
The NetBSD Operating System

A Guide
(2003/12/14)

Federico Lupi



The NetBSD Operating System: A Guide
by Federico Lupi

Published 2003/12/14 15:56:15
Copyright © 1999, 2000, 2001, 2002 by Federico Lupi
Copyright © 2003 by The NetBSD Foundation

License

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by Federico Lupi for the NetBSD Project.

4. The name of the author may not be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



Table of Contents
Purpose of this guide .................................................................................................................................. i

1 What is NetBSD? .................................................................................................................................... 1

1.1 The story of NetBSD.................................................................................................................... 1
1.2 NetBSD features .......................................................................................................................... 1
1.3 Supported platforms..................................................................................................................... 2
1.4 NetBSD’s target users .................................................................................................................. 2
1.5 Applications for NetBSD ............................................................................................................. 2
1.6 The philosophy of NetBSD.......................................................................................................... 3
1.7 How to get NetBSD ..................................................................................................................... 3

2 New features in NetBSD 2.0 ................................................................................................................... 4

2.1 What’s new in NetBSD 2.0? ........................................................................................................ 4
2.1.1 Native threads .................................................................................................................. 4
2.1.2 Kernel events notification framework - kqueue...............................................................4
2.1.3 systrace ............................................................................................................................ 4
2.1.4 UFSv2.............................................................................................................................. 4
2.1.5 Java support ..................................................................................................................... 5
2.1.6 Verified Exec.................................................................................................................... 5
2.1.7 Cryptographic disk driver ................................................................................................ 5
2.1.8 Non-executable stack and heap ....................................................................................... 5
2.1.9 New toolchain.................................................................................................................. 5

2.2 New ports and enhancements to existing ports ............................................................................ 5
2.2.1 amd64 .............................................................................................................................. 6
2.2.2 evbsh5.............................................................................................................................. 6
2.2.3 i386.................................................................................................................................. 6
2.2.4 macppc............................................................................................................................. 6
2.2.5 sparc................................................................................................................................. 6

2.3 The NetBSD Packages Collection (pkgsrc) ................................................................................. 6

3 Installation............................................................................................................................................... 7

3.1 Documentation ............................................................................................................................. 7
3.2 The layout of a NetBSD installation ............................................................................................ 8
3.3 Installation.................................................................................................................................... 8

3.3.1 Keyboard ......................................................................................................................... 8
3.3.2 Geometries....................................................................................................................... 9
3.3.3 Partitions........................................................................................................................ 10
3.3.4 Hard disk space requirements........................................................................................ 10
3.3.5 Retry .............................................................................................................................. 11

4 Example Installation............................................................................................................................. 12

4.1 Installation example ................................................................................................................... 12
4.1.1 Preparing the installation............................................................................................... 12
4.1.2 Creating the installation floppy ..................................................................................... 12
4.1.3 Last preparatory steps.................................................................................................... 13
4.1.4 Beginning the installation.............................................................................................. 14
4.1.5 Partitions........................................................................................................................ 16
4.1.6 Disklabel........................................................................................................................ 21

iii



4.1.7 Creating a disklabel ....................................................................................................... 22
4.1.8 Final operations ............................................................................................................. 25
4.1.9 Choosing the installation media .................................................................................... 25

5 The first boot ......................................................................................................................................... 29

5.1 If something went wrong ........................................................................................................... 29
5.2 Login .......................................................................................................................................... 29
5.3 Changing the keyboard layout ................................................................................................... 30
5.4 The man command..................................................................................................................... 30
5.5 Changing the root password..................................................................................................... 32
5.6 Changing the shell...................................................................................................................... 32
5.7 System time................................................................................................................................ 32
5.8 Basic configuration /etc/rc.conf.......................................................................................... 33
5.9 Rebooting the system ................................................................................................................. 34

6 The second boot..................................................................................................................................... 35

6.1 dmesg ......................................................................................................................................... 35
6.2 Mounting the CD-ROM ............................................................................................................. 35
6.3 Mounting the floppy................................................................................................................... 36
6.4 Accessing a DOS/Windows partition......................................................................................... 36
6.5 Adding users .............................................................................................................................. 37
6.6 Shadow passwords ..................................................................................................................... 38
6.7 Stopping and rebooting the system ............................................................................................ 38

7 Printing .................................................................................................................................................. 40

7.1 Enabling the printer daemon ...................................................................................................... 40
7.2 Configuring /etc/printcap ................................................................................................... 41
7.3 Configuring Ghostscript ............................................................................................................. 42
7.4 Printer management commands ................................................................................................. 43
7.5 Remote printing.......................................................................................................................... 44

8 Using the build.sh Front End ........................................................................................................... 45

8.1 Building the tools ....................................................................................................................... 45
8.2 Cross Compiling a Kernel .......................................................................................................... 46
8.3 Build & Release ......................................................................................................................... 46
8.4 Environment Variables ............................................................................................................... 47

8.4.1 Changing the Destination Directory.............................................................................. 47
8.4.2 Static Builds................................................................................................................... 47

9 Compiling the kernel ............................................................................................................................ 49

9.1 Installing the kernel sources....................................................................................................... 49
9.2 Italian keyboard layout............................................................................................................... 49
9.3 Recompiling the kernel .............................................................................................................. 50
9.4 Build the toolchain ..................................................................................................................... 50
9.5 Creating the kernel configuration file......................................................................................... 51
9.6 Configuring the kernel................................................................................................................ 52
9.7 Generating dependencies and recompiling ................................................................................ 52
9.8 If something went wrong ........................................................................................................... 53

iv



10 The package collection ....................................................................................................................... 55

10.1 Installing the package collection.............................................................................................. 55
10.2 Updating the package collection .............................................................................................. 56
10.3 Example: installing a program from source ............................................................................. 57

10.3.1 Downloading the sources............................................................................................. 57
10.3.2 Compiling and installing ............................................................................................. 58

10.4 Example: installing a binary package ...................................................................................... 58
10.5 Package management commands............................................................................................. 60
10.6 Quick Start Packaging Guide ................................................................................................... 60

10.6.1 Tools ............................................................................................................................ 60
10.6.1.1 url2pkg............................................................................................................ 61
10.6.1.2 Template package............................................................................................ 61
10.6.1.3 pkglint ............................................................................................................. 61

10.6.2 Getting Started............................................................................................................. 61
10.6.2.1 Using url2pkg.................................................................................................. 61

10.6.3 Filling in the Rest ........................................................................................................ 62
10.6.4 Checking with pkglint ................................................................................................. 62
10.6.5 Running and Checking Build/Installs.......................................................................... 63
10.6.6 Submitting a Package Using send-pr........................................................................... 63
10.6.7 Final Notes................................................................................................................... 63

11 Networking .......................................................................................................................................... 64

11.1 Introduction to TCP/IP Networking......................................................................................... 64
11.1.1 Audience...................................................................................................................... 64
11.1.2 Supported Networking Protocols ................................................................................ 64
11.1.3 Supported Media ......................................................................................................... 65

11.1.3.1 Serial Line....................................................................................................... 65
11.1.3.2 Ethernet ........................................................................................................... 65

11.1.4 TCP/IP Address Format .............................................................................................. 66
11.1.5 Subnetting and Routing ............................................................................................... 68
11.1.6 Name Service Concepts............................................................................................... 70

11.1.6.1 /etc/hosts ......................................................................................................... 71
11.1.6.2 Domain Name Service (DNS) ........................................................................ 71
11.1.6.3 Network Information Service (NIS/YP) .........................................................72
11.1.6.4 Other ............................................................................................................... 72

11.1.7 Next generation Internet protocol - IPv6.....................................................................73
11.1.7.1 The Future of the Internet ............................................................................... 73
11.1.7.2 What good is IPv6?......................................................................................... 73

11.1.7.2.1 Bigger Address Space ........................................................................ 74
11.1.7.2.2 Mobility.............................................................................................. 74
11.1.7.2.3 Security............................................................................................... 74

11.1.7.3 Changes to IPv4 .............................................................................................. 74
11.1.7.3.1 Addressing.......................................................................................... 74
11.1.7.3.2 Multiple Addresses............................................................................. 76
11.1.7.3.3 Multicasting........................................................................................ 77
11.1.7.3.4 Name Resolving in IPv6 ....................................................................78

11.2 Practice..................................................................................................................................... 79
11.2.1 A walk through the kernel configuration.....................................................................79

v



11.2.2 Overview of the network configuration files ...............................................................83
11.2.3 Connecting to the Internet ........................................................................................... 84

11.2.3.1 Getting the connection information ................................................................84
11.2.3.2 resolv.conf and nsswitch.conf ......................................................................... 85
11.2.3.3 Creating the directories for pppd ....................................................................85
11.2.3.4 Connection script and chat file........................................................................ 85
11.2.3.5 Authentication................................................................................................. 86

11.2.3.5.1 PAP/CHAP authentication .................................................................87
11.2.3.5.2 Login authentication........................................................................... 87

11.2.3.6 pppd options.................................................................................................... 87
11.2.3.7 Testing the modem.......................................................................................... 88
11.2.3.8 Activating the link........................................................................................... 89
11.2.3.9 Using a script for connection and disconnection ............................................89

11.2.4 Creating a small home network................................................................................... 90
11.2.5 Connecting two PCs through a serial line ...................................................................92

11.2.5.1 Connecting NetBSD with BSD or Linux........................................................92
11.2.5.2 Connecting NetBSD and Windows NT ..........................................................93
11.2.5.3 Connecting NetBSD and Windows 95............................................................94

11.3 Advanced Topics ...................................................................................................................... 94
11.3.1 IPNAT.......................................................................................................................... 94

11.3.1.1 Configuring the gateway/firewall ....................................................................95
11.3.1.2 Configuring the clients .................................................................................... 96
11.3.1.3 Some useful commands .................................................................................. 96

11.3.2 Bridge .......................................................................................................................... 97
11.3.2.1 Bridge example ............................................................................................... 97

11.3.3 NFS.............................................................................................................................. 98
11.3.3.1 NFS setup example ......................................................................................... 98

11.3.4 Setting up /net with amd .......................................................................................... 99
11.3.4.1 Introduction..................................................................................................... 99
11.3.4.2 Actual setup .................................................................................................. 100

11.3.5 IPv6 Connectivity & Transition via 6to4...................................................................100
11.3.5.1 Getting 6to4 IPv6 up & running ...................................................................101
11.3.5.2 Obtaining IPv6 Address Space for 6to4........................................................101
11.3.5.3 How to get connected.................................................................................... 102
11.3.5.4 Security Considerations ................................................................................ 102
11.3.5.5 Data Needed for 6to4 Setup.......................................................................... 103
11.3.5.6 Kernel Preparation ........................................................................................ 103
11.3.5.7 6to4 Setup ..................................................................................................... 104
11.3.5.8 Quickstart using pkgsrc/net/6to4 ..................................................................105
11.3.5.9 Known 6to4 Gateway.................................................................................... 106
11.3.5.10 Conclusion & Further Reading ...................................................................106

Bibliography................................................................................................................................... 107

12 The Domain Name System............................................................................................................... 109

12.1 Notes and Pre-Requisites ....................................................................................................... 109
12.2 What is DNS?......................................................................................................................... 109
12.3 The DNS Files........................................................................................................................ 109

12.3.1 /etc/namedb/named.conf.................................................................................... 110

vi



12.3.1.1 options........................................................................................................... 111
12.3.1.2 zone “diverge.org” ........................................................................................ 112

12.3.2 /etc/namedb/localhost...................................................................................... 112
12.3.3 /etc/named/zone.127.0.0............................................................................................ 113
12.3.4 /etc/namedb/diverge.org ................................................................................. 114
12.3.5 /etc/namedb/1.168.192...................................................................................... 115
12.3.6 /etc/namedb/root.cache.................................................................................... 115

12.4 Using DNS ............................................................................................................................. 116
12.5 Setting up a caching only name server................................................................................... 117

12.5.1 Testing the server....................................................................................................... 118

13 Mail and news ................................................................................................................................... 119

13.1 sendmail ................................................................................................................................. 121
13.1.1 Configuration with genericstable............................................................................... 122
13.1.2 Testing the configuration ........................................................................................... 124
13.1.3 Using an alternative MTA.......................................................................................... 126

13.2 fetchmail................................................................................................................................. 126
13.3 Reading and writing mail with mutt ...................................................................................... 127
13.4 Strategy for receiving mail ..................................................................................................... 128
13.5 Strategy for sending mail ....................................................................................................... 128
13.6 Advanced mail tools............................................................................................................... 128
13.7 News with tin ......................................................................................................................... 130

14 Console drivers.................................................................................................................................. 132

14.1 wscons .................................................................................................................................... 132
14.1.1 50 lines text mode with wscons................................................................................. 133
14.1.2 wsmouse .................................................................................................................... 134

14.2 pccons..................................................................................................................................... 134
14.3 pcvt......................................................................................................................................... 134

14.3.1 Changing the screen size ........................................................................................... 136

15 Editing................................................................................................................................................ 137

15.1 Introducing vi ......................................................................................................................... 137
15.1.1 The vi interface.......................................................................................................... 137
15.1.2 Switching to Edit Mode............................................................................................. 137
15.1.3 Switching Modes & Saving Buffers to Files .............................................................138
15.1.4 Yanking and Putting .................................................................................................. 138

15.1.4.1 Oops I Did Not Mean to do that! ..................................................................138
15.1.5 Navigation in the Buffer ............................................................................................ 138
15.1.6 Searching a File, the Alternate Navigational Aid......................................................139

15.1.6.1 Additional Navigation Commands ...............................................................139
15.1.7 A Sample Session ...................................................................................................... 139

15.2 Configuring vi ........................................................................................................................ 140
15.2.1 Extensions to .exrc.................................................................................................. 141
15.2.2 Documentation .......................................................................................................... 141

15.3 Using tags with vi .................................................................................................................. 142

vii



16 X ......................................................................................................................................................... 143

16.1 What is X?.............................................................................................................................. 143
16.2 Configuration ......................................................................................................................... 144
16.3 The mouse .............................................................................................................................. 145
16.4 The keyboard.......................................................................................................................... 145
16.5 The monitor............................................................................................................................ 145
16.6 The video card........................................................................................................................ 146

16.6.1 XFree 3.x ................................................................................................................... 146
16.6.2 XFree86 4.x ............................................................................................................... 146

16.7 Starting X ............................................................................................................................... 146
16.8 Customizing X ....................................................................................................................... 147
16.9 Other window managers ........................................................................................................ 148
16.10 Graphical login with xdm .................................................................................................... 149

17 Linux emulation ................................................................................................................................ 151

17.1 Emulation setup...................................................................................................................... 151
17.1.1 Configuring the kernel ............................................................................................... 151
17.1.2 Installing the Linux libraries ..................................................................................... 151
17.1.3 Installing Acrobat Reader.......................................................................................... 152

17.2 Directory structure ................................................................................................................. 152

18 Audio .................................................................................................................................................. 154

18.1 Basic hardware elements........................................................................................................ 154
18.2 BIOS settings ......................................................................................................................... 154
18.3 Configuring the audio device ................................................................................................. 155
18.4 Configuring the kernel audio devices..................................................................................... 155
18.5 Advanced commands ............................................................................................................. 156

18.5.1 audioctl(1).................................................................................................................. 156
18.5.2 mixerctl(1) ................................................................................................................. 156
18.5.3 audioplay(1)............................................................................................................... 157
18.5.4 audiorecord(1) ........................................................................................................... 157

19 Obtaining sources by CVS ............................................................................................................... 158

19.1 Fetching system and userland source..................................................................................... 158
19.2 Fetching pkgsrc ...................................................................................................................... 160

20 CCD Configuration........................................................................................................................... 162

20.1 Install physical media............................................................................................................. 162
20.2 Configure Kernel Support ...................................................................................................... 163
20.3 Disklabel each volume member of the CCD.......................................................................... 163
20.4 Configure the CCD................................................................................................................. 165
20.5 Initialize the CCD device ....................................................................................................... 165
20.6 Create a 4.4BSD/UFS filesystem on the new CCD device ....................................................166
20.7 Mount the filesystem.............................................................................................................. 167

21 The cryptographic device driver ..................................................................................................... 168

21.1 Configuring kernel support .................................................................................................... 168
21.2 Setting up a cgd device .......................................................................................................... 168
21.3 Swap encryption..................................................................................................................... 169

viii



22 rc.d System ........................................................................................................................................ 171

22.1 The rc.d Configuration ........................................................................................................... 171
22.2 The rc.d Scripts ...................................................................................................................... 172
22.3 The Role of rcorder and rc Scripts ......................................................................................... 172
22.4 Additional Reading ................................................................................................................ 173

23 RAID-1 with RAIDframe................................................................................................................. 174

23.1 Introduction............................................................................................................................ 174
23.2 Initial install ........................................................................................................................... 175
23.3 Setting up the second disk...................................................................................................... 175
23.4 Configuring the RAID device ................................................................................................ 176
23.5 Setting up filesystems............................................................................................................. 177
23.6 Setting up kernel dumps......................................................................................................... 178
23.7 Moving the existing files into the new filesystems ................................................................179
23.8 The first boot with RAID-1.................................................................................................... 180
23.9 Adding the first disk ............................................................................................................... 181

24 The Internet Super Server ............................................................................................................... 183

24.1 Overview ................................................................................................................................ 183
24.2 What is Inetd .......................................................................................................................... 183
24.3 Protocols................................................................................................................................. 183
24.4 Services .................................................................................................................................. 184
24.5 RPC ........................................................................................................................................ 184
24.6 Inetd ....................................................................................................................................... 184
24.7 Adding a Service .................................................................................................................... 185
24.8 When to use or not to use inetd.............................................................................................. 186
24.9 Other Resources ..................................................................................................................... 187

24.9.1 NetBSD/i386 Man Pages........................................................................................... 187
24.9.2 Misc. Links ................................................................................................................ 187

25 Miscellaneous operations ................................................................................................................. 188

25.1 Creating install boot floppies for i386.................................................................................... 188
25.2 Creating a CD-ROM .............................................................................................................. 188

25.2.1 Creating the ISO image ............................................................................................. 189
25.2.2 Writing the image to the CD ..................................................................................... 190
25.2.3 Copying a CD ............................................................................................................ 190
25.2.4 Creating a bootable CD ............................................................................................. 191

25.3 Synchronizing the system clock............................................................................................. 191
25.4 Installing the boot manager.................................................................................................... 192
25.5 Deleting the disklabel............................................................................................................. 193
25.6 Speaker................................................................................................................................... 193
25.7 Forgot root password?............................................................................................................ 193
25.8 Adding a new hard disk.......................................................................................................... 194
25.9 Password file is busy? ............................................................................................................ 196
25.10 How to rebuild the devices in /dev ....................................................................................... 197

A. Information........................................................................................................................................ 198

A.1 Guide history ........................................................................................................................... 198

ix



B. Contributing to the NetBSD guide .................................................................................................. 199

B.1 Translating the guide ............................................................................................................... 199
B.1.1 What you need to start a translation............................................................................ 199
B.1.2 Writing SGML/DocBook ........................................................................................... 200

B.2 Sending contributions.............................................................................................................. 201
B.3 SGML/DocBook template....................................................................................................... 201

C. Getting started with XML/DocBook ............................................................................................... 204

C.1 What is XML/DocBook .......................................................................................................... 204
C.2 Jade.......................................................................................................................................... 205
C.3 DocBook.................................................................................................................................. 206
C.4 The DSSSL stylesheets ........................................................................................................... 206
C.5 Using the tools......................................................................................................................... 207
C.6 An alternative approach to catalog files .................................................................................. 208
C.7 Producing PostScript output .................................................................................................... 208

C.7.1 Installing TeX ............................................................................................................. 208
C.7.2 Enabling hyphenation for the italian language ...........................................................208
C.7.3 Creating the hugelatex format..................................................................................... 209
C.7.4 Installing Jadetex ........................................................................................................ 211

C.8 Links........................................................................................................................................ 211

D. Acknowledgements ........................................................................................................................... 213

D.1 Original acknowledgements.................................................................................................... 213
D.2 Current acknowledgements ..................................................................................................... 213

x



List of Figures
3-1. Partitions............................................................................................................................................. 10
4-1. Beginning the installation................................................................................................................... 14
4-2. Confirming the installation................................................................................................................. 14
4-3. Choosing a hard disk .......................................................................................................................... 15
4-4. BIOS geometry................................................................................................................................... 15
4-5. Choosing the partitioning scheme ...................................................................................................... 16
4-6. Choosing a unit of measure ................................................................................................................ 17
4-7. fdisk .................................................................................................................................................... 17
4-8. Deleting a partition............................................................................................................................. 18
4-9. Deleted partition ................................................................................................................................. 18
4-10. Partitioning completed ..................................................................................................................... 19
4-11. Configuring the boot selector ........................................................................................................... 20
4-12. Boot selector configuration .............................................................................................................. 20
4-13. Disklabel........................................................................................................................................... 21
4-14. Standard disklabel ............................................................................................................................ 22
4-15. Modify the disklabel (sec)................................................................................................................ 23
4-16. Modifying a BSD partition............................................................................................................... 24
4-17. Modified disklabel............................................................................................................................ 24
4-18. Selecting the sets .............................................................................................................................. 26
4-19. Installation media ............................................................................................................................. 26
4-20. CD-ROM installation ....................................................................................................................... 26
4-21. Congratulations ................................................................................................................................ 28
11-1. Our demo-network ........................................................................................................................... 69
11-2. Attaching one subnet to another one ................................................................................................ 70
11-3. Addresses are divided into more significant network- and less significant hostbits ........................75
11-4. IPv6-addresses have a similar structure to class B addresses...........................................................76
11-5. Several interfaces attached to a link result in only one scope ID for the link ..................................77
11-6. Network with gateway...................................................................................................................... 95
11-7. A frequently used method for transition is tunneling IPv6 in IPv4 packets...................................101
11-8. 6to4 derives a IPv6 from an IPv4 address ...................................................................................... 102
11-9. Request and reply can be routed via different gateways in 6to4 ....................................................102
11-10. Enabling packet forwarding is needed for a 6to4 router ..............................................................105
13-1. Structure of the mail system........................................................................................................... 121

List of Examples
5-1. Manual sections.................................................................................................................................. 31
7-1. /etc/printcap ................................................................................................................................ 41
7-2. /usr/local/libexec/lpfilter.................................................................................................. 41
7-3. /etc/printcap ................................................................................................................................ 42
7-4. /usr/local/libexec/lpfilter-ps ........................................................................................... 43
11-1. resolv.conf ........................................................................................................................................ 85
11-2. nsswitch.conf.................................................................................................................................... 85
11-3. Connection script.............................................................................................................................. 86

xi



11-4. Chat file ............................................................................................................................................ 86
11-5. Chat file with login ........................................................................................................................... 87
11-6. /etc/ppp/options ................................................................................................................................ 88
11-7. ppp-up............................................................................................................................................... 89
11-8. ppp-down.......................................................................................................................................... 90
11-9. /etc/hosts........................................................................................................................................... 91
12-1. strider’s /etc/hosts file..................................................................................................................... 110
12-2. localhost..................................................................................................................................... 112

xii



Purpose of this guide

This guide describes the installation and the configuration of the NetBSD operating system. It addresses
mainly people coming from other operating systems in hope of being useful for the solution of the many
small problems found when one starts using a new tool.

This guide is not a Unix tutorial: a basic knowledge of some concepts and tools is required to understand
it. You should know, for example, what a file and a directory are and how to use an editor. There are
plenty of books explaining these things so, if you don’t know them, I suggest that you buy an
introductory text. I think that it is better to choose a general book an avoid titles like “Learning
Unix-XYZ, version 1.2.3.4 in 10 days”, but this is a matter of personal taste. If you install a BSD system,
sooner or later you will be confronted with the vi editor: without some documentation this could be an
insurmountable obstacle. When you finish installing your system, you will be able to install whatever
editor and programs you like.

Still a lot of work is required to finish this short introduction to NetBSD: some chapters are not finished
(some are not even started) and some subjects still need testing (yes, a guide must also be tested). I’ll try
to work on it and improve it in my spare time but if you want to help, you’re welcome: you can write new
chapters (or parts of) or send corrections for existing subjects.

Federico Lupi <flupi@mclink.it>

This guide is currently maintained by the NetBSD www team (<www@NetBSD.org>). Corrections and
suggestions should be sent to that address. Also see Appendix B.

i



Chapter 1

What is NetBSD?

NetBSD is a free, highly portable UNIX-like operating system available for many platforms, from 64bit
alpha servers to handheld devices. Its clean design and advanced features make it excellent in both
production and research environments, and it is user-supported with complete source. Many applications
are easily available.

1.1 The story of NetBSD
The first version of NetBSD (0.8) dates back to 1993 and springs from the 4.3BSD Lite operating
system, a version of Unix developed at the University of California, Berkeley (BSD = Berkeley Software
Distribution), and from the 386BSD system, the first BSD port to the Intel 386 CPU. In the following
years, the modifications from the 4.4BSD Lite release (the last release of the Berkeley group) have been
integrated in the system. The BSD branch of Unix has had a great importance and influence in the history
of this operating system, to which it has contributed many tools, ideas and improvements (the vi editor,
the C shell, job control, the Berkeley fast file system, reliable signals, support for virtual memory,
TCP/IP implementation, just to name a few) which are now standard in all Unix environments. This
tradition of research and development survives today in the BSD systems (free and commercial) and, in
particular, in NetBSD.

1.2 NetBSD features
NetBSD operates on a vast range of hardware platforms and is very portable, probably the most portable
operating system in the world. The full source to the NetBSD kernel and userland is available for all the
supported platfoms; please see the details on the official site of the NetBSD Project
(http://www.NetBSD.org/).

A detailed list of NetBSD features can be found at: http://www.NetBSD.org/Misc/features.html.

The basic features of NetBSD are:

• Portability (more than 50 platforms are supported)

• Code quality and correctness

• Adherence to the standards

• Research and innovation

The aforementioned characteristics bring also indirect advantages. For example, if you work on just one
platform you could think that you’re not interested in portability. But portability is tied to code quality:
without a well written and well organized code base it would be impossible to support that many
platforms. And code quality is the base of any good and solid software systems, though surprisingly few

1



Chapter 1 What is NetBSD?

people seem to understand it. The attention to architectural and quality issues is rewarded with the great
potentiality of NetBSD’s code and the quality of it’s drivers.

One of the distinguishing characteristics of NetBSD is not to be satisfied with partial implementations.
Some systems seem to have the philosophy of “If it works, it’s right”. In that light NetBSD could be
described as “It doesn’t work unless it’s right”. Think about how many overgrown programs are
nowadays sadly collapsing under their own weight and “features” and you’ll understand why NetBSD
wants to avoid this situation at all costs.

1.3 Supported platforms
NetBSD supports over 50 platforms, including the popular i386, sparc, sparc64, alpha, mac68k and
macppc platforms. Technical details for all of them can be found on the NetBSD site.

1.4 NetBSD’s target users
The NetBSD site states that: “The NetBSD Project provides a freely available and redistributable system
that professionals, hobbyists, and researchers can use in whatever manner they wish”. I would add that
NetBSD is an ideal system if you want to learn Unix, mainly because of its adherence to standards (one
of the project goals) and because it can run on hardware which is considered obsolete by most other
operating systems; we could say “to learn and use Unix you don’t need to buy expensive hardware: you
can reuse the old PC or Mac that you have in your attic”. Also, if you need a Unix system which runs
consitently on a variety of platforms, NetBSD is probably your best (only) choice.

1.5 Applications for NetBSD
When you install NetBSD you have a rich set of programs and applications that you can install on your
system. Besides having all the standard Unix productivity tools, editors, formatters, C/C++ compilers
and debuggers and so on, there is a huge (and constantly growing, currently over 4000) number of
packages that can be installed both from source and in pre-compiled form. All the packages that you
expect to find on a well configured system are available for NetBSD for free and there is also a number
of commercial applications. In addition, NetBSD provides binary emulation for various other *nix
operating systems, thusly allowing you to run non-native applications. Linux emulation is probably the
most relevant example, lots of efforts have gone into it and it is used by almost all NetBSD users; you
can run the Linux version of

• Netscape

• Acrobat Reader

• Doom, Quake

• Adobe FrameMaker

• many other programs

NetBSD is also capable of emulating FreeBSD, BSDI and other systems.

2



Chapter 1 What is NetBSD?

1.6 The philosophy of NetBSD
Differently from many contemporary operating systems, the NetBSD installation, though feature rich is
not huge in size, because it strives to produce a stable and complete base system without being
redundant. After the installation you get a fully working system which still lacks a number of
applications like, for example, a web browser (NetBSD, contrary to other OS, does not consider the
browser as part of the base system): you have the freedom to decide which programs to install on your
machine and the installation of new programs is very easy with the packages collection.

Another advantage of this approach is that the base system will work without these additional packages;
if you decide to upgrade your version of Perl you needn’t be afraid to break some parts of your system.
When you install NetBSD you don’t find huge pre-packaged collections of applications: you may now
see this as a disadvantage but when you start understanding the philosophy behind this you will find that
it gives you freedom. When you install these software collections (which someone else has decided for
you) you fill your hard disk with tons of programs, most of which will stay unused (and unknown) and
only waste space (and possibly make the system less stable): this is something which the typical BSD
user doesn’t want to do.

Even when you start knowing NetBSD, there is always something that will continue to amaze you, the
extreme consistency and logic of the system and the attention to the details: nothing appears the result of
chance and everything is well thought out. Yes, that’s what quality is about and, in my opinion, this is the
most distinguishing feature of NetBSD.

We could spend days arguing on the relative merits of operating systems (and some people like to do it)
but if you don’t try something seriously you can’t really judge. I am convinced, because I saw it many
times in the mailing lists, that if you try NetBSD you’ll be conquered by the perfect balance between
complexity and effectiveness; all problems have more than one solution: NetBSD is not happy with a
solution but always tries to find the easiest and most elegant one. NetBSD is a tool that enables you to do
your work without getting in your way. In this light it is an optimal tool; it’s like using a pen: you work
hard to learn how to use it but once you’ve learned you can write or draw and completely forget about the
pen.

1.7 How to get NetBSD
There is no “official” supplier of NetBSD CD-ROMs but there are various resellers. You can find the
most up to date list on the relevant page (http://www.NetBSD.org/Sites/cdroms.html) on the NetBSD
site. Of course you can also download NetBSD from the Internet from one of the mirrors.

3



Chapter 2

New features in NetBSD 2.0

2.1 What’s new in NetBSD 2.0?
It is impossible to list every single improvement to NetBSD since the previous release, 1.6, however, a
summary of the major new features in NetBSD 2.0 are below.

2.1.1 Native threads
Native thread support has been added, based on Scheduler Activations. Applications which support
native threads can now take full advantage of the high-performance NetBSD POSIX threads
implementation.

Multi-threading provides application-level parallelism; multiple threads within the same process can run
concurrently on different CPUs; concurrency requires kernel support for threads, which is what
Scheduler Activations provides.

Scheduler Activations is an efficient method of mapping N userland threads to M kernel threads which
avoids both the concurrency problems of N:1 implementations and the scalability problems of 1:1
implementations.

2.1.2 Kernel events notification framework - kqueue
kqueue provides a stateful and efficient event notification framework. Currently supported events include
socket, file, directory, fifo, pipe, tty and device changes, and monitoring of processes and signals.

kqueue is supported by all writable filesystems in the NetBSD tree (with the exception of Coda) and all
device drivers supporting poll(2).

2.1.3 systrace
systrace monitors and controls an application access to the system by enforcing access policies for
system calls. The systrace utility might be used to trace an untrusted application’s access to the system.
In addition, it can be used to protect the system from software bugs (such as buffer overflows) by
constraining a daemon’s access to the system.

The privilege elevation feature of systrace can be used to obviate the need to run large, untrusted
programs as root when only one or two system calls require the elevated privilege.

4



Chapter 2 New features in NetBSD 2.0

2.1.4 UFSv2
FreeBSD’s UFS2 has been ported to NetBSD. UFS2 is an extension to FFS, adding 64 bit block pointers
and support for extended file storage. Among other enhancements, UFS2 allows for file systems larger
than 1Terabyte.

2.1.5 Java support
Improvements have been made to NetBSD’s Linux emulation to support the latest Sun JDK/JRE for
Linux. Testing has shown that it now runs as well as it does on Linux natively.

2.1.6 Verified Exec
As the name suggests, Verified Exec verifies a cryptographic hash before allowing execution of binaries
and scripts.

This can be used to prevent a system from running binaries or scripts which have been illegally modified
or installed. In addition, Verified Exec can also be used to limit the use of script interpreters to authorized
scripts only and disallow interactive use.

2.1.7 Cryptographic disk driver
The cryptographic disk driver (cgd) can be used to encrypt disks or partitions, using some strong
encryption algorithms, like AES (Rijndael) and Blowfish. cgd can be configured to encrypt swap.

2.1.8 Non-executable stack and heap
NetBSD 2.0 has support for non-executable mappings on many platforms. If enabled, parts of the stack
and heap are made non-executable when they are marked writable. This makes exploiting potential
buffer overflows harder.

2.1.9 New toolchain
NetBSD 2.0 sports a new toolchain based on gcc 3.3.1 and binutils 2.13.2.1. gcc 3.3.1 adds support for a
number of CPU targets and greatly improved support for i386 and other targets. New platforms
supported by gcc 3.3.1 has enabled the porting of NetBSD to even more architectures.

5



Chapter 2 New features in NetBSD 2.0

2.2 New ports and enhancements to existing ports

2.2.1 amd64
New port to AMD’s 64-bit Opteron CPU, including SMP support.

2.2.2 evbsh5
The SuperH SH-5 is a bi-endian, 32 and 64-bit capable CPU, and this is a new port to the SH-5 Cayman
evaluation board. Support for a number of generic, machine-independent device drivers including audio,
SCSI and ethernet cards is present.

2.2.3 i386
The i386 port now supports SMP and has a new ACPI and power management framework which takes
advantage of Intel’s ACPI implementation.

2.2.4 macppc
SMP is now supported on macppc. Hardware support for newer G4 models has been added.

2.2.5 sparc
SMP is now supported on sparc.

2.3 The NetBSD Packages Collection (pkgsrc)
pkgsrc has been significantly expanded and now contains over 4000 packages. A number of new
platforms are supported, including Darwin, FreeBSD, IRIX, Linux, OpenBSD and Solaris. Support for
various other platforms (among them AIX, BSD/OS and HP-UX) is currently being worked on thanks to
our new, portable bootstrap kit which makes it much simpler to port pkgsrc support to new operating
systems.

6



Chapter 3

Installation

3.1 Documentation
The documentation of NetBSD is mostly in the format for manual pages and makes up an excellent
technical reference to the system. I won’t deny that it is unsuited as a tutorial (not to mention the fact that
you can’t read it until you install NetBSD); these are the reasons for the existence of this guide.

Note: as a matter of fact you could read the man pages through the web interface, but I don’t think it
is a practical way to learn the system...

After installation you will find some BSD guides in the /usr/share/doc directory. They are divided in
three main sections, psd (UNIX Programmer’s Supplementary Documents), smm (UNIX System
Manager’s Manual) and usd (UNIX User’s Supplementary Documents). You can read the text on the
terminal with, for example:

$ cd /usr/share/doc/smm/09.sendmail
$ nroff -me 09.sendmail/intro.me | more

or you can generate Postscript output using the makefiles.

It’s undeniable that there is a lack of HOWTOs and for this reason you should make the most of the
existing ones; the NetBSD release contains some documents in text format and on the NetBSD web site
you can find further information and FAQ’s.

Original documentation: the NetBSD site contains several pages with documentation and
HOWTOs both generic and platform specific. This information is well written and usually easy to
understand; for example you can find:

• how to access a DOS/Windows partition from NetBSD

• how to start NetBSD from the Windows NT boot loader

• ...

All the versions of NetBSD contain the following files:

7



Chapter 3 Installation

INSTALL

installation notes. This is the most important document and you should read (and reread it)
carefully; it contains a description of the NetBSD system, a list of the supported hardware and, most
notably, the installation instructions.

README.first

you should also read this.

release.man

describes the structure of the NetBSD release you are installing. It is a text file in man layout: it is
preformatted and you can read it with any editor.

On the NetBSD web site you can find, amongst the others, the following guides:

NetBSD FAQ

general information and pointers to other FAQ.

NetBSD/i386 FAQ

NetBSD/i386 specific FAQ.

Basic NetBSD Networking

Guide to network and PPP configuration.

3.2 The layout of a NetBSD installation
The layout of the files of a NetBSD installation is described in the aforementioned INSTALL file. For
example, for the i386 platform the system binaries are in the i386/binary/sets directory and the
sources are in the source/sets directory. The source/patches directory contains patches to the base
release which usually fix bugs or security related problems discovered after the release.

3.3 Installation
The first thing to do before installing NetBSD is to read the release information and installation notes in
the INSTALL file: this is the official description of the installation procedure. Next you should decide the
installation media that you will use; you can choose between:

• ftp

• nfs

• CDROM

• floppy

• unmounted filesystem

• local directory

8



Chapter 3 Installation

3.3.1 Keyboard
sysinst will not allow you to change the keyboard layout during the installation: if you use a US
keyboard it’s OK, but for the rest of the world it’s a minor annoyance, though not a big problem. If you
install from CD-ROM you only need to use alphanumeric keys (which have the same layout on most, if
not all, national keyboards) and only in a couple of places you need to press other keys. I hope that the
next releases of the installation program will allow to change the keyboard layout; for the present, you
can use the map in the following table.

US IT DE FR

- ’ ß )

/ - - !

= ì ’ -

: ç Ö M

; ò ö m

# £ § 3

" ° Ä %

* ( ( 8

( ) ) 9

) = = 0

’ à ä ù

‘ \ ^ @

\ ù # ‘

If you use a non US keyboard, one of the first things that you will do after installation will be to change
the keyboard layout. Until then, please be patient.

3.3.2 Geometries
The installation program mentions two types of hard disk geometries; you should understand what they
mean:

• real geometry

• BIOS geometry

real geometry is the real geometry of the hard disk, detected by the system. BIOS geometry is the
geometry used by the BIOS and it could be different from the real one (for example, BIOS could remap
the disk using LBA).

The disk used in the installation example is an IDE disk with the following geometries:

real: 6232 cyl, 16 heads, 63 sec
BIOS: 779 cyl, 128 heads, 63 sec (LBA)

As you can see the BIOS remaps the disk using LBA, effectively reducing the number of cylinders and
increasing the number of tracks (but the result is the same: 6232 * 16 = 779 * 128 = 99712). A sector

9



Chapter 3 Installation

contains 512 bytes, which means that the disk size is 6232 * 16 * 63 * 512 = 3 GB. NetBSD does not
need to remap the disk geometry (and in fact won’t do it). During the installation it is possible to change
manually the geometry if sysinst got it wrong.

3.3.3 Partitions
The terminology used by NetBSD for partitioning is different from the typical DOS/Windows
terminology; in fact, there are two partitioning schemes. NetBSD installs in one of the four primary
BIOS partitions (the partitions defined in the hard disk partition table).

Within its BIOS partition (also called slice) NetBSD defines the BSD partitions using a disklabel: these
partitions can be seen only by NetBSD and are identified by lowercase letters (starting with “a”). For
example, wd0a refers to the “a” partition of the first IDE disk (wd0) and sd0a refers to the “a” partition
of the first SCSI disk. In Figure 3-1 there are two primary BIOS partitions, one used by DOS and the
other by NetBSD. NetBSD describes the disk layout through the disklabel.

Figure 3-1. Partitions

BIOS partitions
     (MBR)

0 - DOS

1 - NetBSD

a  /

b  swap

e  /usr

c
 
 
N
e
t
B
S
D
 
s
l
i
c
e

d
 
 
w
h
o
l
e
 
d
i
s
k

Disklabel

Note: the meaning of partitions “c” and “d” is typical of the i386 port. Other ports use different
conventions (e.g. “c” represents the whole disk.)

Note: if NetBSD shares the hard disk with another OS (like in the previous example) you will
probably need to install a boot manager , i.e. a program which enables you to chose the OS to start
at boot time. sysinst can automatically install and configure a simple but effective boot manager.

If Windows NT is installed on the same hard disk, you can use the NT bootloader to start NetBSD.
An easy way to accomplish this is described on the NetBSD web site.

10



Chapter 3 Installation

3.3.4 Hard disk space requirements
The space required by a NetBSD installation depends on the use that you plan to do with it (eg. server or
workstation). For example, consider a home desktop system with a 420 MB hard disk (rather small by
today’s standards) with X, the kernel sources and some applications (Netscape, ...). The swap partition is
32 MB. df shows the following:

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/wd1a 31887 16848 13444 56% /
/dev/wd1e 363507 173202 172129 50% /usr

As you can see there are 180 MB left on the system.

3.3.5 Retry
When you install an OS for the first time it is seldom a success and NetBSD is no exception. Even if
everything goes well, as soon as you start using the system you usually realize that (for example) you
could have chosen a better layout for your partitions. It is important not to give up; if you try again you’ll
realize that what was difficult to understand the first time gradually becomes clearer by virtue of the
accumulated experience and numerous rereads of the INSTALL document.

During the first installations it is wiser to accept the defaults suggested by sysinst and avoid, for example,
changing the disklabel. The only thing that you must decide is the disk space for the NetBSD fdisk
partition.

