
This attribute assigns a class name or set of class nhames to an element. Any number of elements
may be assigned the same class name or names. Multiple class hames must be separated by
white space characters.
Animatable: yes.

The class attribute assigns one or more class names to an element. The element may be said to belong
to these classes. A class name may be shared by several element instances. The class attribute has
several roles:

. As a style sheet selector (when an author wishes to assign style information to a set of elements).
. For general purpose processing by user agents.

In the following example, the 'text' element is used in conjunction with the class attribute to markup
document messages. Messages appear in both English and French versions.

<l-- English nessages -->

<text class="info" |ang="en">Variabl e declared tw ce</text>

<text class="warning" |ang="en">Undecl ared vari abl e</text >

<text class="error" |ang="en">Bad syntax for variabl e nanme</text>

<l-- French nessages -->

<text class="info" |ang="fr">Variabl e décl arée deux fois</text>
<text class="warning" |lang="fr">Variable indéfinie</text>

<text class="error" lang="fr">Erreur de syntaxe pour vari abl e</text>

In an SVG user agent that supports CSS styling, the following CSS style rules would tell visual user
agents to display informational messages in green, warning messages in yellow, and error messages in
red:

text.info { color: green }
text.warning { color: yellow}
text.error { color: red }

6.13 The style attribute

The style attribute allows per-element style rules to be specified directly on a given element. When CSS
styling is used, CSS inline style is specified by including semicolon-separated property declarations of the
form "name : value" within the style attribute

Attribute definitions:

styl e = style
This attribute specifies style information for the current element. The style attribute specifies style
information for a single element. The style sheet language of inline style rules is given by the value
of attribute contentStyleType on the 'svg' element. The syntax of style data depends on the style

sheet language.
Animatable: no.

The style attribute may be used to apply a particular style to an individual SVG element. If the style will be
reused for several elements, authors should use the 'style' element to regroup that information. For
optimal flexibility, authors should define styles in external style sheets.

An example showing the style attribute is provided above (see example).

6.14 Specifying the default style sheet language

The contentStyleType attribute on the 'svg' element specifies the default style sheet language for the
given document fragment.

content Styl eType ="%ContentType;"
Identifies the default style sheet language for the given document. This attribute sets the style
sheet language for the style attributes that are available on many elements. The value
%ContentType; specifies a media type, per [RFEC2045]. The default value is "text/css".
Animatable: no.

6.15 Property inheritance

Whether or not the user agent supports CSS, property inheritance in SVG follows the property inheritance
rules defined in the CSS2 specification. The normative definition for property inheritance is section 6.2 of
the CSS2 specification (see Inheritance).

The definition of each property indicates whether the property can inherit the value of its parent.

In SVG, as in CSS2, most elements inherit computed values [CSS2-COMPUTED)]. For cases where

something other than computed values are inherited, the property definition will describe the inheritance
rules. For specified values [CSS2-SPECIFIED] which are expressed in user units, in pixels (e.g., "20px")
or in absolute values [CSS2-COMPUTED], the computed value equals the specified value. For specified
values which use certain relative units (i.e., em, ex and percentages), the computed value will have the
same units as the value to which it is relative. Thus, if the parent element has a 'font-size' of "10pt" and
the current element has a 'font-size' of "120%", then the computed value for 'font-size' on the current
element will be "12pt". In cases where the referenced value for relative units is not expressed in any of
the standard SVG units (i.e., CSS units or user units), such as when a percentage is used relative to the
current viewport or an object bounding box, then the computed value will be in user units.

Note that SVG has some facilities wherein a property which is specified on an ancestor element might
effect its descendant element, even if the descendant element has a different assigned value for that
property. For example, if a 'clip-path' property is specified on an ancestor element, and the current
element has a 'clip-path’ of 'none’, the ancestor's clipping path still applies to the current element because
the semantics of SVG state that the clipping path used on a given element is the intersection of all
clipping paths specified on itself and all ancestor elements. The key concept is that property assignment
(with possible property inheritance) happens first. After properties values have been assigned to the
various elements, then the user agent applies the semantics of each assigned property, which might
result in the property assignment of an ancestor element affecting the rendering of its descendants.

http://www.ietf.org/rfc/rfc2045.txt
http://www.w3.org/TR/REC-CSS2/cascade.html#inheritance
http://www.w3.org/TR/REC-CSS2/cascade.html#computed-value
http://www.w3.org/TR/REC-CSS2/cascade.html#specified-value
http://www.w3.org/TR/REC-CSS2/cascade.html#computed-value

6.16 The scope/range of styles

The following define the scope/range of style sheets:

Stand-alone SVG document
There is one parse tree. Style sheets defined anywhere within the SVG document (in style
elements or style attributes, or in external style sheets linked with the style sheet processing
instruction) apply across the entire SVG document.

Stand-alone SVG document embedded in an HTML or XML document with the 'img’, 'object’

(HTML) or 'image' (SVG) elements
There are two completely separate parse trees; one for the referencing document (perhaps HTML
or XHTML), and one for the SVG document. Style sheets defined anywhere within the referencing
document (in style elements or style attributes, or in external style sheets linked with the style
sheet processing instruction) apply across the entire referencing document but have no effect on
the referenced SVG document. Style sheets defined anywhere within the referenced SVG
document (in style elements or style attributes, or in external style sheets linked with the style
sheet processing instruction) apply across the entire SVG document, but do not affect the
referencing document (perhaps HTML or XHTML). To get the same styling across both the
[X]HTML document and the SVG document, link them both to the same style sheet.

Stand-alone SVG content textually included in an XML document
There is a single parse tree, using multiple namespaces; one or more subtrees are in the SVG
namespace. Style sheets defined anywhere within the XML document (in style elements or style
attributes, or in external style sheets linked with the style sheet processing instruction) apply across
the entire document, including those parts of it in the SVG namespace. To get different styling for
the SVG part, use the style attribute, or put an ID on the 'svg' element and use contextual CSS
selectors, or use XSL selectors.

6.17 User agent style sheet

The user agent shall maintain a user agent style sheet [CSS2-CASCADE-RULES] for elements in the
SVG namespace for visual media [CSS2-VISUAL]. The user agent style sheet below is expressed using

CSS syntax; however, user agents are required to support the behavior that corresponds to this default
style sheet even if CSS style sheets are not supported in the user agent:

svg, synbol, inmage, marker, pattern, foreignQbject { overflow hidden }
svg { width:attr(w dth); height:attr(height) }

The first line of the above user agent style sheet will cause the initial clipping path to be established at the
bounds of the initial viewport. Furthermore, it will cause new clipping paths to be established at the
bounds of the listed elements, all of which are elements that establish a new viewport. (Refer to the
description of SVG's use of the 'overflow' property for more information.)

The second line of the above user agent style sheet will cause the width and height attributes on the 'svg'
element to be used as the default values for the 'width' and 'height' properties during [CSS2-LAYOUT].

6.18 Aural style sheets

http://www.w3.org/TR/REC-CSS2/cascade.html#cascade
http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-width
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-height
http://www.w3.org/TR/REC-CSS2/visuren.html

For the purposes of aural media, SVG represents a stylable XML grammar. In user agents that support
CSS aural style sheets, aural style properties [CSS2-AURAL] can be applied as defined in [CSS2].

Aural style properties can be applied to any SVG element that can contain character data content,
including 'desc', 'title, 'tspan’. 'tref'. 'altGlyph' and 'textPath'. On user agents that support aural style

sheets, the following [CSS2] properties can be applied:

‘azimuth' [CSS2-azimuth]

'cue' [CSS2-cue]

'‘cue-after' [CSS2-cue-after]
'‘cue-before' [CSS2-cue-before]
'‘elevation’ [CSS2-elevation]
'pause’ [CSS2-pause]
'pause-after' [CSS2-pause-after]
'pause-before’ [CSS2-pause-before]
'pitch’ [CSS2-pitch]
'pitch-range’ [CSS2-pitch-range]
'play-during’ [CSS2-play-during]
'richness' [CSS2-richness]
'speak’ [CSS2-speak]
'speak-header’ [CSS2-speak-header]
'speak-numeral’ [CSS2-speak-numeral]

'speak-punctuation’ [CSS2-speak-punctuation]

'speech-rate' [CSS2-speech-rate]
'stress' [CSS2-stress]
'voice-family’ [CSS2-voice-family]
'volume' [CSS2-volume]

For user agents that support aural style sheets and also support [DOM2], the user agent is required to
support the DOM interfaces defined in [DOM2-CSS] that correspond to aural properties [CSS2-AURAL].
(See Relationship with DOM2 CSS object model.)

6.19 Style Module

]Elements]Attributes]Content Model
style 'StdAttrs, xml:space, type, media, title [(#PCDATA)

6.19.1 Style Content Set

http://www.w3.org/TR/REC-CSS2/aural.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-azimuth
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-elevation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch-range
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-play-during
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-richness
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-speak-header
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speech-rate
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-stress
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-voice-family
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-volume
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/REC-CSS2/aural.html

The Style Module defines the StyleElements content set.

]Content Set Name]Elements in Content Set

'StyleElements style

6.19.2 Style Attribute Set

The Style Module defines the StyleAttrs attribute set.

]Collection Name]Attributes in Collection

StyleAttrs style, class

6.20 DOM interfaces

The following interfaces are defined below: SVGStyleElement.

Interface SVGStyleElement

The SVGStyleElement interface corresponds to the 'style’ element.

IDL Definition

i nterface SVGStyl eEl enent : SVGEl enent {

attribute DOVStri ng xm space;

/'l raises DOVException on setting
attribute DOVSBtring type;

/'l rai ses DOVException on setting
attri bute DOVString nedi a;

[l raises DOVException on setting
attribute DOVString title;

/'l rai ses DOVException on setting

Attributes
DOMString xmlspace
Corresponds to attribute xml:space on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

DOMString type
Corresponds to attribute type on the given 'style’ element.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
DOMString media

Corresponds to attribute media on the given 'style’ element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to

change the value of a readonly attribute.
DOMString title

Corresponds to attribute title on the given 'style' element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

7 Coordinate Systems, Transformations and Units

Contents

. 7.1 Introduction

. 7.2 The initial viewport

. 7.3 The initial coordinate system

. 7.4 Coordinate system transformations
. 7.5 Nested transformations

. 7.6 The transform attribute

. 7.7 The viewBox attribute

. 7.8 The preserveAspectRatio attribute
. 7.9 Establishing a new viewport

. 7.10 Units

. 7.11 Object bounding box units

. 7.12 Geographic Coordinate Systems
. 7.13 Viewport Attribute Module

. 7.14 DOM interfaces

c
o]
=
[4%]
o
c
]
=
=
o
J
@
o
@
-
4e)
=
o
=
3
o
.
=

7.1 Introduction

For all media, the SVG canvas describes "the space where the SVG content is rendered.” The canvas is
infinite for each dimension of the space, but rendering occurs relative to a finite rectangular region of the
canvas. This finite rectangular region is called the SVG viewport. For visual media [CSS2-VISUAL], the

SVG viewport is the viewing area where the user sees the SVG content.

The size of the SVG viewport (i.e., its width and height) is determined by a negotiation process (see
Establishing the size of the initial viewport) between the SVG document fragment and its parent (real or
implicit). Once that negotiation process is completed, the SVG user agent is provided the following
information:

. anumber (usually an integer) that represents the width in "pixels" of the viewport

. anumber (usually an integer) that represents the height in "pixels" of the viewport

. (highly desirable but not required) a real number value that indicates the size in real world units, such
as millimeters, of a "pixel" (i.e., a px unit as defined in [CSS2 lengths])

Using the above information, the SVG user agent determines the viewport, an initial viewport coordinate
system and an initial user coordinate system such that the two coordinates systems are identical. Both

http://www.w3.org/TR/REC-CSS2/media.html#visual-media-group
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units

coordinates systems are established such that the origin matches the origin of the viewport (for the root
viewport, the viewport origin is at the top/left corner), and one unit in the initial coordinate system equals one
"pixel" in the viewport. (See Initial coordinate system.) The viewport coordinate system is also called
viewport space and the user coordinate system is also called user space.

Lengths in SVG can be specified as:

. (if no unit identifier is provided) values in user space -- for example, "15"
. (if a unit identifier is provided) a length expressed as an absolute or relative unit measure -- for
example, "15mm" or "5em"

The supported length unit identifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.

A new user space (i.e., a new current coordinate system) can be established at any place within an SVG
document fragment by specifying transformations in the form of transformation matrices or simple
transformation operations such as rotation, skewing, scaling and translation. Establishing new user spaces
via coordinate system transformations are fundamental operations to 2D graphics and represent the usual

method of controlling the size, position, rotation and skew of graphic objects.

New viewports also can be established. By establishing a new viewport, you can redefine the meaning of

percentages units and provide a new reference rectangle for "“fitting" a graphic into a particular rectangular
area. ("Fit" means that a given graphic is transformed in such a way that its bounding box in user space
aligns exactly with the edges of a given viewport.)

7.2 The initial viewport

The SVG user agent negotiates with its parent user agent to determine the viewport into which the SVG
user agent can render the document. In some circumstances, SVG content will be embedded (by reference

or inline) within a containing document. This containing document might include attributes, properties and/or

other parameters (explicit or implicit) which specify or provide hints about the dimensions of the viewport for
the SVG content. SVG content itself optionally can provide information about the appropriate viewport
region for the content via the width and height XML attributes on the outermost 'svg' element. The
negotiation process uses any information provided by the containing document and the SVG content itself to
choose the viewport location and size.

The width attribute on the outermost 'svg' element establishes the viewport's width, unless the following
conditions are met:

. the SVG content is a separately stored resource that is embedded by reference (such as the 'object’
element in [XHTML]), or the SVG content is embedded inline within a containing document;

. and the referencing element or containing document is styled using CSS [CSS2] or XSL [XSL];
. and there are CSS-compatible positioning properties [CSS2-POSN] specified on the referencing

element (e.g., the 'object' element) or on the containing document's outermost 'svg' element that are
sufficient to establish the width of the viewport.

Under these conditions, the positioning properties establish the viewport's width.
Similarly, if there are positioning properties [CSS2-POSN] specified on the referencing element or on the

outermost 'svg' that are sufficient to establish the height of the viewport, then these positioning properties
establish the viewport's height; otherwise, the height attribute on the outermost 'svg' element establishes the

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/visuren.html#positioning-scheme
http://www.w3.org/TR/REC-CSS2/visuren.html#positioning-scheme

viewport's height.

If the width or height attributes on the outermost 'svg' element are in user units (i.e., no unit identifier has
been provided), then the value is assumed to be equivalent to the same number of "px" units (see Units).

In the following example, an SVG graphic is embedded inline within a parent XML document which is
formatted using CSS layout rules. Since CSS positioning properties are not provided on the outermost 'svg'
element, the width="100px" and height="200px" attributes determine the size of the initial viewport:

<?xm version="1.0" standal one="yes" ?>
<parent xm ns="http://sonme.url">

<l-- SVG graphic -->
<svg xm ns="http://ww. w3. or g/ 2000/ svg'
wi dt h="100px" hei ght ="200px" version="1.1">
<pat h d="ML00, 100 @00, 400, 300, 100"/ >
<l-- rest of SVG graphic would go here -->
</ svg>

</ parent >

The initial clipping path for the SVG document fragment is established according to the rules described in
The initial clipping path.

7.3 The initial coordinate system

For the outermost 'svg’ element, the SVG user agent determines an initial viewport coordinate system
and an initial user coordinate system such that the two coordinates systems are identical. The origin of
both coordinate systems is at the origin of the viewport, and one unit in the initial coordinate system equals
one "pixel" (i.e., a px unit as defined in [CSS2 lengths]) in the viewport. In most cases, such as stand-alone
SVG documents or SVG document fragments embedded (by reference or inline) within XML parent
documents where the parent's layout is determined by CSS [CSS2] or XSL [XSL], the initial viewport
coordinate system (and therefore the initial user coordinate system) has its origin at the top/left of the
viewport, with the positive x-axis pointing towards the right, the positive y-axis pointing down, and text
rendered with an "upright" orientation, which means glyphs are oriented such that Roman characters and
full-size ideographic characters for Asian scripts have the top edge of the corresponding glyphs oriented
upwards and the right edge of the corresponding glyphs oriented to the right.

If the SVG implementation is part of a user agent which supports styling XML documents using CSS2-
compatible px units, then the SVG user agent should get its initial value for the size of a px unit in real world
units to match the value used for other XML styling operations; otherwise, if the user agent can determine
the size of a px unit from its environment, it should use that value; otherwise, it should choose an
appropriate size for one px unit. In all cases, the size of a px must be in conformance with the rules

described in [CSS2 lengths].

Example InitialCoords below shows that the initial coordinate system has the origin at the top/left with the x-
axis pointing to the right and the y-axis pointing down. The initial user coordinate system has one user unit
equal to the parent (implicit or explicit) user agent's "pixel".

<?xm version="1.0" standal one="no"?>

http://www.w3.org/TR/REC-CSS2/syndata.html#length-units
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3.org/ Gaphics/SVG@ 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="300px" hei ght ="100px" version="1.1"
xm ns="http://ww. w3. org/ 2000/ svg" >
<desc>Exanple Initial Coords - SVG s initial coordinate systenx/desc>

<g fill="none" stroke="black" stroke-w dth="3" >
<line x1="0" yl1="1.5" x2="300" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="100" />

</ g>

<g fill="red" stroke="none" >
<rect x="0" y="0" w dth="3" height="3" />
<rect x="297" y="0" width="3" height="3" />
<rect x="0" y="97" wi dth="3" height="3" />

</ g>

<g font-size="14" font-famly="Verdana" >
<text x="10" y="20">(0,0)</text>
<text x="240" y="20">(300,0)</text>
<text x="10" y="90">(0, 100)</text>

</ g>

</ svg>

(0,0) (300,0)

(0,100)

Example InitialCoords

View this example as SVG (SVG-enabled browsers only)

7.4 Coordinate system transformations

A new user space (i.e., a new current coordinate system) can be established by specifying transformations
in the form of a transform attribute on a container element or graphics element or a viewBox attribute on an
'svg', 'symbol’, 'marker’, 'pattern' and the 'view' element. The transform and viewBox attributes transform
user space coordinates and lengths on sibling attributes on the given element (see effect of the transform
attribute on sibling attributes and effect of the viewBox attribute on sibling attributes) and all of its

descendants. Transformations can be nested, in which case the effect of the transformations are
cumulative.

Example OrigCoordSys below shows a document without transformations. The text string is specified in the
initial coordinate system.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1.1//EN'
“http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd">

<svg wi dt h="400px" hei ght ="150px" version="1.1"

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/InitialCoords.svg

xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>Exanpl e OigCoordSys - Sinple transformations: original picture</desc>
<g fill="none" stroke="black" stroke-w dth="3" >
<l-- Draw the axes of the original coordinate system-->
<line x1="0" yl1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" font-size="20" font-fam|y="Verdana" >
ABC (orig coord system
</ text>
</ g>
</ svg>

ABC (orig coord system)

Example OrigCoordSys

View this example as SVG (SVG-enabled browsers only)

Example NewCoordSys establishes a new user coordinate system by specifying
transform="translate(50,50)" on the third 'g' element below. The new user coordinate system has its origin at
location (50,50) in the original coordinate system. The result of this transformation is that the coordinate
(30,30) in the new user coordinate system gets mapped to coordinate (80,80) in the original coordinate
system (i.e., the coordinates have been translated by 50 units in X and 50 units in Y).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVGE 1. 1/ DTD/ svgll. dtd">
<svg wi dt h="400px" hei ght =" 150px" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>Exanpl e NewCoordSys - New user coordi nate systenx/desc>
<g fill="none" stroke="black" stroke-w dth="3" >
<l-- Draw the axes of the original coordinate system-->
<line x1="0" yl1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" font-size="20" font-fam|y="Verdana" >
ABC (orig coord system
</ text>
</ g>
<l-- Establish a new coordinate system which is
shifted (i.e., translated) fromthe initial coordinate

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/OrigCoordSys.svg

system by 50 user units along each axis. -->
<g transforne"transl at e(50, 50) ">
<g fill="none" stroke="red" stroke-w dth="3" >
<l-- Draw lines of length 50 user units al ong
the axes of the new coordi nate system-->
<line x1="0" yl="0" x2="50" y2="0" stroke="red" />
<line x1="0" yl1="0" x2="0" y2="50" />
</ g>
<text x="30" y="30" font-size="20" font-fam|ly="Verdana" >
ABC (transl ated coord system
</text>
</ g>
</ svg>

ABC (orig coord system)

ABC (translated coord system)

Example NewCoordSys

View this example as SVG (SVG-enabled browsers only)

Example RotateScale illustrates simple rotate and scale transformations. The example defines two new

coordinate systems:

. one which is the result of a translation by 50 units in X and 30 units in Y, followed by a rotation of 30

degrees

. another which is the result of a translation by 200 units in X and 40 units in Y, followed by a scale

transformation of 1.5.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3.org/ Gaphics/SVG@ 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="400px" hei ght ="120px" version="1.1"
xm ns="http://ww. w3. org/ 2000/ svg" >
<desc>Exanpl e RotateScale - Rotate and scal e transforns</desc>
<g fill="none" stroke="black" stroke-w dth="3" >
<!I-- Draw the axes of the original coordinate system-->
<line x1="0" yl1l="1.5" x2="400" y2="1.5" />
<line x1="1.5" yl1="0" x2="1.5" y2="120" />
</ g>
<l-- Establish a new coordi nate system whose origin is at (50, 30)

inthe initial coord. systemand which is rotated by 30 degrees.

<g transforne"transl at e(50, 30) ">
<g transform="rotate(30)">
<g fill="none" stroke="red" stroke-w dth="3" >
<line x1="0" yl1l="0" x2="50" y2="0" />

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/NewCoordSys.svg

<line x1="0" y1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" font-size="20" font-famly="Verdana" fill="blue" >
ABC (rotate)
</text>
</ g>

</ g>

<l-- Establish a new coordi nate system whose origin is at (200, 40)
inthe initial coord. systemand which is scaled by 1.5. -->

<g transforne"transl at e(200, 40) " >
<g transform="scal e(1.5)">
<g fill="none" stroke="red" stroke-w dth="3" >
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" yl1l="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" font-size="20" font-fam|y="Verdana" fill="blue" >
ABC (scal e)
</text>
</ g>
</ g>
</ svg>
(ro Ly
€

Example RotateScale

View this example as SVG (SVG-enabled browsers only)

Example Skew defines two coordinate systems which are skewed relative to the origin coordinate system.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3.org/ Gaphics/SVGE 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="400px" hei ght ="120px" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>Exanpl e Skew - Show effects of skewX and skewY</desc>
<g fill="none" stroke="black" stroke-w dth="3" >
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="120" />
</ g>
<l-- Establish a new coordinate system whose origin is at (30, 30)
inthe initial coord. systemand which is skewed in X by 30 degrees. -->
<g transform="transl at e(30, 30) ">
<g transfornm="skewX(30)">
<g fill="none" stroke="red" stroke-w dth="3" >
<line x1="0" yl1l="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/RotateScale.svg

</ g>

<text x="0" y="0" font-size="20" font-fam|y="Verdana" fill="blue" >
ABC (skewxX)
</text>
</ g>
</ g>
<l-- Establish a new coordi nate system whose origin is at (200, 30)
inthe initial coord. systemand which is skewed in Y by 30 degrees. -->

<g transform="transl at e(200, 30) ">
<g transfornme"skewy(30)">
<g fill="none" stroke="red" stroke-w dth="3" >
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" font-size="20" font-famly="Verdana" fill="blue" >
ABC (skewy)
</text>
</ g>
</ g>

</ svg>

SENTRY,

(Ek%wh

Example Skew

View this example as SVG (SVG-enabled browsers only)

Mathematically, all transformations can be represented as 3x3 transformation matrices of the following
form:

oo
o0 0
= = (D

Since only six values are used in the above 3x3 matrix, a transformation matrix is also expressed as a
vector:[ab c d ef].

Transformations map coordinates and lengths from a new coordinate system into a previous coordinate
system:

Ipre-.-{:c-c-ms',rs a C € . KHEWCD-DH‘IS'F'S
':F'IprE'.ICDDrdEyE f— b d f 15‘rnEwCl:»i:m:I‘S',.r*E.
1 0 0 1

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/Skew.svg

Simple transformations are represented in matrix form as follows:

. Translation is equivalent to the matrix

1 0 ix
0 1 ty
0 0 1

or [1 00 1 tx ty], where tx and ty are the distances to translate coordinates in X and Y, respectively.

. Scaling is equivalent to the matrix

sx 0 0
0 sy O
0O 0 1

or [sx 0 0 sy 0 0]. One unitin the X and Y directions in the new coordinate system equals sx and sy
units in the previous coordinate system, respectively.

Rotation about the origin is equivalent to the matrix
cos(a) -sin{a) 0
sin(a) cos(a) 0
0 0 1

or [cos(a) sin(a) -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system axes by
angle a.

. A skew transformation along the x-axis is equivalent to the matrix

1 tan(a) 0
0 1 0
o o0 1

or [1 0tan(a) 1 0 0], which has the effect of skewing X coordinates by angle a.

. A skew transformation along the y-axis is equivalent to the matrix

1 0 0
tan(a) 1 0
0 0 1

or [1tan(a) 0 1 0 0], which has the effect of skewing Y coordinates by angle a.

7.5 Nested transformations

Transformations can be nested to any level. The effect of nested transformations is to post-multiply (i.e.,
concatenate) the subsequent transformation matrices onto previously defined transformations:

=I‘:|:rrvea.r — a1C1 €4 dzC2 €3 Xeurr
Yorev | == | b1dify | *) badafa P * | Yeurr
1 001 001 1

For each given element, the accumulation of all transformations that have been defined on the given
element and all of its ancestors up to and including the element that established the current viewport
(usually, the 'svg' element which is the most immediate ancestor to the given element) is called the current
transformation matrix or CTM. The CTM thus represents the mapping of current user coordinates to
viewport coordinates:

—_— d; 61 € d;C; €;
CTM = |oar || onan s -
00

1 001 sosn

Cﬁé? 41
oo n
=
o

Xviewport —_— Xuserspace
Yviewport — * | Yuserspace
1

1

Example Nested illustrates nested transformations.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3.org/ Gaphics/SV@ 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="400px" hei ght ="150px" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>Exanpl e Nested - Nested transfornmations</desc>
<g fill="none" stroke="bl ack" stroke-w dth="3" >
<l-- Draw the axes of the original coordinate system-->
<line x1="0" yl1l="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />

</ g>
<l-- First, atranslate -->
<g transforne"transl at e(50, 90) ">
<g fill="none" stroke="red" stroke-w dth="3" >

<line x1="0" yl1l="0" x2="50" y2="0" />
<line x1="0" yl1l="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" font-size="16" font-famly="Verdana" >
....Transl ate(1)
</text>
<!-- Second, a rotate -->
<g transform"rotate(-45)">
<g fill="none" stroke="green" stroke-w dth="3" >
<line x1="0" yl1l="0" x2="50" y2="0" />
<line x1="0" yl1l="0" x2="0" y2="50" />

</ g>

<text x="0" y="0" font-size="16" font-famly="Verdana" >
....Rotate(2)

</text>

<l-- Third, another translate -->

<g transforn¥"transl ate(130, 160)">

<g fill="none" stroke="blue" stroke-w dth="3" >
<line x1="0" yl1l="0" x2="50" y2="0" />
<line x1="0" yl1l="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" font-size="16" font-fam|y="Verdana" >
. Transl at e(3)

</text>
</ g>
</ g>
</ g>
</ svg>
~
W €
@ o~
e
e
&
slate(1)

Example Nested

View this example as SVG (SVG-enabled browsers only)

In the example above, the CTM within the third nested transformation (i.e., the
transform="translate(130,160)") consists of the concatenation of the three transformations, as follows:

CTM — translate(50,90), rotate(-45), translate(130,160)

— 0 50 707 .707 0O 0
— 1 90 - ?U? ?El}' Cl 1
01 0

__ | .707 .707 255.03
= |-.707 .707 111.21
o o0 1

Xinitial — Xuserspace
Yinitial — * 1 Yuserspace
1 1

o0 =

7.6 The transform attribute

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/Nested.svg

The value of the transform attribute is a <transform-list>, which is defined as a list of transform definitions,
which are applied in the order provided. The individual transform definitions are separated by whitespace
and/or a comma. The available types of transform definitions include:

. matrix(<a> <c> <d> <e> <f>), which specifies a transformation in the form of a transformation
matrix of six values. matrix(a,b,c,d,e,f) is equivalent to applying the transformation matrix [ab c d e f].

. translate(<tx> [<ty>]), which specifies a translation by tx and ty. If <ty> is not provided, it is assumed to
be zero.

. scale(<sx> [<sy>]), which specifies a scale operation by sx and sy. If <sy> is not provided, it is
assumed to be equal to <sx>.

. rotate(<rotate-angle> [<cx> <cy>]), which specifies a rotation by <rotate-angle> degrees about a given
point.
If optional parameters <cx> and <cy> are not supplied, the rotate is about the origin of the current user
coordinate system. The operation corresponds to the matrix [cos(a) sin(a) -sin(a) cos(a) 0 0O].
If optional parameters <cx> and <cy> are supplied, the rotate is about the point (<cx>, <cy>). The
operation represents the equivalent of the following specification: translate(<cx>, <cy>) rotate(<rotate-
angle>) translate(-<cx>, -<cy>).

. skewX(<skew-angle>), which specifies a skew transformation along the x-axis.

. skewY(<skew-angle>), which specifies a skew transformation along the y-axis.

All numeric values are real <number>s.

If a list of transforms is provided, then the net effect is as if each transform had been specified separately in
the order provided. For example,

<g transform="transl ate(-10,-20) scale(2) rotate(45) translate(5,10)">
<l-- graphics elenents go here -->
</ g>

is functionally equivalent to:

<g transforme"transl ate(-10,-20)">
<g transforn¥"scal e(2)">
<g transform="rotate(45)">
<g transform="transl ate(5, 10)">
<l-- graphics elenents go here -->
</ g>
</ g>
</ g>
</ g>

The transform attribute is applied to an element before processing any other coordinate or length values
supplied for that element. In the element

<rect x="10" y="10" wi dt h="20" hei ght="20" transfornm="scale(2)"/>

the x, y, width and height values are processed after the current coordinate system has been scaled
uniformly by a factor of 2 by the transform attribute. Attributes x, y, width and height (and any other attributes
or properties) are treated as values in the new user coordinate system, not the previous user coordinate
system. Thus, the above 'rect' element is functionally equivalent to:

<g transforne"scal e(2)">
<rect x="10" y="10" wi dth="20" hei ght="20"/>
</ g>

The following is the Backus-Naur Form (BNF) for values for the transform attribute. The following notation is
used:

. *.0or more

. +:10or more

. 2200r1

(): grouping

. |: separates alternatives
double quotes surround literals

transformlist:
wsp* transforns? wsp*

transf or ns:
transform
| transform coma-wsp+ transforns

transform
mat ri x
| translate

| scale

| rotate

| skewX

| skewy

matrix:

"matrix" wsp* "(" wsp*
nunber conmma- wsp
nunber conma-wsp
nunber conmma-wsp
nunber conma-wsp
nunber coma- wsp
nunber wsp* ")"

transl at e:
"translate" wsp* "(" wsp* nunber (comma-wsp nunber)? wsp* ")"

scal e:
"scal e" wsp* "(" wsp* nunber (comma-wsp number)? wsp* ")"

rotate:
"rotate" wsp* "(" wsp* nunber (conma-wsp number commm-wsp number)? wsp* ")"

skewX
"skewX" wsp* "(" wsp* nunber wsp* ")"

skewy:
"skewy" wsp* "(" wsp* nunber wsp* ")"

nunber :
si gn? i nteger-const ant
| sign? floating-point-constant

conma- Wsp:
(wsp+ comma? wsp*) | (conma wsp*)

conma:

i nt eger - const ant :
di gi t-sequence

fl oati ng- poi nt-constant:
fractional -constant exponent?
| digit-sequence exponent

fractional -constant:
digit-sequence? "." digit-sequence
| digit-sequence "."

exponent :
("e" | "E") sign? digit-sequence

sign:
" +|l | ll_ll
di gi t - sequence
digit
| digit digit-sequence
digit:
"o" | "a | "2" | "3" | "4" | "5" | "e6" | "7 | "8 | "9"
wsp:
(#x20 | #x9 | #xD | #xA)
For the transform attribute:

Animatable: yes.

See the 'animateTransform' element for information on animating transformations.

7.7 The viewBox attribute

It is often desirable to specify that a given set of graphics stretch to fit a particular container element. The
viewBox attribute provides this capability.

All elements that establish a new viewport (see elements that establish viewports), plus the 'marker’,
'pattern’ and 'view' elements have attribute viewBox. The value of the viewBox attribute is a list of four
numbers <min-x>, <min-y>, <width> and <height>, separated by whitespace and/or a comma, which specify
a rectangle in user space which should be mapped to the bounds of the viewport established by the given
element, taking into account attribute preserveAspectRatio. If specified, an additional transformation is

applied to all descendants of the given element to achieve the specified effect.

A negative value for <width> or <height> is an error (see Error processing). A value of zero disables

rendering of the element.

Example ViewBox illustrates the use of the viewBox attribute on the outermost 'svg' element to specify that
the SVG content should stretch to fit bounds of the viewport.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1.1//EN'
"http://ww. w3.org/ Gaphics/SVE 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="300px" hei ght="200px" version="1.1"
vi ewBox="0 0 1500 1000" preserveAspect Rati o="none"
xm ns="http://ww. w3. org/ 2000/ svg" >
<desc>Exanpl e Vi ewBox - uses the vi ewBox
attribute to automatically create an initial user coordinate
system whi ch causes the graphic to scale to fit into the
viewport no matter what size the viewport is.</desc>

<l-- This rectangle goes from (0,0) to (1500,1000) in user space.
Because of the viewBox attribute above,

the rectangle will end up filling the entire area
reserved for the SVG content. -->
<rect x="0" y="0" w dth="1500" hei ght="1000"
fill="yell ow' stroke="blue" stroke-w dth="12" />
<l-- Alarge, red triangle -->
<path fill="red" d="M 750,100 L 250,900 L 1250,900 z"/>
<I-- Atext string that spans nost of the viewport -->

<text x="100" y="600" font-size="200" font-fam|y="Verdana" >
Stretch to fit

</text>
</ svg>
Rendered into Rendered into
viewport with viewport with
width=300px, width=150px,
height=200px height=200px

Str fit | |Str

Example ViewBox

View this example as SVG (SVG-enabled browsers only)

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/ViewBox.svg

The effect of the viewBox attribute is that the user agent automatically supplies the appropriate
transformation matrix to map the specified rectangle in user space to the bounds of a designated region
(often, the viewport). To achieve the effect of the example on the left, with viewport dimensions of 300 by
200 pixels, the user agent needs to automatically insert a transformation which scales both X and Y by 0.2.
The effect is equivalent to having a viewport of size 300px by 200px and the following supplemental
transformation in the document, as follows:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3.org/ Gaphics/SVG@ 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="300px" hei ght ="200px" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<g transforne"scal e(0.2)">
<!-- Rest of docunent goes here -->

</ g>
</ svg>

To achieve the effect of the example on the right, with viewport dimensions of 150 by 200 pixels, the user
agent needs to automatically insert a transformation which scales X by 0.1 and Y by 0.2. The effect is
equivalent to having a viewport of size 150px by 200px and the following supplemental transformation in the
document, as follows:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3.org/ Gaphics/SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="150px" hei ght ="200px" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<g transforn¥"scale(0.1 0.2)">
<I-- Rest of docunent goes here -->

</ g>
</ svg>

(Note: in some cases the user agent will need to supply a translate transformation in addition to a scale
transformation. For example, on an outermost 'svg’, a translate transformation will be needed if the viewBox

attributes specifies values other than zero for <min-x> or <min-y>.)

Unlike the transform attribute (see effect of the transform on sibling attributes), the automatic transformation

that is created due to a viewBox does not affect the x, y, width and height attributes (or in the case of the
'marker' element, the markerwidth and markerHeight attributes) on the element with the viewBox attribute.
Thus, in the example above which shows an 'svg' element which has attributes width, height and viewBox,
the width and height attributes represent values in the coordinate system that exists before the viewBox
transformation is applied. On the other hand, like the transform attribute, it does establish a new coordinate
system for all other attributes and for descendant elements.

For the viewBox attribute:

Animatable: yes.

7.8 The preserveAspectRatio attribute

In some cases, typically when using the viewBox attribute, it is desirable that the graphics stretch to fit non-
uniformly to take up the entire viewport. In other cases, it is desirable that uniform scaling be used for the
purposes of preserving the aspect ratio of the graphics.

Attribute preserveAspectRatio="[defer] <align> [<meetOrSlice>]", which is available for all elements that
establish a new viewport (see elements that establish viewports), plus the 'image’, 'marker’, 'pattern' and

'view' elements, indicates whether or not to force uniform scaling.

For elements that establish a new viewport (see elements that establish viewports), plus the 'marker’,
'‘pattern’ and 'view' elements, preserveAspectRatio only applies when a value has been provided for viewBox
on the same element. For these elements, if attribute viewBox is not provided, then preserveAspectRatio is
ignored.

For 'image' elements, preserveAspectRatio indicates how referenced images should be fitted with respect to
the reference rectangle and whether the aspect ratio of the referenced image should be preserved with
respect to the current user coordinate system.

If the value of preserveAspectRatio on an 'image' element starts with 'defer' then the value of the

preserveAspectRatio attribute on the referenced content if present should be used. If the referenced content
lacks a value for preserveAspectRatio then the preserveAspectRatio attribute should be processed as normal
(ignoring 'defer’). For preserveAspectRatio on all other elements the ‘defer’ portion of the attribute is ignored.

The <align> parameter indicates whether to force uniform scaling and, if so, the alignment method to use in
case the aspect ratio of the viewBox doesn't match the aspect ratio of the viewport. The <align> parameter
must be one of the following strings:

. none - Do not force uniform scaling. Scale the graphic content of the given element non-uniformly if
necessary such that the element's bounding box exactly matches the viewport rectangle.
(Note: if <align> is none, then the optional <meetOrSlice> value is ignored.)

. XMinYMin - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.

Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

. xMidYMin - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.
. xMaxYMin - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.
. xMinYMid - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.
. xMidYMid (the default) - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.
. xMaxYMid - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.
. xMinYMax - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.

Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

. xMidYMax - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.

Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

. XMaxYMax - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.

Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

The <meetOrSlice> parameter is optional and, if provided, is separated from the <align> value by one or
more spaces and then must be one of the following strings:

. meet (the default) - Scale the graphic such that:
1 aspect ratio is preserved
o the entire viewBox is visible within the viewport
s the viewBox is scaled up as much as possible, while still meeting the other criteria
In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport will
extend beyond the bounds of the viewBox (i.e., the area into which the viewBox will draw will be
smaller than the viewport).
. slice - Scale the graphic such that:
o aspect ratio is preserved
o the entire viewport is covered by the viewBox
1 the viewBox is scaled down as much as possible, while still meeting the other criteria
In this case, if the aspect ratio of the viewBox does not match the viewport, some of the viewBox will
extend beyond the bounds of the viewport (i.e., the area into which the viewBox will draw is larger
than the viewport).

Example PreserveAspectRatio illustrates the various options on preserveAspectRatio. To save space, XML
entities have been defined for the three repeated graphic objects, the rectangle with the smile inside and the
outlines of the two rectangles which have the same dimensions as the target viewports. The example
creates several new viewports by including 'svg' sub-elements embedded inside the outermost 'svg’' element

(see Establishing a new viewport).

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN
"http://ww. w3. org/ Gaphi cs/ SVGE 1. 1/ DTD/ svgll. dt d"

[<ENTITY Smile "

<rect x='.5" y=".5" width="29" height="39" fill="black' stroke="red' />
<g transform='transl ate(0, 5)'>

<circle cx="15" cy="15" r="10" fill=vyellow />

<circle cx="12" cy="12" r="1.5" fill="black' />

<circle cx="17" cy="12" r="1.5 fill="black'/>

<path d="M 10 19 A8 8 0 0 0 20 19' stroke='black' stroke-w dth="2"'/>
</ g>

">

<IENTITY Viewportl "<rect x='.5" y='".5" wi dth="49" height="29
fill="none' stroke='blue/>">

<IENTITY Viewport2 "<rect x='.5" y=".5" width="'29" height="59
fill="none' stroke='blue' />">

1>

<svg wi dt h="450px" hei ght ="300px" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>Exanpl e PreserveAspectRatio - illustrates preserveAspectRatio
attribute</desc>

<rect x="1" y="1" w dt h="448" hei ght="298"
fill="none" stroke="blue"/>

<g font-size="9">
<text x="10" y="30">SVGto fit</text>
<g transfornme"transl at e(20, 40) " >&Sni | e; </ g>
<text x="10" y="110">Vi ewport 1</text>
<g transfornm="transl ate(10, 120) " >&Vi ewport 1; </ g>
<text x="10" y="180">Vi ewport 2</text>
<g transform="transl at e(20, 190) " >&Vi ewport 2; </ g>

<g id="neet-group-1" transforn="transl ate(100, 60)">
<text x="0" y="-30">--------------- meet --------------- </text>
<g><text y="-10">xM n*</text>&Vi ewport1;
<svg preserveAspectRati o="xM nYM n neet" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Smi | e; </ svg></ g>
<g transform="transl ate(70, 0)"><text y="-10">xM d*</text>&Vi ewport 1;
<svg preserveAspectRati o="xM dYM d neet" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Smi | e; </ svg></ g>
<g transfornm="transl ate(0, 70) "><text y="-10">xMax*</text>&Vi ewport 1;
<svg preserveAspect Rati o="xMaxYMax neet" vi ewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Smi | e; </ svg></ g>
</ g>

<g id="neet-group-2" transforn="transl ate(250, 60)">
<text x="0" y="-30">---------- neet ---------- </text>
<g><text y="-10">*YM n</text>&Vi ewport 2;
<svg preserveAspectRati o="xM nYM n neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Smi | e; </ svg></ g>
<g transforne"transl ate(50, 0)"><text y="-10">*YM d</text>&Vi ewport 2;
<svg preserveAspectRati o="xM dYM d neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Smi | e; </ svg></ g>
<g transfornme="transl ate(100, 0)"><text y="-10">*YMax</text>&Vi ewport 2;
<svg preserveAspect Rati o="xMaxYMax neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
</ g>

<g id="slice-group-1" transform="transl ate(100, 220)">
<text x="0" y="-30">---------- slice ---------- </text>
<g><text y="-10">xM n*</text>&Vi ewport 2;
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<g transforne"transl ate(50, 0)"><text y="-10">xM d*</text>&Vi ewport 2;
<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sm | e; </ svg></ g>
<g transfornme"transl at e(100, 0) "><t ext y="-10">xMax*</t ext>&Vi ewport 2;
<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sm | e; </ svg></ g>
</ g>

<g id="slice-group-2" transform="transl ate(250, 220)">
<text x="0" y="-30">--------------- slice ---------u----- </text>
<g><text y="-10">*YM n</text>&Vi ewport 1;
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Smi | e; </ svg></ g>
<g transforme"transl ate(70, 0)"><text y="-10">*YM d</t ext >&Vi ewport 1;
<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></ g>
<g transforn¥"transl ate(140, 0) "><text y="-10">*YMax</text>&Vi ewport 1;
<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Smi | e; </ svg></ g>

</ g>

</ g>
</ svg>
SWG 1o fit mest mest
E xMin* =Ml “¢Min “YMid “¥Max
we.ﬁm 1 E E E
HhE=
Viewport 2
ShCe SiCe
*Min® whisd® wMax® =¥ Mid

ol ol :H[:]ﬁ

Example PreserveAspectRatio

View this example as SVG (SVG-enabled browsers only)

For the preserveAspectRatio attribute:

Animatable: yes.

7.9 Establishing a new viewport

At any point in an SVG drawing, you can establish a new viewport into which all contained graphics is drawn
by including an 'svg' element inside SVG content. By establishing a new viewport, you also implicitly
establish a new viewport coordinate system, a new user coordinate system, and, potentially, a new clipping
path (see the definition of the 'overflow' property). Additionally, there is a new meaning for percentage units

defined to be relative to the current viewport since a new viewport has been established (see Units)

The bounds of the new viewport are defined by the x, y, width and height attributes on the element
establishing the new viewport, such as an 'svg' element. Both the new viewport coordinate system and the
new user coordinate system have their origins at (x, y), where x and y represent the value of the
corresponding attributes on the element establishing the viewport. The orientation of the new viewport
coordinate system and the new user coordinate system correspond to the orientation of the current user
coordinate system for the element establishing the viewport. A single unit in the new viewport coordinate
system and the new user coordinate system are the same size as a single unit in the current user
coordinate system for the element establishing the viewport.

Here is an example:

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/PreserveAspectRatio.svg

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3.org/ Gaphics/SV@ 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="4in" height="3in" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<desc>Thi s SVG drawi ng enbeds anot her one
t hus establishing a new vi ewport
</ desc>
<I-- The follow ng statenent establishing a new vi ewport
and renders SVG drawing B into that viewport -->
<svg x="25% y="25% w dth="50% hei ght="50% >
<l-- drawing B goes here -->
</ svg>
</ svg>

For an extensive example of creating new viewports, see Example PreserveAspectRatio.

The following elements establish new viewports:

. The'svg' element

. A’'symbol' element define new viewports whenever they are instanced by a 'use’ element.

. An'image' element that references an SVG file will result in the establishment of a temporary new
viewport since the referenced resource by definition will have an 'svg' element.

. A foreignObject’ element creates a new viewport for rendering the content that is within the element.

Whether a new viewport also establishes a new additional clipping path is determined by the value of the
‘overflow' property on the element that establishes the new viewport. If a clipping path is created to
correspond to the new viewport, the clipping path's geometry is determined by the value of the ‘clip’
property. Also, see Clip to viewport vs. clip to viewBox.

7.10 Units

All coordinates and lengths in SVG can be specified with or without a unit identifier.

When a coordinate or length value is a number without a unit identifier (e.g., "25"), then the given coordinate
or length is assumed to be in user units (i.e., a value in the current user coordinate system). For example:

<text style="font-size: 50">Text size is 50 user units</text>
Alternatively, a coordinate or length value can be expressed as a number following by a unit identifier (e.g.,
"25cm" or "15em"). The list of unit identifiers in SVG matches the list of unit identifiers in CSS: em, ex, px,

pt, pc, cm, mm, in and percentages. The following describes how the various unit identifiers are processed:

. Asin CSS, the em and ex unit identifiers are relative to the current font's font-size and x-height,
respectively.

. One px unit is defined to be equal to one user unit. Thus, a length of "5px" is the same as a length of
"5

Note that at initialization, a user unit in the the initial coordinate system is equivalenced to the parent
environment's notion of a px unit. Thus, in the the initial coordinate system, because the user

coordinate system aligns exactly with the parent's coordinate system, and because often the parent's
coordinate system aligns with the device pixel grid, "5px" might actually map to 5 devices pixels.
However, if there are any coordinate system transformation due to the use of transform or viewBox
attributes, because "5px" maps to 5 user units and because the coordinate system transformations
have resulted in a revised user coordinate system, "5px" likely will not map to 5 device pixels. As a
result, in most circumstances, "px" units will not map to the device pixel grid.

The other absolute unit identifiers from CSS (i.e., pt, pc, cm, mm, in) are all defined as an appropriate
multiple of one px unit (which, according to the previous item, is defined to be equal to one user unit),
based on what the SVG user agent determines is the size of a px unit (possibly passed from the
parent processor or environment at initialization time). For example, suppose that the user agent can
determine from its environment that "1px" corresponds to "0.2822222mm" (i.e., 90dpi). Then, for all
processing of SVG content:

o "1pt" equals "1.25px" (and therefore 1.25 user units)

o "1pc" equals "15px" (and therefore 15 user units)

5 "1Imm" would be "3.543307px" (3.543307 user units)

o "lcm" equals "35.43307px" (and therefore 35.43307 user units)
5 "lin" equals "90px" (and therefore 90 user units)

Note that use of px units or any other absolute unit identifiers can cause inconsistent visual results on
different viewing environments since the size of "1px" may map to a different number of user units on
different systems; thus, absolute units identifiers are only recommended for the width and the height on
outermost 'svg' elements and situations where the content contains no transformations and it is desirable to
specify values relative to the device pixel grid or to a particular real world unit size.

For percentage values that are defined to be relative to the size of viewport:

. For any x-coordinate value or width value expressed as a percentage of the viewport, the value to use

is the specified percentage of the actual-width in user units for the nearest containing viewport, where
actual-width is the width dimension of the viewport element within the user coordinate system for the
viewport element.

For any y-coordinate value or height value expressed as a percentage of the viewport, the value to
use is the specified percentage of the actual-height in user units for the nearest containing viewport,
where actual-height is the height dimension of the viewport element within the user coordinate system
for the viewport element.

For any other length value expressed as a percentage of the viewport, the percentage is calculated
as the specified percentage of sqrt ((actual -wi dth)**2 + (actual -

hei ght)**2))/sqrt(2).

Example Units below illustrates some of the processing rules for different types of units.

<?xm version="1.0" standal one="no"?>
<I DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ Gaphics/ SVE 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="400px" hei ght ="200px" vi ewBox="0 0 4000 2000"
xm ns="http://wwmv. w3. org/ 2000/ svg" version="1.1">
<title>Exanple Units</title>
<desc>lllustrates various units options</desc>

<l-- Frane the picture -->
<rect x="5" y="5" wi dth="3990" hei ght ="1990"
fill="none" stroke="blue" stroke-w dt h="10"/>

http://www.w3.org/2000/svg

<g fill="blue" stroke="red" font-fam|y="Verdana" font-size="150">

<l-- Absolute unit specifiers -->
<g transform="transl at e(400,0) ">
<text x="-50" y="300" fill="black" stroke="none">Abs. units:</text>

<rect x="0" y="400" wi dth="4in" height="2in" stroke-w dth=".4in"/>
<rect x="0" y="750" w dt h="384" hei ght="192" stroke-w dth="38.4"/>
<g transforne"scal e(2)">

<rect x="0" y="600" width="4in" height="2in" stroke-w dth=".4in"/>

</ g>
</ g>
<I-- Relative unit specifiers -->
<g transform="transl at e(1600, 0) ">
<text x="-50" y="300" fill="black" stroke="none">Rel. units:</text>

<rect x="0" y="400" wi dth="2.5en' hei ght="1.25en stroke-w dth=".25enl/>
<rect x="0" y="750" wi dth="375" height="187.5" stroke-w dth="37.5"/>
<g transforne"scal e(2)">

<rect x="0" y="600" width="2.5enm' height="1.25en" stroke-w dth=".25eni/>

</ g>
</ g>
<l-- Percentages -->
<g transform="transl at e(2800, 0) ">
<text x="-50" y="300" fill="black" stroke="none">Percentages: </text>

<rect x="0" y="400" wi dth="10% height="10% stroke-w dth="1%/>
<rect x="0" y="750" wi dth="400" hei ght="200" stroke-w dt h="31.62"/>
<g transforne"scal e(2)">
<rect x="0" y="600" wi dth="10% height="10% stroke-w dth="1%/>
</ g>
</ g>
</ g>
</ svg>

Abs. units: . units: Percentages.

Rel
-
-

Example Units

View this example as SVG (SVG-enabled browsers only)

The three rectangles on the left demonstrate the use of one of the absolute unit identifiers, the "in" unit
(inch). The reference image above was generated on a 96dpi system (i.e., 1 inch = 96 pixels). Therefore,
the topmost rectangle, which is specified in inches, is exactly the same size as the middle rectangle, which

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/coords/Units.svg

is specified in user units such that there are 96 user units for each corresponding inch in the topmost
rectangle. (Note: on systems with different screen resolutions, the top and middle rectangles will likely be
rendered at different sizes.) The bottom rectangle of the group illustrates what happens when values
specified in inches are scaled.

The three rectangles in the middle demonstrate the use of one of the relative unit identifiers, the "em" unit.
Because the 'font-size' property has been set to 150 on the outermost 'g' element, each "em" unit is equal to
150 user units. The topmost rectangle, which is specified in "em" units, is exactly the same size as the
middle rectangle, which is specified in user units such that there are 150 user units for each corresponding
"em" unit in the topmost rectangle. The bottom rectangle of the group illustrates what happens when values
specified in "em" units are scaled.

The three rectangles on the right demonstrate the use of percentages. Note that the width and height of the
viewport in the user coordinate system for the viewport element (in this case, the outermost 'svg' element)
are 4000 and 2000, respectively, because processing the viewBox attribute results in a transformed user
coordinate system. The topmost rectangle, which is specified in percentage units, is exactly the same size
as the middle rectangle, which is specified in equivalent user units. In particular, note that the 'stroke-width'
property in the middle rectangle is set to 1% of the sqrt ((actual -wi dth)**2 + (actual -

hei ght)**2)) / sqrt(2), which in this case is .01*sqrt(4000*4000+2000*2000)/sqrt(2), or 31.62. The
bottom rectangle of the group illustrates what happens when values specified in percentage units are
scaled.

7.11 Object bounding box units

The following elements offer the option of expressing coordinate values and lengths as fractions (and, in
some cases, percentages) of the bounding box (via keyword objectBoundingBox) on a given element:

Element Attribute Effect

Indicates that the attributes which specify the

, gradient vector (x1, y1, x2, y2) represent
fractions or percentages of the bounding box of
the element to which the gradient is applied.

'linearGradient' |gradientUnits="objectBoundingBox'

Indicates that the attributes which specify the
center (cx, cy), the radius (r) and focus (fx, fy)
represent fractions or percentages of the
bounding box of the element to which the
gradient is applied.

'radialGradient' |gradientUnits="objectBoundingBox'

Indicates that the attributes which define how to
tile the pattern (x, y, width, height) are

'pattern’ atternUnits="objectBoundingBox" . . ,

e e : g established using the bounding box of the
element to which the pattern is applied.
Indicates that the user coordinate system for

‘Dattern’ patternContentUnits="objectBoundingBox" the contents of the pattern is established using

the bounding box of the element to which the
pattern is applied.

Indicates that the user coordinate system for
the contents of the 'clipPath' element is
established using the bounding box of the
element to which the clipping path is applied.

‘clipPath' clipPathUnits="objectBoundingBox"

Indicates that the attributes which define the
masking region (x, y, width, height) is
established using the bounding box of the
element to which the mask is applied.

'mask’ maskUnits="objectBoundingBox"

Indicates that the user coordinate system for
. |the contents of the 'mask' element are

established using the bounding box of the

element to which the mask is applied.

'mask’ maskContentUnits="objectBoundingBox'

Indicates that the attributes which define the
filter effects region (x, y, width, height)

filter' filterUnits="objectBoundingBox" represent fractions or percentages of the
bounding box of the element to which the filter
is applied.

Indicates that the various length values within
the filter primitives represent fractions or
percentages of the bounding box of the element
to which the filter is applied.

filter’ primitiveUnits="objectBoundingBox"

In the discussion that follows, the term applicable element is the element to which the given effect applies.
For gradients and patterns, the applicable element is the graphics element which has its 'fill' or 'stroke’
property referencing the given gradient or pattern. (See Inheritance of Painting Properties. For special rules
concerning text elements, see the discussion of object bounding box units and text elements.) For clipping
paths, masks and filters, the applicable element can be either a container element or a graphics element.

When keyword objectBoundingBox is used, then the effect is as if a supplemental transformation matrix
were inserted into the list of nested transformation matrices to create a new user coordinate system.

First, the (minx,miny) and (maxx,maxy) coordinates are determined for the applicable element and all of its
descendants. The values minx, miny, maxx and maxy are determined by computing the maximum extent
of the shape of the element in X and Y with respect to the user coordinate system for the applicable
element. The bounding box is the tightest fitting rectangle aligned with the axes of the applicable element's
user coordinate system that entirely encloses the applicable element and its descendants. The bounding
box is computed exclusive of any values for clipping, masking, filter effects, opacity and stroke-width. For
curved shapes, the bounding box encloses all portions of the shape, not just end points. For 'text' elements,
for the purposes of the bounding box calculation, each glyph is treated as a separate graphics element. The
calculations assume that all glyphs occupy the full glyph cell. For example, for horizontal text, the
calculations assume that each glyph extends vertically to the full ascent and descent values for the font.

Then, coordinate (0,0) in the new user coordinate system is mapped to the (minx,miny) corner of the tight
bounding box within the user coordinate system of the applicable element and coordinate (1,1) in the new
user coordinate system is mapped to the (maxx,maxy) corner of the tight bounding box of the applicable
element. In most situations, the following transformation matrix produces the correct effect:

[(maxx-mnx) 0 O (naxy-nminy) mnx mny]

When percentages are used with attributes that define the gradient vector, the pattern tile, the filter region or
the masking region, a percentage represents the same value as the corresponding decimal value (e.g., 50%
means the same as 0.5). If percentages are used within the content of a 'pattern’, 'clipPath’, 'mask’ or ‘filter'
element, these values are treated according to the processing rules for percentages as defined in Units.

Any numeric value can be specified for values expressed as a fraction or percentage of object bounding box
units. In particular, fractions less are zero or greater than one and percentages less than 0% or greater than
100% can be specified.

Keyword objectBoundingBox should not be used when the geometry of the applicable element has no width
or no height, such as the case of a horizontal or vertical line, even when the line has actual thickness when
viewed due to having a non-zero stroke width since stroke width is ignored for bounding box calculations.
When the geometry of the applicable element has no width or height and objectBoundingBox is specified,
then the given effect (e.g., a gradient or a filter) will be ignored.

7.12 Geographic Coordinate Systems

In order to allow interoperability between SVG content generators and user agents dealing with maps
encoded in SVG, SVG encourages the use of a common metadata definition for describing the coordinate
system used to generate SVG documents.

Such metadata should be added under the 'metadata’ element of the topmost 'svg' element describing the
map. They consist of an RDF description of the Coordinate Reference System definition used to generate
the SVG map.

The definition should be conformant to the XML grammar described in the OpenGIS Recommendation on
the Definition of Coordinate Reference System [OpenGIS Coordinate Systems]. In order to correctly map
the 2-dimensional data used by SVG, the CRS must be of subtype ProjectedCRS or Geographic2dCRS.
The first axis of the described CRS maps the SVG x-axis and the second axis maps the SVG y-axis.
Optionally, an additional affine transformation is applied during this mapping, this additional transformation
is described by an SVG transform attribute that can be added to the OpenGIS 'CoordinateReferenceSystem
element.

There are three typical uses for the SVG transform attribute. These are described below and used in the
examples.

. Most ProjectedCRS have the north direction represented by positive values of the second axis and
conversely SVG has a y-down coordinate system. That's why, in order to follow the usual way to
represent a map with the north at its top, it is recommended for that kind of ProjectedCRS to use the
SVG transform attribute with a 'scale(0, -1)' value as in the third example.

. Most Geographic2dCRS have the latitude as their first axis rather than the longitude, which means
that the south-north axis would be represented by the x-axis in SVG instead of the usual y-axis.
That's why, in order to follow the usual way to represent a map with the north at its top, it is
recommended for that kind of Geographic2dCRS to use the SVG transform attribute with a ‘rotate(-
90)' value as in the first example (this also add the scale(0, -1) as for ProjectedCRS).

. In addition, when converting for profiles which place restrictions on precision of real number values, it

http://www.opengis.org/techno/specs/01-014r3.pdf

may be useful to add an additional scaling factor to retain good precision for a specific area. When
generating an SVG document from WGS84 geographic coordinates (EPGS 4326), we recommend
the use of an additional 100 times scaling factor corresponding to an SVG transform attribute with a
'rotate(-90) scale(100)' value (shown in the second example). Different scaling values may be
required depending on the particular CRS.

The main purpose of such metadata is to indicate to the User Agent that two or more SVG documents can
be overlayed or merged into a single document. Obviously, if two maps reference the same Coordinate
Reference System definition and have the same SVG transform attribute value then they can be overlayed
without reprojecting the data. If the maps reference different Coordinate Reference Systems and/or have
different SVG transform attribute value, then a specialized cartographic User Agent may choose to
transform the coordinate data to overlay the data. However, typical SVG user agents are not required to
perform these types of transformations, or even recognize the metadata.

Below is a simple example of the coordinate metadata, which describes the coordinate system used by the
document via a URI.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN
"http://ww. w3. org/ G aphi cs/ SV@ 1.1/ DTD/ svgll. dtd" >
<svg wi dt h="100" hei ght="100" vi ewBox="0 0 1000 1000" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<net adat a>
<rdf : RDF xm ns: rdf
xm ns: crs
xm ns: svg="ht
<rdf: Description>
<l-- The Coordinate Reference Systemis described
t hrough an URI. -->
<crs: Coor di nat eRef erenceSyst em svg: t ransform="rot at e(-90) "
rdf:resource=""http://ww. exanpl e. org/ srs/ epsg. xm #4326"/ >
</rdf: Description>
</ rdf : RDF>
</ met adat a>
<l-- The actual map content -->
</ svg>

“http://ww. w3.org/ 1999/ 02/ 22-r df - synt ax- ns#"
“http://ww. ogc.org/crs"
tp: // www. w3. or g/ 2000/ svg" >

The second example uses a well-known identifier to describe the coordinate system. Note that the
coordinates used in the document have had the supplied transform applied.

<?xm version="1.0""?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ Graphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="100" hei ght="100" vi ewBox="0 0 1000 1000" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<net adat a>
<rdf: RDF xmins:rdf = "http://ww.w3.org/ 1999/ 02/ 22-rdf - synt ax- ns#"
xmns:crs = "http://ww. ogc. org/crs”
xm ns: svg="http://www. w3. or g/ 2000/ svg" >
<rdf: Descri ption>
<l-- In case of a well-known Coordi nate Reference System
an 'ldentifier' is enough to describe the CRS -->
<crs: Coor di nat eRef erenceSyst em svg: transforn"rot ate(-90) scal e(100,
100) ">
<crs:ldentifier>
<crs: code>4326</crs: code>
<crs: codeSpace>EPSG</ crs: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
</ crs: Coordi nat eRef er enceSyst enp
</rdf: Description>
</ rdf : RDF>

</ met adat a>
<l-- The actual map content -->
</ svg>

The third example defines the coordinate system completely within the SVG document.

<?xm version="1.0"7?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ Gaphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="100" hei ght="100" vi ewBox="0 0 1000 1000" version="1.1"
xm ns="http://ww. w3. org/ 2000/ svg" >
<nmet adat a>
<rdf: RDF xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#"
xm ns:crs="http://ww. ogc. org/crs"
xm ns: svg="http://www. w3. or g/ 2000/ svg" >
<rdf: Description>
<l-- For other CRS it should be entirely defined -->
<crs: Coordi nat eRef erenceSyst em svg: transforn¥"scal e(1,-1)">
<crs: NaneSet >
<crs: name>Mercat or projection of WSS84</crs: name>
</ crs: NaneSet >
<crs: Proj ect edCRS>
<l-- The actual definition of the CRS -->
<crs: Cartesi anCoor di nat eSyst enp
<crs: di mensi on>2</crs: di nensi on>
<crs: Coor di nat eAxi s>
<crs: axi sDirection>north</crs: axisDirection>
<crs: Angul ar Uni t >
<crs:ldentifier>
<crs: code>9108</crs: code>
<crs: codeSpace>EPSG</ cr s: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
</ crs: Angul ar Uni t >
</ crs: Coor di nat eAxi s>
<crs: Coor di nat eAxi s>
<crs: axi sDirection>east</crs: axi sDirection>
<crs: Angul ar Uni t >
<crs:ldentifier>
<crs: code>9108</crs: code>
<crs: codeSpace>EPSG</ crs: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
</ crs: Angul ar Uni t >
</ crs: Coordi nat eAxi s>
</ crs: Cartesi anCoor di nat eSyst enp
<crs: Coor di nat eRef er enceSyst en»
<l-- the reference systemof that projected systemis
WGS84 which is EPSG 4326 in EPSG codeSpace -->
<crs: NaneSet >
<crs: name>WES 84</ crs: nane>
</ crs: NaneSet >
<crs:ldentifier>
<crs: code>4326</crs: code>
<crs: codeSpace>EPSG</ crs: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
</ crs: Coor di nat eRef er enceSyst enw
<crs: Coordi nat eTransf ormati onDefinition>
<crs: sour cebDi nensi ons>2</ crs: sour ceDi nensi ons>
<crs:target Di mensi ons>2</crs: target D nensi ons>
<crs: ParaneterizedTransformti on>
<crs: Transf or mat i onMet hod>
<l-- the projection is a Mercator projection which is
EPSG 9805 i n EPSG codeSpace -->
<crs: NaneSet >
<crs: name>Mer cat or </ crs: nane>
</ crs: NaneSet >
<crs:ldentifier>
<crs: code>9805</ crs: code>

<crs: codeSpace>EPSG</ crs: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
<crs:description>Mercator (2SP)</crs:description>
</ crs: Transf or mat i onMet hod>
<crs: Paranet er >
<crs: NameSet >
<crs:nanme>Latitude of 1st standart parallel </crs:nane>
</ crs: NameSet >
<crs:ldentifier>
<crs: code>8823</crs: code>
<crs: codeSpace>EPSG</ crs: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
<crs:val ue>0</crs: val ue>
</ crs: Par anet er >
<crs: Paranet er >
<crs: NaneSet >
<crs: nane>Longi tude of natural origin</crs:nanme>
</ crs: NanmeSet >
<crs:ldentifier>
<crs: code>8802</ crs: code>
<crs: codeSpace>EPSCG</ cr s: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
<crs:val ue>0</crs: val ue>
</ crs: Paranet er >
<crs: Par anet er >
<crs: NaneSet >
<crs: nane>Fal se Easting</crs: nane>
</ crs: NanmeSet >
<crs:ldentifier>
<crs: code>8806</crs: code>
<crs: codeSpace>EPSCG</ cr s: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
<crs:val ue>0</crs: val ue>
</ crs: Par anet er >
<crs: Par anet er >
<crs: NaneSet >
<crs: nane>Fal se Northi ng</crs: nane>
</ crs: NanmeSet >
<crs:ldentifier>
<crs: code>8807</crs: code>
<crs: codeSpace>EPSG</ cr s: codeSpace>
<crs:edition>5.2</crs:edition>
</crs:ldentifier>
<crs:val ue>0</crs: val ue>
</ crs: Paranet er >
</crs: Paraneteri zedTransformati on>
</ crs: Coordi nat eTransformati onDefinition>
</ crs: Project edCRS>
</ crs: Coor di nat eRef er enceSyst en
</rdf: Description>
</ rdf : RDF>
</ net adat a>
<l-- the actual map content -->
</ svg>

7.13 Viewport Attribute Module

The Viewport Attribute Module defines the ViewportPresentationAttrs attribute set.

|Co||ection Name |Attributes in Collection

]ViewportPresentationAttrs]clip, overflow

7.14 DOM interfaces

The following interfaces are defined below: SVGPoint, SVGPointList, SVGMatrix, SVGTransform,
SVGTransformList, SVGAnimatedTransformList, SVGPreserveAspectRatio,
SVGAnimatedPreserveAspectRatio.

Interface SVGPoint

Many of the SVG DOM interfaces refer to objects of class SVGPoint. An SVGPoint is an (x,y) coordinate
pair. When used in matrix operations, an SVGPoint is treated as a vector of the form:

]
]

[
[
[1]

< X

IDL Definition

i nterface SVGPoi nt {

attribute float x;

/'l rai ses DOVException on setting
attribute float vy;

/'l rai ses DOVException on setting

SVGPoi nt matrixTransform (in SVGWatrix matrix);
Ji

Attributes
float x
The x coordinate.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The y coordinate.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
Methods
matrixTransform

Applies a 2x3 matrix transformation on this SVGPoint object and returns a new, transformed
SVGPoint object:

newpoi nt = matrix * thispoint

Parameters

in SVGMatrix matrix The matrix which is to be applied to this SVGPoint object.
Return value

SVGPoint A new SVGPoint object.
No Exceptions

Interface SVGPointList
This interface defines a list of SVGPoint objects.

SVGPointList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

i nterface SVGPoi nt Li st {
readonly attribute unsigned | ong nunber O |t ens;

voi d clear ()
rai ses(DOVException);

SVGPoint initialize (in SVGPoint newltem)
rai ses(DOVException, SVGException);

SVGPoi nt getltem (in unsigned |ong index)
rai ses(DOVException);

SVGPoi nt insertltenBefore (in SVGPoint newltem in unsigned |ong index)
rai ses(DOVException, SVGException);

SVGPoi nt replaceltem (in SVGoint newtem in unsigned | ong index)
rai ses(DOVException, SVGException);

SVGPoi nt renmoveltem (in unsigned | ong index)
rai ses(DOVException);

SVGPoi nt appendltem (in SVGPoi nt newltem)
rai ses(DOVException, SVGException);

Ji 5

Attributes
readonly unsigned long numberOfltems
The number of items in the list.
Methods
clear
Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.

initialize
Clears all existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters
in SVGPoint newltem The item which should become the only member of the list.
Return value
SVGPoint The item being inserted into the list.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
getltem
Returns the specified item from the list.
Parameters
in unsigned long index The index of the item from the list which is to be returned. The
first item is number 0.
Return value
SVGPoint The selected item.
Exceptions
DOMEXxception INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
insertltemBefore
Inserts a new item into the list at the specified position. The first item is number O. If newltem is

already in a list, it is removed from its previous list before it is inserted into this list.
Parameters

in SVGPoint newltem The item which is to be inserted into the list.

in unsigned long index The index of the item before which the new item is to be
inserted. The first item is number O.
If the index is equal to 0, then the new item is inserted at the
front of the list. If the index is greater than or equal to

numberOfltems, then the new item is appended to the end of
the list.

Return value
SVGPoint The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
replaceltem
Replaces an existing item in the list with a new item. If newltem is already in a list, it is removed

from its previous list before it is inserted into this list.
Parameters

in SVGPoint newltem The item which is to be inserted into the list.

in unsigned long index The index of the item which is to be replaced. The first item is
number O.
Return value
SVGPoint The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot

be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater

than or equal to numberOfltems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
removeltem
Removes an existing item from the list.
Parameters
in unsigned long index The index of the item which is to be removed. The first item is
number O.

Return value
SVGPoint The removed item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
appendlitem

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters
in SVGPoint newltem The item which is to be inserted into the list. The first item is
number O.
Return value
SVGPoint The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.

Interface SVGMatrix

Many of SVG's graphics operations utilize 2x3 matrices of the form:
[a c €]
[bd f]
which, when expanded into a 3x3 matrix for the purposes of matrix arithmetic, become:

[a c €]

IDL Definition

interface SvVGvatri x {

attribute float a;

/'l rai ses DOVException on setting
attribute float b;

/1 raises DOVException on setting
attribute float c;

/1 rai ses DOVException on setting
attribute float d;

/'l raises DOVException on setting
attribute float e;

/'l rai ses DOVException on setting
attribute float f;

/1 raises DOVException on setting

SVGwatrix nmultiply (in SVGvatrix secondMatrix);
SVGWatri x inverse ()
rai ses(SVCGException);

SVGwatrix translate (in float x, in float y);
SVGwatrix scale (in float scal eFactor);
SVGWAatri x scal eNonUni form (in float scal eFactorX, in float scal eFactorY);
SVGwatrix rotate (in float angle);
SVGwatri x rotateFromvector (in float x, in float y)
rai ses(SVGException);
SVGwtrix flipX ();
SVGwtrix flipY ();
SVGwatri x skewX (in float angle);
SVGwatri x skewy (in float angle);
i
Attributes
float a
The a component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float b
The b component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float c

The ¢ component of the matrix.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.

float d
The d component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.
float e
The e component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float f
The f component of the matrix.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
Methods
multiply
Performs matrix multiplication. This matrix is post-multiplied by another matrix, returning the
resulting new matrix.
Parameters
in SVGMatrix secondMatrix The matrix which is post-multiplied to this matrix.
Return value
SVGMatrix The resulting matrix.
No Exceptions
inverse
Returns the inverse matrix.
No Parameters
Return value
SVGMatrix The inverse matrix.
Exceptions
SVGException SVG_MATRIX_NOT_INVERTABLE: Raised if this matrix is not
invertable.
translate
Post-multiplies a translation transformation on the current matrix and returns the resulting
matrix.
Parameters

in float x The distance to translate along the x-axis.
in float y The distance to translate along the y-axis.
Return value
SVGMatrix The resulting matrix.
No Exceptions
scale
Post-multiplies a uniform scale transformation on the current matrix and returns the resulting
matrix.
Parameters
in float scaleFactor Scale factor in both X and Y.
Return value
SVGMatrix The resulting matrix.
No Exceptions

scaleNonUniform
Post-multiplies a non-uniform scale transformation on the current matrix and returns the
resulting matrix.
Parameters

in float scaleFactorX Scale factor in X.

in float scaleFactorY Scale factorinY.
Return value

SVGMatrix The resulting matrix.

No Exceptions

rotate
Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix.
Parameters

in float angle Rotation angle.
Return value
SVGMatrix The resulting matrix.
No Exceptions
rotateFromVector
Post-multiplies a rotation transformation on the current matrix and returns the resulting matrix.
The rotation angle is determined by taking (+/-) atan(y/x). The direction of the vector (x,y)
determines whether the positive or negative angle value is used.
Parameters
in float x The X coordinate of the vector (x,y). Must not be zero.
in floaty The Y coordinate of the vector (x,y). Must not be zero.
Return value

SVGMatrix The resulting matrix.

Exceptions
SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an
invalid value.
flipX
Post-multiplies the transformation [-1 0 0 1 0 0] and returns the resulting matrix.
No Parameters
Return value
SVGMatrix The resulting matrix.
No Exceptions
flipY
Post-multiplies the transformation [1 0 0 -1 0 0] and returns the resulting matrix.
No Parameters
Return value
SVGMatrix The resulting matrix.
No Exceptions
skewX
Post-multiplies a skewX transformation on the current matrix and returns the resulting matrix.
Parameters

in float angle Skew angle.
Return value
SVGMatrix The resulting matrix.

No Exceptions
skewY
Post-multiplies a skewY transformation on the current matrix and returns the resulting matrix.

Parameters
in float angle Skew angle.

Return value

SVGMatrix The resulting matrix.
No Exceptions

Interface SVGTransform

SVGTransform is the interface for one of the component transformations within a SVGTransformList;
thus, a SVGTransform object corresponds to a single component (e.g., "scale(..)" or "matrix(...)") within a
transform attribute specification.

IDL Definition

const
const
const
const
const
const
const

voi d
voi d
voi d
voi d
voi d
voi d

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

set Matri x

set Scal e (

set Rot at e

set Skewy (

[l Transform Types

short
short
short
short
short
short
short

i nterface SVGIransform {

SVG_TRANSFORM_UNKNOWN
SVG_TRANSFORM MATRI X
SVG_TRANSFORM TRANSLATE
SVG_TRANSFORM SCALE
SVG_TRANSFORM ROTATE
SVG_TRANSFORM_SKEWK
SVG_TRANSFORM SKEWY

I T TR TR TR TR
SRR

readonly attribute unsigned short type;
readonly attribute SVGWatrix matri x;
readonly attribute float angle;

(in SVGwAatrix matrix);

set Transl ate (
in float sx, in float sy);

(infloat angle, in float cx, in float cy);

set SkewX (in float angle);

in float angle);

in float tx, in float ty);

Definition group Transform Types
Defined constants

SVG_TRANSFORM_UNKNOWN The unit type is not one of predefined types. It is invalid to

attempt to define a new value of this type or to attempt to
switch an existing value to this type.

SVG_TRANSFORM_MATRIX A "matrix(...)" transformation.
SVG_TRANSFORM_TRANSLATE A "translate(...)" transformation.
SVG_TRANSFORM_SCALE A "scale(...)" transformation.
SVG_TRANSFORM_ROTATE A "rotate(...)" transformation.
SVG_TRANSFORM_SKEWX A "skewX(...)" transformation.

SVG_TRANSFORM_SKEWY A "skewY(...)" transformation.

Attributes

readonly unsigned short type
The type of the value as specified by one of the constants specified above.

readonly SVGMatrix matrix
The matrix that represents this transformation.
For SVG_TRANSFORM_MATRIX, the matrix contains the a, b, c, d, e, f values supplied by the
user.
For SVG_TRANSFORM_TRANSLATE, e and f represent the translation amounts
(a=1,b=0,c=0,d=1).
For SVG_TRANSFORM_SCALE, a and d represent the scale amounts (b=0,c=0,e=0,f=0).
For SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and
SVG_TRANSFORM_SKEWY, a, b, c and d represent the matrix which will result in the given
transformation (e=0,f=0).

readonly float angle
A convenience attribute for SVG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and
SVG_TRANSFORM_SKEWY. It holds the angle that was specified.
For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and
SVG_TRANSFORM_SCALE, angle will be zero.

Methods

setMatrix
Sets the transform type to SVG_TRANSFORM_MATRIX, with parameter matrix defining the
new transformation.
Parameters

in SVGMatrix matrix The new matrix for the transformation.

No Return Value
No Exceptions
setTranslate
Sets the transform type to SVG_TRANSFORM_TRANSLATE, with parameters tx and ty
defining the translation amounts.
Parameters
in float tx The translation amount in X.
in float ty The translation amountin Y.

No Return Value
No Exceptions
setScale
Sets the transform type to SVG_TRANSFORM_SCALE, with parameters sx and sy defining
the scale amounts.
Parameters
in float sx The scale factor in X.
in float sy The scale factorinY.
No Return Value
No Exceptions
setRotate
Sets the transform type to SVG_TRANSFORM_ROTATE, with parameter angle defining the
rotation angle and parameters cx and cy defining the optional centre of rotation.
Parameters
in float angle The rotation angle.
in float cx The x coordinate of centre of rotation.
in float cy The y coordinate of centre of rotation.

No Return Value

No Exceptions
setSkewX

Sets the transform type to SVG_TRANSFORM_SKEWX, with parameter angle defining the

amount of skew.
Parameters
in float angle The skew angle.
No Return Value
No Exceptions
setSkewY

Sets the transform type to SVG_TRANSFORM_SKEWY, with parameter angle defining the

amount of skew.
Parameters

in float angle The skew angle.

No Return Value
No Exceptions

Interface SVGTransformList

This interface defines a list of SVGTransform objects.

The SVGTransformList and SVGTransform interfaces correspond to the various attributes which specify a
set of transformations, such as the transform attribute which is available for many of SVG's elements.

SVGTransformList has the same attributes and methods as other SVGxxxList interfaces. Implementers

may consider using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

i nt erface SVGIransforniist {
readonly attribute unsigned | ong nunber O | t ens;

voi d clear ()
rai ses(DOVException);
SVGIransforminitialize (in SVGIransform newlitem)
rai ses(DOVException, SVGException);
SVGTransform getltem (in unsigned [ong index)
rai ses(DOVException);
SVGIransforminsertltenBefore (in SVGIransformnewltem in unsigned
rai ses(DOVException, SVGException);

rai ses(DOVException, SVGException);
SVGIransform renmoveltem (in unsigned | ong i ndex)

rai ses(DOVException);
SVGTr ansf or m appendltem (i n SVGIransform newitem)

rai ses(DOVException, SVGException);
SVGTr ansf or m cr eat eSVGIT ansfornFronmvatrix (in SVGvatrix matrix);
SVGIr ansf orm consol i date ();

| ong i ndex)

SVGTransformreplaceltem (in SVGIransformnewltem in unsigned |ong index)

Attributes
readonly unsigned long numberOfltems
The number of items in the list.
Methods
clear
Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
initialize
Clears all existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters
in SVGTransform newltem The item which should become the only member of the list.
Return value
SVGTransform The item being inserted into the list.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
getltem
Returns the specified item from the list.
Parameters
in unsigned long index The index of the item from the list which is to be returned. The
first item is number O.
Return value
SVGTransform The selected item.
Exceptions
DOMException INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
insertltemBefore
Inserts a new item into the list at the specified position. The first item is number 0. If newltem is
already in a list, it is removed from its previous list before it is inserted into this list.

Parameters
in SVGTransform newltem The item which is to be inserted into the list.
in unsigned long index The index of the item before which the new item is to be

inserted. The first item is number 0.
If the index is equal to 0, then the new item is inserted at
the front of the list. If the index is greater than or equal to
numberOfltems, then the new item is appended to the end
of the list.
Return value
SVGTransform The inserted item.

Exceptions

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
replaceltem

Replaces an existing item in the list with a new item. If newltem is already in a list, it is removed
from its previous list before it is inserted into this list.

Parameters
in SVGTransform newltem The item which is to be inserted into the list.
in unsigned long index The index of the item which is to be replaced. The first item

is number O.
Return value
SVGTransform The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfitems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
removeltem
Removes an existing item from the list.
Parameters
in unsigned long index The index of the item which is to be removed. The first item is
number O.
Return value
SVGTransform The removed item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
appenditem

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters

in SVGTransform newltem The item which is to be inserted into the list. The first item is
number O.
Return value
SVGTransform The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
createSVGTransformFromMatrix
Creates an SVGTransform object which is initialized to transform of type

SVG_TRANSFORM_MATRIX and whose values are the given matrix.
Parameters

in SVGMatrix matrix The matrix which defines the transformation.
Return value
SVGTransform The returned SVGTransform object.

No Exceptions

consolidate
Consolidates the list of separate SVGTransform objects by multiplying the equivalent
transformation matrices together to result in a list consisting of a single SVGTransform object
of type SVG_TRANSFORM_MATRIX.
No Parameters
Return value

SVGTransform The resulting SVGTransform object which becomes single item in the
list. If the list was empty, then a value of null is returned.

No Exceptions

Interface SVGAnimatedTransformList

Used for the various attributes which specify a set of transformations, such as the transform attribute which
is available for many of SVG's elements, and which can be animated.

IDL Definition

i nt erface SVGAni mat edTr ansf or nli st {

readonly attribute SVGIransfornii st baseVal ;
readonly attribute SVGIransforniist ani nval ;

};

Attributes
readonly SVGTransformList baseVal
The base value of the given attribute before applying any animations.
readonly SVGTransformList animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

Interface SVGPreserveAspectRatio

The SVGPreserveAspectRatio interface corresponds to the preserveAspectRatio attribute, which is
available for some of SVG's elements.

IDL Definition

i nterface SVGPreserveAspect Ratio {

/1 Alignnment Types

const unsigned short SVG PRESERVEASPECTRATI O UNKNOMN
const unsigned short SVG PRESERVEASPECTRATI O NONE
const unsigned short SVG PRESERVEASPECTRATI O XM NYM N
const unsi gned short SVG PRESERVEASPECTRATI O XM DYM N
const unsigned short SVG PRESERVEASPECTRATI O XMAXYM N
const unsi gned short SVG PRESERVEASPECTRATI O XM NYM D
const unsi gned short SVG PRESERVEASPECTRATI O XM DYM D
const unsigned short SVG PRESERVEASPECTRATI O XMAXYM D
const unsi gned short SVG PRESERVEASPECTRATI O XM NYMAX
const unsigned short SVG PRESERVEASPECTRATI O XM DYNMAX
const unsigned short SVG PRESERVEASPECTRATI O XMAXYNMAX
/1l Meet-or-slice Types

const unsigned short SVG MEETORSLI CE UNKNOAN = O;
const unsi gned short SVG MEETORSLI CE_MEET = 1;

const unsi gned short SVG MEETORSLI CE SLI CE = 2;

1
=

59RO DN

=

attribute unsigned short align;

/] rai ses DOVException on setting
attribute unsigned short neetOr Slice;

/1 raises DOVException on setting

Definition group Alignment Types
Defined constants
SVG_PRESERVEASPECTRATIO_UNKNOWN The enumeration was set to a value that is
not one of predefined types. It is invalid to
attempt to define a new value of this type or
to attempt to switch an existing value to this

type.
SVG_PRESERVEASPECTRATIO_NONE Corresponds to value 'none' for attribute
preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMINYMIN Corresponds to value 'xMinYMin' for
attribute preserveAspectRatio.
SVG_PRESERVEASPECTRATIO_XMIDYMIN Corresponds to value 'xMidYMin' for
attribute preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMAXYMIN Corresponds to value 'xMaxYMin' for
attribute preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMINYMID Corresponds to value 'xMinYMid' for
attribute preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMIDYMID Corresponds to value 'xMidYMid' for
attribute preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMAXYMID Corresponds to value 'xMaxYMid' for
attribute preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMINYMAX Corresponds to value 'xMinYMax' for
attribute preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMIDYMAX Corresponds to value 'xMidYMax' for
attribute preserveAspectRatio.

SVG_PRESERVEASPECTRATIO_XMAXYMAX Corresponds to value 'xMaxYMax' for
attribute preserveAspectRatio.
Definition group Meet-or-slice Types
Defined constants
SVG_MEETORSLICE_UNKNOWN The enumeration was set to a value that is not one of
predefined types. It is invalid to attempt to define a new
value of this type or to attempt to switch an existing value

to this type.
SVG_MEETORSLICE_MEET Corresponds to value 'meet’ for attribute

preserveAspectRatio.
SVG_MEETORSLICE_SLICE Corresponds to value 'slice’ for attribute

preserveAspectRatio.
Attributes

unsigned short align
The type of the alignment value as specified by one of the constants specified above.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

unsigned short meetOrSlice
The type of the meet-or-slice value as specified by one of the constants specified above.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGAnimatedPreserveAspectRatio

Used for attributes of type SVGPreserveAspectRatio which can be animated.

IDL Definition

i nt erface SVGAni mat edPr eserveAspect Rati o {

readonly attribute SVGPreserveAspect Rati o baseVal ;
readonly attribute SVGPreserveAspectRati o ani nval ;

b

Attributes
readonly SVGPreserveAspectRatio baseVal
The base value of the given attribute before applying any animations.
readonly SVGPreserveAspectRatio animVal
If the given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given
attribute or property is not currently being animated, contains the same value as 'baseVal'.

previous next contents elements attributes properties index

c
o]
=
[4%]
o
c
]
=
=
o
J
@
o
@
-
4e)
=
o
=
3
o
.
=

previous next contents elements attributes properties index

30 April 2002

8 Paths

Contents

. 8.1 Introduction
. 8.2 The 'path' element
. 8.3 Path Data
o 8.3.1 General information about path data
o 8.3.2 The "moveto" commands
o 8.3.3 The "closepath" command
o 8.3.4 The "lineto" commands
o 8.3.5 The curve commands
o 8.3.6 The cubic Bézier curve commands
o 8.3.7 The quadratic Bézier curve commands
o 8.3.8 The elliptical arc curve commands
o 8.3.9 The grammar for path data
. 8.4 Distance along a path
. 8.5 DOM interfaces

8.1 Introduction

Paths represent the outline of a shape which can be filled, stroked, used as a clipping path, or any
combination of the three. (See Filling, Stroking and Paint Servers and Clipping, Masking and Compositing.)

A path is described using the concept of a current point. In an analogy with drawing on paper, the current
point can be thought of as the location of the pen. The position of the pen can be changed, and the outline
of a shape (open or closed) can be traced by dragging the pen in either straight lines or curves.

Paths represent the geometry of the outline of an object, defined in terms of moveto (set a new current
point), lineto (draw a straight line), curveto (draw a curve using a cubic Bézier), arc (elliptical or circular arc)
and closepath (close the current shape by drawing a line to the last moveto) elements. Compound paths
(i.e., a path with multiple subpaths) are possible to allow effects such as "donut holes" in objects.

This chapter describes the syntax, behavior and DOM interfaces for SVG paths. Various implementation
notes for SVG paths can be found in 'path' element implementation notes and Elliptical arc implementation

notes.

A path is defined in SVG using the 'path’ element.

8.2 The 'path' element

<IENTITY % SVG pat h. el enent "I NCLUDE" >
<I[%8VG pat h. el enent ; [
<IENTI TY % SVG. pat h. cont ent
“((9%8VG Description.class;)*, (%8VG Animation.class;)*)"

>
<! ELEMENT %8VG pat h. gnane; %5VG pat h. content; >
<l-- end of SVG path.elenent -->]]>

<IENTITY % SVG path. attlist "INCLUDE" >
<I[¥%BVG path. attlist;[
<I ATTLI ST %8VG pat h. gnane;
%SVG Core. attrib;
%6VG Condi tional .attrib;
%86VG Style.attrib;
%SVG Paint.attrib;
%8VG Col or. attrib;
YSVG Opacity. attrib;
%8VG G aphics.attrib;
Y8VG. Marker. attrib;
Y%8VG Cip.attrib;
%SVG Mask. attrib;
YSVG Filter.attrib;
%8VG Graphi cal Events. attrib;
%8VG Cursor. attrib;
%SVG External . attrib;
d %Pat hDat a. dat at ype; #REQUI RED
pat hLengt h %Nunber . dat at ype; #| MPLI ED
transform %lransfornii st. datatype; #l MPLIED

Attribute definitions:

d = "path data"
The definition of the outline of a shape. See Path data.
Animatable: yes. Path data animation is only possible when each path data specification within an
animation specification has exactly the same list of path data commands as the d attribute. If an
animation is specified and the list of path data commands is not the same, then the animation
specification is in error (see Error Processing). The animation engine interpolates each parameter to
each path data command separately based on the attributes to the given animation element. Flags
and booleans are interpolated as fractions between zero and one, with any non-zero value
considered to be a value of one/true.

pat hLengt h ="<number>"
The author's computation of the total length of the path, in user units. This value is used to calibrate
the user agent's own distance-along-a-path calculations with that of the author. The user agent will
scale all distance-along-a-path computations by the ratio of pathLength to the user agent's own

computed value for total path length. pathLength potentially affects calculations for text on a path,
motion animation and various stroke operations.

A negative value is an error (see Error processing).

Animatable: yes.

8.3 Path data

8.3.1 General information about path data

A path is defined by including a 'path’ element which contains a d="(path data)" attribute, where the d
attribute contains the moveto, line, curve (both cubic and quadratic Béziers), arc and closepath instructions.

Example triangle01 specifies a path in the shape of a triangle. (The M indicates a moveto, the L's indicate
lineto's, and the z indicates a closepath).

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3.org/ Gaphics/SVE 1. 1/ DTD/ svgll. dt d" >

<svg wi dt h="4cni' hei ght="4cni" vi ewBox="0 0 400 400"

xm ns="http://ww. w3. org/ 2000/ svg" version="1.1">
<title>Exanple triangl e0l- sinple exanple of a 'path'</title>
<desc>A path that draws a triangl e</ desc>
<rect x="1" y="1" w dt h="398" hei ght="398"

fill="none" stroke="blue" />
<path d="M 100 100 L 300 100 L 200 300 z"
fill="red" stroke="blue" stroke-w dth="3" />

</ svg>

Example
triangle01

View this example as SVG (SVG-enabled browsers only)

Path data can contain newline characters and thus can be broken up into multiple lines to improve
readability. Because of line length limitations with certain related tools, it is recommended that SVG
generators split long path data strings across multiple lines, with each line not exceeding 255 characters.
Also note that newline characters are only allowed at certain places within path data.

http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/paths/triangle01.svg

The syntax of path data is concise in order to allow for minimal file size and efficient downloads, since many
SVG files will be dominated by their path data. Some of the ways that SVG attempts to minimize the size of
path data are as follows:

. Allinstructions are expressed as one character (e.g., a moveto is expressed as an M).

. Superfluous white space and separators such as commas can be eliminated (e.g., "M 100 100 L 200
200" contains unnecessary spaces and could be expressed more compactly as "M100 100L200
200").

. The command letter can be eliminated on subsequent commands if the same command is used
multiple times in a row (e.g., you can drop the second "L" in "M 100 200 L 200 100 L -100 -200" and
use "M 100 200 L 200 100 -100 -200" instead).

. Relative versions of all commands are available (uppercase means absolute coordinates, lowercase
means relative coordinates).

. Alternate forms of lineto are available to optimize the special cases of horizontal and vertical lines
(absolute and relative).

. Alternate forms of curve are available to optimize the special cases where some of the control points
on the current segment can be determined automatically from the control points on the previous
segment.

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable
decimal point is a Unicode [UNICODE] FULL STOP (".") character (also referred to in Unicode as PERIOD,
dot and decimal point) and no other delimiter characters are allowed. (For example, the following is an
invalid numeric value in a path data stream: "13,000.56". Instead, say: "13000.56".)

For the relative versions of the commands, all coordinate values are relative to the current point at the start
of the command.

In the tables below, the following notation is used:

. (): grouping of parameters
. +:1 or more of the given parameter(s) is required

The following sections list the commands.
8.3.2 The "moveto” commands

The "moveto” commands (M or m) establish a new current point. The effect is as if the "pen"” were lifted and
moved to a new location. A path data segment must begin with a "moveto” command. Subsequent "moveto”
commands (i.e., when the "moveto"” is not the first command) represent the start of a new subpath:

Command | Name | Parameters | Description

Start a new sub-path at the given (x,y) coordinate. M (uppercase)
indicates that absolute coordinates will follow; m (lowercase)
indicates that relative coordinates will follow. If a relative moveto

moveto | (X y)+ (m) appears as the first element of the path, then it is treated as a
pair of absolute coordinates. If a moveto is followed by multiple
pairs of coordinates, the subsequent pairs are treated as implicit
lineto commands.

M (absolute)
m (relative)

8.3.3 The "closepath” command

http://www.unicode.org/charts/PDF/U0000.pdf

The "closepath” (Z or z) ends the current subpath and causes an automatic straight line to be drawn from
the current point to the initial point of the current subpath. If a "closepath” is followed immediately by a
"moveto”, then the "moveto” identifies the start point of the next subpath. If a “closepath” is followed
immediately by any other command, then the next subpath starts at the same initial point as the current
subpath.

When a subpath ends in a "closepath," it differs in behavior from what happens when "manually” closing a
subpath via a "lineto" command in how 'stroke-linejoin' and 'stroke-linecap’ are implemented. With

"closepath", the end of the final segment of the subpath is "joined" with the start of the initial segment of the
subpath using the current value of 'stroke-linejoin’. If you instead "manually” close the subpath via a "lineto"

command, the start of the first segment and the end of the last segment are not joined but instead are each
capped using the current value of 'stroke-linecap’. At the end of the command, the new current point is set to

the initial point of the current subpath.

Command | Name Parameters | Description

Zor Close the current subpath by drawing a straight line from the
closepath | (none) . N .
Z current point to current subpath's initial point.

8.3.4 The "lineto" commands

The various "lineto” commands draw straight lines from the current point to a new point:

Command | Name Parameters | Description

Draw a line from the current point to the given (x,y)
coordinate which becomes the new current point. L
(uppercase) indicates that absolute coordinates will

lineto xy)+ follow; | (lowercase) indicates that relative coordinates will
follow. A number of coordinates pairs may be specified to
draw a polyline. At the end of the command, the new
current point is set to the final set of coordinates provided.

L (absolute)
| (relative)

Draws a horizontal line from the current point (cpx, cpy) to
(x, cpy). H (uppercase) indicates that absolute
coordinates will follow; h (lowercase) indicates that

H (absolute) : . . : ; .

h (relative) horizontal lineto | x+ relative coordinates will follow. Multiple x values can be
provided (although usually this doesn't make sense). At
the end of the command, the new current point becomes
(x, cpy) for the final value of x.

Draws a vertical line from the current point (cpx, cpy) to
(cpx, y). V (uppercase) indicates that absolute
coordinates will follow; v (lowercase) indicates that

vertical lineto y+ relative coordinates will follow. Multiple y values can be
provided (although usually this doesn't make sense). At
the end of the command, the new current point becomes
(cpx, y) for the final value of y.

V (absolute)
v (relative)

8.3.5 The curve commands

These three groups of commands draw curves:

. Cubic Bézier commands (C, ¢, S and s). A cubic Bézier segment is defined by a start point, an end

point, and two control points.

. Quadratic Bézier commands (Q, q, T and t). A quadratic Bézier segment is defined by a start point,

an end point, and one control point.

. Elliptical arc commands (A and a). An elliptical arc segment draws a segment of an ellipse.

8.3.6 The cubic Bézier curve commands

The cubic Bézier commands are as follows:

Command Name Parameters

C (absolute)

¢ (relative) curveto (x1yl x2y2xy)+

S (absolute)

s (relative) shorthand/smooth curveto | (x2 y2 x y)+

Description

Draws a cubic Bézier curve from the
current point to (x,y) using (x1,y1) as the
control point at the beginning of the curve
and (x2,y2) as the control point at the end
of the curve. C (uppercase) indicates that
absolute coordinates will follow; c
(lowercase) indicates that relative
coordinates will follow. Multiple sets of
coordinates may be specified to draw a
polybézier. At the end of the command,
the new current point becomes the final
(x,y) coordinate pair used in the
polybézier.

Draws a cubic Bézier curve from the
current point to (x,y). The first control
point is assumed to be the reflection of
the second control point on the previous
command relative to the current point. (If
there is no previous command or if the
previous command was notan C, ¢, S or
S, assume the first control point is
coincident with the current point.) (x2,y2)
is the second control point (i.e., the
control point at the end of the curve). S
(uppercase) indicates that absolute
coordinates will follow; s (lowercase)
indicates that relative coordinates will
follow. Multiple sets of coordinates may
be specified to draw a polybézier. At the
end of the command, the new current
point becomes the final (x,y) coordinate
pair used in the polybézier.