11



Chapter 4

Example Installation

4.1 Installation example
The remaining part of this chapter deals with a real installation example for a common case: installation
from CD-ROM. The concepts are the same for all types of installation (eg. ftp); the only difference is in
the way the binary sets are found by sysinst. Please note that some details of the installation differ
depending on the NetBSD release: this example was created with release 1.5.

For the sake of teaching, in the following example the most “difficult” options will always be chosen.

• BIOS partition table full: one or more existing partitions will be deleted to make room for NetBSD.

• fdisk partitioning using sectors instead of MB.

• manual modification of the disklabel created by sysinst, also using sectors.

• “custom” installation (meaning that you can select one by one the binary sets that you want to install).

This set of choices gives the impression that the installation is very complicated and requires a lot of
work: remember that if you accept the defaults everything is much simpler. On the other hand, a tutorial
which explains only the “easy” parts is not very useful (except from the marketing point of view...)

4.1.1 Preparing the installation
Before installing it is a good idea to make a detailed plan of the steps that you will need to perform. First,
read the INSTALL file (I promise it’s the last time that I say it) reading the description of the installation
and checking the hardware compatibilities. Next, if there is already something on the hard disk, think
how you can free some space for NetBSD; if NetBSD will share the disk with other operating systems
you will probably need to create a new partition (which you will do with sysinst) and, maybe, to resize
an existing one. It is not possible to resize an existing partition with sysinst, but there are some
commercial products (like Partition Magic) and some free tools (FIPS, pfdisk) available for this.

The installation is divided logically in two steps. In the first part you create a partition for NetBSD and
you write the diklabel for that partition. In the second part you decide which binary sets you want to
install and extract the files in the newly created partitions. The first part is independent of the intallation
method (CD-ROM, ftp, NFS, ...); at the end of the first part nothing has yet been written to the hard disk
and you are prompted to confirm the installation. If you confirm, the installation goes on, else you are
brought back to the main menu and the hard disk remains unchanged.

12



Chapter 4 Example Installation

4.1.2 Creating the installation floppy

Note: if you have a bootable NetBSD CD-ROM you don’t need to create an installation floppy: enable
the “boot from CD-ROM” in your BIOS settings, insert the CD and reboot the machine. This option is
probably not available on older machines.

Before installing you need to create the installation floppy, i.e. to copy the floppy image from the
CD-ROM to a diskette. To perform this operation in DOS you can use the rawrite program in the
i386/installation/misc directory. The image file is i386/installation/floppy/boot.fs.

Before creating the installation disks always check that the floppies are good: this simple
step is often overlooked and can save you a lot of trouble.

1. Format the floppy.

2. Go to the I386\INSTALLATION\FLOPPY directory of the CD-ROM.

3. Run the ..\MISC\RAWRITE program. The “Source file” is BOOT.FS and the “Destination drive” is
A:

If you create the boot floppy in a Unix environment, you can use the dd command. For example:

# cd i386/installation/floppy
# dd if=boot.fs of=/dev/fd0a bs=36b

dd copies blocks of 512 bytes: the bs=36b option copies 36 blocks at a time, effectively making the
operation faster.

Note: a 1440K floppy contains 1474560 bytes and is made up of 80 cylinders, 2 tracks, 18 sectors
and 512 bytes per sector, i.e. 80 * 2 * 18 = 2880 blocks. Thus bs=36b copies one cylinder (18 * 2
blocks) at a time and repeats the operation 80 times instead of 2880.

4.1.3 Last preparatory steps
Everything is now ready for the installation but, before beginning, it is better to gather some information
on the hardware of the PC.

The most important thing to check is the type of hard disk (IDE, SCSI) and its geometry. You can find
this information on the hard disk manual or using a diagnostic program. Some hard disks have a label on
which this data is written. Another option is to connect to the web site of the producer of your disk and
look for the product info.

If you install via ftp or NFS remember to check your network card settings: if the installation kernel
expects your card to be on an IRQ but the card’s settings are different you won’t be able to install. For
example, the install kernel can recognize an NE2000 compatible network card with one of the following
two settings:

13



Chapter 4 Example Installation

ne0 at isa? port 0x280 irq 9 # NE[12]000 ethernet cards
ne1 at isa? port 0x300 irq 10

If your NE2000 network card has different settings it will not be detected. (After the installation you will
be able to compile a customized kernel with your own settings.)

While you are at it you should check some other hardware details like, for example, the number of serial
and parallel ports, etc.; this is not required for installation but it can turn out useful later. Check your
settings (IRQ, I/O ports, ...) against the ones written in the INSTALL file.

Note: you can install even if you don’t know the hard disk geometry as well as any of the other
details. In this case you must trust sysinst, which automatically determines the geometry and
(usually) gets it right.

4.1.4 Beginning the installation
Insert the newly created installation floppy in drive A: and reboot the computer (or boot from CD-ROM).
The kernel on the floppy is booted and starts displaying a lot of messages on the screen, most of which
say something about hardware not being found or not being configured. This is normal: the kernel on the
floppy tries to detect almost all the hardware supported by NetBSD; you probably (!) don’t have all these
devices in your machine.

Figure 4-1. Beginning the installation

Welcome to sysinst, the NetBSD-1.5 system installation tool.  This
menu-driven tool is designed to help you install NetBSD to a hard disk, or
upgrade an existing NetBSD system, with a minimum of work.  In the following
menus, you may change the current selection by either typing the reference
letter (a, b, c, ...).  Arrow keys may also work.  You activate the current
selection from the menu by typing the enter key.

If you booted from a floppy, you may now remove the disk.

Thank you for using NetBSD!

              *************************************************
              * NetBSD-1.5 Install System                     *
              *                                               *
              *>a: Install NetBSD to hard disk                *
              * b: Upgrade NetBSD on a hard disk              *
              * c: Re-install sets or install additional sets *
              * d: Reboot the computer                        *
              * e: Utility menu                               *
              * x: Exit install system                        *
              *************************************************

When the boot procedure is over you will find yourself in the main menu of the installation program,
shown in Figure 4-1. Don’t be deceived by the spartan look of sysinst: it is a rather powerful and flexible
program. From here on you should follow the instructions displayed on the screen, using the INSTALL
document as a reference. The sysinst screens all have more or less the same layout: the upper part of the
screen shows a short description of the current operation or a short help message; the central part of the
screen shows the current settings as detected by NetBSD; the bottom part displays a menu of available
choices. Choosing the Install option (“a”) brings you to the next screen (Figure 4-2) where you confirm
the operation.

14



Chapter 4 Example Installation

Figure 4-2. Confirming the installation

You have chosen to install NetBSD on your hard disk.  This will change
information on your hard disk.  You should have made a full backup
before this procedure!  This procedure will do the following things:
        a) Partition you hard disk
        b) Create new BSD file systems
        c) Load and install distribution sets

(After you enter the partition information but before your disk is
changed, you will have the opportunity to quit this procedure.)
Shall we continue?

                                **************
                                * yes or no? *
                                *            *
                                *>a: No      *
                                * b: Yes     *
                                **************

After choosing to continue with option “b”, it is time to select on which hard disk you want to install
NetBSD. If more than one disk is available, sysinst displays a list of disks from which you can pick one.
In this example there is only one hard disk and the installation program only displays an informational
message, shown in Figure 4-3.

Note: the information in this screen will be different depending on the type and number of hard disks
installed on the system.

Figure 4-3. Choosing a hard disk

I found only one disk, wd0.  Therefore I assume you want to install NetBSD on
it.

                               *************************
                               * Hit enter to continue *
                               *                       *
                               *>a: ok                 *
                               *************************

Next (Figure 4-4) sysinst displays the BIOS geometry for the chosen disk; you can confirm that it is
correct or, if the installation program got it wrong, you can modify it by entering new values manually.

15



Chapter 4 Example Installation

Figure 4-4. BIOS geometry

This disk matches the following BIOS disk:

BIOS #  cylinders  heads  sectors
     0       779    128        63

Note: since sysinst was able to uniquely match the disk you chose with a disk 
known to the BIOS, the values displayed above are very likely correct, and
should not be changed.  Only change them if they are very obviously wrong.

                     ***********************************
                     *>a: This is the correct geometry *
                     * b: Set the geometry by hand     *
                     ***********************************

4.1.5 Partitions
The first important step of the installation has come: the partitioning of the hard disk. First you must
specify if NetBSD will use a partition (suggested choice) or the whole disk (“dangerous” choice). In the
former case it is still possible to create a partition that uses the whole hard disk (Figure 4-5) so I
recommend to select this option which, if I understand correctly, keeps the BIOS partition table in a
format compatible with other operating systems.

In the this example we will use a disk with the following “real” geometry, corresponding to the BIOS
geometry of Figure 4-4.

6232 cyl, 16 heads, 63 sec (6232 x 16 x 63 = 6281856 total sectors)
1 sector = 512 bytes
1 track = 63 sectors = 63 * 512 bytes = 32 K
1 cylinder = 16 * 63 * 512 bytes = 504 K

Figure 4-5. Choosing the partitioning scheme

We are now going to install NetBSD on the disk wd0.  You may choose to
install NetBSD on the entire disk, or on part of the disk.

Partial-disk installation creates a partition, or ‘slice’, for NetBSD in your
disk’s MBR partition table. Whole-disk installation is ‘dangerously
dedicated’: it takes over the entire MBR. This WILL overwrite all existing
data and OSes on the disk. It also prohibits later installation of multiple
OSes on that disk (unless you overwrite NetBSD and reinstall using only part
of the disk).

Which would you like to do?
                       ********************************
                       * Select your choice           *
                       *                              *
                       *>a: Use only part of the disk *
                       * b: Use the entire disk       *
                       ********************************

16



Chapter 4 Example Installation

The next step, depicted in Figure 4-6, is the selection of a unit of measure to be used for hard disk
partitioning: sectors give the most flexibility and precision (note that it is usually better to align partition
on cylinder boundaries for performance reasons, at least on older hard disks.) Megabytes are easier to
use because they don’t require manual calculations and are more “intuitive”.

Figure 4-6. Choosing a unit of measure

You have elected to specify partition sizes (either for the BSD disklabel, or
on some ports, for MBR slices). You must first choose a size unit to use.
Choosing megabytes will give partition sizes close to your choice, but
aligned to cylinder boundaries. Choosing sectors will allow you to more
accurately specify the sizes.  On modern ZBR disks, actual cylinder size
varies across the disk and there is little real gain from cylinder alignment.
On older disks, it is most efficient to choose partition sizes that are exact
multiples of your actual cylinder size.

                        ******************************
                        * Choose your size specifier *
                        *                            *
                        *>a: Megabytes               *
                        * b: Cylinders               *
                        * c: Sectors                 *
                        ******************************

This tutorial will use sectors because they are more useful for teaching purposes. Chosing option “c” you
are taken to the fdisk interface screen.

Figure 4-7. fdisk

Edit your DOS partition table. The highlighted partition is the currently
active partition.   The partition table currently looks like:

   Total disksize 6281856 sec.

   Start(sec) Size(sec)  End(sec)   Kind
   ---------- ---------- ---------- ----
0: 63         2088516    2088579    DOS FAT16, >32MB
1: 2088579    3991680    6080259    Linux native
2: 6080259    201597     6281856    Linux swap
3:                                  unused 

                      **********************************
                      * Choose your partition          *
                      *                                *
                      *>a: Edit partition 0            *
                      * b: Edit partition 1            *
                      * c: Edit partition 2            *
                      * d: Edit partition 3            *
                      * e: Reselect size specification *
                      * x: Exit                        *
                      **********************************

Figure 4-7 shows the current situation of the hard disk before the installation of NetBSD; there are four
primary partitions: one is used by DOS/Windows and two by GNU/Linux; the last one is unused. There
is no free space on the disk: the End(sec) column of partition 2 shows that the 6281856 sectors of the
hard disk are all occupied.

Note: in the fdisk screen the following formula holds:

Start(sec) + Size(sec) = End(sec)

17



Chapter 4 Example Installation

This means that the End(sec) column of a partition is equal to the Start(sec) column of the following
partition, which is not very intuitive because the sector in the End(sec) column of a partition actually
belongs to the following one. Disklabel will use a different (and more logical) convention.

To make room the two GNU/Linux partitions will have to be sacrificed, starting with the last one. Sysinst
displays a screen that can be used to modify the existing data for a partition and Figure 4-8 shows the
current data for partition 2.

Figure 4-8. Deleting a partition

You are editing partition 2.  The highlighted partition is the partition you
are editing.   Total disksize 6281856 sec.

   Start(sec) Size(sec)  End(sec)   Kind
   ---------- ---------- ---------- ----
0: 63         2088516    2088579    DOS FAT16, >32MB
1: 2088579    3991680    6080259    Linux native
2: 6080259    201597     6281856    Linux swap
3:                                  unused 

                      +*******************+
                      * Select to change  *
                      *                   *
                      *>a: Kind           *
                      * b: Start and size *
                      * c: Set active     *
                      * d: Partition OK   *
                      +*******************+

To delete the partition, select type unused using option “a” and than choose option “b” leaving the fields
“Start” and “Size” empty (press Enter leaving the fields blank). Finally, confirm everything with option
“d” and you are back in the main fdisk screen, where partition 3 is now empty. Use the same method to
delete partitions 2 and 1, leaving only partition 0 on the disk (Figure 4-9.)

Figure 4-9. Deleted partition

Edit your DOS partition table. The highlighted partition is the currently
active partition.   The partition table currently looks like:

   Total disksize 6281856 sec.

   Start(sec) Size(sec)  End(sec)   Kind
   ---------- ---------- ---------- ----
0: 63         2088516    2088579    DOS FAT16, >32MB
1:                                  unused
2:                                  unused
3:                                  unused 

                      **********************************
                      * Choose your partition          *
                      *                                *
                      *>a: Edit partition 0            *
                      * b: Edit partition 1            *
                      * c: Edit partition 2            *
                      * d: Edit partition 3            *
                      * e: Reselect size specification *
                      * x: Exit                        *
                      **********************************

Only the DOS/Windows partition is left, using 2088516 sectors which are equal to 1029 MB (about 1
GB). The free space is calculated as the difference between the already calculated total number of sectors

18



Chapter 4 Example Installation

and the end sector of the DOS partition (the number in the End(sec) column.)

6281856 - 2088579 = 4193277 sectors = 2047 MB free on disk

Note: the DOS partition begins at sector 63 and not at sector 0 as you could expect. This is not
unusual: the first track (63 sectors) is reserved. At cylinder 0, track 0, sector 1 of the hard disk there
is the Master Boot Record (MBR). When the system is booted the BIOS loads the MBR in memory
from the hard disk, detects which partition is active and loads in memory the boot sector of that
partition, to which it yields control. The boot sector, then, starts the operating system on his partition.

Now, using option “b”, a new partition for NetBSD will be created, starting at the end of the DOS
partition. To create a new partition the following information must be supplied:

• the type of the new partition

• the first sector of the new partition

• the size (in sectors) of the new partition

Choose the partition type “NetBSD” for the new partition (option “a: Kind”) and input the data that we
have calculated: start = 2088579 and size = 4193277 using option “b”. Check that everything is correct
and confirm the creation with option “d”, which brings you back to the main fdisk menu. The result is
shown in Figure 4-10 which displays the final layout of the partition table. Now, selecting option “x” you
proceed to the next menu.

Figure 4-10. Partitioning completed

Edit your DOS partition table. The highlighted partition is the currently
active partition.   The partition table currently looks like:

   Total disksize 6281856 sec.

   Start(sec) Size(sec)  End(sec)   Kind
   ---------- ---------- ---------- ----
0: 63         2088516    2088579    DOS FAT16, >32MB
1: 2088579    4193277    6281856    NetBSD
2:                                  unused
3:                                  unused 

                      **********************************
                      * Choose your partition          *
                      *                                *
                      *>a: Edit partition 0            *
                      * b: Edit partition 1            *
                      * c: Edit partition 2            *
                      * d: Edit partition 3            *
                      * e: Reselect size specification *
                      * x: Exit                        *
                      **********************************

Note: sysinst for NetBSD 1.5 checks the start and end sectors of the unused partitions too, even
though you can’t see this information on the screen. Thus it can happen that the program issues a
warning about overlapping partitions even if everything looks correct on the screen. I suggest to
correctly define the start and size of the unused partitions.

If you have made an error in partitioning (for example you have created overlapping partitions) sysinst
will display a message and suggest to go back to the fdisk menu (you are also allowed to continue). If the

19



Chapter 4 Example Installation

data is correct but the NetBSD partition lies outside the range of sectors which is bootable by the BIOS,
sysinst warns you and asks if you want to proceed anyway. This could lead to problems on older PC’s:
the PC used in the example received this warning but boots perfectly. It is not possible to give a general
rule (it is BIOS dependent); if the PC is not very old I suggest to ignore the warning and continue.

Note: this is not a limitation of NetBSD; some old BIOSes cannot boot a partition which lies outside
the first 1024 cylinders. To understand fully the problem you should study the different type of
BIOSes and the many addressing schemes that they use (physical CHS, logical CHS, LBA, ...).
These topics are not described in this guide.

With the most recent BIOS, supporting int13 extensions, it is possible to install NetBSD in partitions
that live outside the first 8 GB of the hard disk, provided that the NetBSD boot selector is installed.

If the data is correct and sysinst detects that you have more than one operating system on your hard disk,
it will offer to install a boot selector on the hard disk. Using the installation program you can both install
the boot selector and configure it; you can specify what strings will be displayed on the boot menu for
each operating system, which partition is booted by default and the timeout used when the user does not
select anything. This screen is shown in Figure 4-11.

Note: if the arrow keys don’t work you can scroll the menu options using the < and > keys.

Figure 4-11. Configuring the boot selector

Configure the different bootselection menu items. You can change the simple
menu entries for the matching partition entries that are displayed when the
system boots. Also, you can specify the timeout and default action to be
taken (if no selection is made in the bootmenu).

Number Type                             Menu entry
------ ----                             ----------    
0      DOS FAT16, >32MB
1      NetBSD
2      unused
3      unused

Boot menu timeout: 10
Default boot menu action: boot the first active partition

                          *****************************
                          * Change a bootmenu item    *
                          *                           *
                          *>a: Edit menu entry 0      *
                          * b: Edit menu entry 1      *
                          * c: Edit menu entry 2      *
                          * d: Edit menu entry 3      *
                          * <: page up, >: page down  *
                          *****************************

Select the partitions that will appear in the boot manager menu and define a menu item string for each
one using the options from “a” to “d”. In the “Menu entry” column you should see an entry for each
bootable partition, as shown in Figure 4-12.

20



Chapter 4 Example Installation

Figure 4-12. Boot selector configuration

Configure the different bootselection menu items. You can change the simple
menu entries for the matching partition entries that are displayed when the
system boots. Also, you can specify the timeout and default action to be
taken (if no selection is made in the bootmenu).

Number Type                             Menu entry
------ ----                             ----------    
0      DOS FAT16, >32MB                 Windows
1      NetBSD                           NetBSD
2      unused
3      unused

Boot menu timeout: 10
Default boot menu action: boot the first active partition

                          *****************************
                          * Change a bootmenu item    *
                          *                           *
                          *>a: Edit menu entry 0      *
                          * b: Edit menu entry 1      *
                          * c: Edit menu entry 2      *
                          * d: Edit menu entry 3      *
                          * <: page up, >: page down  *
                          *****************************

Option “e” enables you to choose a timeout for the boot menu: once the timeout is elapsed without a
choice from the user, the default partition (defined with option “f”) is booted. You can specify one of the
following as default:

• a partition

• another hard disk

• the first active partition

After finishing the boot manager configuration, the first part of the installation, namely disk partitioning,
is over.

The BIOS partitions, also called slices by BSD, have been created; there are now two slices: DOS and
NetBSD. It’s time to define the BSD partitions.

4.1.6 Disklabel
There are three alternatives for the creation of the BSD partitions, as shown by Figure 4-13.

21



Chapter 4 Example Installation

Figure 4-13. Disklabel

NetBSD uses a BSD disklabel to carve up the NetBSD portion of the disk into
multiple BSD partitions.  You must now set up your BSD disklabel.  You have
several choices.  They are summarized below.
-- Standard: the BSD disklabel partitions are computed by this program.
-- Standard with X: twice the swap space, space for X binaries.
-- Custom: you specify the sizes of all the BSD disklabel partitions.

The NetBSD part of your disk is 2047.50 Megabytes.
Standard requires at least 464.00 Megabytes.
Standard with X requires at least 610.00 Megabytes.

                         ****************************
                         * Choose your installation *
                         *                          *
                         *>a: Standard              *
                         * b: Standard with X       *
                         * c: Custom                *
                         ****************************

For a first time installation I suggest choosing options “a” or “b” and leaving to sysinst the partitioning
decisions. In this example life will be a little more complicated by modifying manually the disklabel
(only for teaching purposes, of course).

Note: even if you let the system decide for you, it is still better to examine carefully the generated
disklabel. If the disk space is insufficient the 1.5 sysinst is smart enough to detect it and issue a
warning; previous versions of the installer didn’t and silently created invalid partitions.

4.1.7 Creating a disklabel
First, let the installation program automatically create a disklabel. Choosing option “b” from Figure 4-13
we are taken to Figure 4-14.

Figure 4-14. Standard disklabel

We now have your BSD-disklabel partitions as (Size and Offset in MB):

   Size     Offset     End       FStype Bsize Fsize Mount point
   -------- ---------- --------- ------ ----- ----- -----------
a: 212      1019       1231      4.2BSD 8192  1024  /
b: 384      1232       1616      swap
c: 2047     1019       3066      unused
d: 3067     0          3066      unused
e: 1449     1617       3066      4.2BSD 8192  1024  /usr

                          *************************
                          * Partitions ok?        *
                          *                       *
                          *>a: Change a partition *
                          * b: Partitions are ok  *
                          *************************

22



Chapter 4 Example Installation

Having done this you could just confirm everything (with option “b”) and your work would be over.
Instead, let’s see what you need to do to modify the size of the swap partition to make it smaller and
increase the size of the /usr partition. To change the size of the swap partition, choose option “a”: in the
new screen we change the unit of measure to sectors. The result is shown in Figure 4-15.

Figure 4-15. Modify the disklabel (sec)

We now have your BSD-disklabel partitions as (Size and Offset in sec):
   Size     Offset     End       FStype Bsize Fsize Mount point
   -------- ---------- --------- ------ ----- ----- -----------
a: 435453   2088579    2524031   4.2BSD  8192  1024 /
b: 788256   2524032    3312287   swap
c: 4193277  2088579    6281855   unused
d: 6281856  0          6281855   unused
e: 2969568  3312228    6281855   4.2BSD  8192  1024 /usr
f: 0        0          0         unused
g: 0        0          0         unused
h: 0        0          0         unused

                    **************************************
                    * a: Change a                        *
                    * b: Change b                        *
                    * c: NetBSD partition - can’t change *
                    * d: Whole disk - can’t change       *
                    * e: Change e                        *
                    * f: Change f                        *
                    * g: Change g                        *
                    * h: Change h                        *
                    *>i: Set new allocation size         *
                    * x: Exit                            *
                    **************************************

The sequence of partition identifiers is standard: some letters are reserved for predefined uses.

• a is usually the root partition.

• b is the swap partition.

• c covers the whole NetBSD slice.

• d covers the whole hard disk: extending outside the NetBSD slice. With a similar method you will be
able to make a DOS or a Linux partition visible to NetBSD, by creating a BSD partition which is
outside the NetBSD slice.

• e is the first free partition. Usually /usr is mounted on “e”.

Note: the meaning of a partition id can differ from port to port. The preceding description applies to
port-i386.

You normally don’t want to modify partitions b and c. You are free to change the size and mount point of
the remaining partitions and to create new ones (with a maximum of 8, using the letters from e to h.)

To modify the swap partition you need to modify partition b. You will also need to modify partition “e”,
so that it begins right after the end of “b”. Partitions “c” and “d” will be left unchanged.

You will now create a 150 MB (307200 sectors) swap partition; this means that “b” will start at sector
2524032 and end at sector 2831231 (2524032+307200-1).

id: Size Offset End FStype Bsize Fsize Mount point
--- ---- ------ --- ------ ----- ----- -----------
a: 435453 2088579 2524031 4.2BSD 8192 1024 /
b: 307200 2524032 2831231 swap

23



Chapter 4 Example Installation

...

The newly freed space will be assigned to partition “e”, which will have: start = 2831232, size =
3450624 and end = 6281855. These values have been calculated as follows: “start” is the sector
immediately following the end sector of partition “b”; “end” is equal to the last sector of the NetBSD
partition; “size” is given by: End - Offset + 1.

id: Size Offset End FStype Bsize Fsize Mount point
--- ---- ------ --- ------ ----- ----- -----------
a: 435453 2088579 2524031 4.2BSD 8192 1024 /
b: 307200 2524032 2831231 swap
...
e: 3450624 2831232 6281855 4.2BSD 8192 1024 /usr

The preceding example shows the disklabel that you want. With option “b” and “e” you can input the
data that you have calculated.

This is depicted in Figure 4-16.

Figure 4-16. Modifying a BSD partition

You should set the file system (FS) kind first.  Then set the other values.

The current values for partition b are:

    Size      Offset    End       FStype Bsize Fsize Mount point
    --------- --------- --------- ------ ----- ----- -----------
 b: 788256    2524032   3312287   swap

                              ******************
                              * Change what?   *
                              *                *
                              *>a: FS kind     *
                              * b: Offset/size *
                              * c: Bsize/Fsize *
                              * d: Mount point *
                              * x: Exit        *
                              ******************

Figure 4-17 shows the modified disklabel.

24



Chapter 4 Example Installation

Figure 4-17. Modified disklabel

We now have your BSD-disklabel partitions as (Size and Offset in sec):
   Size     Offset     End       FStype Bsize Fsize Mount point
   -------- ---------- --------- ------ ----- ----- -----------
a: 435453   2088579    2524031   4.2BSD  8192  1024 /
b: 307200   2524032    2831231   swap
c: 4193277  2088579    6281855   unused
d: 6281856  0          6281855   unused
e: 3450624  2831232    6281855   4.2BSD  8192  1024 /usr
f: 0        0          0         unused
g: 0        0          0         unused
h: 0        0          0         unused

                    **************************************
                    * a: Change a                        *
                    * b: Change b                        *
                    * c: NetBSD partition - can’t change *
                    * d: Whole disk - can’t change       *
                    * e: Change e                        *
                    * f: Change f                        *
                    * g: Change g                        *
                    * h: Change h                        *
                    *>i: Set new allocation size         *
                    * x: Exit                            *
                    **************************************

Partition sizes: it is very difficult to give a general rule to decide how many partitions you should
create and their best sizes: this depends on the intended usage of the computer (server, workstation,
mail server, ...). This is why I recommend, for a first time installation, to stick with the sysinst
generated defaults. A complex server will probably need a more sofisticated partitioning; those who
deal with this type of problems will also know the answers.

When you are happy with the result, you can select option “x” to save and exit. You are now back in
Figure 4-14 where you can choose option “b”.

4.1.8 Final operations
The difficult part (creating the BIOS and the BSD partitions) is now over; the remaining part of the
installation is much simpler. Now you can choose a name for the hard disk (the default name is mydisk)
and confirm the operations that you have done.

Note: all that was done until now has not yet been committed to disk: it is still possible to change
your mind and go back to the main sysinst menu leaving the disk unchanged.

sysinst will now create the partitions and the file systems with fdisk, newfs, fsck and installboot and
then we will install the NetBSD sets.

4.1.9 Choosing the installation media
You have finished the first and most difficult part of the installation. In the next step you will choose the
type of installation, which can be full, which installs all the sets, or custom, which enables you to choose
the sets to be installed. If you don’t have a shortage of space on the hard disk I suggest to choose the

25



Chapter 4 Example Installation

former option. In this example option custom will be used only to show what it looks like. This brings
you to Figure 4-18.

Figure 4-18. Selecting the sets

The following is the list of distribution sets that will be used.

Distribution set   Use?
------------------ ----
Generic Kernel:    Yes   +*****************************+
Base          :    Yes   * Selection toggles inclusion *
System (/etc) :    Yes   *                             *
Compiler      :    Yes   *>a: Kernel                   *
Games         :    Yes   * b: Base                     *
Manuals       :    Yes   * c: System (/etc)            *
Miscellaneous :    Yes   * d: Compiler Tools           *
Text tools    :    Yes   * e: Games                    *
X11 clients   :    Yes   * f: Online Manual Pages      *
X11 fonts     :    Yes   * g: Miscellaneous            *
X11 servers   :    Yes   * h: Text Processing Tools    *
X11 contrib   :    Yes   * i: X11 base and clients     *
X programming :    Yes   * j: X11 fonts                *
X11 misc      :    Yes   * k: X11 servers              *
                         * l: X contrib clients        *
                         * m: X11 programming          *
                         * n: X11 misc                 *
                         * x: Exit                     *
                         +*****************************+

The first three sets are mandatory: without them the system can’t work. You can toggle the installation of
the remaining sets using the menu options. Initially all sets are selected for installation, which is the same
as the aforementioned full option. Leave all the sets on and proceed to the next step with option “x: Exit”.

sysinst then asks if you want to see filenames during the extraction from the sets.

Now sysinst needs to find the NetBSD sets (the .tgz files) and you must supply this information. The
menu offers several choiches:

Figure 4-19. Installation media

Your disk is now ready for installing the kernel and the distribution sets.
As noted in your INSTALL notes, you have several options.  For ftp or nfs,
you must be connected to a network with access to the proper machines.  If
you are not ready to complete the installation at this time, you may select
"none" and you will be returned to the main menu.  When you are ready at a
later time, you may select "upgrade" from the main menu to complete the
installation.

                        *******************
                        * Select medium   *
                        *                 *
                        *>a: ftp          *
                        * b: nfs          *
                        * c: cdrom        *
                        * d: floppy       *
                        * e: unmounted fs *
                        * f: local dir    *
                        * g: none         *
                        *******************

The options are explained in detail in the INSTALL document. It is also possible to install from an
unmounted filesystem (provided that it is of a type recognised by the install kernel): this means that, for
example, it is possible to copy all the sets to an existing MS-DOS partition and install from there.

26



Chapter 4 Example Installation

Figure 4-20. CD-ROM installation

Enter the CDROM device to be used and directory on the CDROM where the
distribution is located.  Remember, the directory should contain the .tgz
files.

device:    cd0 directory: /i386/binary/sets

                               ****************
                               * Change       *
                               *              *
                               *>a: Device    *
                               * b: Directory *
                               * c: Continue  *
                               ****************

Selecting “cdrom”, sysinst asks the name of the device (for example cd0) and mounts it automatically.
You should also input the pathname to the installation sets on the CD-ROM if it is different from the
default value. If, for example, the NetBSD distribution is in the NetBSD-1.5 directory you must modify
the pathname, using option “b”, like this:

/NetBSD-1.5/i386/binary/sets

Note: if you are using a non US keyboard you’ll have to be careful when you type the “/” character.
See Section 3.3.1.

The CD-ROM device name: if you don’t know the name of the CD-ROM device, you can find it in the
following way:

1. Press Ctrl-Z to pause sysinst and go to the shell prompt (that’s a nice feature!)

2. Type the command:

# cat /kern/msgbuf

This will show the kernel startup messages, including the name of the CD-ROM device (for
example cd0).

3. If the display scrolls too quickly, you can also use the ed editor.

# ed /kern/msgbuf

4. Go back to the installation program with the command:

# fg

27



Chapter 4 Example Installation

At the end of the installation sysinst displays a message saying that everything went well. Selecting
option "a: ok" the device files are created.

Figure 4-21. Congratulations

The extraction of the selected sets for NetBSD-1.5 is complete.  The system
is now able to boot from the selected harddisk.  To complete the
installation, sysinst will give you the opportunity to configure some
essential things first.

                          *************************
                          * Hit enter to continue *
                          *                       *
                          *>a: Ok                 *
                          *************************

The installation is over. Sysinst can now do some system configuration before rebooting. First you can
configure the timezone and, in the following screen, you can choose a password for root. Now it’s time to
reboot. Select “a: ok” and go back to the main menu, then remove the floppy from the drive and select
option “d: Reboot the computer”.

28



Chapter 5

The first boot

After installing the computer will reboot from the hard disk: if everything went well you’ll be looking at
the login prompt within a few seconds (or minutes, depending on your hardware). The system is not yet
configured but don’t worry: configuration is very easy and this approach is not inconvenient but, instead,
gives you a lot of flexibility. You’ll see how to quickly configure everyhing and, in the meantime, you’ll
learn how the system works; in the future, in case of trouble you’ll know where to look.

5.1 If something went wrong
If the system doesn’t boot it could be that the boot manager was not installed correctly or that there is a
problem with the MBR (Master Boot Record). Reboot the machine from the boot floppy and when you
see the prompt:

booting fd0a:netbsd - starting in ...

press the space bar during the 5 second countdown; the boot stops and a prompt is displayed. You can
have a basic help with the “?” key or with the “help” command.

type "?" or "help" for help.
> ?
commands are:
boot [xdNx:][filename] [-adrs]

(ex. "sd0a:netbsd.old -s")
ls [path]
dev xd[N[x]]:
help|?
quit
> boot wd0a:netbsd

The system should now boot from the hard disk instead of the foppy. If NetBSD boots correctly from the
hard disk, there is probably a Master Boot Record problem: you can install the boot manager or modify
its configuration with the fdisk -B command. See Section 25.4 for a detailed description.

5.2 Login
For the first login you will use the root superuser, which is the only user defined at the end of the
installation. At the password prompt write the password for root that you have defined during the
installation. If you haven’t defined a password, just press Enter.

NetBSD/i386 (Amnesiac) (ttyE0)

29



Chapter 5 The first boot

login: root
password

...
We recommend creating a non-root account and using su(1) for root access.
#

5.3 Changing the keyboard layout
The keyboard has still the US layout; if you have a different keyboard it’s better to change its layout now,
before starting to configure the system. For example, to use the italian keyboard, give the following
command:

# wsconsctl -k -w encoding=it
encoding -> it

A full list of keyboard mappings is in /sys/dev/wscons/wsksymdef.h but some of the more
common maps are:

• de

• dk

• fr

• it

• jp

• sv

• uk

• us

This setting will last until the next reboot. To make it permanent, add the previous command at the end of
the /etc/rc.local: it will be executed automatically the next time you reboot.

# echo "wsconsctl -k -w encoding=it" >> /etc/rc.local

Note: be careful and type two “>” characters. If you type only one “>”, you will overwrite the file
instead of adding a line.

There is also a better approach to the keyboard layout problem: you can compile a new kernel which uses
your preferred layout by default. This will be described in Chapter 9.

30



Chapter 5 The first boot

5.4 The man command
If you have never used a Unix(-like) operating system before, your best friend is now the man command,
which displays a manual page: the NetBSD manual pages are amongst the best and most detailed you
can find, although they are very technical.

man name shows the man page of the “name” command and man -k name shows a list of man pages
dealing with “name” (you can also use the apropos command.)

To learn the basics of the man command, type:

# man man

The manual is divided in nine sections, containing not only basic infomations on commands but also the
descriptions of some NetBSD features and structures. For example, take a look at the hier(7) man page,
which describes in detail the layout of the filesystem used by NetBSD.

# man hier

Other similar pages are release(7) and packages(7). Each section of the manual has an intro(8) man page
describing its content. For example, try:

# man 8 intro

Example 5-1. Manual sections

1. general commands (tools and utilities)

2. system calls and error numbers

3. C libraries

4. special files and hardware support

5. file formats

6. games

7. miscellaneous information pages

8. system maintenance and operation commands

9. kernel internals

A subject may appear in more than one section of the manual; to view a specific page, supply the section
number as an argument to the man command. For example, time appears in section 1 (the time user
command), in section 3 (the time function of the C library) and in section 9 (the time system variable).
To see the man page for the time C function, write:

# man 3 time

To see all the available pages:

# man -a time

31



Chapter 5 The first boot

5.5 Changing the root password
If you haven’t defined a password for root during installation (which was not possible on pre 1.5
systems) now it’s time to do it, using the passwd command.

# passwd
Changing local password for root.
New password:
Retype new password:

Password are not displayed on the screen while you type. Later we will see how to add other accounts on
the system.

5.6 Changing the shell
The default shell for root is csh; if this doesn’t mean anything to you, you should begin studying csh
with (csh(1)): it’s a good interactive shell although it lacks history editing (have a look at tcsh, bash or
even the NetBSD /bin/sh for this). If you want to change your shell, use the chsh(1) command. The
shells available on NetBSD after installation are:

• csh

• sh

• ksh

The new shell will come into effect the next time you login. In the mean time, you can issue the
following command:

# set filec

that enables filename completion on the command line (with the ESC key; use Ctrl+D for a list of
possible completions.)

You can also install other shells on the system, if you want to: tcsh, bash, zsh and other shells are
available in the package collection (which we shall examine later).

This is a good time to create the shell’s initialization files (.chsrc, .login, ...)

5.7 System time
NetBSD, like all UNIX systems, uses a system clock based on Greenwich time (UTC) and this is what
you should set your system clock to. If you want to keep the system clock set to the local time (because,
for example, you have a dual boot system with Windows installed), you must notify NetBSD, modifying
the rtc_offset system variable. You can edit the kernel configuration file and recompile the kernel or
you can patch directly the existing kernel (the new time will be effective only after rebooting): this is
easier than you think. For example:

# gdb --write /netbsd
GNU gdb 4.17

32



Chapter 5 The first boot

Copyright 1998 Free Software Foundation, Inc.
...
This GDB was configured as "i386--netbsd"...(no debugging symbols found)...
(gdb) set rtc_offset=-60
(gdb) quit

The value supplied (-60) is the number of minutes west of UTC.

To display the current setting of the rtc_offset variable:

# sysctl kern.rtc_offset
kern.rtc_offset = -60

Now the kernel knows how to convert the time of the PC clock in the UTC system time but you must still
configure the system for your local time zone (which you will find in /usr/share/zoneinfo/.) If you
have already done this during the installation you can skip this step (although it is better to check that the
setting is correct.) For example, for Italy:

# rm -f /etc/localtime
# ln -s /usr/share/zoneinfo/Europe/Rome /etc/localtime

Once everything is set up correctly, you can change the time with the following command:

# date [[[[[cc]yy]mm]dd]hh]mm

5.8 Basic configuration /etc/rc.conf

NetBSD uses the /etc/rc.conf for system configuration at startup: this file determines what will be
executed when the system boots. Understanding this file is very important.

Starting from version 1.5 of NetBSD the administration of rc.conf has changed. In prior versions all the
default values were stored in /etc/rc.conf and the user was supposed to modify directly this file;
version 1.5 introduced the /etc/defaults/rc.conf file, which contains the default values. To modify
a default value the user must write the new value in /etc/rc.conf: this definition overrides the one in
/etc/defaults/rc.conf (which stays unchanged.)

Understanding this file is very important. The manual page contains a detailed description of all the
options.

# man rc.conf

The first modifications are:

• Set “rc_configured=YES” (this modification might already have been done by the installation
software.)

• Set “lpd=YES” to activate the printer spooler daemon

• Define an hostname for your machine (use a fully qualified hostname). If you have a standalone
machine you can use any name (for example, woody.toys.net.) If your machine is connected to a
network, you should supply the correct network name.

33



Chapter 5 The first boot

Instead of defining the host name in the configuration file, you can write it in the /etc/myname file:
the result is the same.

Note: Make sure that the hostname is resolvable, either using DNS or /etc/hosts, some
programs do not work with an unresolvable hostname.

5.9 Rebooting the system
In this first session you have

• Configured the keyboard

• Changed the root password

• Changed root’s shell (optional)

• Changed the system time and the RTC offset

• Defined the local time

• Configured /etc/rc.conf

Now it’s time to reboot the system, with the following command:

# reboot

34



Chapter 6

The second boot

During the first boot you have set up a basic system configuration. This chapter describes some common
commands and operations.

6.1 dmesg
At system startup the kernel displays a long sequence of messages on the screen: these messages give
information about the kernel status (for example, available memory) and the peripherals that have been
detected on the system. This information is very important for diagnosing hardware or configuration
problems, and for determining the name of the devices for the peripherals (for example you can check if
your network card has been detected as ne0 or ne1.) Usually these messages scroll on the screen too fast
to be useful, but you can use the dmesg(8) command to view them again.

# dmesg | more

If something on your system doesn’t appear to work correctly and you ask for help on one of the
NetBSD mailing lists, always remember to include the relevant dmesg output in your post: it will help
other people diagnose your problem.

During the boot process NetBSD also writes a copy of the dmesg output to
/var/run/dmesg.out. This feature is useful because the system will scroll out “old”
messages over time.

6.2 Mounting the CD-ROM
New users are often surprised by the fact that although the installation program recognized and mounted
their CD-ROM perfectly, the installed system seems to have “forgotten” how to use the CD-ROM. There
is no special magic for using a CD-ROM: you can mount it as any other file system, all you need to know
is the device name and some options to the mount(8) command. You can find the device name with the
aforementioned dmesg(8) command. For example, if dmesg(8) displays:

# dmesg | grep ^cd
cd0 at atapibus0 drive 1: <ASUS CD-S400/A, , V2.1H> type 5 cdrom removable

the device name is cd0, and you can mount the CD-ROM with the following commands:

# mkdir /cdrom
# mount -t cd9660 -o ro /dev/cd0a /cdrom

35



Chapter 6 The second boot

in most cases NetBSD can also automatically detect the filesystem type. In most cases the following
command is sufficient:

# mount /dev/cd0a /cdrom

To make things easier, you can add a line to the /etc/fstab file.