Example cubicO1 shows some simple uses of cubic Bézier commands within a path. The example uses an
internal CSS style sheet to assign styling properties. Note that the control point for the "S" command is
computed automatically as the reflection of the control point for the previous "C" command relative to the
start point of the "S" command.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3.org/ Gaphics/SVG@ 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="5cn{ hei ght="4cm' vi ewBox="0 0 500 400"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<titl e>Exanpl e cubi cOl- cubic Bézier commands in path data</title>
<desc>Pi cture showi ng a sinple exanple of path data
using both a "C'" and an "S" conmand,
al ong with annotations showi ng the control points
and end poi nts</desc>

<style type="text/css"><![CDATA|

.Border { fill:none; stroke:blue; stroke-width:1 }
. Connect { fill:none; stroke:#888888; stroke-wi dth:2 }
.SanmplePath { fill:none; stroke:red; stroke-wi dth:5 }

.EndPoint { fill:none; stroke: #3888888; stroke-wi dth:2 }
.Gl Point { fill:#888888; stroke:none }
.AutoCtl Point { fill:none; stroke:blue; stroke-w dth:4 }
. Label { font-size:22; font-famly: Verdana }

]1></style>

<rect class="Border" x="1" y="1" wi dth="498" hei ght="398" />

<pol yli ne cl ass="Connect" points="100,200 100, 100" />
<pol yl i ne cl ass="Connect" poi nts="250,100 250, 200" />
<pol yli ne cl ass="Connect" poi nts="250,200 250, 300" />
<pol yli ne cl ass="Connect" poi nts="400, 300 400, 200" />
<pat h cl ass="Sanpl ePat h" d="ML00, 200 C100, 100 250, 100 250, 200
S$S400, 300 400, 200" />
<circle class="EndPoi nt" cx="100" cy="200" r="10" />
<circle class="EndPoi nt" cx="250" cy="200" r="10" />
<circle class="EndPoi nt" cx="400" cy="200" r="10" />
<circle class="CtlPoint" cx="100" cy="100" r="10" />
<circle class="CtI Point" cx="250" cy="100" r="10" />
<circle class="Ct| Poi nt" c¢cx="400" cy="300" r="10" />
<circle class="AutoCt| Point" cx="250" cy="300" r="9" />
<text class="Label" x="25" y="70">ML00, 200 C100, 100 250, 100 250, 200</t ext >
<text class="Label" x="325" y="350"
styl e="text-anchor: m ddl e">S400, 300 400, 200</t ext >
</ svg>

M100,200 C100, 100 250, 100 250,200
L] o

#] .
S0, 300 400, 200

http://www.w3.org/2000/svg

Example
cubicO0l1

View this example as SVG (SVG- and CSS-enabled browsers only)

The following picture shows some how cubic Bézier curves change their shape depending on the position of
the control points. The first five examples illustrate a single cubic Bézier path segment. The example at the
lower right shows a "C" command followed by an "S" command.

] & o]
M L1000, 200 C100, 200 400, 100 400,200 ME00, 200 O675,100 575,100 900,200
»
M100, 500 C25 400 475,400 400,500 500 0600, 350 S00,650 900,500
L)
L L |

M 100, 800 C175, 700 325 700 400,800

o »

MED0, 800 0625, 700 25,700 750,600
S87S5, 200 900, 800

View this example as SVG (SVG-enabled browsers only)

8.3.7 The quadratic Bézier curve commands

The quadratic Bézier commands are as follows:

Command | Name Parameters | Description

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/paths/cubic01.svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/paths/cubic02.svg

Draws a quadratic Bézier
curve from the current point to
(x,y) using (x1,y1) as the
control point. Q (uppercase)
indicates that absolute
coordinates will follow; q
(lowercase) indicates that

quadratic Bézier curveto (x1yl xy)+ | relative coordinates will
follow. Multiple sets of
coordinates may be specified
to draw a polybézier. At the
end of the command, the new
current point becomes the
final (x,y) coordinate pair used
in the polybézier.

Q (absolute)
g (relative)

Draws a quadratic Bézier
curve from the current point to
(x,y). The control point is
assumed to be the reflection
of the control point on the
previous command relative to
the current point. (If there is
no previous command or if
the previous command was
nota Q, q, T or t, assume the

Shorthand/smooth quadratic Bézier curveto | (x y)+ control point is coincident with
the current point.) T
(uppercase) indicates that
absolute coordinates will
follow; t (lowercase) indicates
that relative coordinates will
follow. At the end of the
command, the new current
point becomes the final (x,y)
coordinate pair used in the
polybézier.

T (absolute)
t (relative)

Example quad01 shows some simple uses of quadratic Bézier commands within a path. Note that the
control point for the "T" command is computed automatically as the reflection of the control point for the
previous "Q" command relative to the start point of the "T" command.

<?xm version="1.0" standal one="no"?>
<I DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1//EN'
"http://ww. w3. org/ Gaphics/SVE 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="12cn' hei ght="6cnm" vi ewBox="0 0 1200 600"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1">
<title>Exanpl e quad0l - quadratic Bezier commands in path data</title>
<desc>Pi cture showing a "Q a "T" conmand,
al ong with annotations showi ng the control points
and end poi nts</desc>

<rect x="1" y="1" wi dth="1198" hei ght ="598"
fill="none" stroke="blue" stroke-w dth="1" />

http://www.w3.org/2000/svg

<pat h d="M00, 300 400,50 600, 300 T1000, 300"

fill="none" stroke="red" stroke-w dth="5" [>
<!-- End points -->
<g fill="black" >

<circle cx="200" cy="300" r="10"/>
<circle cx="600" cy="300" r="10"/>
<circle cx="1000" cy="300" r="10"/>

</ g>
<l-- Control points and Iines fromend points to control points -->
<g fill="#888888" >

<circle cx="400" cy="50" r="10"/>
<circle cx="800" cy="550" r="10"/>
</ g>
<pat h d="M00, 300 L400,50 L600, 300
L800, 550 L1000, 300"
fill="none" stroke="#888888" stroke-w dth="2" />
</ svg>

Example quadOl

View this example as SVG (SVG-enabled browsers only)

8.3.8 The elliptical arc curve commands

The elliptical arc commands are as follows:

Command | Name Parameters Description

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/paths/quad01.svg

A (absolute)
a (relative)

elliptical arc

(rx ry x-axis-rotation large-arc-flag
sweep-flag x y)+

Draws an elliptical arc from the
current point to (x, y). The size and
orientation of the ellipse are defined
by two radii (rx, ry) and an x-axis-
rotation, which indicates how the
ellipse as a whole is rotated relative to
the current coordinate system. The
center (cx, cy) of the ellipse is
calculated automatically to satisfy the
constraints imposed by the other
parameters. large-arc-flag and
sweep-flag contribute to the
automatic calculations and help
determine how the arc is drawn.

Example arcs01 shows some simple uses of arc commands within a path.

<?xm version="1.0"

<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3.org/ Gaphics/SVE 1. 1/ DTD/ svgll. dt d" >

<svg wi dt h="12cn' hei ght="5.25cn' vi ewBox="0 0 1200 400"

xm ns="http://ww.w3. org/ 2000/ svg"

st andal one="no" ?>

version="1.1">

<title>Exanple arcs01 - arc commands in path data</title>
<desc>Picture of a pie chart with two pie wedges and

a picture of a line with arc blips</desc>

<rect x="1" y="1" wi dth="1198" hei ght ="398"

fill="none"

st roke="bl ue"

stroke-w dt h="1"

/>

<pat h d="MB00, 200 h-150 al50,150 0 1,0 150, -150 z"

fill="red"

stroke="bl ue" stroke-w dt h="5"

/>

<path d="M75, 175 v-150 al50, 150 0 0,0 -150,150 z"
fill="yell ow' stroke="blue" stroke-w dth="5" />

<pat h d="Ms00, 350

</ svg>

a25, 25 -
a25,50 -
a25,75 -
a25, 100
fill="none"

50, - 25

30 0,1 50,-251 50,-25
30 0,1 50,-25 1 50,-25
30 0,1 50,-251 50,-25
-30 0,1 50,-25 1 50, -25"

stroke="red" stroke-w dt h="5"

/>

http://www.w3.org/2000/svg

Example arcs01

View this example as SVG (SVG-enabled browsers only)

The elliptical arc command draws a section of an ellipse which meets the following constraints:

. the arc starts at the current point

. the arc ends at point (X, y)

. the ellipse has the two radii (rx, ry)

. the x-axis of the ellipse is rotated by x-axis-rotation relative to the x-axis of the current coordinate
system.

For most situations, there are actually four different arcs (two different ellipses, each with two different arc
sweeps) that satisfy these constraints. large-arc-flag and sweep-flag indicate which one of the four arcs
are drawn, as follows:

. Of the four candidate arc sweeps, two will represent an arc sweep of greater than or equal to 180
degrees (the "large-arc"), and two will represent an arc sweep of less than or equal to 180 degrees
(the "small-arc"). If large-arc-flag is '1', then one of the two larger arc sweeps will be chosen;
otherwise, if large-arc-flag is '0’, one of the smaller arc sweeps will be chosen,

. If sweep-flag is '1', then the arc will be drawn in a "positive-angle" direction (i.e., the ellipse formula
x=cx+rx*cos(theta) and y=cy+ry*sin(theta) is evaluated such that theta starts at an angle
corresponding to the current point and increases positively until the arc reaches (x,y)). A value of O
causes the arc to be drawn in a "negative-angle" direction (i.e., theta starts at an angle value
corresponding to the current point and decreases until the arc reaches (x,y)).

The following illustrates the four combinations of large-arc-flag and sweep-flag and the four different arcs
that will be drawn based on the values of these flags. For each case, the following path data command was
used:

<path d="M 125,75 al100,50 0 ?,? 100, 50"
style="fill:none; stroke:red; stroke-w dth:6"/>

where "?,?" is replaced by "0,0" "0,1" "1,0" and "1,1" to generate the four possible cases.

Arc skart Arc start Arnc skt
#ro end Arc end Arc and
large-arc-flag=0 large-arc-flag=0
sweep-flag=0 sweep-flag=1
Arc start Arc shart
rC emd Arc arnd
large-arc-flag=1 large-arc-flag=1
sweep-flag=0 sweep-flag=1

View this example as SVG (SVG-enabled browsers only)

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/paths/arcs01.svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/paths/arcs02.svg

Refer to Elliptical arc implementation notes for detailed implementation notes for the path data elliptical arc
commands.

8.3.9 The grammar for path data
The following notation is used in the Backus-Naur Form (BNF) description of the grammar for path data:

. *20 or more

. +:1ormore

. 2200r1

« (): grouping

. |: separates alternatives

. double quotes surround literals

The following is the BNF for SVG paths.

svg- pat h:
wsp* novet o- dr awt o- conmand- gr oups? wsp*

novet o- dr awt o- comand- gr oups:
nmovet o- dr awt o- comrand- gr oup
| novet o- drawt o- command- gr oup wsp* novet o- dr awt o- conmand- gr oups

novet o- dr awt o- comrmand- gr oup:
movet o wsp* drawt o- conmrands?

dr awt o- conmrands:
dr awt o- command
| drawto-conmand wsp* drawt o- commands

dr awt o- conmmand:

cl osepath
lineto
hori zontal -1ineto
vertical-lineto
curveto

guadrati c- bezi er-curveto
snoot h- quadr ati c- bezi er-curveto

|
|
|
|
| snooth-curveto
|
|
| elliptical-arc

novet o:
("M | "nm) wsp* noveto-argunent-sequence

novet o- ar gunent - sequence
coordi nate-pair
| coordinate-pair comma-wsp? |ineto-argunment-sequence

cl osepat h:
(Il le | n le)
i neto:

("L" | "I) wsp* lineto-argunent-sequence

[i net o- ar gunent - sequence
coordi nate-pair
| coordinate-pair comma-wsp? |ineto-argunment-sequence

hori zontal -1i net o:

("H | "h") wsp* horizontal -Iineto-argunent-sequence
hori zontal -1i net o-ar gunent - sequence

coordi nate

| coordi nate comma-wsp? horizontal -1ineto-argunent-sequence
vertical -1ineto:

("V" | "v") wsp* vertical-lineto-argunent-sequence
vertical -1ineto-argunent - sequence

coordi nate

| coordinate conma-wsp? vertical-lineto-argunment-sequence
curvet o:

("C" | "c") wsp* curveto-argunment-sequence

cur vet o- ar gument - sequence:
cur vet o- ar gunment
| curveto-argument comma-wsp? curveto-ar gunent - sequence

curvet o-argunent:
coordi nat e-pai r conma-wsp? coordi nate-pair coma-wsp? coordinate-pair

snmoot h- cur vet o:
("S" | "s") wsp* snooth-curveto-argunent - sequence

snoot h- cur vet o- ar gunent - sequence
smoot h- cur vet o- ar gunent
| snoot h-curvet o-argument conma-wsp? snoot h- cur vet o- ar gunment - sequence

snoot h- cur vet o- ar gunent :
coordi nat e-pair comra-wsp? coordi nat e- pair

quadr ati c- bezi er-curvet o:
("Q | "qg") wsp* quadratic-bezier-curveto-argunent-sequence

qguadr ati c- bezi er - curvet o- ar gunent - sequence
quadr ati c- bezi er - cur vet o- ar gunent
| quadratic-bezier-curveto-argunment coma-wsp?
quadrati c- bezi er-curvet o- argunent - sequence

quadr ati c- bezi er - curvet o- ar gunent :
coordi nat e- pair comma-wsp? coor di nat e- pai r

snoot h- quadr ati c- bezi er-curvet o:
("T | "t") wsp* snoot h-quadratic-bezier-curveto-argunent-sequence

snoot h- quadr at i c- bezi er - curvet o- ar gunent - sequence
coordi nat e-pai r
| coordinate-pair comma-wsp? snoot h- quadrati c-bezi er-curveto-argunent - sequence

elliptical-arc
("A" | "a") wsp* elliptical-arc-argunment-sequence

el liptical-arc-argunment-sequence
el liptical-arc-argunent
| elliptical-arc-argunent conma-wsp? elliptical-arc-argunent-sequence

el liptical-arc-argunent:
nonnegat i ve- nunber conma-wsp? nonnegati ve- nunber conma-wsp?
nunber comua-wsp flag comma-wsp flag comma-wsp coordi nat e-pair

coor di nat e- pai r:
coor di nate coma-wsp? coordi nate

coordi nate
nunber

nonnegat i ve- nunber :
i nt eger - const ant
| floating-point-constant

nunber :
sign? integer-constant
| sign? floating-point-constant

flag:
n OII | n 1II

comma- wWsp:
(wsp+ conma? wsp*) | (comma wsp*)

conma:

i nt eger - const ant :
di git-sequence

fl oati ng- poi nt - const ant :
fractional -constant exponent?
| digit-sequence exponent

fractional -constant:
di git-sequence? "." digit-sequence
| digit-sequence "

exponent :
("e" | "E") sign? digit-sequence
si gn:
" +ll | " _ n
di gi t - sequence
digit
| digit digit-sequence
digit:
“o* | "a | "2 | "3 | "4 | "5" | "e" | "7 | "8 | "9"
wsp:
(#x20 | #x9 | #xD | #xA)

The processing of the BNF must consume as much of a given BNF production as possible, stopping at the
point when a character is encountered which no longer satisfies the production. Thus, in the string "M 100-
200", the first coordinate for the "moveto" consumes the characters "100" and stops upon encountering the
minus sign because the minus sign cannot follow a digit in the production of a "coordinate”. The result is that
the first coordinate will be "100" and the second coordinate will be "-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto” consumes the characters "0.6" and
stops upon encountering the second decimal point because the production of a "coordinate" only allows one
decimal point. The result is that the first coordinate will be "0.6" and the second coordinate will be ".5".

8.4 Distance along a path

Various operations, including text on a path and motion animation and various stroke operations, require
that the user agent compute the distance along the geometry of a graphics element, such as a 'path'.

Exact mathematics exist for computing distance along a path, but the formulas are highly complex and
require substantial computation. It is recommended that authoring products and user agents employ
algorithms that produce as precise results as possible; however, to accommodate implementation
differences and to help distance calculations produce results that approximate author intent, the pathLength
attribute can be used to provide the author's computation of the total length of the path so that the user
agent can scale distance-along-a-path computations by the ratio of pathLength to the user agent's own
computed value for total path length.

A "moveto" operation within a 'path' element is defined to have zero length. Only the various "lineto",
"curveto" and "arcto" commands contribute to path length calculations.

8.5 DOM interfaces

The following interfaces are defined below: SVGPathSeg, SVGPathSegClosePath,
SVGPathSegMovetoAbs, SVGPathSegMovetoRel, SVGPathSegLinetoAbs, SVGPathSegLinetoRel,
SVGPathSeqCurvetoCubicAbs, SVGPathSegCurvetoCubicRel, SVGPathSegCurvetoQuadraticAbs,
SVGPathSegCurvetoQuadraticRel, SVGPathSegArcAbs, SVGPathSegArcRel,
SVGPathSegLinetoHorizontalAbs, SVGPathSegLinetoHorizontalRel, SVGPathSegLinetoVerticalAbs,
SVGPathSegLinetoVerticalRel, SVGPathSegCurvetoCubicSmoothAbs,
SVGPathSegCurvetoCubicSmoothRel, SVGPathSegCurvetoQuadraticSmoothAbs,
SVGPathSegCurvetoQuadraticSmoothRel, SVGPathSegList, SVGAnimatedPathData, SVGPathElement.

Interface SVGPathSeg

The SVGPathSeg interface is a base interface that corresponds to a single command within a path data
specification.

IDL Definition

i nterface SVGPat hSeg {

/] Path Segnent Types

const unsigned short PATHSEG UNKNO/WN

const unsi gned short PATHSEG CLOSEPATH

const unsigned short PATHSEG MOVETO ABS

const unsigned short PATHSEG MOVETO REL

const unsi gned short PATHSEG LI NETO ABS

const unsi gned short PATHSEG LI NETO REL

const unsigned short PATHSEG CURVETO CUBI C_ABS
const unsi gned short PATHSEG CURVETO CUBI C_REL
const unsi gned short PATHSEG CURVETO QUADRATI C_ABS
const unsi gned short PATHSEG CURVETO QUADRATI C_REL

readonly attribute unsigned short pathSegType;
readonly attribute DOVString

pat hSegTypeAsLetter;

const unsigned short PATHSEG ARC ABS = 10;
const unsigned short PATHSEG ARC REL = 11;
const unsi gned short PATHSEG LI NETO_HORI ZONTAL_ABS = 12;
const unsi gned short PATHSEG LI NETO HORI ZONTAL_REL = 13
const unsigned short PATHSEG LI NETO VERTI CAL_ABS = 14;
const unsigned short PATHSEG LI NETO VERTI CAL_REL = il
const unsi gned short PATHSEG CURVETO CUBI C_SMOOTH ABS =165
const unsi gned short PATHSEG CURVETO CUBI C_SMOOTH REL = 17;
const unsigned short PATHSEG CURVETO QUADRATI C SMOOTH ABS = 18;
const unsigned short PATHSEG CURVETO QUADRATI C SMOOTH REL = 19;

Definition group Path Segment Types
Defined constants

PATHSEG_UNKNOWN

PATHSEG_CLOSEPATH
PATHSEG_MOVETO_ABS
PATHSEG_MOVETO_REL
PATHSEG_LINETO_ABS
PATHSEG_LINETO_REL

PATHSEG_CURVETO_CUBIC_ABS

PATHSEG_CURVETO_CUBIC_REL

PATHSEG_CURVETO_QUADRATIC_ABS

PATHSEG_CURVETO_QUADRATIC_REL

PATHSEG_ARC_ABS

PATHSEG_ARC_REL

The unit type is not one of predefined
types. It is invalid to attempt to define
a new value of this type or to attempt
to switch an existing value to this

type.
Corresponds to a "closepath” (z) path
data command.

Corresponds to an "absolute moveto"
(M) path data command.

Corresponds to a "relative moveto"
(m) path data command.

Corresponds to an "absolute lineto”
(L) path data command.

Corresponds to a "relative lineto" (1)
path data command.

Corresponds to an "absolute cubic
Bézier curveto" (C) path data
command.

Corresponds to a "relative cubic
Bézier curveto” (c) path data
command.

Corresponds to an "absolute
quadratic Bézier curveto” (Q) path
data command.

Corresponds to a "relative quadratic
Bézier curveto" (q) path data
command.

Corresponds to an "absolute arcto”
(A) path data command.

Corresponds to a "relative arcto” (a)
path data command.

PATHSEG_LINETO_HORIZONTAL_ABS

PATHSEG_LINETO_HORIZONTAL_REL
PATHSEG_LINETO_VERTICAL_ABS
PATHSEG_LINETO_VERTICAL_REL

PATHSEG_CURVETO_CUBIC_SMOOTH_ABS

PATHSEG_CURVETO_CUBIC_SMOOTH_REL

PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS

PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL

Attributes
readonly unsigned short pathSegType

Corresponds to an "absolute
horizontal lineto" (H) path data
command.

Corresponds to a "relative horizontal
lineto" (h) path data command.

Corresponds to an "absolute vertical
lineto" (V) path data command.

Corresponds to a "relative vertical
lineto" (v) path data command.

Corresponds to an "absolute smooth
cubic curveto" (S) path data
command.

Corresponds to a "relative smooth
cubic curveto"” (s) path data
command.

Corresponds to an "absolute smooth
guadratic curveto" (T) path data
command.

Corresponds to a "relative smooth
guadratic curveto” (t) path data
command.

The type of the path segment as specified by one of the constants specified above.

readonly DOMString pathSegTypeAsLetter

The type of the path segment, specified by the corresponding one character command name.

Interface SVGPathSegClosePath

The SVGPathSegClosePath interface corresponds to a “closepath” (z) path data command.

IDL Definition

i nterface SVGPat hSegC osePath : SVGPat hSeg {};

Interface SVGPathSegMovetoAbs

The SVGPathSegMovetoAbs interface corresponds to an "absolute moveto" (M) path data command.

IDL Definition

i nt erface SVGPat hSegMbvet oAbs : SVGPat hSeg {
attribute fl oat X;
/] rai ses DOVException on setting
attribute float Y;
[l raises DOVException on setting

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

floaty
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegMovetoRel

The SVGPathSegMovetoRel interface corresponds to an "relative moveto" (m) path data command.

IDL Definition

i nterface SVGPat hSegMbvet oRel : SVGPat hSeg {
attribute float X;
/] raises DOVException on setting
attribute float Y;
/1 raises DOVException on setting

Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The relative Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoAbs

The SVGPathSegLinetoAbs interface corresponds to an "absolute lineto" (L) path data command.

IDL Definition

i nt erface SVGPat hSeglLi net oAbs : SVGPat hSeg {
attribute fl oat X;
/1 rai ses DOVException on setting
attribute float Y,
/'l raises DOVException on setting

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

floaty
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoRel

The SVGPathSegLinetoRel interface corresponds to an "relative lineto" (I) path data command.

IDL Definition

i nterface SVGPat hSeglLi net oRel : SVGPat hSeg {
attribute float X;
/1 raises DOVException on setting
attribute fl oat Y,
/'l rai ses DOVException on setting

Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The relative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoCubicAbs

The SVGPathSegCurvetoCubicAbs interface corresponds to an "absolute cubic Bézier curveto” (C) path
data command.

IDL Definition

i nt erface SVGPat hSegCur vet oCubi cAbs : SVGPat hSeg {

attribute fl oat X;

/'l rai ses DOVException on setting
attribute float Y;

/'l rai ses DOVException on setting
attribute float x1;

/'l raises DOVException on setting
attribute float y1;

/1 raises DOVException on setting
attribute fl oat X2;

/1 rai ses DOVException on setting
attribute float y2;

/'l rai ses DOVException on setting

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float x1
The absolute X coordinate for the first control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y1
The absolute Y coordinate for the first control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float x2
The absolute X coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y2
The absolute Y coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoCubicRel

The SVGPathSegCurvetoCubicRel interface corresponds to a "relative cubic Bézier curveto” (c) path data
command.

IDL Definition

i nterface SVGPat hSegCurvet oCubi cRel : SVGPat hSeg {

attribute fl oat X;

/1 raises DOVException on setting
attribute float y;

/'l rai ses DOVException on setting
attribute float x1;

/1 raises DOVException on setting
attribute float y1;

/'l rai ses DOVException on setting
attribute float X2;

/'l rai ses DOVException on setting
attribute float y2;

/'l rai ses DOVException on setting

Attributes

float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The relative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float x1
The relative X coordinate for the first control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y1
The relative Y coordinate for the first control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float x2
The relative X coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y2
The relative Y coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoQuadraticAbs

The SVGPathSegCurvetoQuadraticAbs interface corresponds to an "absolute quadratic Bézier curveto”
(Q) path data command.

IDL Definition

i nterface SVGPat hSegCurvet oQuadrati cAbs : SVGPat hSeg {

attribute fl oat X;

[l raises DOVException on setting
attribute float Y,

/'l raises DOVException on setting
attribute float x1;

/1 raises DOVException on setting
attribute fl oat y1;

/1 rai ses DOVException on setting

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float x1
The absolute X coordinate for the control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.
float y1
The absolute Y coordinate for the control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoQuadraticRel

The SVGPathSegCurvetoQuadraticRel interface corresponds to a "relative quadratic Bézier curveto” (q)
path data command.

IDL Definition

i nt erface SVGPat hSegCurvet oQuadrati cRel : SVGPat hSeg {

attribute float X;

/'l rai ses DOVException on setting
attribute fl oat Y,

/] rai ses DOVException on setting
attribute fl oat x1;

[l raises DOVException on setting
attribute float y1;

/'l raises DOVException on setting

Attributes
float x

The relative X coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR

: Raised on an attempt to

change the value of a readonly attribute.

floaty

The relative Y coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR

: Raised on an attempt to

change the value of a readonly attribute.

float x1
The relative X coordinate for the control point.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR

: Raised on an attempt to

change the value of a readonly attribute.

float y1
The relative Y coordinate for the control point.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR

: Raised on an attempt to

change the value of a readonly attribute.

Interface SVGPathSegArcAbs

The SVGPathSegArcAbs interface corresponds to an "absolute arcto” (A) path data command.

IDL Definition

i nt erface SVGPat hSegAr cAbs :
attri bute fl oat
/1
fl oat
/1
fl oat
I
fl oat
/1

SVGPat hSeg {
X,
rai ses DOVExcept i
yi
rai ses DOVExcept i
ri,
rai ses DOVExcept i
r2,
rai ses DOVExcepti
fl oat angl e;
/'l rai ses DOVExcept i
bool ean | ar geAr cFl ag;
[l raises DOVExcepti
bool ean sweepFl ag;
[l raises DOVExcepti

on on setting

attri bute

on on setti

ng
attri bute

on on setti

ng
attri bute

on on setti

ng
attri bute

on on setti

ng
attri bute

on on setti

ng
attri bute

on on setti

ng

Attributes
float x

The absolute X coordinate for the end point of this path segment.

Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y

The absolute Y coordinate for the end point of this path segment.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float r1

The x-axis radius for the ellipse (i.e., rl).
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float r2
The y-axis radius for the ellipse (i.e., r2).
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float angle

The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate

system.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
boolean largeArcFlag

The value of the large-arc-flag parameter.
Exceptions on setting

DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
boolean sweepFlag
The value of the sweep-flag parameter.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegArcRel

The SVGPathSegArcRel interface corresponds to a "relative arcto” (a) path data command.

IDL Definition

i nterface SVGPat hSegArcRel : SVGPat hSeg {
attribute fl oat X;
/] rai ses DOVException on setting
attribute float Y,
/'l rai ses DOVException on setting
attribute float ri;

[l raises DOVException on setting
attribute fl oat r2;

/'l raises DOVException on setting
attribute float angl e;

/1 raises DOVException on setting
attri bute bool ean | argeArcFl ag;

/] rai ses DOVException on setting
attri bute bool ean sweepFl ag;

/'l rai ses DOVException on setting

Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The relative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float rl1
The x-axis radius for the ellipse (i.e., rl).
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.
float r2
The y-axis radius for the ellipse (i.e., r2).
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float angle
The rotation angle in degrees for the ellipse's x-axis relative to the x-axis of the user coordinate
system.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.
boolean largeArcFlag
The value of the large-arc-flag parameter.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
boolean sweepFlag
The value of the sweep-flag parameter.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoHorizontalAbs

The SVGPathSegLinetoHorizontalAbs interface corresponds to an "absolute horizontal lineto" (H) path
data command.

IDL Definition

i nterface SVGPat hSeglLi net oHori zont al Abs : SVGPat hSeg {

attribute float X;
[l raises DOVException on setting

Attributes

float x
The absolute X coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to

change the value of a readonly attribute.

Interface SVGPathSegLinetoHorizontalRel

The SVGPathSegLinetoHorizontalRel interface corresponds to a "relative horizontal lineto" (h) path data
command.

IDL Definition

i nterface SVGPat hSegLi net oHori zont al Rel : SVGPat hSeg {

attribute float X;
/'l raises DOVException on setting

Attributes

float x
The relative X coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoVerticalAbs

The SVGPathSegLinetoVerticalAbs interface corresponds to an "absolute vertical lineto" (V) path data
command.

IDL Definition

i nt erface SVGPat hSegLi net oVerti cal Abs : SVGPat hSeg {

attribute fl oat y;
/] rai ses DOVException on setting

b

Attributes

float y
The absolute Y coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegLinetoVerticalRel

The SVGPathSegLinetoVerticalRel interface corresponds to a "relative vertical lineto" (v) path data
command.

IDL Definition

i nterface SVGPat hSegLi netoVertical Rel : SVGPat hSeg {

attribute float Y;
[l raises DOVException on setting

Attributes

floaty
The relative Y coordinate for the end point of this path segment.

Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoCubicSmoothAbs

The SVGPathSegCurvetoCubicSmoothAbs interface corresponds to an "absolute smooth cubic curveto"
(S) path data command.

IDL Definition

i nt erface SVGPat hSegCur vet oCubi cSmoot hAbs : SVGPat hSeg {
attribute float X;
/1 raises DOVException on setting
attribute fl oat Y,
/] rai ses DOVException on setting
attribute fl oat X2;
[l raises DOVException on setting
attribute float y2;
/'l rai ses DOVException on setting

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float x2
The absolute X coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y2
The absolute Y coordinate for the second control point.
Exceptions on setting
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoCubicSmoothRel

The SVGPathSegCurvetoCubicSmoothRel interface corresponds to a "relative smooth cubic curveto” (s)
path data command.

IDL Definition

i nt erface SVGPat hSegCur vet oCubi cSnoot hRel : SVGPat hSeg {
attribute fl oat X;
[l raises DOVException on setting
attribute float Y,
/] raises DOVException on setting
attribute float X2;
/1 raises DOVException on setting
attribute fl oat y2;
/] rai ses DOVException on setting

Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The relative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float x2
The relative X coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.
float y2
The relative Y coordinate for the second control point.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoQuadraticSmoothAbs

The SVGPathSegCurvetoQuadraticSmoothAbs interface corresponds to an "absolute smooth quadratic
curveto” (T) path data command.

IDL Definition

i nterface SVGPat hSegCurvet oQuadr at i cSnoot hAbs : SVGPat hSeg {
attribute float X;
/'l raises DOVException on setting
attribute float y;

[l raises DOVException on setting

Attributes
float x
The absolute X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The absolute Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegCurvetoQuadraticSmoothRel

The SVGPathSegCurvetoQuadraticSmoothRel interface corresponds to a "relative smooth quadratic
curveto” (t) path data command.

IDL Definition

i nt erface SVGPat hSegCur vet oQuadr ati cSnoot hRel : SVGPat hSeg {
attribute float X;
/1 raises DOVException on setting
attribute float Y;
/] rai ses DOVException on setting

Attributes
float x
The relative X coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an attempt to
change the value of a readonly attribute.
floaty
The relative Y coordinate for the end point of this path segment.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to
change the value of a readonly attribute.

Interface SVGPathSegList
This interface defines a list of SVGPathSeg objects.

SVGPathSegList has the same attributes and methods as other SVGxxxList interfaces. Implementers may
consider using a single base class to implement the various SVGxxxList interfaces.

IDL Definition

i nterface SVGPat hSeglLi st {
readonly attribute unsigned | ong nunber O I t ens;

voi d clear ()
rai ses(DOVException);
SVGPat hSeg initialize (in SVGPathSeg newitem)
rai ses(DOVException, SVGException);
SVGPat hSeg getltem (in unsigned | ong index)
rai ses(DOVException);
SVGPat hSeg insertltenBefore (in SVGPat hSeg newitem in unsigned |ong index)
rai ses(DOVException, SVGException);
SVGPat hSeg repl aceltem (in SVGPat hSeg newitem in unsigned |ong index)
rai ses(DOVException, SVGException);
SVGPat hSeg renoveltem (in unsigned | ong index)
rai ses(DOVException);
SVGPat hSeg appendlitem (in SVGPat hSeg newitem)
rai ses(DOVException, SVGException);

Attributes
readonly unsigned long numberOfltems
The number of items in the list.
Methods
clear
Clears all existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
initialize
Clears all existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters

in SVGPathSeg newltem The item which should become the only member of the list.
Return value

SVGPathSeg The item being inserted into the list.
Exceptions

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
getltem
Returns the specified item from the list.
Parameters

in unsigned long index The index of the item from the list which is to be returned. The
first item is number 0.
Return value
SVGPathSeg The selected item.
Exceptions
DOMException INDEX_SIZE ERR: Raised if the index number is negative or greater
than or equal to numberOfitems.
insertlitemBefore
Inserts a new item into the list at the specified position. The first item is number 0. If newltem is
already in a list, it is removed from its previous list before it is inserted into this list.
Parameters
in SVGPathSeg newltem The item which is to be inserted into the list.
in unsigned long index The index of the item before which the new item is to be
inserted. The first item is number O.
If the index is equal to 0, then the new item is inserted at the
front of the list. If the index is greater than or equal to
numberOfltems, then the new item is appended to the end of
the list.
Return value
SVGPathSeg The inserted item.
Exceptions
DOMEXxception NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.
replaceltem
Replaces an existing item in the list with a new item. If newltem is already in a list, it is removed
from its previous list before it is inserted into this list.
Parameters
in SVGPathSeg newltem The item which is to be inserted into the list.
in unsigned long index The index of the item which is to be replaced. The first item is
number O.
Return value
SVGPathSeg The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.

removeltem

Removes an existing item from the list.
Parameters
in unsigned long index The index of the item which is to be removed. The first item is
number 0.

Return value
SVGPathSeg The removed item.

Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
INDEX_SIZE_ERR: Raised if the index number is negative or greater
than or equal to numberOfltems.
appendltem

Inserts a new item at the end of the list. If newltem is already in a list, it is removed from its
previous list before it is inserted into this list.
Parameters
in SVGPathSeg newltem The item which is to be inserted into the list. The first item is
number O.

Return value
SVGPathSeg The inserted item.
Exceptions
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised when the list cannot
be modified.
SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem is the wrong
type of object for the given list.

Interface SVGAnimatedPathData

The SVGAnimatedPathData interface supports elements which have a 'd' attribute which holds SVG path
data, and supports the ability to animate that attribute.

The SVGAnimatedPathData interface provides two lists to access and modify the base (i.e., static)
contents of the d attribute:

. DOM attribute pathSegList provides access to the static/base contents of the d attribute in a form
which matches one-for-one with SVG's syntax.

. DOM attribute normalizedPathSegList provides normalized access to the static/base contents of the d
attribute where all path data commands are expressed in terms of the following subset of
SVGPathSeg types: SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO_ABS (L),
SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and SVG_PATHSEG_CLOSEPATH (z2).

and two lists to access the current animated values of the d attribute:

. DOM attribute animatedPathSegList provides access to the current animated contents of the d
attribute in a form which matches one-for-one with SVG's syntax.

. DOM attribute animatedNormalizedPathSegList provides normalized access to the current animated
contents of the d attribute where all path data commands are expressed in terms of the following
subset of SVGPathSeg types: SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO_ABS
(L), SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and SVG_PATHSEG_CLOSEPATH (2).

Each of the two lists are always kept synchronized. Modifications to one list will immediately cause the
corresponding list to be modified. Modifications to normalizedPathSegList might cause entries in
pathSegList to be broken into a set of normalized path segments.

Additionally, the 'd" attribute on the 'path' element accessed via the XML DOM (e.g., using the getAttribute()
method call) will reflect any changes made to pathSegList or normalizedPathSegList.

IDL Definition

i nterface SVGAni mat edPat hDat a {

readonly attribute SVGPat hSegLi st pat hSeglLi st ;

readonly attribute SVGPat hSegLi st nor mal i zedPat hSegLi st ;
readonly attribute SVGPat hSeglLi st ani mat edPat hSeglLi st ;

readonly attribute SVGPat hSegLi st ani mat edNor mal i zedPat hSegLi st ;

Attributes

readonly SVGPathSegList pathSegList

Provides access to the base (i.e., static) contents of the d attribute in a form which matches
one-for-one with SVG's syntax. Thus, if the d attribute has an "absolute moveto (M)" and an
"absolute arcto (A)" command, then pathSegList will have two entries: a
SVG_PATHSEG_MOVETO_ABS and a SVG_PATHSEG_ARC_ABS.

readonly SVGPathSegList normalizedPathSegList

Provides access to the base (i.e., static) contents of the d attribute in a form where all path data
commands are expressed in terms of the following subset of SVGPathSeg types:
SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO_ABS (L),
SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and SVG_PATHSEG_CLOSEPATH (z). Thus,
if the d attribute has an "absolute moveto (M)" and an "absolute arcto (A)" command, then
pathSegList will have one SVG_PATHSEG_MOVETO_ABS entry followed by a series of
SVG_PATHSEG_LINETO_ABS entries which approximate the arc. This alternate
representation is available to provide a simpler interface to developers who would benefit from
a more limited set of commands.

The only valid SVGPathSeg types are SVG_PATHSEG_MOVETO_ABS (M),
SVG_PATHSEG_LINETO_ABS (L), SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and
SVG_PATHSEG_CLOSEPATH (2).

readonly SVGPathSegList animatedPathSegList

Provides access to the current animated contents of the d attribute in a form which matches
one-for-one with SVG's syntax. If the given attribute or property is being animated, contains the
current animated value of the attribute or property, and both the object itself and its contents
are readonly. If the given attribute or property is not currently being animated, contains the
same value as 'pathSegList'.

readonly SVGPathSegList animatedNormalizedPathSegList

Provides access to the current animated contents of the d attribute in a form where all path
data commands are expressed in terms of the following subset of SVGPathSeg types:
SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO_ABS (L),
SVG_PATHSEG_CURVETO_CUBIC_ABS (C) and SVG_PATHSEG_CLOSEPATH (2). If the
given attribute or property is being animated, contains the current animated value of the
attribute or property, and both the object itself and its contents are readonly. If the given
attribute or property is not currently being animated, contains the same value as
'normalizedPathSegList'.

Interface SVGPathElement

The SVGPathElement interface corresponds to the 'path' element.

IDL Definition

i nterface SVGPat hEl enent
SVGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGIr ansf or mabl e,
events: : Event Tar get ,
SVGAni mat edPat hDat a {

readonly attribute SVGAni mat edNunber pat hLengt h;

fl oat get Total Length ();

SVGPoi nt get Poi nt At Length (in float distance);
unsi gned | ong get Pat hSegAt Length (in float distance);
SVGPat hSegCl osePat h cr eat eSVGPat hSegC osePath ();

SVGPat hSegMbvet 0Abs cr eat eSVGPat hSegMbvet oAbs (in float x, in float y);
SVGPat hSegMwbvet oRel cr eat eSVGPat hSeghbvetoRel (in float x, in float y);
SVGPat hSegLi net 0Abs cr eat eSVGPat hSegLi netoAbs (in float x, in float y);
SVGPat hSegLi net oRel creat eSVGPat hSegLinetoRel (in float x, in float y);
SVGPat hSegCur vet oCubi cAbs cr eat eSVGPat hSegCur vet oCubi cAbs (in float x, in

float y, in float x1, in float y1, in float x2, in float y2);

SVGPat hSegCur vet oCubi cRel cr eat eSVGPat hSegCur vet oCubicRel (in float x, in
float y, in float x1, in float yl1, in float x2, in float y2);

SVGPat hSegCur vet oQuadr at i cAbs cr eat eSVGPat hSegCur vet oQuadrati cAbs (in fl oat
X, in float y, in float x1, in float y1);

SVGPat hSegCur vet oQuadr at i cRel cr eat eSVGPat hSegCur vet oQuadrati cRel (in float
X, in float y, in float x1, in float yl1);

SVGPat hSegAr cAbs creat eSVGPat hSegArcAbs (in float x, in float y, in float r1,
in float r2, in float angle, in boolean | argeArcFlag, in bool ean sweepFl ag);

SVGPat hSegAr cRel creat eSVGPat hSegArcRel (in float x, in float y, in float r1,
in float r2, in float angle, in boolean | argeArcFlag, in bool ean sweepFl ag);
SVGPat hSegLi net oHor i zont al Abs cr eat eSVGPat hSegLi net oHori zontal Abs (in float X

);

SVGPat hSegLi net oHor i zont al Rel cr eat eSVGPat hSegLi net oHori zontal Rel (in float X
)
SVGPat hSegLi net oVerti cal Abs cr eat eSVGPat hSegLi netoVertical Abs (in float y);
SVGPat hSegLi net oVerti cal Rel cr eat eSVGPat hSegLi netoVertical Rel (in float y);
SVGPat hSegCur vet oCubi cSnoot hAbs cr eat eSVGPat hSegCur vet oCubi cSnoot hAbs (in
float x, in float y, in float x2, in float y2);
SVGPat hSegCur vet oCubi cSnoot hRel cr eat eSVGPat hSegCur vet oCubi cSnoot hRel (in
float x, in float y, in float x2, in float y2);
SVGPat hSegCur vet oQuadr at i cSnoot hAbs cr eat eSVGPat hSegCur vet oQuadr at i cSnpot hAbs
(infloat x, in float y);

SVGPat hSegCur vet oQuadr at i cSnoot hRel cr eat eSVGPat hSegCur vet oQuadr at i cSnoot hRel
(infloat x, in float y);
Ji:
Attributes

readonly SVGAnimatedNumber pathLength

Corresponds to attribute pathLength on the given 'path' element.
Methods

getTotalLength
Returns the user agent's computed value for the total length of the path using the user agent's
distance-along-a-path algorithm, as a distance in the current user coordinate system.
No Parameters
Return value

float The total length of the path.

No Exceptions

getPointAtLength
Returns the (x,y) coordinate in user space which is di st ance units along the path, utilizing the

user agent's distance-along-a-path algorithm.
Parameters

in float distance The distance along the path, relative to the start of the path, as a
distance in the current user coordinate system.
Return value
SVGPoint The returned point in user space.
No Exceptions
getPathSegAtLength
Returns the index into pathSegList which is di st ance units along the path, utilizing the user

agent's distance-along-a-path algorithm.
Parameters

in float distance The distance along the path, relative to the start of the path, as a
distance in the current user coordinate system.
Return value
unsigned long The index of the path segment, where the first path segment is number
0.
No Exceptions
createSVGPathSegClosePath
Returns a stand-alone, parentless SVGPathSegClosePath object.
No Parameters
Return value
SVGPathSegClosePath A stand-alone, parentless SVGPathSegClosePath object.
No Exceptions

createSVGPathSegMovetoAbs
Returns a stand-alone, parentless SVGPathSegMovetoAbs object.
Parameters

in float x The absolute X coordinate for the end point of this path segment.
in float y The absolute Y coordinate for the end point of this path segment.
Return value
SVGPathSegMovetoAbs A stand-alone, parentless SVGPathSegMovetoAbs object.

No Exceptions

createSVGPathSegMovetoRel
Returns a stand-alone, parentless SVGPathSegMovetoRel object.
Parameters

in float x The relative X coordinate for the end point of this path segment.
in floaty The relative Y coordinate for the end point of this path segment.
Return value
SVGPathSegMovetoRel A stand-alone, parentless SVGPathSegMovetoRel object.

No Exceptions

createSVGPathSegLinetoAbs
Returns a stand-alone, parentless SVGPathSegLinetoAbs object.
Parameters

in float x The absolute X coordinate for the end point of this path segment.

in float y The absolute Y coordinate for the end point of this path segment.
Return value

SVGPathSegLinetoAbs A stand-alone, parentless SVGPathSegLinetoAbs object.

No Exceptions

createSVGPathSegLinetoRel
Returns a stand-alone, parentless SVGPathSegLinetoRel object.
Parameters

in float x The relative X coordinate for the end point of this path segment.

in float y The relative Y coordinate for the end point of this path segment.
Return value

SVGPathSegLinetoRel A stand-alone, parentless SVGPathSegLinetoRel object.

No Exceptions

createSVGPathSegCurvetoCubicAbs
Returns a stand-alone, parentless SVGPathSegCurvetoCubicAbs obiject.
Parameters

in float x The absolute X coordinate for the end point of this path segment.
infloaty The absolute Y coordinate for the end point of this path segment.
in float x1 The absolute X coordinate for the first control point.
in float yl The absolute Y coordinate for the first control point.
in float X2 The absolute X coordinate for the second control point.
in float y2 The absolute Y coordinate for the second control point.

Return value

SVGPathSegCurvetoCubicAbs A stand-alone, parentless
SVGPathSegCurvetoCubicAbs object.
No Exceptions
createSVGPathSegCurvetoCubicRel
Returns a stand-alone, parentless SVGPathSegCurvetoCubicRel object.
Parameters

in float x The relative X coordinate for the end point of this path segment.
in floaty The relative Y coordinate for the end point of this path segment.
in float x1 The relative X coordinate for the first control point.
in float y1 The relative Y coordinate for the first control point.
in float x2 The relative X coordinate for the second control point.
in float y2 The relative Y coordinate for the second control point.

Return value

SVGPathSegCurvetoCubicRel A stand-alone, parentless
SVGPathSegCurvetoCubicRel object.

No Exceptions

createSVGPathSegCurvetoQuadraticAbs
Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticAbs object.
Parameters

in float x The absolute X coordinate for the end point of this path segment.
infloaty The absolute Y coordinate for the end point of this path segment.
in float x1 The absolute X coordinate for the control point.
in float yl The absolute Y coordinate for the control point.

Return value

SVGPathSegCurvetoQuadraticAbs A stand-alone, parentless
SVGPathSegCurvetoQuadraticAbs object.

No Exceptions

createSVGPathSegCurvetoQuadraticRel
Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticRel object.
Parameters

in float x The relative X coordinate for the end point of this path segment.
infloaty The relative Y coordinate for the end point of this path segment.
in float x1 The relative X coordinate for the control point.
in float y1 The relative Y coordinate for the control point.

Return value

SVGPathSegCurvetoQuadraticRel A stand-alone, parentless
SVGPathSegCurvetoQuadraticRel object.
No Exceptions
createSVGPathSegArcAbs
Returns a stand-alone, parentless SVGPathSegArcAbs object.

Parameters

in float x The absolute X coordinate for the end point of this path
segment.

in float y The absolute Y coordinate for the end point of this path
segment.

in float r1 The x-axis radius for the ellipse (i.e., rl).

in float r2 The y-axis radius for the ellipse (i.e., r2).

in float angle The rotation angle in degrees for the ellipse's x-axis relative to

the x-axis of the user coordinate system.
in boolean largeArcFlag The value for the large-arc-flag parameter.
in boolean sweepFlag The value for the sweep-flag parameter.
Return value

SVGPathSegArcAbs A stand-alone, parentless SVGPathSegArcAbs object.

No Exceptions
createSVGPathSegArcRel
Returns a stand-alone, parentless SVGPathSegArcRel object.

Parameters

in float x The relative X coordinate for the end point of this path
segment.

in float y The relative Y coordinate for the end point of this path
segment.

in float rl The x-axis radius for the ellipse (i.e., rl).

in float r2 The y-axis radius for the ellipse (i.e., r2).

in float angle The rotation angle in degrees for the ellipse's x-axis relative to

the x-axis of the user coordinate system.
in boolean largeArcFlag The value for the large-arc-flag parameter.
in boolean sweepFlag The value for the sweep-flag parameter.
Return value
SVGPathSegArcRel A stand-alone, parentless SVGPathSegArcRel object.

No Exceptions
createSVGPathSegLinetoHorizontalAbs
Returns a stand-alone, parentless SVGPathSegLinetoHorizontalAbs object.
Parameters
in float x The absolute X coordinate for the end point of this path segment.
Return value
SVGPathSegLinetoHorizontalAbs A stand-alone, parentless
SVGPathSegLinetoHorizontalAbs object.
No Exceptions
createSVGPathSegLinetoHorizontalRel
Returns a stand-alone, parentless SVGPathSegLinetoHorizontalRel object.
Parameters
in float x The relative X coordinate for the end point of this path segment.
Return value
SVGPathSegLinetoHorizontalRel A stand-alone, parentless
SVGPathSegLinetoHorizontalRel object.

No Exceptions
createSVGPathSegLinetoVerticalAbs
Returns a stand-alone, parentless SVGPathSegLinetoVerticalAbs object.
Parameters
in floaty The absolute Y coordinate for the end point of this path segment.
Return value
SVGPathSegLinetoVerticalAbs A stand-alone, parentless
SVGPathSegLinetoVerticalAbs object.
No Exceptions
createSVGPathSegLinetoVerticalRel
Returns a stand-alone, parentless SVGPathSegLinetoVerticalRel object.
Parameters
in float y The relative Y coordinate for the end point of this path segment.
Return value

SVGPathSegLinetoVerticalRel A stand-alone, parentless
SVGPathSegLinetoVerticalRel object.