/dev/cd0a /cdrom cd9660 ro,noauto 0 0

Without the need to reboot, you can now mount the cdrom with:

# mount /cdrom

When the cdrom is mounted you can’t eject it manually; you’ll have to unmount it before you can do that:

# umount /cdrom

There is also a software command which unmounts the cdrom and ejects it:

# eject /dev/cd0a

6.3 Mounting the floppy
To mount a floppy you must know the name of the floppy device and the file system type of the floppy.
Read the fdc(4) manpage for more information about device naming. For example, to read and write a
floppy in MS-DOS format you use the following command:

# mount -t msdos /dev/fd0a /mnt

Instead of /mnt, you can use another directory of your choice; you could, for example, create a /floppy
directory like you did for the cdrom. If you do a lot of work with MS-DOS floppies, you will want to
install the mtools package, which enables you to access a MS-DOS floppy (or hard disk partition)
without the need to mount it. It is very handy for quickly copying a file from/to floppy.

6.4 Accessing a DOS/Windows partition
If NetBSD shares the hard disk with MS-DOS or Windows, it is possible modify the disklabel and make
the DOS partitions visible from NetBSD. First, you must determine the geometry of the DOS partition ,
for example using fdisk(8).

# fdisk wd0
NetBSD disklabel disk geometry:
cylinders: 6232 heads: 16 sectors/track: 63 (1008 sectors/cylinder)
...
Partition table:
0: sysid 6 (Primary ’big’ DOS, 16-bit FAT (> 32MB))

start 63, size 2088516 (1019 MB), flag 0x80
beg: cylinder 0, head 1, sector 1
end: cylinder 259, head 0, sector 4

36



Chapter 6 The second boot

1: sysid 169 (NetBSD)
start 2088579, size 4193277 (2047 MB), flag 0x0

beg: cylinder 259, head 0, sector 4
end: cylinder 779, head 0, sector 1

2: <UNUSED>
3: <UNUSED>

Note: this example uses the wd0 hard disk: substitute the device for your hard disk.

The output of the fdisk command shows that the DOS partition begins at sector 63 and has a size of
2088516 sectors. The NetBSD partition begins at sector 2088579 (2088579 = 2088516 + 63). You will
use this data to modify the BSD disklabel: all you have to do is add one line which defines the position
and type of the MS-DOS partition, choosing one of the still unused partition id letters. Use the disklabel
command to modify the disklabel. If you give the -e option to disklabel it will invoke your favourite
editor ($EDITOR) to modify the disklabel. For example:

# disklabel -e wd0
...
# size offset fstype [fsize bsize cpg]
...

e: 3450624 2831232 4.2BSD 1024 8192 16 # (Cyl. 2808* - 6231)
f: 2088516 63 MSDOS

The partitions from “a” to “e” were already used by NetBSD and the first available id was “f”. The “size”
and “offset” fields have been filled with the previously calculated numbers. Next, the mount point must
be created. For example:

# mkdir /msdos

finally, a line will be added to the /etc/fstab file.

/dev/wd0f /msdos msdos rw,noauto 1 3

Note: a disklabel can also be generated automatically using the mbrlabel command. Please read
the mbrlabel(8) manpage for more information.

Now the MS-DOS partition can be mounted with a simple command:

# mount /msdos

With this method you can mount FAT and FAT32 partitions. If you want to mount the partition(s)
automatically at startup, remove the noauto option from /etc/fstab.

/dev/wd0f /msdos msdos rw 1 3

37



Chapter 6 The second boot

6.5 Adding users
It’s time to add new users to the system, since you don’t want to use the root account for your daily work.
NetBSD doesn’t have a program to create new users; instead you should read the adduser(8) manpage.

# man adduser

Following the instructions on the page you’ll also begin using vipw(8) which is the basic administration
tool for new accounts under NetBSD.

Note: NetBSD has a set of user administration tools; a useradd(8) command and other commands
too. For example, to create a new user:

# useradd -m joe

The defaults for the useradd(8) command can be changed; see the useradd(8) man page.

If you have an earlier version of NetBSD and don’t want to add new accounts manually you can
install a package like, for example, addnerd from the packages collection. I suggest that you take a
look at the man page and add at least one account manually, though.

Any accounts that can su to root require the account to be in the wheel group. This can be done when the
account is created by specifying a secondary group.

# useradd -m joe -G wheel

Note: If the system uses ssh, direct root access via ssh is disabled by default.

6.6 Shadow passwords
Shadow passwords are enabled by default on NetBSD and can’t be disabled: all the passwords in
/etc/passwd contain an “*”; the encrypted passwords belong to another file, /etc/master.passwd,
that can be read only by root. When you start vipw(8) to edit the password file, the program opens a copy
of /etc/master.passwd; when you exit, vipw(8) checks the validity of the copy, creates a new
/etc/passwd and installs a new /etc/master.passwd file. Finally, vipw(8) launches pwd_mkdb(8),
which creates the files /etc/pwd.db and /etc/spwd.db, two databases equivalent to /etc/passwd

and /etc/master.passwd but faster to process.

As you can see, passwords are handled automatically by NetBSD; if you use vipw(8) to edit the
password file you don’t need any special administration procedure.

It’s very important to always use vipw and the other tools for account administration (chfn(1), chsh(1),
chpass(1), passwd(1)) and to never modify directly /etc/master.passwd.

38



Chapter 6 The second boot

6.7 Stopping and rebooting the system
The command used to halt and/or reboot the system is shutdown(8).

# shutdown -h now
# shutdown -r now

Two other commands perform the same tasks:

# halt
# reboot

halt(8), reboot(8), and shutdown(8) are not synonyms: the latter is more sophisticated. On a multiuser
system you should really use shutdown(8); you can also schedule a shutdown, notify users, etc. For a
more detailed description, see shutdown(8), halt(8) and reboot(8).

39



Chapter 7

Printing

This chapter describes a simple configuration for printing, using an HP Deskjet 690C connected to the
first parallel port as an example. First, the system will be configured to print text documents, and next the
configuration will be extended to print PostScript documents using the Ghostscript program.

7.1 Enabling the printer daemon
After installation it is not yet possible to print, because the lpd printer spooler daemon is not enabled. To
enable lpd, one line in the /etc/rc.conf file must be changed from:

lpd=NO

to

lpd=YES

The change will come into effect at the next boot, but the daemon can be started manually now:

# lpd -s

To check if lpd is active, type the following command:

# ps ax | grep lpd
179 ?? Is 0:00.01 lpd

If you don’t see an entry for lpd in the output of the previous command, the daemon is not active.

Before configuring /etc/printcap it is better to make a printer test, to check if the connection is
working. For example:

# lptest 20 10 > /dev/lpt0

To see what the output should look like, try the same command without redirecting the output to the
printer:

# lptest 20 10

A frequent problem is that the output on the printer is not correctly aligned in columns but has a
“staircase” configuration. This usually means that the printer is configured to begin a new line at the left
margin after receiving both a <CR> (carriage return, ASCII 13) character and a <LF> (line feed, ASCII
10) character. NetBSD only sends a <LF> character. You can fix this problem:

• changing the configuration of the printer

40



Chapter 7 Printing

• using a simple printer filter (described later)

Note: in the previous example the lpd spooler is not involved because the program output is sent
directly to the printer device (/dev/lpt0) and is not spooled.

7.2 Configuring /etc/printcap

This section explains how to configure the example printer to print text documents.

The printer must have an entry in the /etc/printcap file; the entry contains the printer id (the name of
the printer) and the printer description. The lp id, is the default used by many programs.

Example 7-1. /etc/printcap

lp|local printer|HP DeskJet 690C:\
:lp=/dev/lpa0:sd=/var/spool/lpd/lp:lf=/var/log/lpd-errs:\
:sh:pl#66:pw#80:if=/usr/local/libexec/lpfilter:

The file format and options are described in detail in printcap(5). Please note that an input filter has been
specified (with the if option) which will take care of eliminating the staircase problem.

if=/usr/local/libexec/lpfilter

Printer driver and HP printers: Example 7-1 uses the lpa# device (polled driver) for the printer,
instead of the lpd# (interrupt driven driver). Using interrupts there is a communication problem with
some printers, and the HP Deskjet 690C is one of them: printing is very slow and one PostScript
page can take hours. The problem is solved using the lpa driver. It is also possible to compile a
custom kernel where lpd is polled.

The printcap entry for the printer also specifies a spool directory, which must be created; this directory
will be used by the lpd daemon to accumulate the data to be printed.

# cd /var/spool/lpd
# mkdir lp
# chown daemon:daemon lp
# chmod 770 lp

The only missing part is the lpfilter input filter, which must be written. The only task performed by
this filter is to configure the printer for the elimination of the staircase problem before sending the text to
be printed. The printer used in this example requires the following initialization string: “ESC &k2G”.

Example 7-2. /usr/local/libexec/lpfilter

#!/bin/sh
# Treat LF as CR+LF
printf "\033&k2G" && cat && exit 0

41



Chapter 7 Printing

exit 2

# cd /usr/local/libexec
# chmod 755 lpfilter*

Note: there is another filter that can be used:

\:if=/usr/libexec/lpr/lpf:

This filter is much more complex than the one presented before. It is written to process the output of
nroff and handles underline and overprinting, expands tab characters and converts LF to CR + LF.
The source to this filter program can be found in /usr/src/usr.sbin/lpr/filters/lpf.c.

The lptest command can be run again now, this time using the lpd spooler.

# lptest 20 10 | lpr -h

The lpr program prints text using the spooler to send data to the printer; the -h option turns off the
printing of a banner page (not really necessary, because of the sh option in /etc/printcap).

You can solve the staircase problem using a variety of tools and methods, for example C programs. The
solution presented has the benefit of being very simple.

7.3 Configuring Ghostscript
Now that basic printing works, the functionality for printing PostScript files can be added. The simple
printer used in this example does not support native printing of PostScript files; a program must be used
capable of converting a PostScript document in a sequence of commands that can be understood by the
printer. The Ghostscript program, from the packages collection, can be used to this purpose (see
Chapter 10). This section explains how to configure Ghostscript to print PostScript files on the HP
Deskjet 690C.

A second id for the printer will be created in /etc/printcap: this new id will use a different input
filter, which will call Ghostscript to perform the actual print of the PostScript document. Therefore, text
documents will be printed on the lp printer and PostScript documents on the ps printer: both entries use
the same physical printer but have different printing filters.

The same result can be achieved using different configurations. For example, a single entry with a filter
could be used: the filter should be able to automatically determine the format of the document being
printed and use the appropriate printing program. This approach is simpler but leads to a more complex
filter; if you like it you should consider installing the magicfilter program from the packages collection: it
does this and many other things automatically.

The new /etc/printcap file looks like this:

Example 7-3. /etc/printcap

lp|local printer|HP DeskJet 690C:\
:lp=/dev/lpa0:sd=/var/spool/lpd/lp:lf=/var/log/lpd-errs:\

42



Chapter 7 Printing

:sh:pl#66:pw#80:if=/usr/local/libexec/lpfilter:

ps|Ghostscript driver:\
:lp=/dev/lpa0:sd=/var/spool/lpd/ps:lf=/var/log/lpd-errs:\
:mx#0:sh:if=/usr/local/libexec/lpfilter-ps:

Option mx#0 is very important for printing PostScript files because it eliminates size restrictions on the
input file; PostScript documents tend to be very big. The if option points to the new filter. There is also a
new spool directory.

The last step is the creation of the new spool directory and of the filter program.

# cd /var/spool/lpd
# mkdir ps
# chown daemon:daemon ps
# chmod 770 ps

The filter program for PostScript output is more complex than the text base one: the file to be printed is
fed to the interpreter which, in turn, sends to the printer a sequence of commands in the printer’s control
language. We have achieved to transform a cheap color printer in a device suitable for PostScript output,
by virtue of the NetBSD operating system and some powerful freeware packages. The options used to
configure Ghostscript are described in the Ghostscript documentation: cdj550 is the device used to drive
the HP printer.

Example 7-4. /usr/local/libexec/lpfilter-ps

#!/bin/sh
# Treat LF as CR+LF
printf "\033&k2G" || exit 2
# Print the postscript file
/usr/pkg/bin/gs -dSAFER -dBATCH -dQUIET -dNOPAUSE -q -sDEVICE=cdj550 \
-sOutputFile=- -sPAPERSIZE=a4 - && exit 0
exit 2

To summarize: two different printer names have been created on the system, which point to the same
physical printer but use different options, different filters and different spool directories. Text files and
PostScript files can be printed. To print PostScript files the Ghostscript package must be installed on the
system.

7.4 Printer management commands
This section lists some useful BSD commands for printer and print jobs administration. Besides the
already mentioned lpr and lpd commands, we have:

lpq

examine the printer job queue.

lprm

delete jobs from the printer’s queue.

43



Chapter 7 Printing

lpc

check the printing system, enable/disable printers and printer features.

7.5 Remote printing
It is possible to configure the printing system in order to print on a printer connected to a remote host.
Let’s say that, for example, you work on the wotan host and you want to print on the printer connected to
the loge host. The /etc/printcap file of loge is the one of Example 7-3. From wotan it will be
possible to print Postscript files using Ghostscript on loge.

The first step is to enable on the loge host the print jobs submitted from the wotan host. This is
accomplished inserting a line with the wotan host name in the /etc/hosts.lpd file on loge. The
format of this file is very simple: each line contains the name of a host to be

Next, the /etc/printcap file on wotan must be configured in order to send print jobs to loge. For
example:

lp|line printer on loge:\
:lp=:sd=/var/spool/lpd/lp:lf=/var/log/lp-errs:\
:rm=loge:rp=lp

ps|Ghostscript driver on loge:\
:lp=:sd=/var/spool/lpd/lp:lf=/var/log/lp-errs:\
:mx#0:\
:rm=loge:rp=ps

There are four main differences between this configuration and the one of Example 7-3.

1. The definition of “lp” is empty.

2. The “rm” entry defines the name of the host to which the printer is connected.

3. The “rp” entry defines the name of the printer connected to the remote host.

4. It is not necessary to specify input filters because the definitions on the loge host will be used.

Now the print jobs for “lp” and “ps” on wotan will be sent automatically to printer connected to loge.

44



Chapter 8

Using the build.sh Front End

NetBSD 1.6 and forward comes equipped with an improved toolchain that can be used to easily perform
system builds, new kernels, and cross compile with a relative amount of ease. In this chapter, the use of
the build.sh cross compiling a kernel, cross compiling a build, and creating a release are covered.
Native kernel builds are covered in Chapter 9.

Before we do anything, the sources must be retrieved. See Chapter 19 for getting the sources.

8.1 Building the tools
Once the sources have been obtained, the native platform tools have to be built before doing anything
else. Doing this is simple, we will use the default object directory.

# mkdir /usr/obj
# cd /usr/src
# ./build.sh tools

If the tools have already been built and they only need updated, then the update option can be used to
only rebuild tools that have changed.

# ./build.sh -u tools

Now that the native tools have been built, the tools for another target system can be created. In our
example, sparc64 will be used.

# ./build.sh -m sparc64 tools

When the tools are finished building, information about them and several environment variables is
printed out:

Summary of results:
build.sh command: ./build.sh -u -m sparc64 tools
build.sh started: Mon Jul 28 11:08:30 UTC 2003
Bootstrapping nbmake
MACHINE: sparc64
MACHINE_ARCH: sparc64
TOOLDIR path: /usr/src/tooldir.NetBSD-1.6U-i386
DESTDIR path: /usr/src/destdir.sparc64
RELEASEDIR path: /usr/src/releasedir
Created /usr/src/tooldir.NetBSD-1.6U-i386/bin/nbmake
makewrapper: /usr/src/tooldir.NetBSD-1.6U-i386/bin/nbmake-sparc64
Updated /usr/src/tooldir.NetBSD-1.6U-i386/bin/nbmake-sparc64
Tools built to /usr/src/tooldir.NetBSD-1.6U-i386
build.sh started: Mon Jul 28 11:08:30 UTC 2003

45



Chapter 8 Using the build.sh Front End

build.sh ended: Mon Jul 28 11:11:14 UTC 2003

Now that the tools for sparc64 have been built, it is time to cross compile the kernel.

8.2 Cross Compiling a Kernel
A cross compiled kernel can be done by either going to the architecture conf directory and explicitly
calling the cross compiled tools or the easier method of using build.sh.

Configuring the kernel is the same:

# cd /usr/src/sys/arch/sparc64/conf
# cp GENERIC MYKERNEL

Then edit MYKERNEL. Once finished, all that needs to be done is to use build.sh to build the kernel (it
will also configure it):

# cd /usr/src
# ./build.sh -u -m sparc kernel=MYKERNEL

Notice that update was specified, the tools are already built, there is no reason to rebuild all of the tools.
Once the kernel is built, build.sh will print out the location of it along with other information:

Summary of results:
build.sh command: ./build.sh -u -m sparc64 tools
build.sh started: Mon Jul 28 11:08:30 UTC 2003
Bootstrapping nbmake
MACHINE: sparc64
MACHINE_ARCH: sparc64
TOOLDIR path: /usr/src/tooldir.NetBSD-1.6U-i386
DESTDIR path: /usr/src/destdir.sparc64
RELEASEDIR path: /usr/src/releasedir
Created /usr/src/tooldir.NetBSD-1.6U-i386/bin/nbmake
makewrapper: /usr/src/tooldir.NetBSD-1.6U-i386/bin/nbmake-sparc64
Updated /usr/src/tooldir.NetBSD-1.6U-i386/bin/nbmake-sparc64
Building kernel without building new tools
Building kernel: MYKERNEL
Build directory: /usr/src/sys/arch/i386/compile/MYKERNEL
Kernels built from MYKERNEL:
/usr/src/sys/arch/sparc64/compile/MYKERNEL/netbsd

build.sh started: Mon Jul 28 11:08:30 UTC 2003
build.sh ended: Mon Jul 28 11:11:14 UTC 2003

8.3 Build & Release
By now it is probably becoming clear that the toolchain actually works in stages. First is the native tools
build (which actually has a step before it, makewrappers), then a kernel. Since build.sh will attempt to
rebuild the tools at every invocation, using update saves time. It is also probably clear that outside of a

46



Chapter 8 Using the build.sh Front End

few options, the build.sh semantics are basically [ build.sh command ]. So, it stands to reason that
creating a build and/or release, is a matter of using the right commands.

It should be no surprise that building and creating a release would look like the following:

# ./build.sh -u -m sparc build
# ./build.sh -u -m sparc release

Looking at the information about environment variables (since so far only the defaults have been used), a
build would be at:

/usr/src/destdir.sparc64

The release would be located at:

RELEASEDIR path: /usr/src/releasedir

8.4 Environment Variables
Not unlike the old building method, the toolchain has a lot of variables that can be used to direct things
like where certain files go, what (if any) tools are used and so on. A look in src/BUILDING covers most
of them. In this section two examples of changing default variables are given in two different ways.

8.4.1 Changing the Destination Directory
Many people like to track current and perform cross compiles of architectures that they use. The logic for
this is simple, sometimes a new feature or device becomes available and someone may wish to use it. By
keeping track of changes and building every now and again, one can be assured that they can create their
own release.

It is reasonable to assume that if one is tracking and building for more than one architecture, they might
want to keep the builds in a different location than the default. There are two ways to go about this, use a
script to set the new DESTDIR, or simply do so interactively. In any case, it can be set the same way as
any other variable (depending on your shell of course).

For the bourne or korn shells:

# export DESTDIR=/usr/builds/sparc64

For the c shell:

# setenv DESTDIR /usr/builds/shark

Simple enough. When the build is run, the binaries and files will be sent to /usr/builds.

8.4.2 Static Builds
The NetBSD Toolchain builds dynamically by default. Many users still prefer to be able to build
statically. Sometimes a small system can be created without having libs is a good example of a full static

47



Chapter 8 Using the build.sh Front End

build. If a particular build machine will always need one environment variable set in a particular way,
then it is easiest to simply add the changed setting to /etc/mk.conf.

To make sure a build box always builds statically, simply add the following line to /etc/mk.conf:

LDSTATIC=-static

48



Chapter 9

Compiling the kernel

Most NetBSD users will, sooner or later, compile a customized kernel. This gives you several benefits:

• you can dramatically reduce kernel size and, therefore, memory occupation (for example, from 2.5
MB to 1.2 MB). On version 1.5 of NetBSD compiling a custom kernel reduced the size from 4.7 MB
to 1.9 MB.

• you can improve performance.

• you can tune the system.

• you can solve problems of detection/conflicts of peripherals.

• you can customize some options (for example keyboard layout, BIOS clock offset, ...)

• you can get a deeper knowledge of the system.

9.1 Installing the kernel sources

You can get the kernel sources from AnonCVS, see Chapter 19.

Be patient: this operation lasts many minutes, because the repository contains hundreds of files. The
sources live in /usr/src/sys; the symbolic link sys points to this directory. Therefore the following
commands have the same effect:

# cd /usr/src/sys
# cd /sys

Once the sources are checked out, you can create a custom kernel: this is not as difficult as you think. In
fact, a new kernel can be created in a few steps which will be described in the following sections.

9.2 Italian keyboard layout
Before compiling the kernel, Italian users should consider modifying the predefined layout for the italian
keyboard, which is defined in the source file /sys/dev/pckbc/wskbdmap_mfii.c. In the default
layout some characters useful for programmers are missing (for example, left and right braces and tilde).
This is an alternative layout:

static const keysym_t pckbd_keydesc_it[] = {
...

49



Chapter 9 Compiling the kernel

KC(8), KS_7, KS_slash, KS_braceleft,
KC(9), KS_8, KS_parenleft, KS_bracketleft,
KC(10), KS_9, KS_parenright, KS_bracketright,
KC(11), KS_0, KS_equal, KS_braceright,
KC(12), KS_apostrophe, KS_question, KS_grave,
KC(13), KS_igrave, KS_asciicircum, KS_asciitilde,
KC(26), KS_egrave, KS_eacute, KS_bracketleft, KS_braceleft,
KC(27), KS_plus, KS_asterisk, KS_bracketright,KS_braceright,
...

The previous layout defines the following mappings:

Keys Character

Alt Gr + 7 {

Alt Gr + 8 [

Alt Gr + 9 ]

Alt Gr + 0 }

Alt Gr + ’ ‘

Alt Gr + ì ~

Alt Gr + é [

Alt Gr + + ]

Shift + Alt Gr + è {

Shift + Alt Gr + + }

Console driver: starting with version 1.4, NetBSD uses the wscons multiplatform console driver to
handle screen, keyboard and mouse. Previous versions used pccons or pcvt. For a detailed
description, see Chapter 14.

9.3 Recompiling the kernel
To recompile the kernel you must have installed the compiler set (comp.tgz).

Basic steps for kernel compilation

1. Build the toolchain

2. Create/modify the kernel configuration file

3. Configure the kernel

4. Generate dependencies

5. “Make” the kernel

6. Install the kernel

50



Chapter 9 Compiling the kernel

9.4 Build the toolchain
The NetBSD toolchain provides a simple mechanism for compiling the NetBSD system both natively or
when the need arises, cross compiling for other targets. In this example, a native toolchain is built (as
root) by simply typing:

# cd /usr/src
# ./build.sh tools

Once the tools are built, the kernel can be reconfigured and compiled.

9.5 Creating the kernel configuration file

Note: The directories described in this section are i386 specific. Users of other architectures must
substitute the appropriate directories (usually subdirectories of arch.)

The kernel configuration file defines the type, the number and the characteristics of the devices supported
by the kernel as well as several kernel configuration options. Kernel configuration files are located in the
/sys/arch/i386/conf directory. The easiest way to create a new file is to copy an existing one and
modify it: usually the best choice on most platforms is the GENERIC configuration. In the configuration
file there are comments describing the options; a more detailed description is found in the options(4) man
page.

# cd /sys/arch/i386/conf/
# cp GENERIC MYKERNEL
# vi MYKERNEL

Kernel names: the names of the kernel configuration files are historically in all uppercase.

The modification of a kernel configuration file basically involves three operations:

1. support for hardware devices is included/excluded in the kernel (for example, SCSI support can be
removed if it is not needed.)

2. support for kernel features is enabled/disabled (for example, enable NFS client support, enable
Linux compatibility, ...)

3. tuning kernel parameters.

Lines beginning with “#” are comments; lines are disabled by commenting them and enabled by
removing the comment character. It is better to comment lines instead of deleting them; it is always
possible uncomment them later.

The output of the dmesg(8) command can be used to determine which lines can be disabled. For each
line of the type:

XXX at YYY

51



Chapter 9 Compiling the kernel

both XXX and YYY must be active in the kernel configuration file. You’ll probably have to experiment a
bit before achieving a minimal configuration but on a desktop system without SCSI and PCMCIA you
can halve the kernel size.

You should also examine the options in the configuration file and disable the ones that you don’t need.
Each option has a short comment describing it, which is normally sufficient to understand what the
option does. Many options have a longer and more detailed description in the options(4) man page.
While you are at it you should set correctly the options for the national keyboard support and for local
time on the CMOS clock. For example, for Italy:

options RTC_OFFSET=-60
...
options PCKBD_LAYOUT="KB_IT"

The adjustkernel Perl script, which can be found at http://www.feyrer.de/Misc/adjustkernel, analizes
the output of dmesg(8) and automatically generates a minimal configuration file. To run it you need to
have Perl installed on your system. The installation of new software is described in detail in the
Chapter 10. If you want to install Perl now, download the pre-compiled package perl-5.00404.tgz
and write the following command:

# pkg_add perl-5.00404.tgz

Now Perl is installed, configured and ready to work: easier than this it’s impossible...

You can now run the script with:

# cd /sys/arch/i386/conf
# perl adjustkernel GENERIC > MYKERNEL

I tried this script and it worked very well, saving me a lot of manual editing. Beware that the script only
configures the available devices: you must still configure manually the other options (eg. Linux
emulation, ...)

9.6 Configuring the kernel
When you’ve finished modifying the kernel configuration file (which we’ll call MYKERNEL), you should
issue the following command:

# config MYKERNEL

If MYKERNEL contains no errors, the config(8) program will create the necessary files for the compilation
of the kernel, otherwise it will be necessary to correct the errors before running config(8) again.

9.7 Generating dependencies and recompiling
Dependencies generation and kernel compilation is performed by the following commands:

# cd ../compile/MYKERNEL
# make depend

52



Chapter 9 Compiling the kernel

# make

It can happen that the compilation stops with errors; there can be a variety of reasons but the most
common cause is an error in the configuration file which didn’t get caught by config(8). Sometimes the
failure is caused by a hardware problem (often faulty RAM chips): the compilation puts a higher stress
on the system than most applications do. Another typical error is the following: option B, active, requires
option A which is not active.

A full compilation of the kernel can last from some minutes to several hours, depending on the hardware.
See the following table for some examples:

CPU RAM (MB) Approx. time

486 DX2 50 20 1 hour

P166 96 15 minutes

PIII 128 5 minutes

68030/25 8 4 hours

The output of the make command is the netbsd file in the compile directory: this file should be copied
in the root directory, after saving the previous version.

# mv /netbsd /netbsd.old
# mv netbsd /

Customization can considerably reduce the kernel’s size. In the following example netbsd.old is the
install kernel and netbsd is the new kernel.

-rwxr-xr-x 1 root wheel 1342567 Nov 13 16:47 /netbsd
-rwxr-xr-x 1 root wheel 3111739 Sep 27 01:20 /netbsd.old

The new kernel is activated after rebooting:

# reboot

9.8 If something went wrong
When the PC is restarted it can happen that the new new kernel doesn’t work as expected or even doesn’t
boot at all. Don’t worry: if this happens, just reboot with the previously saved kernel and remove the new
one (it is better to reboot “single user”.)

• Reboot the machine

• Press the space bar at the boot prompt during the 5 seconds countdown

boot:

• Type

> boot netbsd.old -s

53



Chapter 9 Compiling the kernel

• Now issue the following commands to restore the previous version of the kernel:

# fsck /
# mount /
# mv netbsd.old netbsd
# exit

54



Chapter 10

The package collection

The NetBSD package collection is a collection of tools that greatly simplify the compilation and
installation of a huge quantity of free software for Unix systems. Only one or two commands are
required to install a perfectly configured and working package.

The first contact with the NetBSD package system can generate a little confusion: apparently there are
different commands that do the same thing. The question is actually very simple: here are two ways to
install a program. You can

• compile a package from source on your system. This is accomplished using the package collection,
which can automatically download the sources from the Internet, compile them, install and configure
the program and the documentation with only two commands. The Package Collection consists of a
set of makefiles and configuration files which use the standard Unix tools installed with the base
system. Another nice feaure of the package system is that it can automatically check the required
dependencies and download and install the dependent packages too. The package collection is not
installed automatically with the base system because it undergoes frequent updates: the following
sections explain how to download and install it on your system. The NetBSD site contains a very
thorough technical description of the package system.

• install a precompiled and preconfigured version of the program. This is accomplished with the
pkgtools set of utilities, which are installed with the base system. This method is faster but less flexible
than the previous one (for example, you can’t configure the compile time options.) The pkgtools are
also used for the management of the installed programs (both from source and precompiled), which
are recorded in a database: you can, for example, list the installed packages, remove a package, etc.

If you only want to install precompiled programs, you don’t need to download the package collection.

The two aforementioned methods both require that someone else has “created a package”, i.e. has ported
and configured a program for NetBSD. Although the package collection comprises more that 3500
programs, it is possible that the one that you want is still not included. In this case you can compile it
without using the package system and, once you get it working, create a package that can be added to the
collection: other users will benefit from your work.

10.1 Installing the package collection
Before installing a program from source, you should download and install the package collection from
the NetBSD site or from the mirror of your choice. This is described in the following steps.

55



Chapter 10 The package collection

1. Download the latest version of the package system sources, which include all the necessary
makefiles and configuration files, from ftp://ftp.NetBSD.org/pub/NetBSD/NetBSD-current/tar_files/.
The file to be downloaded is pkgsrc.tar.gz.

2. Remove the existing collection from your hard disk (if you already have installed it) with the
following command:

# cd /usr
# rm -rf pkgsrc

3. Install the collection that you have downloaded:

# tar -xzvpf pkgsrc.tar.gz -C /usr

The execution of the previous command can last many minutes, because of the huge number of
(small) files that are extracted. At the end, the framework required for the installation of new
programs is ready and you can start installing them.

Note: by now it is probably clear that the previous commands installed the configuration files
required for the automatic installation of programs on your system: you have not yet installed the
programs! Basically, the system now has a list of the available packages and the instructions to
fetch, compile and install them.

When you have installed the package collection you can browse it with Lynx or Netscape and read the
details and the descriptions of all the available packages and package categories. For example:

$ cd /usr/pkgsrc
$ lynx README.html

Don’t lose the distfiles

When you remove an existing package collection to install a newer version, don’t forget to
back up your /usr/pkgsrc/distfiles subdirectory before removing /usr/pkgsrc.
This directory is used to store downloaded source tarballs, if you remove this directory your
system has to download these tarballs one more time when pkgsrc needs them. If you don’t
want to run this risk, you can instruct the system to use another directory for the distfiles,
one which is not a subdirectory of /usr/pkgsrc. For example, create the new directory:

# mkdir /usr/pkgsrc_distfiles

Add the following line to /etc/mk.conf:

DISTDIR=/usr/pkgsrc_distfiles

Of course, you can use a directory of your choice instead of /usr/pkgsrc_distfiles.

You can configure many aspects of the package system with /etc/mk.conf. You can find
a detailed example in the /usr/pkgsrc/mk/mk.conf.example file.

56



Chapter 10 The package collection

10.2 Updating the package collection
The package collection is frequently updated: you can find a new version on the ftp site almost weekly.
To update the collection on your system follow the same instructions as for first time installation.

Sometimes, when updating the package collection, it will be necessary to update the “pkgtools” utilities
too. You can easily spot if you need to do it: when you try to install a program the package system
complains that your pkgtools are outdated.

# make
===> Validating dependencies for gqmpeg-0.6.3
Your package tools need to be updated to 2000/02/02 versions.
The installed package tools were last updated on 1999/01/01.
Please make and install the pkgsrc/pkgtools/pkg_install package.
*** Error code 1

The easiest way to update is:

# cd /usr/pkgsrc/pkgtools/pkg_install
# make install

After this you can resume the installation of the package which issued the original error message.

Note: You can determine the required version examing the pkgsrc/mk/bsd.pkg.mk file: look for the
line with:

PKGTOOLS_REQD = 20000202

(the 20000202 date is only an example.) This means that the version of the programs that you need
is in the pkg_install-20000202.tar.gz file, that you can find on the NetBSD ftp site under
packages/distfiles/LOCAL_PORTS. pkg_install can be installed like any other package.

10.3 Example: installing a program from source
This section describes the installation of an example program: the cdrecord application. First, cd to the
/usr/pkgsrc/sysutils/cdrecord directory.

10.3.1 Downloading the sources
If you are connected to the Internet, the Makefile will automatically fetch the required sources and you
don’t need to read this section.

Downloading from another machine

A very common scenario is that you download the package sources on another machine
with a fast Internet connection (for example at work) and then install them on your NetBSD
system (for example at home.)

57



Chapter 10 The package collection

Otherwise you should take care of getting the tarballs yourself. In this case you need to know the
name(s) of the tarball(s); look in the Makefile for the line

DISTNAME = cdrtools-2.0

The full name of the package is cdrtools-2.0.tar.gz.

You can achieve the same result in an easier way with the following commands:

# cd /usr/pkgsrc/sysutils/cdrecord
# make fetch-list

which also show a list of sites from where the package can be downloaded.

10.3.2 Compiling and installing
To compile the package write

# cd /usr/pkgsrc/sysutils/cdrecord
# make

The previous command fetches the source archive (if it is not already present in the distfiles directory),
extracts the sources, applies the patches necessary to compile it on NetBSD and then builds the package.

To install it

# make install

The installation of the new program is recorded on your system: you can check with the pkg_info -a
command.

Then cdrecord package is ready for use; you can make some room removing the intermediate files
created by the compiler:

# make clean
# make clean-depends

The second command is needed if some dependent packages have been installed. The same result can be
achieved with one command:

# make clean CLEANDEPENDS=1

10.4 Example: installing a binary package
I have already explained in the first part of this chapter that the package system can install program from
source but can also install binary packages, prepared by someone else for NetBSD. This second form of
installation is faster because the compilation of the package is not needed and the tarballs for the binary
package are usually smaller and faster to fetch. To install a binary package the package collection is not
needed: only the “pkgtools” utilities are needed.

58



Chapter 10 The package collection

The tarballs for the binary programs usually have the extension .tgz while the source tarballs usually
end with .tar.gz.

Note: not all the source tarballs end with .tar.gz. The package system can handle other types of
packages, for example .zip, .bz2, etc.

It is not strictly necessary to download binary packages prior to installation: you can also use
ftp://-URLs. For example:

ftp://ftp.NetBSD.org/pub/NetBSD/packages/1.4.2/i386/All/tcsh-6.09.00.tgz

If you don’t know what version of the package is available on the FTP site you can even leave out the
version inormation and pkg_add will pick the latest version on the FTP server. For example:

# pkg_add ftp://ftp.NetBSD.org/pub/NetBSD/packages/1.4.2/i386/All/tcsh

It is also possible to set PKG_PATH to a ;-separated list of path and URLs and then omit that part for
pkg_add:

# PKG_PATH="/cdrom;/usr/pkgsrc/packages/All;ftp://ftp.NetBSD.org/pub/NetBSD/packages/1.4.2/i386/All"
export PKG_PATH
# pkg_add tcsh

The previous command installs the first tcsh binary package that it finds.

As an example, let’s install the texinfo program in precompiled form.

1. Copy gtexinfo-3.12.tgz in a temporary directory.

2. Give the following command

# pkg_add -v gtexinfo-3.12.tgz

3. Check that the package has been installed with the command

# pkg_info

4. Remove the file gtexinfo-3.12.tgz from the temporary directory.

Precompiled packages are very practical to use because they require a minimal effort and time for
installation, but source packages give more control because their compilation options can be customized.
The installation is somewhat longer, because of the compilation, and this could be critical on some
(older) platforms.

Before installing a precompiled package with pkg_add, it is better to examine it with the pkg_info
command. For example:

# pkg_info -f jpeg-6b.tgz

It is worth examining the first CWD command, to check where the package is installed (base directory.)
The most common base directories are /usr/pkg and /usr/X11R6. If the base directory is not what
you want, you can change it with the -p of the pkg_add command. For example, the jpeg-6b.tgz
package is installed in /usr/pkg by default, but you can install it in /usr/X11R6 if you extract it with
the following command:

59



Chapter 10 The package collection

# pkg_add -p /usr/X11R6 -v jpeg-6b.tgz

10.5 Package management commands
The most important commands for package management are:

pkg_add

adds precompiled packages.

pkg_delete

removes installed packages. Package names can be given with or without version; if no version is
given, pkg_delete will find out which version is installed. Wildcards can be used (but must be
escaped for the shell); for example:

# pkg_delete "*emacs*"

The -r option is very powerful: it removes all the packages that require the package in question and
then removes the package itself. For example:

# pkg_delete -r jpeg

will remove jpeg and all the packages that used it; this allows upgrading the jpeg package.

pkg_info

shows information on packages, installed and not installed.

pkg_create

creates new packages for the package collection. This program is used to create new precompiled
packages. It’s called automatically by the build system and there’s no need to call it by hand.

pkg_admin

executes various administrative functions on the package system.

10.6 Quick Start Packaging Guide
This section details a quick start method for building relatively small Packages for the NetBSD
packaging system. For more details on some of the intricacies on the NetBSD packaging system see
pkgsrc documentation (../../Documentation/pkgsrc/).

10.6.1 Tools
There are three primary tools for rapidly building a small package addition to NetBSD:

url2pkg

60



Chapter 10 The package collection

a template package
pkglint

10.6.1.1 url2pkg

The url2pkg utility can be installed from the pkgsrc tree. This tool helps the package builder quickly fill
in and test rudimentry aspects of package building.

10.6.1.2 Template package

A template package example, bison, is provided in the appendices of the pkgsrc documentation
(../../Documentation/pkgsrc/).

10.6.1.3 pkglint

The pkglint utility can be installed from the pkgsrc tree. This tool basically checks for package
correctness.

10.6.2 Getting Started
Starting the process is fairly simple. It is important that the builder (e.g. you) have already tested building
the package from the sources on a NetBSD system. Otherwise setting up a new package could be
problematic if if fails to build. It should be noted that most often, a patch can be written for the sources
and included in the package to fix any build problems. That is beyond the scope of this quick start guide
(see the pkgsrc documentation (../../Documentation/pkgsrc/) for details).

10.6.2.1 Using url2pkg

The next step is to use url2pkg.

Following are the steps for using url2pkg to create some of the initial files needed for a new package:

1. Make the directory under the appropiate pkgsrc directory for the new package. Do not put anything
in it yet.

2. cd into the new directory.

3. type

$ url2pkg

4. You will be prompted to enter a url at this point, enter the url and hit <Return>.

5. A vi session will begin

Note: this uses the default location of vi on NetBSD, by default it is nvi. If you normally use another vi
clone such as vim you may get .exrc errors.

61



Chapter 10 The package collection

The vi session is for the Makefile of the new package. You must enter the package name, package
maintainer email and the category that the package will fall under.

6. Save the file and exit.

7. url2pkg will automatically fetch the package and put it in the work subdirectory.

8. Next, url2pkg will generate md5 files.

That ends a url2pkg session, please note url2pkg does not fill in any other files except the Makefile. It
will generate an empty PLIST file.

10.6.3 Filling in the Rest
Now that the Makefile has been generated, the remaining files must be created. Using your template
package, copy over the following files from the template package’s pkg subdirectory:

DESCR

A multi-line description of the piece of software. This should include credits as well.

COMMENTS

A one-line description of the piece of software. There is no need to mention the package’s name -
this will automatically be added by the pkg_* tools when they are invoked.

PLIST

This file contains the location of files to be installed on the system, for a small package (e.g. one
binary and one or two man pages) peeking at the distribution’s Makefile, install script etc. should
easily illustrate where to put

10.6.4 Checking with pkglint
With all of the files ready, it is time to check the package with the pkglint tool. Often the Makefile needs
a section moved, changed or added, however, for the first time around it is helpful just to run pkglint
before hand so you know exactly what you may need to change, following is some sample output taken
from the pkgsrc documentation pkglint session:

$ pkglint
OK: checking pkg/COMMENT.
OK: checking pkg/DESCR.
OK: checking Makefile.
OK: checking files/md5.
OK: checking patches/patch-aa.
looks fine.

If an error occured, it is normally pretty straightforward, here is a sample error I got while building a
package:

62



Chapter 10 The package collection

extract suffix not required

I did not need to define an extract suffix in the Makefile.

10.6.5 Running and Checking Build/Installs
At this point if pkglint has passed, I normally run a complete check of the fetch, build and installation. To
do this properly I must delete the work subdirectory and the distfile(s) from /usr/pkgsrc/distfiles.
This way I can ensure I will be doing a full and complete test.

10.6.6 Submitting a Package Using send-pr
First make an archive of the package tree itself (including the pkg/work subdirectory) like so:

$ tar -czf packagename.tgz package_dir

Next, upload the archive to a location that NetBSD package maintainers can access it from, if you cannot
upload the archive, contact NetBSD to see if there is some other method you might try to make your
archive available to package maintainers.

The preferred method of notifying NetBSD package maintainers is to use the send-pr utility with a
category of “pkg”, a synopsis which includes the package name and version number, a short description
of the package and the URL of the tar file.

You can use either the send-pr utility on your NetBSD system or the online form at
http://www.NetBSD.org/cgi-bin/sendpr.cgi?gndb=netbsd if for some reason you cannot get send-pr to
work locally.

10.6.7 Final Notes
Again this little guide is for small packages that contain only a few files to be installed on a NetBSD
system. It makes the assumption that the package does not require any patches and can build with no
dependancies.

For more advanced issues, be sure to read the full pkgsrc documentation (../../Documentation/pkgsrc/).

63



Chapter 11

Networking

11.1 Introduction to TCP/IP Networking

11.1.1 Audience
This networking section of this guide explains various aspects of networking and is intended to help
people with little knowledge about networks to get started. It is divided into three sections. We start by
giving a general overview of how networking works and introduce the basic concepts. Then we go into
details for setting up various types of networking in the second section, and the third section covers any
“advanced” topics that go beyond the scope of basic operation as introduced in the first two sections.

The reader is assumed to know about basic system administration tasks: how to become root, edit files,
change permissions, stop processes, etc. See [AeleenFrisch] for further information on this topic. Besides
that, you should know how to handle the utilities we’re going to set up here, i. e. you should know how to
use telnet, FTP, ... I will not explain the basic features of those utilities, please refer to the appropriate
man-pages, the references listed or of course the other parts of this document instead.

This Introduction to TCP/IP Networking was written with the intention in mind to give starters a basic
knowledge. If you really want to know what’s it all about, read [CraigHunt]. This book does not only
cover the basics, but goes on and explains all the concepts, services and how to set them up in detail. It’s
great, I love it! :-)

11.1.2 Supported Networking Protocols
There are several protocol suites supported by NetBSD, most of which were inherited from NetBSD’s
predecessor, 4.4BSD, and subsequently enhanced and improved. The first and most important one today
is DARPA’s Transmission Control Protocol/Internet Protocol (TCP/IP). Other protocol suites available in
NetBSD include the Xerox Network System (XNS) which was only implemented at UCB to connect
isolated machines to the net, Apple’s AppleTalk protocol suite and the ISO protocol suite, CCITT X.25
and ARGO TP. They are only used in some special applications these days.

Today, TCP/IP is the most widespread protocol of the ones mentioned above. It is implemented on
almost every hardware and operating system, and it is also the most-used protocol in heterogenous
environments. So, if you just want to connect your computer running NetBSD to some other machine at
home, or you want to integrate it into your company’s or university’s network, TCP/IP is the right choice.

IPv6 (TCP/IP protocol issue 6, current version IPv4) is still under development, and the KAME project’s
IPv6 code was merged into NetBSD and shipped starting with the NetBSD 1.5 release.

64



Chapter 11 Networking

There are other protocol suites such as DECNET, Novell’s IPX/SPX or Microsoft’s NetBIOS, but these
are not currently supported by NetBSD. These two protocols differ from the protocols mentioned above
in that they are proprietary, in contrast to the others, which are well-defined in several RFCs and other
open standards.

11.1.3 Supported Media
TCP/IP can be used on a wide range of media. Among the ones supported by NetBSD are Ethernet
(10/100/1000MBd), Arcnet, serial line, ATM, FDDI, Fiber Channel, USB, HIPPI, FireWire (IEEE
1394), Token Ring, serial lines and others.

11.1.3.1 Serial Line

There are a couple of reasons for using TCP/IP over a serial line.

• If your remote host is only reachable via telephone, you can use a modem to access it.

• Almost every computer has a serial port today, and the cable needed is rather cheap.

The disadvantage of a serial connection is that it’s slower than other methods. NetBSD can use at most
115200 bit/s, making it a lot slower than e.g Ethernet’s minimum 10 Mbit/s and Arcnet’s 4 Mbit/s.

There are two possible protocols to connect a host running NetBSD to another host using a serial line
(possibly over a phone-line):

• Serial Line IP (SLIP)

• Point to Point Protocol (PPP)

The choice here depends on whether you use a dial-up connection through a modem or if you use a static
connection (null-modem or leased line). If you dial up for your IP connection, it’s wise to use PPP as it
offers some possibilities to auto-negotiate IP-addresses and routes, which can be quite painful to do by
hand. If you want to connect to another machine which is directly connected, use SLIP, as this is
supported by about every operating system and more easy to set up with fixed addresses and routes.

PPP on a direct connection is a bit difficult to setup, as it’s easy to timeout the initial handshake; with
SLIP, there’s no such initial handshake, i.e. you start up one side, and when the other site has its first
packet, it will send it over the line.

[RFC1331] and [RFC1332] describe PPP and TCP/IP over PPP. SLIP is defined in [RFC1055].

11.1.3.2 Ethernet

Ethernet is the medium commonly used to build local area networks (LANs) of interconnected machines
within a limited area such as an office, company or university campus. Ethernet is based on a bus that
many machines can connect to, and communication always happens between two nodes at a time. When
two or more nodes want to talk at the same time, both will restart communication after some timeout.
The technical term for this is CSMA/CD (Carrier Sense w/ Multiple Access and Collision Detection).

Initially, Ethernet hardware consisted of a thick (yellow) cable that machines tapped into using special
connectors that poked through the cable’s outer shielding. The successor of this was called 10base5,

65



Chapter 11 Networking

which used BNC-type connectors for tapping in special T-connectors and terminators on both ends of the
bus. Today, ethernet is mostly used with twisted pair lines which are used in a collapsed bus system that
are contained in switches or hubs. The twisted pair lines give this type of media it’s name - 10baseT for
10 Mbit/s networks, and 100baseT for 100 MBit/s ones. In switched environments there’s also the
distinction if communication between the node and the switch can happen in half- or in full duplex mode.

11.1.4 TCP/IP Address Format
TCP/IP uses 4-byte (32-bit) addresses in the current implementations (IPv4), also called IP-numbers
(Internet-Protocol numbers), to address hosts.

TCP/IP allows any two machines to communicate directly. To permit this all hosts on a given network
must have a unique IP address. To assure this, IP addresses are administrated by one central organisation,
the InterNIC. They give certain ranges of addresses (network-addresses) directly to sites which want to
participate in the internet or to internet-providers, which give the addresses to their customers.

If your university or company is connected to the Internet, it has (at least) one such network-address for
it’s own use, usually not assigned by the InterNIC directly, but rather through an Internet Service
Provider (ISP).

If you just want to run your private network at home, see below on how to “build” your own IP
addresses. However, if you want to connect your machine to the (real :-) Internet, you should get an IP
addresses from your local network-administrator or -provider.

IP addresses are usually written in “dotted quad”-notation - the four bytes are written down in decimal
(most significant byte first), separated by dots. For example, 132.199.15.99 would be a valid address.
Another way to write down IP-addresses would be as one 32-bit hex-word, e.g. 0x84c70f63. This is not
as convenient as the dotted-quad, but quite useful at times, too. (See below!)

Being assigned a network means nothing else but setting some of the above-mentioned 32 address-bits to
certain values. These bits that are used for identifying the network are called network-bits. The
remaining bits can be used to address hosts on that network, therefore they are called host-bits.

In the above example, the network-address is 132.199.0.0 (host-bits are set to 0 in network-addresses),
the host’s address is 15.99 on that network.

How do you know that the host’s address is 16 bit wide? Well, this is assigned by the provider from
which you get your network-addresses. In the classless inter-domain routing (CIDR) used today, host
fields are usually between as little as 2 to 16 bits wide, and the number of network-bits is written after the
network address, separated by a “/”, e.g. 132.199.0.0/16 tells that the network in question has 16
network-bits. When talking about the “size” of a network, it’s usual to only talk about it as “/16”, “/24”,
etc.

Before CIDR was used, there used to be four classes of networks. Each one starts with a certain
bit-pattern identifying it. Here are the four classes:

• Class A starts with “0” as most significant bit. The next seven bits of a class A address identify the
network, the remaining 24 bit can be used to address hosts. So, within one class A network there can
be 224 hosts. It’s not very likely that you (or your university, or company, or whatever) will get a whole
class A address.

66



Chapter 11 Networking

The CIDR notation for a class A network with it’s eight network bits is an “/8”.

• Class B starts with “10” as most significant bits. The next 14 bits are used for the networks address,
the remaining 16 bits can be used to address more than 65000 hosts. Class B addresses are very rarely
given out today, they used to be common for companies and universities before IPv4 address space
went scarce.

The CIDR notation for an class B network with it’s 16 network bits is an “/16”.

Returning to our above example, you can see that 132.199.15.99 (or 0x84c70f63, which is more
appropriate here!) is on a class B network, as 0x84... = 1000... (base 2).

Therefore, the address 132.199.15.99 can be split into an network-address of 132.199.0.0 and an
host-address of 15.99.

• Class C is identified by the MSBs being “110”, allowing only 256 (actually: only 254, see below)
hosts on each of the 221 possible class C networks. Class C addresses are usually found at (small)
companies.

The CIDR notation for an class C network with it’s 24 network bits is an “/24”.

• There are also other addresses, starting with “111”. Those are used for special purposes (e. g.
multicast-addresses) and are not of interest here.

Please note that the bits which are used for identifying the network-class are part of the network-address.

When separating host-addresses from network-addresses, the “netmask” comes in handy. In this mask,
all the network-bits are set to “1”, the host-bits are “0”. Thus, putting together IP-address and netmask
with a logical AND-function, the network-address remains.

To continue our example, 255.255.0.0 is a possible netmask for 132.199.15.99. When applying this
mask, the network-address 132.199.0.0 remains.

For addresses in CIDR notation, the number of network-bits given also says how many of the most
significant bits of the address must be set to “1” to get the netmask for the corresponding network. For
classfull addressing, every network-class has a fixed default netmask assigned:

• Class A (/8): default-netmask: 255.0.0.0, first byte of address: 1-127

• Class B (/16): default-netmask: 255.255.0.0, first byte of address: 128-191

• Class C (/24): default-netmask: 255.255.255.0, first byte of address: 192-223

Another thing to mention here is the “broadcast-address”. When sending to this address, all hosts on the
corresponding network will receive the message sent. The broadcast address is characterized by having
all host-bits set to “1”.

Taking 132.199.15.99 with its netmask 255.255.0.0 again, the broadcast-address would result in
132.199.255.255.

You’ll ask now: But what if I want a hosts address to be all bits “0” or “1”? Well, this doesn’t work, as
network- and broadcast-address must be present! Because of this, a class B (/16) network can contain at
most 216-2 hosts, a class C (/24) network can hold no more than 28-2 = 254 hosts.

67



Chapter 11 Networking

Besides all those categories of addresses, there’s the special IP-address 127.0.0.1 which always refers to
the “local” host, i. e. if you talk to 127.0.0.1 you’ll talk to yourself without starting any network-activity.
This is sometimes useful to use services installed on your own machine or to play around if you don’t
have other hosts to put on your network.

Let’s put together the things we’ve introduced in this section:

IP-address

32 bit-address, with network- and host-bits.

Network-address

IP-address with all host bits set to “0”.

Netmask

32-bit mask with “1” for network- and “0” for host-bits.

Broadcast

IP-address with all host bits set “1”.

locahost’s address

The local host’s IP address is always 127.0.0.1.

11.1.5 Subnetting and Routing
After talking so much about netmasks, network-, host- and other addresses, I have to admit that this is
not the whole truth.

Imagine the situation at your university, which usually has a class B (/16) address, allowing it to have up
to 216 ~= 65534 hosts on that net. Maybe it would be a nice thing to have all those hosts on one single
network, but it’s simply not possible due to limitations in the transport media commonly used today.

For example, when using thinwire ethernet, the maximum length of the cable is 185 meters. Even with
repeaters in between, which refresh the signals, this is not enough to cover all the locations where
machines are located. Besides that, there is a maximum number of 1024 hosts on one ethernet wire, and
you’ll loose quite a bit of performance if you go to this limit.

So, are you hosed now? Having an address which allows more than 60000 hosts, but being bound to
media which allows far less than that limit?

Well, of course not! :-)

The idea is to divide the “big” class B net into several smaller networks, commonly called sub-networks
or simply subnets. Those subnets are only allowed to have, say, 254 hosts on them (i.e. you divide one
big class B network into several class C networks!).

To do this, you adjust your netmask to have more network- and less host-bits on it. This is usually done
on a byte-boundary, but you’re not forced to do it there. So, commonly your netmask will not be
255.255.0.0 as supposed by a class B network, but it will be set to 255.255.255.0.

In CIDR notation, you now write a “/24” instead of the “/16” to show that 24 bits of the address are used
for identifying the network and subnet, instead of the 16 that were used before.

68



Chapter 11 Networking

This gives you one additional network-byte to assign to each (physical!) network. All the 254 hosts on
that subnet can now talk directly to each other, and you can build 256 such class C nets. This should fit
your needs.

To explain this better, let’s continue our above example. Say our host 132.199.15.99 (I’ll call him dusk
from now; we’ll talk about assigning hostnames later) has a netmask of 255.255.255.0 and thus is on the
subnet 132.199.15.0/24. Let’s furthermore introduce some more hosts so we have something to play
around with, see Figure 11-1.

Figure 11-1. Our demo-network

132.199.15.100

dawn
132.199.15.99

132.199.15.98

dusk

132.199.15.97

noon

132.199.1.33

132.199.15.1

rzi

132.199.1.202

ftp
132.199.1.8

cisco

Subnet 132.199.1.0

S 
 L

  I
  P

Broadcast 132.199.1.255

Netmask 255.255.255.0

Subnet 132.199.15.0

Broadcast 132.199.15.255

Netmask 255.255.255.0

In the above network, dusk can talk directly to dawn, as they are both on the same subnet. (There are
other hosts attached to the 132.199.15.0/24-subnet but they are not of importance for us now)

But what, if dusk wants to talk to a host on another subnet?

Well, the traffic will then go through one or more gateways (routers), which are attached to two subnets.
Because of this, a router always has two different addresses, one for each of the subnets it is on. The
router is functionally transparent, i.e. you don’t have to address it to reach hosts on the “other” side.
Instead, you address that host directly and the packets will be routed to it correctly.

Example. Let’s say dusk wants to get some files from the local ftp-server. As dusk can’t reach ftp directly
(because it’s on a different subnet), all its packets will be forwarded to it’s "defaultrouter" rzi
(132.199.15.1), which knows where to forward the packets to.

Dusk knows the address of it’s defaultrouter in its network (rzi, 132.199.15.1), and it will forward any
packets to it which are not on the same subnet, i.e. it will forward all IP-packets in which the third
address-byte isn’t 15.

The (default)router then gives the packets to the appropriate host, as it’s also on the FTP-server’s
network.

In this example, all packets are forwarded to the 132.199.1.0/24-network, simply because it’s the
network’s backbone, the most important part of the network, which carries all the traffic that passes

69



Chapter 11 Networking

between several subnets. Almost all other networks besides 132.199.15.0/24 are attached to the
backbone in a similar manner.

But what, if we had hooked up another subnet to 132.199.15.0/24 instead of 132.199.1.0/24? Maybe
something the situation displayed in Figure 11-2.

Figure 11-2. Attaching one subnet to another one

132.199.1.33

132.199.15.1

rzi

132.199.15.99

dusk

Subnet 132.199.1.0

Subnet 132.199.16.0

(Backbone)

route2

132.199.15.2

132.199.16.1

Subnet 132.199.15.0

When we now want to reach a host which is located in the 132.199.16.0/24-subnet from dusk, it won’t
work routing it to rzi, but you’ll have to send it directly to route2 (132.199.15.2). Dusk will have to know
to forward those packets to route2 and send all the others to rzi.

When configuring dusk, you tell it to forward all packets for the 132.199.16.0/24-subnet to route2, and
all others to rzi. Instead of specifying this default as 132.199.1.0/24, 132.199.2.0/24, etc., 0.0.0.0 can be
used to set the default-route.

Returning to Figure 11-1, there’s a similar problem when dawn wants to send to noon, which is
connected to dusk via a serial line running. When looking at the IP-addresses, noon seems to be attached
to the 132.199.15.0-network, but it isn’t really. Instead, dusk is used as gateway, and dawn will have to
send its packets to dusk, which will forward them to noon then. The way dusk is forced into accepting
packets that aren’t destined at it but for a different host (noon) instead is called “proxy arp”.

The same goes when hosts from other subnets want to send to noon. They have to send their packets to
dusk (possibly routed via rzi),

11.1.6 Name Service Concepts
In the previous sections, when we talked about hosts, we referred to them by their IP-addresses. This was
necessary to introduce the different kinds of addresses. When talking about hosts in general, it’s more
convenient to give them “names”, as we did when talking about routing.

Most applications don’t care whether you give them an IP address or an hostname. However, they’ll use
IP addresses internally, and there are several methods for them to map hostnames to IP addresses, each
one with its own way of configuration. In this section we’ll introduce the idea behind each method, in the
next chapter, we’ll talk about the configuration-part.

The mapping from hostnames (and domainnames) to IP-addresses is done by a piece of software called
the “resolver”. This is not an extra service, but some library routines which are linked to every

70



Chapter 11 Networking

application using networking-calls. The resolver will then try to resolve (hence the name ;-) the
hostnames you give into IP addresses. See [RFC1034] and [RFC1035] for details on the resolver.

Hostnames are usually up to 10 characters long, and contain letters, numbers and dashes (“-”); case is
ignored.

Just as with networks and subnets, it’s possible (and desirable) to group hosts into domains and
subdomains. When getting your network-address, you usually also obtain a domainname by your
provider. As with subnets, it’s up to you to introduce subdomains. Other as with IP-addresses,
(sub)domains are not directly related to (sub)nets; for example, one domain can contain hosts from
several subnets.

Figure 11-1 shows this: Both subnets 132.199.1.0/24 and 132.199.15.0/24 (and others) are part of the
subdomain “rz.uni-regensburg.de”. The domain the University of Regensburg got from it’s IP-provider is
“uni-regensburg.de” (“.de” is for Deutschland, Germany), the subdomain “rz” is for Rechenzentrum,
computing center.

Hostnames, subdomain- and domainnames are separated by dots (“.”). It’s also possible to use more than
one stage of subdomains, although this is not very common. An example would be
fox_in.socs.uts.edu.au.

A hostname which includes the (sub)domain is also called a fully qualified domain name (FQDN). For
example, the IP-address 132.199.15.99 belongs to the host with the FQDN dusk.rz.uni-regensburg.de.

Further above I told you that the IP-address 127.0.0.1 always belongs to the local host, regardless what’s
the “real” IP-address of the host. Therefore, 127.0.0.1 is always mapped to the name “localhost”.

The three different ways to translate hostnames into IP addresses are: /etc/hosts, the Domain Name
Service (DNS) and the Network Information Service (NIS).

11.1.6.1 /etc/hosts

The first and most simplest way to translate hostnames into IP-addresses is by using a table telling which
IP address belongs to which hostname(s). This table is stored in the file /etc/hosts and has the
following format:

IP-address hostname [nickname [...]]

Lines starting with a hash mark (“#”) are treated as comments. The other lines contain one IP-address
and the corresponding hostname(s).

It’s not possible for a hostname to belong to several IP addresses, even if I made you think so when
talking about routing. rzi for example has really two distinct names for each of its two addresses: rzi and
rzia (but please don’t ask me which name belongs to which address!).

Giving a host several nicknames can be convenient if you want to specify your favorite host providing a
special service with that name, as is commonly done with FTP-servers. The first (leftmost) name is
usually the real (canonical) name of the host.

Besides giving nicknames, it’s also convenient to give a host’s full name (including domain) as its
canonical name, and using only its hostname (without domain) as a nickname.

Important: There must be an entry mapping localhost to 127.0.0.1!

71



Chapter 11 Networking

11.1.6.2 Domain Name Service (DNS)

/etc/hosts bears an inherent problem, especially in big networks: when one host is added or one
host’s address changes, all the /etc/hosts’ on all machines have to be changed! This is not only
time-consuming, it’s also very likely that there will be some errors and inconsistencies, leading to
problems.

Another approach is to hold only one hostnames-table (-database) for a network, and make all the clients
query that “nameserver”. Updates will be made only on the nameserver.

This is the basic idea behind the Domain Name Service (DNS).

Usually, there’s one nameserver for each domain (hence DNS), and every host (client) in that domain
knows which domain it is in and which nameserver to query for its domain.

When the DNS gets a query about an host which is not in its domain, it will forward the query to a DNS
which is either the DNS of the domain in question or knows which DNS to ask for the specified domain.
If the DNS forwarded the query doesn’t know how to handle it, it will forward that query again to a DNS
one step higher. This is not ad infinitum, there are several “root”-servers, which know about any domain.

See Chapter 12 for details on DNS.

11.1.6.3 Network Information Service (NIS/YP)

Yellow Pages (YP) was invited by Sun Microsystems. The name has been changed into Network
Information Service (NIS) because YP was already a trademark of the British telecom. So, when I’ll talk
about NIS you’ll know what I mean. ;-)

There are quite some configuration files on a unix-system, and often it’s desired to maintain only one set
of those files for a couple of hosts. Those hosts are grouped together in a NIS-domain (which has nothing
to do with the domains built by using DNS!) and are usually contained in one workstation cluster.

Examples for the config-files shared among those hosts are /etc/passwd, /etc/group and - last but
not least - /etc/hosts.

So, you can “abuse” NIS for getting a unique name-to-address-translation on all hosts throughout one
(NIS-)domain.

There’s only one drawback, which prevents NIS from actually being used for that translation: In contrast
to the DNS, NIS provides no way to resolve hostnames which are not in the hosts-table. There’s no hosts
“one level up” which the NIS-server can query, and so the translation will fail! Suns NIS+ takes measures
against that problem, but as NIS+ is only available on Solaris-systems, this is of little use for us now.

Don’t get me wrong: NIS is a fine thing for managing e.g. user-information (/etc/passwd, ...) in
workstation-clusters, it’s simply not too useful for resolving hostnames.

11.1.6.4 Other

The name resolving methods described above are what’s used commonly today to resolve hostnames into
IP addresses, but they aren’t the only ones. Basically, every database mechanism would do, but none is
implemented in NetBSD. Let’s have a quick look what you may encounter.

With NIS lacking hierarchy in data structures, NIS+ is intended to help out in that field. Tables can be
setup in a way so that if a query cannot be answered by a domain’s server, there can be another domain

72



Chapter 11 Networking

“above” that might be able to do so. E.g. you could choose to have a domain that lists all the hosts (users,
groups, ...) that are valid in the whole company, one that defines the same for each division, etc. NIS+ is
not used a lot today, even Sun went back to ship back NIS by default.

Last century, the X.500 standard was designed to accommodate both simple databases like /etc/hosts
as well as complex, hierarchical systems as can be found e.g. in DNS today. X.500 wasn’t really a
success, mostly due to the fact that it tried to do too much at the same time. A cut-down version is
available today as the Lightweight Directory Access Protocol (LDAP), which is becoming popular in the
last years to manage data like users but also hosts and others in small to medium sized organisations.

11.1.7 Next generation Internet protocol - IPv6

11.1.7.1 The Future of the Internet

According to experts, the Internet as we know it will face a serious problem in a few years. Due to it’s
rapid growth and the limitations in it’s design, there will be a point at which no more free addresses are
available for connecting new hosts. At that point, no more new web servers can be set up, no more users
can sign up for accounts at ISPs, no more new machines can be setup to access the web or participate in
online games - some people may call this a serious problem.

Several approaches have been made to solve the problem. A very popular one is to not assign a
worldwide unique address to every users’ machine, but rather to assign them “private” addresses, and
hide several machines behind one official, globally unique address. This approach is called “Network
Address Translation” (NAT, also known as IP Masquerading). It has problems, as the machines hidden
behind the global address can’t be addressed, and as a result of this, opening connections to them - which
is used in online gaming, peer to peer networking, etc. - is not possible. For a more in-depth discussion
of the drawbacks of NAT, see [RFC3027].

A different approach to the problem of internet addresses getting scarce is to abandon the old Internet
protocol with it’s limited addressing capabilities, and use a new protocol that does not have these
limitations. The protocol - or actually, a set of protocols - used by machines connected to form today’s
Internet is know as the TCP/IP (Transmission Control Protocol, Internet Protocol) suite, and version 4
currently in use has all the problems described above. Switching to a different protocol version that does
not have these problems of course requires for a ’better’ version to be available, which actually is.
Version 6 of the Internet Protocol (IPv6) does fulfill any possible future demands on address space, and
also addresses further features such as privacy, encryption, and better support of mobile computing.

Assuming a basic understanding of how today’s IPv4 works, this text is intended as an introduction to the
IPv6 protocol. The changes in address formats and name resolution are covered. With the background
given here, Section 11.3.5 will show how to use IPv6 even if your ISP doesn’t offer it by using a simple
yet efficient transition mechanism called 6to4. The goal is to to get online with IPv6, giving example
configuration for NetBSD.

11.1.7.2 What good is IPv6?

When telling people to migrate from IPv4 to IPv6, the question you usually hear is “why?”. There are
actually a few good reasons to move to the new version:

73



Chapter 11 Networking

• Bigger address space

• Support for mobile devices

• Built-in security

11.1.7.2.1 Bigger Address Space

The bigger address space that IPv6 offers is the most obvious enhancement it has over IPv4. While
today’s internet architecture is based on 32-bit wide addresses, the new version has 128 bit available for
addressing. Thanks to the enlarged address space, work-arounds like NAT don’t have to be used any
more. This allows full, unconstrained IP connectivity for today’s IP based machines as well as upcoming
mobile devices like PDAs and cell phones will benefit from full IP access through GPRS and UMTS.

11.1.7.2.2 Mobility

When mentioning mobile devices and IP, another important point to note is that some special protocol is
needed to support mobility, and implementing this protocol - called “Mobile IP” - is one of the
requirements for every IPv6 stack. Thus, if you have IPv6 going, you have support for roaming between
different networks, with everyone being updated when you leave one network and enter the other one.
Support for roaming is possible with IPv4 too, but there are a number of hoops that need to be jumped in
order to get things working. With IPv6, there’s no need for this, as support for mobility was one of the
design requirements for IPv6. See [RFC3024] for some more information on the issues that need to be
addressed with Mobile IP on IPv4.

11.1.7.2.3 Security

Besides support for mobility, security was another requirement for the successor to today’s Internet
Protocol version. As a result, IPv6 protocol stacks are required to include IPsec. IPsec allows
authentication, encryption and compression of any IP traffic. Unlike application level protocols like SSL
or SSH, all IP traffic between two nodes can be handled, without adjusting any applications. The benefit
of this is that all applications on a machine can benefit from encryption and authentication, and that
policies can be set on a per-host (or even per-network) base, not per application/service. An introduction
to IPsec with a roadmap to the documentation can be found in [RFC2411], the core protocol is described
in [RFC2401].

11.1.7.3 Changes to IPv4

After giving a brief overview of all the important features of IPv6, we’ll go into the details of the basics
of IPv6 here. A brief understanding of how IPv4 works is assumed, and the changes in IPv6 will be
highlighted. Starting with IPv6 addresses and how they’re split up we’ll go into the various types of
addresses there are, what became of broadcasts, then after discussing the IP layer go into changes for
name resolving and what’s new in DNS for IPv6.

11.1.7.3.1 Addressing

An IPv4 address is a 32 bit value, that’s usually written in “dotted quad” representation, where each
“quad” represents a byte value between 0 and 255, for example:

74



Chapter 11 Networking

127.0.0.1

This allows a theoretical number of 232 or ~4 billion hosts to be connected on the internet today. Due to
grouping, not all addresses are available today.

IPv6 addresses use 128 bit, which results in 2128 theoretically addressable hosts. This allows for a Really
Big number of machines to addressed, and it sure fits all of today’s requirements plus all those nifty
PDAs and cell phones with IP phones in the near future without any sweat. When writing IPv6
addresses, they are usually divided into groups of 16 bits written as four hex digits, and the groups are
separated by colons. An example is:

fe80::2a0:d2ff:fea5:e9f5

This shows a special thing - a number of consecutive zeros can be abbreviated by a single “::” once in the
IPv6 address. The above address is thus equivalent to fe80:0:00:000:2a0:d2ff:fea5:e9f5 - leading zeros
within groups can be omitted.

To make addresses manageable, they are split in two parts, which are the bits identifying the network a
machine is on, and the bits that identify a machine on a (sub)network. The bits are known as netbits and
hostbits, and in both IPv4 and IPv6, the netbits are the “left”, most significant bits of an IP address, and
the host bits are the “right”, least significant bits, as shown in Figure 11-3.

Figure 11-3. Addresses are divided into more significant network- and less significant hostbits

128−n hostbitsn netbits

In IPv4, the border is drawn with the aid of the netmask, which can be used to mask all net/host bits.
Typical examples are 255.255.0.0 that uses 16 bit for addressing the network, and 16 bit for the machine,
or 255.255.255.0 which takes another 8 bit to allow addressing 256 subnets on e.g. a class B net.

When addressing switched from classful addressing to CIDR routing, the borders between net and host
bits stopped being on 8 bit boundaries, and as a result the netmasks started looking ugly and not really
manageable. As a replacement, the number of network bits is used for a given address, to denote the
border, e.g.

10.0.0.0/24

is the same as a netmask of 255.255.255.0 (24 1-bits). The same scheme is used in IPv6:

2001:638:a01:2::/64

tells us that the address used here has the first (leftmost) 64 bits used as the network address, and the last
(rightmost) 64 bits are used to identify the machine on the network. The network bits are commonly
referred to as (network) “prefix”, and the “prefixlen” here would be 64 bits.

Common addressing schemes found in IPv4 are the (old) class B and class C nets. With a class C
network (/24), you get 24 bits assigned by your provider, and it leaves 8 bits to be assigned by you. If
you want to add any subnetting to that, you end up with “uneven” netmasks that are a bit nifty to deal
with. Easier for such cases are class B networks (/16), which only have 16 bits assigned by the provider,
and that allow subnetting, i.e. splitting of the rightmost bits into two parts. One to address the on-site
subnet, and one to address the hosts on that subnet. Usually, this is done on byte (8 bit) boundaries.
Using a netmask of 255.255.255.0 (or a /24 prefix) allows flexible management even of bigger networks
here. Of course there is the upper limit of 254 machines per subnet, and 256 subnets.

75



Chapter 11 Networking

With 128 bits available for addressing in IPv6, the scheme commonly used is the same, only the fields
are wider. Providers usually assign /48 networks, which leaves 16 bits for a subnetting and 64 hostbits.

Figure 11-4. IPv6-addresses have a similar structure to class B addresses

16bit 64bitIPv6:

Host−bits

16bit 8bit 8bitIPv4:

Self−assigned subnet−bits

48bit

Provider−assigned network−bits

Now while the space for network and subnets here is pretty much ok, using 64 bits for addressing hosts
seems like a waste. It’s unlikely that you will want to have several billion hosts on a single subnet, so
what is the idea behind this?

The idea behind fixed width 64 bit wide host identifiers is that they aren’t assigned manually as it’s
usually done for IPv4 nowadays. Instead, IPv6 host addresses are recommended (not mandatory!) to be
built from so-called EUI64 addresses. EUI64 addresses are - as the name says - 64 bit wide, and derived
from MAC addresses of the underlying network interface. E.g. for ethernet, the 6 byte (48 bit) MAC
address is usually filled with the hex bits “fffe” in the middle and a bit is set to mark the address as
unique (which is true for Ethernet), e.g. the MAC address

01:23:45:67:89:ab

results in the EUI64 address

03:23:45:ff:fe:67:89:ab

which again gives the host bits for the IPv6 address as

::0323:45ff:fe67:89ab

These host bits can now be used to automatically assign IPv6 addresses to hosts, which supports
autoconfiguration of IPv6 hosts - all that’s needed to get a complete IPv6 address is the first (net/subnet)
bits, and IPv6 also offers a solution to assign them automatically.

When on a network of machines speaking IP, there’s usually one router which acts as the gateway to
outside networks. In IPv6 land, this router will send “router advertisement” information, which clients
are expected to either receive during operation or to solicit upon system startup. The router advertisement
information includes data on the router’s address, and which address prefix it routes. With this
information and the host-generated EUI64 address, a IPv6-host can calculate it’s IP address, and there is
no need for manual address assignment. Of course routers still need some configuration.

The router advertisement information they create are part of the Neighbor Discovery Protocol (NDP, see
[RFC2461]), which is the successor to IPv4’s ARP protocol. In contrast to ARP, NDP does not only do
lookup of IPv6 addresses for MAC addresses (the neighbor solicitation/advertisement part), but also does
a similar service for routers and the prefixes they serve, which is used for autoconfiguration of IPv6 hosts
as described in the previous paragraph.

76



Chapter 11 Networking

11.1.7.3.2 Multiple Addresses

In IPv4, a host usually has one IP address per network interface or even per machine if the IP stack
supports it. Only very rare applications like web servers result in machines having more than one IP
address. In IPv6, this is different. For each interface, there is not only a globally unique IP address, but
there are two other addresses that are of interest: The link local address, and the site local address. The
link local address has a prefix of fe80::/64, and the host bits are built from the interface’s EUI64 address.
The link local address is used for contacting hosts and routers on the same network only, the addresses
are not visible or reachable from different subnets. If wanted, there’s the choice of either using global
addresses (as assigned by a provider), or using site local addresses. Site local addresses are assigned the
network address fec0::/10, and subnets and hosts can be addressed just as for provider-assigned
networks. The only difference is, that the addresses will not be visible to outside machines, as these are
on a different network, and their “site local” addresses are in a different physical net (if assigned at all).
As with the 10/8 network in IPv4, site local addresses can be used, but don’t have to. For IPv6 it’s most
common to have hosts assigned a link-local and a global IP address. Site local addresses are rather
uncommon today, and are no substitute for globally unique addresses if global connectivity is required.

11.1.7.3.3 Multicasting

In IP land, there are three ways to talk to a host: unicast, broadcast and multicast. The most common one
is by talking to it directly, using it’s unicast address. In IPv4, the unicast address is the “normal” IP
address assigned to a single host, with all address bits assigned. The broadcast address used to address all
hosts in the same IP subnet has the network bits set to the network address, and all host bits set to “1”
(which can be easily done using the netmask and some bit operations). Multicast addresses are used to
reach a number of hosts in the same multicast group, which can be machines spread over the whole
internet. Machines must join multicast groups explicitly to participate, and there are special IPv4
addresses used for multicast addresses, allocated from the 224/8 subnet. Multicast isn’t used very much
in IPv4, and only few applications like the MBone audio and video broadcast utilities use it.

In IPv6, unicast addresses are used the same as in IPv4, no surprise there - all the network and host bits
are assigned to identify the target network and machine. Broadcasts are no longer available in IPv6 in the
way they were in IPv4, this is where multicasting comes into play. Addresses in the ff::/8 network are
reserved for multicast applications, and there are two special multicast addresses that supersede the
broadcast addresses from IPv4. One is the “all routers” multicast address, the others is for “all hosts”.
The addresses are specific to the subnet, i.e. a router connected to two different subnets can address all
hosts/routers on any of the subnets it’s connected to. Addresses here are:

• ff0X::1 for all hosts and

• ff0X::2 for all routers,

where “X” is the scope ID of the link here, identifying the network. Usually this starts from “1” for the
“node local” scope, “2” for the first link, etc. Note that it’s perfectly ok for two network interfaces to be
attached to one link, thus resulting in double bandwidth:

77



Chapter 11 Networking

Figure 11-5. Several interfaces attached to a link result in only one scope ID for the link

200MBps

node

One use of the “all hosts” multicast is in the neighbor solicitation code of NDP, where any machine that
wants to communicate with another machine sends out a request to the “all hosts” group, and the
machine in question is expected to respond.

11.1.7.3.4 Name Resolving in IPv6

After talking a lot about addressing in IPv6, anyone still here will hope that there’s a proper way to
abstract all these long & ugly IPv6 addresses with some nice hostnames as one can do in IPv4, and of
course there is.

Hostname to IP address resolving in IPv4 is usually done in one of three ways: using a simple table in
/etc/hosts, by using the Network Information Service (NIS, formerly YP) or via the Domain Name
System (DNS).

As of this writing, NIS/NIS+ over IPv6 is currently only available on Solaris 8, for both database
contents and transport, using a RPCextension.

Having a simple address<->name map like /etc/hosts is supported in all IPv6 stacks. With the KAME
implementation used in NetBSD, /etc/hosts contains IPv6 addresses as well as IPv4 addresses. A
simple example is the “localhost” entry in the default NetBSD installation:

127.0.0.1 localhost
::1 localhost

For DNS, there are no fundamentally new concepts. IPv6 name resolving is done with AAAA records
that - as the name implies - point to an entity that’s four times the size of an A record. The AAAA record
takes a hostname on the left side, just as A does, and on the right side there’s an IPv6 address, e.g.

noon IN AAAA 3ffe:400:430:2:240:95ff:fe40:4385

For reverse resolving, IPv4 uses the in-addr.arpa zone, and below that it writes the bytes (in decimal) in
reversed order, i.e. more significant bytes are more right. For IPv6 this is similar, only that hex digits
representing 4 bits are used instead of decimal numbers, and the resource records are also under a
different domain, ip6.int.

So to have the reverse resolving for the above host, you would put into your /etc/named.conf
something like:

zone "0.3.4.0.0.0.4.0.e.f.f.3.IP6.INT" {
type master;
file "db.reverse";

};

and in the zone file db.reverse you put (besides the usual records like SOA and NS):

78



Chapter 11 Networking

5.8.3.4.0.4.e.f.f.f.5.9.0.4.2.0.2.0.0.0 IN PTR noon.ipv6.example.com.

The address is reversed here, and written down one hex digit after the other, starting with the least
significant (rightmost) one, separating the hex digits with dots, as usual in zone files.

One thing to note when setting up DNS for IPv6 is to take care of the DNS software version in use.
BIND 8.x does understand AAAA records, but it does not offer name resolving via IPv6. You need
BIND 9.x for that. Beyond that, BIND 9.x supports a number of resource records that are currently being
discussed but not officially introduced yet. The most noticeable one here is the A6 record which allows
easier provider/prefix changing.

To sum up, this section talked about the technical differences between IPv4 and IPv6 for addressing and
name resolving. Some details like IP header options, QoS and flows were deliberately left out to not
make the this document more complex than necessary.

11.2 Practice

11.2.1 A walk through the kernel configuration
Before we dive into configuring various aspects of network setup, we want to walk through the necessary
bits that have to or can be present in the kernel. See Chapter 9 for more details on compiling the kernel,
we will concentrate on the configuration of the kernel here. We will take the i386/GENERIC config file
as an example here. Config files for other platforms should contain similar information, the comments in
the config files give additional hints. Besides the information given here, each kernel option is also
documented in the options(4) manpage, and there is usually a manpage for each driver too, e.g. tlp(4).

# $NetBSD: GENERIC,v 1.354.2.15 2001/05/06 15:18:54 he Exp $

The first line of each config file shows the version, which is 1.354.2.15 here. It can be used to compare
against other versions via CVS, or when reporting bugs.

options NTP # NTP phase/frequency locked loop

If you want to run the Network Time Protocol (NTP), this option can be enabled for maximum precision.
If the option is not present, NTP will still work. See ntpd(8) for more information.

file-system NFS # Network File System client

If you want to use another machine’s harddisk via the Network File System (NFS), this option is needed.
Section 11.3.3 gives more information on NFS.

options NFSSERVER # Network File System server

This option includes the server side of the NFS remote file sharing protocol. Enable if you want to allow
other machines to use your harddisk. Section 11.3.3 contains more information on NFS.

#options GATEWAY # packet forwarding

79



Chapter 11 Networking

If you want to setup a router that forwards packets between networks or network interfaces, setting this
option is needed. If doesn’t only switch on packet forwarding, but also increases some buffers. See
options(4) for details.

options INET # IP + ICMP + TCP + UDP

This enables the TCP/IP code in the kernel. Even if you don’t want/use networking, you will still need
this for machine-internal communication of subsystems like the X Window System. See inet(4) for more
details.

options INET6 # IPV6

If you want to use IPv6, this is your option. If you don’t want IPv6, which is part of NetBSD since the
1.5 release, you can remove/comment out that option. See the inet6(4) manpage and Section 11.1.7 for
more information on the next generation Internet protocol.

#options IPSEC # IP security

Includes support for the IPsec protocol, including key and policy management, authentication and
compression. This option can be used without the previous option INET6, if you just want to use IPsec
with IPv4, which is possible. See ipsec(4) for more information.

#options IPSEC_ESP # IP security (encryption part; define w/IPSEC)

This option is needed in addition to IPSEC if encryption is wanted in IPsec.