No Exceptions

createSVGPathSegCurvetoCubicSmoothAbs
Returns a stand-alone, parentless SVGPathSegCurvetoCubicSmoothAbs object.
Parameters

in float x The absolute X coordinate for the end point of this path segment.
in floaty The absolute Y coordinate for the end point of this path segment.
in float X2 The absolute X coordinate for the second control point.
in float y2 The absolute Y coordinate for the second control point.

Return value

SVGPathSegCurvetoCubicSmoothAbs A stand-alone, parentless
SVGPathSegCurvetoCubicSmoothAbs object.

No Exceptions

createSVGPathSegCurvetoCubicSmoothRel
Returns a stand-alone, parentless SVGPathSegCurvetoCubicSmoothRel object.
Parameters

in float x The relative X coordinate for the end point of this path segment.
infloaty The relative Y coordinate for the end point of this path segment.
in float x2 The relative X coordinate for the second control point.
in float y2 The relative Y coordinate for the second control point.

Return value

SVGPathSegCurvetoCubicSmoothRel A stand-alone, parentless
SVGPathSegCurvetoCubicSmoothRel object.

No Exceptions

createSVGPathSegCurvetoQuadraticSmoothAbs
Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothAbs object.
Parameters

in float x The absolute X coordinate for the end point of this path segment.
in floaty The absolute Y coordinate for the end point of this path segment.
Return value

SVGPathSegCurvetoQuadraticSmoothAbs A stand-alone, parentless
SVGPathSegCurvetoQuadraticSmoothAbs
object.

No Exceptions

createSVGPathSegCurvetoQuadraticSmoothRel
Returns a stand-alone, parentless SVGPathSegCurvetoQuadraticSmoothRel object.
Parameters

in float x The relative X coordinate for the end point of this path segment.
in float y The relative Y coordinate for the end point of this path segment.
Return value

SVGPathSegCurvetoQuadraticSmoothRel A stand-alone, parentless
SVGPathSegCurvetoQuadraticSmoothRel
object.

No Exceptions

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

9 Basic Shapes

Contents

. 9.1 Introduction

. 9.2 The 'rect’ element

. 9.3 The 'circle’ element

. 9.4 The 'ellipse' element

. 9.5 The 'line’ element

. 9.6 The 'polyline’ element

. 9.7 The 'polygon' element

. 9.8 The grammar for points specifications in 'polyline’ and 'polygon' elements
. 9.9 Shape Module

. 9.10 DOM interfaces

c
S
=
i
o
=
@
=
=
s
[
@
o
©
L
18]
°
o
=
4y
U
U
2
=

9.1 Introduction

SVG contains the following set of basic shape elements:

. rectangles (rectangle, including optional rounded corners)
. circles

. ellipses

. lines

. polylines

. polygons

Mathematically, these shape elements are equivalent to a 'path' element that would construct the
same shape. The basic shapes may be stroked, filled and used as clip paths. All of the properties
available for 'path' elements also apply to the basic shapes.

9.2 The 'rect' element

The 'rect’ element defines a rectangle which is axis-aligned with the current user coordinate system.
Rounded rectangles can be achieved by setting appropriate values for attributes rx and ry.

<IENTITY % SVG rect. el enent "I NCLUDE" >
<I[Y%BVG rect. el ement; [
<IENTITY % SVG rect. cont ent
"((“8VG Description.class;)*, (%8VG Animation.class;)*)"

>
<I ELEMENT %8VG rect. gnane; %VG rect.content; >
<!-- end of SVGrect.elenent -->]]>

<IENTITY % SVG rect.attlist "INCLUDE" >
<IT%VG rect.attlist;[
<I ATTLI ST %8VG r ect . gnane;
%SVG Core. attrib;
%SVG Condi tional . attrib;
98VG Style. attrib;
%SVG Pai nt . attrib;
%6VG Col or . attrib;
%8VG pacity. attrib;
%86VG G aphics. attrib;
YSVG dip.attrib;
%SVG Mask. attrib;
YSVG Filter.attrib;
%8VG G aphi cal Events. attrib;
%SVG Cursor. attrib;
%8VG External .attrib;
X % Coor di nat e. dat at ype; #| MPLI ED
y %Coor di nat e. dat at ype; #l MPLI ED
wi dt h %.engt h. dat at ype; #REQUI RED
hei ght %.engt h. dat at ype; #REQUI RED
rx %.ength. dat at ype; #| MPLI ED
ry %.ength. dat atype; #l MPLI ED
transf orm %lransfornii st . dat at ype; #| MPLI ED

Attribute definitions:

X ="<coordinate>"
The x-axis coordinate of the side of the rectangle which has the smaller x-axis coordinate value
in the current user coordinate system.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
y ="<coordinate>"

The y-axis coordinate of the side of the rectangle which has the smaller y-axis coordinate value
in the current user coordinate system.

If the attribute is not specified, the effect is as if a value of "0" were specified.

Animatable: yes.

W dt h ="<length>"
The width of the rectangle.
A negative value is an error (see Error processing). A value of zero disables rendering of the

element.
Animatable: yes.

hei ght ="<length>"

The height of the rectangle.

A negative value is an error (see Error processing). A value of zero disables rendering of the
element.

Animatable: yes.

rx ="<length>"

For rounded rectangles, the x-axis radius of the ellipse used to round off the corners of the
rectangle.

A negative value is an error (see Error processing).

See the notes below about what happens if the attribute is not specified.

Animatable: yes.

ry ="<length>"

For rounded rectangles, the y-axis radius of the ellipse used to round off the corners of the
rectangle.

A negative value is an error (see Error processing).

See the notes below about what happens if the attribute is not specified.

Animatable: yes.

If a properly specified value is provided for rx but not for ry, then the user agent processes the 'rect’
element with the effective value for ry as equal to rx. If a properly specified value is provided for ry but
not for rx, then the user agent processes the 'rect' element with the effective value for rx as equal to
ry. If neither rx nor ry has a properly specified value, then the user agent processes the 'rect' element
as if no rounding had been specified, resulting in square corners. If rx is greater than half of the width
of the rectangle, then the user agent processes the 'rect’ element with the effective value for rx as half
of the width of the rectangle. If ry is greater than half of the height of the rectangle, then the user
agent processes the 'rect’ element with the effective value for ry as half of the height of the rectangle.

Mathematically, a 'rect’ element can be mapped to an equivalent 'path' element as follows: (Note: all
coordinate and length values are first converted into user space coordinates according to Units.)

perform an absolute moveto operation to location (x+rx,y), where x is the value of the 'rect’
element's x attribute converted to user space, rx is the effective value of the rx attribute
converted to user space and y is the value of the y attribute converted to user space

perform an absolute horizontal lineto operation to location (x+width-rx,y), where width is the
‘rect’ element's width attribute converted to user space

perform an absolute elliptical arc operation to coordinate (x+width,y+ry), where the effective
values for the rx and ry attributes on the 'rect’ element converted to user space are used as the
rx and ry attributes on the elliptical arc command, respectively, the x-axis-rotation is set to zero,
the large-arc-flag is set to zero, and the sweep-flag is set to one

perform a absolute vertical lineto to location (x+width,y+height-ry), where height is the 'rect’
element's height attribute converted to user space

perform an absolute elliptical arc operation to coordinate (x+width-rx,y+height)

perform an absolute horizontal lineto to location (x+rx,y+height)

perform an absolute elliptical arc operation to coordinate (x,y+height-ry)

. perform an absolute absolute vertical lineto to location (x,y+ry)
. perform an absolute elliptical arc operation to coordinate (x+rx,y)

Example rectO1 shows a rectangle with sharp corners. The 'rect' element is filled with yellow and
stroked with navy.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVGE 1. 1/ DTD/ svgll. dtd">
<svg wi dth="12cm' hei ght="4cm" vi ewBox="0 0 1200 400"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1">

<desc>Exanpl e rect01 - rectangle with sharp corners</desc>

<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" width="1198" hei ght ="398"
fill="none" stroke="blue" stroke-w dth="2"/>

<rect x="400" y="100" w dt h="400" hei ght="200"

fill="yell ow' stroke="navy" stroke-w dth="10" />
</ svg>

Example rect01

View this example as SVG (SVG-enabled browsers only)

Example rect02 shows two rounded rectangles. The rx specifies how to round the corners of the

rectangles. Note that since no value has been specified for the ry attribute, it will be assigned the
same value as the rx attribute.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1//EN'
“http://ww. w3. org/ G aphi cs/ SVGE 1. 1/ DTD/ svgll. dt d">
<svg wi dt h="12cnt hei ght="4cni vi ewBox="0 0 1200 400"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e rect02 - rounded rectangl es</ desc>

<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" w dth="1198" hei ght="398"
fill="none" stroke="blue" stroke-w dth="2"/>

http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/shapes/rect01.svg
http://www.w3.org/2000/svg

<rect x="100" y="100" wi dth="400" hei ght="200" rx="50"
fill="green" />

<g transform"transl ate(700 210) rotate(-30)">
<rect x="0" y="0" w dt h="400" hei ght="200" rx="50"
fill="none" stroke="purple" stroke-w dth="30" />
</ g>
</ svg>

Example rect02

View this example as SVG (SVG-enabled browsers only)

9.3 The 'circle' element
The 'circle' element defines a circle based on a center point and a radius.

<IENTITY % SVG circle. el emrent "I NCLUDE" >
<I[¥%VG circle.el ement; |
<IENTI TY % SVG ci rcl e. cont ent
"((“8VG Description.class;)*, (%8VG Animation.class;)*)"

>
<! ELEMENT %8VG circl e. gnane; %SVG circle.content; >
<l-- end of SVGcircle.elenent -->]]>

<IENTITY % SVG circle.attlist "INCLUDE" >
<I[¥%VG circle.attlist;]
<! ATTLI ST %8VG circl e. gnane;

%SVG Core. attrib;

%SVG Condi tional . attrib;
%SVG Style.attrib;

%SVG Pai nt . attrib;

%6VG Col or . attrib;

Y8VG Qpacity. attrib;
%6VG G aphics. attrib;
YSVG dip.attrib;

%SVG Mask. attrib;

YSVG Filter.attrib;

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/shapes/rect02.svg

%8SVG G aphi cal Events. attrib;

%SVG Cur sor. attrib;

%6VG External . attrib;

cx % Coor di nat e. dat at ype; #I MPLI ED

cy % Coor di nat e. dat at ype; #l MPLI ED

r %.engt h. dat at ype; #REQUI RED

transform %ransfornii st . dat at ype; #I MPLI ED

Attribute definitions:

CcX ="<coordinate>"
The x-axis coordinate of the center of the circle.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
cy = "<coordinate>"
The y-axis coordinate of the center of the circle.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
r ="<length>"
The radius of the circle.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
Animatable: yes.

The arc of a 'circle’ element begins at the "3 o'clock™ point on the radius and progresses towards the
"9 o'clock” point. The starting point and direction of the arc are affected by the user space transform in
the same manner as the geometry of the element.

Example circleO1 consists of a 'circle’ element that is filled with red and stroked with blue.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1//EN'
“http://ww.w3. org/ Gaphics/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg w dt h="12cn' hei ght="4cm' vi ewBox="0 0 1200 400"
xm ns="http://ww. w3. or g/ 2000/ svg" version="1.1">
<desc>Exanple circle0l - circle filled with red and stroked with bl ue</desc>

<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" w dth="1198" hei ght ="398"
fill="none" stroke="blue" stroke-w dth="2"/>

<circle cx="600" cy="200" r="100"
fill="red" stroke="blue" stroke-w dth="10" />
</ svg>

Example circle01

View this example as SVG (SVG-enabled browsers only)

9.4 The 'ellipse' element

The 'ellipse' element defines an ellipse which is axis-aligned with the current user coordinate system
based on a center point and two radii.

<IENTITY % SVG el | i pse. el enent "I NCLUDE" >
<IT9%BVG el |i pse. el ement ; [
<IENTITY % SVG el | i pse. cont ent
"((“8VG Description.class;)*, (%SVG Aninmation.class;)*)"

>
<! ELEMENT %6VG el | i pse. gnane; %SVG el | i pse.content; >
<!-- end of SVG ellipse.elenment -->]]>

<IENTITY % SVG el | i pse.attlist "INCLUDE" >
<I[%VG el lipse.attlist;][
<! ATTLI ST %8VG el | i pse. gnane;

%8VG Core. attrib;

%8VG Condi tional . attrib;

%6VG Style.attrib;

%SVG Paint . attrib;

%6VG Col or . attrib;

Y8VG Qpacity. attrib;

%8VG Graphics. attrib;

Y%8VG dip.attrib;

%SVG Mask. attri b;

YSVG Filter.attrib;

%8VG G aphi cal Events. attrib;

%SVG Cur sor. attrib;

%SVG Ext ernal . attrib;

cx % Coor di nat e. dat at ype; #l MPLI ED
cy %Coor di nat e. dat at ype; #l MPLI ED
rx %.ength. dat at ype; #REQUI RED

ry %.ength. dat at ype; #REQUI RED

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/shapes/circle01.svg

transf orm % ransf ornLi st. dat at ype; #l MPLI ED

Attribute definitions:

cX ="<coordinate>"
The x-axis coordinate of the center of the ellipse.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
cy ="<coordinate>"
The y-axis coordinate of the center of the ellipse.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
rx ="<length>"
The x-axis radius of the ellipse.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
Animatable: yes.
ry ="<length>"
The y-axis radius of the ellipse.
A negative value is an error (see Error processing). A value of zero disables rendering of the
element.
Animatable: yes.

The arc of an 'ellipse’ element begins at the "3 o'clock™ point on the radius and progresses towards
the "9 o'clock” point. The starting point and direction of the arc are affected by the user space
transform in the same manner as the geometry of the element.

Example ellipse01 below specifies the coordinates of the two ellipses in the user coordinate system
established by the viewBox attribute on the 'svg' element and the transform attribute on the 'g' and

‘ellipse’ elements. Both ellipses use the default values of zero for the cx and cy attributes (the center
of the ellipse). The second ellipse is rotated.

<?xm version="1.0" standal one="no"?>
<I DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ Gaphics/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="12cnt hei ght="4cni vi ewBox="0 0 1200 400"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e el lipse0l - exanples of ellipses</desc>

<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" width="1198" hei ght ="398"
fill="none" stroke="blue" stroke-w dth="2" />

<g transform="transl ate(300 200)">
<el l'i pse rx="250" ry="100"
fill="red" [>

</ g>

<el lipse transform="transl at e(900 200) rotate(-30)"
rx="250" ry="100"
fill ="none" stroke="blue" stroke-w dth="20" [>

</ svg>

Example ellipse01

View this example as SVG (SVG-enabled browsers only)

9.5 The 'line' element
The 'line' element defines a line segment that starts at one point and ends at another.

<IENTITY % SVG | ine. el enent "1 NCLUDE" >
<ITY%VG |line. el ement; [
<IENTITY % SVG | i ne. cont ent
"((“8VG Description.class;)*, (%8VG Animation.class;)*)"

>
<! ELEMENT %8VG |l i ne. gnane; %SVG |line.content; >
<!-- end of SVGline.elenent -->]]>

<IENTITY % SVG line.attlist "INCLUDE" >
<ITY%VG line.attlist;[
<! ATTLI ST %8VG | i ne. gnane;

%SVG Core. attrib;

%SVG Condi tional . attrib;
%8VG Style.attrib;

Y8VG Paint . attrib;

%SVG Col or. attrib;

YSVG pacity. attrib;
%8VG Graphics. attrib;
%8VG Marker . attrib;
Y8VG Cip.attrib;

%SVG Mask. attrib;

Y8VG Filter.attrib;
%8VG G aphi cal Events. attrib;

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/shapes/ellipse01.svg

%SVG Cur sor. attrib;

%SVG Ext ernal . attrib;

x1 %Coor di nat e. dat at ype; #| MPLI ED

y1l %Coor di nat e. dat at ype; #I MPLI ED

x2 %Coor di nat e. dat at ype; #l MPLI ED

y2 % Coor di nat e. dat at ype; #l MPLI ED

transf orm %lransfornii st . dat at ype; #| MPLI ED

Attribute definitions:

x1 ="<coordinate>"
The x-axis coordinate of the start of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y1 ="<coordinate>"
The y-axis coordinate of the start of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

X2 ="<coordinate>"
The x-axis coordinate of the end of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y2 ="<coordinate>"
The y-axis coordinate of the end of the line.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, %langSpaceAttrs;, class, transform, %graphicsElementEvents;, %testAttrs;,
externalResourcesRequired, style, %PresentationAttributes-Color;, %PresentationAttributes-
FillStroke;, %PresentationAttributes-Graphics;.

Mathematically, a 'line' element can be mapped to an equivalent 'path' element as follows: (Note: all
coordinate and length values are first converted into user space coordinates according to Units.)

. perform an absolute moveto operation to absolute location (x1,y1), where x1 and y1 are the
values of the 'line' element's x1 and y1 attributes converted to user space, respectively

. perform an absolute lineto operation to absolute location (x2,y2), where x2 and y2 are the
values of the 'line’ element's x2 and y2 attributes converted to user space, respectively

Because 'line' elements are single lines and thus are geometrically one-dimensional, they have no
interior; thus, ‘'line’ elements are never filled (see the 'fill' property).

Example line01 below specifies the coordinates of the five lines in the user coordinate system
established by the viewBox attribute on the 'svg' element. The lines have different thicknesses.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1//EN'
“http://ww.w3. org/ Gaphics/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg w dt h="12cnm' hei ght="4cm' vi ewBox="0 0 1200 400"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1">

<desc>Exanpl e line0l - lines expressed in user coordinates</desc>
<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" w dth="1198" hei ght ="398"

fill="none" stroke="blue" stroke-w dth="2" />

<g stroke="green" >
<line x1="100" y1="300" x2="300" y2="100"
stroke-w dt h="5" [>
<line x1="300" y1="300" x2="500" y2="100"
stroke-w dt h="10" />
<line x1="500" y1="300" x2="700" y2="100"
stroke-w dt h="15" />
<line x1="700" y1="300" x2="900" y2="100"
stroke-w dt h="20" [>
<line x1="900" y1="300" x2="1100" y2="100"
stroke-w dt h="25" [>
</ g>
</ svg>

S

Example line01

View this example as SVG (SVG-enabled browsers only)

9.6 The 'polyline' element

The 'polyline' element defines a set of connected straight line segments. Typically, 'polyline’ elements
define open shapes.

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/shapes/line01.svg

<IENTITY % SVG pol yline. el enment "I NCLUDE" >
<IT%BVG pol yl i ne. el enent ; |
<IENTITY % SVG pol yl i ne. cont ent
"((%8VG Description.class;)*, (%8VG Animation.class;)*)"

>
<! ELEMENT %8VG pol yli ne. gnanme; %SVG pol yline.content; >
<l-- end of SVG polyline.element -->]]>

<IENTITY % SVG pol yline.attlist "INCLUDE" >
<ITY%VG polyline.attlist;]
<I ATTLI ST %8VG pol yli ne. gnane;
%6VG Core. attrib;
%SVG Condi tional . attrib;
%SVG Style.attrib;
%8VG Paint . attrib;
%6VG Col or . attrib;
%8VG Qpacity. attrib;
%8VG Graphics. attrib;
%SVG Mar ker . attrib;
YSVG dip.attrib;
%SVG Mask. attrib;
YSVG Filter.attrib;
%8VG G aphi cal Events. attrib;
%SVG Cursor. attrib;
%8VG External . attrib;
poi nts %Poi nt s. dat at ype; #REQUI RED
transform %ransfornii st . dat atype; #l MPLI ED

Attribute definitions:

poi nt' s = "<list-of-points>"
The points that make up the polyline. All coordinate values are in the user coordinate system.
Animatable: yes.

If an odd number of coordinates is provided, then the element is in error, with the same user agent
behavior as occurs with an incorrectly specified 'path’ element.

Mathematically, a 'polyline’ element can be mapped to an equivalent '‘path' element as follows:

. perform an absolute moveto operation to the first coordinate pair in the list of points
. for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate
pair.

Example polyline01 below specifies a polyline in the user coordinate system established by the
viewBox attribute on the 'svg' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ Gaphics/SV@ 1. 1/ DTD/ svgll. dtd" >
<svg wi dth="12cm' hei ght="4cm" vi ewBox="0 0 1200 400"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e polyline0l - increasingly |arger bars</desc>

<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" wi dth="1198" hei ght ="398"
fill="none" stroke="blue" stroke-w dth="2" />

<polyline fill="none" stroke="blue" stroke-w dt h="10"
poi nt s="50, 375
150, 375 150, 325 250, 325 250, 375
350, 375 350, 250 450, 250 450, 375
550, 375 550,175 650, 175 650, 375
750, 375 750, 100 850, 100 850, 375
950, 375 950, 25 1050, 25 1050, 375
1150, 375" />
</ svg>

Example polyline0l

View this example as SVG (SVG-enabled browsers only)

9.7 The 'polygon' element

The 'polygon’ element defines a closed shape consisting of a set of connected straight line segments.

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/shapes/polyline01.svg

<IENTITY % SVG pol ygon. el enent "1 NCLUDE" >
<I'[%BVG pol ygon. el enment ; [
<I ENTI TY % SVG. pol ygon. cont ent
"((“8VG Description.class;)*, (%SVG Anination.class;)*)"

>
<! ELEMENT %8VG pol ygon. gnane; %SVG pol ygon. content; >
<!-- end of SVG pol ygon. el enent -->]]>

<IENTITY % SVG pol ygon. attlist "INCLUDE" >
<I[%BVG pol ygon. attlist;[
<I ATTLI ST %8VG pol ygon. gnane;
%SVG Core. attrib;
%SVG Condi tional . attrib;
%8VG Style.attrib;
%6VG Paint.attrib;
%8VG Col or . attrib;
%8SVG Qpacity. attrib;
%8VG Graphics. attrib;
%SVG Mar ker . attrib;
YSVG dip.attrib;
%SVG Mask. attrib;
USVG Filter.attrib;
%SVG G aphi cal Events. attrib;
%SVG Cursor. attrib;
%8VG External .attrib;
poi nts %P0i nts. dat at ype; #REQUI RED
transf orm %lransfornii st . dat atype; #l MPLI ED

Attribute definitions:

poi nt s = "<list-of-points>"
The points that make up the polygon. All coordinate values are in the user coordinate system.
Animatable: yes.

If an odd number of coordinates is provided, then the element is in error, with the same user agent
behavior as occurs with an incorrectly specified 'path' element.

Mathematically, a 'polygon’ element can be mapped to an equivalent 'path’ element as follows:

. perform an absolute moveto operation to the first coordinate pair in the list of points

. for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate
pair

. perform a closepath command

Example polygon01 below specifies two polygons (a star and a hexagon) in the user coordinate

system established by the viewBox attribute on the 'svg' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ Gaphics/SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dth="12cm' hei ght="4cm' vi ewBox="0 0 1200 400"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e pol ygon0Ol - star and hexagon</ desc>

<l-- Show outline of canvas using 'rect' elenent -->

<rect x="1" y="1" wi dth="1198" hei ght ="398"
fill="none" stroke="blue" stroke-w dth="2" />

<pol ygon fill="red" stroke="blue" stroke-w dth="10"

poi nt s="350,75 379, 161 469, 161 397, 215
423,301 350, 250 277,301 303, 215
231,161 321, 161" />
<pol ygon fill="1inme" stroke="blue" stroke-w dth="10"
poi nt s="850,75 958, 137.5 958, 262.5
850, 325 742,262.6 742,137.5" |>
</ svg>

Example polygon01

View this example as SVG (SVG-enabled browsers only)

9.8 The grammar for points specifications in 'polyline’ and 'polygon' elements

The following is the Backus-Naur Form (BNF) for points specifications in 'polyline’ and 'polygon’
elements. The following notation is used:

. *20or more

. +:1ormore

. 2200r1

(): grouping

. |: separates alternatives

. double quotes surround literals

|ist-of-points:

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/shapes/polygon01.svg

wsp* coordi nat e- pai rs? wsp*

coor di nat e-pai rs:
coordi nate-pair
| coordi nate-pair comma-wsp coordinate-pairs

coordi nate-pair:
coordi nate coma-wsp coordi nate

coor di nat e:
nunber

nunber :
si gn? integer-constant
| sign? floating-point-constant

conma- Wsp:
(wsp+ comma? wsp*) | (comma wsp*)

comma:

i nt eger-const ant:
di gi t - sequence

fl oati ng- poi nt - constant:
fractional -constant exponent?
| digit-sequence exponent

fractional -constant:
di gi t-sequence? ".
| digit-sequence "."

di gi t - sequence
exponent :

("e" | "E'") sign? digit-sequence
si gn:
di gi t-sequence:

digit

| digit digit-sequence

digit:
“o* | "a1“ | "2" | "3" | "4 | "5 | "€e" | "7" | "8" | "9"

wsp:
(#x20 | #x9 | #xD | #xA) +

9.9 Shape Module

]Elements]Attributes Content Model

path

rect

circle

line

ellipse

StdAttrs, TestAttrs, ExternalResourcesRequiredAttrs,
StyleAttrs, transform, d, pathLength,
GraphicsElementsEventsAttrs,
ColorPresentationAttrs, PaintPresentationAttrs,
OpacityPresentationAttrs, GraphicsPresentationAttrs,
CursorPresentationAttrs, FilterPresentationAttrs,
MaskPresentationAttrs,
PointerEventsPresentationAttrs,
ClipPresentationAttrs, MarkerPresentationAttrs

StdAttrs, TestAttrs, StyleAttrs,
GraphicsElementsEventsAttrs,
ColorPresentationAttrs, PaintPresentationAttrs,
OpacityPresentationAttrs, GraphicsPresentationAttrs,
CursorPresentationAttrs, FilterPresentationAttrs,
MaskPresentationAttrs,
PointerEventsPresentationAttrs,
ClipPresentationAttrs, x, y, width, height, rx, ry,
transform

StdAttrs, TestAttrs, StyleAttrs,
GraphicsElementsEventsAttrs,
ColorPresentationAttrs, PaintPresentationAttrs,
OpacityPresentationAttrs, GraphicsPresentationAttrs,
CursorPresentationAttrs, FilterPresentationAttrs,
MaskPresentationAttrs,
PointerEventsPresentationAttrs,
ClipPresentationAttrs, cx, cy, r, transform

StdAttrs, TestAttrs, StyleAttrs,
GraphicsElementsEventsAttrs,
ColorPresentationAttrs, PaintPresentationAttrs,
OpacityPresentationAttrs, GraphicsPresentationAttrs,
CursorPresentationAttrs, FilterPresentationAttrs,
MaskPresentationAttrs,
PointerEventsPresentationAttrs,
ClipPresentationAttrs, x1, y1, x2, y2, transform

StdAttrs, TestAttrs, StyleAttrs,
GraphicsElementsEventsAttrs,
ColorPresentationAttrs, PaintPresentationAttrs,
OpacityPresentationAttrs, GraphicsPresentationAttrs,
CursorPresentationAttrs, FilterPresentationAttrs,
MaskPresentationAttrs,
PointerEventsPresentationAttrs,
ClipPresentationAttrs, cx, cy, rx, ry, transform

(DescriptionElements |
AnimationElements)*

(DescriptionElements |
AnimationElements)*

(DescriptionElements |
AnimationElements)*

(DescriptionElements |
AnimationElements)*

(DescriptionElements |
AnimationElements)*

StdAttrs, TestAttrs, StyleAttrs,

GraphicsElementsEventsAttrs,

ColorPresentationAttrs, PaintPresentationAttrs,

OpacityPresentationAttrs, GraphicsPresentationAttrs, (DescriptionElements |
CursorPresentationAttrs, FilterPresentationAttrs, AnimationElements)*
MaskPresentationAttrs,

PointerEventsPresentationAttrs,

ClipPresentationAttrs, points, transform

StdAttrs, TestAttrs, StyleAttrs,

GraphicsElementsEventsAttrs,

ColorPresentationAttrs, PaintPresentationAttrs,

OpacityPresentationAttrs, GraphicsPresentationAttrs, |(DescriptionElements |
CursorPresentationAttrs, FilterPresentationAttrs, AnimationElements)*
MaskPresentationAttrs,

PointerEventsPresentationAttrs,

ClipPresentationAttrs, points, transform

polyline

polygon

9.9.1 Shape Content Set

The Shape Module defines the GraphicalElements content set.

Content Set Name [Elements in Content Set
GraphicalElements |rect, circle, line, polyline, polygon, ellipse, path

9.10 DOM interfaces

The following interfaces are defined below: SVGRectElement, SVGCircleElement,
SVGEllipseElement, SVGLineElement, SVGAnimatedPoints, SVGPolylineElement,
SVGPolygonElement.

Interface SVGRectElement

The SVGRectElement interface corresponds to the 'rect' element.

IDL Definition

i nterface SVGRect El enment

SVGEl enent

SVGTest s,

SVG.angSpace,

SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,

SVGTr ansf or mabl e,

events: : Event Target {

readonly attribute SVGAni nat edLength x;
readonly attribute SVGAni mat edLength vy;
readonly attribute SVGAni mat edLength wi dt h;
readonly attribute SVGAni mat edLengt h hei ght;
readonly attribute SVGAni mat edLengt h rx;
readonly attribute SVGAni mat edLength ry;

Attributes

readonly SVGAnimatedLength x

Corresponds to attribute x on the given 'rect' element.
readonly SVGAnimatedLength y

Corresponds to attribute y on the given 'rect’ element.
readonly SVGAnimatedLength width

Corresponds to attribute width on the given 'rect' element.
readonly SVGAnimatedLength height

Corresponds to attribute height on the given 'rect’ element.
readonly SVGAnimatedLength rx

Corresponds to attribute rx on the given 'rect’ element.
readonly SVGAnimatedLength ry

Corresponds to attribute ry on the given 'rect' element.

Interface SVGCircleElement

The SVGCircleElement interface corresponds to the ‘circle’ element.

IDL Definition

i nterface SVGCircl eEl enent
SVGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
event s: : Event Target {

readonly attribute SVGAni mat edLengt h cx;

readonly attribute SVGAni mat edLength cy;
readonly attribute SVGAni mat edLength r

}i

Attributes
readonly SVGAnimatedLength cx
Corresponds to attribute cx on the given ‘circle’ element.
readonly SVGAnimatedLength cy
Corresponds to attribute cy on the given ‘circle’ element.
readonly SVGAnimatedLength r
Corresponds to attribute r on the given ‘circle’ element.

Interface SVGEIllipseElement

The SVGEllipseElement interface corresponds to the ‘ellipse’ element.

IDL Definition

i nterface SVCEl | i pseEl enent
SVGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed
SVGSt yl abl e,
SVGTr ansf or mabl e,
event s: : Event Target {

readonly attribute SVGAni mat edLengt h cx;
readonly attribute SVGAni mat edLengt h cy;
readonly attribute SVGAni mat edLength rx;
readonly attribute SVGAni mat edLength ry;

Attributes

readonly SVGAnimatedLength cx

Corresponds to attribute cx on the given ‘ellipse’ element.
readonly SVGAnimatedLength cy

Corresponds to attribute cy on the given ‘ellipse’ element.
readonly SVGAnimatedLength rx

Corresponds to attribute rx on the given 'ellipse’ element.
readonly SVGAnimatedLength ry

Corresponds to attribute ry on the given 'ellipse’ element.

Interface SVGLineElement

The SVGLineElement interface corresponds to the 'line' element.

IDL Definition

i nterface SVGA.i neEl enent
SVGEl enent
SVGTest s,
SVGE.angSpace,
SVCGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
event s: : Event Tar get {

readonly attribute SVGAni mat edLengt h x1;
readonly attribute SVGAni mat edLength y1;
readonly attribute SVGAni mat edLengt h x2;
readonly attribute SVGAni mat edLength y2;

Attributes

readonly SVGAnimatedLength x1

Corresponds to attribute x1 on the given 'line’ element.
readonly SVGAnimatedLength y1

Corresponds to attribute y1 on the given 'line’ element.
readonly SVGAnimatedLength x2

Corresponds to attribute x2 on the given 'line' element.
readonly SVGAnimatedLength y2

Corresponds to attribute y2 on the given 'line' element.

Interface SVGAnimatedPoints

The SVGAnimatedPoints interface supports elements which have a 'points’ attribute which holds a
list of coordinate values and which support the ability to animate that attribute.

Additionally, the 'points’ attribute on the original element accessed via the XML DOM (e.qg., using the
getAttribute() method call) will reflect any changes made to points.

IDL Definition

i nterface SVGAni mat edPoi nts {

readonly attribute SVGPoi ntLi st poi nt s;
readonly attribute SVGPoi nt Li st ani mat edPoi nt s;

i

Attributes
readonly SVGPointList points

Provides access to the base (i.e., static) contents of the points attribute.
readonly SVGPointList animatedPoints

Provides access to the current animated contents of the points attribute. If the given
attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated,
contains the same value as 'points’'.

Interface SVGPolylineElement

The SVGPolylineElement interface corresponds to the 'polyline’ element.

IDL Definition

i nterface SVGPol yl i neEl enent
SVGEl enent ,
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
event s: : Event Tar get ,
SVGAni mat edPoi nts {};

Interface SVGPolygonElement

The SVGPolygonElement interface corresponds to the '‘polygon’ element.

IDL Definition

i nt erface SVGPol ygonEl enent
SVGEl enent
SVGTest s,
SVG.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGTr ansf or mabl e,
event s: : Event Tar get ,
SVGAni mat edPoi nts {};

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

10 Text

Contents

. 10.1 Introduction
. 10.2 Characters and their corresponding glyphs
. 10.3 Fonts, font tables and baselines
« 10.4 The 'text' element
. 10.5 The 'tspan' element
. 10.6 The 'tref' element
. 10.7 Text layout
o 10.7.1 Text layout introduction
o 10.7.2 Setting the inline-progression-direction
o 10.7.3 Glyph orientation within a text run
o 10.7.4 Relationship with bidirectionality
. 10.8 Text rendering order
. 10.9 Alignment properties
o 10.9.1 Text alignment properties
o 10.9.2 Baseline alignment properties
. 10.10 Font selection properties
. 10.11 Spacing properties
. 10.12 Text decoration
. 10.13 Text on a path
o 10.13.1 Introduction to text on a path
o 10.13.2 The 'textPath' element
o 10.13.3 Text on a path layout rules
. 10.14 Alternate glyphs
. 10.15 White space handling
. 10.16 Text selection and clipboard operations
. 10.17 Text Module
. 10.18 Basic Text Module
. 10.19 DOM interfaces

c
(e
=
[
o
c
Q
=
=
o
]
Q
o
@
+J
o
=
o
c
[
-
-
=

10.1 Introduction

Text that is to be rendered as part of an SVG document fragment is specified using the 'text' element. The
characters to be drawn are expressed as XML character data [XML10] inside the 'text' element.

http://www.w3.org/TR/REC-xml

SVG's 'text' elements are rendered like other graphics elements. Thus, coordinate system transformations,
painting, clipping and masking features apply to 'text' elements in the same way as they apply to shapes such

as paths and rectangles.

Each 'text' element causes a single string of text to be rendered. SVG performs no automatic line breaking or
word wrapping. To achieve the effect of multiple lines of text, use one of the following methods:

. The author or authoring package needs to pre-compute the line breaks and use multiple 'text' elements

(one for each line of text).
The author or authoring package needs to pre-compute the line breaks and use a single 'text' element

with one or more 'tspan’ child elements with appropriate values for attributes x, y, dx and dy to set new
start positions for those characters which start new lines. (This approach allows user text selection across
multiple lines of text -- see Text selection and clipboard operations.)

. Express the text to be rendered in another XML namespace such as XHTML [XHTML] embedded inline
within a 'foreignObject' element. (Note: the exact semantics of this approach are not completely defined at
this time.)

The text strings within 'text' elements can be rendered in a straight line or rendered along the outline of a 'path'
element. SVG supports the following international text processing features for both straight line text and text on
a path:

. horizontal and vertical orientation of text

. left-to-right or bidirectional text (i.e., languages which intermix right-to-left and left-to-right text, such as
Arabic and Hebrew)

. when SVG fonts are used, automatic selection of the correct glyph corresponding to the current form for

Arabic and Han text

(The layout rules for straight line text are described in Text layout. The layout rules for text on a path are
described in Text on a path layout rules.)

Because SVG text is packaged as XML character data [XML10]:

. Text data in SVG content is readily accessible to the visually impaired (see Accessibility Support)

. In many viewing scenarios, the user will be able to search for and select text strings and copy selected
text strings to the system clipboard (see Text selection and clipboard operations)

. XML-compatible Web search engines will find text strings in SVG content with no additional effort over
what they need to do to find text strings in other XML documents

Multi-language SVG content is possible by substituting different text strings based on the user's preferred
language.

For accessibility reasons, it is recommended that text which is included in a document have appropriate
semantic markup to indicate its function. See SVG accessibility guidelines for more information.

10.2 Characters and their corresponding glyphs

In XML [XML10], textual content is defined in terms of a sequence of XML characters, where each character is
defined by a particular Unicode code point [UNICODE]. Fonts, on the other hand, consists of a collection of
glyphs and other associated information, such as font tables. A glyph is a presentable form of one or more

characters (or a part of a character in some cases). Each glyph consists of some sort of identifier (in some
cases a string, in other cases a humber) along with drawing instructions for rendering that particular glyph.

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.unicode.org/unicode/standard/versions/

In many cases, there is a one-to-one mapping of Unicode characters (i.e., Unicode code points) to glyphs in a
font. For example, it is common for a font designed for Latin languages (where the term Latin is used for
European languages such as English with alphabets similar to and/or derivative to the Latin language) to
contain a single glyph for each of the standard ASCII characters (i.e., A-to-Z, a-to-z, 0-to-9, plus the various
punctuation characters found in ASCII). Thus, in most situations, the string "XML", which consists of three
Unicode characters, would be rendered by the three glyphs corresponding to "X", "M" and "L", respectively.

In various other cases, however, there is not a strict one-to-one mapping of Unicode characters to glyphs. Some
of the circumstances when the mapping is not one-to-one:

. Ligatures - For best looking typesetting, it is often desirable that particular sequences of characters are
rendered as a single glyph. An example is the word "office". Many fonts will define an "ffi" ligature. When
the word "office" is rendered, sometimes the user agent will render the glyph for the "ffi" ligature instead
of rendering distinct glyphs (i.e., "f*, "f" and "i"') for each of the three characters. Thus, for ligatures,
multiple Unicode characters map to a single glyph. (Note that for proper rendering of some languages,
ligatures are required for certain character combinations.)

. Composite characters - In various situations, commonly used adornments such as diacritical marks will
be stored once in a font as a particular glyph and then composed with one or more other glyphs to result
in the desired character. For example, it is possible that a font engine might render the é character by first
rendering the glyph for e and then rendering the glyph for ~ (the accent mark) such that the accent mark
will appear over the e. In this situation, a single Unicode character maps to multiple glyphs.

. Glyph substitution - Some typography systems examine the nature of the textual content and utilize
different glyphs in different circumstances. For example, in Arabic, the same Unicode character might
render as any of four different glyphs, depending on such factors as whether the character appears at the
start, the end or the middle of a sequence of cursively joined characters. Different glyphs might be used
for a punctuation character depending on inline-progression-direction (e.g., horizontal vs. vertical). In
these situations, a single Unicode character might map to one of several alternative glyphs.

In some languages, particular sequences of characters will be converted into multiple glyphs such that
parts of a particular character are in one glyph and the remainder of that character is in another glyph.

. Alternative glyph specification - SVG contains a facility for the author to explicitly specify that a particular
sequence of Unicode characters is to be rendered using a particular glyph. (See Alternate glyphs.) When

this facility is used, multiple Unicode characters map to a single glyph.

In many situations, the algorithms for mapping from characters to glyphs are system-dependent, resulting in the
possibility that the rendering of text might be (usually slightly) different when viewed in different user
environments. If the author of SVG content requires precise selection of fonts and glyphs, then the
recommendation is that the necessary fonts (potentially subsetted to include only the glyphs needed for the
given document) be available either as SVG fonts embedded within the SVG content or as WebFonts posted at

the same Web location as the SVG content.

Throughout this chapter, the term character shall be equivalent to the definition of a character in XML [XML10].

10.3 Fonts, font tables and baselines

A font consists of a collection of glyphs together with the information (the font tables) necessary to use those
glyphs to present characters on some medium. The combination of the collection of glyphs and the font tables is
called the font data. The font tables include the information necessary to map characters to glyphs, to determine
the size of glyph areas and to position the glyph area. Each font table consists of one or more font
characteristics, such as the font-weight and font-style.

The geometric font characteristics are expressed in a coordinate system based on the EM box. (The EM is a
relative measure of the height of the glyphs in the font; see CSS2 em square.) The box 1 EM high and 1 EM

http://www.w3.org/TR/REC-CSS2/fonts.html#q1
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-CSS2/fonts.html#emsq

wide is called the design space. This space is given a geometric coordinates by sub-dividing the EM into a
number of units-per-em.

Note: Units-per-em is a font characteristic. A typical value for units-per-EM is 1000 or 2048.

The coordinate space of the EM box is called the design space coordinate system. For scalable fonts, the
curves and lines that are used to draw a glyph are represented using this coordinate system.

Note: Most often, the (0,0) point in this coordinate system is positioned on the left edge of the EM box, but not at
the bottom left corner. The Y coordinate of the bottom of a roman capital letter is usually zero. And the
descenders on lowercase roman letters have negative coordinate values.

SVG assumes that the font tables will provide at least three font characteristics: an ascent, a descent and a set
of baseline-tables. The ascent is the distance to the top of the EM box from the (0,0) point of the font; the
descent is the distance to the bottom of the EM box from the (0.0) point of the font. The baseline-table is
explained below.

Note: Within an OpenType font, for horizontal writing-modes, the ascent and descent are given by the
sTypoAscender and sTypoDescender entries in the OS/2 table. For vertical writing-modes, the descent (the
distance, in this case from the (0,0) point to the left edge of the glyph) is normally zero because the (0,0) point is
on the left edge. The ascent for vertical writing-modes is either 1 em or is specified by the ideographic top
baseline value in the OpenType Base table for vertical writing-modes.

In horizontal writing-modes, the glyphs of a given script are positioned so that a particular point on each glyph,
the alignment-point, is aligned with the alignment-points of the other glyphs in that script. The glyphs of different
scripts, for example, Western, Northern Indic and Far-Eastern scripts, are typically aligned at different points on
the glyph. For example, Western glyphs are aligned on the bottoms of the capital letters, northern indic glyphs
are aligned at the top of a horizontal stroke near the top of the glyphs and far-eastern glyphs are aligned either
at the bottom or center of the glyph. Within a script and within a line of text having a single font-size, the
sequence of alignment-points defines, in the inline- progression-direction, a geometric line called a baseline.
Western and most other alphabetic and syllabic glyphs are aligned to an "alphabetic" baseline, the northern
indic glyphs are aligned to a "hanging" baseline and the far-eastern glyphs are aligned to an "ideographic"
baseline.

A baseline-table specifies the position of one or more baselines in the design space coordinate system. The
function of the baseline table is to facilitate the alignment of different scripts with respect to each other when
they are mixed on the same text line. Because the desired relative alignments may depend on which script is
dominant in a line (or block), there may be a different baseline table for each script. In addition, different
alignment positions are needed for horizontal and vertical writing modes. Therefore, the font may have a set of
baseline tables: typically, one or more for horizontal writing-modes and zero or more for vertical writing-modes.

Note: Some fonts may not have values for the baseline tables. Heuristics are suggested for approximating the
baseline tables when a given font does not supply baseline tables.

SVG further assumes that for each glyph in the font data for a font, there are two width values, two alignment-
baselines and two alignment-points, one each for horizontal writing-modes and the other for vertical writing-
modes. (Even though it is specified as a width, for vertical writing-modes the width is used in the vertical
direction.) The script to which a glyph belongs determines an alignment-baseline to which the glyph is to be
aligned. The inline-progression-direction position of the alignment-point is on the start-edge of the glyph.

Properties related to baselines are described below under Baseline alignment properties.

In addition to the font characteristics required above, a font may also supply substitution and positioning tables

http://www.w3.org/TR/REC-CSS2/fonts.html#unitsperem

that can be used by a formatter to re-order, combine and position a sequence of glyphs to make one or more
composite glyphs. The combination may be as simple as a ligature, or as complex as an indic syllable which
combines, usually with some re-ordering, multiple consonants and vowel glyphs.

10.4 The 'text' element

The 'text' element defines a graphics element consisting of text. The XML [XML10] character data within the
'text' element, along with relevant attributes and properties and character-to-glyph mapping tables within the
font itself, define the glyphs to be rendered. (See Characters and their corresponding glyphs.) The attributes
and properties on the 'text' element indicate such things as the writing direction, font specification and painting
attributes which describe how exactly to render the characters. Subsequent sections of this chapter describe the
relevant text-specific attributes and properties, particular text layout and bidirectionality.

Since 'text' elements are rendered using the same rendering methods as other graphics elements, all of the
same coordinate system transformations, painting, clipping and masking features that apply to shapes such as

paths and rectangles also apply to 'text' elements.

It is possible to apply a gradient, pattern, clipping path, mask or filter to text. When one of these facilities is
applied to text and keyword objectBoundingBox is used (see Object bounding box units) to specify a graphical
effect relative to the "object bounding box", then the object bounding box units are computed relative to the
entire 'text' element in all cases, even when different effects are applied to different 'tspan’ elements within the
same 'text' element.

The 'text' element renders its first glyph (after bidirectionality reordering) at the initial current text position, which
is established by the x and y attributes on the 'text' element (with possible adjustments due to the value of the
‘text-anchor' property, the presence of a 'textPath' element containing the first character, and/or an x, y, dx or dy
attributes on a 'tspan’, 'tref' or 'altGlyph' element which contains the first character). After the glyph(s)
corresponding to the given character is(are) rendered, the current text position is updated for the next character.
In the simplest case, the new current text position is the previous current text position plus the glyphs' advance
value (horizontal or vertical). See text layout for a description of glyph placement and glyph advance.

<IENTITY % SVG text. el enrent "I NCLUDE" >
<I[%BVG text. el enent; |
<IENTITY % SVG t ext. cont ent
"(#PCDATA | % BVG Description.class; | %8VG Ani mation. cl ass;
%8VG. Text Cont ent . cl ass; %BVG Hyperlink.cl ass;)*"

>
<I ELEMENT %8VG t ext.gnane; %6VG text.content; >
<!-- end of SVGtext.element -->]]>

<IENTITY % SVG text.attlist "INCLUDE" >
<I[%BVG text.attlist;|
<I ATTLI ST %8VG t ext. gnane;
%SVG Core. attrib;
%EVG Condi tional . attrib;
YSVG Style. attrib;
Y%SVG Text . attrib;
Y8VG Text Content.attrib;
%SVG Font . attrib;
%EVG Paint . attrib;
%SVG Col or . attrib;
YSVG pacity. attrib;
Y8VG G aphics. attrib;

http://www.w3.org/TR/REC-xml

Y%8VG dip.attrib;

%SVG Mask. attri b;

YSVG Filter.attrib;

%8VG G aphi cal Events. attrib;

Y%8VG Cursor.attrib;

%SVG External . attrib;

X %Coor di nat es. dat at ype; #| MPLI ED

y %Coor di nat es. dat at ype; #l MPLI ED

dx %.engt hs. dat at ype; #I MPLI ED

dy %.engt hs. dat at ype; #l MPLI ED

rotate YNunbers. dat at ype; #| MPLI ED

text Lengt h %.engt h. dat at ype; #l MPLI ED

| engt hAdj ust (spacing | spaci ngAndd yphs) #l MPLI ED
transform % ransfornli st. dat at ype; #l MPLI ED

Attribute definitions:

X ="<coordinate>+"
If a single <coordinate> is provided, then the value represents the new absolute X coordinate for the
current text position for rendering the glyphs that correspond to the first character within this element or
any of its descendants.
If a comma- or space-separated list of <n> <coordinate>s is provided, then the values represent new
absolute X coordinates for the current text position for rendering the glyphs corresponding to each of the
first <n> characters within this element or any of its descendants.
For additional processing rules, refer to the description of the x attribute on the 'tspan’ element.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

y ="<coordinate>+"
The corresponding list of absolute Y coordinates for the glyphs corresponding to the characters within this
element. The processing rules for the 'y" attribute parallel the processing rules for the 'x' attribute.
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

dx ="<length>+"
Shifts in the current text position along the x-axis for the characters within this element or any of its
descendants.
Refer to the description of the dx attribute on the 'tspan’ element.
If the attribute is not specified on this element or any of its descendants, no supplemental shifts along the
x-axis will occur.
Animatable: yes.

dy ="<length>+"
Shifts in the current text position along the y-axis for the characters within this element or any of its
descendants.
Refer to the description of the dy attribute on the 'tspan’ element.
If the attribute is not specified on this element or any of its descendants, no supplemental shifts along the
y-axis will occur.
Animatable: yes.

rot at e = "<number>+"
The supplemental rotation about the current text position that will be applied to all of the glyphs
corresponding to each character within this element.
Refer to the description of the rotate attribute on the ‘tspan’ element.

If the attribute is not specified on this element or any of its descendants, no supplemental rotations will
occur.
Animatable: yes (non-additive, 'set' and 'animate' elements only).

t ext Lengt h = "<length>"
The author's computation of the total sum of all of the advance values that correspond to character data
within this element, including the advance value on the glyph (horizontal or vertical), the effect of
properties 'kerning', 'letter-spacing' and 'word-spacing' and adjustments due to attributes dx and dy on
‘tspan’ elements. This value is used to calibrate the user agent's own calculations with that of the author.
The purpose of this attribute is to allow the author to achieve exact alignment, in visual rendering order
after any bidirectional reordering, for the first and last rendered glyphs that correspond to this element;
thus, for the last rendered character (in visual rendering order after any bidirectional reordering), any
supplemental inter-character spacing beyond normal glyph advances are ignored (in most cases) when
the user agent determines the appropriate amount to expand/compress the text string to fit within a length
of textLength.
A negative value is an error (see Error processing).
If the attribute is not specified, the effect is as if the author's computation exactly matched the value
calculated by the user agent; thus, no advance adjustments are made.
Animatable: yes.

| engt hAdj ust = "spacing|spacingAndGlyphs"
Indicates the type of adjustments which the user agent shall make to make the rendered length of the text
match the value specified on the textLength attribute.
spacing indicates that only the advance values are adjusted. The glyphs themselves are not stretched or
compressed.
spacingAndGlyphs indicates that the advance values are adjusted and the glyphs themselves stretched or
compressed in one axis (i.e., a direction parallel to the inline-progression-direction).
The user agent is required to achieve correct start and end positions for the text strings, but the locations
of intermediate glyphs are not predictable because user agents might employ advanced algorithms to
stretch or compress text strings in order to balance correct start and end positioning with optimal
typography.
Note that, for a text string that contains <n> characters, the adjustments to the advance values often
occur only for <n-1> characters (see description of attribute textLength), whereas stretching or
compressing of the glyphs will be applied to all <n> characters.
If the attribute is not specified, the effect is as a value of spacing were specified.
Animatable: yes.

Example textO1 below contains the text string "Hello, out there" which will be rendered onto the canvas using
the Verdana font family with the glyphs filled with the color blue.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1//EN'
“http://ww. w3. org/ Graphi cs/ SVE 1. 1/ DTD/ svgll. dt d" >
<svg w dt h="10cn' hei ght ="3cn' vi ewBox="0 0 1000 300"
xm ns="http://ww. w3. or g/ 2000/ svg" version="1.1">
<desc>Exanpl e text0l - '"Hello, out there' in blue</desc>

<text x="250" y="150"

font-fam | y="Verdana" font-size="55" fill="Dblue" >
Hel | o, out there
</text>
<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" wi dth="998" hei ght="298"
fill="none" stroke="blue" stroke-w dth="2" />

</ svg>

http://www.w3.org/2000/svg

Hello, out there

Example text01

View this example as SVG (SVG-enabled browsers only)

10.5 The 'tspan' element

Within a 'text' element, text and font properties and the current text position can be adjusted with absolute or
relative coordinate values by including a 'tspan’ element.

<IENTITY % SVG t span. el enent "| NCLUDE" >
<I[%BVG t span. el ement ; [
<IENTITY % SVG. t span. cont ent
"(#PCDATA | %8VG tspan.gnane; | %BVG tref.gnane; | %8VG al t d yph. gnane;
| %8VG ani mat e. gnane; | %8VG set. gnane; | %SVG ani mat eCol or . gnane;
| 9%6VG Description.class; %8VG Hyperlink.class;)*"

>
<I ELEMENT %8VG t span. gnane; %SVG tspan.content; >
<!-- end of SVG tspan.elenent -->]]>

<IENTITY % SVG tspan. attlist "INCLUDE" >
<I[%BVG tspan.attlist;]
<I ATTLI ST %8VG t span. gnane;

%SVG Core. attrib;

%SVG Condi tional . attrib;

Y8VG Style.attrib;

%SVG Text Content . attri b;

%SVG Font . attrib;

Y8VG Paint.attrib;

%SVG Col or. attrib;

Y8VG Qpacity. attrib;

%8VG G aphics. attrib;

Y8VG dip.attrib;

%SVG Mask. attrib;

YSVG Filter.attrib;

YSVG G aphi cal Events. attrib;

%SVG Cursor. attrib;

%SVG External . attrib;

X %Coor di nat es. dat at ype; #| MPLI ED
y %Coor di nat es. dat at ype; #l MPLI ED
dx %.engt hs. dat at ype; #l MPLI ED

dy %.engt hs. dat at ype; #l MPLI ED

rot ate %M\unbers. dat at ype; #l MPLI ED
text Lengt h %.engt h. dat at ype; #l| MPLI ED
| engt hAdj ust (spacing | spaci ngAndd yphs) #l MPLI ED

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/text01.svg

Attribute definitions:

X ="<coordinate>+"
If a single <coordinate> is provided, then the value represents the new absolute X coordinate for the
current text position for rendering the glyphs that correspond to the first character within this element or

any of its descendants.
If a comma- or space-separated list of <n> <coordinate>s is provided, then the values represent new

absolute X coordinates for the current text position for rendering the glyphs corresponding to each of the

first <n> characters within this element or any of its descendants.
If more <coordinate>s are provided than characters, then the extra <coordinate>s will have no effect on
glyph positioning.
If more characters exist than <coordinate>s, then for each of these extra characters: (a) if an ancestor
‘text' or 'tspan’ element specifies an absolute X coordinate for the given character via an x attribute, then
that absolute X coordinate is used as the starting X coordinate for that character (nearest ancestor has
precedence), else (b) the starting X coordinate for rendering the glyphs corresponding to the given
character is the X coordinate of the resulting current text position from the most recently rendered glyph
for the current 'text' element.
If the attribute is not specified: (a) if an ancestor 'text’ or 'tspan’ element specifies an absolute X
coordinate for a given character via an x attribute, then that absolute X coordinate is used (nearest
ancestor has precedence), else (b) the starting X coordinate for rendering the glyphs corresponding to a
given character is the X coordinate of the resulting current text position from the most recently rendered
glyph for the current 'text' element.
Animatable: yes.

y ="<coordinate>+"

The corresponding list of absolute Y coordinates for the glyphs corresponding to the characters within this
element. The processing rules for the 'y' attribute parallel the processing rules for the 'x' attribute.

Animatable: yes.

dx ="<length>+"
If a single <length> is provided, this value represents the new relative X coordinate for the current text
position for rendering the glyphs corresponding to the first character within this element or any of its
descendants. The current text position is shifted along the x-axis of the current user coordinate system by
<length> before the first character's glyphs are rendered.
If a comma- or space-separated list of <n> <length>s is provided, then the values represent incremental
shifts along the x-axis for the current text position before rendering the glyphs corresponding to the first

<n> characters within this element or any of its descendants. Thus, before the glyphs are rendered
corresponding to each character, the current text position resulting from drawing the glyphs for the
previous character within the current 'text' element is shifted along the X axis of the current user
coordinate system by <length>.

If more <length>s are provided than characters, then any extra <length>s will have no effect on glyph
positioning.

If more characters exist than <length>s, then for each of these extra characters: (a) if an ancestor 'text’ or
‘tspan’ element specifies a relative X coordinate for the given character via a dx attribute, then the current
text position is shifted along the x-axis of the current user coordinate system by that amount (nearest

ancestor has precedence), else (b) no extra shift along the x-axis occurs.
If the attribute is not specified: (a) if an ancestor 'text' or 'tspan’ element specifies a relative X coordinate

for a given character via a dx attribute, then the current text position is shifted along the x-axis of the
current user coordinate system by that amount (nearest ancestor has precedence), else (b) no extra shift
along the x-axis occurs.

Animatable: yes.

dy ="<length>+"
The corresponding list of relative Y coordinates for the characters within the 'tspan' element. The
processing rules for the 'dy" attribute parallel the processing rules for the 'dx' attribute.
Animatable: yes.

rot at e = "<number>+"
The supplemental rotation about the current text position that will be applied to all of the glyphs
corresponding to each character within this element.
If a comma- or space-separated list of <number>s is provided, then the first <number> represents the
supplemental rotation for the glyphs corresponding to the first character within this element or any of its
descendants, the second <number> represents the supplemental rotation for the glyphs that correspond
to the second character, and so on.
If more <number>s are provided than there are characters, then the extra <number>s will be ignored.
If more characters are provided than <number>s, then for each of these extra characters: (a) if an
ancestor 'text’ or 'tspan’ element specifies a supplemental rotation for the given character via a rotate
attribute, then the given supplemental rotation is applied to the given character, else (b) no supplemental
rotation occurs.
If the attribute is not specified: (a) if an ancestor 'text’ or 'tspan’ element specifies a supplemental rotation
for a given character via a rotate attribute, then the given supplemental rotation is applied to the given
character (nearest ancestor has precedence), else (b) no supplemental rotation occurs.
This supplemental rotation has no impact on the rules by which current text position is modified as glyphs
get rendered and is supplemental to any rotation due to text on a path and to 'glyph-orientation-horizontal'
or 'glyph-orientation-vertical'.
Animatable: yes (non-additive, 'set’ and ‘animate’ elements only).

t ext Lengt h = "<length>"
The author's computation of the total sum of all of the advance values that correspond to character data
within this element, including the advance value on the glyph (horizontal or vertical), the effect of
properties 'kerning', 'letter-spacing' and 'word-spacing' and adjustments due to attributes dx and dy on this
‘tspan’ element or any descendants. This value is used to calibrate the user agent's own calculations with
that of the author.
The purpose of this attribute is to allow the author to achieve exact alignment, in visual rendering order
after any bidirectional reordering, for the first and last rendered glyphs that correspond to this element;
thus, for the last rendered character (in visual rendering order after any bidirectional reordering), any
supplemental inter-character spacing beyond normal glyph advances are ignored (in most cases) when
the user agent determines the appropriate amount to expand/compress the text string to fit within a length
of textLength.
If attribute textLength is specified on a given element and also specified on an ancestor, the adjustments
on all character data within this element are controlled by the value of textLength on this element
exclusively, with the possible side-effect that the adjustment ratio for the contents of this element might
be different than the adjustment ratio used for other content that shares the same ancestor. The user
agent must assume that the total advance values for the other content within that ancestor is the
difference between the advance value on that ancestor and the advance value for this element.
A negative value is an error (see Error processing).
If the attribute is not specified anywhere within a 'text' element, the effect is as if the author's computation
exactly matched the value calculated by the user agent; thus, no advance adjustments are made.
Animatable: yes.

The x, y, dx, dy and rotate on the 'tspan’ element are useful in high-end typography scenarios where individual

glyphs require exact placement. These attributes are useful for minor positioning adjustments between
characters or for major positioning adjustments, such as moving the current text position to a new location to

achieve the visual effect of a new line of text. Multi-line 'text' elements are possible by defining different 'tspan
elements for each line of text, with attributes x, y, dx and/or dy defining the position of each 'tspan’. (An

advantage of such an approach is that users will be able to perform multi-line text selection.)

In situations where micro-level positioning adjustment are necessary for advanced typographic control, the SVG
content designer needs to ensure that the necessary font will be available for all viewers of the document (e.qg.,
package up the necessary font data in the form of an SVG font or an alternative WebFont format which is stored
at the same Web site as the SVG content) and that the viewing software will process the font in the expected
way (the capabilities, characteristics and font layout mechanisms vary greatly from system to system). If the
SVG content contains x, y, dx or dy attribute values which are meant to correspond to a particular font
processed by a particular set of viewing software and either of these requirements is not met, then the text
might display with poor quality.

The following additional rules apply to attributes x, y, dx, dy and rotate when they contain a list of numbers:

When a single XML character maps to a single glyph - In this case, the i-th value for the x, y, dx, dy and
rotate attributes is applied to the glyph that corresponds to the i-th character.

When a single XML character maps to multiple glyphs (e.g., when an accent glyph is placed on top of a
base glyph) - In this case, the i-th value for the x, y, dx and dy values are applied (i.e., the current text
position is adjusted) before rendering the first glyph. The rotation transformation corresponding to the i-th
rotate value is applied to the glyphs and to the inter-glyph advance values corresponding to this character
on a group basis (i.e., the rotation value creates a temporary new rotated coordinate system, and the
glyphs corresponding to the character are rendered into this rotated coordinate system).

When multiple XML characters map to a single glyph (e.g., when a ligature is used) - Suppose that the i-
th and (i+1)-th XML characters map to a single glyph. In this case, the i-th value for the x, y, dx, dy and
rotate attributes all apply when rendering the glyph. The (i+1)-th values, however, for x, y and rotate are
ignored (exception: the final rotate value in the list would still apply to subsequent characters), whereas
the dx and dy are applied to the subsequent XML character (i.e., the (i+2)-th character), if one exists, by
translating the current text position by the given amounts before rendering the first glyph associated with
that character.

When there is a many-to-many mapping of characters to glyphs (e.g., when three characters map to two
glyphs, such as when the first glyph expresses the first character and half of the second character, and
the second glyph expresses the other half of the second character plus the third character) - Suppose
that the i-th, (i+1)-th and (i+2)-th XML characters map to two glyphs. In this case, the i-th value for the x, y,
dx and dy values are applied (i.e., the current text position is adjusted) before rendering the first glyph.
The rotation transformation corresponding to the i-th rotate value is applied to both the two glyphs and the
glyph advance values for the first glyph on a group basis (i.e., the rotation value creates a temporary new
rotated coordinate system, and the two glyphs are rendered into the temporary rotated coordinate
system). The (i+1)-th and (i+2)-th values, however, for the x, y and rotate attributes are not applied
(exception: the final rotate value in the list would still apply to subsequent characters), whereas the (i+1)-
th and (i+2)-th values for the dx and dy attributes are applied to the subsequent XML character (i.e., the
(i+3)-th character), if one exists, by translating the current text position by the given amounts before
rendering the first glyph associated with that character.

Relationship to bidirectionality - As described below in the discussion on bidirectionality, text is laid out in
a two-step process, where any bidirectional text is first re-ordered into a left-to-right string, and then text
layout occurs with the re-ordered text string. Whenever the character data within a 'tspan' element is re-
ordered, the corresponding elements within the x, y, dx, dy and rotate are also re-ordered to maintain the
correspondence. For example, suppose that you have the following 'tspan' element:

<tspan dx="11 12 13 14 15 0 21 22 23 0 31 32 33 34 35 36">Latin and Hebrew

and that the word "Hebrew" will be drawn right-to-left. First, the character data and the corresponding
values in the dx list will be reordered, such that the text string will be "Latin and werbeH" and the list of

values for the dx attribute will be "11 12 13 14 15 0 21 22 23 0 36 35 34 33 32 31". After this re-ordering,

http://www.w3.org/TR/REC-CSS2/fonts.html#q1

the glyphs corresponding to the characters will be positioned using standard left-to-right layout rules.
The following examples show basic use of the 'tspan' element.
Example tspan01 uses a 'tspan' element to indicate that the word "not" is to use a bold font and have red fill.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN"
“http://ww. w3. org/ Graphi cs/ SV@ 1. 1/ DTD/ svgll. dt d" >
<svg w dt h="10cnm hei ght="3cn' vi ewBox="0 0 1000 300"
xm ns="http://ww. w3. or g/ 2000/ svg" version="1.1">
<desc>Exanpl e tspan01 - using tspan to change visual attributes</desc>

<g font-famly="Verdana" font-size="45" >

<text x="200" y="150" fill="blue" >
You are
<tspan font-weight="bold" fill="red" >not</tspan>
a banana.
</text>
</ g>
<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" wi dt h="998" hei ght="298"
fill="none" stroke="blue" stroke-w dth="2" />
</ svg>

You are not a banana.

Example tspan01

View this example as SVG (SVG-enabled browsers only)

Example tspan02 uses the dx and dy attributes on the 'tspan’ element to adjust the current text position
horizontally and vertically for particular text strings within a 'text' element.

<?xm version="1. 0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ Graphi cs/ SV@ 1. 1/ DTD/ svgll. dt d" >
<svg w dt h="10cnt hei ght="3cn' vi ewBox="0 0 1000 300"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e tspan02 - using tspan's dx and dy attributes
for incremental positioning adjustnents</desc>

<g font-famly="Verdana" font-size="45" >

<text x="200" y="150" fill="blue" >
But you
<t span dx="2em' dy="-50" font-weight="bold" fill="red" >
are

</t span>

http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/tspan01.svg
http://www.w3.org/2000/svg

<t span dy="100">

a peach!
</t span>
</text>
</ g>
<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" wi dt h="998" hei ght="298"
fill="none" stroke="blue" stroke-w dth="2" />
</ svg>
dare
But you

a peach!

Example tspan02

View this example as SVG (SVG-enabled browsers only)

Example tspan03 uses the x and y attributes on the 'tspan' element to establish a new absolute current text
position for each glyph to be rendered. The example shows two lines of text within a single 'text' element.
Because both lines of text are within the same 'text' element, the user will be able to select through both lines of
text and copy the text to the system clipboard in user agents that support text selection and clipboard

operations,

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ Gaphi cs/ SVE 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="10cn' hei ght="3cn vi ewBox="0 0 1000 300"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<desc>Exanpl e tspan03 - using tspan's x and y attributes
for multiline text and precise glyph positioning</desc>

<g font-famly="Verdana" font-size="45" >

<text fill="rgb(255,164,0)" >
<t span x="300 350 400 450 500 550 600 650" y="100">
Cute and
</t span>
<tspan x="375 425 475 525 575" y="200">
fuzzy
</t span>
</text>
</ g>
<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" wi dt h="998" hei ght="298"
fill="none" stroke="blue" stroke-w dth="2" />

</ svg>

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/tspan02.svg
http://www.w3.org/2000/svg

Example tspan03

View this example as SVG (SVG-enabled browsers only)

10.6 The 'tref' element

The textual content for a 'text' can be either character data directly embedded within the 'text' element or the
character data content of a referenced element, where the referencing is specified with a 'tref' element.

<IENTITY % SVG tref. el enent "I NCLUDE" >
<I[Y%BVG tref.elenent;|
<IENTITY % SVG. tref. content
"(%8VG ani mat e. gnane; | %8VG set.gnanme; | %SVG ani mat eCol or. gnane;

| 98VG Description.class;)*"

>
<! ELEMENT %8VG tref.gnane; %6VG tref.content; >
<!-- end of SVGtref.elenment -->]]>

<IENTITY % SVG tref.attlist "INCLUDE" >
<I[%BVG tref.attlist;[
<I ATTLI ST %8VG tref. gnane;

%8VG Core. attrib;

%SVG Condi tional . attrib;

%8VG Style.attrib;

%SVG Text Content . attri b;

%EVG Font . attrib;

Y%SVG Paint. attrib;

%SVG Col or. attrib;

Y8VG Qpacity. attrib;

Y8VG G aphics. attrib;

Y8VG Cip.attrib;

%SVG Mask. attrib;

YSVG Filter.attrib;

Y%SVG G aphi cal Events. attrib;

%SVG Cursor.attrib;

%8VG XLi nkRequi red. attrib;

%SVG External . attrib;

X %Coor di nat es. dat at ype; #| MPLI ED
y %Coor di nat es. dat at ype; #l MPLI ED
dx %.engt hs. dat at ype; #| MPLI ED

dy %.engt hs. dat at ype; #l MPLI ED
rotate %N\unbers. dat atype; #|l MPLI ED
text Lengt h %.engt h. dat at ype; #l MPLI ED
| engt hAdj ust (spacing | spaci ngAndd yphs) #l MPLI ED

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/tspan03.svg

Attribute definitions:

xlink: href ="<uri>"
A URI reference to an element/fragment within an SVG document fragment whose character data content

shall be used as character data for this 'tref' element.
Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, %xlinkRefAttrs;, %testAttrs;, %langSpaceAttrs;, externalResourcesRequired, class, style,
%PresentationAttributes-Color;, %PresentationAttributes-FillStroke;, %PresentationAttributes-
FontSpecification;, %PresentationAttributes-Graphics;, %PresentationAttributes-TextContentElements;,
%graphicsElementEvents;, x, y, dx, dy, rotate, textLength, lengthAdjust.

All character data within the referenced element, including character data enclosed within additional markup, will
be rendered.

The x, y, dx, dy and rotate attributes have the same meanings as for the 'tspan’ element. The attributes are
applied as if the 'tref' element was replaced by a 'tspan' with the referenced character data (stripped of all
supplemental markup) embedded within the hypothetical 'tspan' element.

Example trefO1 shows how to use character data from a different element as the character data for a given
‘tspan’ element. The first 'text' element (with id="ReferencedText") will not draw because it is part of a 'defs'

element. The second 'text' element draws the string "Inline character data". The third 'text' element draws the
string "Reference character data" because it includes a 'tref' element which is a reference to element
"ReferencedText", and that element's character data is "Referenced character data".

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="10cn' hei ght ="3cnf vi ewBox="0 0 1000 300"
xm ns="http://ww. w3. org/ 2000/ svg" version="1.1"
xm ns: xl i nk="http://ww.w3. org/ 1999/ xl i nk" >
<def s>
<text id="ReferencedText">
Ref erenced character data

</text>

</ def s>

<desc>Exanple trefOl - inline vs reference text content</desc>

<text x="100" y="100" font-size="45" fill="blue" >
Inline character data

</ text>

<text x="100" y="200" font-size="45" fill="red" >
<tref xlink:href="#ReferencedText"/>

</text>

<l-- Show outline of canvas using 'rect' elenent -->

<rect x="1" y="1" wi dt h="998" hei ght="298"

fill="none" stroke="blue" stroke-w dth="2" />

</ svg>

Inline character data

Feferenced characler data

Example trefO1

View this example as SVG (SVG-enabled browsers only)

10.7 Text layout

10.7.1 Text layout introduction

This section describes the text layout features supported by SVG, which includes support for various
international writing directions, such as left-to-right (e.g., Latin scripts) and bidirectional (e.g., Hebrew or Arabic)
and vertical (e.g., Asian scripts). The descriptions in this section assume straight line text (i.e., text that is either
strictly horizontal or vertical with respect to the current user coordinate system). Subsequent sections describe
the supplemental layout rules for text on a path.

SVG does not provide for automatic line breaks or word wrapping, which makes internationalized text layout for
SVG relatively simpler than it is for languages which support formatting of multi-line text blocks.

For each 'text' element, the SVG user agent determines the current reference orientation. For standard

horizontal or vertical text (i.e., no text-on-a-path), the reference orientation is the vector pointing towards
negative infinity in Y within the current user coordinate system. (Note: in the initial coordinate system, the

reference orientation is up.) For text on a path, the reference orientation is reset with each character.

Based on the reference orientation and the value for property 'writing-mode’, the SVG user agent determines
the current inline-progression-direction. For left-to-right text, the inline-progression-direction points 90
degrees clockwise from the reference orientation vector. For right-to-left text, the inline progression points 90
degrees counter-clockwise from the reference orientation vector. For top-to-bottom text, the inline-progression-
direction points 180 degrees from the reference orientation vector.

Based on the reference orientation and the value for property 'writing-mode', the SVG user agent determines
the current block-progression-direction. For left-to-right and right-to-left text, the block-progression-direction
points 180 degrees from the reference orientation vector because the only available horizontal 'writing-mode's
are Ir-tb and rl-tb. For top-to-bottom text, the block-progression-direction always points 90 degrees counter-
clockwise from the reference orientation vector because the only available top-to-bottom 'writing-mode' is tb-rl.

The shift direction is the direction towards which the baseline table moves due to positive values for property
'baseline-shift'. The shift direction is such that a positive value shifts the baseline table towards the topmost

entry in the parent's baseline table.

In processing a given 'text' element, the SVG user agent keeps track of the current text position. The initial
current text position is established by the x and y attributes on the 'text' element.

The current text position is adjusted after each glyph to establish a new current text position at which the next

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/tref01.svg

glyph shall be rendered. The adjustment to the current text position is based on the current inline-progression-
direction, glyph-specific advance values corresponding to the glyph orientation of the glyph just rendered,
kerning tables in the font and the current values of various attributes and properties, such as the spacing
properties and any x, y, dx and dy attributes on 'text’, 'tspan’, 'tref' or 'altGlyph' elements. If a glyph does not
provide explicit advance values corresponding to the current glyph orientation, then an appropriate

approximation should be used. For vertical text, a suggested approximation is the sum of the ascent and
descent values for the glyph. Another suggested approximation for an advance value for both horizontal and
vertical text is the size of an em (see units-per-em).

For each glyph to be rendered, the SVG user agent determines an appropriate alignment-point on the glyph
which will be placed exactly at the current text position. The alignment-point is determined based on glyph cell
metrics in the glyph itself, the current inline-progression-direction and the glyph orientation relative to the inline-
progression-direction. For most uses of Latin text (i.e., 'writing-mode:Ir', 'text-anchor:start', and 'alignment-
baseline:baseline') the alignment-point in the glyph will be the intersection of left edge of the glyph cell (or some
other glyph-specific x-axis coordinate indicating a left-side origin point) with the Latin baseline of the glyph. For
many cases with top-to-bottom vertical text layout, the reference point will be either a glyph-specific origin point
based on the set of vertical baselines for the font or the intersection of the center of the glyph with its top line
(see [CSS2-topline] for a definition of top line). If a glyph does not provide explicit origin points corresponding to
the current glyph orientation, then an appropriate approximation should be used, such as the intersection of the
left edge of the glyph with the appropriate horizontal baseline for the glyph or intersection of the top edge of the
glyph with the appropriate vertical baseline. If baseline tables are not available, user agents should establish
baseline tables that reflect common practice.

Adjustments to the current text position are either absolute position adjustments or relative position
adjustments. An absolute position adjustment occurs in the following circumstances:

. At the start of a 'text' element

. At the start of each 'textPath' element

. For each character within a 'text’, 'tspan’, 'tref' and 'altGlyph' element which has an x or y attribute value
assigned to it explicitly

All other position adjustments to the current text position are relative position adjustments.

Each absolute position adjustment defines a new text chunk. Absolute position adjustments impact text layout
in the following ways:

Ligatures only occur when a set of characters which might map to a ligature are all in the same text
chunk.
. Each text chunk represents a separate block of text for alignment due to 'text-anchor' property values.
. Reordering of characters due to bidirectionality only occurs within a text chunk. Reordering does not
happen across text chunks.

The following additional rules apply to ligature formation:

. Asin[CSS2-spacing], when the resultant space between two characters is not the same as the default
space, user agents should not use ligatures; thus, if there are non-default values for properties 'kerning'
or 'letter-spacing’, the user agent should not use ligatures.

. Ligature formation should not be enabled for the glyphs corresponding to characters within different DOM
text nodes; thus, characters separated by markup should not use ligatures.

. As mentioned above, ligature formation should not be enabled for the glyphs corresponding to characters
within different text chunks.

http://www.w3.org/TR/REC-CSS2/fonts.html#alignment
http://www.w3.org/TR/REC-CSS2/text.html#spacing-props

10.7.2 Setting the inline-progression-direction

The 'writing-mode' property specifies whether the initial inline-progression-direction for a 'text' element shall be
left-to-right, right-to-left, or top-to-bottom. The 'writing-mode' property applies only to 'text' elements; the property
is ignored for 'tspan’, 'tref', 'altGlyph' and 'textPath' sub-elements. (Note that the inline-progression-direction can
change within a 'text' element due to the Unicode bidirectional algorithm and properties 'direction' and 'unicode-
bidi'. For more on bidirectional text, see Relationship with bidirectionality.)

‘writing-mode’

Value: Ir-tb | rl-tb | tb-rl [Ir | rl | tb | inherit
Initial: Ir-tb

Appliesto: 'text' elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: no

Ir-tb | Ir
Sets the initial inline-progression-direction to left-to-right, as is common in most Latin-based documents.
For most characters, the current text position is advanced from left to right after each glyph is rendered.
(When the character data includes characters which are subject to the Unicode bidirectional algorithm,
the text advance rules are more complex. See Relationship with bidirectionality).

rl-tb | rl
Sets the initial inline-progression-direction to right-to-left, as is common in Arabic or Hebrew scripts. (See
Relationship with bidirectionality.)

th-rl | tb
Sets the initial inline-progression-direction to top-to-bottom, as is common in some Asian scripts, such as
Chinese and Japanese. Though hardly as frequent as horizontal, this type of vertical layout also occurs in
Latin based documents, particularly in table column or row labels. In most cases, the vertical baselines
running through the middle of each glyph are aligned.

10.7.3 Glyph orientation within a text run

In some cases, it is required to alter the orientation of a sequence of characters relative to the inline-progression-
direction. The requirement is particularly applicable to vertical layouts of East Asian documents, where
sometimes narrow-cell Latin text is to be displayed horizontally and other times vertically.

Two properties control the glyph orientation relative to the reference orientation for each of the two possible
inline-progression-directions. 'glyph-orientation-vertical' controls glyph orientation when the inline-progression-
direction is vertical. 'glyph-orientation-horizontal' controls glyph orientation when the inline-progression-direction
is horizontal.

'glyph-orientation-vertical'

Value: auto | <angle> | inherit
Initial: auto

Appliesto: text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: no

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

auto
o Fullwidth ideographic and fullwidth Latin text will be set with a glyph-orientation of 0-degrees.

Ideographic punctuation and other ideographic characters having alternate horizontal and vertical
forms will use the vertical form of the glyph.

o Text which is not fullwidth will be set with a glyph-orientation of 90-degrees.

This reorientation rule applies only to the first-level non-ideographic text. All further embedding of
writing-modes or bidi processing will be based on the first-level rotation.

NOTE:
« This is equivalent to having set the non-ideographic text string horizontally
honoring the bidi-rule, then rotating the resultant sequence of inline-areas (one
area for each change of glyph direction) 90-degrees clockwise.

It should be noted that text set in this "rotated” manner may contain ligatures or
other glyph combining and reordering common to the language and script. (This
"rotated" presentation form does not disable auto-ligature formation or similar
context-driven variations.)

« The determination of which characters should be auto-rotated may vary across
user agents. The determination is based on a complex interaction between
country, language, script, character properties, font, and character context. It is
suggested that one consult the Unicode TR 11 and the various JIS or other
national standards.

<angle>
The value of the angle is restricted to 0, 90, 180, and 270 degrees. The user agent shall round the value
of the angle to the closest of the permitted values.
A value of 0deg indicates that all glyphs are set with the top of the glyphs oriented towards the reference
orientation. A value of 90deg indicates an orientation of 90 degrees clockwise from the reference

orientation.
This property is applied only to text written in a vertical 'writing-mode'.

The glyph orientation affects the amount that the current text position advances as each glyph is rendered.
When the inline-progression-direction is vertical and the 'glyph-orientation-vertical' results in an orientation angle
that is a multiple of 180 degrees, then the current text position is incremented according to the vertical metrics of
the glyph. Otherwise, if the 'glyph-orientation-vertical' results in an orientation angle that is not a multiple of 180
degrees, then the current text position is incremented according to the horizontal metrics of the glyph.

The text layout diagrams in this section use the following symbols:

Exn

- wide-cell glyph (e.g. Han) which is the n-th glyph in the text run

bz
]— narrow-cell glyph (e.g. Latin) which is the n-th glyph in the text run

The orientation which the above symbols assume in the diagrams corresponds to the orientation that the
Unicode characters they represent are intended to assume when rendered in the user agent. Spacing between
the glyphs in the diagrams is usually symbolic, unless intentionally changed to make a point.

The diagrams below illustrate different uses of 'glyph-orientation-vertical'. The diagram on the left shows the
result of the mixing of full-width ideographic glyphs with narrow-cell Latin glyphs when 'glyph-orientation-vertical’
for the Latin characters is either auto or 90. The diagram on the right show the result of mixing full-width
ideographic glyphs with narrow-cell Latin glyphs when Latin glyphs are specified to have a 'glyph-orientation-
vertical' of 0.

AN
F1 F1 |
F2 F2

AR

mEFSP | o9 (B)

ﬁ'go_—; o [B

E7 h5
Fg ks
Yy —
E7
rg |
‘glyph-orientation-horizontal'
Value: <angle> | inherit
Initial: Odeg
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: no

<angle>
The value of the angle is restricted to 0, 90, 180, and 270 degrees. The user agent shall round the value
of the angle to the closest of the permitted values.
A value of 0deg indicates that all glyphs are set with the top of the glyphs oriented towards the reference
orientation. A value of 90deg indicates an orientation of 90 degrees clockwise from the reference
orientation.

This property is applied only to text written in a horizontal 'writing-mode'.

The glyph orientation affects the amount that the current text position advances as each glyph is rendered.
When the reference orientation direction is horizontal and the 'glyph-orientation-horizontal' results in an
orientation angle that is a multiple of 180 degrees, then the current text position is incremented according to the
horizontal metrics of the glyph. Otherwise, if the 'glyph-orientation-horizontal' results in an orientation angle that
is not a multiple of 180 degrees, then the current text position is incremented according to the vertical metrics of
the glyph.

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

10.7.4 Relationship with bidirectionality

The characters in certain scripts are written from right to left. In some documents, in particular those written with
the Arabic or Hebrew script, and in some mixed-language contexts, text in a single line may appear with mixed
directionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard (JUNICODE], section 3.11) defines a complex algorithm for determining the proper
directionality of text. The algorithm consists of an implicit part based on character properties, as well as explicit
controls for embeddings and overrides. The SVG user agent applies this bidirectional algorithm when
determining the layout of characters within a 'text' element. The 'direction’ and 'unicode-bidi' properties allow
authors to override the inherent directionality of the content characters and thus explicitly control how the
elements and attributes of a document language map to this algorithm. These two properties are applicable to
all characters who glyphs are perpendicular to the inline-progression-direction.

In most cases, the bidirectional algorithm from [UNICODE] produces the desired result automatically, and

overriding this algorithm properly is usually quite complex. Therefore, in most cases, authors are discouraged
from assigning values to these properties.

A more complete discussion of bidirectionality can be found in the "Cascading Style Sheets (CSS) level 2"
specification [CSS2-direction].

The processing model for bidirectional text is as follows. The user agent processes the characters which are
provided in logical order (i.e., the order the characters appear in the original document, either via direct
inclusion or via indirect reference due a 'tref' element). The user agent determines the set of independent blocks
within each of which it should apply the Unicode bidirectional algorithm. Each text chunk represents an
independent block of text. Additionally, any change in glyph orientation due to processing of properties 'glyph-
orientation-horizontal' or 'glyph-orientation-vertical' will subdivide the independent blocks of text further. After
processing the Unicode bidirectional algorithm and properties 'direction’' and 'unicode-bidi' on each of the
independent text blocks, the user agent will have a potentially re-ordered list of characters which are now in left-
to-right rendering order. Simultaneous with re-ordering of the characters, the dx, dy and rotate attributes on the
'tspan’ and 'tref' elements are also re-ordered to maintain the original correspondence between characters and
attribute values. While kerning or ligature processing might be font-specific, the preferred model is that kerning
and ligature processing occurs between combinations of characters or glyphs after the characters have been re-
ordered.

'direction’
Value: Itr | rtl | inherit
Initial: Itr
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: no

This property specifies the base writing direction of text and the direction of embeddings and overrides (see
'unicode-bidi') for the Unicode bidirectional algorithm. For the 'direction' property to have any effect, the 'unicode-
bidi' property's value must be 'embed' or 'bidi-override'.

Except for any additional information provided in this specification, the normative definition of the property is in [
CSS2-direction].

http://www.unicode.org/unicode/standard/versions/
http://www.unicode.org/unicode/standard/versions/
http://www.w3.org/TR/REC-CSS2/visuren.html#direction
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-direction

The 'direction' property applies only to glyphs oriented perpendicular to the inline-progression-direction, which
includes the usual case of horizontally-oriented Latin or Arabic text and the case of narrow-cell Latin or Arabic
characters rotated 90 degrees clockwise relative to a top-to-bottom inline-progression-direction.

'unicode-bidi’
Value: normal | embed | bidi-override | inherit
Initial: normal
Appliesto: text content elements
Inherited: no
Percentages: N/A
Media: visual

Animatable: no

Except for any additional information provided in this specification, the normative definition of the property is in [
CSS2-unicode-bidi].

10.8 Text rendering order

The glyphs associated with the characters within a 'text' element are rendered in the logical order of the

characters in the original document, independent of any re-ordering necessary to implement bidirectionality.
Thus, for text that goes right-to-left visually, the glyphs associated with the rightmost character are rendered
before the glyphs associated with the other characters.

Additionally, each distinct glyph is rendered in its entirety (i.e., it is filled and stroked as specified by the 'fill' and
'stroke' properties) before the next glyph gets rendered.

10.9 Alignment properties

10.9.1 Text alignment properties

The 'text-anchor' property is used to align (start-, middle- or end-alignment) a string of text relative to a given
point.

The 'text-anchor' property is applied to each individual text chunk within a given 'text' element. Each text chunk
has an initial current text position, which represents the point in the user coordinate system resulting from
(depending on context) application of the x and y attributes on the 'text' element, any x or y attribute values on a
'tspan’, 'tref' or 'altGlyph' element assigned explicitly to the first rendered character in a text chunk, or
determination of the initial current text position for a 'textPath’' element.

'text-anchor'

Value: start | middle | end | inherit
Initial: start

Applies to: text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

Values have the following meanings:

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-unicode-bidi
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

start
The rendered characters are aligned such that the start of the text string is at the initial current text
position. For Latin or Arabic, which is usually rendered horizontally, this is comparable to left alignment.
For Asian text with a vertical primary text direction, this is comparable to top alignment.

middle
The rendered characters are aligned such that the middle of the text string is at the current text position.
(For text on a path, conceptually the text string is first laid out in a straight line. The midpoint between the
start of the text string and the end of the text string is determined. Then, the text string is mapped onto
the path with this midpoint placed at the current text position.)

end
The rendered characters are aligned such that the end of the text string is at the initial current text
position. For Latin text in its usual orientation, this is comparable to right alignment.

10.9.2 Baseline alignment properties

An overview of baseline alignment and baseline tables can be found above in Fonts, font tables and baselines.

One of the characteristics of international text is that there are different baselines (different alignment points) for
glyphs in different scripts. For example, in horizontal writing, ideographic scripts, such as Han Ideographs,
Katakana, Hiragana, and Hangul, alignment occurs with a baseline near the bottoms of the glyphs; alphabetic
based scripts, such as Latin, Cyrillic, Hebrew, Arabic, align a point that is the bottom of most glyphs, but some
glyphs descend below the baseline; and Indic based scripts are aligned at a point that is near the top of the

glyphs.

When different scripts are mixed on a line of text, an adjustment must be made to ensure that the glyphs in the
different scripts are aligned correctly with one another. OpenType [OPENTYPE] fonts have a Baseline table
(BASE) [OPENTYPE-BASETABLE] that specifies the offsets of the alternative baselines from the current
baseline.

SVG uses a similar baseline table model that assumes one script (at one font-size) is the "dominant run" during
processing of a 'text' element; that is, all other baselines are defined in relation to this dominant run. The
baseline of the script with the dominant run is called the dominant baseline. So, for example, if the dominant
baseline is the alphabetic baseline, there will be offsets in the baseline table for the alternate baselines, such as
the ideographic baseline and the Indic baseline. There will also be an offset for the math baseline which is used
for some math fonts. Note that there are separate baseline tables for horizontal and vertical writing-modes. The
offsets in these tables may be different for horizontal and vertical writing.

The baseline table established at the start of processing of a 'text' element is called the dominant baseline
table.

Because the value of the 'font-family' property is a list of fonts, to insure a consistent choice of baseline table we
define the nominal font in a font list as the first font in the list for which a glyph is available. This is the first font
that could contain a glyph for each character encountered. (For this definition, glyph data is assumed to be
present if a font substitution is made or if the font is synthesized.) This definition insures a content independent
determination of the font and baseline table that is to be used.

The value of the 'font-size' property on the 'text' element establishes the dominant baseline table font size.

The model assumes that each glyph has a 'alignment-baseline' value which specifies the baseline with which
the glyph is to be aligned. (The "alignment-baseline’ is called the "Baseline Tag" in the OpenType baseline table
description.) The initial value of the 'alignment-baseline' property uses the baseline identifier associated with the
given glyph. Alternate values for 'alignment-baseline' can be useful for glyphs such as a "*" which are ambiguous
with respect to script membership.

http://www.microsoft.com/OpenType/OTSpec/
http://www.microsoft.com/OpenType/OTSpec/base.htm

The model assumes that the font from which the glyph is drawn also has a baseline table, the font baseline
table. This baseline table has offsets in units-per-em from the (0,0) point to each of the baselines the font knows
about. In particular, it has the offset from the glyph's (0,0) point to the baseline identified by the 'alignment-
baseline'.

The offset values in the baseline table are in "design units" which means fractional units of the EM. CSS calls
these "units-per-em" [CSS2-UNITSPEREM]. Thus, the current 'font-size' is used to determine the actual offset

from the dominant baseline to the alternate baselines.

The glyph is aligned so that its baseline identified by its ‘alignment-baseline' is aligned with the baseline with the
same name from the dominant baseline table.

The offset from the dominant baseline of the parent to the baseline identified by the 'alignment-baseline' is
computed using the dominant baseline table and dominant baseline table font size. The font baseline table and
font size applicable to the glyph are used to compute the offset from the identified baseline to the (0,0) point of
the glyph. This second offset is subtracted from the first offset to get the position of the (0,0) point in the shift

direction. Both offsets are computed by multiplying the baseline value from the baseline table times the
appropriate font size value.

If the 'alignment-baseline' identifies the dominant baseline, then the first offset is zero and the glyph is aligned
with the dominant baseline; otherwise, the glyph is aligned with the chosen alternate baseline.

The baseline-identifiers below are used in this specification. Some of these are determined by baseline-tables
contained in a font as described in [XSL description of Fonts and Font Data]. Others are computed from other
font characteristics as described below.

alphabetic

This identifies the baseline used by most alphabetic and syllabic scripts. These include, but are not
limited to, many Western, Southern Indic, Southeast Asian (non-ideographic) scripts.

ideographic

This identifies the baseline used by ideographic scripts. For historical reasons, this baseline is at the
bottom of the ideographic EM box and not in the center of the ideographic EM box. See the "central”
baseline. The ideographic scripts include Chinese, Japanese, Korean, and Vietnamese Chu Nom.

hanging

This identifies the baseline used by certain Indic scripts. These scripts include Devanagari, Gurmukhi and
Bengali.

mathematical
This identifies the baseline used by mathematical symbols.
central

This identifies a computed baseline that is at the center of the EM box. This baseline lies halfway
between the text-before-edge and text-after-edge baselines.

NOTE:

http://www.w3.org/TR/REC-CSS2/fonts.html#unitsperem
http://www.w3.org/TR/xsl/slice7.html#font-model

For ideographic fonts, this baseline is often used to align the glyphs; it is an alternative to the
ideographic baseline.

middle

This identifies a baseline that is offset from the alphabetic baseline in the shift-direction by 1/2 the value
of the x-height font characteristic. The position of this baseline may be obtained from the font data or, for
fonts that have a font characteristic for "x-height", it may be computed using 1/2 the "x-height". Lacking
either of these pieces of information, the position of this baseline may be approximated by the "central”
baseline.

text-before-edge

This identifies the before-edge of the EM box. The position of this baseline may be specified in the
baseline-table or it may be calculated.

NOTE:

The position of this baseline is normally around or at the top of the ascenders, but it may not
encompass all accents that can appear above a glyph. For these fonts the value of the "ascent"
font characteristic is used. For ideographic fonts, the position of this baseline is normally 1 EM in
the shift-direction from the "ideographic" baseline. However, some ideographic fonts have a
reduced width in the inline-progression-direction to allow tighter setting. When such a font,
designed only for vertical writing-modes, is used in a horizontal writing-mode, the "text-before-
edge" baseline may be less than 1 EM from the text-after-edge.

text-after-edge

This identifies the after-edge of the EM box. The position of this baseline may be specified in the baseline-
table or it may be calculated.

NOTE:
For fonts with descenders, the position of this baseline is normally around or at the bottom of the
descenders. For these fonts the value of the "descent" font characteristic is used. For ideographic

fonts, the position of this baseline is normally at the "ideographic” baseline.

There are, in addition, two computed baselines that are only defined for line areas. Since SVG does not support
the notion of computations based on line areas, the two computed baselines are mapped as follows:

before-edge

For SVG, this is equivalent to text-before-edge.
after-edge

For SVG, this is equivalent to text-after-edge.

There are also four baselines that are defined only for horizontal writing-modes.
top

This baseline is the same as the "before-edge" baseline in a horizontal writing-mode and is undefined in a
vertical writing mode.

text-top

This baseline is the same as the "text-before-edge" baseline in a horizontal writing-mode and is undefined
in a vertical writing mode.

bottom

This baseline is the same as the "after-edge" baseline in a horizontal writing-mode and is undefined in a
vertical writing mode.

text-bottom

This baseline is the same as the "text-after-edge" baseline in a horizontal writing-mode and is undefined
in a vertical writing mode.

The baseline-alignment properties follow.

'dominant-baseline’

Value: auto | use-script | no-change | reset-size | ideographic | alphabetic | hanging | |
mathematical | central | middle | text-after-edge | text-before-edge | inherit

Initial: auto

Applies to: text content elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

The "dominant-baseline” property is used to determine or re-determine a scaled-baseline-table. A scaled-
baseline-table is a compound value with three components: a baseline-identifier for the dominant-baseline, a
baseline-table and a baseline-table font-size. Some values of the property re-determine all three values; other
only re-establish the baseline-table font-size. When the initial value, "auto", would give an undesired result, this
property can be used to explicitly set the desire scaled-baseline-table.

Values for the property have the following meaning:
auto

If this property occurs on a 'text' element, then the computed value depends on the value of the 'writing-
mode' property. If the 'writing-mode' is horizontal, then the value of the dominant-baseline component is

‘alphabetic’, else if the 'writing-mode' is vertical, then the value of the dominant-baseline component is
‘central'.

If this property occurs on a 'tspan’, 'tref', 'altGlyph' or 'textPath' element, then the dominant-baseline and
the baseline-table components remain the same as those of the parent text content element. If the
computed 'baseline-shift' value actually shifts the baseline, then the baseline-table font-size component is
set to the value of the 'font-size' property on the element on which the 'dominant-baseline’ property
occurs, otherwise the baseline-table font-size remains the same as that of the element. If there is no
parent text content element, the scaled-baseline-table value is constructed as above for 'text' elements.

use-script

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

The dominant-baseline and the baseline-table components are set by determining the predominant script
of the character data content. The 'writing-mode’, whether horizontal or vertical, is used to select the
appropriate set of baseline-tables and the dominant baseline is used to select the baseline-table that
corresponds to that baseline. The baseline-table font-size component is set to the value of the 'font-size'
property on the element on which the 'dominant-baseline' property occurs.

no-change
The dominant-baseline, the baseline-table, and the baseline-table font-size remain the same as that of
the parent text content element.

reset-size
The dominant-baseline and the baseline-table remain the same, but the baseline-table font-size is
changed to the value of the 'font-size' property on this element. This re-scales the baseline-table for the
current 'font-size'.

ideographic
The baseline-identifier for the dominant-baseline is set to be 'ideographic’, the derived baseline-table is
constructed using the 'ideographic' baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the 'font-size' property on this element.

alphabetic
The baseline-identifier for the dominant-baseline is set to be ‘alphabetic’, the derived baseline-table is
constructed using the 'alphabetic' baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the 'font-size' property on this element.

hanging
The baseline-identifier for the dominant-baseline is set to be ‘hanging’, the derived baseline-table is
constructed using the 'hanging' baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the 'font-size' property on this element.

mathematical
The baseline-identifier for the dominant-baseline is set to be 'mathematical’, the derived baseline-table is
constructed using the 'mathematical’ baseline-table in the nominal font, and the baseline-table font-size is
changed to the value of the 'font-size' property on this element.

central
The baseline-identifier for the dominant-baseline is set to be 'central'. The derived baseline-table is
constructed from the defined baselines in a baseline-table in the nominal font. That font baseline-table is
chosen using the following priority order of baseline-table names: ‘ideographic’, ‘alphabetic’, 'hanging’,
'mathematical'. The baseline-table font-size is changed to the value of the 'font-size' property on this
element.

middle
The baseline-identifier for the dominant-baseline is set to be 'middle’. The derived baseline-table is
constructed from the defined baselines in a baseline-table in the nominal font. That font baseline -table is
chosen using the following priority order of baseline-table names: 'alphabetic’, 'ideographic’, ‘hanging’,
'mathematical’. The baseline-table font-size is changed to the value of the 'font-size' property on this
element.

text-after-edge
The baseline-identifier for the dominant-baseline is set to be 'text-after-edge'. The derived baseline-table
is constructed from the defined baselines in a baseline-table in the nominal font. The choice of which font
baseline-table to use from the baseline-tables in the nominal font is implementation defined. The baseline-
table font-size is changed to the value of the 'font-size' property on this element.