#options MROUTING # IP multicast routing

If multicast services like the MBone services should be routed, this option needs to be included. Note
that the routing itself is controlled by the mrouted(8) daemon.

options NS # XNS
#options NSIP # XNS tunneling over IP

These options enables the Xerox Network Systems(TM) protocol family. It’s not related to the TCP/IP
protocol stack, and in rare use today. The ns(4) manpage has some details.

options ISO,TPIP # OSI
#options EON # OSI tunneling over IP

These options include the OSI protocol stack, that was said for a long time to be the future of
networking. It’s mostly history these days. :-) See the iso(4) manpage for more information.

options CCITT,LLC,HDLC # X.25

These options enable the X.25 protocol set for transmission of data over serial lines. It is/was used
mostly in conjunction with the OSI protocols and in WAN networking.

options NETATALK # AppleTalk networking protocols

Include support for the AppleTalk protocol stack. Userland server programs are needed to make use of
that. See pkgsrc/net/netatalk and pkgsrc/net/netatalk-asun for such packages. More information on the
AppleTalk protocol and protocol stack are available in the atalk(4) manpage.

80



Chapter 11 Networking

options PPP_BSDCOMP # BSD-Compress compression support for PPP
options PPP_DEFLATE # Deflate compression support for PPP
options PPP_FILTER # Active filter support for PPP (requires bpf)

These options tune various aspects of the Point-to-Point protocol. The first two determine the
compression algorithms used and available, while the third one enables code to filter some packets.

options PFIL_HOOKS # pfil(9) packet filter hooks
options IPFILTER_LOG # ipmon(8) log support

These options enable firewalling in NetBSD, using IPfilter. See the ipf(4) and ipf(8) manpages for more
information on operation of IPfilter, and Section 11.3.1.1 for a configuration example.

# Compatibility with 4.2BSD implementation of TCP/IP. Not recommended.
#options TCP_COMPAT_42

This option is only needed if you have machines on the network that still run 4.2BSD or a network stack
derived from it. If you’ve got one or more 4.2BSD-systems on your network, you’ve to pay attention to
set the right broadcast-address, as 4.2BSD has a bug in its networking code, concerning the broadcast
address. This bug forces you to set all host-bits in the broadcast-address to “0”. The TCP_COMPAT_42
option helps you ensuring this.

options NFS_BOOT_DHCP,NFS_BOOT_BOOTPARAM

These options enable lookup of data via DHCP or the BOOTPARAM protocol if the kernel is told to use
a NFS root file system. See the diskless(8) manpage for more information.

# Kernel root file system and dump configuration.
config netbsd root on ? type ?
#config netbsd root on sd0a type ffs
#config netbsd root on ? type nfs

These lines tell where the kernel looks for it’s root file system, and which filesystem type it is expected to
have. If you want to make a kernel that uses a NFS root filesystem via the tlp0 interface, you can do this
with “root on tlp0 type nfs”. If a ? is used instead of a device/type, the kernel tries to figure one
out on it’s own.

# ISA serial interfaces
com0 at isa? port 0x3f8 irq 4 # Standard PC serial ports
com1 at isa? port 0x2f8 irq 3
com2 at isa? port 0x3e8 irq 5

If you want to use PPP or SLIP, you will need some serial (com) interfaces. Others with attachment on
USB, PCMCIA or PUC will do as well.

# Network Interfaces

This rather long list contains all sort of network drivers. Please pick the one that matches your hardware,
according to the comments. For most drivers, there’s also a manual page available, e.g. tlp(4), ne(4), etc.

# MII/PHY support

81



Chapter 11 Networking

This section lists media independent interfaces for network cards. Pick one that matches your hardware.
If in doubt, enable them all and see what the kernel picks. See the mii(4) manpage for more information.

# USB Ethernet adapters
aue* at uhub? port ? # ADMtek AN986 Pegasus based adapters
cue* at uhub? port ? # CATC USB-EL1201A based adapters
kue* at uhub? port ? # Kawasaki LSI KL5KUSB101B based adapters

USB-ethernet adapters only have about 2MBit/s bandwidth, but they are very convenient to use. Of
course this needs other USB related options which we won’t cover here, as well as the necessary
hardware. See the corresponding manpages for more information.

# network pseudo-devices
pseudo-device bpfilter 8 # Berkeley packet filter

This pseudo-device allows sniffing packets of all sorts. It’s needed for tcpdump, but also rarpd and some
other applications that need to know about network traffic. See bpf(4) for more information.

pseudo-device ipfilter # IP filter (firewall) and NAT

This one enables the IPfilter’s packet filtering kernel interface used for firewalling, NAT (IP
Masquerading) etc. See ipf(4) and Section 11.3.1.1 for more information.

pseudo-device loop # network loopback

This is the “lo0” software loopback network device which is used by some programs these days, as well
as for routing things. Should not be omitted. See lo(4) for more details.

pseudo-device ppp 2 # Point-to-Point Protocol

If you want to use PPP either over a serial interface or ethernet (PPPoE), you will need this option. See
ppp(4) for details on this interface.

pseudo-device sl 2 # Serial Line IP

Serial Line IP is a simple encapsulation for IP over (well :) serial lines. It does not include negotiation of
IP addresses and other options, which is the reason that it’s not in widespread use today any more. See
sl(4).

pseudo-device strip 2 # Starmode Radio IP (Metricom)

If you happen to have one of the old Metricon Ricochet packet radio wireless network devices, use this
pseudo-device to use it. See the strip(4) manpage for detailed information.

pseudo-device tun 2 # network tunneling over tty

This network device can be used to tunnel network packets to a device file, /dev/tun*. Packets routed
to the tun0 interface can be read from /dev/tun0, and data written to /dev/tun0 will be sent out the
tun0 network interface. This can be used to implement e.g. QoS routing in userland. See tun(4) for
details.

pseudo-device gre 2 # generic L3 over IP tunnel

82



Chapter 11 Networking

The GRE encapsulation can be used to tunnel arbitrary layer 3 packets over IP, e.g. to implement VPNs.
See gre(4) for more.

pseudo-device ipip 2 # IP Encapsulation within IP (RFC 2003)

Another IP-in-IP encapsulation device, with a different encapsulation format. See the ipip(4) manpage
for details.

pseudo-device gif 4 # IPv[46] over IPv[46] tunnel (RFC 1933)

Using the GIF interface allows to tunnel e.g. IPv6 over IPv4, which can be used to get IPv6 connectivity
if no IPv6-capable uplink (ISP) is available. Other mixes of operations are possible, too. See the gif(4)
manpage for some examples.

#pseudo-device faith 1 # IPv[46] tcp relay translation i/f

The faith interface captures IPv6 TCP traffic, for implementing userland IPv6-to-IPv4 TCP relays e.g.
for protocol transitions. See the faith(4) manpage for more details on this device.

#pseudo-device stf 1 # 6to4 IPv6 over IPv4 encapsulation

This add a network device that can be used to tunnel IPv6 over IPv4 without setting up a configured
tunnel before. The source address of outgoing packets contains the IPv4 address, which allows routing
replies back via IPv4. See the stf(4) manpage and Section 11.3.5 for more details.

pseudo-device vlan # IEEE 802.1q encapsulation

This interface provides support for IEEE 802.1Q Virtual LANs, which allows tagging Ethernet frames
with a “vlan” ID. Using properly configured switches (that also have to support VLAN, of course), this
can be used to build virtual LANs where one set of machines doesn’t see traffic from the other (broadcast
and other). The vlan(4) manpage tells more about this.

11.2.2 Overview of the network configuration files
The following is a list of the files used to configure the network. The usage of these files, some of which
have already been met the first chapters, will be described in the following sections.

/etc/hosts

Local hosts database file. Each line contains information regarding a known host and contains the
internet address, the host’s name and the aliases. Small networks can be configured using only the
hosts file, without a name server.

/etc/resolv.conf

This file specifies how the routines which provide access to the Internet Domain Name System
should operate. Generally it contains the addresses of the name servers.

/etc/ifconfig.xxx

This file is used for the automatic configuration of the network card at boot.

83



Chapter 11 Networking

/etc/mygate

Contains the IP address of the gateway.

/etc/nsswitch.conf

Name service switch configuration file. It controls how a process looks up various databases
containing information regarding hosts, users, groups, etc. Specifically, this file defines the order to
look up the databases. For example, the line:

hosts: files dns

specifies that the hosts database comes from two sources, files (the local /etc/hosts file) and
DNS, (the Internet Domain Name System) and that the local files are searched before the DNS.

It is usually not necessary to modify this file.

11.2.3 Connecting to the Internet
There are many types of Internet connections: this section explains how to connect to a provider using a
modem over a telephone line using the PPP protocol, a very common setup. In order to have a working
connection, the following steps must be done:

1. Get the necessary information from the provider.

2. Edit the file /etc/resolv.conf and check /etc/nsswitch.conf.

3. Create the directories /etc/ppp and /etc/ppp/peers if they don’t exist.

4. Create the connection script, the chat file and the pppd options file.

5. Created the user-password authentication file.

Judging from the previous list it looks like a complicated procedure that requires a lot of work. Actually,
the single steps are very easy: it’s just a matter of modifying, creating or simply checking some small
text files. In the following example it will be assumed that the modem is connected to the second serial
port /dev/tty01 (COM2 in DOS.)

Besides external modems connected to COM ports (using /dev/tty0[012] on i386,
/dev/tty[ab] on sparc, ...) modems on USB (/dev/ttyU*) and pcmcia/cardbus
(/dev/tty0[012]) can be used.

11.2.3.1 Getting the connection information

The first thing to do is ask the provider the necessary information for the connection, which means:

• The phone number of the nearest POP.

• The authentication method to be used.

• The username and password for the connection.

84



Chapter 11 Networking

• The IP addresses of the name servers.

11.2.3.2 resolv.conf and nsswitch.conf

The /etc/resolv.conf file must be configured using the information supplied by the provider,
especially the addresses of the DNS. In this example the two DNS will be "194.109.123.2" and
"191.200.4.52".

Example 11-1. resolv.conf

nameserver 194.109.123.2
nameserver 191.200.4.52
#lookup file bind

Note: the last line (lookup file bind) indicates that the name servers will be used only for the
names which are not present in the /etc/hosts file. The line is commented, because starting with
NetBSD 1.4 it is not needed any more; this type of information is now defined in the
/etc/nsswitch.conf file. The new Name Service Switch changes the access to the databases
used by programs to find the base system information.

And now an example of the /etc/nsswitch.conf file.

Example 11-2. nsswitch.conf

# /etc/nsswitch.conf
group: compat
group_compat: nis
hosts: files dns
netgroup: files [notfound=return] nis
networks: files
passwd: compat
passwd_compat: nis

Note: only one line has been modified, the one beginning with the word “hosts:”; when resolving host
names, the local hosts file will be searched before resorting to DNS.

11.2.3.3 Creating the directories for pppd

The directories /etc/ppp and /etc/ppp/peers will contain the configuration files for the PPP
connection. After a fresh install of NetBSD they don’t exist and must be created (chmod 700.)

85



Chapter 11 Networking

11.2.3.4 Connection script and chat file

The connection script will be used as a parameter on the pppd command line; it is located in
/etc/ppp/peers and has usually the name of the provider. For example, if the provider’s name is
BigNet and your user name for the connection to the provider is alan, an example connection script could
be:

Example 11-3. Connection script

# /etc/ppp/peers/bignet
connect ’/usr/sbin/chat -v -f /etc/ppp/peers/bignet.chat’
noauth
user alan
remotename bignet.it

In the previous example, the script specifies a chat file to be used for the connection. The options in the
script are detailed in the pppd(8) man page.

Note: if you are experiencing connection problems, add the following two lines to the connection
script

debug
kdebug 4

You will get a log of the operations performed when the system tries to connect. See pppd(8),
syslog.conf(5).

The connection script calls the chat application to deal with the physical connection (modem
initialization, dialing, ...) The parameters to chat can be specified inline in the connection script, but it is
better to put them in a separate file. If, for example, the telephone number of the POP to call is 02
99999999, an example chat script could be:

Example 11-4. Chat file

# /etc/ppp/peers/bignet.chat
ABORT BUSY
ABORT "NO CARRIER"
ABORT "NO DIALTONE"
” ATDT0299999999
CONNECT ”

Note: if you have problems with the chat file, you can try connecting manually to the POP with the cu
program and verify the exact strings that you are receiving. See cu(1).

86



Chapter 11 Networking

11.2.3.5 Authentication

During authentication each of the two systems verifies the identity of the other system, although in
practice you are not supposed to authenticate the provider, but only to be verified by him, using one of
the following methods.

• login

• PAP/CHAP

Most providers use a PAP/CHAP authentication.

11.2.3.5.1 PAP/CHAP authentication

The authentication information is stored in the /etc/ppp/pap-secrets for PAP and in
/etc/ppp/chap-secrets for CHAP. The lines have the following format:

user * password

For example:

alan * pZY9o

Note: for security reasons the pap-secrets and chap-secrets files should be owned by root and
have permissions “600”.

11.2.3.5.2 Login authentication

This type of authentication is not widely used today; if the provider uses login authentication, user name
and password must be supplied in the chat file instead of the PAP/CHAP files, because the chat file
simulates an interactive login. In this case, set up appropriate permissions for the chat file.

The following is an example chat file with login authentication:

Example 11-5. Chat file with login

# /etc/ppp/peers/bignet.chat
ABORT BUSY
ABORT "NO CARRIER"
ABORT "NO DIALTONE"
” ATDT0299999999
CONNECT ”
TIMEOUT 50
ogin: alan
ssword: pZY9o

87



Chapter 11 Networking

11.2.3.6 pppd options

The only thing left to do is the creation of the pppd options file, which is /etc/ppp/options (chmod
644).

Example 11-6. /etc/ppp/options

/dev/tty01
lock
crtscts
57600
modem
defaultroute
noipdefault

Check the pppd(8) man page for the meaning of the options.

11.2.3.7 Testing the modem

Before activating the link it is a good idea to make a quick modem test, in order to verify that the
physical connection and the communication with the modem works. For the test the cu program can be
used, as in the following example.

1. Create the file /etc/uucp/port with the following lines:

type modem
port modem
device /dev/tty01
speed 115200

(substitute the correct device in place of /dev/tty01.)

2. Write the command cu -p modem to start sending commands to the modem. For example:

# cu -p modem
Connected.
ATZ
OK
~.

Disconnected.
#

In the previous example the reset command (ATZ) was sent to the modem, which replied with OK:
the communication works. To exit cu, write ~ (tilde) followed by . (dot), as in the example.

If the modem doesn’t work, check that it is connected to the correct port (i.e. you are using the right port
with cu. Cables are a frequent cause of trouble, too.

Note: when you start cu, if a message saying “Permission denied” appears, check who is the owner
of the /dev/tty## device: it must be uucp. For example:

88



Chapter 11 Networking

$ ls -l /dev/tty00
crw------- 1 uucp wheel 8, 0 Mar 22 20:39 /dev/tty00

If the owner is root, the following happens:

$ ls -l /dev/tty00
crw------- 1 root wheel 8, 0 Mar 22 20:39 /dev/tty00
$ cu -p modem
cu: open (/dev/tty00): Permission denied
cu: All matching ports in use

COM, com and tty

A few words on the difference between com, COM and tty. For NetBSD, “com” is the name
of the serial port driver (the one that is displayed by dmesg) and “tty” is the name of the
port. Since numbering starts at 0, com0 is the driver for the first serial port, named tty00. In
the DOS world, instead, COM1 refers to the first serial port (usually located at (0x3f8),
COM2 to the second, and so on. Therefore COM1 (DOS) corresponds to tty00 (NetBSD.)

11.2.3.8 Activating the link

At last everything is ready to connect to the provider with the following command:

# pppd call bignet

where bignet is the name of the already described connection script. To see the connection messages of
pppd, give the following command:

# tail -f /var/log/messages

To disconnect, do a kill -HUP of pppd.

11.2.3.9 Using a script for connection and disconnection

When the connection works correctly, it’s time to write a couple of scripts to avoid repeating the
commands every time. These two scripts can be named, for example, ppp-up and ppp-down.

ppp-up is used to connect to the provider:

Example 11-7. ppp-up

#!/bin/sh
MODEM=tty01
POP=bignet
if [ -f /var/spool/lock/LCK..$MODEM ]; then

echo ppp is already running...
else

pppd call $POP
tail -f /var/log/messages

89



Chapter 11 Networking

fi

ppp-down is used to close the connection:

Example 11-8. ppp-down

#!/bin/sh
MODEM=tty01
if [ -f /var/spool/lock/LCK..$MODEM ]; then

echo -f killing pppd...
kill -HUP ‘cat /var/spool/lock/LCK..$MODEM‘
echo done

else
echo ppp is not active

fi

The two scripts take advantage of the fact that when pppd is active, it creates the file LCK..tty01 in the
/var/spool/lock directory. This file contains the pid of the pppd process.

The two scripts must be executable:

# chmod u+x ppp-up ppp-down

11.2.4 Creating a small home network
Networking is one of the main strengths of Unix and NetBSD is no exception: networking is both
powerful and easy to set up and inexpensive too, because there is no need to buy additional software to
communicate or to build a server. Section 11.3.1 explains how to configure a NetBSD machine to act as a
gateway for a network: with IPNAT all the hosts of the network can reach the Internet with a single
connection to a provider made by the gateway machine. The only thing to be checked before creating the
network is to buy network cards supported by NetBSD (check the INSTALL file for a list of supported
devices.)

First, the network cards must be installed and connected to a hub, switch or directly (see Figure 11-6.)

Next, check that the network cards are recognized by the kernel, studying the output of the dmesg
command. In the following example the kernel recognized correctly an NE2000 clone:

...
ne0 at isa0 port 0x280-0x29f irq 9
ne0: NE2000 Ethernet
ne0: Ethernet address 00:c2:dd:c1:d1:21
...

If the card is not recognized by the kernel, check that it is enabled in the kernel configuration file and
then that the card’s IRQ matches the one that the kernel expects. For example, this is the isa NE2000 line
in the configuration file; the kernel expects the card to be at IRQ 9.

...
ne0 at isa? port 0x280 irq 9 # NE[12]000 ethernet cards
...

90



Chapter 11 Networking

If the card’s configuration is different, it will probably not be found at boot. In this case, either change
the line in the kernel configuration file and compile a new kernel or change the card’s setup (usually
through a setup disk or, for old cards, a jumper on the card.)

The following command shows the network card’s current configuration:

# ifconfig ne0
ne0: flags=8822<BROADCAST,NOTRAILERS,SIMPLEX,MULTICAST> mtu 1500 media: Ethernet 10base2

The software configuration of the network card is very easy. The IP address “192.168.1.1” (which is
reserved for internal networks) is assigned to the card.

# ifconfig ne0 inet 192.168.1.1 netmask 0xffffff00

Repeating the previous command now gives a different result:

# ifconfig ne0
ne0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST> mtu 1500

media: Ethernet 10base2
inet 192.168.1.1 netmask 0xffffff00 broadcast 192.168.1.255

The output of ifconfig has now changed: the IP address is now printed and there are two new flags, “UP”
and “RUNNING” If the interface isn’t “UP”, it will not be used by the system to send packets.

The host was given the IP address 192.168.1.1, which belongs to the set of addresses reserved for
internal networks which are not reachable from the Internet. The configuration is finished and must now
be tested; if there is another active host on the network, a ping can be tried. For example, if 192.168.1.2
is the address of the active host:

# ping 192.168.1.2
PING ape (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=255 time=1.286 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=255 time=0.649 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=255 time=0.681 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=255 time=0.656 ms
^C
----ape PING Statistics----
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.649/0.818/1.286/0.312 ms

With the current setup, at the next boot it will be necessary to repeat the configuration of the network
card. In order to avoid repeating the card’s configuration at each boot, two things need to be done: first,
create the file /etc/ifconfig.ne0 containing the following line:

inet 192.168.1.1 netmask 0xffffff00

Next, in the /etc/rc.conf file, set the following option

auto_ifconfig=YES

At the next boot the network card will be configured automatically.

The /etc/hosts file is a database of IP addresses and textual aliases: it should contain the addresses of
all the hosts belonging to the internal network. For example:

91



Chapter 11 Networking

Example 11-9. /etc/hosts

# $NetBSD: hosts,v 1.6 2000/08/15 09:33:05 itojun Exp $
#
# Host Database
# This file should contain the addresses and aliases
# for local hosts that share this file.
# It is used only for "ifconfig" and other operations
# before the nameserver is started.
#
#
127.0.0.1 localhost
#
# RFC 1918 specifies that these networks are "internal".
# 10.0.0.0 10.255.255.255
# 172.16.0.0 172.31.255.255
# 192.168.0.0 192.168.255.255

192.168.1.1 ape.insetti.net ape
192.168.1.2 vespa.insetti.net vespa
192.168.1.0 insetti.net

The /etc/nsswitch.conf should be modified as explained in Example 11-2.

Note: in this example the file /etc/ifconfig.ne0 was created because the network card was
recognized as ne0 by the kernel; if you are using a different adapter, substitute the appropriate name
in place of ne0.

Summing up, to configure the network the following must be done: the network adapters must be
installed and physically connected. Next they must be configured (with ifconfig) and, finally, the
/etc/hosts and /etc/nsswitch.conf files must be modified. This type of network management in
very simplified and is suited only for small networks without sophisticated needs.

11.2.5 Connecting two PCs through a serial line
If you need to transfer files between two PCs which are not networked there is a simple solution which is
particularly handy when copying the files to a floppy is not practical: the two machines can be networked
with a serial cable (a null modem cable.) The following sections describe some configurations.

11.2.5.1 Connecting NetBSD with BSD or Linux

The easiest case is when both machines run NetBSD: making a connection with the SLIP protocol is
very easy. On the first machine write the following commands:

# slattach /dev/tty00
# ifconfig sl0 inet 192.168.1.1 192.168.1.2

On the second machine write the following commands:

92



Chapter 11 Networking

# slattach /dev/tty00
# ifconfig sl0 inet 192.168.1.2 192.168.1.1

Now you can test the connection with ping; for example, on the second PC write:

# ping 192.168.1.1

If everything worked there is now an active network connection between the two machines and ftp, telnet
and other similar commands can be executed. The textual aliases of the machines can be written in the
/etc/hosts file.

• In the previous example both PC’s used the first serial port (/dev/tty0). Substitute the appropriate
device if you are using another port.

• IP addresses like 192.168.x.x are reserved for “internal” networks. The first PC has address
192.168.1.1 and the second 192.168.1.2.

• To achieve a faster connection the -s speed option to slattach can be specified.

• ftp can be used to transfer files only if inetd is active and the ftpd server is enabled.

Linux: if one of the two PC’s runs Linux, the commands are slightly different (on the Linux machine
only.) If the Linux machine gets the 192.168.1.2 address, the following commands are needed:

# slattach -p slip -s 115200 /dev/ttyS0 &
# ifconfig sl0 192.168.1.2 pointopoint 192.168.1.1 up
# route add 192.168.1.1 dev sl0

Don’t forget the “&” in the first command.

11.2.5.2 Connecting NetBSD and Windows NT

NetBSD and Windows NT can be (almost) easily networked with a serial null modem cable. Basically
what needs to be done is to create a “Remote Access” connection under Windows NT and to start pppd
on NetBSD.

Start pppd as root after having created a .ppprc in /root. Use the following example as a template.

connect ’/usr/sbin/chat -v CLIENT CLIENTSERVER’
local
tty00
115200
crtscts
lock
noauth
nodefaultroute
:192.168.1.2

The meaning of the first line will be explained later in this section; 192.168.1.2 is the IP address that will
be assigned by NetBSD to the Windows NT host; tty00 is the serial port used for the connection (first
serial port.)

93



Chapter 11 Networking

On the NT side a null modem device must be installed from the Control Panel (Modem icon) and a
Remote Access connection using this modem must be created. The null modem driver is standard under
Windows NT 4 but it’s not a 100% null modem: when the link is activated, NT sends the string CLIENT
and expects to receive the answer CLIENTSERVER. This is the meaning of the first line of the .ppprc
file: chat must answer to NT when the connection is activated or the connection will fail.

In the configuration of the Remote Access connection the following must be specified: use the null
modem, telephone number “1” (it’s not used, anyway), PPP server, enable only TCP/IP protocol, use IP
address and namservers from the server (NetBSD in this case.) Select the hardware control flow and set
the port to 115200 8N1.

Now everything is ready to activate the connection.

• Connect the serial ports of the two machines with the null modem cable.

• Launch pppd on NetBSD. To see the messages of pppd: tail -f /var/log/messages).

• Activate the Remote Access connection on Windows NT.

11.2.5.3 Connecting NetBSD and Windows 95

The setup for Windows 95 is similar to the one for Windows NT: Remote Access on Windows 95 and the
PPP server on NetBSD will be used. Most (if not all) Windows 95 releases don’t have the null modem
driver, which makes things a little more complicated. The easiest solution is to find one of the available
null modem drivers on the Internet (it’s a small .INF file) and repeat the same steps as for Windows NT.
The only difference is that the first line of the .ppprc file (the one that calls chat) can be removed.

If you can’t find a real null modem driver for Windows 95 it’s still possible to use a little trick:

• Create a Remote Access connection like the one described in Section 11.2.5.2 but using the “Standard
Modem”.

• In .ppprc substitute the line that calls chat with the following line

connect ’/usr/sbin/chat -v ATH OK AT OK ATE0V1 OK AT OK ATDT CONNECT’

• Activate the connection as described in Section 11.2.5.2.

In this way the chat program, called when the connection is activated, emulates what Windows 95 thinks
is a standard modem, returning to Windows 95 the same answers that a standard modem would return.
Whenever Windows 95 sends a modem command string, chat returns OK.

11.3 Advanced Topics

11.3.1 IPNAT
The mysterious acronym IPNAT hides the Internet Protocol Network Address Translation, which enables

94



Chapter 11 Networking

the routing of an internal network on a real network (Internet.) This means that with only one “real” IP,
static or dynamic, belonging to a gateway running IPNAT, it is possible to create simultaneous
connections to the Internet for all the hosts of the internal network.

Some usage examples of IPNAT can be found in the subdirectory /usr/share/examples/ipf: look at
the files BASIC.NAT and nat-setup.

The setup for the example described in this section is detailed in Figure 11-6: host 1 can connect to the
Internet calling a provider with a modem and getting a dynamic IP address. host 2 and host 3 can’t
communicate with the Internet with a normal setup: IPNAT allows them to do it: host 1 will act as a
gateway for hosts 2 and 3.

Figure 11-6. Network with gateway

192.168.1.3 192.168.1.2 192.168.1.1

host 3 host 2 host 1

modem

local net  192.168.1.0

ISPppp0

ne0

......

Gateway

ne0ne0

static/dynamic IP

I
N
T
E
R
N
E
T

11.3.1.1 Configuring the gateway/firewall

To use IPNAT, in the kernel configuration file the “pseudo-device ipfilter” must be enabled in the kernel.
To check if it is enabled in the current kernel:

# sysctl net.inet.ip.forwarding
net.inet.ip.forwarding = 1

If the result is “1” as in the previous example, the option is enabled, otherwise, if the result is “0” the
option is disabled. You can do two things:

1. Compile a new kernel, with the GATEWAY option enabled by default.

2. Enable the option in the current kernel with the following command:

# sysctl -w net.inet.ip.forwarding=1

You can add sysctl settings to /etc/sysctl.conf to have them set automatically at boot. In this
case you would want

net.inet.ip.forwarding=1

The rest of this section explains how to create an IPNAT configuration that is automatically started every
time that a connection to the provider is activated with the PPP link. With this configuration all the host

95



Chapter 11 Networking

of a home network (for example) will be able to connect to the Internet through the gateway machine,
even if they don’t use NetBSD.

First, create the /etc/ipnat.conf file containing the following rules:

map ppp0 192.168.1.0/24 -> 0/32 proxy port ftp ftp/tcp
map ppp0 192.168.1.0/24 -> 0/32 portmap tcp/udp 40000:60000
map ppp0 192.168.1.0/24 -> 0/32

192.168.1.0/24 are the network addresses that should be mapped The first line of the configuration file is
optional: it enables active FTP to work through the gateway. The second line is used to handle correctly
tcp and udp packets; the portmapping is necessary because of the many to one relationship.) The third
line is used to enable ICMP, ping, etc.

Create the /etc/ppp/ip-up file; it will be called automatically every time that the PPP link is activated.

#!/bin/sh
# /etc/ppp/ip-up
/etc/rc.d/ipnat forcestart

Create the file /etc/ppp/ip-down; it will be called automatically when the PPP link is closed.

#!/bin/sh
# /etc/ppp/ip-down
/etc/rc.d/ipnat forcestop

Both ip-up and ip-down must be executable:

# chmod u+x ip-up ip-down

The gateway machine is now ready.

11.3.1.2 Configuring the clients

Create a /etc/resolv.conf file like the one on the gateway machine.

Write the following command:

# route add default 192.168.1.1

192.168.1.1 is the address of the gateway machine configured in the previous section.

Of course you don’t want to give this command every time, so it’s better to define the “defaultroute” entry
in the /etc/rc.conf file or, which is the same, write the address of the gateway in the /etc/mygate
file: the default route will be set automatically during system initialization, using the contents of
/etc/mygate (or the defaultroute option) as an argument to the route add default command.

If the client machine is not using NetBSD, the configuration will be different. On Windows PC’s you
need to set the gateway property of the TCP/IP protocol to the IP address of the NetBSD gateway.

That’s all that needs to be done on the client machines.

96



Chapter 11 Networking

11.3.1.3 Some useful commands

The following commands can be useful for diagnosing problems:

ping

netstat -r

Displays the routing tables (similar to route show).

traceroute

On the client it shows the route followed by the packets to their destination.

tcpdump

Use on the gateway to monitor TCP/IP traffic.

11.3.2 Bridge
A bridge can be used to combine different physical networks into one logical network. The NetBSD
“bridge” driver provides bridge functionality on NetBSD systems.

11.3.2.1 Bridge example

In this example two physical networks are going to be combined in one logical network, 192.168.1.0,
using a NetBSD bridge. The NetBSD machine which is going to act as bridge has two interfaces, ne0
and ne1, which are both connected to one physical network.

The first step is to make sure support for the “bridge” is compiled in the running kernel. Support is
included in the GENERIC kernel.

When the system is ready the bridge can be created, this can be done using the brconfig(8) command.
First of a bridge interface has to be created. With the following ifconfig command the “bridge0” interface
will be created:

$ ifconfig bridge0 create

Please make sure that at this point both the ne0 and ne1 interfaces are up. The next step is to add the ne0
and ne1 interfaces to the bridge.

$ brconfig bridge0 add ne0 add ne1 up

This configuration can be automatically set up by creating an /etc/ifconfig.interface file, in this
case /etc/ifconfig.bridge0, with the following contents:

create
!brconfig $int add ne0 add ne1 up

97



Chapter 11 Networking

After setting up the bridge the bridge configuration can be displayed using the brconfig -a command.
Remember that if you want to give the bridge machine an IP address you can only allocate an IP address
to one of the interfaces which are part of the bridge.

11.3.3 NFS
Now that the network is working it is possible to share files and directories over the network using NFS.
From the point of view of file sharing, the computer which gives access to its files and directories is
called the server, and the computer using these files and directories is the client. A computer can be
client and server at the same time.

• A kernel must be compiled with the appropriate options for the client and the server (the options are
easy to find in the kernel configuration file. See Section 11.2.1 for more information on NFS related
kernel options.

• The server must enable its RPC services in /etc/inetd.conf.

• In /etc/rc.conf the server must enable the inetd and portmap daemons and the nfs_server
option.

• In /etc/rc.conf the client must enable inetd and nfs_client.

• The server must list the exported directories in /etc/exports and then run the command kill -HUP
‘cat /var/run/mountd.pid.

A client host can access a remote directory through NFS if:

• The server host exports the directory.

• The client host mounts the remote directory with the command mount server:/xx/yy /mnt

The mount command has a rich set of options for remote directories which are not very intuitive (to say
the least.)

11.3.3.1 NFS setup example

Warning: I have taken this rather complicated example from a NetBSD mailing list and I haven’t tested
it; it should give an idea of how NFS works.

The scenario is the following: five client machines (cli1, ..., cli5) share some directories on a server
(buzz.toys.org.) Some of the directories exported by the server are reserved for a specific client, the other
directories are common for all client machines. All the clients boot from the server and must mount the
directories.

The directories exported from the server are:

/export/cli?/root

the five root directories for the five client machines. Each client has its own root directory.

98



Chapter 11 Networking

/export/cli?/swap

Five swap directories for the five swap machines.

/export/common/usr

/usr directory; common for all client hosts.

/usr/src

Common /usr/src directory for all client machines.

The following file systems exist on the server

/dev/ra0a on /
/dev/ra0f on /usr
/dev/ra1a on /usr/src
/dev/ra2a on /export

Each client needs the following file systems

buzz:/export/cli?/root on /
buzz:/export/common/usr on /usr
buzz:/usr/src on /usr/src

The server configuration is the following:

# /etc/exports
/usr/src -network 123.45.67.0 -mask 255.255.255.0
/export -alldirs -maproot=root -network 123.45.67.0 -mask 255.255.255.0

On the client machines /etc/fstab contains

buzz:/export/cli?/root / nfs rw
buzz:/export/common/usr /usr nfs rw,nodev,nosuid
buzz:/usr/src /usr/src rw,nodev,nosuid

Each client machine has its number substituted to the “?” character in the first line of the previous
example.

11.3.4 Setting up /net with amd

11.3.4.1 Introduction

The problem with NFS (and other) mounts is, that you usually have to be root to make them, which can
be rather inconvenient for users. Using amd you can set up a certain directory (I’ll take /net), under
which one can make any NFS-mount as a normal user, as long as the filesystem about to be accessed is
actually exported by the NFS server.

To check if a certain server exports a filesystem, and which ones, use the showmount-command with the
-e (export) switch:

99



Chapter 11 Networking

$ showmount -e wuarchive.wustl.edu
Exports list on wuarchive.wustl.edu:
/export/home onc.wustl.edu
/export/local onc.wustl.edu
/export/adm/log onc.wustl.edu
/usr onc.wustl.edu
/ onc.wustl.edu
/archive Everyone

If you then want to mount a directory to access anything below it (for example
/archive/systems/unix/NetBSD), just change into that directory:

$ cd /net/wuarchive.wustl.edu/archive/systems/unix/NetBSD

The filesystem will be mounted (by amd), and you can a access any files just as if the directory was
mounted by the superuser of your system.

11.3.4.2 Actual setup

You can set up such a /net directory with the following steps (including basic amd configuration):

1. in /etc/rc.conf, set the following variable:

amd=yes

2. mkdir /amd

3. mkdir /net

4. Taking /usr/share/examples/amd/master, put the following into /etc/amd/master:

/net /etc/amd/net

5. Taking /usr/share/examples/amd/net as example, put the following into /etc/amd/net:

/defaults type:=host;rhost:=${key};fs:=${autodir}/${rhost}/root
* host==${key};type:=link;fs:=/ \

host!=${key};opts:=ro,soft,intr,nodev,nosuid,noconn

6. Reboot, or (re)start amd by hand:

# sh /etc/rc.d/amd restart

11.3.5 IPv6 Connectivity & Transition via 6to4
This section will concentrate on how to get network connectivity for IPv6 and - as that’s still not easy to
get native today - talk in length about the alternatives to native IPv6 connectivity as a transitional method
until native IPv6 peers are available.

Finding an ISP that offers IPv6 natively needs quite some luck. What you need next is a router that will
be able to handle the traffic. To date, not all router manufacturers offer IPv6 support for their machines,
and even if they do, it’s unlikely that they offer hardware accelerated IPv6 routing or switching. A rather
cheap alternative to the router hardware commonly in use today is using a standard PC and configure it

100



Chapter 11 Networking

as a router, e.g. by using some Linux or BSD derived operating system like NetBSD, and use software
like Zebra for handling the routing protocols. This solution is rather common today for sites that want
IPv6 connectivity today. The drawbacks are that you need an ISP that supports IPv6, and that you need
dedicated uplink only for IPv6.

If this is not an option for you, you can still get IPv6 connectivity by using tunnels. Instead of talking
IPv6 on the wire, the IPv6 packets are encapsulated in IPv4 packets, as shown in Figure 11-7. Using
existing IPv4 infrastructure, the encapsulated packets are sent to a IPv6-capable uplink that will then
remove the encapsulation, and forward the IPv6 packets via native IPv6.

Figure 11-7. A frequently used method for transition is tunneling IPv6 in IPv4 packets

v6 v6

v6

local v4 gate v4

gate v6local v6

de−encapsulation

v4

encapsulation

When using tunnels, there are two possibilities. One is to use a so-called “configured” tunnel, the other is
called an “automatic” tunnel. A “configured” tunnel is one that required preparation from both ends of
the tunnel, usually connected with some kind of registration to exchange setup information. An example
for such a configured tunnel is the IPv6-over-IPv4 encapsulation described in [RFC1933], and that’s
implemented e.g. by the gif(4) device found in NetBSD.

An “automatic” tunnel consists of a public server that has some kind of IPv6 connectivity, e.g. via
6Bone. That server has made it’s connectivity data public, and also runs a tunneling protocol that does
not require an explicit registration of the sites using it as uplink. A well-used example of such a protocol
is the 6to4 mechanism described in [RFC3056], and that is implemented in the stf(4) device found in
NetBSD’s. Another mechanism that does not require registration of IPv6-information is the 6over4
mechanism, which implements transporting of IPv6 over a multicast-enabled IPv4 network, instead of
e.g. ethernet or FDDI. 6over4 is documented in [RFC2529]. It’s main drawback is that you do need
existing multicast infrastructure. If you don’t have that, setting it up is about as much effort as setting up
a configured IPv6 tunnel directly, so it’s usually not worth bothering in that case.

11.3.5.1 Getting 6to4 IPv6 up & running

6to4 is an easy way to get IPv6 connectivity for hosts that only have an IPv4 uplink, esp. if you have the
background given in Section 11.1.7. It can be used with static as well as dynamically assigned IPv4
addresses, e.g. as found in modem dialup scenarios today. When using dynamic IPv4 addresses, a change
of IP addresses will be a problem for incoming traffic, i.e. you can’t run persistent servers.

Example configurations given in this section is for NetBSD 1.5.2.

11.3.5.2 Obtaining IPv6 Address Space for 6to4

The 6to4 IPv6 setup on your side doesn’t consist of a single IPv6 address; Instead, you get a whole /48
network! The IPv6 addresses are derived from your (single) IPv4 address. The address prefix “2002:” is
reserved for 6to4 based addresses (i.e. IPv6 addresses derived from IPv4 addresses). The next 32 bits are
your IPv4 address. This results in a /48 network that you can use for your very own purpose. It leaves 16

101



Chapter 11 Networking

bits space for 216 IPv6 subnets, which can take up to 264 nodes each. Figure 11-8 illustrates the building
of your IPv6 address (range) from your IPv4 address.

Thanks to the 6to4 prefix and your worldwide unique IPv4 address, this address block is unique, and it’s
mapped to your machine carrying the IPv4 address in question.

Figure 11-8. 6to4 derives a IPv6 from an IPv4 address

2002:

prefix
6to4

:

address space
80 bit

:0001::1

Your IPv4 address:

0962

62.157.9.98

62 157 9 98

3e 09 629dHex:

Decimal:

Your IPv6 address: 3e9d

11.3.5.3 How to get connected

In contrast to the configured “IPv6-over-IPv4 tunnel” setup, you do not have to register at a
6bone-gateway, which will then forward you any IPv6 traffic (encapsulated in IPv4). Instead, as your
IPv6 address is derived from your IPv4 address, any answers can be sent through your nearest 6to4
gateway to you. De-encapsulation of the packet is done via a 6to4-capable network interface, which then
forwards the resulting IPv6 package according to your routing setup (in case you have more than one
machine connected on your 6to4 assigned network).

For sending out IPv6 packets, the 6to4-capable network interface will take the IPv6 packet, and
encapsulate it into a IPv4 packet. You still need a 6bone-connected 6to4-gateway as uplink that will
de-encapsulate your packets, and forward them on over the 6Bone. Figure 11-9 illustrates this.

Figure 11-9. Request and reply can be routed via different gateways in 6to4

upstream

downstream

IPv6−Enabled
Internet

(6Bone, ...)myhost my6to4gate

yetanother6to4gate

other6to4gate

11.3.5.4 Security Considerations

In contrast to the “configured tunnel” setup, you usually can’t setup packet filters to block 6to4-packets
from unauthorized sources, as this is exactly how (and why) 6to4 works at all. As such, malicious users

102



Chapter 11 Networking

can send packets with invalid/hazardous IPv6 payload. If you don’t already filter on your border
gateways anyways, packets with the following characteristics should not be allowed as valid 6to4
packets, and some firewalling seems to be justified for them:

• unspecified IPv4 source/destination address: 0.0.0.0/8

• loopback address in outer (v4) source/destination: 127.0.0.0/8

• IPv4 multicast in source/destination: 224.0.0.0/4

• limited broadcasts: 255.0.0.0/8

• subnet broadcast address as source/destination: depends on your IPv4 setup

The NetBSD stf(4) manual page documents some common configuration mistakes intercepted by default
by the KAME stack as well as some further advice on filtering, but keep in mind that because of the
requirement of these filters, 6to4 is not perfectly secure. Still, if forged 6to4 packets become a problem,
you can use IPsec authentication to ensure the IPv6 packets are not modified.

11.3.5.5 Data Needed for 6to4 Setup

In order to setup and configure IPv6 over 6to4, a few bits of configuration data must be known in
advance. These are:

• Your local IPv4 address. It can be determined using either the ’ifconfig -a’ or ’netstat -i’ commands
on most Unix systems. If you use a NATing gateway or something, be sure to use the official,
outside-visible address, not your private (10/8 or 192.168/16) one.

We will use 62.224.57.114 as the local IPv4 address in our example.

• Your local IPv6 address, as derived from the IPv4 address. See Figure 11-8 on how to do that.

For our example, this is 2002:3ee0:3972:0001::1 (62.224.57.114 == 0x3ee03972, 0001::1 arbitrarily
chosen).

• The IPv6-address of the 6to4 uplink gateway you want to use. The IPv6 address will do, as it also
contains the IPv4 address in the usual 6to4 translation.

We will use 2002:c25f:6cbf::1 (== 194.95.108.191 == 6to4.ipv6.fh-regensburg.de).

11.3.5.6 Kernel Preparation

To process 6to4 packets, the operating system kernel needs to know about them. For that a driver has to
be compiled in that knows about 6to4, and how to handle it.

For a NetBSD kernel, put the following into your kernel config file to prepare it for using IPv6 and 6to4,
e.g. on NetBSD use:

options INET6 # IPv6

103



Chapter 11 Networking

pseudo-device stf # 6to4 IPv6 over IPv4 encapsulation

Note that the stf(4) device is not enabled by default. Rebuild your kernel, then reboot your system to use
the new kernel. Please consult Chapter 9 for further information on configuring, building and installing a
new kernel!

11.3.5.7 6to4 Setup

This section describes the commands to setup 6to4. In short, the steps performed here are:

1. Configure interface

2. Set default route

3. Setup Router Advertisement, if wanted

The first step in setting up 6to4 is assigning an IPv6 address to the 6to4 interface. This is achieved with
the ifconfig(8) command. Assuming the example configuration above, the command for NetBSD is:

# ifconfig stf0 inet6 2002:3ee0:3972:1::1 prefixlen 16 alias (local)

After configuring the 6to4 device with these commands, routing needs to be setup, to forward all IPv6
traffic to the 6to4 (uplink) gateway. The best way to do this is by setting a default route, the command to
do so is, for NetBSD:

# route add -inet6 default 2002:cdb2:5ac2::1 (remote)

Note that NetBSD’s stf(4) device determines the IPv4 address of the 6to4 uplink from the routing table.
Using this feature, it is easy to setup your own 6to4 (uplink) gateway if you have a IPv6 uplink, e.g. via
6Bone.

After these commands, you are connected to the IPv6-enabled world - Congratulations! Assuming name
resolution is still done via IPv4, you can now ping a IPv6-site like www.kame.net or www6.NetBSD.org:

# /sbin/ping6 www.kame.net

As a final step in setting up IPv6 via 6to4, you will want to setup Router Advertisement if you have
several hosts on your network. While it is possible to setup 6to4 on each node, doing so will result in
very expensive routing from one node to the other - packets will be sent to the remote 6to4 gateway,
which will then route the packets back to the neighbor node. Instead, setting up 6to4 on one machine and
talking native IPv6 on-wire is the preferred method of handling things.

The first step to do so is to assign a IPv6-address to your ethernet. In the following example we will
assume subnet “2” of the IPv6-net is used for the local ethernet and the MAC address of the ethernet
interface is 12:34:56:78:9a:bc, i.e. your local gateway’s ethernet interface’s IP address will be
2002:3ee0:3972:2:1234:56ff:fe78:9abc. Assign this address to your ethernet interface, e.g.

# ifconfig ne0 inet6 alias 2002:3ee0:3972:2:1234:56ff:fe78:9abc

Here, “ne0” is an example for your ethernet card interface. This will most likely be different for your
setup, depending on what kind of card is used.

104



Chapter 11 Networking

Next thing that needs to be ensured for setting up the router is that it will actually forward packets from
the local 6to4 device to the ethernet device and back. To enable IPv6 packet forwarding, set
“ip6mode=router” in NetBSD’s /etc/rc.conf, which will result in the “net.inet6.ip6.forwarding”
sysctl being set to “1”:

# sysctl -w net.inet6.ip6.forwarding=1

Figure 11-10. Enabling packet forwarding is needed for a 6to4 router

ethernet interface

node node

forwarding
IPv66to4 interface

router

To setup router advertisement on BSD, the file /etc/rtadvd.conf needs to be checked. It allows
configuration of many things, but usually the default config of not containing any data is ok. With that
default, IPv6 addresses found on all of the router’s network interfaces will be advertised.

After checking the router advertisement configuration is correct and IPv6 forwarding is turned on, the
daemon handling it can be started. Under NetBSD, it is called ’rtadvd’. Start it up either manually (for
testing it the first time) or via the system’s startup scripts, and see all your local nodes automagically
configure the advertised subnet address in addition to their already-existing link local address.

# rtadvd

11.3.5.8 Quickstart using pkgsrc/net/6to4

So far, we have described how 6to4 works and how to set it up manually. For an automated way to make
everything happen e.g. when going online, the ’6to4’ package is convenient. It will determine your IPv6
address from the IPv4 address you got assigned by your provider, then set things up that you are
connected.

Steps to setup the pkgsrc/net/6to4 package are:

1. Install the package either by compiling it from pkgsrc, or by pkg_add’ing the 6to4-1.1nb1 package.

# cd /usr/pkgsrc/net/6to4
# make install

2. Make sure you have the stf(4) pseudo-device in your kernel, see above.

3. Configure the ’6to4’ package. Frist, copy /usr/pkg/etc/6to4.conf-example to
/usr/pkg/etc/6to4.conf, then adjust the variables. Note that the file is in perl syntax.

# cd /usr/pkg/etc
# cp 6to4.conf-example 6to4.conf

105



Chapter 11 Networking

# vi 6to4.conf

Please see the 6to4(8) manpage for an explanation of all the variables you can set in 6to4.conf. If
you have dialup IP via PPP, and don’t want to run Router Advertizing for other IPv6 machines on
your home or office network, you don’t need to configure anything. If you want to setup Router
Advertising, you need to set the in_if to the internal (ethernet) interface, e.g.

$in_if="rtk0"; # Inside (ethernet) interface

4. Now dial up, then start the 6to4 command manually:

# /usr/pkg/sbin/6to4.pl start

After that, you should be connected, use ping6(8) etc. to see if everything works. If it does, you can
put the following lines into your /etc/ppp/ip-up script to run the command each time you go
online:

logger -p user.info -t ip-up Configuring 6to4 IPv6
/usr/pkg/sbin/6to4.pl stop
/usr/pkg/sbin/6to4.pl start

5. If you want to route IPv6 for your LAN, you can instruct 6to4.pl to setup Router Advertising for
you too:

# /usr/pkg/sbin/6to4 rtadvd-start

You can put that command into /etc/ppp/ip-up as well to make it permanent.

6. If you have changed /etc/ppp/ip-up to setup 6to4 automatically, you will most likely want to
change /etc/ppp/ip-down too, to shut it down when you go offline. Here’s what to put into
/etc/ppp/ip-down:

logger -p user.info -t ip-down Shutting down 6to4 IPv6
/usr/pkg/sbin/6to4.pl rtadvd-stop
/usr/pkg/sbin/6to4.pl stop

11.3.5.9 Known 6to4 Gateway

There are not many public 6to4 gateways available today, and from the few available, you will want to
chose the one closest to you, netwise. A list of known working 6to4 gateways is available at
http://www.kfu.com/~nsayer/6to4/. In tests, only 6to4.kfu.com and 6to4.ipv6.microsoft.com were found
working. Cisco has another one that you have to register to before using it, see
http://www.cisco.com/ipv6/.

There’s also an experimental 6to4 server located in Germany, 6to4.ipv6.fh-regensburg.de. This server
runs under NetBSD 1.5 and was setup using the configuration steps described above. The whole
configuration of the machine can be seen at http://www.feyrer.de/IPv6/netstart.local.

106



Chapter 11 Networking

11.3.5.10 Conclusion & Further Reading

Compared to where IPv4 is today, IPv6 is still in it’s early steps. It is working, there are all sort of
services and clients available, only the userbase is missing. It is hoped the information provided here
helps people better understand what IPv6 is, and to start playing with it.

A few links should be mentioned here for interested parties:

• An example script to setup 6to4 on BSD based machines is available at
http://www.NetBSD.org/packages/net/hf6to4/. The script determines your IPv6 address and sets up
6to4 and (if wanted) router advertising. It was designed to work in dialup setups with changing IPv4
addresses.

• Given that there isn’t a standard for IPv6 in Linux land today, there are different setup instructions for
most distributions. The setup of IPv6 on Debian GNU/Linux can be found at
http://people.debian.org/~csmall/ipv6/setup.html and
http://www.mailgate.org/linux/linux.debian.ipv6/msg00137.html.

• The BSD Unix implementations have their own IPv6 documentation each, interesting URLs are
http://www.NetBSD.org/Documentation/network/ipv6/ for NetBSD,
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-ipv6.html for FreeBSD and
pages 61 and 62 of the BSD/OS Administrator’s Guide at
http://www.bsdi.com/products/internet/release-notes/rn42.pdf.

• Projects working on implementing IPv6 protocol stacks for free Unix like operating systems are
KAME for BSD and USAGI for Linux. Their web sites can be found at http://www.kame.net/ and
http://www.linux-ipv6.org/. A list of host and router implementations can be found at
http://playground.sun.com/pub/ipng/html/ipng-implementations.html.

• Besides the official RFC archive at ftp://ftp.isi.edu/in-notes, information on IPv6 can be found at
several web sites. First and foremost, the 6Bone’s web page at http://www.6bone.net/ must be
mentioned. 6Bone was started as the testbed for IPv6, and is now an important part of the
IPv6-connected world. Other web pages that contain IPv6-related contents include
http://www.ipv6.org/, http://playground.sun.com/pub/ipng/html/ and http://www.ipv6forum.com/.
Most of these sites carry further links - be sure to have a look!

Bibliography

[AeleenFrisch] Aeleen Frisch, 1991, O’Reilly & Associates, Essential System Administration.

[CraigHunt] Craig Hunt, 1993, O’Reilly & Associates, TCP/IP Network Administration.

[RFC1034] P. V. Mockapetris, 1987, RFC 1034: Domain names - concepts and facilities.

[RFC1035] P. V. Mockapetris, 1987, RFC 1035: Domain names - implementation and specification.

[RFC1055] J. L. Romkey, 1988, RFC 1055: Nonstandard for transmission of IP datagrams over serial
lines: SLIP.

107



Chapter 11 Networking

[RFC1331] W. Simpson, 1992, RFC 1331: The Point-to-Point Protocol (PPP) for the Transmission of
Multi-protocol Datagrams over Point-to-Point Links.

[RFC1332] G. McGregor, 1992, RFC 1332: The PPP Internet Protocol Control Protocol (IPCP).

[RFC1933] R. Gilligan and E. Nordmark, 1996, RFC 1933: Transition Mechanisms for IPv6 Hosts and
Routers.

[RFC2004] C. Perkins, 1996, RFC 2003: IP Encapsulation within IP.

[RFC2401] S. Kent and R. Atkinson, 1998, RFC 2401: Security Architecture for the Internet Protocol.

[RFC2411] R. Thayer, N. Doraswamy, and R. Glenn, 1998, RFC 2411: IP Security Document Roadmap.

[RFC2461] T. Narten, E. Nordmark, and W. Simpson, 1998, RFC 2461: Neighbor Discovery for IP
Version 6 (IPv6).

[RFC2529] B. Carpenter and C. Jung, 1999, RFC 2529: Transmission of IPv6 over IPv4 Domains
without Explicit Tunnels.

[RFC3024] G. Montenegro, 2001, RFC 3024: Reverse Tunneling for Mobile IP.

[RFC3027] M. Holdrege and P. Srisuresh, 2001, RFC 3027: Protocol Complications with the IP Network
Address Translator.

[RFC3056] B. Carpenter and K. Moore, 2001, RFC 3056: Connection of IPv6 Domains via IPv4 Clouds.

108



Chapter 12

The Domain Name System

The Domain Name System on NetBSD. This chapter describes setting up a simple small domain with
one Domain Name Server (DNS) on a NetBSD system. It does not provide a detailed overview of what
DNS is, however, a brief explanation is offered. Further information can be obtained from the DNS
Resources Directory (DNSRD) at http://www.dns.net/dnsrd/.

12.1 Notes and Pre-Requisites
The examples in this chapter refer to BIND major version 8, however, it should be noted that the data-
base format and named.conf are almost 100% compatible between version. The only difference I
noticed was that the “$TTL” information was not required.

The reader should have a good understanding of basic hosts to IP address mapping and IP address class
specifications.

12.2 What is DNS?
The Domain Name System converts machine names to IP addresses. The mapping is done from name to
address and address to name. The difference between just plain hosts IP mapping and Domain mapping
is that DNS uses a hierarchichal naming standard. This hierarchy works from right-to-left with the
highest level being on the right. As an example, here is a simple domain break-out:

TOP-LEVEL .org
|

MID-LEVEL .diverge.org
______________________|________________________

| | |
BOTTOM-LEVEL strider.diverge.org samwise.diverge.org wormtongue.diverge.org

It seems simple enough, however, the system can also be logically divided even further if one wishes at
different points. The example shown above shows three nodes on the diverge.org domain, but we could
even divide diverge.org into subdomains such as strider.net1.diverge.org, samwise.net2.diverge.org and
wormtongue.net2.diverge.org, in this case, 2 nodes reside on net2.diverge.org and one on
net1.diverge.org.

109



Chapter 12 The Domain Name System

12.3 The DNS Files
Now let’s look at actually setting up a small DNS enabled network. We will continue to use the examples
mentioned above, before we begin we must make a few assumptions:

• Our host-to-ip is working correctly

• We have IPNAT working correctly

• Currently all hosts use the ISP for DNS

Note: this type of configuration was described in Chapter 11.

Our Name Server will be the “strider” host, it also runs IPNAT and our two clients use strider as a
gateway. It is not really relevant as to what type of interface is on strider, but for argument’s sake we will
say a 56k dial up connection.

So, before going any further, let’s look at our hosts file on strider before we have made the alterations to
use DNS.

Example 12-1. strider’s /etc/hosts file

127.0.0.1 localhost
192.168.1.1 strider
192.168.1.2 samwise sam
192.168.1.3 wormtongue worm

not exactly a huge network, it is worth noting that the same rules apply for larger networks as we discuss
in the context of this section.

12.3.1 /etc/namedb/named.conf

The NetBSD Operating System provides a set of default files for you to use or go from, they are stored in
/etc/namedb, I strongly suggest making a backup copy of this directory for reference purposes.

The default directory contains the following files:

• 127

• localhost

• loopback.v6

• named.conf

• root.cache

You will see modified versions of these files in my configuration.

The first file we want to look at is /etc/namedb/named.conf. This file is the config file for bind
(hence the catchy name). Setting up system like the one we are doing is relatively simple. First, here is
what mine looks like:

110



Chapter 12 The Domain Name System

options {
directory "/etc/namedb";
allow-transfer { 192.168.1.0/24; };
recursion yes;
allow-query { 192.168.1.0/24; };
listen-on port 53 { 192.168.1.1; };

};

zone "localhost" {
type master;
notify no;
file "localhost";

};

zone "127.IN-ADDR.ARPA" {
type master;
notify no;
file "127";

};

zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int" {
type master;
file "loopback.v6";

};

zone "diverge.org" {
type master;
notify no;
file "diverge.org";

};

zone "1.168.192.in-addr.arpa" {
type master;
notify no;
file "1.168.192";

};

zone "." in {
type hint;
file "root.cache";

};

Note that in my named.conf the root section is last, that is because there is another domain called
diverge.org on the internet (I happen to own it) so I want the resolver to look out on the internet last. This
is not normally the case on most systems.

Another very important thing to remember here is that if you have an internal setup, in other words no
live internet connection and/or no need to do root server lookups, comment out the root zone. It may
cause lookup problems if a particular client decides it wants to reference a domain on the internet.

Looks like a pretty big mess, upon closer examination it is revealed that many of the lines in each section
are somewhat redundant. So we should only have to explain them a few times.

Lets go through the sections of named.conf:

111



Chapter 12 The Domain Name System

12.3.1.1 options

This section defines some global parameters, most noticeable is the location of the DNS tables, on this
particular system, they will be put in /etc/named.

Following are the rest of the params:

allow-transfer

for remote DNS servers acting as secondaries and need zone file information from you.

allow-query

what network may query this name server

listen-on port

the port this server will run named on

The rest of the named.conf file consists of “zones”, each zone has a file associated with and tables
within that file for resolving that particular area (or, zone) of the domain. As is readily apparent, their
format in named.conf is strikingly similar, so I will highlight just one of their records:

12.3.1.2 zone “diverge.org”

type

the type of zone in all cases except “.” they are master

notify

do you want to send out notifications when your zone changes? Obviously not in this setup.

file

the filename in our named directory where records about this particular zone may be found.

12.3.2 /etc/namedb/localhost

For the most part, the zone files look quite similar, however, each one does have some unique properties.
Here is what the localhost file looks like:

Example 12-2. localhost

1|$TTL 3600
2|@ IN SOA strider.diverge.org. hostmaster.diverge.org. (
3| 1 ; Serial
4| 8H ; Refresh
5| 2H ; Retry
6| 1W ; Expire
7| 1D) ; Minimum TTL
8| IN NS localhost.

112



Chapter 12 The Domain Name System

9|localhost. IN A 127.0.0.1
10| IN AAAA ::1

Line by line:

Line 1

This is the Time To Live for lookups, this is generally the same in all of the files.

Line 2

This line is generally the same in all zone files except root. Of specific interest on this line are
strider.diverge.org. and root.diverge.org. Obviously one is the name of this server and the other is the
contact for this DNS server, in most cases root seems a little ambiguous, it is preferred that a regular
email account be used for the contact information (for example, mine would be jrf.diverge.org.).

Line 3

This line is the serial number, most people use the date they installed the server in a format like so:
MMDDYYYY. The serial number should be incremented each time there is a change to the file
after it has been initially installed. That is why I prefer to just start with 1.

Line 4

This is the refresh rate of the server, in this file it is set to once every 8 hours.

Line 5

The retry rate.

Line 6

Lookup expiry.

Line 7

The minimum Time To Live

Line 8

This is the Nameserver line, as you can see it is set to localhost.

Line 9

This is the local host entry.

Line 10

This line is the ipv6 entry.

12.3.3 /etc/named/zone.127.0.0
This is the reverse lookup file (or zone) for the localhost. It looks like this:

1| $TTL 3600
2| @ IN SOA strider.diverge.org. root.diverge.org. (

113



Chapter 12 The Domain Name System

3| 1 ; Serial
4| 8H ; Refresh
5| 2H ; Retry
6| 1W ; Expire
7| 1D) ; Minimum TTL
8| IN NS localhost.
9| 1.0.0 IN PTR localhost.

In this file, all of the lines are the same as the localhost zonefile with exception of line 9, this is the
reverse lookup record. It is defined in a separate file because it is the localhost and has a totally different
address than the remaining zones. Something we will discuss after looking at all of the zone files.

12.3.4 /etc/namedb/diverge.org

This zone file is populated by records for all of our hosts on the 192.168.1.0/24 network. Here is what it
looks like:

1| $TTL 3600
2| @ IN SOA strider.diverge.org. root.diverge.org. (
3| 1 ; serial
4| 8H ; refresh
5| 2H ; retry
6| 1W ; expire
7| 1D ) ; minimum seconds
8| IN NS strider.diverge.org.
9| IN MX 10 maila.diverge.org. ; primary mail server

10| IN MX 20 mailb.diverge.org. ; secondary mail server
11| strider IN A 192.168.1.1
12| maila IN CNAME strider.diverge.org.
13| samwise IN A 192.168.1.2
14| www IN CNAME samwise.diverge.org.
15| mailb
16| worm IN A 192.168.1.3

There is a lot of new stuff here, so lets just look over each line that is new here:

Line 12

This line shows our mail handler, in this case it is strider, but for scaling reasons, we want to call it
maila. As you will see below this is not a big deal, the number that precedes maila.diverge.org. is
the priority number, the lower the number their higher the priority. The way we are setup here is if
strider cannot handle the mail, then mailb (which is really samwise) will.

Line 12

CNAME stands for canonical name, or in lamens, an alias. So we have aliased the following:

maila.diverge.org to strider.diverge.org
mailb.diverge.org to samwise.diverge.org
www.diverge.org to samwise.diverge.org

114



Chapter 12 The Domain Name System

The rest of the records are simply mappings of IP address to a full name.

12.3.5 /etc/namedb/1.168.192

This zone file is the reverse file for all of the host records, the format is similar to that of the localhost
version with the obvious exception being the addresses are different:

1|$TTL 3600
2|@ IN SOA strider.diverge.org. root.diverge.org. (
3| 1 ; serial
4| 8H ; refresh
5| 2H ; retry
6| 1W ; expire
7| 1D ) ; minimum seconds
8| IN NS strider.diverge.org.
9|1 IN PTR strider.diverge.org.

10|2 IN PTR samwise.diverge.org.
11|3 IN PTR worm.diverge.org.

12.3.6 /etc/namedb/root.cache

This file is a list of root servers for your server to query when it gets requests outside of it’s own domain.
Here are first few lines of a root zone file:

; $NetBSD: root.cache,v 1.8 1997/08/24 15:50:47 perry Exp $
;
; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . file"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC registration services
; under anonymous FTP as
; file /domain/named.root
; on server FTP.RS.INTERNIC.NET
; -OR- under Gopher at RS.INTERNIC.NET
; under menu InterNIC Registration Services (NSI)
; submenu InterNIC Registration Archives
; file named.root
;
; last update: Aug 22, 1997
; related version of root zone: 1997082200
;
;
; formerly NS.INTERNIC.NET
;
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
;
; formerly NS1.ISI.EDU

115



Chapter 12 The Domain Name System

;
. 3600000 NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 A 128.9.0.107
;
; formerly C.PSI.NET
;
. 3600000 NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 A 192.33.4.12
. . .

This file can be obtained from ISC at http://www.isc.org/ and usually comes with a distribution of BIND.
A root.cache file is included with the NetBSD core Operating System.

12.4 Using DNS
In this section we will look at how to get DNS going and setup strider to use it’s own services.

NetBSD already provides a dns caching server install (shown in the next section). Along with this are the
tools to manage the server at runtime. Before that can start, however, we must look at how to properly
initialize the server.

Setting up named to start automatically is quite simple. In /etc/defaults/rc.conf simply go to the
line named and replace NO with YES. Additional options can be specified on that line in between the
quotes, for example, I like to use -g nogroup -u nobody, so a non root account runs the named process.

In addition to being able to startup named at boot time, it can also be controlled with the ndc facility. In a
nutshell the ndc facility can stop, start or restart the named server process. It can also do a great many
other things (see the ndc man page for more details).

The general usage is ndc.

Next we want to point strider to itself for lookups. We have two simple steps, first, decide on our
resolution order. On a network this small, it is likely that each host has a copy of the hosts table, so we
can get away with using hosts then dns, however, on larger networks it is much easier to use DNS. Either
way, the file where this is determined is /etc/nsswitch.conf (see Example 11-2.) Here is part of a
typical nsswitch.conf:

. . .
group_compat: nis
hosts: files dns
netgroup: files [notfound=return] nis
. . .

the line we are concerned with is hosts, files means the system uses /etc/hosts to determine ip to
name translation. The entry on the left is the first method of resolution.

The next file is /etc/resolv.conf, this file is the dns resolution file, the format is pretty self
explanatory but we will go over it anyway:

domain diverge.org
search diverge.org
nameserver 192.168.1.1

116



Chapter 12 The Domain Name System

In a nutshell this file is telling the resolver that this machine belongs to diverge.org, should search it
before looking elsewhere and the nameserver address is 192.168.1.1 .

To test our nameserver we can use several commands, for example:

# host www.blah.net

here is the output of running host www.yahoo.com:

www.yahoo.com is a nickname for www.yahoo.akadns.net
www.yahoo.akadns.net has address 216.32.74.50
www.yahoo.akadns.net has address 216.32.74.51
www.yahoo.akadns.net has address 216.32.74.52
www.yahoo.akadns.net has address 216.32.74.53
www.yahoo.akadns.net has address 216.32.74.55

The procedure for setting up the client hosts are the same, setup /etc/nsswitch.conf and
/etc/resolv.conf.

12.5 Setting up a caching only name server
A caching only name server has no local zones; all the queries go to the root servers and the replies are
accumulated in the local cache. The next time the query is performed the answer will be faster because
the data is already in the server’s cache. Since this type of server doesn’t handle local zones, to resolve
the names of the local hosts it will still be necessary to use the already known /etc/hosts file.

Since NetBSD supplies defaults for all the files needed by a caching only server, the configuration of this
type of DNS is very easy, and can be performed with a few commands, without writing a single line in
the configuration files.

Note: the number of the configuration files and their contents varies between versions of NetBSD.

The program which supplies the DNS server is the named daemon, which uses the named.conf
configuration file for its setup. The default file supplied by NetBSD is located in the /etc/namedb
directory, but the daemon looks for it in the /etc/ directory, so we start by creating a link:

# ln -s /etc/namedb/named.conf /etc/named.conf

The name server is ready for use! We can now tell to the system to use it adding the following line to the
/etc/resolv.conf file:

nameserver 127.0.0.1

Now we can start named.

# named

Note: we have now started the name server manually. Once we have tested it and are confident that
it works, we can launch it automatically at boot using the relevant option of the /etc/rc.conf file.

117



Chapter 12 The Domain Name System

12.5.1 Testing the server
Now that the server is running we can test it using the nslookup program.

# nslookup
Default server: localhost
Address: 127.0.0.1

>

Let’s try to resolve an host name, for example www.mclink.it (try a site near you.)

> www.mclink.it
Server: localhost
Address: 127.0.0.1

Name: www.mclink.it
Address: 195.110.128.8

If you repeat the query a second time, the result is slightly different:

> www.mclink.it
Server: localhost
Address: 127.0.0.1

Non-authoritative answer:
Name: www.mclink.it
Address: 195.110.128.8

As you’ve probably noticed, the address is the same, but the message “Non-authoritative answer”, has
appeared. This message indicates that the answer is not coming from an authoritative server for the
domain mclink.it but from the cache of our own server.

The results of this first test confirm that the server is working correctly.

We can also try the host command, which gives the following result.

# host www.mclink.it
www.mclink.it has address 195.110.128.8

118



Chapter 13

Mail and news

This chapter explains how to set up NetBSD to use mail and news. Only a simple but very common setup
is described: the configuration of a host connected to the Internet with a modem through a provider: think
of this chapter as the continuation of Chapter 11, assuming a similar network configuration. Even this
"simple" setup proves to be difficult if you don’t know where to start or if you’ve only read introductory
or technical documentation; in fact you will notice that some details are really challenging (for example,
mapping your internal network names to “real” names requires a good knowledge of sendmail.) A
general description of mail and news configuration is beyond the scope of this guide; please read a good
Unix Administration book (some very good ones are listed on the NetBSD site.) The problem is in fact
very complex because of the myriad of possible configurations and connections and because it’s not
enough to configure a single program: you need to correctly match the configuration of several
cooperating components.

This chapter also briefly describes the configuration (but not the usage) of two popular applications, mutt
for mail and tin for news. The usage is not described because they are easy to use and well documented.
Obviously, both mutt and tin are not mandatory choices: many other similar applications exist but I think
that they are a good starting point because they are widely used, simple, work well and don’t use too
much disk space and memory. Both are console mode programs; if you prefer graphics applications there
are also many choices for X.

In short, the programs required for the configuration described in this chapter are:

• sendmail

• fetchmail

• m4

• mutt

• tin

Of these, only sendmail and m4 are installed with the base system; you can install the other programs
from the package collection.

Before continuing, remember that none of the programs presented in this chapter is mandatory: there are
other applications performing similar tasks and many users prefer them. You’ll find different opinions
reading the mailing lists. You can also use different strategies for sending and receiving mail: the one
explained here is only a starting point; once you understand how it works you’ll probably want to modify
it to suit your needs or to adopt a different method altogether.

At the opposite extreme of the example presented here, there is the usage of an application like Netscape
Communicator, which does everything and frees you from the need of configuring many components:
with Communicator you can browse the Internet, send and receive mail and read news. Besides, the setup
is very simple. There is a price to pay, though: Communicator is a “closed” program that will not
cooperate with other standard Unix utilities.

119



Chapter 13 Mail and news

Another possibility is to use emacs to read mail and news. Emacs needs no introduction to Unix users
but, in case you don’t know, it is an extensible editor (although calling emacs an editor is somewhat
reductive) which becomes a complete work environment, and can be used to read mail, news and to
perform many operations. For many people emacs is the only environment that they need and they use it
for all their work. The configuration of emacs for mail and news is described in the emacs manual.

In the rest of this chapter we will deal with a host connected to the Internet through a PPP connection via
serial modem to a provider.

• the local host’s name is “ape” and the internal network is “insetti.net”, which means that the FQDN
(Fully Qualified Domain Name) is “ape.insetti.net”.

• the user’s login name on ape is “carlo”.

• the provider’s name is BigNet.

• the provider’s mail server is “mail.bignet.it”.

• the provider’s news server is “news.bignet.it”.

• the user’s (“carlo”) account at the provider is “alan” with the password “pZY9o”.

First some basic terminology:

MUA (mail user agent)

a program to read and write mail. For example: mutt, elm and pine but also the simple mail
application installed with the base system.

MTA (mail transfer agent)

a program that transfers mail between two host but also locally (on the same host.) The MTA
decides the path that the mail will follow to get to the destination. On BSD systems (but not only)
the standard MTA is sendmail.

MDA (mail delivery agent)

a program, usually used by the MTA, that delivers the mail; for example, it physically puts the
messages in the recipient’s mailbox. For example, sendmail uses one or more MDA to deliver mail.

Figure 13-1 depicts the mail system that we want to set up. Between the local network (or the single
host) and the provider there is a modem PPP connection. The “bubbles” with the thick border are the
programs launched manually by the user; the remaining bubbles are the programs that are launched
automatically. The circled numbers refere to the logical steps of the mail cycle:

1. In step (1) mail is downloaded from the provider’s POP server using fetchmail, which uses sendmail
to put the messages in the user’s mailbox.

2. In step (2) the user launches mutt (or another MUA) to read mail, reply and write new messages.

3. In step (3) the user “sends” the mail from within mutt. Messages are accumulated in the spool area.

4. In step (4) the user calls sendmail to transfer the messages to the provider’s SMTP server, that will
deliver them to the final destination (possibly through other mail servers.) The provider’s SMTP
server acts as a relay for our mail.

120



Chapter 13 Mail and news

The connection with the provider must be up only during steps (1) and (4); for the remaining steps it is
not needed.

Figure 13-1. Structure of the mail system

mutt

sendmail

spool: /var/spool/mqueue

sendmail

mailbox: /var/mail

sendmail

fetchmail

POP server SMTP server

provider

home

1 4

2 3

PPP link

13.1 sendmail
When an MTA, sendmail in the default installation, must deliver a message, if it’s a local message it
delivers it directly. If the message is for a different domain, the MTA must find out the address of the
mail server for that domain. Sendmail uses the DNS service (described in Chapter 12) to find the
required address (stored as an MX record by the DNS server) and delivers the message to the destination
mail server.

The most used MTA in the BSD world is probably sendmail. Sendmail is controlled by a set of
configuration files and databases, of which /etc/mail/sendmail.cf is the most important. In
general, if you are not an expert it is better not to modify the /etc/mail/sendmail.cf file directly;
instead, use a set of predefined macros and the m4 preprocessor, which greatly (well, almost) simplify
the configuration.

121



Chapter 13 Mail and news

Note: prior to version 1.5 of NetBSD, the mail configuration files were in /etc instead of /etc/mail.

Even using the macros, the configuration of sendmail is not for the faint of heart, and the next sections
only describe an example which can be modified to suit different needs and different configurations. If
you connect to the Internet with a modem, the example configuration file will probably fit all your needs:
just replace the fictitious data with yours.

The first problem to be solved is that the local network we are dealing with is an internal network, i.e. not
directly accessible from the Internet. This means that the names used internally have no meaning on the
Internet; in short, “ape.insetti.net” cannot be reached by an external host: no one will be able to reply to a
mail sent with this return address (some mail systems will even reject the message because it comes from
an unknown host.) The true address, the one visible from everybody, is assigned by the provider and,
therefore, it is necessary to convert the local address “carlo@ape.insetti.net” to the real address
“alan@bignet.it”. Sendmail, if correctly configured, will take care of this when it transfers the messages.

You’ll probably also want to configure sendmail in order to send the e-mails to the provider’s mail server,
using it as a relay. In the configuration described in this chapter, sendmail does not directly contact the
recipient’s mail server (as previously described) but relays all its mail to the provider’s mail server.

Note: the provider’s mail server acts as a relay , which means that it delivers mail which is not
destined to its own domain, to another mail server. It acts as an intermediary between two servers.

Since the connection with the provider is not always active, it is not necessary to start sendmail as a
daemon in /etc/rc.conf: you can disable it with the line “sendmail=NO”. As a consequence it will
be necessary to launch sendmail manually when you want to transfer mail to the provider. Local mail is
delivered correctly even if sendmail is not active as a daemon.

Let’s start configuring sendmail.

13.1.1 Configuration with genericstable
This type of configuration uses the file /etc/mail/genericstablewhich contains the mapping used
by sendmail to rewrite the internal hostnames.

The first step is therefore to write the genericstable file. For example:

carlo: alan@bignet.it
root: alan@bignet.it
news: alan@bignet.it

For the sake of efficiency, genericstable must be transformed with the following command:

# /usr/sbin/sendmail -bi -oA/etc/mail/genericstable

Now it’s time to create the prototype configuration file which we’ll use to create the sendmail
configuration file.

# cd /usr/share/sendmail/m4

122



Chapter 13 Mail and news

The new sendmail configuration file, which we’ll call mycf.mc, contains:

divert(-1)dnl
include(‘../m4/cf.m4’)dnl
VERSIONID(‘mycf.mc created by carlo@ape.insetti.net May 18 2001’)dnl
OSTYPE(bsd4.4)dnl

dnl # Settings for masquerading. Addresses of the following types
dnl # are rewritten
dnl # carlo@ape.insetti.net
dnl # carlo@ape
GENERICS_DOMAIN(ape.insetti.net ape)dnl
FEATURE(genericstable)dnl
FEATURE(masquerade_envelope)dnl

define(‘SMART_HOST’,‘mail.bignet.it’)dnl

FEATURE(redirect)dnl
FEATURE(nocanonify)dnl

dnl # The following feature is useful if sendmail is called by
dnl # fetchmail (which is usually the case.) If sendmail cannot
dnl # resolve the name of the sender, the mail will not be delivered.
dnl # For example:
dnl # MAIL FROM:<www-owner@NetBSD.org> SIZE=2718
dnl # 501 <www-owner@NetBSD.org>... Sender domain must exist
FEATURE(‘accept_unresolvable_domains’)dnl

dnl # accept_unqualified_senders is useful with some MUA, which send
dnl # mail as, for example:
dnl # MAIL FROM:<carlo>
FEATURE(‘accept_unqualified_senders’)dnl

dnl # Mail for ‘smtp’ mailer is marked ‘expensive’ (‘e’ flag):
dnl # instead of connecting with the relay, sendmail puts it in
dnl # a queue for delayed processing.
dnl # Sendmail starts complaining about undelivered messages after
dnl # 16 hours.
define(‘SMTP_MAILER_FLAGS’,‘e’)dnl
define(‘confCON_EXPENSIVE’,‘True’)dnl
define(‘confTO_QUEUEWARN’, ‘16h’)dnl

dnl # For european users
define(‘confDEF_CHAR_SET’,‘ISO-8859-1’)dnl

dnl # Enable the following three lines to use procmail as a local
dnl # delivery agent. The third line is optional, only the first
dnl # two are required.
dnl # define(‘PROCMAIL_MAILER_PATH’, /usr/pkg/bin/procmail)dnl
dnl # FEATURE(local_procmail)dnl
dnl # MAILER(procmail)dnl

dnl # The following two mailers must always be defined

123



Chapter 13 Mail and news

MAILER(local)dnl
MAILER(smtp)dnl

Note: in the previous example, everything after a “dnl” is considered a comment and will be
discarded by the m4 preprocessor.

This configuration tells sendmail to rewrite the addresses of type “ape.insetti.net” using the real names
found in the /etc/mail/genericstable file. It also says that mail should be sent to the
“mail.bignet.it” server. The meaning of the options is described in detail in the file
/usr/share/sendmail/README.

In order to create your own version of the example configuration file, you must change only two lines,
substituting your real data:

GENERICS_DOMAIN(ape.insetti.net ape)dnl
define(‘SMART_HOST’,‘mail.bignet.it’)dnl

Finally, the new configuration file must be generated, after having saved the previous version:

# cp /etc/mail/sendmail.cf /etc/mail/sendmail.cf.bak
# m4 mycf.mc > /etc/mail/sendmail.cf

Note: in the /usr/share/sendmail/cf directory there is the file netbsd-proto.mc, which is used to
create the default /etc/mail/sendmail.cf shipped with NetBSD. With the make command it can
be rebuilt, if needed.

Another important file is /etc/mail/aliases, which can be left in the default configuration, although
it is still necessary to give the following command:

# newaliases

Now everything is ready to start sending mail.

13.1.2 Testing the configuration
Sendmail is finally configured and ready to work, but before sending real mail it is better to do some
simple tests. First let’s try sending a local e-mail with the following command:

$ sendmail -v carlo
Subject: test

Prova
.
carlo... Connecting to local...
carlo... Sent

124



Chapter 13 Mail and news

Please follow exactly the example above: leave a blank line after Subject: and end the message with a
line containing only one dot. Now you should be able to read the message with your mail client and
verify that the From: field has been correctly rewritten.

From: alan@bignet.it

Next you can verify the address rewriting rules directly, using sendmail in address test mode with option
-bt. This mode shows the parsing performed by sendmail for an address and how it gets rewritten
according to the rules in the configuration file. It is also possible to perform other tests and view some
information.

$ sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
>

You can display the help with the “?” command.

First, let’s verify that the generictable map file works correctly:

/map generics carlo
map_lookup: generics (carlo) returns alan@bignet.it

Everything’s ok here; sendmail found the local name and its real counterpart in the map.

Now we can test the rewriting of the envelope’s sender address with the following commands:

/tryflags ES
/try smtp carlo@ape.insetti.net

The result should be similar to the following:

Trying envelope sender address carlo@ape.insetti.net for mailer smtp
rewrite: ruleset 3 input: carlo @ ape . insetti . net
rewrite: ruleset 96 input: carlo < @ ape . insetti . net >
rewrite: ruleset 96 returns: carlo < @ ape . insetti . net . >
rewrite: ruleset 3 returns: carlo < @ ape . insetti . net . >
rewrite: ruleset 1 input: carlo < @ ape . insetti . net . >
rewrite: ruleset 1 returns: carlo < @ ape . insetti . net . >
rewrite: ruleset 11 input: carlo < @ ape . insetti . net . >
rewrite: ruleset 51 input: carlo < @ ape . insetti . net . >
rewrite: ruleset 51 returns: carlo < @ ape . insetti . net . >
rewrite: ruleset 61 input: carlo < @ ape . insetti . net . >
rewrite: ruleset 61 returns: carlo < @ ape . insetti . net . >
rewrite: ruleset 94 input: carlo < @ ape . insetti . net . >
rewrite: ruleset 93 input: carlo < @ ape . insetti . net . >
rewrite: ruleset 3 input: alan @ bignet . it
rewrite: ruleset 96 input: alan < @ bignet . it >
rewrite: ruleset 96 returns: alan < @ bignet . it >
rewrite: ruleset 3 returns: alan < @ bignet . it >
rewrite: ruleset 93 returns: alan < @ bignet . it >
rewrite: ruleset 94 returns: alan < @ bignet . it >
rewrite: ruleset 11 returns: alan < @ bignet . it >
rewrite: ruleset 4 input: alan < @ bignet . it >

125



Chapter 13 Mail and news

rewrite: ruleset 4 returns: alan @ bignet . it
Rcode = 0, addr = alan@bignet.it
>

As you can see, the local address has been rewritten to the real address, which will appear in your
e-mails when they leave your system.

You can achieve a similar result with the following command:

/try smtp carlo

We can also verify the rewriting of the header’s sender with the following commands:

/tryflags HS
/try smtp carlo@ape.insetti.net

13.1.3 Using an alternative MTA
Starting from version 1.4 of NetBSD sendmail is not called directly:

$ ls -l /usr/sbin/sendmail
lrwxr-xr-x 1 root wheel 21 Nov 1 01:14 /usr/sbin/sendmail@ -> /usr/sbin/mailwrapper

The purpose of mailwrapper is to allow the usage of an alternative MTA instead of sendmail (for
example, postfix). If you plan to use a different mailer I suggest that you read the mailwrapper(8) and the
mailer.conf(5) manpages, which are very clear.

13.2 fetchmail
Mail is received by the provider and it is not automatically transfered to the local hosts; therefore it is
necessary to download it. Fetchmail is a very popular program that downloads mail from a remote mail
server and forwards it to the local system for delivery (usually using sendmail.) It is powerful yet easy to
use and configure: after installation, the file ~/.fetchmailrc must be created and the program is ready
to run (~/.fetchmailrc contains a password so appropriate permissions on the file are required.)

This is an example .fetchmailrc:

poll mail.bignet.it
protocol POP3
username alan there with password pZY9o is carlo here
flush
mda "/usr/sbin/sendmail -oem %T"

Note: The last line (“mda ...”) is used only if sendmail is not active as daemon on the system. Please
note that the mail server indicated in this file (mail.bignet.it) is not necessary the same as the mail
relay used by sendmail.