NOTE: using the following priority order of baseline-table names: 'alphabetic', 'ideographic’, 'hanging’,

'mathematical’ is probably a reasonable strategy for determining which font baseline-table to use.
text-before-edge

The baseline-identifier for the dominant-baseline is set to be ‘text-before-edge’. The derived baseline-
table is constructed from the defined baselines in a baseline-table in the nominal font. The choice of
which baseline-table to use from the baseline-tables in the nominal font is implementation defined. The
baseline-table font-size is changed to the value of the 'font-size' property on this element.

NOTE: Using the following priority order of baseline-table names: ‘alphabetic’, 'ideographic', ‘hanging’,

'mathematical’ is probably a reasonable strategy for determining which font baseline-table to use.

If there is no baseline table in the nominal font or if the baseline table lacks an entry for the desired baseline,
then the user agent may use heuristics to determine the position of the desired baseline.

‘alignment-baseline’

Value: auto | baseline | before-edge | text-before-edge | middle | central | after-edge | text-after-
edge | ideographic | alphabetic | hanging | mathematical | inherit

Initial: auto

Applies to: 'tspan’, 'tref', 'altGlyph', 'textPath' elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

This property specifies how an object is aligned with respect to its parent. This property specifies which baseline
of this element is to be aligned with the corresponding baseline of the parent. For example, this allows
alphabetic baselines in Roman text to stay aligned across font size changes. It defaults to the baseline with the
same name as the computed value of the alignment-baseline property. That is, the position of "ideographic"
alignment-point in the block-progression-direction is the position of the "ideographic” baseline in the baseline-
table of the object being aligned.

Values have the following meanings:

auto
The value is the dominant-baseline of the script to which the character belongs - i.e., use the dominant-
baseline of the parent.

baseline
The alignment-point of the object being aligned is aligned with the dominant-baseline of the parent text.
content element.

before-edge
The alignment-point of the object being aligned is aligned with the "before-edge" baseline of the parent
text content element.

text-before-edge
The alignment-point of the object being aligned is aligned with the "text-before-edge" baseline of the
parent text content element.

middle
The alignment-point of the object being aligned is aligned with the "middle" baseline of the parent text
content element.

central
The alignment-point of the object being aligned is aligned with the "central" baseline of the parent text
content element.

after-edge
The alignment-point of the object being aligned is aligned with the "after-edge" baseline of the parent text
content element.

text-after-edge
The alignment-point of the object being aligned is aligned with the "text-after-edge" baseline of the parent
text content element.

ideographic
The alignment-point of the object being aligned is aligned with the "ideographic” baseline of the parent

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

text content element.

alphabetic
The alignment-point of the object being aligned is aligned with the "alphabetic" baseline of the parent text
content element.

hanging
The alignment-point of the object being aligned is aligned with the "hanging" baseline of the parent text
content element.

mathematical
The alignment-point of the object being aligned is aligned with the "mathematical" baseline of the parent
text content element.

'baseline-shift'

Value: baseline | sub | super | <percentage> | <length> | inherit
Initial: baseline

Applies to: 'tspan’, 'tref', 'altGlyph', 'textPath' elements

Inherited: no

Percentages: refers to the "line-height" of the 'text' element, which in the case of SVG is defined to be
equal to the 'font-size'

Media: visual
Animatable: yes

The 'baseline-shift' property allows repositioning of the dominant-baseline relative to the dominant-baseline of
the parent text content element. The shifted object might be a sub- or superscript. Within the shifted object, the

whole baseline-table is offset; not just a single baseline. The amount of the shift is determined from information
from the parent text content element, the sub- or superscript offset from the nominal font of the parent text

content element, percent of the "line-height" of the parent text content element or an absolute value.

In SVG, the 'baseline-shift' property represents a supplemental adjustment to the baseline tables. The 'baseline-
shift' property shifts the baseline tables for each glyph to temporary new positions, for example to lift the glyph
into superscript or subscript position, but it does not effect the current text position. When the current text
position is adjusted after rendering a glyph to take into account glyph advance values, the adjustment happens
as if there were no baseline shift.

'baseline-shift' properties can nest. Each nested 'baseline-shift' is added to previous baseline shift values.
Values for the property have the following meaning:

baseline
There is no baseline shift; the dominant-baseline remains in its original position.

sub
The dominant-baseline is shifted to the default position for subscripts. The offset to this position is
determined using the font data for the nominal font. Because in most fonts the subscript position is
normally given relative to the "alphabetic" baseline, the user agent may compute the effective position for
subscripts for superscripts when some other baseline is dominant. The suggested computation is to
subtract the difference between the position of the dominant baseline and the position of the "alphabetic”
baseline from the position of the subscript. The resulting offset is determined by multiplying the effective
subscript position by the dominant baseline-table font-size. If there is no applicable font data the user
agent may use heuristics to determine the offset.

super
The dominant-baseline is shifted to the default position for superscripts. The offset to this position is

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

determined using the font data for the nominal font. Because in most fonts the superscript position is
normally given relative to the "alphabetic" baseline, the user agent may compute the effective position for
superscripts when some other baseline is dominant. The suggested computation is to subtract the
difference between the position of the dominant baseline and the position of the "alphabetic" baseline
from the position of the superscript. The resulting offset is determined by multiplying the effective
superscript position by the dominant baseline-table font-size. If there is no applicable font data the user
agent may use heuristics to determine the offset.

<percentage>
The computed value of the property is this percentage multiplied by the computed "line-height" of the
‘text’ element. The dominant-baseline is shifted in the shift direction (positive value) or opposite to the
shift direction (negative value) of the parent text content element by the computed value. A value of "0%"
is equivalent to "baseline".

<length>
The dominant-baseline is shifted in the shift direction (positive value) or opposite to the shift direction
(negative value) of the parent text content element by the <length> value. A value of "Ocm" is equivalent
to "baseline”.

10.10 Font selection properties

SVG uses the following font specification properties. Except for any additional information provided in this
specification, the normative definition of the property is in [CSS2-fonts]. Any SVG-specific notes about these

properties are contained in the descriptions below.

‘font-family’

Value: [[<family-name> |
<generic-family>],]* [<family-name> |
<generic-family>] | inherit

Initial: depends on user agent

Applies to: text content elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property indicates which font family is to be used to render the text, specified as a prioritized list of font
family names and/or generic family names. Except for any additional information provided in this specification,
the normative definition of the property is in [CSS2-font-family]. The rules for expressing the syntax of CSS

property values can be found at [CSS2-propdef].

'font-style'
Value: normal | italic | oblique | inherit
Initial: normal
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: vyes

This property specifies whether the text is to be rendered using a normal, italic or oblique face. Except for any
additional information provided in this specification, the normative definition of the property is in [CSS2-font-

style].

http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-family
http://www.w3.org/TR/REC-CSS2/about.html#property-defs
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-style
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-style

'font-variant'
Value:
Initial:
Applies to:
Inherited:
Percentages:
Media:
Animatable:

normal | small-caps | inherit
normal

text content elements

yes

N/A

visual

yes

This property indicates whether the text is to be rendered using the normal glyphs for lowercase characters or
using small-caps glyphs for lowercase characters. Except for any additional information provided in this
specification, the normative definition of the property is in [CSS2-font-variant].

‘font-weight'
Value:

Initial:
Applies to:
Inherited:
Percentages:
Media:
Animatable:

normal | bold | bolder | lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900 | inherit
normal

text content elements

yes

N/A

visual

yes

This property refers to the boldness or lightness of the glyphs used to render the text, relative to other fonts in
the same font family. Except for any additional information provided in this specification, the normative definition
of the property is in [CSS2-font-weight].

'font-stretch’
Value:

Initial:
Applies to:
Inherited:
Percentages:
Media:
Animatable:

normal | wider | narrower |
ultra-condensed | extra-condensed |
condensed | semi-condensed |
semi-expanded | expanded |
extra-expanded | ultra-expanded | inherit
normal

text content elements

yes

N/A

visual

yes

This property indicates the desired amount of condensing or expansion in the glyphs used to render the text.
Except for any additional information provided in this specification, the normative definition of the property is in [

CSS2-font-stretch].

'font-size'
Value:

Initial:
Applies to:

<absolute-size> | <relative-size> |
<length> | <percentage> | inherit
medium

text content elements

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-variant
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-weight
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-stretch
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Inherited: yes, the computed value is inherited
Percentages: refer to parent element's font size
Media: visual

Animatable: yes

This property refers to the size of the font from baseline to baseline when multiple lines of text are set solid in a
multiline layout environment. For SVG, if a <length> is provided without a unit identifier (e.g., an unqualified
number such as 128), the SVG user agent processes the <length> as a height value in the current user
coordinate system.

If a <length> is provided with one of the unit identifiers (e.g., 12pt or 10%), then the SVG user agent converts the
<length> into a corresponding value in the current user coordinate system by applying the rules described in
Units.

Except for any additional information provided in this specification, the normative definition of the property is in [
CSS2-font-size].

'font-size-adjust’

Value: <number> | none | inherit
Initial: none

Appliesto: text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes (non-additive, 'set' and 'animate’ elements only)

This property allows authors to specify an aspect value for an element that will preserve the x-height of the first
choice font in a substitute font. Except for any additional information provided in this specification, the normative
definition of the property is in [CSS2-font-size-adjust].

‘font'

Value: [[<'font-style'> || <'font-variant’> || <'font-weight'>]?
<'font-size> [/ <'line-height'>]? <'font-family’>] |
caption | icon | menu | message-box|
small-caption | status-bar | inherit

Initial: see individual properties

Appliesto: text content elements

Inherited: yes

Percentages: allowed on ‘font-size' and 'line-height' (Note: for the purposes of processing the 'font'
property in SVG, 'line-height’ is assumed to be equal the value for property ‘font-size")

Media: visual

Animatable: yes (non-additive, 'set’ and ‘animate’ elements only)

Shorthand property for setting ‘font-style’, ‘font-variant', 'font-weight', ‘font-size', 'line-height' and ‘font-family’. The
'line-height' property has no effect on text layout in SVG. For the purposes of the 'font' property, 'line-height' is
assumed to be equal to the value of the 'font-size' property. Conforming SVG Viewers are not required to
support the various system font options (caption, icon, menu, message-box, small-caption and status-bar) and
can use a system font or one of the generic fonts instead.

Except for any additional information provided in this specification, the normative definition of the property is in
[CSS2-font]. The rules for expressing the syntax of CSS property values can be found at [CSS2-propdef].

http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-size
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-size-adjust
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font
http://www.w3.org/TR/REC-CSS2/about.html#property-defs

10.11 Spacing properties
Three properties affect the space between characters and words:

. 'kerning' indicates whether the user agent should adjust inter-glyph spacing based on kerning tables that
are included in the relevant font (i.e., enable auto-kerning) or instead disable auto-kerning and instead set
inter-character spacing to a specific length (typically, zero).

. 'letter-spacing' indicates an amount of space that is to be added between text characters supplemental to
any spacing due to the 'kerning' property.

. 'word-spacing' indicates the spacing behavior between words.

'kerning'
Value: auto | <length> | inherit
Initial: auto
Applies to: text content elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

The value of auto indicates that the user agent should adjust inter-glyph spacing based on kerning tables that
are included in the font that will be used (i.e., enable auto-kerning).

If a <length> is provided, then auto-kerning is disabled. Instead, inter-character spacing is set to the given
<length>. The most common scenario, other than auto, is to set 'kerning' to a value of 0 so that auto-kerning is
disabled.

If a <length> is provided without a unit identifier (e.g., an unqualified number such as 128), the SVG user agent
processes the <length> as a width value in the current user coordinate system.

If a <length> is provided with one of the unit identifiers (e.g., .25em or 1%), then the SVG user agent converts the

<length> into a corresponding value in the current user coordinate system by applying the rules described in
Units.

When a <length> is provided, its value is added to the inter-character spacing value specified by the 'letter-
spacing' property.

'letter-spacing’

Value: normal | <length> | inherit
Initial: normal

Applies to: text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property specifies spacing behavior between text characters supplemental to any spacing due to the
'kerning' property.

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

For SVG, if a <length> is provided without a unit identifier (e.g., an unqualified number such as 128), the SVG
user agent processes the <length> as a width value in the current user coordinate system.

If a <length> is provided with one of the unit identifiers (e.g., .25em or 1%), then the SVG user agent converts the

<length> into a corresponding value in the current user coordinate system by applying the rules described in
Units.

Except for any additional information provided in this specification, the normative definition of the property is in [
CSS2-letter-spacing].

'‘word-spacing’

Value: normal | <length> | inherit
Initial: normal

Applies to: text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property specifies spacing behavior between words. For SVG, if a <length> is provided without a unit
identifier (e.g., an unqualified number such as 128), the SVG user agent processes the <length> as a width
value in the current user coordinate system.

If a <length> is provided with one of the unit identifiers (e.g., .25em or 1%), then the SVG user agent converts the

<length> into a corresponding value in the current user coordinate system by applying the rules described in
Units.

Except for any additional information provided in this specification, the normative definition of the property is in [
CSS2-word-spacing].

10.12 Text decoration

'text-decoration’

Value: none | [underline || overline || line-through || blink] | inherit
Initial: none

Applies to: text content elements

Inherited: no (see prose)

Percentages: N/A

Media: visual

Animatable: vyes

This property describes decorations that are added to the text of an element. Conforming SVG Viewers are not
required to support the blink value.

Except for any additional information provided in this specification, the normative definition of the property is in [
CSS2-text-decoration]. The rules for expressing the syntax of CSS property values can be found at [CSS2-

propdef].

The CSS2 specification [CSS2] defines the behavior of the 'text-decoration' property using the terminology
"block-level elements" and "inline elements". For the purposes of the 'text-decoration' property and SVG, a 'text'

http://www.w3.org/TR/REC-CSS2/text.html#propdef-letter-spacing
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/text.html#propdef-word-spacing
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/text.html#propdef-text-decoration
http://www.w3.org/TR/REC-CSS2/about.html#property-defs
http://www.w3.org/TR/REC-CSS2/about.html#property-defs
http://www.w3.org/TR/REC-CSS2/

element represents a block-level element and any of the potential children of a 'text’ element (e.g., a 'tspan’)
represent inline elements.

Also, the CSS2 definition of 'text-decoration' specifies that the "color of the decorations" remain the same on
descendant elements. Since SVG offers a painting model consisting of the ability to apply various types of paint
(see Painting: Filling, Stroking and Marker Symbols) to both the interior (i.e., the "fill") and the outline (i.e., the
"stroke") of text, for SVG the 'text-decoration' property is defined such that, for an element which has a specified
value for the 'text-decoration' property, all decorations on its content and that of its descendants are rendered
using the same fill and stroke properties as are present on the given element. If the 'text-decoration' property is
specified on a descendant, then that overrides the ancestor.

Because SVG allows text to be both filled and stroked, drawing order matters in some circumstances with text
decorations. Text decoration drawing order should be as follows:

. All text decorations except line-through should be drawn before the text is filled and stroked; thus, the text
is rendered on top of these decorations.

. Line-through should be drawn after the text is filled and stroked; thus, the line-through is rendered on top
of the text.

Example textdecoration01 provides examples for 'text-decoration'. The first line of text has no value for 'text-
decoration', so the initial value of 'text-decoration:none' is used. The second line shows 'text-decoration:line-
through'. The third line shows 'text-decoration:underline'. The fourth line illustrates the rule whereby decorations
are rendered using the same fill and stroke properties as are present on the element for which the 'text-
decoration’ is specified. Since 'text-decoration’ is specified on the 'text' element, all text within the 'text’ element
has its underline rendered with the same fill and stroke properties as exist on the 'text' element (i.e., blue fill, red
stroke), even though the various words have different fill and stroke property values. However, the word
"different” explicitly specifies a value for 'text-decoration’; thus, its underline is rendered using the fill and stroke
properties as the 'tspan’ element that surrounds the word "different” (i.e., yellow fill, darkgreen stroke):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ Gaphi cs/ SV@ 1. 1/ DTD/ svgll. dt d" >
<svg w dt h="12cnt hei ght="4cnm' vi ewBox="0 0 1200 400"
xm ns="http://ww. w3. or g/ 2000/ svg" version="1.1">

<desc>Exanpl e textdecorati on01l - behavi or of 'text-decoration' property</desc>

<rect x="1" y="1" width="1198" hei ght="398" fill="none" stroke="blue" stroke-
wi dt h="2" />
<g font-size="60" fill="blue" stroke="red" stroke-w dth="1" >
<text x="100" y="75">Normal text</text>
<text x="100" y="165" text-decoration="Iline-through” >Text with |ine-

t hr ough</text>
<text x="100" y="255" text-decoration="underline" >Underlined text</text>
<text x="100" y="345" text-decoration="underline" >
<t span>One </tspan>

<tspan fill="yell ow' stroke="purple" >word </tspan>
<tspan fill="yell ow' stroke="bl ack" >has </tspan>
<tspan fill="yell ow' stroke="darkgreen" text-decoration="underline"
>di fferent </tspan>
<tspan fill="yell ow' stroke="bl ue" >underlining</tspan>
</text>
</ g>

</ svg>

http://www.w3.org/2000/svg

Normal text
Textwithdine- I
Underlined text

One word has di

erent underining

Example textdecoration01

View this example as SVG (SVG-enabled and CSS-enabled browsers only)

10.13 Text on a path

10.13.1 Introduction to text on a path

In addition to text drawn in a straight line, SVG also includes the ability to place text along the shape of a 'path’
element. To specify that a block of text is to be rendered along the shape of a ‘path’, include the given text within
a 'textPath' element which includes an xlink:href attribute with a URI reference to a 'path' element.

10.13.2 The 'textPath' element

<IENTITY % SVG t ext Pat h. el ement "I NCLUDE" >
<I[Y%BVG t ext Pat h. el enent ; [
<IENTI TY % SVG t ext Pat h. cont ent
"(#PCDATA | %8VG tspan.gnane; | %8VG tref.qgname; | %8VG al t d yph. gnane;
| %8VG ani mat e. gnane; | %8VG set.qgnane; | %SVG ani nat eCol or. gnane;
| %8VG Description.class; %8VG Hyperlink.class;)*"

>
<! ELEMENT %8VG t ext Pat h. gnane; %SVG t ext Pat h. content; >
<I-- end of SVG textPath.elenment -->]]>

<IENTITY % SVG. textPath.attlist "INCLUDE" >
<I[%BVG textPath.attlist;[
<I ATTLI ST %8VG t ext Pat h. gnane;
%SVG Core. attrib;
%8VG. Condi tional . attrib;
Y8VG Style.attrib;
Y%EVG Text Content . attrib;
%8VG Font . attrib;
%SVG Paint . attrib;
%8VG. Col or. attrib;
YSVG pacity. attrib;
%8VG Graphics. attrib;
Y8VG dip.attrib;
%SVG Mask. attrib;
YSVG Filter.attrib;
Y%8VG G aphi cal Events. attri b;
%SVG Cursor.attrib;

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/textdecoration01.svg

%8VG XLi nkRequi red. attrib;

%8VG External . attrib;

start Of f set %.engt h. dat at ype; #I MPLI ED

text Lengt h %.engt h. dat at ype; #l MPLI ED

| engt hAdj ust (spacing | spaci ngAndd yphs) #l MPLI ED
met hod (align | stretch) #l MPLIED

spacing (auto | exact) #l MPLI ED

Attribute definitions:

start O f set ="<length>"

An offset from the start of the 'path’ for the initial current text position, calculated using the user agent's
distance along the path algorithm.

If a <length> other than a percentage is given, then the startOffset represents a distance along the path
measured in the current user coordinate system.
If a percentage is given, then the startOffset represents a percentage distance along the entire path.
Thus, startOffset="0%" indicates the start point of the 'path’' and startOffset="100%" indicates the end point
of the 'path’.
A negative value is an error (see Error processing).
If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

nmet hod = "align | stretch"
Indicates the method by which text should be rendered along the path.
A value of align indicates that the glyphs should be rendered using simple 2x3 transformations such that
there is no stretching/warping of the glyphs. Typically, supplemental rotation, scaling and translation
transformations are done for each glyph to be rendered. As a result, with align, fonts where the glyphs are
designed to be connected (e.g., cursive fonts), the connections may not align properly when text is
rendered along a path.
A value of stretch indicates that the glyph outlines will be converted into paths, and then all end points
and control points will be adjusted to be along the perpendicular vectors from the path, thereby stretching

and possibly warping the glyphs. With this approach, connected glyphs, such as in cursive scripts, will
maintain their connections.

If the attribute is not specified, the effect is as if a value of align were specified.
Animatable: yes.

spaci ng = "auto | exact"
Indicates how the user agent should determine the spacing between glyphs that are to be rendered along
a path.
A |{\J/alue of exact indicates that the glyphs should be rendered exactly according to the spacing rules as
specified in Text on a path layout rules.
A value of auto indicates that the user agent should use text-on-a-path layout algorithms to adjust the
spacing between glyphs in order to achieve visually appealing results.
If the attribute is not specified, the effect is as if a value of exact were specified.
Animatable: yes.

xl'i nk: href ="<uri>"
A URI reference to the 'path’ element onto which the glyphs will be rendered. If <uri> is an invalid
reference (e.g., no such element exists, or the referenced element is not a ‘path’), then the 'textPath’

element is in error and its entire contents shall not be rendered by the user agent.
Animatable: yes.

The path data coordinates within the referenced 'path' element are assumed to be in the same coordinate
system as the current 'text' element, not in the coordinate system where the 'path' element is defined. The

transform attribute on the referenced 'path’ element represents a supplemental transformation relative to the
current user coordinate system for the current 'text' element, including any adjustments to the current user
coordinate system due to a possible transform attribute on the current 'text' element. For example, the following
fragment of SVG content:

<svg xm ns="http://ww. w3. or g/ 2000/ svg"
xm ns: xlink="http://ww.w3. org/ 1999/ xl i nk" version="1.1">
<g transforne"transl ate(25, 25)">
<def s>
<path id="pathl" transfornme"scale(2)" d="..." fill="none" stroke="red"/>
</ def s>
</ g>
<text transfornm="rotate(45)">
<text Pat h xli nk: href ="#pathl">Text al ong pat hl</text Pat h>
</text>
</ svg>

should have the same effect as the following:

<svg xm ns="http://ww. w3. or g/ 2000/ svg"
xm ns: x| i nk="http://ww.w3. org/ 1999/ xl i nk" version="1.1">
<g transform="rotate(45)">
<def s>
<path id="pathl" transfornme"scale(2)" d="..." fill="none" stroke="red"/>
</ def s>
<text>
<text Pat h xli nk: href ="#pathl">Text al ong pat hl</text Pat h>
</text>
</ g>
</ svg>

Note that the t r ansf or m="t r ansl at e(25, 25) " has no effect on the "textPath' element, whereas the
transform="r ot at e(45)" applies to both the 'text' and the use of the 'path' element as the referenced
shape for text on a path.

Example toap01 provides a simple example of text on a path:

<?xm version="1. 0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN"
“http://ww. w3. org/ Graphi cs/ SVE 1. 1/ DTD/ svgll. dt d" >
<svg w dth="12cnm hei ght="3. 6cnl' vi ewBox="0 0 1000 300" version="1.1"
xm ns="http://ww. w3. org/ 2000/ svg" xm ns: xl i nk="http://ww. w3. org/ 1999/ x| i nk" >

<def s>
<pat h i d="M/Pat h"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap0l - sinple text on a path</desc>

<use xlink:href="#WPath" fill="none" stroke="red" [>
<text font-famly="Verdana" font-size="42.5" fill="blue" >
<t ext Pat h xli nk: hr ef ="#M/Pat h" >
W go up, then we go down, then up again
</ t ext Pat h>
</text>

<l-- Show outline of canvas using 'rect' elenent -->

<rect x="1" y="1" wi dth="998" hei ght="298"

fill="none" stroke="blue" stroke-w dth="2" />
</ svg>
_Ith;
N 4 AN
ey % o
k7 6\?0
s

Example toap01

View this example as SVG (SVG-enabled browsers only)

Example toap02 shows how 'tspan’ elements can be included within ‘'textPath’ elements to adjust styling
attributes and adjust the current text position before rendering a particular glyph. The first occurrence of the
word "up" is filled with the color red. Attribute dy is used to lift the word "up" from the baseline.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg w dt h="12cnf" hei ght="3. 6cnt vi ewBox="0 0 1000 300" version="1.1"
xm ns="http://ww. w3. org/ 2000/ svg" xm ns: xlink="http://ww.w3. org/ 1999/ x| i nk">

<def s>
<pat h id="MyPat h"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap02 - tspan wi thin textPath</desc>

<use xlink:href="#WPath" fill="none" stroke="red" />
<text font-faml|y="Verdana" font-size="42.5" fill="blue" >
<text Pat h x| ink: href="#M/Pat h">
We go
<tspan dy="-30" fill="red" >
up
</t span>

<t span dy="30">

</t span>

then we go down, then up again
</ t ext Pat h>

</text>

<l-- Show outline of canvas using 'rect’' elenment -->

<rect x="1" y="1" wi dt h="998" hei ght="298"
fill="none" stroke="blue" stroke-w dth="2" />

</ svg>

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/toap01.svg

Example toap02

View this example as SVG (SVG-enabled browsers only)

Example toap03 demonstrates the use of the startOffset attribute on the 'textPath' element to specify the start
position of the text string as a particular position along the path. Notice that glyphs that fall off the end of the

path are not rendered (see text on a path layout rules).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3. or g/ G aphi cs/ SVG 1. 1/ DTD/ svgll. dt d" >
<svg w dt h="12cnf" hei ght="3. 6cnt vi ewBox="0 0 1000 300" version="1.1"

xm ns="http://ww. w3. org/ 2000/ svg" xm ns: xlink="http://ww.w3. org/ 1999/ x| i nk" >

<def s>
<pat h id="MyPat h"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap03 - text on a path with startOfset attribute</desc>

<use xlink:href="#MWPath" fill="none" stroke="red" />
<text font-fam|y="Verdana" font-size="42.5" fill="blue" >
<text Pat h xlink: href="#MPath" start O fset="80% >
We go up, then we go down, then up again
</ t ext Pat h>

</text>
<l-- Show outline of canvas using 'rect' elenent -->
<rect x="1" y="1" wi dt h="998" hei ght ="298"
fill="none" stroke="blue" stroke-w dth="2" />
</ svg>
T .
/(__.--"{. \ Mﬂ"up
/ . %
e - .__,/

Example toap03

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/toap02.svg

View this example as SVG (SVG-enabled browsers only)

10.13.3 Text on a path layout rules

Conceptually, for text on a path the target path is stretched out into either a horizontal or vertical straight line
segment. For horizontal text layout flows, the path is stretched out into a hypothetical horizontal line segment
such that the start of the path is mapped to the left of the line segment. For vertical text layout flows, the path is
stretched out into a hypothetical vertical line segment such that the start of the path is mapped to the top of the
line segment. The standard text layout rules are applied to the hypothetical straight line segment and the result

is mapped back onto the target path. Vertical and bidirectional text layout rules also apply to text on a path.

The reference orientation is determined individually for each glyph that is rendered along the path. For
horizontal text layout flows, the reference orientation for a given glyph is the vector that starts at the intersection
point on the path to which the glyph is attached and which points in the direction 90 degrees counter-clockwise
from the angle of the curve at the intersection point. For vertical text layout flows, the reference orientation for a
given glyph is the vector that starts at the intersection point on the path to which the glyph is attached and which
points in the direction 180 degrees from the angle of the curve at the intersection point.

Example toap04 will be used to illustrate the particular layout rules for text on a path that supplement the basic
text layout rules for straight line horizontal or vertical text.

<?xm version="1. 0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN"
“http://ww. w3. org/ Graphi cs/ SV@ 1. 1/ DTD/ svgll. dt d" >
<svg w dth="12cnm hei ght="3. 6cn' vi ewBox="0 0 1000 300" version="1.1"
xm ns="http://ww. w3. org/ 2000/ svg" xm ns: xl i nk="http://ww. w3. org/ 1999/ x| i nk" >

<def s>
<pat h id="M/Pat h"
d="M 100 125
C 150 125 250 175 300 175
C 350 175 450 125 500 125
C 550 125 650 175 700 175
C 750 175 850 125 900 125" />
</ def s>

<desc>Exanpl e toap04 - text on a path layout rul es</desc>

<use xlink:href="#MWPath" fill="none" stroke="red" />
<text font-famly="Verdana" font-size="60" fill="blue" letter-spacing="2" >
<t ext Pat h xli nk: hr ef ="#M/Pat h" >
Choose shane or get war
</ t ext Pat h>

</ text>

<l-- Show outline of canvas using 'rect' elenent -->

<rect x="1" y="1" wi dt h="998" hei ght="298"
fill="none" stroke="blue" stroke-w dth="2" />

</ svg>

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/toap03.svg

Chogge ona™e of ger Wa'!

Example toap04

View this example as SVG (SVG-enabled browsers only)

The following picture does an initial zoom in on the first glyph in the 'text' element.

Ch-

The small dot above shows the point at which the glyph is attached to the path. The box around the glyph
shows the glyph is rotated such that its horizontal axis is parallel to the tangent of the curve at the point at which
the glyph is attached to the path. The box also shows the glyph's charwidth (i.e., the amount which the current
text position advances horizontally when the glyph is drawn using horizontal text layout).

The next picture zooms in further to demonstrate the detailed layout rules.

For left-to-right horizontal text layout along a path (i.e., when the glyph orientation is perpendicular to the inline-
progression-direction), the layout rules are as follows:

Determine the startpoint-on-the-path for the first glyph using attribute startOffset and property 'text-
anchor'. For 'text-anchor:start', startpoint-on-the-path is the point on the path which represents the point
on the path which is startOffset distance along the path from the start of the path, calculated using the
user agent's distance along the path algorithm. For 'text-anchor:middle', startpoint-on-the-path is the point
on the path which represents the point on the path which is [startOffset minus half of the total advance

values for all of the glyphs in the 'textPath' element] distance along the path from the start of the path,
calculated using the user agent's distance along the path algorithm. For 'text-anchor:end', startpoint-on-

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/text/toap04.svg

the-path is the point on the path which represents the point on the path which is [startOffset minus the
total advance values for all of the glyphs in the 'textPath' element]. Before rendering the first glyph, the
horizontal component of the startpoint-on-the-path is adjusted to take into account various horizontal
alignment text properties and attributes, such as a dx attribute value on a 'tspan’ element. (In the picture
above, the startpoint-on-the-path is the leftmost dot on the path.)

Determine the glyph's charwidth (i.e., the amount which the current text position advances horizontally
when the glyph is drawn using horizontal text layout). (In the picture above, the charwidth is the distance
between the two dots at the side of the box.)

. Determine the point on the curve which is charwidth distance along the path from the startpoint-on-the-
path for this glyph, calculated using the user agent's distance along the path algorithm. This point is the
endpoint-on-the-path for the glyph. (In the picture above, the endpoint-on-the-path for the glyph is the
rightmost dot on the path.)

. Determine the midpoint-on-the-path, which is the point on the path which is "halfway" (user agents can
choose either a distance calculation or a parametric calculation) between the startpoint-on-the-path and
the endpoint-on-the-path. (In the picture above, the midpoint-on-the-path is shown as a white dot.)
Determine the glyph-midline, which is the vertical line in the glyph's coordinate system that goes through
the glyph's x-axis midpoint. (In the picture above, the glyph-midline is shown as a dashed line.)

Position the glyph such that the glyph-midline passes through the midpoint-on-the-path and is
perpendicular to the line through the startpoint-on-the-path and the endpoint-on-the-path.

. Align the glyph vertically relative to the midpoint-on-the-path based on property 'alignment-baseline' and
any specified values for attribute dy on a 'tspan’ element. In the example above, the 'alignment-baseline’
property is unspecified, so the initial value of 'alignment-baseline:baseline' will be used. There are no
‘tspan’ elements; thus, the baseline of the glyph is aligned to the midpoint-on-the-path.

. For each subsequent glyph, set a new startpoint-on-the-path as the previous endpoint-on-the-path, but
with appropriate adjustments taking into account horizontal kerning tables in the font and current values
of various attributes and properties, including spacing properties and 'tspan’ elements with values
provided for attributes dx and dy. All adjustments are calculated as distance adjustments along the path,
calculated using the user agent's distance along the path algorithm.

. Glyphs whose midpoint-on-the-path are off either end of the path are not rendered.

Continue rendering glyphs until there are no more glyphs.

Comparable rules are used for top-to-bottom vertical text layout along a path (i.e., when the glyph orientation is
parallel with the inline-progression-direction), the layout rules are as follows:

. Determine the startpoint-on-the-path using the same method as for horizontal text layout along a path,
except that before rendering the first glyph, the horizontal component of the startpoint-on-the-path is
adjusted to take into account various vertical alignment text properties and attributes, such as a dy
attribute value on a 'tspan’ element.

. Determine the glyph's charheight (i.e., the amount which the current text position advances vertically
when the glyph is drawn using vertical text layout).

. Determine the point on the curve which is charheight distance along the path from the startpoint-on-the-
path for this glyph, calculated using the user agent's distance along the path algorithm. This point is the
endpoint-on-the-path for the glyph.

Determine the midpoint-on-the-path, which is the point on the path which is "halfway" (user agents can
choose either a distance calculation or a parametric calculation) between the startpoint-on-the-path and
the endpoint-on-the-path.

. Determine the glyph-midline, which is the horizontal line in the glyph's coordinate system that goes
through the glyph's y-axis midpoint.

. Position the glyph such that the glyph-midline passes through the midpoint-on-the-path and is
perpendicular to the line through the startpoint-on-the-path and the endpoint-on-the-path.

. Align the glyph horizontally (where horizontal is relative to the glyph's coordinate system) relative to the
midpoint-on-the-path based on property 'alignment-baseline' and any specified values for attribute dx on a
‘tspan’ element.

. For each subsequent glyph, set a new startpoint-on-the-path as the previous endpoint-on-the-path, but
with appropriate adjustments taking into account vertical kerning tables in the font and current values of
various attributes and properties, including spacing properties and 'tspan’ elements with values provided
for attributes dx and dy. All adjustments are calculated as distance adjustments along the path, calculated
using the user agent's distance along the path algorithm.

. Glyphs whose midpoint-on-the-path are off either end of the path are not rendered.

. Continue rendering glyphs until there are no more glyphs.

In the calculations above, if either the startpoint-on-the-path or the endpoint-on-the-path is off the end of the
path, then extend the path beyond its end points with a straight line that is parallel to the tangent at the path at
its end point so that the midpoint-on-the-path can still be calculated.

When the inline-progression-direction is horizontal, then any x attributes on ‘text’, 'tspan’, 'tref' or 'altGlyph’
elements represent new absolute offsets along the path, thus providing explicit new values for startpoint-on-the-
path. Any y attributes on 'text’, 'tspan’, 'tref' or 'altGlyph' elements are ignored. When the inline-progression-
direction is vertical, then any y attributes on 'text’, 'tspan’, 'tref' or 'altGlyph' elements represent new absolute
offsets along the path, thus providing explicit new values for startpoint-on-the-path. Any x attributes on 'text’,
'tspan’, 'tref' or 'altGlyph' elements are ignored.

10.14 Alternate glyphs

There are situations such as ligatures, special-purpose fonts (e.g., a font for music symbols) or alternate glyphs
for Asian text strings where it is required that a different set of glyphs is used than the glyph(s) which normally
corresponds to the given character data.

The 'altGlyph' element provides control over the glyphs used to render particular character data.

<IENTITY % SVG al t d yph. el enent "I NCLUDE" >
<I[%BVG al t d yph. el enent ; [
<IENTITY % SVG al t d yph. cont ent
"(#PCDATA)"
>
<! ELEMENT 9%6VG al t d yph. gnane; %SVG al td yph. content; >

<!-- end of SVG altd yph.elenment -->]]>

<IENTITY % SVG al td yph.attlist "INCLUDE" >
<I[%BVG altd yph.attlist;]
<I ATTLI ST %8VG al t d yph. gnane;

%SVG Core. attrib;

%8VG Condi tional . attrib;
Y8VG Style.attrib;

Y8SVG Text Content . attrib;
%SVG Font . attrib;

%8VG Paint . attrib;

%6VG Col or. attrib;

Y8SVG pacity. attrib;
Y%8VG Graphics. attrib;
Y%8VG dip.attrib;

%SVG Mask. attrib;

Y8VG Filter.attrib;
%8VG G aphi cal Events. attri b;
%SVG Cursor.attrib;
%SVG XLink. attrib;

%SVG External . attrib;

X %Coor di nat es. dat at ype; #| MPLI ED
y %Coor di nat es. dat at ype; #l MPLI ED
dx %.engt hs. dat at ype; #I MPLI ED
dy %.engt hs. dat at ype; #| MPLI ED

gl yphRef CDATA #| MPLI ED
f or mat CDATA #l MPLI ED
rotate %\unbers. dat at ype; #I VPLI ED

Attribute definitions:

xlink: href ="<uri>"
A URI reference either to a 'glyph' element in an SVG document fragment or to an 'altGlyphDef' element.

If the reference is to a 'glyph' element and that glyph is available, then that glyph is rendered instead of
the character(s) that are inside of the 'altGlyph' element.

If the reference is to an 'altGlyphDef' element, then if an appropriate set of alternate glyphs is located from

processing the 'altGlyphDef' element, then those alternate glyphs are rendered instead of the character(s)
that are inside of the 'altGlyph' element.

Animatable: no.

gl yphRef ="<string>"
The glyph identifier, the format of which is dependent on the format of the given font. (Same meaning as
the glyphRef attribute on the 'glyphRef' element.)
Animatable: no.

format = "<string>"
The format of the given font. If the font is in one of the formats listed in the [CSS2-src] specification (e.g.,
TrueDoc™ Portable Font Resource or Embedded OpenType), then the <string> must contain the
corresponding font format string defined in [CSS2-src] (e.qg., truedoc-pfr or embedded-opentype). (Same
meaning as the format attribute on the 'glyphRef' element.)
Animatable: no.

X ="<coordinate>+"

The <coordinate> values are processed in the same manner as the x attribute on the 'tspan’ element,
with the following exception: If the referenced alternate glyphs are rendered instead of the Unicode
characters inside the 'altGlyph' element, then any absolute X coordinates specified via an x attribute on
this element or any ancestor 'text’ or 'tspan’ elements for Unicode characters 2 through <n> within the
'altGlyph' element are ignored. Any absolute X coordinate specified via an x attribute on this element or
any ancestor 'text' or 'tspan’ elements for the first Unicode character within the 'altGlyph' element sets a
new absolute X coordinate for the current text position before rendering the first alternate glyph.
Animatable: yes.

y ="<coordinate>+"
The corresponding absolute Y coordinates for rendering the 'altGlyph' element.
Animatable: yes.

dx ="<length>+"
The <length> values are processed in the same manner as the dx attribute on the 'tspan’ element, with
the following exception: If the referenced alternate glyphs are rendered instead of the Unicode characters
inside the 'altGlyph' element, then any relative X coordinates specified via an dx attribute on this element
or any ancestor 'text' or 'tspan’ elements for Unicode characters 2 through <n> within the "altGlyph'
element are ignored. Any relative X coordinate specified via an dx attribute on this element or any
ancestor 'text’ or 'tspan’ elements for the first Unicode character within the ‘altGlyph' element sets a new

http://www.w3.org/TR/REC-CSS2/fonts.html#referencing
http://www.w3.org/TR/REC-CSS2/fonts.html#referencing

relative X coordinate for the current text position before rendering the first alternate glyph.
Animatable: yes.
dy ="<length>+"

The corresponding relative Y coordinates for rendering the 'altGlyph' element.
Animatable: yes.

rot at e = "<number>+"
The <number> values are processed in the same manner as the rotate attribute on the 'tspan’' element,
with the following exception: If the referenced alternate glyphs are rendered instead of the Unicode
characters inside the 'altGlyph' element, then any supplemental rotation values specified via an rotate
attribute on this element or any ancestor 'text’ or 'tspan’ elements for Unicode characters 2 through <n>
within the 'altGlyph' element are ignored. Supplemental rotation values specified via an rotate attribute on
this element or any ancestor 'text’ or 'tspan’ elements for the first Unicode character within the "altGlyph'
element sets a new supplemental rotation angle before rendering the alternate glyphs.
Animatable: yes (non-additive, 'set' and 'animate' elements only).

If the references to alternate glyphs do not result in successful identification of alternate glyphs to use, then the
character(s) that are inside of the 'altGlyph' element are rendered as if the 'altGlyph' element were a 'tspan’
element instead.

An 'altGlyph' element either references a 'glyph' element or an 'altGlyphDef' element via its xlink:href attribute or
identifies a glyph by means of font selection properties, a glyph identifier and a font format. If the xlink:href

attribute is specified, it takes precedence, and the other glyph identification attributes and properties are
ignored.

The 'altGlyphDef' element defines a set of possible glyph substitutions.

<IENTITY % SVG al t d yphDef . el enent "I NCLUDE" >
<I[%BVG al t d yphDef . el enent; [
<IENTITY % SVG al t d yphDef . cont ent
"(9%8VG gl yphRef. gnane; + | %8VG al td yphltem gnane; +)"

>
<! ELEMENT %8VG al t d yphDef. gnane; %8VG al t d yphDef.content; >
<l-- end of SVG altd yphDef.el erent -->]]>

<IENTITY % SVG al t d yphDef . attlist "I NCLUDE" >
<I[%BVG al t d yphDef . attlist;|
<I ATTLI ST %8VG al t d yphDef . gnane;

%8VG Core. attrib;

An 'altGlyphDef' can contain either of the following:

. In the simplest case, an 'altGlyphDef' contains one or more 'glyphRef' elements. Each 'glyphRef' element
references a single glyph within a particular font. If all of the referenced glyphs are available, then these
glyphs are rendered instead of the character(s) inside of the referencing 'altGlyph' element. If any of the
referenced glyphs are unavailable, then the character(s) that are inside of the 'altGlyph' element are
rendered as if there were not an 'altGlyph' element surrounding those characters.

. In the more complex case, an 'altGlyphDef' contains one or more 'altGlyphltem' elements. Each
‘altGlyphltem' represents a candidate set of substitute glyphs. Each 'altGlyphltem' contains one or more
'glyphRef' elements. Each 'glyphRef' element references a single glyph within a particular font. The first
‘altGlyphltem' in which all referenced glyphs are available is chosen. The glyphs referenced from this

‘altGlyphltem' are rendered instead of the character(s) that are inside of the referencing 'altGlyph’
element. If none of the 'altGlyphitem' elements result in a successful match (i.e., none of the 'altGlyphltem'
elements has all of its referenced glyphs available), then the character(s) that are inside of the 'altGlyph'
element are rendered as if there were not an 'altGlyph' element surrounding those characters.

The "altGlyphlitem' element defines a candidate set of possible glyph substitutions. The first 'altGlyphltem’
element whose referenced glyphs are all available is chosen. Its glyphs are rendered instead of the character(s)
that are inside of the referencing 'altGlyph' element

<IENTITY % SVG al t d yphltem el enent "I NCLUDE" >
<I[%BVG al td yphltem el enent ; [
<IENTITY % SVG al t d yphltem cont ent

"(98VG gl yphRef. gnane; +)"

>
<! ELEMENT %6VG al td yphltem gnanme; %VG altd yphltem content; >
<I-- end of SVG altd@yphltemelenent -->]]>

<IENTITY % SVG al td yphltem attlist "INCLUDE" >
<I[%VG al td yphltemattlist;|
<I ATTLI ST %8VG al td yphl t em gnane;

%8VG Core. attrib;

The 'glyphRef' element defines a possible glyph to use.

<IENTITY % SVG gl yphRef. el enent "I NCLUDE" >

<I[%BVG gl yphRef. el enent ; [

<IENTITY % SVG gl yphRef . content "EMPTY" >

<! ELEMENT %8VG gl yphRef. gnane; %SVG gl yphRef.content; >
<I-- end of SVG gl yphRef.elenent -->]]>

<IENTITY % SVG gl yphRef.attlist "INCLUDE" >
<I[%BVG gl yphRef . attlist;[
<I ATTLI ST %8VG gl yphRef. gnane;
%SVG Core. attrib;
%8VG Style.attrib;
Y%SVG Font . attrib;
%8VG XLink. attrib;
X 9Nunber . dat at ype; #l MPLI ED
y 9%\unber. dat at ype; #l MPLI ED
dx 9%\unber . dat at ype; #l MPLI ED
dy 9%\unber. dat atype; #l MPLI ED

gl yphRef CDATA #I MPLI ED
format CDATA #l| MPLI ED

Attribute definitions:

xlink: href ="<uri>"
A URI reference to a 'glyph' element in an SVG document fragment. The referenced 'glyph' is rendered

as an alternate glyph.
Animatable: no.

gl yphRef ="<string>"
The glyph identifier, the format of which is dependent on the format of the given font.
Animatable: no.

f ormat = "<string>"
The format of the given font. If the font is in one of the formats listed in [CSS2-src] (e.g., TrueDoc™
Portable Font Resource or Embedded OpenType), then the <string> must contain the corresponding font
format string defined in [CSS2-src] (e.g., truedoc-pfr or embedded-opentype).
Animatable: no.

X ="<number>"
This value represents the new absolute X coordinate within the font's coordinate system for this glyph.
The font coordinate system is based on the em square model described in the "Fonts" chapter of the
"Cascading Style Sheets (CSS) level 2" specification [CSS2].
If the attribute is not specified, for the first 'glyphRef' child element, the effect is as if the attribute were set
to "0", whereas for subsequent 'glyphRef' child elements, the effect is as if the attribute were set to the
end X coordinate from the previous 'glyphRef' element.
Animatable: no.

y ="<number>"
The corresponding new absolute Y coordinate within the font's coordinate system for this glyph.
Animatable: no.

dx ="<number>"
This value represents the relative X coordinate within the font's coordinate system for this glyph. The
glyph is thus shifted by <number> units along the positive X axis within the font's coordinate system
supplemental to the absolute X coordinate established by the x attribute (either due to an explicit x
attribute or due to default value processing for the x attribute).
The font coordinate system is based on the em square model described in the "Fonts" chapter of the
"Cascading Style Sheets (CSS) level 2" specification [CSS2].
If the attribute is not specified, the effect is as if the attribute were set to "0".
Animatable: no.

dy ="<number>"
The corresponding number of units within the font's coordinate system to shift the glyph along the positive
Y axis relative to the absolute Y coordinate established by the y attribute.
Animatable: no.

A ‘glyphRef" either references a 'glyph' element in an SVG document fragment via its xlink:href attribute or
identifies a glyph by means of font selection properties, a glyph identifier and a font format. If insufficient

attributes and properties have been specified to identify a glyph, then the 'glyphRef' is processed in the same
manner as when a glyph reference is fully specified, but the given glyph is not available. If the xlink:href attribute
is specified, it takes precedence, and the other glyph identification attributes and properties are ignored.

10.15 White space handling

SVG supports the standard XML attribute xml:space to specify the handling of white space characters within a
given 'text' element's character data. The SVG user agent has special processing rules associated with this
attribute as described below. These are behaviors that occur subsequent to XML parsing [XML10] and any

construction of a Document Object Model [DOM2].

xml:space is an inheritable attribute which can have one of two values:

. default (the initial/default value for xml:space) - When xmi : space="def aul t ", the SVG user agent will
do the following using a copy of the original character data content. First, it will remove all newline
characters. Then it will convert all tab characters into space characters. Then, it will strip off all leading

http://www.w3.org/TR/REC-CSS2/fonts.html#referencing
http://www.w3.org/TR/REC-CSS2/fonts.html#referencing
http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/fonts.html
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/DOM-Level-2/

and trailing space characters. Then, all contiguous space characters will be consolidated.

. preserve - When xml : space="preserve", the SVG user agent will do the following using a copy of
the original character data content. It will convert all newline and tab characters into space characters.
Then, it will draw all space characters, including leading, trailing and multiple contiguous space
characters. Thus, when drawn with xm : space="pr eserve", the string " a b" (three spaces
between "a" and "b") will produce a larger separation between "a" and "b" than "a b" (one space
between "a" and "b").

The following example illustrates that line indentation can be important when using xnl : space="defaul t".
The fragment below show two pairs of similar 'text' elements, with both 'text' elements using xml:space='default'.
For these examples, there is no extra white space at the end of any of the lines (i.e., the line break occurs
immediately after the last visible character).

[01] <text xm :space=' default'>

[02] W5 exanpl e

[03] i ndented lines

[04] </text>

[05] <text xml:space=' preserve' >W5 exanpl e i ndented |ines</text>
[06]

[07] <text xml:space='default'>

[08] W& exanpl e

[09] non-indented |ines

[10] </text>

[11] <text xml:space=' preserve' >W5 exanpl enon-i ndented |ines</text>

The first pair of 'text' elements above show the effect of indented character data. The attribute
xml:space="default' in the first 'text' element instructs the user agent to:

. convert all tabs (if any) to space characters,
strip out all line breaks (i.e., strip out the line breaks at the end of lines [01], [02] and [03]),
. strip out all leading space characters (i.e., strip out space characters before "WS example" on line [02]),
. strip out all trailing space characters (i.e., strip out space characters before "</text>" on line [04]),
. consolidate all intermediate space characters (i.e., the space characters before "indented lines" on line
[03]) into a single space character.