126



Chapter 13 Mail and news

Now the following command can be used to download and deliver mail to the local system:

$ fetchmail

The messages can now be read with mutt.

13.3 Reading and writing mail with mutt
Mutt is one of the most popular mail programs: it is “lightweight”, easy to use and has lots of features.
The man page mutt is very bare bones; the real documentation is in /usr/pkg/share/doc/mutt/, in
particular manual.txt.

Mutt’s configuration is defined by the ~/.muttrc file. The easiest way to create it is to copy mutt’s
example muttrc file (usually /usr/pkg/etc/Muttrc) to the home directory and modify it. The
following example shows how to achieve some results:

• Save a copy of sent mail.

• Define a directory and two files for incoming and outgoing mail saved by mutt (in this example the
directory is ~/Mail and the files are incoming and outgoing).

• Define some colors.

• Define an alias.

set copy=yes
set edit_headers
set folder="~/Mail"
unset force_name
set mbox="~/Mail/incoming"
set record="~/Mail/outgoing"
unset save_name

bind pager <up> previous-page
bind pager <down> next-page

color normal white black
color hdrdefault blue black
color indicator white blue
color markers red black
color quoted cyan black
color status white blue
color error red white
color underline yellow black

mono quoted standout
mono hdrdefault underline
mono indicator underline
mono status bold

alias pippo Pippo Verdi <pippo.verdi@pluto.net>

127



Chapter 13 Mail and news

To start mutt:

$ mutt

Note: Mutt supports color, but this depends on the terminal settings. Under X you can use
xterm-color; for example:

TERM=xterm-color mutt

13.4 Strategy for receiving mail
This section describes a simple method for receiving and reading mail. The connection to the provider is
activated only for the time required to dowload the messages; mail is then read offline.

1. Activate the connection to the provider.

2. Run fetchmail.

3. Deactivate the connection.

4. Read mail with mutt.

13.5 Strategy for sending mail
When mail has been written and “sent” with mutt, the messages must be transferred to the provider with
sendmail. Mail is sent from mutt with the y command, but this does not really send it; the messages are
enqueued in the spool area; if sendmail is not active as a daemon it is necessary to start it manually or the
messages will remain on the hard disk. The necessary steps are:

1. Write mail with mutt, send it and exit mutt.

2. Activate the connection with the provider.

3. Write the command /usr/sbin/sendmail -q -v to transfer the queued messages to the provider.

4. Deactivate the connection.

13.6 Advanced mail tools
When you start using mail, you won’t probably have very sophisticated requirements and the already
described standard configuration will satisfy all your needs. But for many users the number of daily
messages will increase with time and a more rational organization of the mail storage will become
necessary, for example subdividing mail in different mail boxes organized by topic. If, for example, you
subscribe to a mailing list, you will likely receive many messages every day and you will want to keep

128



Chapter 13 Mail and news

them separate from the rest of your mail. You will soon find that you are spending too much time every
day repeating the same manual operations to organize your mail boxes.

Why repeat manually the same operations when you can have a program perform them automatically for
you? There are numerous tools that you can add to your mail system to increase its flexibility and
automatically process your messages. Amongst the most known and used there are:

• procmail, an advanced mail delivery agent and general purpose mail filter for local mail, which
automatically processes incoming mail using user defined rulesets. It integrates smoothly with
sendmail.

• metamail, a tool to process attachments.

• formail, a mail formatter.

In the remaining part of this section a sample configuration for procmail will be presented for a very
common case: delivering automatically to a user defined mailbox all the messages coming from a
mailing list. The configuration of sendmail will be modified in order to call procmail directly (procmail
will be the local mailer used by sendmail.) and a custom configuration file for procmail will be created.

First, procmail must be installed using the package system (mail/procmail.)

Next, the configuration of sendmail must be changed, in order to use procmail as local mailer.
Uncomment the following three lines from the mycf.mc sendmail M4 prototype file and recreate the
sendmail configuration file.

define(‘PROCMAIL_MAILER_PATH’, /usr/pkg/bin/procmail)dnl
FEATURE(local_procmail)dnl
MAILER(procmail)dnl

The first line defines the path of the procmail program (you can see where procmail is installed with the
command which procmail.) The second line tells sendmail to use procmail for local mail delivery and
the third adds procmail to the list of sendmail’s mailers. The third line adds procmail to the list of
sendmail’s mailers (this line is optional.)

The last step is the creation of the procmail configuration file, containing the recipes for mail delivery.

Let’s say that, for example, you subscribed to a mailing list on roses whose address is
<roses@flowers.org> and that every message from the list contains the following line in the header:

Delivered-To: roses@flowers.org

The procmail configuration file (.procmailrc) looks like this:

PATH=/bin:/usr/bin:/usr/pkg/bin
MAILDIR=$HOME/mail
LOGFILE=$MAILDIR/from

:0
* ^Delivered-To: roses@flowers.org
roses_list

The previous file contains only one rule, beginning with the line containing “:0”. The following line
identifies all messages containing the string “Delivered-To: roses@flowers.org” and the last line says that
the selected messages must go to the roses_list mailbox (which you should have created in

129



Chapter 13 Mail and news

$MAILDIR.) The remaining messages will be delivered to the default mailbox. Note that $MAILDIR is
the same directory that you have configured with mutt:

set folder="~/Mail"

Of course the mailing list is only an example; procmail is a very versatile tool which can be used to filter
mail based on many criteria. As usual, refer to the man pages for more details: procmail(1),
procmailrc(5), and procmailex(5) (this last one contains many examples of configuration files.)

You can check that procmail is used as local mailer by sendmail if you run the latter in test mode:

$ /usr/sbin/sendmail -bt
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>
>

The following command displays the list of mailers known to sendmail:

> =M

You should find a line like the following one:

mailer 3 (local): P=/usr/pkg/bin/procmail S=EnvFromL/HdrFromL ...

13.7 News with tin
The word news indicates the set of articles of the USENET newsgroups, a service available on the
Internet. Each newsgroup contains articles related to a specific topic. Reading a newsgroup is different
than reading a mailing list: when you subscribe to a mailing list you receive the articles by mail and you
read them with a standard mail program like mutt, which you use also to send replies. News, instead, are
read directly from a news server with a dedicated program called newsreader like, for example, tin. With
tin you can subscribe to the newsgroups that you’re interested in and follow the threads.

thread: a thread is a sequence of articles which all derive from an article that we could call “original”.
In short, a message is sent to the group, someone answers, other people answer to those who
answered in the first place and so on, creating a tree like structure of messages and replies: without
a newsreader it is impossible to understand the correct sequence of messages.

After the installation of tin (from the package collection as usual) the only thing left to do is to write the
name of the NNTP server in the file /usr/pkg/etc/nntp/server. For example:

news.bignet.it

Once this has been done, the program can be started with the command rtin. On the screen something
similar to the following example will be displayed:

$ rtin
Connecting to news.bignet.it...
news.bignet.it InterNetNews NNRP server INN 1.7.2 08-Dec-1997 ready (posting ok).

130



Chapter 13 Mail and news

Reading groups from active file...
Checking for new groups...
Reading attributes file...
Reading newsgroups file...
Creating newsrc file...
Autosubscribing groups...
Reading newsrc file...

Be patient when you connect for the first time, because tin downloads an immense list of newsgroups to
which you can subscribe and this takes several minutes. When the donwload is finished, the program’s
main screen is displayed; usually no groups are displayed; to see the list of groups press y. To subscribe
to a group, move on the group’s name and press y.

Once that you have subscribed to some newsgroups you can start tin more quickly with the command
rtin -Q. The search for new groups is disabled (-q), only active groups are searched (-n) and newsgroup
description are not loaded (-d): it will not be possible to use the y (yank) command in tin. When tin is
started with these option it can’t tell if a newsgroup is moderated or not.

Note: if you are connecting from an internal network (like in our example), when you send a
message the address at the beginning of the message will be wrong (because it is the internal
address.) To solve the problem, use the option “mail_address” in the tin configuration file
(~/.tin/tinrc) or set the REPLYTO environment variable.

131



Chapter 14

Console drivers

In NetBSD versions before 1.4 the user could choose between two different drivers for screen and
keyboard, pccons (specific for i386) and pcvt. In version 1.4 the new wscons multiplatform driver
appeared, which is supposed to substitute the two previous drivers (which are still supported.)

14.1 wscons
Wscons is NetBSD’s new console driver. It offers virtual terminal, support for international keyboards,
mouse handling, etc. The capabilities of wscons can vary depending on the port (wscons is not available
on all ports): the i386 version is very feature rich.

If you are compiling a customized kernel, to enable wscons you must activate the relevant options and
comment out the options of pcvt and pccons (they can’t be enabled at the same time.) For example

#pc0 at isa? port 0x60 irq 1 # pccons generic PC console driver
#vt0 at isa? port 0x60 irq 1 # PCVT console driver

In the kernel configuration file you can also enable a foreign keyboard. For example, to use the italian
keyboard by default:

options PCKBD_LAYOUT="KB_IT"

Note: the layout of the italian keyboard is not ideal for programming tasks. To modify it see Chapter 5.

The number of pre-allocated virtual console is controlled by the following option

options WSDISPLAY_DEFAULTSCREENS=4

Other consoles can be added by enabling the relevant lines in the /etc/wscons.conf file: the comment
mark (#) must be removed from the lines beginning with “screen x”. In the following example a fifth
console is added to the four pre-allocated ones:

# screens to create
# idx screen emul
#screen 0 - vt100
screen 1 - vt100
screen 2 - vt100
screen 3 - vt100
screen 4 - -
#screen 4 80x25bf vt100
#screen 5 80x50 vt100

132



Chapter 14 Console drivers

The rc.wscons script transforms each of the non commented lines in a call to the wsconscfg command:
the columns become the parameters of the call. The idx column becomes the index parameter, the
screen column becomes the -t type parameter (which defines the type of screen: rows and columns,
number of colors, ...) and the emul column becomes the -e emul parameter, which defines the
emulation. For example:

screen 3 - vt100

becomes a call to:

wsconscfg -e vt100 3

Note: it is possible to have a (harmless) conflict between the consoles pre-allocated by the kernel
and the consoles allocated at boot time through /etc/wscons.conf. If during boot the system tries
to allocate an already allocated screen, the following message will be displayed:

wsconscfg: WSDISPLAYIO_ADDSCREEN: Device busy

The soulution is to comment out the offending lines in /etc/wscons.conf.

The virtual console must also be active in /etc/ttys. For example:

console "/usr/libexec/getty Pc" pc3 off secure
ttyE0 "/usr/libexec/getty Pc" vt220 on secure
ttyE1 "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 off secure
...

The line

ttyE3 "/usr/libexec/getty Pc" vt220 off secure

of /etc/ttys is used by the X server to find a free terminal. To use a screen different from number 4, a
parameter of the form vtn must be passed to the X server (n is the number of the function key used to
activate the screen for X.)

For example, “screen 7” could be enabled in /etc/wscons.conf and X could be started with “vt8”. If
you use xdm you must edit /usr/X11R6/lib/X11/xdm/Xserver. For example:

:0 local /usr/X11R6/bin/X +kb dpms -bpp 16 dpms vt8

For xdm3d the path is different: /usr/X11R6/share/xdm3d/Xservers.

14.1.1 50 lines text mode with wscons
A text mode with 50 lines can be used starting with version 1.4.1 of NetBSD. This mode is activated in
the /etc/wscons.conf. The following line must be uncommented:

font ibm - 8 ibm /usr/share/pcvt/fonts/vt220l.808

133



Chapter 14 Console drivers

Then the following lines must be modified:

#screen 0 80x50 vt100
screen 1 80x50 vt100
screen 2 80x50 vt100
screen 3 80x50 vt100
screen 4 80x50 vt100
screen 5 80x50 vt100
screen 6 80x50 vt100
screen 7 80x50 vt100

This configuration enables eight screens, which can be accessed with the key combination Ctrl-Alt-Fn
(where n varies from 1 to 8); the corresponding devices are ttyE0..ttyE7. To enable them and get a login
prompt, /etc/ttys must be modified:

ttyE0 "/usr/libexec/getty Pc" vt220 on secure
ttyE1 "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 on secure
ttyE4 "/usr/libexec/getty Pc" vt220 on secure
ttyE5 "/usr/libexec/getty Pc" vt220 on secure
ttyE6 "/usr/libexec/getty Pc" vt220 on secure
ttyE7 "/usr/libexec/getty Pc" vt220 on secure

It is not possible to modify the 80x25 setting of screen 0, probably to guarantee that even in case of
problems there is always a working screen.

14.1.2 wsmouse

14.2 pccons
This is the console driver found on the i386 install floppy. It doesn’t offer virtual consoles and utility
programs for configuration but takes up very little space.

14.3 pcvt
Pcvt is a VT220 terminal emulator and has more advanced functions than the simple pccons. It supports
foreign keyboards and virtual consoles (with Ctrl-Alt-F1..F8 or with the F9..F12 function keys.) To
activate pcvt the following lines must be uncommented in the kernel configuration file.

# Enable only one of the following lines
#pc0 at isa? port 0x60 irq 1
vt0 at isa? port 0x60 irq 1

# Options for PCVT console driver

134



Chapter 14 Console drivers

#options FAT_CURSOR
options PCVT_NETBSD=132
options PCVT_NSCREENS=3

To use a foreign keyboard you must activate it at boot; it is also necessary to choose the correct terminal.
For example:

/usr/local/bin/kcon -m i2
TERM=pcvt25; export TERM

/etc/ttys must be modified accordingly. For example:

#console "/usr/libexec/getty Pc" pcvt25 on secure
ttyv0 "/usr/libexec/getty Pc" pcvt25 on secure

Pcvt italian keyboard: the definition of the i2 keyboard is not correct and the file
/sys/arch/i386/isa/pcvt/Util/keycap/keycap.src must be modified. This is a working version,
tested with NetBSD 1.3.3.

i2|italy142|Italian 142 mapping:\
:A8={:A9=[:A10=]:A11=}:\
:A12=‘:A13=~:\
:A17=@:A18=#:\
:tc=italy141:

The settings for the foreign keyboard (the italian keyboard in this example) must be loaded at boot, for
example in /etc/rc.local:

KCONP=/usr/local/bin
SCONP=/usr/local/bin
LDFNP=/usr/local/bin
ISPCP=/usr/sbin
CURSP=/usr/local/bin

set_keybd=YES

#------------------------------------------------------
# if desired, setup keyboard for italian keyboard layout
#------------------------------------------------------

if [ X${set_keybd} = X"YES" -a -x $KCONP/kcon ]
then

echo
echo ’switching to italian keyboard layout’
$KCONP/kcon -m i2

fi

echo ’.’

/etc/ttys must be also modified:

135



Chapter 14 Console drivers

#console "/usr/libexec/getty Pc" pcvt25 on secure
ttyv0 "/usr/libexec/getty Pc" pcvt25 on secure
ttyv1 "/usr/libexec/getty Pc" pcvt25 on secure
ttyv2 "/usr/libexec/getty Pc" pcvt25 on secure

The pcvt utility programs must be compiled and installed.

# cd /sys/arch/i386/isa/pcvt/Util
# make
# make install

14.3.1 Changing the screen size
With pcvt you can change the number of lines and columns on the screen. The following example script
can be used to automatically switch between different configurations:

#!/bin/sh
# Set the screen to # lines
case $1 in

25)
/usr/local/bin/scon -s 25
/usr/local/bin/cursor -s13 -e14
;;

28)
/usr/local/bin/loadfont -c1 -f
/usr/share/misc/pcvtfonts/vt220l.814
/usr/local/bin/loadfont -c2 -f
/usr/share/misc/pcvtfonts/vt220h.814
/usr/local/bin/scon -s 28
/usr/local/bin/cursor -s12 -e14
;;

40)
/usr/local/bin/loadfont -c3 -f
/usr/share/misc/pcvtfonts/vt220l.810
/usr/local/bin/loadfont -c4 -f
/usr/share/misc/pcvtfonts/vt220h.810
/usr/local/bin/scon -s 40
/usr/local/bin/cursor -s8 -e10
;;

50)
/usr/local/bin/loadfont -c5 -i
/usr/share/misc/pcvtfonts/vt220l.808
/usr/local/bin/loadfont -c6 -i
/usr/share/misc/pcvtfonts/vt220h.808
/usr/local/bin/scon -s 50
/usr/local/bin/cursor -s6 -e8
;;

*)
echo "Invalid # of lines (25/28/40/50)"
;;

esac

136



Chapter 15

Editing

15.1 Introducing vi
It is not like the vi editor needs introducing to seasoned UNIX users. The vi editor, originally developed
by Bill Joy of Sun Microsystems, is an endlessly extensible, easy to use light ASCII editor and the bane
of the newbie existence. This section will introduce the vi editor to the newbie and perhaps toss in a few
ideas for the seasoned user as well.

The first half of this section will overview editing, saving, yanking/putting and navigating a file within a
vi session. The second half will be a step by step sample vi session to help get started.

This is intended as a primer for using thevi editor, it is not by any means a thorough guide. it is meant to
get the first time user up and using vi with enough skills to make changes to and create files.

15.1.1 The vi interface
Using the vi editor really is not much different than any other terminal based software with one
exception, it does not use a tab type (or curses if you will) style interface, although many versions of vi
do use curses it does not give the same look and feel of the typical curses based interface. Instead it
works in two modes, command and edit. While this may seem strange, it is not much different than
windows based editing if you think about it. Take this as an example, if you are using say gedit and you
take the mouse, highlight some text, select cut and then paste, the whole time you are using the mouse
you are not editing (even though you can). In vi, the same action is done by simply deleting the whole
line with dd in command mode, moving to the line you wish to place it below and hitting p in command
mode. One could almost say the analogy is “mouse mode vs. command mode” (although they are not
exactly identical, conceptually the idea is similar).

To start up a vi session, one simply begins the way they might with any terminal based software:

$ vi filename

One important note to remember here is that when a file is edited, it is loaded into a memory buffer. The
rest of the text will make reference to the buffer and file in their proper context. A file only changes when
the user has committed changes with one of the write commands.

15.1.2 Switching to Edit Mode
The vi editor sports a range of options one can provide at start up, for the time being we will just look at
the default startup. When invoked as shown above, the editors default startup mode is command mode, so

137



Chapter 15 Editing

in essence you cannot commence to typing into the buffer. Instead you must switch out out of command
mode to enter text. The following text describes edit start modes:

a Append after cursor.
A Append to end of line.
C Change the rest of current line.
cw Change the current word.
i Insert before cursor.
I Insert before first non blank line.
o Open a line below for insert
O Open a line above for insert.

15.1.3 Switching Modes & Saving Buffers to Files
Of course knowing the edit commands does not do much good if you can’t switch back to command
mode and save a file, to switch back simply hit the ESC key. To enter certain commands, the colon must
be used. Write commands are one such set of commands. To do this, simply enter :.

Hitting the colon then will put the user at the colon (or command if you will) prompt at the bottom left
corner of the screen. Now let us look at the save commands:

:w Write the buffer to file.
:wq Write the buffer to file and quit.

15.1.4 Yanking and Putting
What good is an editor if you cannot manipulate blocks of text? Of course vi supports this feature as well
and as with most of the vi commands it somewhat intuitive. To yank a line but not delete it, simply enter
yy or Y in command mode and the current line will be copied into a buffer. To put the line somewhere,
navigate to the line above where the line is to be put and hit the p key for the “put” command. To move a
line, simply delete the whole line with the dd command, navigate and put.

15.1.4.1 Oops I Did Not Mean to do that!

Undo is pretty simple, u undoes the last action and U undoes the last line deleted or changes made on the
last line.

15.1.5 Navigation in the Buffer
Most vi primers or tutorials start off with navigation, however, not unlike most editors in order to
navigate a file there must be something to navigate to and from (hence why this column sort of went in
reverse). Depending on your flavor of vi (or if it even is vi and not say elvis, nvi or vim) you can navigate
in both edit and command mode.

138



Chapter 15 Editing

For the beginner I feel that switching to command mode and then navigating is a bit safer until one has
practiced for awhile. The navigation keys for terminals that are not recognized or do not support the use
of arrow keys are the following:

k Moves the cursor up one line.
j Moves the cursor down one line.
l Moves the cursor right one character.
h Moves the cursor left one character.

If the terminal is recognized and supports them, the arrow keys can be used to navigate the buffer in
command mode.

In addition to simple “one spot navigation” vi supports jumping to a line by simply typing in the line
number at the colon prompt. For example, if you wanted to jump to line 223 the keystrokes from editor
mode would look like so:

ESC
:223

15.1.6 Searching a File, the Alternate Navigational Aid
The vi editor supports searching using regular expression syntax, however, it is slightly different to
invoke from command mode. One simply hits the / key in command mode and enters what they are
searching for, as an example let us say I am searching for the expression foo:

/foo

That is it, to illustrate a slightly different expression, let us say I am looking for foo bar:

/foo bar

15.1.6.1 Additional Navigation Commands

Searching and scrolling are not the only ways to navigate a vi buffer. Following is a list of succinct
navigation commands available for vi:

0 Move to beginning of line.
$ Move to end of line.
b Back up one word.
w Move forward one word.
G Move to the bottom of the buffer.
H Move to the top line on the screen.
L Move to the last line on the screen.
M Move the cursor to the middle of the screen.
N Scan for next search match but opposite direction.
n Scan for next search match in the same direction.

139



Chapter 15 Editing

15.1.7 A Sample Session
Now that we have covered the basics, let us run a sample session using a couple of the items discussed so
far. First, we open an empty file into the buffer from the command line like so:

# vi foo.txt

Next we switch to edit mode and enter two lines separated by an empty line, remember our buffer is
empty so we hit the i key to insert before cursor and enter some text:

This is some text

there we skipped a line
~
~
~
~

Now hit the ESC key to switch back into command mode.

Now that we are in command mode, let us save the file. First, hit the : key, the cursor should be sitting in
the lower left corner right after a prompt. At the : prompt enter w and hit the ENTER or RETURN key.
The file has just been saved. There should have been a message to that effect, some vi editors will also
tell you the name, how many lines and the size of the file as well.

It is time to navigate, the cursor should be sitting wherever it was when the file was saved. Try using the
arrow keys to move around a bit. If they do not work (or you are just plain curious) try out the hjkl keys
to see how they work.

Finally, let us do two more things, first, navigate up to the first line and then to the first character. Try out
some of the other command mode navigation keys on that line, hit the following keys a couple of times:

$
0
$
0

The cursor should hop to the end of line, back to the beginning and then to the end again.

Next, search for an expression by hitting the / key and an expression like so:

/we

The cursor should jump to the first occurance of we.

Now save the file and exit using write and quit:

:wq

140



Chapter 15 Editing

15.2 Configuring vi
The standard editor supplied with NetBSD is, needless to say, vi, the most loved and hated editor in the
world. If you don’t use vi, skip this section, otherwise read it before installing other versions of vi.
NetBSD’s vi (nvi) was written by Keith Bostic of UCB to have a freely redistributable version of this
editor and has many powerful extensions worth learning while being still very compatible with the
original vi. Nvi has become the standard version of vi for BSD.

Amongst the most interesting extensions are:

• Extended regular expressions (egrep style), enabled with option extended.

• Tag stacks.

• Infinite undo (to undo, press u; to continue undoing, press .).

• Incremental search, enabled with the option searchincr.

• Left-right scrolling of lines, enabled with the option leftright; the number of columns to scroll is
defined by the sidescroll option.

• Command line history editing, enabled with the option cedit.

• Filename completion, enabled by the filec option.

• Backgrounded screens and displays.

• Split screen editing.

15.2.1 Extensions to .exrc

The following example shows a .exrc file with some extended options enabled.

set showmode ruler
set filec=^[
set cedit=^[

The first line enables the display of the cursor position (row and column) and of the current mode
(Command, Insert, Append) on the status line. The second line (where ^[ is the ESC character) enables
filename completion with the ESC character. The third line enables command line history editing (also
with the ESC character.) For example, writing “:” and then pressing ESC opens a window with a list of
the previous commands which can be edited and executed (pressing Enter on a command executes it.)

15.2.2 Documentation
The source tarball (src.tgz) contains a lot of useful documentation on (n)vi and ex, in the
/usr/src/usr.bin/vi/docs directory. For example:

• Edit: A tutorial

• Ex Reference Manual

• Vi man page

141



Chapter 15 Editing

• An Introduction to Display Editing with Vi by William Joy and Mark Horton

• Ex/Vi Reference Manual by Keith Bostic

• Vi Command & Function Reference

• Vi tutorial (beginnner and advanced)

If you have never used vi, the “Vi tutorial” is a good starting point. It is meant to be read using vi and it
gradually introduces the reader to all the vi commands, which can be tested while reading. An
Introduction to Display Editing with Vi by William Joy and Mark Horton is also a very good starting
point.

If you want to learn more about vi and the nvi extensions you should read the Ex/Vi Reference Manual by
Keith Bostic which documents all the editor’s commands and options.

15.3 Using tags with vi
This topic is not directly related to NetBSD but it can be useful, for example, for examining the kernel
sources.

When you examine a set of sources in a tree of directories and subdirectories you can simplify your work
using the tag feature of vi. The method is the following:

1. cd to the base directory of the sources.

$ cd /path

2. Write the following commands:

$ find . -name "*.[ch]" > filelist
$ cat filelist | xargs ctags

3. Add the following line to .exrc

set tags=/path/tags

(substitute the correct path instead of path.)

142



Chapter 16

X

16.1 What is X?
The X Window System is a graphical environment available for NetBSD and many Unix (and non Unix)
systems. In fact it is much more than that: thanks to the usage of the X protocol, the X Window System is
“network transparent” and can run distributed applications (client-server). This means, roughly, that you
can run an application on one host (client) and transparently display the graphical output on another host
(server); transparently means that you don’t have to modify the application to achieve this result. The X
Window System is produced and mantained by the X Consortium and the current release is X11R6. The
flavour of X used by NetBSD is XFree86, a freely redistributable open source implementation of the X
Window System.

When you start using X you’ll find many new terms which you’ll probably find confusing, at first. The
basic elements to use X are:

• Video hardware supported by XFree86.

• An X server running on top of the hardware. The X server provides a standard way to open windows,
do graphics (including fonts for text display), and get mouse/keyboard/other input. X is
network-transparent, so that you can run X clients on one machine, and the X server (i.e., the display,
with video hardware) on another machine.

• A window manager running on the X server. The window manager is essentially a special client that is
allowed to control placement of windows. It also “decorates” windows with standard “widgets”
(usually these provide window-motion, resizing, iconifying, and perhaps a few other actions). A
window manager also may provide backdrops, etc. Window managers can also let you kill
windows/programs by clicking on their windows, and so forth.

• A desktop manager (optional.) KDE and GNOME, for example, are desktops: they are suites of
more-or-less integrated software designed to give you a well-defined range of software and a more or
less common interface to each of the programs. These include a help browser of some kind, a
“desktop-metaphor” access to your filesystem, custom terminals to replace xterm, software
development environments, audio, picture/animation viewres, etc.

• Any other applications (3rd party X clients) that you have. These talk to the X server and to the
window manager. Unless the window manager is part of the destkop (if any), the desktop probably
doesn’t get involved in much of anything that these applications do. (However, e.g., GNOME may be
able to detect that you’ve installed the GIMP, for example, and so offer a menu to launch the GIMP.)

To summarize: in order to use a graphical environment you need

• the XFree86 system

143



Chapter 16 X

• a window manager (XFree86 already comes with a very basic window manager called twm.)

• If you prefer a more sophisticated environment you’ll probably want to install a desktop too, although
this is not necessary. Desktops have some nice features that are helpful to users who come from
environments such as MacIntosh or MS-WINDOWS (the KDE desktop, for example, has a very
similar flavour to MS-WINDOWS.)

Note: by now it should be clear that desktops like GNOME and KDE do not provide X servers. They
run on top of an existing X server supplied by XFree86. KDE and GNOME can make use of their own
window manager or of a separately installed window manager.

Normally, you can run at most one window manager at any given time on a given X server. (But you can
run multiple X servers on a single computer.) If you are not running a window manager of your
choosing, and start KDE/GNOME, then that desktop environment will run a window manager for you.

16.2 Configuration
If you haven’t chosen a minimal configuration during installation, X is already installed and ready to run
on your computer; you only have to create the menacing /etc/XF86Config file. To get an idea of what
this file looks like, examine the /usr/X11R6/lib/X11/XF86Config.eg file. The structure of the
configuration file is described formally in XF86Config(5), which can be examined with the following
command:

# man XF86Config

Before configuring the system it is advisable to carefully read the documentation found in
/usr/X11R6/lib/X11/doc: there are various README’s for the video cards, for the mouse and even
a NetBSD specific one (README.NetBSD.) I suggest to start by reading QuickStart.doc. You might
have the feeling that other systems let you start more quickly and with less effort, but the time spent
reading this documentation is not wasted: the knowledge of X and of your configuration that you gain
will turn out very useful on many future occasions and you’ll be able to get the most from your hardware
(and software too.)

You can create the /etc/XF86Config file manually with an editor or you can generate it automatically
with an interactive configuration program. The best known programs are xf86config, XF86Setup
(XFree86 3.x) and xf86cfg (XFree86 4.x). Both xf86config and xf86cfg are installed by default with X;
XF86Setup is a graphical configuration tool which can be installed from the package collection.

You may find that a mixed approach is better: first create the XF86Config with one of the two programs
and then check it and tune it manually with an editor.

The interface of the two programs is different but they both require the same set of information:

• the mouse type and the mouse device to be used

• the keyboard type and its layout

• the type of video card

144



Chapter 16 X

• the type of monitor

Before configuring the system you should collect the required information.

16.3 The mouse
The first thing to check is the type of mouse you are using (for example, serial or PS/2, ...) and the mouse
device (for example, wsmouse requires a different protocol.) If you are using a serial mouse, choose the
required protocol and specify the serial port to which it is connected. For example, for a serial mouse on
the first serial port:

Section "Pointer"
Protocol "Microsoft"
Device "/dev/tty00"

EndSection

For a mouse using the wsmouse device you might have:

Section "Pointer"
Protocol "wsmouse"
Device "/dev/wsmouse0"

EndSection

In the “Device” field you can also specify /dev/mouse provided that you have created the correct link
in the filesystem. For example:

# ln -sf /dev/wsmouse0 /dev/mouse

16.4 The keyboard
Even if you have already configured your keyboard for wscons, you need to configure it for X too, in
order to get a non US layout.

An easy solution is to use the XKB protocol, specifying the keyboard type and layout.

This is one area in which that configuration programs are weak and you may want to choose the standard
layout and modify the generated configuration file manually.

# XkbDisable
# XkbKeymap "xfree86(us)"

XkbModel "pc102"
XkbLayout "de"
XkbVariant "nodeadkeys"

If you want to use the “Windows” keys on your keyboard, use pc105 instead of pc102 for XkbModel.

145



Chapter 16 X

16.5 The monitor
It is very important to correctly specify the values of the horizontal and vertical frequency of the monitor:
a correct definition shields the monitor from damages deriving from an incompatible setup of the video
card. This information can be found in the monitor’s manual. In the X documentation directory there is a
file containing the settings of many monitors; it can be used as a starting point to customize your own
settings.

16.6 The video card
The video card can be chosen from the database of the configuration programs; the program will take
care of all the needed setups. Video card support is slightly different between XFree86 3.x and 4.x.

XFree86 3.x has multiple servers for different categories of video card chipsets. XFree86 4.x has only
one server. Different video chipsets are supported via platform independent driver modules, which can be
found in /usr/X11R6/lib/modules/drivers.

16.6.1 XFree 3.x
When you have selected the correct video card you must choose the X server for the card. Usually, the
configuration programs can automatically determine the correct server, but some video cards can be
driven by more than one server (for example, S3 Virge is supported by the SVGA and S3V servers); in
this case, study the documentation of the servers to decide which one you need: different servers usually
have different capabilities and a different degree of support for the video cards.

16.6.2 XFree86 4.x
After selecting the correct video card the configuration program will automatically select the appropriate
driver or suggest it. If you have not selected a card you can configure your video card by selecting the
required module.

16.7 Starting X
When you exit the configuration program, it creates the file /etc/XF86Config, which can be further
examined and modified by hand.

Before starting X you should:

• check that the symbolic link /usr/X11R6/bin/X points to the correct X server:

# ls -l /usr/X11R6/bin/X

• Verify that the configuration is correct. Launch:

146



Chapter 16 X

# X -probeonly

and examine carefully the output.

Now you can start X with the following command:

# startx

If X doesn’t fire up there is probably some error in the configuration file.

If X starts but doesn’t work as expected (for example, you can’t move the mouse pointer) you can exit
quickly with the Ctrl-Alt-Backspace key combination (not available on all ports.) If everything worked
correctly you are left in the X environment with the default window manager (twm): although it is a
simple window manager many users feel that it is enough for their needs. If you want a highly
configurable window manager with many bells and whistles, you have many choices in the package
collection.

To start customizing X, try giving the following command in an xterm to change the background color:

# xsetroot -solid DarkSeaGreen

16.8 Customizing X
The look of the X environment can be customized in several ways. The easiest method is to copy the
default .xinitrc file in your home directory and modify it. For example:

# cp /usr/X11R6/lib/X11/xinit/xinitrc ~/.xinitrc
# vi .xinitrc

The following example shows how to start the window manager (twm), open an instance of the xclock
program in the lower right part of the screen and two xterm windows. The “Bisque4” color is used for
the background.

the first part of the file is the same
...
# start some nice programs
twm &
xclock -geometry 50x50-1-1 &
xterm -geometry 80x34-1+1 -bg OldLace &
xsetroot -solid Bisque4 &
exec xterm -geometry 80x44+0+0 -bg AntiqueWhite -name login

With this type of setup, to exit X you must close the last xterm (the one with the “login” title.)

Even with this simple configuration X has a considerably nicer look. To give an even better look to the
environment you can install some utility program from the package collection. For example:

xcolorsel

displays all the colors defined in rgb.txt. Use it to choose background colors for the root window
or for xterms.

147



Chapter 16 X

xpmroot

lets you use a pixmap for the background.

xscreensaver

X screen saver.

xdaemon

no desktop can be complete without this package, which displays a moveable bitmap of the BSD
daemon in two selectable sizes.

16.9 Other window managers
If you don’t like twm, which is a very simple window manager lacking many features and not very
configurable, you can choose another window manager from the package collection. Some of the most
popular are: fvwm2, olwm/olvwm (Open Look Window Manager), WindowMaker, Enlightenment,
AfterStep.

In the rest of this section the installation of WindowMaker is described as an example. WindowMaker is
a very nice looking and highly configurable window manager. To add the program the
windowmaker-0.60.tgz precompiled package will be used, which depends on some other packages
which must be installed. As usual, both pkg_add and make install will fetch the needed packages
automatically, so there is no need to go through the dependencies manually.

# cd /usr/pkgsrc/x11/windowmaker
# make depends-list
xpm-3.4k
jpeg-6b
pkglibtool-1.2p2
giflib-3.0
libproplist-0.9.1
tiff-3.5.2

Note: you can also see the dependencies with the following command:

# pkg_info -f windowmaker-0.61.0.tgz | grep depends

After adding the required packages, WindowMaker and some preconfigured themes can be added:

# pkg_add windowmaker-0.61.0.tgz wmthemes-0.6x.tgz

WindowMaker is now installed; to start it you must modify your .xinitrc and/or .xsession:
substitute the line which calls twm with a line which calls wmaker. For example:

# start some nice programs
# start WindowMaker

148



Chapter 16 X

wmaker &
xclock -geometry 50x50-1-1 &
xdaemon2 -geometry +0-70 &
...

In this example the xdaemon program is also started automatically.

Before starting WindowMaker the configuration program must be run:

$ wmaker.inst
$ startx

16.10 Graphical login with xdm
If you always use X for your work and the first thing you do after you log in is run startx, you can set up
a graphical login for your workstation which does this automatically. It is very easy:

1. Create the .xsession file in your home directory. This file is similar to ~/.xinitrc and can, in
fact, be a link to the latter.

2. Modify /etc/rc.conf:

xdm=YES xdm_flags="" # x11 display manager

If you prefer (why?) you can add the following line at the end of /etc/rc.local instead of
modifying rc.conf:

/usr/X11R6/bin/xdm

This method can be used to start, for example, kdm or gdm instead of xdm.

The configuration files for xdm are in the /usr/X11R6/lib/X11/xdm directory. In the Xservers file
X is started by default on the vt05 virtual terminal; if you want to use another terminal instead, this is the
right place to modify the setting. In order to avoid keyboard contention between getty and xdm it is
advisable to start xdm on a virtual terminal where getty is disabled. For example if in Xservers you
have:

:0 local /usr/X11R6/bin/X :0 vt04

in /etc/ttys you should have

ttyE3 "/usr/libexec/getty Pc" vt220 off secure

(please note that vt04 corresponds to ttyE3 because vt start at 1 and ttyE start at 0.)

If you want a nice look for your xdm login screen, you can modify the xdm configuration file. For
example, to change the background color you can add the following line the the Xsetup_0 file:

xsetroot -solid SeaGreen

Instead of setting a color, you can put an image on the background using the xpmroot program: For
example:

149



Chapter 16 X

xpmroot /path_to_xpm/netbsd.xpm

If you experiment a little with the configuration file you can achieve many nice looking effects and build
a pleasing login screen.

150



Chapter 17

Linux emulation

The NetBSD port for i386 can execute a great number of native Linux programs, using the Linux
emulation layer. Generally, when you think about emulation you imagine something slow and inefficient
because, often, emulations must reproduce hardware instructions and even architectures (usually from
old machines) in software. In the case of the Linux emulation this is radically different: it is only a thin
software layer, mostly for system calls which are already very similar between the two systems. The
application code itself is processed at the full speed of your CPU, so you don’t get a degraded
performance with the Linux emulation and the feeling is exactly the same as for native NetBSD
applications.

This chapter explains how to configure the Linux emulation with an example: the installation of the well
known Acrobat Reader version 4 program.

17.1 Emulation setup
The installation of the Linux emulation is described in the compat_linux(8) man page; using the package
system only two steps are needed.

1. Configuring the kernel.

2. Installing the Linux libraries.

17.1.1 Configuring the kernel
If you use a GENERIC kernel you don’t need to do anything because Linux compatibility is already
enabled.

If you use a customized kernel, check that the following options are enabled:

option COMPAT_LINUX
option EXEC_ELF32

when you have compiled a kernel with the previous options you can start installing the necessary
software.

17.1.2 Installing the Linux libraries
You can get the linux libraries from any Linux distribution, provided it’s not too old, but the suggested
method is to use the package system and install the libraries automatically (the Suse libraries are used.)
When you install the libraries, the following happens:

151



Chapter 17 Linux emulation

• A secondary root directory is created which will be used for Linux programs. This directory is
/emul/linux/. The Linux programs in emulation mode will use this directory as their root directory.

• The shared libraries for Linux are installed. Most applications are linked dynamically and expect to
find the necessary libraries on the system. For example, for Acrobat Reader, if you go to the
/usr/pkgsrc/print/acroread and give the make depends command, you get the following
message:

===> acroread-4.0 requires Linux glibc2 libraries - see compat_linux(8).

Both operations will be handled automatically by the package system, without the need of manual
intervention from the user (I suppose that, by now, you have already begun to love the package
system...). Note that this section describes manual installation of the Linux libraries.

To install the libraries, a program must be installed that handles the RPM format: it is rpm, which will be
used to extract the Suse libraries. Execute make and make install in the /usr/pkgsrc/misc/rpm/
directory to build and install rpm.

Next the suse_base package must be installed. The Suse RPM files can be downloaded by the package
system or, if you have a Suse CD, you can copy them in the /usr/pkgsrc/distfiles/suse directory
and then run make and make install after going to the /usr/pkgsrc/emulators/suse_base
directory.

With the same method install suse_compat, suse_libc5 and suse_x11. The final configuration is:

# pkg_info -a | grep suse
suse_base-6.1p1 Linux compatibility package
suse_x11-6.1p1 Linux compatibility package for X11 binaries
suse_compat-6.1p1 Linux compatibility package with old shared libraries
suse_libc5-6.1p1 Linux compatibility package for libc5 binaries

17.1.3 Installing Acrobat Reader
Now everything is ready for the installation of the Acrobat Reader program (or other Linux programs.)
Change to /usr/pkgsrc/print/acroread and give the usual commands.

# make
# make install

Note: to download and install Acrobat Reader you need to add the line
“ACCEPTABLE_LICENSES+=adobe-acrobat-license” to /etc/mk.conf to accept the Acrobat
Reader license.

152



Chapter 17 Linux emulation

17.2 Directory structure
If we examine the outcome of the installation of the Linux libraries and programs we find that
/emul/linux is a symbolic link pointing to /usr/pkg/emul/linux, where the following directories
have been created:

bin/
boot/
cdrom/
dev/
etc/
floppy/
home/
lib/
mnt/
opt/
proc/
root/
sbin/
usr/

Note: please alwayr refer to /emul/linux and not to /usr/pkg/emul/linux. The latter is an
implementation detail and may change in the future.

How much space is required for the Linux emulation software? On my system I get the following figure:

# cd /usr/pkg/emul
# du -k linux
...
60525 linux/

Acrobat Reader, the program, has been installed in the usual directory for package binaries:
/usr/pkg/bin/.