The second pair of 'text’ elements above show the effect of non-indented character data. The attribute
xml:space="default' in the third 'text' element instructs the user agent to:

. convert all tabs (if any) to space characters,

. strip out all line breaks (i.e., strip out the line breaks at the end of lines [07], [08] and [09]),

. strip out all leading space characters (there are no leading space characters in this example),

. strip out all trailing space characters (i.e., strip out space characters before "</text>" on line [10]),

. consolidate all intermediate space characters into a single space character (in this example, there are no
intermediate space characters).

Note that XML parsers are required to convert the standard representations for a newline indicator (e.g., the
literal two-character sequence "#xD#xA" or the stand-alone literals #xD or #xA) into the single character #xA
before passing character data to the application. Thus, each newline in SVG will be represented by the single
character #xA, no matter what representation for newlines might have been used in the original resource. (See
XML end-of-line handling.)

Any features in the SVG language or the SVG DOM that are based on character position number, such as the x,
y, dx, dy and rotate attributes on the 'text’, 'tspan’, 'tref' 'altGlyph' elements, are based on character position after
applying the white space handling rules described here. In particular, if xm : space="def aul t ", it is often the
case that white space characters are removed as part of processing. Character position numbers index into the

http://www.w3.org/TR/REC-xml#sec-line-ends

text string after the white space characters have been removed per the rules in this section.
The xml:space attribute is:

Animatable: no.

10.16 Text selection and clipboard operations

Conforming SVG viewers on systems which have the capacity for text selection (e.g., systems which are

equipped with a pointer device such as a mouse) and which have system clipboards for copy/paste operations
are required to support:

. user selection of text strings in SVG content
the ability to copy selected text strings to the system clipboard

A text selection operation starts when all of the following occur:

. the user positions the pointing device over a glyph that has been rendered as part of a 'text’ element,
initiates a select operation (e.g., pressing the standard system mouse button for select operations) and
then moves the pointing device while continuing the select operation (e.g., continuing to press the
standard system mouse button for select operations)

. no other visible graphics element has been painted above the glyph at the point at which the pointing
device was clicked

. ho links or events have been assigned to the 'text' , 'tspan' or 'textPath' , element(s) (or their ancestors)
associated with the given glyph.

As the text selection operation proceeds (e.g., the user continues to press the given mouse button), all
associated events with other graphics elements are ignored (i.e., the text selection operation is modal) and the
SVG user agent shall dynamically indicate which characters are selected by an appropriate highlighting
technique, such as redrawing the selected glyphs with inverse colors. As the pointer is moved during the text
selection process, the end glyph for the text selection operation is the glyph within the same 'text' element
whose glyph cell is closest to the pointer. All characters within the 'text' element whose position within the 'text’
element is between the start of selection and end of selection shall be highlighted, regardless of position on the
canvas and regardless of any graphics elements that might be above the end of selection point.

Once the text selection operation ends (e.g., the user releases the given mouse button), the selected text will
stay highlighted until an event occurs which cancels text selection, such as a pointer device activation event
(e.g., pressing a mouse button).

Detailed rules for determining which characters to highlight during a text selection operation are provided in Text
selection implementation notes.

For systems which have system clipboards, the SVG user agent is required to provide a user interface for
initiating a copy of the currently selected text to the system clipboard. It is sufficient for the SVG user agent to
post the selected text string in the system's appropriate clipboard format for plain text, but it is preferable if the
SVG user agent also posts a rich text alternative which captures the various font properties associated with the
given text string.

For bidirectional text, the user agent must support text selection in logical order, which will result in
discontinuous highlighting of glyphs due to the bidirectional reordering of characters. User agents can provide
an alternative ability to select bidirectional text in visual rendering order (i.e., after bidirectional text layout

algorithms have been applied), with the result that selected character data might be discontinuous logically. In

this case, if the user requests that bidirectional text be copied to the clipboard, then the user agent is required to

make appropriate adjustments to copy only the visually selected characters to the clipboard.

When feasible, it is recommended that generators of SVG attempt to order their text strings to facilitate properly

ordered text selection within SVG viewing applications such as Web browsers.

10.17 Text Module

Elements

text

tspan

tref

textPath

Attributes

StdAttrs, TestAttrs, ExternalResourcesRequiredAttrs,
StyleAttrs, transform, X, y, dx, dy, rotate, textLength,
lengthAdjust, GraphicsElementsEventAttrs,
ColorPresentationAttrs, PaintPresentationAttrs,
FontPresentationAttrs, OpacityPresentationAttrs,
GraphicsPresentationAttrs, CursorPresentationAttrs,
FilterPresentationAttrs, MaskPresentationAttrs,
PointerEventsPresentationAttrs, ClipPresentationAttrs,
TextContentPresentationAttrs,
TextElementPresentationAttrs

StdAttrs, TestAttrs, ExternalResourcesRequiredAttrs,
StyleAttrs, X, y, dx, dy, rotate, textLength, lengthAdjust,
GraphicsElementsEventAttrs, ColorPresentationAttrs,
PaintPresentationAttrs, FontPresentationAttrs,
OpacityPresentationAttrs, GraphicsPresentationAttrs,
CursorPresentationAttrs, FilterPresentationAttrs,
MaskPresentationAttrs, PointerEventsPresentationAttrs,
ClipPresentationAttrs, TextContentPresentationAttrs

StdAttrs, TestAttrs, ExternalResourcesRequiredAttrs,
StyleAttrs, XLinkRefAttrs, xlink:href, x, y, dx, dy, rotate,
textLength, lengthAdjust, GraphicsElementsEventAttrs,
ColorPresentationAttrs, PaintPresentationAttrs,
FontPresentationAttrs, OpacityPresentationAttrs,
GraphicsPresentationAttrs, CursorPresentationAttrs,
FilterPresentationAttrs, MaskPresentationAttrs,
PointerEventsPresentationAttrs, ClipPresentationAttrs,
TextContentPresentationAttrs

StdAttrs, TestAttrs, ExternalResourcesRequiredAttrs,
StyleAttrs, startOffset, textLength, lengthAdjust, method,
spacing, XLinkRefAttrs, xlink:href,
GraphicsElementsEventAttrs, ColorPresentationAttrs,
PaintPresentationAttrs, FontPresentationAttrs,
OpacityPresentationAttrs, GraphicsPresentationAttrs,
CursorPresentationAttrs, FilterPresentationAttrs,
MaskPresentationAttrs, PointerEventsPresentationAttrs,
ClipPresentationAttrs, TextContentPresentationAttrs

Content Model

(#PCDATA | DescriptionElements |
TextContentElements |
HyperlinkingElements |
AnimationElements)*

(#PCDATA | DescriptionElements |
TextContentElements |
HyperlinkingElements |
AnimationElements)*

(#PCDATA | DescriptionElements |
AnimationElements)*

(#PCDATA | DescriptionElements |
TextContentElements |
HyperlinkingElements |
AnimationElements)*

StdAttrs, TestAttrs, ExternalResourcesRequiredAttrs,
StyleAttrs, x, y, dx, dy, rotate, textLength, glyphRef,
format, xlink:href, XLinkRefAttrs, lengthAdjust,
GraphicsElementsEventAttrs, ColorPresentationAttrs,
altGlyph PaintPresentationAttrs, FontPresentationAttrs, (PCDATA)*
OpacityPresentationAttrs, GraphicsPresentationAttrs,
CursorPresentationAttrs, FilterPresentationAttrs,
MaskPresentationAttrs, PointerEventsPresentationAttrs,
ClipPresentationAttrs, TextContentPresentationAttrs

altGlyphDef |StdAttrs (glyphRef+ | altGlyphltem-+)
altGlyphitem |StdAttrs (glyphRef+)

StdAttrs, ExternalResourcesRequiredAttrs, StyleAttrs, X,
glyphRef y, dx, dy, glyphRef, format, xlink:href, XLinkRefAttrs, Empty

lengthAdjust, FontPresentationAttrs

10.17.1 Text Content Sets

The Text Module defines the TextElements and TextContentElements content sets.

|Content Set Name]Elements in Content Set

TextElements text, altGlyphDef

|TextContentEIements]tspan, tref, textPath, altGlyph

10.17.2 Text Attribute Sets

The Text Module defines the TextPresentationAttrs, TextContentPresentationAttrs and FontPresentationAttrs
attribute sets.

|Co||ection Name |Attributes in Collection

TextPresentationAttrs writing-mode

alignment-baseline, baseline-shift, direction, dominant-baseline, glyph-
TextContentPresentationAttrs |orientation-horizontal, glyph-orientation-vertical, kerning, letter-spacing, text-
anchor, text-decoration, unicode-bidi, word-spacing

font-family, font-size, font-size-adjust, font-stretch, font-style, font-variant, font-

FontPresentationAttrs .
weight

10.18 Basic Text Module

|Elements]Attributes Content Model

StdAttrs, TestAttrs, ExternalResourcesRequiredAttrs,
StyleAttrs, transform, x, y, rotate,
GraphicsElementsEventAttrs, ColorPresentationAttrs,

PaintPresentationAttrs, FontPresentationAttrs, (#PCDATA | DescriptionElements |
text OpacityPresentationAttrs, GraphicsPresentationAttrs, HyperlinkingElements |
CursorPresentationAttrs, FilterPresentationAttrs, AnimationElements)*

MaskPresentationAttrs, PointerEventsPresentationAttrs,
ClipPresentationAttrs, TextContentPresentationAttrs,
TextElementPresentationAttrs

10.18.1 Basic Text Content Sets

The Basic Text Module defines the TextElements and TextContentElements content sets.

]Content Set Name]Elements in Content Set

]TextEIements]text

TextContentElements [Empty

10.18.2 Basic Text Attribute Set

The Basic Text Module defines FontPresentationAttrs attribute set.

]Collection Name]Attributes in Collection
]FontPresentationAttrs]font—family, font-size, font-style, font-weight

10.19 DOM interfaces

The following interfaces are defined below: SVGTextContentElement, SVGTextPositioningElement,
SVGTextElement, SVGTSpanElement, SVGTRefElement, SVGTextPathElement, SVGAItGlyphElement,
SVGAItGlyphDefElement, SVGAItGlyphltemElement, SVGGlyphRefElement.

Interface SVGTextContentElement

The SVGTextContentElement interface is inherited by various text-related interfaces, such as
SVGTextElement, SVGTSpanElement, SVGTRefElement, SVGAItGlyphElement and SVGTextPathElement.

IDL Definition

i nterface SVGText Cont ent El enment
SVCGEl enent ,
SVGTest s,
SVGL.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,

events:: Event Target {

/1 | engt hAdj ust Types

const unsi gned short LENGTHADJUST UNKNOWN = O;

const unsi gned short LENGTHADIJUST_ SPACI NG = i

const unsi gned short LENGTHADJUST SPACI NGANDGLYPHS = 2

readonly attri bute SVGAni mat edLengt h t ext Lengt h;

readonly attri bute SVGAni mat edEnuner ati on | engt hAdj ust ;

| ong get Nunmber O Chars ();

fl oat get Conput edText Length ();

fl oat get SubStri ngkength (in unsigned | ong charnum in unsigned |ong nchars)

rai ses(DOVException);

SVGPoi nt get Start Positi onOf Char (in unsigned | ong charnum)
rai ses(DOVException);

SVGPoi nt get EndPosi ti onOf Char (i n unsigned | ong charnum)
rai ses(DOVException);

SVGRect getExtentOfChar (in unsigned | ong charnum)
rai ses(DOVException);

fl oat get Rotati onOf Char (in unsigned | ong charnum)
rai ses(DOVException);
| ong get Char NumAt Posi tion (in SVGPoint point);
voi d sel ect SubString (in unsigned | ong charnum in unsigned |ong nchars)

rai ses(DOVException);

Definition group lengthAdjust Types

Defined constants

LENGTHADJUST_UNKNOWN The enumeration was set to a value that is not one of
predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an
existing value to this type.

LENGTHADJUST_SPACING Corresponds to value spacing.
LENGTHADJUST_ SPACINGANDGLYPHS Corresponds to value spacingAndGlyphs.

Attributes
readonly SVGAnimatedLength textLength
Corresponds to attribute textLength on the given element.
readonly SVGAnimatedEnumeration lengthAdjust

Corresponds to attribute lengthAdjust on the given element. The value must be one of the length

adjust constants specified above.
Methods
getNumberOfChars
Returns the total number of characters to be rendered within the current element. Includes
characters which are included via a 'tref' reference.
No Parameters
Return value

long Total number of characters.

No Exceptions
getComputedTextLength

The total sum of all of the advance values from rendering all of the characters within this element,
including the advance value on the glyphs (horizontal or vertical), the effect of properties 'kerning’,
‘letter-spacing’ and 'word-spacing' and adjustments due to attributes dx and dy on 'tspan’ elements.
For non-rendering environments, the user agent shall make reasonable assumptions about glyph

metrics.
No Parameters
Return value
float The text advance distance.
No Exceptions
getSubStringLength
The total sum of all of the advance values from rendering the specified substring of the characters,
including the advance value on the glyphs (horizontal or vertical), the effect of properties 'kerning’,
'letter-spacing’ and 'word-spacing' and adjustments due to attributes dx and dy on 'tspan’ elements.
For non-rendering environments, the user agent shall make reasonable assumptions about glyph
metrics.
Parameters
in unsigned long charnum The index of the first character in the substring, where the first
character has an index of 0.
in unsigned long nchars The number of characters in the substring.
Return value
float The text advance distance.
Exceptions
DOMException INDEX_SIZE_ERR: Raised if the charnum is negative or if
charnum+nchars is greater than or equal to the number of characters at
this node.

getStartPositionOfChar

Returns the current text position before rendering the character in the user coordinate system for
rendering the glyph(s) that correspond to the specified character. The current text position has
already taken into account the effects of any inter-character adjustments due to properties
'kerning’', 'letter-spacing' and 'word-spacing' and adjustments due to attributes x, y, dx and dy. If
multiple consecutive characters are rendered inseparably (e.g., as a single glyph or a sequence of
glyphs), then each of the inseparable characters will return the start position for the first glyph.
Parameters

in unsigned long charnum The index of the character, where the first character has an

index of 0.

Return value

SVGPoint The character's start position.
Exceptions

DOMEXxception INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is

greater than or equal to the number of characters at this node.
getEndPositionOfChar

Returns the current text position after rendering the character in the user coordinate system for
rendering the glyph(s) that correspond to the specified character. This current text position does
not take into account the effects of any inter-character adjustments to prepare for the next
character, such as properties 'kerning’, 'letter-spacing' and 'word-spacing' and adjustments due to
attributes x, y, dx and dy. If multiple consecutive characters are rendered inseparably (e.g., as a
single glyph or a sequence of glyphs), then each of the inseparable characters will return the end
position for the last glyph.
Parameters

in unsigned long charnum The index of the character, where the first character has an

index of 0.

Return value
SVGPoint The character's end position.
Exceptions

DOMException INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is
greater than or equal to the number of characters at this node.

getExtentOfChar
Returns a tightest rectangle which defines the minimum and maximum X and Y values in the user
coordinate system for rendering the glyph(s) that correspond to the specified character. The
calculations assume that all glyphs occupy the full standard glyph cell for the font. If multiple
consecutive characters are rendered inseparably (e.g., as a single glyph or a sequence of glyphs),
then each of the inseparable characters will return the same extent.
Parameters

in unsigned long charnum The index of the character, where the first character has an
index of 0.

Return value
SVGRect The rectangle which encloses all of the rendered glyph(s).
Exceptions

DOMEXxception INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is
greater than or equal to the number of characters at this node.

getRotationOfChar
Returns the rotation value relative to the current user coordinate system used to render the
glyph(s) corresponding to the specified character. If multiple glyph(s) are used to render the given
character and the glyphs each have different rotations (e.g., due to text-on-a-path), the user agent
shall return an average value (e.g., the rotation angle at the midpoint along the path for all glyphs
used to render this character). The rotation value represents the rotation that is supplemental to
any rotation due to properties 'glyph-orientation-horizontal' and 'glyph-orientation-vertical'; thus, any
glyph rotations due to these properties are not included into the returned rotation value. If multiple
consecutive characters are rendered inseparably (e.g., as a single glyph or a sequence of glyphs),
then each of the inseparable characters will return the same rotation value.
Parameters

in unsigned long charnum The index of the character, where the first character has an
index of 0.

Return value
float The rotation angle.
Exceptions

DOMException INDEX_SIZE ERR: Raised if the charnum is negative or if charnum is
greater than or equal to the number of characters at this node.

getCharNumAtPosition
Returns the index of the character whose corresponding glyph cell bounding box contains the
specified point. The calculations assume that all glyphs occupy the full standard glyph cell for the
font. If no such character exists, a value of -1 is returned. If multiple such characters exist, the
character within the element whose glyphs were rendered last (i.e., take into account any
reordering such as for bidirectional text) is used. If multiple consecutive characters are rendered
inseparably (e.g., as a single glyph or a sequence of glyphs), then the user agent shall allocate an
equal percentage of the text advance amount to each of the contributing characters in determining
which of the characters is chosen.
Parameters

in SVGPoint point A point in user space.
Return value

long The index of the character which is at the given point, where the first character has an
index of 0.

No Exceptions

selectSubString
Causes the specified substring to be selected just as if the user selected the substring interactively.
Parameters

in unsigned long charnum The index of the start character which is at the given point,
where the first character has an index of 0.
in unsigned long nchars The number of characters in the substring. If nchars specifies
more characters than are available, then the substring will
consist of all characters starting with charnum until the end of
the list of characters.
No Return Value
Exceptions
DOMException INDEX_SIZE_ERR: Raised if the charnum is negative or if charnum is
greater than or equal to the number of characters at this node.

Interface SVGTextPositioningElement

The SVGTextPositioningElement interface is inherited by text-related interfaces: SVGTextElement,
SVGTSpanElement, SVGTRefElement and SVGAItGlyphElement.

IDL Definition

i nterface SVGText Positioni ngEl enent : SVGText Cont ent El enent {
readonly attri bute SVGAni mat edLengt hLi st x;
readonly attri bute SVGAni mat edLengt hLi st vy;
readonly attribute SVGAni mat edLengt hLi st dx;
readonly attribute SVGAni mat edLengt hLi st dy;
readonly attribute SVGAni mat edNunber Li st rot at e;

Attributes

readonly SVGAnimatedLengthList x

Corresponds to attribute x on the given element.
readonly SVGAnimatedLengthListy

Corresponds to attribute y on the given element.
readonly SVGAnimatedLengthList dx

Corresponds to attribute dx on the given element.
readonly SVGAnimatedLengthList dy

Corresponds to attribute dy on the given element.
readonly SVGAnimatedNumberList rotate

Corresponds to attribute rotate on the given element.

Interface SVGTextElement

The SVGTextElement interface corresponds to the 'text' element.

IDL Definition

i nterface SVGText El enent
SVGText Posi ti oni ngEl enent
SVGIr ansf ormabl e {};

Interface SVGTSpanElement

The SVGTSpanElement interface corresponds to the 'tspan' element.

IDL Definition

i nterface SVGISpanEl ement : SVGText Positioni ngEl enent {};

Interface SVGTRefElement

The SVGTRefElement interface corresponds to the 'tref' element.

IDL Definition

i nterface SVGTRef El enent
SVGText Posi ti oni ngEl enent ,
SVGURI Ref erence {};

Interface SVGTextPathElement

The SVGTextPathElement interface corresponds to the 'textPath' element.

IDL Definition

i nterface SVGIext Pat hEl enent
SVGText Cont ent El enent ,
SVGURI Ref erence {

/'l textPath Method Types

const unsi gned short TEXTPATH METHODTYPE UNKNOMN
const unsi gned short TEXTPATH METHODTYPE ALI GN
const unsi gned short TEXTPATH METHODTYPE STRETCH
/|l textPath Spaci ng Types

const unsi gned short TEXTPATH_SPACI NGTYPE _UNKNOVWN = O;
const unsi gned short TEXTPATH_SPACI NGTYPE_AUTO = 1;
const unsi gned short TEXTPATH_SPACI NGTYPE_EXACT = 2;

= o

readonly attribute SVGAni mat edLengt h
readonly attribute SVGAni mat edEnumner ati on net hod;
readonly attribute SVGAni nat edEnunerati on spaci ng;

start O f set ;

Definition group textPath Method Types

Defined constants

TEXTPATH_METHODTYPE_UNKNOWN The enumeration was set to a value that is not one of
predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an
existing value to this type.

TEXTPATH_METHODTYPE_ALIGN Corresponds to value align.

TEXTPATH_METHODTYPE_STRETCH

Definition group textPath Spacing Types
Defined constants

TEXTPATH_SPACINGTYPE_UNKNOWN

TEXTPATH_SPACINGTYPE_AUTO

TEXTPATH_SPACINGTYPE_EXACT
Attributes
readonly SVGAnimatedLength startOffset

Corresponds to value stretch.

The enumeration was set to a value that is not one of
predefined types. It is invalid to attempt to define a
new value of this type or to attempt to switch an
existing value to this type.

Corresponds to value auto.
Corresponds to value exact.

Corresponds to attribute startOffset on the given 'textPath' element.

readonly SVGAnimatedEnumeration method

Corresponds to attribute method on the given 'textPath' element. The value must be one of the

method type constants specified above.
readonly SVGAnimatedEnumeration spacing

Corresponds to attribute spacing on the given 'textPath' element. The value must be one of the

spacing type constants specified above.

Interface SVGAItGlyphElement

The SVGAItGlyphElement interface corresponds to the 'altGlyph' element.

IDL Definition

i nterface SVGAl t d yphEl enent

SVGText Posi ti oni ngEl enent ,
SVGURI Ref erence {

attribute DOVString gl yphRef;

/1 rai ses DOVException on setting
attribute DOVString format;

/1 rai ses DOVException on setting

Attributes
DOMString glyphRef
Corresponds to attribute glyphRef on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.
DOMString format
Corresponds to attribute format on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

Interface SVGAItGlyphDefElement

The SVGAItGlyphDefElement interface corresponds to the 'altGlyphDef' element.

IDL Definition

interface SVGAl t G yphDef El ement : SVCEl enent {};

Interface SVGAItGlyphltemElement

The SVGAItGlyphltemElement interface corresponds to the 'altGlyphltem' element.

IDL Definition

interface SVGAl t A yphltenkEl ement : SVCGEl enent {};

Interface SVGGlyphRefElement

The SVGGlyphRefElement interface corresponds to the 'glyphRef' element.

IDL Definition

i nterface SVGE yphRef El enent
SVCEl enent ,
SVGURI Ref er ence,
SVGStyl abl e {

attribute DOVString gl yphRef;

/'l raises DOVException on setting
attribute DOVString fornmat;

/1 rai ses DOVException on setting
attribute fl oat X;

/1 rai ses DOVException on setting
attribute float Y;

/1 rai ses DOVException on setting
attribute fl oat dx;

/1 rai ses DOVException on setting
attribute fl oat dy;

/'l raises DOVException on setting

Attributes
DOMString glyphRef
Corresponds to attribute glyphRef on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.
DOMString format
Corresponds to attribute format on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.
float x
Corresponds to attribute x on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.
float y
Corresponds to attribute y on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.
float dx
Corresponds to attribute dx on the given element.
Exceptions on setting

DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

float dy
Corresponds to attribute dy on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an attempt to change
the value of a readonly attribute.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

11 Painting: Filling, Stroking and Marker Symbols

Contents

. 11.1 Introduction
. 11.2 Specifying paint
. 11.3 Fill Properties
. 11.4 Stroke Properties
. 11.5 Controlling visibility
. 11.6 Markers
o 11.6.1 Introduction
o 11.6.2 The 'marker' element
o 11.6.3 Marker properties
o 11.6.4 Details on how markers are rendered
. 11.7 Rendering properties
o 11.7.1 Color interpolation properties: 'color-interpolation' and 'color-interpolation-filters'
o 11.7.2 The 'color-rendering' property
o 11.7.3 The 'shape-rendering' property
o 11.7.4 The 'text-rendering' property
o 11.7.5 The 'image-rendering' property
. 11.8 Inheritance of painting properties
. 11.9 Paint Attribute Module
. 11.10 Opacity Attribute Module
. 11.11 Graphics Attribute Module
. 11.12 Basic Graphics Attribute Module
. 11.13 Marker Module
. 11.14 DOM interfaces

c
o
=]
M
o
c
]
=
=
o
'S
@
o
W
<=
1~
=
o
=
4]
)
O
=

11.1 Introduction

'‘path’ elements, 'text' elements and basic shapes can be filled (which means painting the interior of the
object) and stroked (which means painting along the outline of the object). Filling and stroking both can be
thought of in more general terms as painting operations.

Certain elements (i.e., 'path’, 'polyline’, 'polygon’ and 'line' elements) can also have marker symbols drawn
at their vertices.

With SVG, you can paint (i.e., fill or stroke) with:

. asingle color

. asolid color with opacity

. agradient (linear or radial)

. a pattern (vector or image, possibly tiled)
« custom paints available via extensibility

SVG uses the general notion of a paint server. Paint servers are specified using a URI reference on a 'fill'
or 'stroke' property. Gradients, patterns and solid colors are just specific types of paint servers.

11.2 Specifying paint
Properties 'fill' and 'stroke’ take on a value of type <paint>, which is specified as follows:

<paint>: none |
currentColor |
<color>[icc-color(<name>[,<icccolorvalue>]*) |
<uri> [none | currentColor | <color> [icc-color(<name>[,<icccolorvalue>]*)] |
inherit

none
Indicates that no paint is applied.

currentColor
Indicates that painting is done using the color specified by the 'color' property. This mechanism is
provided to facilitate sharing of color attributes between parent grammars such as other (non-SVG)
XML. This mechanism allows you to define a style in your HTML which sets the 'color' property and
then pass that style to the SVG user agent so that your SVG text will draw in the same color.

<color> [icc-color(<name>[,<icccolorvalue>]*)]
<color> is the explicit color (in the sSRGB [SRGB] color space) to be used to paint the current object.
SVG supports all of the syntax alternatives for <color> defined in [CSS2-color-types], with the
exception that SVG contains an expanded list of recognized color keywords names. If an optional
ICC color specification is provided, then the user agent searches the color profile description
database for a color profile description entry whose name descriptor matches <name> and uses the
last matching entry that is found. (If no match is found, then the ICC color specification is ignored.)
The comma-separated list (with optional white space) of <icccolorvalue>'s is a set of ICC-profile-
specific color values, expressed as <number>s. (In most cases, the <icccolorvalue>'s will be in the
range 0-to-1.) On platforms which support ICC-based color management, the icc-color gets
precedence over the <color> (which is in the SRGB color space). Note that color interpolation occurs
in an RGB color space even if an ICC-based color specification is provided (see 'color-interpolation'
and 'color-interpolation-filters'). Percentages are not allowed on <icccolorvalue>'s. For more on ICC-
based colors, refer to Color profile descriptions.

<uri>

[none |
currentColor |
<color> [icc-color(<name>[,<icccolorvalue>]*)]

The <uri> is how you identify a paint server such as a gradient, a pattern or a custom paint defined by
an extension (see Extensibility). The <uri> provides the ID of the paint server (e.g., a gradient, pattern
or solid color) to be used to paint the current object. If the URI reference is not valid (e.g., it points to

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color

an object that doesn't exist or the object is not a valid paint server), then the paint method following
the <uri> (i.e., none | currentColor | <color> [icc-color(<name>[,<icccolorvalue>]*)]| inherit) is

used if provided; otherwise, the document is in error (see Error processing).

11.3 Fill Properties

fill'

Value: <paint> (See Specifying paint)
Initial: black

Appliesto: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

The 'fill' property paints the interior of the given graphical element. The area to be painted consists of any
areas inside the outline of the shape. To determine the inside of the shape, all subpaths are considered,
and the interior is determined according to the rules associated with the current value of the 'fill-rule’

property. The zero-width geometric outline of a shape is included in the area to be painted.

The fill operation fills open subpaths by performing the fill operation as if an additional "closepath" command
were added to the path to connect the last point of the subpath with the first point of the subpath. Thus, fill
operations apply to both open subpaths within 'path’ elements (i.e., subpaths without a closepath command)
and 'polyline’ elements.

fill-rule’
Value: nonzero | evenodd | inherit
Initial: nonzero
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

The *fill-rule’ property indicates the algorithm which is to be used to determine what parts of the canvas are
included inside the shape. For a simple, non-intersecting path, it is intuitively clear what region lies "inside";
however, for a more complex path, such as a path that intersects itself or where one subpath encloses
another, the interpretation of “inside" is not so obvious.

The *fill-rule’ property provides two options for how the inside of a shape is determined:

nonzero
This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to
infinity in any direction and then examining the places where a segment of the shape crosses the ray.
Starting with a count of zero, add one each time a path segment crosses the ray from left to right and
subtract one each time a path segment crosses the ray from right to left. After counting the crossings,
if the result is zero then the point is outside the path. Otherwise, it is inside. The following drawing

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

illustrates the nonzero rule:

View this example as SVG (SVG-enabled browsers only)

evenodd
This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to
infinity in any direction and counting the number of path segments from the given shape that the ray
crosses. If this number is odd, the point is inside; if even, the point is outside. The following drawing
illustrates the evenodd rule:

View this example as SVG (SVG-enabled browsers only)

(Note: the above explanations do not specify what to do if a path segment coincides with or is tangent to the
ray. Since any ray will do, one may simply choose a different ray that does not have such problem
intersections.)

'fill-opacity’
Value: <opacity-value> | inherit
Initial: 1
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

fill-opacity' specifies the opacity of the painting operation used to paint the interior the current object. (See
Painting shapes and text.)

<opacity-value>
The opacity of the painting operation used to fill the current object. Any values outside the range 0.0

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/painting/fillrule-nonzero.svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/painting/fillrule-evenodd.svg
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

(fully transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values which are

restricted to a particular range.)

Related properties: 'stroke-opacity' and 'opacity".

11.4 Stroke Properties

The following are the properties which affect how an element is stroked.

In all cases, all stroking properties which are affected by directionality, such as those having to do with dash
patterns, must be rendered such that the stroke operation starts at the same point at which the graphics
element starts. In particular, for '‘path' elements, the start of the path is the first point of the initial "moveto"

command.

For stroking properties such as dash patterns whose computations are dependent on progress along the
outline of the graphics element, distance calculations are required to utilize the SVG user agent's standard
Distance along a path algorithms.

When stroking is performed using a complex paint server, such as a gradient or a pattern, the stroke
operation must be identical to the result that would have occurred if the geometric shape defined by the
geometry of the current graphics element and its associated stroking properties were converted to an
equivalent 'path’ element and then filled using the given paint server.

'stroke’
Value: <paint> (See Specifying paint)
Initial: none
Applies to: shapes and text content elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

The 'stroke' property paints along the outline of the given graphical element.

A subpath (see Paths) consisting of a single moveto is not stroked. A subpath consisting of a moveto and
lineto to the same exact location or a subpath consisting of a moveto and a closepath will be stroked only if
the 'stroke-linecap' property is set to "round", producing a circle centered at the given point.

'stroke-width'

Value: <length> | inherit

Initial: 1

Applies to: shapes and text content elements
Inherited: yes

Percentages: Yes

Media: visual

Animatable: vyes

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

<length>
The width of the stroke on the current object. If a percentage is used, the value represents a

percentage of the current viewport. (See Units.)
A zero value causes no stroke to be painted. A negative value is an error (see Error processing).

'stroke-linecap'

Value: butt | round | square | inherit
Initial: butt

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

'stroke-linecap' specifies the shape to be used at the end of open subpaths when they are stroked.

butt

See drawing below.
round

See drawing below.
square

See drawing below.

‘butt’ cap ‘round’ cap 'square’ cap

View this example as SVG (SVG- and CSS-enabled browsers only)

'stroke-linejoin’

Value: miter | round | bevel | inherit
Initial: miter

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

'stroke-linejoin' specifies the shape to be used at the corners of paths or basic shapes when they are
stroked.

miter
See drawing below.

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/painting/linecap.svg
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

round

See drawing below.
bevel

See drawing below.

‘miter’ join ‘round’ join ‘bevel’ join

View this example as SVG (SVG- and CSS-enabled browsers only)

'stroke-miterlimit’

Value: <miterlimit> | inherit

Initial: 4

Appliesto: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

When two line segments meet at a sharp angle and miter joins have been specified for 'stroke-linejoin’, it is
possible for the miter to extend far beyond the thickness of the line stroking the path. The 'stroke-miterlimit'
imposes a limit on the ratio of the miter length to the 'stroke-width'. When the limit is exceeded, the join is
converted from a miter to a bevel.

<miterlimit>
The limit on the ratio of the miter length to the 'stroke-width'. The value of <miterlimit> must be a
number greater than or equal to 1. Any other value is an error (see Error processing).

The ratio of miter length (distance between the outer tip and the inner corner of the miter) to 'stroke-width' is
directly related to the angle (theta) between the segments in user space by the formula:

mterLength / stroke-width =1/ sin (theta/ 2)
For example, a miter limit of 1.414 converts miters to bevels for theta less than 90 degrees, a limit of 4.0

converts them for theta less than approximately 29 degrees, and a limit of 10.0 converts them for theta less
than approximately 11.5 degrees.

'stroke-dasharray’
Value: none | <dasharray> | inherit

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/painting/linejoin.svg
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Initial: none
Applies to: shapes and text content elements

Inherited: yes
Percentages: yes (see below)
Media: visual

Animatable: yes (non-additive)

'stroke-dasharray' controls the pattern of dashes and gaps used to stroke paths. <dasharray> contains a list
of comma-separated (with optional white space) <length>s that specify the lengths of alternating dashes
and gaps. If an odd number of values is provided, then the list of values is repeated to yield an even number
of values. Thus, stroke-dasharray: 5,3,2 is equivalent to stroke-dasharray: 5,3,2,5,3,2.

none
Indicates that no dashing is used. If stroked, the line is drawn solid.

<dasharray>
A list of comma-separated <length>'s (with optional white space), each of which can have a unit

identifier , including specification of a percentage. A percentage represents a distance as a
percentage of the current viewport. (See Units.) A negative <length> value is an error (see Error_
processing). If the sum of the <length>'s is zero, then the stroke is rendered as if a value of none
were specified.

'stroke-dashoffset’

Value: <length> | inherit

Initial: 0

Applies to: shapes and text content elements
Inherited: yes

Percentages: see prose

Media: visual

Animatable: yes

'stroke-dashoffset' specifies the distance into the dash pattern to start the dash.

<length>
If a percentage is used, the value represents a percentage of the current viewport

(See Units.)
Values can be negative.

'stroke-opacity"

Value: <opacity-value> | inherit

Initial: 1

Applies to: shapes and text content elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

'stroke-opacity' specifies the opacity of the painting operation used to stroke the current object. (See
Painting shapes and text.)

<opacity-value>
The opacity of the painting operation used to stroke the current object. Any values outside the range
0.0 (fully transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values which

are restricted to a particular range.)

Related properties: 'fill-opacity' and 'opacity'.

11.5 Controlling visibility

SVG uses two properties, 'display’ and 'visibility', to control the visibility of graphical elements or (in the
case of the 'display’ property) container elements.

The differences between the two properties are as follows:

. When applied to a container element, setting 'display’ to none causes the container and all of its
children to be invisible; thus, it acts on groups of elements as a group. 'visibility’, however, only
applies to individual graphics elements. Setting 'visibility' to hidden on a ‘g’ will make its children
invisible as long as the children do not specify their own 'visibility' properties as visible. Note that
'visibility' is not an inheritable property.

. When the 'display’ property is set to none, then the given element does not become part of the
rendering tree. With 'visibility' set to hidden, however, processing occurs as if the element were part
of the rendering tree and still taking up space, but not actually rendered onto the canvas. This
distinction has implications for the 'tspan’, 'tref' and 'altGlyph' elements, event processing, for
bounding box calculations and for calculation of clipping paths. If 'display’ is set to none on a 'tspan’,
‘tref' or 'altGlyph' element, then the text string is ignored for the purposes of text layout; however, if
'visibility' is set to hidden, the text string is used for text layout (i.e., it takes up space) even though it
is not rendered on the canvas. Regarding events, if 'display’ is set to none, the element receives no
events; however, if 'visibility' is set to hidden, the element might still receive events, depending on the
value of property 'pointer-events'. The geometry of a graphics element with 'display’ set to none is not
included in bounding box and clipping paths calculations; however, even if 'visibility' is to hidden, the
geometry of the graphics element still contributes to bounding box and clipping path calculations.

‘'display"

Value: inline | block | list-item |
run-in | compact | marker |
table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | none | inherit

Initial: inline

Applies to: 'svg', 'g’, 'switch’, 'a’, 'foreignObject’, graphics elements (including the 'text' element)
and text sub-elements (i.e., 'tspan’, 'tref', 'altGlyph', 'textPath")

Inherited: no

Percentages: N/A

Media: all

Animatable: yes

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

A value of display: none indicates that the given element and its children shall not be rendered directly (i.e.,
those elements are not present in the rendering tree). Any value other than none or inherit indicates that the
given element shall be rendered by the SVG user agent.

The 'display' property only affects the direct rendering of a given element, whereas it does not prevent
elements from being referenced by other elements. For example, setting display: none on a ‘path’ element
will prevent that element from getting rendered directly onto the canvas, but the 'path' element can still be
referenced by a 'textPath’' element; furthermore, its geometry will be used in text-on-a-path processing even
if the 'path’ has display: none.

The 'display' property affects direct rendering into offscreen canvases also, such as occurs with the
implementation model for masks. Thus, setting display: none on a child of a 'mask' will prevent the given
child element from being rendered as part of the mask. Similarly, setting display: none on a child of a
‘clipPath' element will prevent the given child element from contributing to the clipping path.

Elements with display: none do not take up space in text layout operations, do not receive events, and do
not contribute to bounding box and clipping paths calculations.

Except for any additional information provided in this specification, the normative definition is the CSS2
definition of the 'display' property.

'visibility'
Value: visible | hidden | collapse | inherit
Initial: visible

Applies to: graphics elements (including the 'text’ element) and text sub-elements (i.e., ‘tspan’,
'tref’, 'altGlyph’, 'textPath' and 'a’)

Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

visible
The current graphics element is visible.
hidden or collapse
The current graphics element is invisible (i.e., nothing is painted on the canvas).

Note that if the 'visibility' property is set to hidden on a 'tspan’, 'tref' or 'altGlyph' element, then the text is
invisible but still takes up space in text layout calculations.

Depending on the value of property 'pointer-events', graphics elements which have their 'visibility' property
set to hidden still might receive events.

Except for any additional information provided in this specification, the normative definition is the CSS2
definition of the 'visibility' property.

11.6 Markers

11.6.1 Introduction

http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-display
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-display
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-visibility
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-visibility

A marker is a symbol which is attached to one or more vertices of 'path’, 'line’, 'polyline' and 'polygon'

elements. Typically, markers are used to make arrowheads or polymarkers. Arrowheads can be defined by
attaching a marker to the start or end vertices of 'path’, 'line' or 'polyline' elements. Polymarkers can be

defined by attaching a marker to all vertices of a 'path’, 'line', 'polyline’ or 'polygon’ element.

The graphics for a marker are defined by a 'marker' element. To indicate that a particular 'marker' element
should be rendered at the vertices of a particular 'path’, 'line’, 'polyline' or 'polygon’' element, set one or more
marker properties (‘'marker’, 'marker-start’, 'marker-mid' or 'marker-end") to reference the given 'marker’
element.

Example Marker draws a triangular marker symbol as an arrowhead at the end of a path.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SV@ 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="4in" hei ght="2in"
vi ewBox="0 0 4000 2000" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >
<def s>
<mar ker id="Triangle"
viewBox="0 0 10 10" refX="0" refY="5"
mar ker Uni t s="str okeW dt h"
mar ker W dt h="4" mar ker Hei ght =" 3"
orient="auto">
<path d="M0 O L 10 5L 0 10 z" />

</ mar ker >

</ def s>

<rect x="10" y="10" w dt h="3980" hei ght="1980"
fill="none" stroke="blue" stroke-w dth="10" />

<desc>Pl| aci ng an arrowhead at the end of a path.

</ desc>

<path d="M 1000 750 L 2000 750 L 2500 1250"
fill="none" stroke="black" stroke-w dth="100"

mar ker -end="url (#Triangle)" />
</ svg>

Example Marker

View this example as SVG (SVG-enabled browsers only)

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/painting/marker.svg

Markers can be animated. The animated effects will show on all current uses of the markers within the
document.

11.6.2 The 'marker' element

The 'marker’ element defines the graphics that is to be used for drawing arrowheads or polymarkers on a
given 'path’, 'line', 'polyline’ or 'polygon’' element.

<IENTITY % SVG nar ker. el ement "I NCLUDE" >
<I'[¥8VG mar ker . el ement ; [
<IENTI TY % SVG. nmar ker . cont ent
"(%8VG Description.class; | %SVG Ani mation.class; %6VG Structure. cl ass;
%8VG Condi tional . class; %SVG | mage. cl ass; %8VG Styl e. cl ass;
%8VG Shape. cl ass; %SVG Text.cl ass; %SVG Marker.class; %8VG Profile. cl ass;
%8VG G adi ent. cl ass; %6VG Pattern. class; %8VG d i p.cl ass;
%8VG Mask. cl ass; %8VG Filter.class; %6VG Cursor. cl ass;
%8VG Hyperlink. class; %8VG Vi ew. cl ass; %VG Scri pt.cl ass;
%8VG Font . cl ass;)*"

>
<! ELEMENT %8VG nar ker . gnane; %SVG nar ker.content; >
<l-- end of SVG narker.elenment -->]]>

<IENTITY % SVG marker.attlist "|NCLUDE" >
<I[¥%SVG marker.attlist;[
<I ATTLI ST ¥%8VG mar ker . gnane;

%SVG Core. attrib;

Y8VG Style.attrib;

%SVG Presentation. attrib;

%SVG External . attrib;

ref X %Coor di nat e. dat at ype; #l MPLI ED
refY % Coordi nat e. dat at ype; #| VPLI ED

markerUnits (strokeWdth | userSpaceOnUse) #l MPLI ED
mar ker Wdth % .engt h. dat at ype; #l MPLI ED

mar ker Hei ght %.engt h. dat at ype; #l MPLI ED

ori ent CDATA #l MPLI ED
vi ewBox /i ewBoxSpec. dat at ype; #l MPLI ED
preserveAspect Rati o %°r eser veAspect Rati oSpec. dat atype; 'xM dYM d neet'

Attribute definitions:

mar ker Uni t s = "strokeWidth | userSpaceOnUse"
Defines the coordinate system for attributes markerWidth, markerHeight and the contents of the
'marker’.
If markerUnits="strokeWidth", markerWidth, markerHeight and the contents of the 'marker' represent
values in a coordinate system which has a single unit equal the size in user units of the current stroke
width (see the 'stroke-width' property) in place for the graphic object referencing the marker.
If markerUnits="userSpaceOnUse", markerWidth, markerHeight and the contents of the 'marker’

represent values in the current user coordinate system in place for the graphic object referencing the
marker (i.e., the user coordinate system for the element referencing the 'marker' element via a
'marker’, 'marker-start', 'marker-mid' or 'marker-end' property).

If attribute markerUnits is not specified, then the effect is as if a value of strokeWidth were specified.
Animatable: yes.

ref X="<coordinate>"
The x-axis coordinate of the reference point which is to be aligned exactly at the marker position. The
coordinate is defined in the coordinate system after application of the viewBox and
preserveAspectRatio attributes.

If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.

ref Y ="<coordinate>"
The y-axis coordinate of the reference point which is to be aligned exactly at the marker position. The
coordinate is defined in the coordinate system after application of the viewBox and
preserveAspectRatio attributes.

If the attribute is not specified, the effect is as if a value of "0" were specified.
Animatable: yes.
mar ker W dt h = "<length>"
Represents the width of the viewport into which the marker is to be fitted when it is rendered.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "3" were specified.
Animatable: yes.
mar ker Hei ght ="<length>"
Represents the height of the viewport into which the marker is to be fitted when it is rendered.
A negative value is an error (see Error processing). A value of zero disables rendering of the element.
If the attribute is not specified, the effect is as if a value of "3" were specified.
Animatable: yes.
ori ent ="auto | <angle>"

Indicates how the marker is rotated.

A value of auto indicates that the marker is oriented such that its positive x-axis is pointing as follows:
(a) if there is a path segment coming into the vertex and another path segment going out of the
vertex, the marker's positive x-axis should point toward the angle bisector for the angle at the given
vertex, where that angle has one side consisting of tangent vector for the path segment going into the
vertex and the other side the tangent vector for the path segment going out of the vertex (note: if the
tangent vectors are the same, the angle bisector equals the two tangent vectors), (b) if there is only a
path segment going into the vertex (e.g., the last vertex on an open path), the marker's positive x-axis
should point in the same direction as the tangent vector for the path segment going into the vertex,
(c) if there is only a path segment going out of the vertex (e.g., the first vertex on an open path), the
marker's positive x-axis should point in the same direction as the tangent vector for the path segment
going out of the vertex. (Refer to 'path' element implementation notes for a more thorough discussion
of the directionality of path segments.)

In all cases for closed subpaths (e.g., subpaths which end with a 'closepath’' command), the

orientation of the marker corresponding to the initial point of the subpath is calculated assuming that:
o the path segment going into the vertex is the path segment corresponding to the closepath
o the path segment coming out of the vertex is the first path segment in the subpath

When a 'closepath’ command is followed by a command other than a 'moveto’ command, then the
orientation of the marker corresponding to the 'closepath’' command is calculated assuming that:
o the path segment going into the vertex is the path segment corresponding to the closepath

o the path segment coming out of the vertex is the first path segment of the subsequent subpath

A value of <angle> represents a particular orientation in the user space of the graphic object
referencing the marker. For example, if a value of "0" is given, then the marker will be drawn such
that its x-axis will align with the x-axis of the user space of the graphic object referencing the marker.
If the attribute is not specified, the effect is as if a value of "0" were specified.

Animatable: yes (non-additive, 'set' and 'animate' elements only).

Markers are drawn such that their reference point (i.e., attributes refX and refY) is positioned at the given
vertex. In other words, a translation transformation is constructed by the user agent to achieve the effect of
having point (refX and refY) within the marker content's coordinate system (after any transformations due to
the viewBox and preserveAspectRatio attributes) align exactly with the given vertex.

SVG's user agent style sheet sets the 'overflow' property for ‘'marker' elements to hidden, which causes a
rectangular clipping path to be created at the bounds of the marker tile. Unless the 'overflow' property is
overridden, any graphics within the marker which goes outside of the marker rectangle will be clipped.

The contents of the 'marker' are relative to a new coordinate system. Attribute markerUnits determines an
initial scale factor for transforming the graphics in the marker into the user coordinate system for the
referencing element. An additional set of transformations might occur if there is a viewBox attribute, in which
case the coordinate system for the contents of the 'marker' will be transformed due to the processing of
attributes viewBox and preserveAspectRatio. If there is no viewBox attribute, then the assumed default value
for the the viewBox attribute has the origin of the viewBox coincident with the origin of the viewport and the
width/height of the viewBox the same as the width/height of the viewport.

Properties inherit into the 'marker' element from its ancestors; properties do not inherit from the element
referencing the 'marker' element.

'marker' elements are never rendered directly; their only usage is as something that can be referenced using
the 'marker’, 'marker-start', 'marker-end' and 'marker-mid’ properties. The 'display' property does not apply to
the 'marker' element; thus, 'marker’ elements are not directly rendered even if the 'display’ property is set to
a value other than none, and 'marker’ elements are available for referencing even when the 'display’
property on the 'marker' element or any of its ancestors is set to none.

Event attributes and event listeners attached to the contents of a ‘'marker' element are not processed; only
the rendering aspects of 'marker' elements are processed.

11.6.3 Marker properties

'marker-start' defines the arrowhead or polymarker that shall be drawn at the first vertex of the given 'path’
element or basic shape. 'marker-end' defines the arrowhead or polymarker that shall be drawn at the final
vertex. 'marker-mid' defines the arrowhead or polymarker that shall be drawn at every other vertex (i.e.,
every vertex except the first and last). Note that for a 'path’ element which ends with a closed sub-path, the
last vertex is the same as the initial vertex on the given sub-path. In this case, if 'marker-end' does not equal
none, then it is possible that two markers will be rendered on the given vertex. One way to prevent this is to
set 'marker-end' to none. (Note that the same comment applies to ‘polygon’ elements.)

'marker-start', ‘'marker-end’, marker-mid'

Value: none |

inherit |
<uri>
Initial: none
Applies to: '‘path’, 'line', 'polyline' and 'polygon' elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

none

Indicates that no marker symbol shall be drawn at the given vertex (vertices).
<uri>

The <uri> is a URI reference to the 'marker' element which shall be used as the arrowhead symbol or
polymarker at the given vertex or vertices. If the URI reference is not valid (e.g., it points to an object
that is undefined or the object is not a 'marker' element), then the marker(s) shall not be drawn.

The 'marker’ property specifies the marker symbol that shall be used for all points on the sets the value for
all vertices on the given 'path' element or basic shape. It is a short-hand for the three individual marker
properties:

‘marker’
Value: see individual properties
Initial: see individual properties
Applies to: '‘path’, 'line', 'polyline’ and 'polygon’ elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

11.6.4 Details on how markers are rendered
Markers are drawn after the given object is filled and stroked.

For each marker that is drawn, a temporary new user coordinate system is established so that the marker
will be positioned and sized correctly, as follows:

. The axes of the temporary new user coordinate system are aligned according to the orient attribute
on the 'marker' element and the slope of the curve at the given vertex. (Note: if there is a discontinuity
at a vertex, the slope is the average of the slopes of the two segments of the curve that join at the
given vertex. If a slope cannot be determined, the slope is assumed to be zero.)

. Atemporary new coordinate system is established by attribute markerUnits. If markerUnits equals
strokeWidth, then the temporary new user coordinate system is the result of scaling the current user
coordinate system by the current value of property 'stroke-width'. If markerUnits equals
userSpaceOnUse, then no extra scale transformation is applied.

. An additional set of transformations might occur if the 'marker' element includes a viewBox attribute,
in which case additional transformations are set up to produce the necessary result due to attributes
viewBox and preserveAspectRatio.

. Ifthe 'overflow' property on the 'marker' element indicates that the marker needs to be clipped to its

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

viewport, then an implicit clipping path is established at the bounds of the viewport.

The rendering effect of a marker is as if the contents of the referenced 'marker' element were deeply cloned

into a separate non-exposed DOM tree for each instance of the marker. Because the cloned DOM tree is
non-exposed, the SVG DOM does not show the cloned instance of the marker.

For user agents that support Styling with CSS, the conceptual deep cloning of the referenced 'marker’
element into a non-exposed DOM tree also copies any property values resulting from the CSS cascade
[CSS2-CASCADE] and property inheritance on the referenced element and its contents. CSS2 selectors
can be applied to the original (i.e., referenced) elements because they are part of the formal document
structure. CSS2 selectors cannot be applied to the (conceptually) cloned DOM tree because its contents are
not part of the formal document structure.

For illustrative purposes, we'll repeat the marker example shown earlier:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
"http://ww.w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="4in" hei ght="2in"
vi ewBox="0 0 4000 2000" version="1.1"
xm ns="http://ww. w3. org/ 2000/ svg" >
<def s>
<mar ker id="Triangle"
vi ewBox="0 0 10 10" refX="0" refY="5"
mar ker Uni t s="st r okeW dt h"
mar ker W dt h="4" mar ker Hei ght =" 3"
ori ent="aut o">
<path d="M O O L 105 L 0 10 z" />

</ mar ker >

</ def s>

<rect x="10" y="10" wi dt h="3980" hei ght ="1980"
fill="none" stroke="blue" stroke-w dth="10" />

<desc>Pl aci ng an arrowhead at the end of a path.

</ desc>

<path d="M 1000 750 L 2000 750 L 2500 1250"
fill="none" stroke="black" stroke-w dth="100"

mar ker-end="url (#Triangle)" />
</ svg>

The rendering effect of the above file will be visually identical to the following:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 1. 1//EN'
"http://ww. w3. org/ G aphi cs/ SVGE 1. 1/ DTD/ svgll. dtd" >
<svg wi dt h="4in" hei ght="2in"
vi ewBox="0 0 4000 2000" version="1.1"
xm ns="http://ww. w3. or g/ 2000/ svg" >

<desc>Fi |l e which produces the sane effect
as the marker exanple file, but w thout
usi ng narkers.

</ desc>
<rect x="10" y="10" w dt h="3980" hei ght="1980"
fill="none" stroke="blue" stroke-w dth="10" />
<l-- The path draws as before, but w thout the marker properties -->

<path d="M 1000 750 L 2000 750 L 2500 1250"

http://www.w3.org/TR/REC-CSS2/cascade.html

fill="none" stroke="black" stroke-w dt h="100" />

<I-- The following |ogic sinmulates drawing a marker
at final vertex of the path. -->
<l-- First off, nove the origin of the user coordinate system
so that the origin is now aligned with the end point of the path. -->

<g transforn="transl at e(2500, 1250)" >

<I-- Rotate the coordi nate system 45 degrees because
the marker specified orient="auto" and the final segnent
of the path is going in the direction of 45 degrees. -->

<g transform="rotate(45)" >

<l-- Scale the coordinate systemto match the coordi nate system

indicated by the 'markerUnits' attributes, which in this case has

a val ue of 'strokeWdth'. Therefore, scale the coordinate system

by the current value of the 'stroke-width' property, which is 100. -->
<g transforne"scal e(100)" >

<l-- Translate the coordi nate system by
(-ref X*vi ewBoxToMar ker Uni t sScal eX, -ref Y*vi ewBoxToMar ker Uni t sScal eY)
in order that (refX refY) within the marker will align with the

vertex.
In this case, we use the default value for preserveAspectRatio
("xMdYMd neet'), which neans find a uniformscale factor
(i.e., viewBoxToMarker UnitsScal eX=vi enBoxToMar ker Uni t sScal eY)
such that the viewBox fits entirely within the viewport ('nmeet') and
is center-aligned ("xMdYMd'). In this case, the uniformscale factor
i s mar ker Hei ght/vi ewBoxHei ght =3/ 10=. 3. Therefore, translate by
(-refX*.3,-refY*.3)=(0*.3,-5*.3)=(0,-1.5). -->

<g transform="translate(0,-1.5)" >

<l-- There is an inplicit clipping path because the user agent style
sheet says that the 'overflow property for markers has the val ue
"hidden'. To achieve this, create a clipping path at the bounds
of the viewport. Note that in this case the viewport extends
0.5 units to the left and right of the viewBox due to
a uniformscale factor, different ratios for

mar ker W dt h/ vi enBoxW dt h

and mar ker Hei ght/ vi ewBoxHei ght, and 'xM dyM d' alignnent -->

<clipPath id="cpl" >

<rect x="-0.5" y="0" w dth="4" height="3" />
</ cli pPat h>
<g clip-path="url (#cpl)" >

<l-- Scal e the coordinate system by the uniformscal e factor
mar ker Hei ght / vi ewBoxHei ght =3/ 10=.3 to set the coordi nate
systemto viewBox units. -->

<g transform="scale(.3)" >

<l-- This 'g' elenment carries all property values that result from
cascadi ng and inheritance of properties on the original 'marker'
el ement .
In this exanple, neither fill nor stroke was specified on the
"mar ker'
el ement or any ancestors of the "marker', so the initial values
of

"bl ack™ and "none" are used, respectively. -->
<g fill="black" stroke="none" >

<l-- Expand out the contents of the 'narker' elenent. -->
<path d="M O O L 105 L 0 10 z" />
</ g>
</ g>
</ g>
</ g>
</ g>
</ g>
</ g>
</ svg>

View this example as SVG (SVG-enabled browsers only)

11.7 Rendering properties

11.7.1 Color interpolation properties: 'color-interpolation' and 'color-interpolation-filters'

The SVG user agent performs color interpolations and compositing at various points as it processes SVG
content. Two properties, 'color-interpolation' and 'color-interpolation-filters', control which color space is
used for particular categories of graphics operations. The following table shows which property applies to
which graphics operations:

]Graphics operation]Corresponding property
’interpolating between gradient stops (see Gradient) "color-interpolation’
I

’interpolating color when performing color animations(see 'animateColor') |'color-interpolation'
I

!alpha compositing of graphics elements into the current background |'co|or-interpo|ation'
I

’filter effects |'co|0r—interpolation—filters'
I

Both properties choose between color operations occurring in the sSRGB color space or in a (light energy
linear) linearized RGB color space.

The conversion formulas between the SRGB color space (i.e., nonlinear with 2.2 gamma curve) and the
linearized RGB color space (i.e., color values expressed as sRGB tristimulus values without a gamma
curve) can be found in [SRGB]. For illustrative purposes, the following formula shows the conversion from

SRGB to linearized RGB:

R[SRGB] = R[SRGB-8bit] / 255
g sRGB] = G sRGB-8hit] / 255
B[sRGB] = B[sRGB-8bit] / 255

If R[SRGB], G sRGB], B[SRGB] <= 0.04045

R linearRGB] = R sREB] / 12.92
glinearREB] = sRE / 12.92
B[linearRGB] = B[sRGB] / 12.92

else if RIsRGE], JsRGEB], B[sRGE] > 0.04045

Rl linearRG] = ((RsR&B] + 0.055) / 1.055) ~ 2.4
JlinearR&B] = ((sRG] + 0.055) / 1.055) ~ 2.4
B[linearRGB] = ((B[sRG&] + 0.055) / 1.055) ~ 2.4

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/painting/marker-simulated.svg
http://www.iec.ch/nr1899.htm
http://www.iec.ch/nr1899.htm

R Ii near RGB- 8bi t]
J | i near RGB- 8bi t]
B[| i near RGB- 8bi t]

R Ii near RGB] * 255
dlinearRGB] * 255
B[l i near RGB] * 255

Out-of-range color values, if supported by the user agent, also are converted using the above formulas.
(See Clamping values which are restricted to a particular range.)

‘color-interpolation’

Value: auto | SRGB | linearRGB | inherit

Initial: sRGB

Applies to: container elements, graphics elements and 'animateColor’
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto

Indicates that the user agent can choose either the SRGB or linearRGB spaces for color
interpolation. This option indicates that the author doesn't require that color interpolation occur in a
particular color space.

sRGB

Indicates that color interpolation should occur in the SRGB color space.
linearRGB

Indicates that color interpolation should occur in the linearized RGB color space as described above.

The 'color-interpolation' property specifies the color space for gradient interpolations, color animations and
alpha compositing.

When a child element is blended into a background, the value of the 'color-interpolation' property on the
child determines the type of blending, not the value of the 'color-interpolation' on the parent. For gradients
which make use of the xlink:href attribute to reference another gradient, the gradient uses the 'color-
interpolation' property value from the gradient element which is directly referenced by the 'fill' or 'stroke’

property. When animating colors, color interpolation is performed according to the value of the 'color-
interpolation' property on the element being animated.

‘color-interpolation-filters'

Value: auto | SRGB | linearRGB | inherit
Initial: linearRGB

Applies to: filter primitives

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto

Indicates that the user agent can choose either the SRGB or linearRGB spaces for filter effects color
operations. This option indicates that the author doesn't require that color operations occur in a
particular color space.

sRGB

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Indicates that filter effects color operations should occur in the sSRGB color space.
linearRGB

Indicates that filter effects color operations should occur in the linearized RGB color space.

The 'color-interpolation-filters' property specifies the color space for imaging operations performed via filter
effects.

Note that 'color-interpolation-filters' has a different initial value than 'color-interpolation'. 'color-interpolation-
filters' has an initial value of linearRGB, whereas 'color-interpolation' has an initial value of sRGB. Thus, in
the default case, filter effects operations occur in the linearRGB color space, whereas all other color
interpolations occur by default in the sSRGB color space.

11.7.2 The 'color-rendering' property

The creator of SVG content might want to provide a hint to the implementation about how to make speed vs.
quality tradeoffs as it performs color interpolation and compositing. The 'color-rendering' property provides a
hint to the SVG user agent about how to optimize its color interpolation and compositing operations.

‘color-rendering' takes precedence over 'color-interpolation-filters'. For example, assume 'color-
rendering:optimizeSpeed' and 'color-interpolation-filters:linearRGB'. In this case, the SVG user agent should
perform color operations in a way that optimizes performance, which might mean sacrificing the color
interpolation precision as specified by 'color-interpolation-filters:linearRGB'.

‘color-rendering'

Value: auto | optimizeSpeed | optimizeQuality | inherit

Initial: auto

Applies to: container elements, graphics elements and 'animateColor'
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but
guality shall be given more importance than speed.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over quality. For RGB display devices,
this option will sometimes cause the user agent to perform color interpolation and compositing in the
device RGB color space.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed.

11.7.3 The 'shape-rendering' property

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make
as it renders vector graphics elements such as 'path' elements and basic shapes such as circles and
rectangles. The 'shape-rendering' property provides these hints.

‘shape-rendering’

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Value: auto | optimizeSpeed | crispEdges |
geometricPrecision | inherit

Initial: auto
Applies to: shapes
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed, crisp edges and
geometric precision, but with geometric precision given more importance than speed and crisp edges.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over geometric precision and crisp
edges. This option will sometimes cause the user agent to turn off shape anti-aliasing.

crispEdges
Indicates that the user agent shall attempt to emphasize the contrast between clean edges of artwork
over rendering speed and geometric precision. To achieve crisp edges, the user agent might turn off
anti-aliasing for all lines and curves or possibly just for straight lines which are close to vertical or
horizontal. Also, the user agent might adjust line positions and line widths to align edges with device
pixels.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over speed and crisp edges.

11.7.4 The 'text-rendering' property

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make
as it renders text. The 'text-rendering' property provides these hints.

'text-rendering'

Value: auto | optimizeSpeed | optimizeLegibility |
geometricPrecision | inherit

Initial: auto

Applies to: 'text’ elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed, legibility and
geometric precision, but with legibility given more importance than speed and geometric precision.
optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over legibility and geometric precision.
This option will sometimes cause the user agent to turn off text anti-aliasing.
optimizeLegibility
Indicates that the user agent shall emphasize legibility over rendering speed and geometric precision.
The user agent will often choose whether to apply anti-aliasing techniques, built-in font hinting or both
to produce the most legible text.
geometricPrecision
Indicates that the user agent shall emphasize geometric precision over legibility and rendering speed.

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

This option will usually cause the user agent to suspend the use of hinting so that glyph outlines are
drawn with comparable geometric precision to the rendering of path data.

11.7.5 The 'image-rendering' property

The creator of SVG content might want to provide a hint to the implementation about how to make speed vs.
quality tradeoffs as it performs image processing. The 'image-rendering' property provides a hint to the SVG
user agent about how to optimize its image rendering.:

'image-rendering’

Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto

Applies to: images

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but
quality shall be given more importance than speed. The user agent shall employ a resampling
algorithm at least as good as nearest neighbor resampling, but bilinear resampling is strongly
preferred. For Conforming High-Quality SVG Viewers, the user agent shall employ a resampling
algorithm at least as good as bilinear resampling.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed. The user agent shall
employ a resampling algorithm at least as good as bilinear resampling.

optimizeSpeed
Indicates that the user agent shall emphasize rendering speed over quality. The user agent should
use a resampling algorithm which achieves the goal of fast rendering, with the requirement that the
resampling algorithm shall be at least as good as nearest neighbor resampling. If performance goals
can be achieved with higher quality algorithms, then the user agent should use the higher quality
algorithms instead of nearest neighbor resampling.

In all cases, resampling must be done in a truecolor (e.g., 24-bit) color space even if the original data and/or
the target device is indexed color.

11.8 Inheritance of painting properties

The values of any of the painting properties described in this chapter can be inherited from a given object's
parent. Painting, however, is always done on each graphics element individually, never at the container

element (e.g., a'g’) level. Thus, for the following SVG, even though the gradient fill is specified on the 'g’,
the gradient is simply inherited through the 'g' element down into each rectangle, each of which is rendered
such that its interior is painted with the gradient.

Example Inheritance

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN"
"http://ww. w3. org/ G aphi cs/ SVE 1. 1/ DTD/ svgll. dtd" >

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

<svg wi dt h="7cni hei ght="2cn vi ewBox="0 0 700 200"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<desc>Gradi ents apply to | eaf nodes
</ desc>
<g>
<def s>
<linearGadient id="MyG adient" gradi ent Units="o0bjectBoundi ngBox">
<stop of fset="0% stop-col or="#F60" />
<stop of fset="100% stop-col or="#FF6" />
</linear G adi ent >

</ def s>
<rect x="1" y="1" w dt h="698" hei ght="198"
fill="none" stroke="blue" stroke-w dth="2" />
<g fill="url (#WG adient)" >
<rect x="100" y="50" w dth="200" hei ght="100"/>
<rect x="400" y="50" w dt h="200" hei ght="100"/>
</ g>
</ g>
</ svg>

Example Inheritance

View this example as SVG (SVG-enabled browsers only)

Any painting properties defined in terms of the object's bounding box use the bounding box of the graphics
element to which the operation applies. Note that text elements are defined such that any painting
operations defined in terms of the object's bounding box use the bounding box of the entire 'text’ element.
(See the discussion of object bounding box units and text elements.)

11.9 Paint Attribute Module

The Paint Attribute Module defines the PaintPresentationAttrs attribute set.

]Collection Name]Attributes in Collection

color, fill, fill-rule, stroke, stroke-dasharray stroke-dashoffset, stroke-linecap, stroke-

PaintPresentationAttrs linejoin, stroke-miterlimit, stroke-width, color-interpolation, color-rendering

11.10 Opacity Attribute Module

The Opacity Attribute Module defines the OpacityPresentationAttrs attribute set.

http://www.w3.org/2000/svg
file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/painting/inheritance.svg

|Co||ection Name]Attributes in Collection

|OpacityPresentationAttrs lopacity, stroke-opacity, fill-opacity

11.11 Graphics Attribute Module

The Graphics Attribute Module defines the GraphicsPresentationAttrs attribute set.

|Co||ection Name |Attributes in Collection

GraphicsPresentationAttrs

display, image-rendering, pointer-events, shape-rendering, text-rendering,
visibility

11.12 Basic Graphics Attribute Module

The Basic Graphics Attribute Module defines the GraphicsPresentationAttrs attribute set.

|Co||ection Name |Attributes in Collection

|GraphicsPresentationAttrs |disp|ay, visibility

11.13 Marker Module

]Elements]Attributes

]Content Model

marker

orient

StdAttrs, ExternalResourcesRequiredAttrs, StyleAttrs,
PresentationAttrsAll, viewBox, preserveAspectRatio,
refX, refY, markerUnits, markerWidth, markerHeight,

(DescriptionElements |
StructureElements |
GraphicalElements | TextElements |
ImageElements | ViewElements |
ConditionalElements |
HyperlinkingElements |
ScriptElements | ClipElements |
MaskElements | GradientElements |
PatternElements | FilterElements |
CursorElements | FontElements |
ColorElements |
AnimationElements)*

11.13.1 Marker Content Set

The Marker Module defines the MarkerElements content set.

]Content Set Name]Elements in Content Set

|MarkerEIements]marker

11.13.2 Marker Attribute Set

The Marker Module defines the MarkerPresentationAttrs attribute set.

|Co||ection Name |Attributes in Collection

’MarkerPresentationAttrs ’marker-start, marker-mid, marker-end

11.14 DOM interfaces

The following interfaces are defined below: SVGPaint, SVGMarkerElement.

Interface SVGPaint

The SVGPaint interface corresponds to basic type <paint> and represents the values of properties 'fill' and
'stroke’.

IDL Definition

i nterface SVGPai nt : SVGCol or {
/] Paint Types

const unsigned short SVG PAI NTTYPE_ UNKNOWN = 0;

const unsi gned short SVG PAlI NTTYPE RGBCOLOR = 1;

const unsi gned short SVG PAI NTTYPE RGBCOLOR | CCCOLOR = 2;

const unsigned short SVG PAI NTTYPE_NONE = 101;
const unsi gned short SVG PAI NTTYPE CURRENTCOLOR = 102;
const unsi gned short SVG PAI NTTYPE URI NONE = 103;
const unsigned short SVG PAI NTTYPE URI _CURRENTCOLOR = 104;
const unsi gned short SVG PAI NTTYPE URI RGBCOLOR = 105;
const unsi gned short SVG PAI NTTYPE URI RGBCOLOR | CCCOLOR = 106;
const unsigned short SVG PAI NTTYPE_ URI = 107;

readonly attribute unsigned short paintType;
readonly attribute DOVStri ng uri;

void setUri (in DOVBtring uri);
voi d setPaint (in unsigned short paintType, in DOVBtring uri, in DOVString
rgbCol or, in DOVString iccColor)
rai ses(SVCGException);
3

Definition group Paint Types
Defined constants
SVG_PAINTTYPE_UNKNOWN The paint type is not one of predefined
types. It is invalid to attempt to define a
new value of this type or to attempt to
switch an existing value to this type.

SVG_PAINTTYPE_RGBCOLOR An sRGB color has been specified
without an alternative ICC color
specification.

SVG_PAINTTYPE_RGBCOLOR_ICCCOLOR An sRGB color has been specified along
with an alternative ICC color
specification.

SVG_PAINTTYPE_NONE Corresponds to a 'none' value on a
<paint> specification.

SVG_PAINTTYPE_CURRENTCOLOR Corresponds to a 'currentColor' value on
a <paint> specification.

SVG_PAINTTYPE_URI_NONE A URI has been specified, along with an

explicit 'none' as the backup paint
method in case the URI is unavailable or
invalid.

SVG_PAINTTYPE_URI_CURRENTCOLOR A URI has been specified, along with
‘currentColor' as the backup paint method
in case the URI is unavailable or invalid.

SVG_PAINTTYPE_URI RGBCOLOR A URI has been specified, along with an
sSRGB color as the backup paint method
in case the URI is unavailable or invalid.

SVG_PAINTTYPE_URI_RGBCOLOR_ICCCOLOR A URI has been specified, along with
both an sRGB color and alternate ICC
color as the backup paint method in case
the URI is unavailable or invalid.

SVG_PAINTTYPE_URI Only a URI has been specified.

Attributes
readonly unsigned short paintType
The type of paint, identified by one of the constants above.
readonly DOMString uri
When the paintType specifies a URI, this attribute holds the URI string. When the paintType
does not specify a URI, this attribute is null.
Methods
setUri
Sets the paintType to SVG_PAINTTYPE_URI_NONE and sets uri to the specified value.
Parameters

in DOMString uri The URI for the desired paint server.

No Return Value
No Exceptions

setPaint
Sets the paintType as specified by the parameters. If pai nt Type requires a URI, then ur i
must be non-null and a valid string; otherwise, uri must be null. If pai nt Type requires an
RGBColor, then r gbCol or must be a valid RGBColor object; otherwise, r gbCol or must be
null. If pai nt Type requires an SVGICCColor, then i ccCol or must be a valid SVGICCColor
object; otherwise, i ccCol or must be null.

Parameters
in unsigned short paintType One of the defined constants for paintType.
in DOMString uri The URI for the desired paint server, or null.
in DOMString rgbColor The specification of an SRGB color, or null.

in DOMString iccColor The specification of an ICC color, or null.

No Return Value
Exceptions

SVGException SVG_INVALID_VALUE_ERR: Raised if one of the parameters has an
invalid value.

Interface SVGMarkerElement

The SVGMarkerElement interface corresponds to the ‘'marker’ element.

IDL Definition

i nterface SVGvarker El ement
SVGEl enent ,
SVG@.angSpace,
SVGEXt er nal Resour cesRequi r ed,
SVGSt yl abl e,
SVGFi t ToVi ewBox {

[l Marker Unit Types

const unsigned short SVG MARKERUNI TS UNKNOWN

const unsi gned short SVG MARKERUNI TS USERSPACEONUSE
const unsi gned short SVG MARKERUNI TS STROKEW DTH

/1 Marker Orientation Types

const unsi gned short SVG MARKER ORI ENT _UNKNOMW
const unsigned short SVG MARKER ORI ENT_AUTO

const unsi gned short SVG MARKER ORI ENT_ANGLE

||
-

I

readonly attribute SVGAni mat edLengt h ref X;
readonly attribute SVGAni mat edLength refy;
readonly attribute SVGAni nat edEnunerati on markerUnits;
readonly attri bute SVGAni mat edLengt h mar ker W dt h;
readonly attribute SVGAni mat edLengt h mar ker Hei ght ;
readonly attribute SVGAni nat edEnunerati on orient Type;
readonly attri bute SVGAni mat edAngl e ori ent Angl e;

void setOrient ToAuto ();
voi d setOrient ToAngle (in SVGAngl e angle);

Definition group Marker Unit Types
Defined constants
SVG_MARKERUNITS _UNKNOWN The marker unit type is not one of predefined
types. It is invalid to attempt to define a new
value of this type or to attempt to switch an
existing value to this type.

SVG_MARKERUNITS_USERSPACEONUSE The value of attribute markerUnits is
'userSpaceOnUse'.

SVG_MARKERUNITS _STROKEWIDTH The value of attribute markerUnits is
'strokeWidth'.

Definition group Marker Orientation Types
Defined constants

SVG_MARKER_ORIENT_UNKNOWN The marker orientation is not one of predefined types.
It is invalid to attempt to define a new value of this
type or to attempt to switch an existing value to this

type.
SVG_MARKER_ORIENT_AUTO Attribute orient has value 'auto’.
SVG_MARKER_ORIENT_ANGLE Attribute orient has an angle value.

Attributes

readonly SVGAnimatedLength refX
Corresponds to attribute refX on the given 'marker' element.

readonly SVGAnimatedLength refY
Corresponds to attribute refY on the given 'marker' element.

readonly SVGAnimatedEnumeration markerUnits
Corresponds to attribute markerUnits on the given 'marker' element. One of the Marker Units
Types defined above.

readonly SVGAnimatedLength markerWidth
Corresponds to attribute markerwidth on the given ‘marker' element.

readonly SVGAnimatedLength markerHeight
Corresponds to attribute markerHeight on the given 'marker' element.

readonly SVGAnimatedEnumeration orientType
Corresponds to attribute orient on the given 'marker’ element. One of the Marker Orientation
Types defined above.

readonly SVGAnimatedAngle orientAngle
Corresponds to attribute orient on the given 'marker' element. If markerUnits is
SVG_MARKER_ORIENT_ANGLE, the angle value for attribute orient; otherwise, it will be set
to zero.

Methods

setOrientToAuto
Sets the value of attribute orient to 'auto’.
No Parameters
No Return Value
No Exceptions

setOrientToAngle
Sets the value of attribute orient to the given angle.
Parameters

in SVGANngle angle The angle value to use for attribute orient.

No Return Value
No Exceptions

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

12 Color

Contents

. 12.1 Introduction
. 12.2 The 'color' property
. 12.3 Color profile descriptions
o 12.3.1 Overview of color profile descriptions
o 12.3.2 Alternative ways for defining a color profile description
o 12.3.3 The 'color-profile’ element
o 12.3.4 @color-profile when using CSS styling
o 12.3.5 'color-profile' property
. 12.4 Color Profile Module
. 12.5 DOM interfaces

c
S
L
4%}
o
=
@
E
=
o
O
@
(4’
7
-+
©
=
o
=
s
&)
)
R
=

12.1 Introduction

All SVG colors are specified in the sRGB color space (see [SRGB]). At a minimum, SVG user
agents shall conform to the color behavior requirements specified in the color units section and
the minimal gamma correction rules defined in the CSS2 specification.

Additionally, SVG content can specify an alternate color specification using an ICC profile (see
[ICC32]). If ICC-based colors are provided and the SVG user agent supports ICC color, then the
ICC-based color takes precedence over the SRGB color specification. Note that color
interpolation occurs in an RGB color space even if an ICC-based color specification is provided
(see 'color-interpolation').

12.2 The 'color' property

The 'color’ property is used to provide a potential indirect value (currentColor) for the 'fill', 'stroke’,
'stop-color', 'flood-color’, 'lighting-color' properties.

‘color’
Value: <color> | inherit

http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/syndata.html#color-units
http://www.w3.org/TR/REC-CSS2/colors.html#gamma-correction
http://www.color.org/ICC-1A_1999-04.PDF
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit

Initial: depends on user agent
Applies to: elements to which properties 'fill', 'stroke’, 'stop-color', 'flood-color’, 'lighting-

color' apply
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

Except for any additional information provided in this specification, the normative definition of the
property is in [CSS2].

12.3 Color profile descriptions

12.3.1 Overview of color profile descriptions

The International Color Consortium has established a standard, the ICC Profile [ICC32], for

documenting the color characteristics of input and output devices. Using these profiles, it is
possible to build a transform and correct visual data for viewing on different devices.

A color profile description provides the bridge between an ICC profile and references to that
ICC profile within SVG content. The color profile description is added to the user agent's list of
known color profiles and then used to select the relevant profile. The color profile description
contains descriptors for the location of the color profile on the Web, a name to reference the
profile and information about rendering intent.

12.3.2 Alternative ways for defining a color profile description

Color profile descriptions can be specified in either of the following ways:

. a'color-profile’ element
. an @color-profile rule within a CSS style sheet (only applicable for user agents which

support using CSS [CSS2] to style the SVG content)

If a color profile with the same name value has been identified by both a 'color-profile’ element
and @color-profile rules within a CSS style sheet, then the user agent shall first attempt to locate
the profile by using the specifications in the @color-profile rules first.

http://www.w3.org/TR/REC-CSS2/
http://www.color.org/
http://www.color.org/ICC-1A_1999-04.PDF
http://www.w3.org/TR/REC-CSS2/

12.3.3 The 'color-profile' element

<IENTITY % SVG col or-profile.elenment "INCLUDE" >
<I[Y%VG col or-profile.elenment;|
<IENTITY % SVG col or-profile.content

"(Y%8VG Description.class;)*"

>
<! ELEMENT %8VG col or-profile. gnane; % VG col or-profile.content; >
<!-- end of SVG color-profile.elenent -->]]>

<IENTITY % SVG col or-profile.attlist "INCLUDE" >
<I[%VG col or-profile.attlist;]
<I ATTLI ST %8VG col or-profil e. gnane;
%8VG Core. attrib;
%8VG XLink. attrib;
| ocal CDATA #| MPLI ED
nanme CDATA #REQUI RED
rendering-intent (auto | perceptual | relative-colorinetric | saturation |
absol ute-colorinetric) '"auto'

Attribute definitions:

x| i nk: href ="<uri>"
The location of an ICC profile resource.
Animatable: no.

| ocal ="<string>"
The unique ID for a locally stored color profile. <string> is the profile's unique ID as
specified by International Color Consortium. If both the xlink:href and the local attributes
are specified, then the user agent shall search the local system for the locally stored color
profile first, and, if not available locally, then attempt to use the resource identified by the
xlink:href attribute. (Note: Profile description fields do not represent a profile's unique ID.
With current ICC proposals, the profile's unique ID is an MD5-encoded value within the
profile header.).
Animatable: no.

nane = "<name>"
The name which is used as the first parameter for icc-color specifications within 'fill’,
'stroke’, 'stop-color’, 'flood-color' and 'lighting-color' property values to identify the color
profile to use for the ICC color specification and the name which can be the value of the
‘color-profile’ property. Note that if <name> is not provided, it will be impossible to
reference the given color profile description. The name "sRGB" is predefined; any color
profile descriptions with <name> set to "sRGB" will be ignored. For consistency with CSS
lexical scanning and parsing rules, the keyword "sRGB" is case-insensitive; however, it is
recommended that the mixed capitalization "sRGB" be used for consistency with common
industry practice.
Animatable: no.

http://www.color.org/
http://www.w3.org/TR/REC-CSS2/grammar.html#q2
http://www.w3.org/TR/REC-CSS2/grammar.html#q2

renderi ng-i ntent ="auto | perceptual | relative-colorimetric | saturation | absolute-
colorimetric"

'rendering-intent' permits the specification of a color profile rendering intent other than the
default. 'rendering-intent' is applicable primarily to color profiles corresponding to CMYK
color spaces. The different options cause different methods to be used for translating

colors to the color gamut of the target rendering device:

auto

This is the default behavior. The user agent determines the best intent based on the
content type. For image content containing an embedded profile, it shall be
assumed that the intent specified within the profile is the desired intent. Otherwise,
the user agent shall use the current profile and force the intent, overriding any intent

that might be stored in the profile itself.
perceptual

This method, often the preferred choice for images, preserves the relationship
between colors. It attempts to maintain relative color values among the pixels as
they are mapped to the target device gamut. Sometimes pixel values that were
originally within the target device gamut are changed in order to avoid hue shifts and
discontinuities and to preserve as much as possible the overall appearance of the

scene.
saturation

Preserves the relative saturation (chroma) values of the original pixels. Out of gamut
colors are converted to colors that have the same saturation but fall just inside the

gamut.
relative colorimetric

Leaves colors that fall inside the gamut unchanged. This method usually converts
out of gamut colors to colors that have the same lightness but fall just inside the

gamut.
absolute colorimetric

Disables white point matching when converting colors. This option is generally not

recommended.

Animatable: no.

12.3.4 @color-profile when using CSS styling

When the document is styled using CSS, the @color-profile rule can be used to specify a color

profile description. The general form is:
@ol or-profile { <color-profile-description>}
where the <color-profile-description> has the form:

descriptor: val ue;

...]

descriptor: val ue;

Each @color-profile rule specifies a value for every color profile descriptor, either implicitly or
explicitly. Those not given explicit values in the rule take the initial value listed with each
descriptor in this specification. These descriptors apply solely within the context of the @color-
profile rule in which they are defined, and do not apply to document language elements. Thus,
there is no notion of which elements the descriptors apply to, or whether the values are inherited
by child elements.

The following are the descriptors for a <color-profile-description>:

‘'src' (Descriptor)
Values:SRGB | <local-profile> | <uri> | (<local-profile> <uri>) | inherit
Initial: sRGB
Media: visual

SRGB
The source profile is the sSRGB color space. For consistency with CSS lexical scanning
and parsing rules, the keyword "sRGB" is case-insensitive; however, it is recommended
that the mixed capitalization "sRGB" be used for consistency with common industry
practice.

<local-profile>
The source profile is a locally-stored profile. The syntax for <local-profile> is:

"local (" + <string> + ")"

where <string> is the profile's unique ID as specified by International Color Consortium.

(Note: Profile description fields do not represent a profile's unique ID. With current ICC
proposals, the profile's unique ID is an MD5-encoded value within the profile header.)
<uri>

The source profile is a URI reference to a color profile.

(<local-profile> <uri>)
Two profiles are specified. If <local-profile> cannot be found on the local system, then the
<uri> is used.

‘name’ (Descriptor)
Values:<name>
Initial: undefined
Media: visual

<name>
See the description for the name attribute on the ‘color-profile’ element. Note that if
<name> is not provided, it will be impossible to reference the given @color-profile
definition.

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.iec.ch/nr1899.htm
http://www.w3.org/TR/REC-CSS2/grammar.html#q2
http://www.w3.org/TR/REC-CSS2/grammar.html#q2
http://www.color.org/

‘rendering-intent’ (Descriptor)
auto | perceptual | relative-colorimetric |

Values: : . :
saturation | absolute-colorimetric

Initial: auto

Media: visual

Animatable: no

See the description for the rendering-intent attribute on the 'color-profile' element.

12.3.5 'color-profile' property

‘color-profile’
Value: auto | SRGB | <name> | <uri> | inherit
Initial: auto
Applies to: 'image’ elements that refer to raster images
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

auto
This is the default behavior. All colors are presumed to be defined in the SRGB color space
unless a more precise embedded profile is specified within content data. For images that
do have a profile built into their data, that profile is used. For images that do not have a
profile, the sSRGB profile is used.

SRGB
The source profile is assumed to be sRGB. This differs from auto in that it overrides an
embedded profile inside an image.

For consistency with CSS lexical scanning and parsing rules, the keyword "sRGB" is case-
insensitive; however, it is recommended that the mixed capitalization "sRGB" be used for
consistency with common industry practice.

<name>
A name corresponding to a defined color profile that is in the user agent's color profile
description database. The user agent searches the color profile description database for a
color profile description entry whose name descriptor matches <name> and uses the last
matching entry that is found. If a match is found, the corresponding profile overrides an
embedded profile inside an image. If no match is found, then the embedded profile inside

the image is used.
<uri>

http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/grammar.html#q2

A URI reference to the source color profile. The referenced color profile overrides an
embedded profile inside the image.

12.4 Color Profile Module

Elements]Attributes]Content Model
. |StdAttrs, XLinkRefAttrs, xlink:href, local, name, rendering- .
color-profile intent (DescriptionElements)*

12.4.1 Color Profile Content Set

The Color Profile Module defines the ColorProfileElements content set.

]Content Set Name]Elements in Content Set

ColorProfileElements |color-profile

12.5 DOM interfaces

The following interfaces are defined below: SVGColorProfileElement, SVGColorProfileRule.

Interface SVGColorProfileElement

The SVGColorProfileElement interface corresponds to the 'color-profile' element.

IDL Definition

i nt erface SVGCol or Profi |l eEl enent
SVGEl enent
SVGURI Ref er ence,
SVGRender i ngl ntent {

attribute DOVBtring | ocal ;
/1 raises DOVException on setting
attribute DOVString nane;

/1 raises DOVException on setting
attribute unsigned short renderinglntent;
/1 raises DOVException on setting

Attributes
DOMString local
Corresponds to attribute local on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.
DOMString name
Corresponds to attribute name on the given element.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an
attempt to change the value of a readonly attribute.
unsigned short renderingintent
Corresponds to attribute rendering-intent on the given element. The type of
rendering intent, identified by one of the SVGRenderingintent constants.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.

Interface SVGColorProfileRule

The SVGColorProfileRule interface represents an @color-profile rule in a CSS style sheet. An
@color-profile rule identifies a ICC profile which can be referenced within a given document.

Support for the SVGColorProfileRule interface is only required in user agents that support
styling with CSS.

IDL Definition

i nterface SVGCol or Profil eRul e
SVGCSSRul e,
SVGRender i ngl ntent {

attribute DOVBtring Src;
/'l rai ses DOVException on setting
attribute DOVBtring nane;

/'l rai ses DOVException on setting
attri bute unsigned short renderinglntent;
/'l rai ses DOVException on setting

Attributes
DOMString src
Corresponds to property src within an @color-profile rule.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.
DOMString name
Corresponds to property name within an @color-profile rule.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ ERR: Raised on an
attempt to change the value of a readonly attribute.
unsigned short renderingintent
The type of rendering intent, identified by one of the SVGRenderinglntent constants.
Exceptions on setting
DOMException NO_MODIFICATION_ALLOWED_ERR: Raised on an
attempt to change the value of a readonly attribute.

previous next contents elements attributes properties index

previous next contents elements attributes properties index

30 April 2002

13 Gradients and Patterns

Contents

. 13.1 Introduction

. 13.2 Gradients
o 13.2.1 Introduction
o 13.2.2 Linear gradients
o 13.2.3 Radial gradients
o 13.2.4 Gradient stops

. 13.3 Patterns

. 13.4 Gradient Module

. 13.5 Pattern Module

. 13.6 DOM interfaces

c
o
o
[4%]
o
c
@
=
=
O
L
@
o’
@
-t
I
o
o
=
{¥]
@)
9
™
=

13.1 Introduction

With SVG, you can fill (i.e., paint the interior) or stroke (i.e., paint the outline) of shapes and text
using one of the following:

. color (using <color> or the 'solidColor' element)
. gradients (linear or radial)
. patterns (vector or image, possibly tiled)

SVG uses the general notion of a paint server. Gradients and patterns are just specific types of
built-in paint servers. The 'solidColor' element is another built-in paint server, described in Color.

Paint servers are referenced using a URI reference on a 'fill' or 'stroke' property.

13.2 Gradients

13.2.1 Introduction

Gradients consist of continuously smooth color transitions along a vector from one color to
another, possibly followed by additional transitions along the same vector to other colors. SVG
provides for two types of gradients, linear gradients and radial gradients.

Once defined, gradients are then referenced using 'fill' or 'stroke' properties on a given graphics
element to indicate that the given element shall be filled or stroked with the referenced gradient.

13.2.2 Linear gradients

Linear gradients are defined by a 'linearGradient’' element.

<IENTITY % SVG | i near Gradi ent . el enent " | NCLUDE" >
<ITY%VG | i near G adi ent . el enent ; |
<IENTITY % SVG | i near Gr adi ent . cont ent
"((“%8VG Description.class;)*, (%VG stop.gnane; | %8VG ani mat e. gnane;

| Y%8VG set.qgnane; | %BVG ani mat eTr ansf orm gnane;)*)"
>
<| ELEMENT %8VG | i near G adi ent. gnane; %BSVG | i near G adi ent.content; >
<l-- end of SVG IlinearG adient.elenent -->]]>

<IENTITY % SVG |l inearG adi ent.attlist "I|NCLUDE" >
<I[%VG |inearGadient.attlist;]
<I ATTLI ST %8VG | i near G adi ent . gnane;

%8VG Core. attrib;

Y6VG Style.attrib;

%SVG Col or. attrib;

Y8VG Gradient.attrib;

%SVG XLi nk. attrib;

%8VG External .attrib;

x1 %Coor di nat e. dat at ype; #| MPLI ED
y1l %Coor di nat e. dat at ype; #l MPLI ED
x2 Y%Coor di nat e. dat at ype; #| MPLI ED
y2 % Coor di nat e. dat at ype; #l MPLI ED

gradi entUnits (user SpaceOnUse | object Boundi ngBox) #l MPLI ED
gr adi ent Transf or m %dr ansf ornli st . dat at ype; #l MPLI ED

spreadMet hod (pad | reflect | repeat) #l MPLIED

Attribute definitions:

gr adi ent Uni t s ="userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes x1, y1, x2, y2.
If gradientUnits="userSpaceOnUse", x1, y1, x2, y2 represent values in the coordinate system
that results from taking the current user coordinate system in place at the time when the
gradient element is referenced (i.e., the user coordinate system for the element referencing

the gradient element via a 'fill' or 'stroke' property) and then applying the transform specified
by attribute gradientTransform.
If gradientUnits="objectBoundingBox", the user coordinate system for attributes x1, y1, x2, y2
is established using the bounding box of the element to which the gradient is applied (see
Object bounding box units) and then applying the transform specified by attribute
gradientTransform.
When gradientUnits="objectBoundingBox" and gradientTransform is the identity matrix, the
stripes of the linear gradient are perpendicular to the gradient vector in object bounding box
space (i.e., the abstract coordinate system where (0,0) is at the top/left of the object
bounding box and (1,1) is at the bottom/right of the object bounding box). When the object's
bounding box is not square, the stripes that are conceptually perpendicular to the gradient
vector within object bounding box space will render non-perpendicular relative to the
gradient vector in user space due to application of the non-uniform scaling transformation
from bounding box space to user space.
If attribute gradientUnits is not specified, then the effect is as if a value of
objectBoundingBox were specified.
Animatable: yes.

gr adi ent Tr ansf or m="<transform-list>"
Contains the definition of an optional additional transformation from the gradient coordinate
system onto the target coordinate system (i.e., userSpaceOnUse or objectBoundingBox).
This allows for things such as skewing the gradient. This additional transformation matrix is
post-multiplied to (i.e., inserted to the right of) any previously defined transformations,
including the implicit transformation necessary to convert from object bounding box units to
user space.
If attribute gradientTransform is not specified, then the effect is as if an identity transform
were specified.
Animatable: yes.

X1 ="<coordinate>"
x1, y1, x2, y2 define a gradient vector for the linear gradient. This gradient vector provides
starting and ending points onto which the gradient stops are mapped. The values of x1, y1,
X2, y2 can be either numbers or percentages.
If the attribute is not specified, the effect is as if a value of "0%" were specified.
Animatable: yes.

y1 ="<coordinate>"
See x1.
If the attribute is not specified, the effect is as if a value of "0%" were specified.
Animatable: yes.

X2 ="<coordinate>"
See x1.
If the attribute is not specified, the effect is as if a value of "100%" were specified.
Animatable: yes.

y2 ="<coordinate>"
See x1.
If the attribute is not specified, the effect is as if a value of "0%" were specified.
Animatable: yes.

spr eadMet hod ="pad | reflect | repeat”

Indicates what happens if the gradient starts or ends inside the bounds of the target
rectangle. Possible values are: pad, which says to use the terminal colors of the gradient to
fill the remainder of the target region, reflect, which says to reflect the gradient pattern start-
to-end, end-to-start, start-to-end, etc. continuously until the target rectangle is filled, and
repeat, which says to repeat the gradient pattern start-to-end, start-to-end, start-to-end, etc.
continuously until the target region is filled.
If the attribute is not specified, the effect is as if a value of "pad" were specified.
Animatable: yes.

xl'i nk: href ="<uri>"
A URI reference to a different 'linearGradient' or 'radialGradient' element within the current
SVG document fragment. Any 'linearGradient' attributes which are defined on the referenced
element which are not defined on this element are inherited by this element. If this element
has no defined gradient stops, and the referenced element does (possibly due to its own
href attribute), then this element inherits the gradient stop from the referenced element.
Inheritance can be indirect to an arbitrary level; thus, if the referenced element inherits
attribute or gradient stops due to its own href attribute, then the current element can inherit
those attributes or gradient stops.
Animatable: yes.

Percentages are allowed for x1, y1, x2, y2. For gradientUnits="userSpaceOnUse", percentages
represent values relative to the current viewport. For gradientUnits="objectBoundingBox",
percentages represent values relative to the bounding box for the object.

If x1 =x2 and y1 =y2, then the area to be painted will be painted as a single color using the color
and opacity of the last gradient stop.

Properties inherit into the 'linearGradient' element from its ancestors; properties do not inherit from
the element referencing the 'linearGradient' element.

'linearGradient' elements are never rendered directly; their only usage is as something that can be
referenced using the 'fill' and 'stroke’ properties. The 'display’ property does not apply to the
'linearGradient' element; thus, 'linearGradient' elements are not directly rendered even if the
‘display' property is set to a value other than none, and 'linearGradient' elements are available for
referencing even when the 'display’' property on the ‘linearGradient' element or any of its ancestors
is set to none.

Example lingrad01 shows how to fill a rectangle by referencing a linear gradient paint server.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG 1. 1//EN'
“http://ww. w3. org/ Gaphics/SV@ 1. 1/ DTD/ svgll. dt d" >
<svg wi dt h="8cnf hei ght="4cnt vi ewBox="0 0 800 400"
xm ns="http://ww.w3. org/ 2000/ svg" version="1.1">
<desc>Exanmpl e lingrad0l - fill a rectangle using a
i near gradient paint server</desc>

<g>

http://www.w3.org/2000/svg

<def s>
<linear Gradi ent id="MyGadient">
<stop offset="5% stop-col or="#F60" />
<stop offset="95% stop-col or="#FF6" />
</linear G adi ent >

</ def s>
<l-- Qutline the drawing area in blue -->
<rect fill="none" stroke="bl ue"

x="1" y="1" wi dt h="798" hei ght ="398"/>

<l-- The rectangle is filled using a linear gradient paint server -->
<rect fill="url (#WG adient)" stroke="bl ack" stroke-w dth="5"
x="100" y="100" wi dt h="600" hei ght="200"/>
</ g>
</ svg>

Example lingrad01

View this example as SVG (SVG-enabled browsers only)

13.2.3 Radial gradients

Radial gradients are defined by a ‘radialGradient' element.

file:///C|/dino/scratch/CR-SVG11-20020430-pdf/images/pservers/lingrad01.svg

<IENTI TY % SVG r adi al Gradi ent . el emrent "1 NCLUDE" >
<I[¥%8VG radi al G adi ent . el enent; [
<IENTI TY % SVG r adi al Gradi ent . cont ent
"((Y8VG Description.class;)*, (%VG stop.gnane; | %8VG ani mat e. gnane;

| 9%8VG set. gnane; | %SVG ani mat eTr ansf orm gnane;)*)"
>
<! ELEMENT %8VG r adi al G adi ent. gnane; % VG radi al G adi ent.content; >
<I-- end of SVGradial Gadient.elenment -->]]>

<IENTITY % SVG radi al Gadient.attlist "“INCLUDE" >
<I[%SVG radial Gadient.attlist;]
<I ATTLI ST ¥%8VG r adi al G adi ent . gnane;

%SVG Core. attrib;

Y8VG Style. attrib;

%SVG Col or. attrib;

Y8VG Gradient.attrib;

%SVG XLi nk. attrib;

%SVG External . attrib;

cx % Coor di nat e. dat at ype; #| MPLI ED
cy % Coordi nat e. dat at ype; #l VPLI ED
r %.engt h. dat at ype; #l MPLI ED

f x %Coor di nat e. dat at ype; #| MPLI ED
fy %Coordi nat e. dat at ype; #l MPLI ED

gradientUnits (user SpaceOnUse | object Boundi ngBox) #l MPLI ED
gr adi ent Transf or m %r ansf or nLi st . dat at ype; #l MPLI ED

spreadMet hod (pad | reflect | repeat) #l MPLIED

Attribute definitions:

gradi ent Uni t s ="userSpaceOnUse | objectBoundingBox"
Defines the coordinate system for attributes cx, cy, r, fx, fy.
If gradientUnits="userSpaceOnUse", cx, cy, r, fx, fy represent values in the coordinate system
that results from taking the current user coordinate system in place at the time when the
gradient element is referenced (i.e., the user coordinate system for the element referencing
the gradient element via a 'fill' or 'stroke' property) and then applying the transform specified
by attribute gradientTransform.
If gradientUnits="objectBoundingBox", the user coordinate system for attributes cx, cy, r, fx,
fy is established using the bounding box of the element to which the gradient is applied (see
Object bounding box units) and then applying the transform specified by attribute
gradientTransform.
When gradientUnits="objectBoundingBox" and gradientTransform is the identity matrix, then
the rings of the radial gradient are circular with respect to the object