153



Chapter 18

Audio

This chapter is a short introduction to the usage of audio devices on NetBSD (who wants a dumb
computer, anyway?)

18.1 Basic hardware elements
In order to make audio work on your system you must know what audio card is installed. Sadly it often
not enough to know the brand and model of the card, because many cards use chipsets manufactured
from third parties. Therefore knowing the chipset installed on the audio card can sometimes be useful.
The NetBSD kernel can recognize many chipsets and a quick look at dmesg is enough most of the times.

Therefore, write the following command:

# dmesg | more

and look for the audio card and chipset. If you’re lucky you don’t need to do anything because NetBSD
automatically detects and configures many audio cards.

Sometimes audio doesn’t work because the card is not supported or because you need to do some work
in order for the card to be detected by NetBSD. Many audio cards are nowadays very cheap, and it is
worth considering buying a different card, but before doing this you can try some simple steps to make
the card work with NetBSD.

18.2 BIOS settings
This section is useful only to the owners of i386 PCs; on other architectures (eg. Amiga) there are no
such features. The most important thing to determine in order to use the audio card with NetBSD is the
type of bus supported by the card.

The most common interfaces are ISA and PCI.

ISA Plug and Play cards are usually more tricky to configure mostly because of the interaction with the
BIOS of the computer.

On the newer machines (those produced after 1997) there is a BIOS option which causes many
headaches for the configuration of ISA Plug and Play audio cards (but not only audio cards): this option
is usually named “PNP OS Installed” and is commonly found in the “PNP/PCI Configuration” (the
names can be different in your BIOS.) As a general rule it is usually better to disable (i.e. set it to “NO”)
this option for NetBSD.

Note: on many systems everything works fine even if this option is enabled. This is highly system
dependent.

154



Chapter 18 Audio

18.3 Configuring the audio device
During the installation of NetBSD the devices are created in the dev directory. We are primarily
interested in:

/dev/audio

/dev/sound

/dev/mixer

If they are not present they can be created like this:

# cd /dev
# ./MAKEDEV all

This command creates all the devices, including the audio devices.

The audio card is now probably ready to be used without further work.

You can make a quick test and send an audio file to the device (audio files usually have the .au

extension), but if you don’t have an audio file you can just send a text or binary file (of course you won’t
hear anything useful...). Use /dev/audio or /dev/sound:

# cat filename > /dev/audio

or

# cat filename > /dev/sound

If you hear something it means that the card is supported by NetBSD and was recognized and configured
by the kernel at boot, otherwise you must configure the kernel settings for the audio device installed on
the system (assuming the card/chipset is supported.)

18.4 Configuring the kernel audio devices
NetBSD supports a wide range of audio cards and the GENERIC kernel already enables and configures
most of them. Sometimes it is necessary to setup manually the IRQ and DMA for non-PnP ISA cards.

Note: when you create a custom kernel it is better to work on a copy of the GENERIC file, as
described in Chapter 9.

If you still have problems you can try enabling all the devices, because some audio cards can be made to
work only by emulating another card.

Many chipset make use of the SoundBlaster and OPL compatibility, but a great number of them work
with the WSS emulation.

155



Chapter 18 Audio

OPL is a MIDI synthetizer produced by Yamaha; there are many OPL variants (eg. OPL2, OPL3SA,
OPL3SA2, etc.). Many audio cards rely on this component or on a compatible one. For example, the
chips produced by Crystal (and amongst them the very common CS423x) all have this chipset, and that’s
why they work with NetBSD.

WSS is not a microchip; it is the acronym of Windows Sound System. Wss is the name of the NetBSD
kernel driver which supports the audio system of Microsoft Windows. Many audio cards work with
Windows because they adhere to this standard (WSS) and the same holds for NetBSD.

Of the many audio cards that I tested with NetBSD, a good number works only if opl* and wss* are
enabled in the kernel.

You should have no problem to get the Creative SoundBlaster cards to work with NetBSD: almost all of
them are supported, including the Sound Blaster Live 1024!

When everything works you can disable in the kernel configuration file the devices that you don’t need.

18.5 Advanced commands
NetBSD comes with a number of commands that deal with audio devices. They are:

• audioctl(1)

• mixerctl(1)

• audioplay(1)

• audiorecord(1)

18.5.1 audioctl(1)
audioctl(1) made its appearance in NetBSD 1.3 and is used to manually set some variables regarding
audio I/O, like the frequencies for playing and recording. The available parameters can be displayed with
the following command:

# audioctl -a | more

For example, to listen to CD quality music you can use the following command.

# audioctl -w play=44100,2,16,slinear_le

This command sets the frequence to 44100Hz, 2 audio channels, 16 bit, slinear_le encoding.

You can see the supported encodings with:

# audioctl encodings

This command displays the list of all the encodings supported by the audio card on your system.

156



Chapter 18 Audio

18.5.2 mixerctl(1)
This command is used to configure the audio mixing and has an interface similar to that of audioctl(1).

18.5.3 audioplay(1)
With this command you can play audio files. For more sophisticated needs you might want to install one
of the many programs available in the package system which let you play audio files in different formats
(eg. MP3, etc.)

18.5.4 audiorecord(1)
Not unsurprisingly this command is used to record audio files.

157



Chapter 19

Obtaining sources by CVS

CVS (Concurrent Versions System) can be used to fetch the NetBSD source tree or to keep the NetBSD
source tree up to date with respect to changes made to the NetBSD sources. There are three trees
maintained for which you can use CVS to obtain them or keep them up to date: the current source tree, in
which the bleeding edge of developement can be followed or tested, the release source tree in which
patches for errata are applied to fix issued and to close security holes found (for example the
fragmentation issue in ipf was fixed) and in which some things are added, or replaced by a newer
version, which have been found stable and safe to use. For example its now possible to remove the
complete arp table with the arp command, this is added functionality and not a fix.

19.1 Fetching system and userland source
To install CVS (if you dont already have it), just do:

% pkg_add ftp://ftp.NetBSD.org/pub/NetBSD/packages/OS Ver/arch/All/cvs-1.11nb2.tgz

Where OS Ver, and arch can be obtained by running

% sysctl kern.osrelease hw.machine_arch

To get the sources from scratch without having anything in /usr/src

% setenv CVSROOT :pserver:anoncvs@anoncvs.NetBSD.org:/cvsroot
% cd /usr
% cvs login
password: anoncvs
% cvs checkout -rnetbsd-<BRANCH> -PA src

Where <BRANCH> is the release branch to be checked out, for example, 1.6 would be 1-6, 2.2 would be
2-2. If 2.0 were the branch then it would look like:

% cvs checkout -rnetbsd-2-0 -PA src

Where <BRANCH> is the release branch to be checked out, for example, 1.6 would be 1-6, 2.2 would be
2-2. Note that the branch name does not include the patch level, thus for 1.6.2 it would still be 1-6. If 2.0
were the branch then it would look like:

% cvs checkout -rnetbsd-2-0 -PA src

Or do it by ssh, so that the data is encrypted:

% setenv CVS_RSH ssh
% setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot

158



Chapter 19 Obtaining sources by CVS

% cd /usr
% cvs checkout -rnetbsd-<BRANCH> -PA src

To obtain the current source just omit “-rnetbsd-BRANCH” in the last line.

To just update the release source tree if you already got one:

% setenv CVSROOT :pserver:anoncvs@anoncvs.NetBSD.org:/cvsroot
% cd /usr
% cvs login
password: anoncvs
% cvs -d $CVSROOT update -rnetbsd-BRANCH -PAd src

Or by ssh:

% setenv CVS_RSH ssh
% setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot
% cd /usr
% cvs -d $CVSROOT update -rnetbsd-BRANCH -PAd src

To update the current source tree, omit the BRANCH .

When you wish to do an update from an unclean tree, i.e. when you rebuild some part of the source or
even the whole source tree or the kernel source, and didn’t do a make cleandir you have to make object
files in the source tree.

The object directories are necessary to do a “cvs update” on an unclean tree. An unclean tree is a source
tree in which you have built parts of the tree, i.e. compiled parts or the whole source tree, without having
done a “make clean” in those parts or a “make” cleandir on the whole source tree. Otherwise, cvs will
want to create directories that have the same name as some of the binairies, and will fail. (Where you
used to have a directory called “groff”, you now build the binary “groff”, but “cvs” must create all the
empty directories before pruning them.)

So in /usr/src:

% makedir /usr/obj
% make obj

% makedir /usr/obj
% make obj

Now you’re ready to do the cvs update. Or do a make cleandir in /usr/src before using cvs. It’s easier
and less work instead of making the objectdirs when updating from an unclean tree. CVS is going a lot
faster then sup. I don’t know exactly how long it’s going to take to fetch all the sources. I have only
experience with T1 and higher speed lines in which case it just takes an hour or a little more to fetch the
complete source, depending of course how well the connection is at the moment. I have no experience
how long it takes with a modem. However, in a case you are using a modem, you will wish to compress
ond decompress data once it is transferred. In that case do

% cvs -z5 checkout .........

or

% cvs -z5 -d $CVSROOT update ......

159



Chapter 19 Obtaining sources by CVS

The 5 is the level of compression, you can use any number between 1 and 9 where 1 is the fastest
compression method and 9 the best but slowest compression method. Keep in mind that this will put
extra load on the cvs server.

Note: you must go to: /usr/src/sys/arch/$arch/compile/$kernel_conf_name and do make
clean in there and remove that dir before you wish to do a cvs update, for else that one can be
unclean as well. That takes care of the kernel source part to go well during cvs update.

19.2 Fetching pkgsrc
Pkgsrc (package source), is a set of software utilities and libraries which have been ported to NetBSD. Its
very easy this way to install and deinstall software on your NetBSD system: it fetches the sources files
needed, patches the source if needed, configures it and builds the binairies and installs the binaries and
man pages. It keeps a database of all packages installed and exactly which files belongs to a package and
where the are stored.

To fetch all the pkgsrc from scratch:

% setenv CVSROOT :pserver:anoncvs@anoncvs.NetBSD.org:/cvsroot
% cd /usr
% cvs login
(the password is: "anoncvs")
% cvs checkout -PA pkgsrc

Or by ssh:

% setenv CVS_RSH ssh
% setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot
% cd /usr
% cvs checkout -PA pkgsrc

This will create the directory pkgsrc in your /usr and all the package source will be stored under
/usr/pkgsrc

To update the pkgsrc just do:

% setenv CVSROOT :pserver:anoncvs@anoncvs.NetBSD.org:/cvsroot
% cd /usr
% cvs login
(the password is: "anoncvs")
% cvs -d $CVSROOT update -PAd pkgsrc

Or by ssh:

% setenv CVS_RSH ssh
% setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot
% cd /usr
% cvs -d $CVSROOT update -PAd pkgsrc

160



Chapter 19 Obtaining sources by CVS

However, make sure the pkgsrc dir is clean when you start udating. So do a make clean in
/usr/pkgsrc if you aint sure.

161



Chapter 20

CCD Configuration

The CCD driver allows the user to “concatenate” several physical disks into one pseudo volume. CCD
also lets you overcome a feature limitation in CMU RAIDFrame that does not allow you to RAID0 (file
system spanning across disks) across disks of different geometry. CCD also allows for an “interleave” to
improve disk performance with a gained space loss. This example will not cover that feature.

The steps required to setup a CCD are as follows:

1. Install physical media

2. Configure kernel support

3. Disklabel each volume member of the CCD

4. Configure the CCD conf file

5. Initialize the CCD device

6. Create a 4.4BSD/UFS filesystem on the new CCD device

7. Mount the CCD filesystem

This example features a CCD setup on NetBSD/sparc 1.5. The CCD will reside on 4 SCSI disks in a
generic external Sun disk pack chassis connected to the external 50 pin SCSI port.

20.1 Install physical media
This step is at your own discretion, depending on your platform and the hardware at your disposal.

From my DMESG:

Disk #1:
probe(esp0:0:0): max sync rate 10.00MB/s
sd0 at scsibus0 target 0 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI2 0/direct fixed
sd0: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

Disk #2
probe(esp0:1:0): max sync rate 10.00MB/s
sd1 at scsibus0 target 1 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI2 0/direct fixed
sd1: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

Disk #3
probe(esp0:2:0): max sync rate 10.00MB/s
sd2 at scsibus0 target 2 lun 0: <SEAGATE, ST11200N SUN1.05, 9500> SCSI2 0/direct fixed
sd2: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

162



Chapter 20 CCD Configuration

Disk #4
probe(esp0:3:0): max sync rate 10.00MB/s
sd3 at scsibus0 target 3 lun 0: <SEAGATE, ST11200N SUN1.05, 8808 > SCSI2 0
sd3: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

20.2 Configure Kernel Support
The following kernel configuration directive is needed to provide CCD device support. It is enabled in
the GENERIC kernel:

pseudo-device ccd 4 # concatenated disk devices

In my kernel config, I also hard code SCSI ID associations to /dev device entries to prevent bad things
from happening:

sd0 at scsibus0 target 0 lun ?
# SCSI disk drives
sd1 at scsibus0 target 1 lun ?
# SCSI disk drives
sd2 at scsibus0 target 2 lun ?
# SCSI disk drives
sd3 at scsibus0 target 3 lun ?
# SCSI disk drives
sd4 at scsibus0 target 4 lun ?
# SCSI disk drives
sd5 at scsibus0 target 5 lun ?
# SCSI disk drives
sd6 at scsibus0 target 6 lun ?
# SCSI disk drives

20.3 Disklabel each volume member of the CCD
Each member disk of the CCD will need a special file system established. In this example, I will need to
disklabel:

/dev/rsd0c

/dev/rsd1c

/dev/rsd2c

/dev/rsd3c

Note: always remember to disklabel the character device, not the block device, in /dev/r{s,w}d*

Note: on all platforms, the cslice is symbolic of the entire NetBSD partition and is reserved.

163



Chapter 20 CCD Configuration

You will probably want to remove any pre-existing disklabels on the disks in the CCD. This can be
accomplished one of two ways the dd(1) command:

# dd if=/dev/zero of=/dev/rsd0c bs=8k count=1
# dd if=/dev/zero of=/dev/rsd1c bs=8k count=1
# dd if=/dev/zero of=/dev/rsd2c bs=8k count=1
# dd if=/dev/zero of=/dev/rsd3c bs=8k count=1

If your port uses a MBR (Master Boot Record) to partition the disks so that the NetBSD partitions are
only part of the overall disk, and other OSs like Windows or Linux use other parts, you can void the
MBR and all partitions on disk by using the command:

# dd if=/dev/zero of=/dev/rsd0d count=1

This will make all data on the entire disk unaccessible.

The default disklabel for the disk will look similar to this:

# disklabel -r /dev/rsd0c
[...snip...]
bytes/sector: 512
sectors/track: 116
tracks/cylinder: 9
sectors/cylinder: 1044
cylinders: 3992
total sectors: 4197405
[..snip...]
3 partitions:
# size offset fstype [fsize bsize cpg]

c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020*)

You will need to create one “slice” on the NetBSD partition of the disk that consumes the entire
partition. The slice must begin at least one cylinder offset from the beginning of the disk/partition to
provide space for the special CCD disklabel. The offset should be 1x sectors/cylinder (see following
note). Therefore, the “size” value should be “total sectors” minus 1x “sectors/cylinder”.

Note: the offset of a slice of type “ccd” must be a multiple of the “sectors/cylinder” value.

Edit your disklabels accordingly. Be sure to specify the path to the character device, not the block device.

Note: be sure to export EDITOR=[path to your favorite editor] before editing the disklabels.

# disklabel -e /dev/rsd0c

Note: the slice must be fstype ccd.

Because there will only be one slice on this partition, you can recycle the c slice (normally reserved for
symbolic uses). Change your disklabel to the following:

164



Chapter 20 CCD Configuration

3 partitions:
# size offset fstype [fsize bsize cpg]

c: 4196361 1044 ccd # (Cyl. 1 - 4020*)

Optionally you can setup a slice other than c to use, simply adjust accordingly below:

3 partitions:
# size offset fstype [fsize bsize cpg]

a: 4196361 1044 ccd # (Cyl. 1 - 4020*)
c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020*)

Be sure to write the label when you have completed. Disklabel will object to your disklabel and prompt
you to re-edit if it does not pass it’s sanity checks.

20.4 Configure the CCD
Once all disk are properly labeled, you will need to generate a configuration file. The configuration file
resides in /etc by default. You may need to create a new one. Format:

#ccd ileave flags component devices

Note: for the “ileave”, if a value of zero is used then the disks are concatenated, but if you use a
value equal to the “sectors/track” number the disks are interleaved.

Example in this case:

# more /etc/ccd.conf
ccd0 0 none /dev/sd0c /dev/sd1c /dev/sd2c /dev/sd3c

Note: the CCD configuration file references the device file for the newly created CCD filesystems. Be
sure not to reference the block device at this point, instead use the character device.

20.5 Initialize the CCD device
Once you are confident that your CCD configuration is sane, you can initialize the device using the
ccdconfig(8) command: Configure:

# ccdconfig -c -f /etc/ccd.conf

Unconfigure:

# ccdconfig -u -f /etc/ccd.conf

Initializing the CCD device will activate /dev entries: /dev/{,r}ccd#:

165



Chapter 20 CCD Configuration

# ls -la /dev/{,r}ccd0*
brw-r----- 1 root operator 9, 0 Apr 28 21:35 /dev/ccd0a
brw-r----- 1 root operator 9, 1 Apr 28 21:35 /dev/ccd0b
brw-r----- 1 root operator 9, 2 May 12 00:10 /dev/ccd0c
brw-r----- 1 root operator 9, 3 Apr 28 21:35 /dev/ccd0d
brw-r----- 1 root operator 9, 4 Apr 28 21:35 /dev/ccd0e
brw-r----- 1 root operator 9, 5 Apr 28 21:35 /dev/ccd0f
brw-r----- 1 root operator 9, 6 Apr 28 21:35 /dev/ccd0g
brw-r----- 1 root operator 9, 7 Apr 28 21:35 /dev/ccd0h
crw-r----- 1 root operator 23, 0 Jun 12 20:40 /dev/rccd0a
crw-r----- 1 root operator 23, 1 Apr 28 21:35 /dev/rccd0b
crw-r----- 1 root operator 23, 2 Jun 12 20:58 /dev/rccd0c
crw-r----- 1 root operator 23, 3 Apr 28 21:35 /dev/rccd0d
crw-r----- 1 root operator 23, 4 Apr 28 21:35 /dev/rccd0e
crw-r----- 1 root operator 23, 5 Apr 28 21:35 /dev/rccd0f
crw-r----- 1 root operator 23, 6 Apr 28 21:35 /dev/rccd0g
crw-r----- 1 root operator 23, 7 Apr 28 21:35 /dev/rccd0h

20.6 Create a 4.4BSD/UFS filesystem on the new CCD
device

You may now disklabel the new virtual disk device associated with your CCD. Be sure to use the
character device:

# disklabel -e /dev/rccd0c

Once again, there will be only one slice, so you may either recycle the c slice or create a separate slice
for use.

# disklabel -r /dev/rccd0c
# /dev/rccd0c:
type: ccd
disk: ccd
label: default label
flags:
bytes/sector: 512
sectors/track: 2048
tracks/cylinder: 1
sectors/cylinder: 2048
cylinders: 6107
total sectors: 12508812
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0
# size offset fstype [fsize bsize cpg]

c: 12508812 0 4.2BSD 1024 8192 16 # (Cyl. 0 - 6107*)

166



Chapter 20 CCD Configuration

The filesystem will then need formatted:

# newfs /dev/rccd0c
Warning: 372 sector(s) in last cylinder unallocated
/dev/rccd0c: 12508812 sectors in 6108 cylinders of 1 tracks, 2048 sectors

6107.8MB in 382 cyl groups (16 c/g, 16.00MB/g, 3968 i/g)

super-block backups (for fsck -b #) at:
[...]

20.7 Mount the filesystem
Once you have a created a file system on the CCD device, you can can mount the file system against an
mount point on your system. Be sure to mount the slice labeled type ffs or 4.4BSD:

# mount /dev/ccd0c /mnt

Then:

# export BLOCKSIZE=1024; df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/sd6a 376155 320290 37057 89% /
/dev/ccd0c 6058800 1 5755859 0% /mnt

Congratulations, you now have a working CCD. Please consult the rest of the manual for instructions on
how to initialize the device at boot-time via RC. For more detail on any of the commands here, please see
their respective man pages.

167



Chapter 21

The cryptographic device driver

The cgd driver provides functionality which allows you to use disks or partitions for encrypted storage.
After authentication the encrypted partition is accessible using cgd pseudo-devices. The cgd driver
provides the following encryption algorithms:

• aes-cbc: AES (Rijndael). AES uses a 128 bit blocksize and accepts 128, 192 or 256 bit keys.

• blowfish-cbc: Blowfish uses a 64 bits blocksize and accepts 128 bit keys

• 3des-cbc: Triple DES uses a 64 bit blocksize and accepts 192 bit keys (only 168 bits are actually used
for encryption)

All three ciphers are used in CBC mode. This means each block is XORed with the previous encrypted
block before encryption. This reduces the risk that a pattern can be found, which can be used to break the
encryption.

Another aspect of cgd that needs some attention are the verification methods cgdconfig provides. These
verification methods are used to verify the passphrase is correct. The following verification methods are
available:

• none: no verification is performed. This can be dangerous, because the key is not verified at all. When
a wrong key is entered cgdconfig configures the cgd device as normal, but data which was available on
the volume will be destroyed (decrypting blocks with a wrong key will result in random data, which
will result in a regeneration of the disklabel with the current key).

• disklabel: cgdconfig scans for a valid disklabel. If a valid disklabel is found with the key that is
provided authentication will succeed.

• ffs: cgdconfig scans for a valid FFS file system. If a valid FFS file system is found with the key that is
provided authentication will succeed.

21.1 Configuring kernel support
To use cgd you need a kernel with support for the cgd pseudo device. Make sure the following line is in
the kernel configuration:

pseudo-device cgd 4 # cryptographic disk driver

The number specifies how many cgd devices may be configured at the same time. After configuring the
cgd pseudo-device you can recompile the kernel and boot it to enable cgd support.

168



Chapter 21 The cryptographic device driver

21.2 Setting up a cgd device
The best way to learn something is by practice. In this section we will look at an example of setting up
cgd. In this example we have reserved the “h” partition of the wd0 disk for encryption purposes, and we
want want to create an encrypted FFS filesystem. The first thing that needs to be done is to create a
configuration file for the wd0h partition. This file is named /etc/cgd/wd0h. This file can be created
using the cgdconfig. Suppose we want to use the Blowfish cipher and want to check for an FFS
filesystem for verification, this command would create that configuration:

# cgdconfig -g -o /etc/cgd/wd0h -V ffs blowfish-cbc

The “-g” parameter forces cgdconfig to create a configuration file, the filename is specified by the “-o”
parameter. The “-V” parameter specifies which verification method should be used, valid choices are
none, disklabel, and ffs (which are explained above). The resulting configuration file looks like this:

algorithm blowfish-cbc;
iv-method encblkno;
keylength 128;
verify_method ffs;
keygen pkcs5_pbkdf2 {

iterations 71564;
salt AAAAgOGFALVANSHf61jf4XYlnUI=;

};

At this moment we have created a configuration file and we can start to use this configuration. The next
thing that has to be done is to configure an cgd pseudo device. This can be done with the following
command:

# cgdconfig -V none cgd0 /dev/wd0h

This command configures the cgd0 device to use the wd0h parition to store encrypted data. At this point
we will not use verification, because the cgd0 “disk” does not have a valid FFS filesystem. cgdconfig
will ask for a passphrase, just enter the passphrase you would like to use for this encrypted partition. You
can use the cgd0 device as an normal disk and disklabel it. Create a partition with the 4.2BSD type and
make a FFS filesystem on this partition with newfs.

After the initial partitioning and formatting the cgd pseudo-device can be unconfigured with:

# cgdconfig -u cgd0

After these configuration steps the encrypted partition can be used with:

# cgdconfig cgd0 /dev/wd0h

Note that the “-V” parameter is omitted. The verification method configured in /etc/cgd/wd0h will be
used.

169



Chapter 21 The cryptographic device driver

21.3 Swap encryption
A question that pops up quite often on the mailinglists is how one can setup NetBSD to encrypt swap.
While the instructions above should be sufficient to know how to set up swap, we will provide a short
outline in this section. In this example we will use wd0b for storage of the encrypted swap partition.
Swap will be encrypted with the Blowfish cipher. As normal, the first step is to create a cgd configuration
file. This time we will use the “-k” parameter to generate a random key, and we will not use a verification
method (because the parition will be reinitialized after each boot). Execute the following command to
generate /etc/cgd/wd0b:

# cgdconfig -g -o /etc/cgd/wd0b -V none -k randomkey blowfish-cbc

With the configuration file set up we can configure the cgd0 pseudo-device:

# cgdconfig cgd0 /dev/wd0b

The next step is to configure the disklabel and to save it to /etc/cgd/wd0b.disklabel. Please refer to
disklabel(8) for information about how to use disklabel to set up a swap partition.

Now we have to configure cgd to make sure cgd0 is configured during boot process of NetBSD. Add the
following line to /etc/cgd/cgd.conf:

cgd0 /dev/wd0b

cgd0 is reinitialized with a blank disklabel after a reboot, because no verification is used and a random
key is generated. So, the cgd0 device has to disklabelled with the disklabel we just saved during each
boot. This can be done by creating the /etc/rc.conf.d/cgd and add this function (thanks to Lubomir
Sedlacik):

swap_device="cgd0"
swap_disklabel="/etc/cgd/wd0b.disklabel"
start_postcmd="cgd_swap"

cgd_swap()
{
if [ -f $swap_disklabel ]; then
disklabel -R -r $swap_device $swap_disklabel

fi
}

Finally add the cgd0 partition you configured to /etc/fstab.

170



Chapter 22

rc.d System

As of NetBSD version 1.5 the startup of the system changed slightly to using rc scripts for controlling
services. This chapter is an overview of the rc configuration on NetBSD 1.5 and later.

22.1 The rc.d Configuration
The rc files for the system reside under /etc, they are:

• /etc/rc

• /etc/rc.conf

• /etc/rc.d/*

• /etc/rc.lkm

• /etc/rc.local

• /etc/rc.shutdown

• /etc/rc.subr

• /etc/defaults/*

• /etc/rc.conf.d/*

First, a look at controlling and supporting scripts:

• /etc/rc runs the scripts in /etc/rc.d

• /etc/rc.subr contains common functions used by rc scripts.

• /etc/shutdown calls the scripts in /etc/rc.d in reverse order.

Additional scripts outside of the rc.d directory:

• /etc/rc.lkm loads or unloads Loadable Kernel Modules.

• /etc/rc.local almost the last script called at boot up, local daemons may be added here.

Following is the example from the system for an apache web server added to /etc/rc.local:

if [ -f /usr/pkg/etc/rc.d/apache ]; then
/usr/pkg/etc/rc.d/apache start

fi

The /etc/defaults directory contains the default settings for NetBSD and the contents should not be
changed. Within the rc context the only file of interest is rc.conf, this is the default rc configuration

171



Chapter 22 rc.d System

that ships with NetBSD. In order to alter a default setting, an override may be installed in
/etc/rc.conf. For example, if you wanted to enable the Secure Shell Daemon:

# cd /etc; grep ssh defaults/rc.conf
sshd=NO sshd_flags=""
# echo "sshd=YES" >> rc.conf

Or just edit the file with your favorite editor. The same can be done with any default that needs to be
changed.

Another way to make rc.conf easy to edit is to do the following:

# cd /etc/defaults
# cat rc.conf >> ../rc.conf

Then modify anything you need to.

Last and not least, the /etc/rc.conf.d/ directory can be used for scripts that are third party.

22.2 The rc.d Scripts
The actual scripts that control services are in /etc/rc.d. Once a service has been activated or told not
to activate in /etc/rc.conf it can be also be modified by calling the rc script from the command line,
for example if an administrator needed to start secure shell:

# /etc/rc.d/sshd start
Starting sshd.

The rc scripts must receive one of the following arguments:

• start

• stop

• restart

• kill

An example might be when a new record has been added to the named database on a named server:

# /etc/rc.d/named restart
Stopping named.
Starting named.

A slightly more complex example is when a series of settings have been changed, for instance a firewall’s
ipfilter rules, ipnat configuration, and the secure shell server has switched encryption type:

# cd /etc/rc.d
# ./ipfilter restart; ./ipnat restart; ./sshd restart

172



Chapter 22 rc.d System

22.3 The Role of rcorder and rc Scripts
As per the System Manager’s Manual, rcorder is designed to print out a dependancy ordering of a set of
interdependent files. It basically determines the order of execution one way or another. On some Unix
systems this is done by numbering the files and/or putting them in separate run level directories. Which
can be messy. On NetBSD this is done by the controlling scripts mentioned at the beginning of this
document and by the contents of each rc script.

In the rc scripts there is a series of lines that have one of the following in them:

• REQUIRE

• PROVIDE

• BEFORE

• KEYWORD

These dicatate the dependencies of that particular rc script and hence rcorder can easily work either “up”
or “down” as the situation requires. Following is an example of the nfsd rc script:

...
PROVIDE: nfsd
REQUIRE: mountd

. /etc/rc.subr

...

Here we can see that this script provides the nfsd service, however, it requires mountd to be running.

22.4 Additional Reading
There are other resources available pertaining to the rc.d system:

• One of the principal designers of rc.d, Luke Mewburn, gave a presentation on the system at USENIX
2001. It is available in PDF (http://www.mewburn.net/luke/papers/rc.d.pdf) format.

• Will Andrews wrote a Daemonnews (http://www.daemonnews.org/) article called The NetBSD rc.d
System (http://www.daemonnews.org/200108/rcdsystem.html).

173



Chapter 23

RAID-1 with RAIDframe

Many users have nowadays big hard drives which contain lots of valuable files such as email archives,
pictures from digital cameras, “backup copies” of the latest movies and so on. As the hard drives are so
cheap yet so big in capacity it can be a difficult task to take backup of the not-so-important files. At the
same time it would be a real pity to lose those files in case of a disk failure.

This article describes a real-life NetBSD installation with RAID-1 protected filesystems. With RAID-1
the server can be fully accessible even if the faulty drive is disconnected and sent back to the
manufacturer.

23.1 Introduction
I wanted to create a home server with failure resistant filesystems to protect myself against disk failures
as this is unfortunately not very uncommon these days. I decided to use RAID-1 for everything (/, swap
and /home). This article describes how to setup RAID-1 and make the system bootable even if the
primary boot device is removed due to failure. The reason for choosing RAID-1 instead of RAID-10 or
RAID-5 is the fact that currently NetBSD supports only RAID-1 on root filesystem (/). RAID-0 was not
even considered as it provides no redundancy in case of disk failure.

This article assumes basic knowledge about RAID (http://www.acnc.com/04_00.html). In this example
we have two identical IDE disks (wd#) which we are going to mirror (RAID-1). These disks are
identified as:

wd0 at pciide0 channel 0 drive 0: <MAXTOR 4K080H4>
wd0: drive supports 16-sector PIO transfers, LBA addressing
wd0: 76319 MB, 16383 cyl, 16 head, 63 sec, 512 bytes/sect x 156301487 sectors
wd0: 32-bit data port
wd0: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 5 (Ultra/100)
wd0(pciide0:0:0): using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA data
transfers)
wd1 at pciide0 channel 1 drive 0: <MAXTOR 4K080H4>
wd1: drive supports 16-sector PIO transfers, LBA addressing
wd1: 76319 MB, 16383 cyl, 16 head, 63 sec, 512 bytes/sect x 156301487 sectors
wd1: 32-bit data port
wd1: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 5 (Ultra/100)
wd1(pciide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA data
transfers)

Both disks are masters (drive 0) in separate channels. This is important with IDE disks as you might not
be able to boot from a slave disk (drive 1). Also performance is better if both disks are on separate
channels. SCSI disks (sd#) can be on the same channel as the controller is smart and knows how to get
the optimal throughput with multiple disks. In case of SCSI disks we need to replace wd# with sd# in
this article.

174



Chapter 23 RAID-1 with RAIDframe

23.2 Initial install
We start by installing NetBSD on the first disk (wd0) without any RAID support. We split the disk into
three parts (/, swap and /home) as this is what we are going to have in the final RAID-1 configuration. It
is also possible to convert an existing system to RAID-1, even without console access. The author has
done this over SSH session and there was no need to go to the console. If an existing system is converted
it is important to take backup of all important files!

Next we need to make sure we have RAID support in the kernel (which is included in the GENERIC
kernel). The kernel configuration file must have the following settings:

pseudo-device raid 8 # RAIDframe disk driver
options RAID_AUTOCONFIG # auto-configuration of RAID components

The RAID support must be detected by the NetBSD kernel, which can be checked by looking at the
output of the dmesg command.

# dmesg
...
Kernelized RAIDframe activated

23.3 Setting up the second disk
Next we setup the second disk (wd1). We can find the correct numbers from wd0 and use them with wd1
as the disks are identical. We must remember to mark the NetBSD partition active or the system will not
boot.

# fdisk /dev/wd0
Disk: /dev/rwd0d
NetBSD disklabel disk geometry:
cylinders: 16383 heads: 16 sectors/track: 63 (1008 sectors/cylinder)

BIOS disk geometry:
cylinders: 1024 heads: 255 sectors/track: 63 (16065 sectors/cylinder)

Partition table:
0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: sysid 169 (NetBSD)

start 63, size 156301424 (76319 MB), flag 0x80
beg: cylinder 0, head 1, sector 1
end: cylinder 1023, head 254, sector 63

NetBSD is on the 3rd partition on wd0 so we use the same number for wd1.

# dd if=/dev/zero of=/dev/rwd1d bs=8k count=1
# fdisk -3ua /dev/wd1

Both disks should be identical now. We verify this once more.

175



Chapter 23 RAID-1 with RAIDframe

# fdisk /dev/wd0
# fdisk /dev/wd1

Next we configure our newly created partition. In this example we have one RAID slice (a) for all
filesystems and swap. We also have one additional slice (h) in addition to the standard c and d slices.
Note that there is no swap (b) yet.

# disklabel /dev/wd1 > disklabel.wd1
# vi disklabel.wd1

8 partitions:
# size offset fstype [fsize bsize cpg/sgs]
a: 156297328 4159 RAID
c: 156301424 63 unused 0 0
d: 156301487 0 unused 0 0
h: 4096 63 4.2BSD 1024 8192 64

Here is a short description of each slice:

• wd1a is a RAID device which will contain all our filesystems and swap.

• wd1h is a small filesystem in the beginning of the disk to hold the boot loader (/boot).

The sizes are calculated like this:

# dc
156301424 # size of c
4096 # size of h
-p
156297328 # size of a

4096 # size of h
63 # start of h
+p
4159 # start of a
q

Next we install the new disklabel on wd1.

# disklabel -R -r /dev/wd1 disklabel.wd1
# disklabel /dev/wd1

23.4 Configuring the RAID device
Next we create configuration files for the RAID devices. These files are needed only during the initial
setup as we auto-configure the devices later.

# cat > /var/tmp/raid0.conf << EOF
START array

176



Chapter 23 RAID-1 with RAIDframe

1 2 0

START disks
/dev/wd9a
/dev/wd1a

START layout
128 1 1 1

START queue
fifo 100
EOF

Note that wd9 is a non-existing disk. There must be, however, a device node for that in the /dev directory.
wd9 will be replaced later by wd0.

# cd /dev
# sh MAKEDEV wd9
# cd

Next we configure the RAID device and initialize the serial number to something unique. In this example
we use 2003### (Nth RAID device in 2003). After that we start the initialization process.

# raidctl -C /var/tmp/raid0.conf raid0
# raidctl -I 2003001 raid0
# raidctl -i raid0
# raidctl -s raid0

23.5 Setting up filesystems
The RAID device is now configured and available. Now it is the time to think about the filesystems. In
this example we use the following layout:

• 10 GB for /

• 1 GB for swap

• everything else for /home

We must next create a disklabel inside the RAID device and format the filesystems.

# disklabel raid0 > disklabel.raid0
# vi disklabel.raid0

8 partitions:
# size offset fstype [fsize bsize cpg/sgs]
a: 20971520 0 4.2BSD 1024 8192 64
b: 2097152 20971520 swap
d: 156297216 0 unused 0 0 0
e: 133228544 23068672 4.2BSD 1024 8192 64

177



Chapter 23 RAID-1 with RAIDframe

It should be noted that 1 GB is 2*1024*1024=2097152 blocks (1 block is 512 bytes, or 0.5 kilobytes).
The sizes and offsets can be calculated like this:

# dc
156297216 # size of d
20971520 # size of a (10 GB)
-
2097152 # size of b (1 GB)
-p
133228544 # size of e

20971520 # size of a
2097152 # size of b
+p
23068672 # offset of e
q

raid0a will be the root filesystem (/), raid0b the swap and raid0e /home. In this example we do not have
separate filesystems for /usr and /var. The next thing is to install the new disklabel for the RAID
device and format the filesystems. Note that the swap area is not formated.

# disklabel -R -r raid0 disklabel.raid0
# newfs /dev/raid0a
# newfs /dev/raid0e

23.6 Setting up kernel dumps
The normal swap area in our case is on raid0b but this can not be used for crash dumps as process
scheduling is stopped when dumps happen. Therefore we must use a real disk device. However, nothing
stops us from defining a dump area which overlaps with raid0b. The trick here is to calculate the correct
start offset for our crash dump area. This is dangerous and it is possible to destroy valuable data if we
make a mistake in these calculations! Data corruption will happen when the kernel write its memory
dump over a normal filesystem. So we must be extra careful here.

First we need to take a look at the disklabel for swap (raid0b) and the real physical disk (wd1).

# disklabel raid0

8 partitions:
# size offset fstype [fsize bsize cpg/sgs]
a: 20971520 0 4.2BSD 1024 8192 64
b: 2097152 20971520 swap
d: 156297216 0 unused 0 0
e: 133228544 23068672 4.2BSD 1024 8192 64

# disklabel /dev/wd1

8 partitions:
# size offset fstype [fsize bsize cpg/sgs]

178



Chapter 23 RAID-1 with RAIDframe

a: 156297328 4159 RAID
c: 156301424 63 unused 0 0
d: 156301487 0 unused 0 0
h: 4096 63 4.2BSD 1024 8192 64

We can calculate the start offset of raid0b on wd1 like this:

# dc
156297328 # size of wd1a
156297216 # size of raid0d
-p
112 # size of internal RAID structures

4159 # offset of wd1a
112 # size of internal RAID structures
+
20971520 # size of raid1a
+p
20975791 # offset of swap within wd1
q

It is also possible to calculate the offset using a simpler method as the end of wd1 is also the end of raid0.
However, the previous method is more generic.

# dc
156301487 # size of the whole disk (wd1d)
133228544 # size of raid0e
-
2097152 # size of raid0b
-p
20975791
q

We know now that real offset of the still-nonexisting wd1b is 20975791 and size is 2097152. Next we
need to add wd1b to wd1’s disklabel.

# disklabel /dev/wd1 > disklabel.wd1
# vi disklabel.wd1

8 partitions:
# size offset fstype [fsize bsize cpg/sgs]
a: 156297328 4159 RAID
b: 2097152 20975791 swap
c: 156301424 63 unused 0 0
d: 156301487 0 unused 0 0
h: 4096 63 4.2BSD 1024 8192 64

Next we install the new disklabel.

# disklabel -R -r /dev/wd1 disklabel.wd1

179



Chapter 23 RAID-1 with RAIDframe

23.7 Moving the existing files into the new filesystems
The new RAID filesystems are now ready for use. We mount them under /mnt and copy all files from
the old system.

# mount /dev/raid0a /mnt
# dump -0 -f - / | (cd /mnt && restore -x -f -)

# mount /dev/raid0e /mnt/home
# dump -0 -f - /home | (cd /mnt/home && restore -x -f -)

The data is now on the RAID filesystems. We need to fix the mount-points in fstab or the system will not
come up correctly.

Note that the kernel crash dumps must not be saved on a RAID device but on a real physical disk (wd0b).
This dump area was created in the previous chapter on the second disk (wd1b) but we will make wd0 an
identical copy of wd1 later so wd0b and wd1b will have the same size and offset. If wd0 fails and is
removed from the server wd1 becomes wd0 after reboot and crash dumps will still work as we are using
wd0b in /etc/fstab. The only fault in this configuration is when the original, failed wd0 is replaces by
a new drive and we haven’t initialized it yet with fdisk and disklabel. In this short period of time we can
not make crash dumps in case of kernel panic. Note how the dump device has the “dp” keyword on the
4th field.

# vi /mnt/etc/fstab

/dev/raid0a / ffs rw 1 1
/dev/raid0b none swap sw 0 0
/dev/raid0e /home ffs rw 1 1
/dev/wd0b none swap dp 0 0

The swap should be unconfigured upon shutdown to avoid parity errors on the RAID device. This can be
done with a simple, one-line setting in /etc/rc.conf.

# cat >> /mnt/etc/rc.conf << EOF
swapoff=YES
EOF

Next the boot loader must be installed on wd1. Failure to install the loader will render the system
unbootable if wd0 fails. Please note how the boot loader is installed on the small slice (wd1h) which is in
the beginning of wd1.

# newfs /dev/wd1h
# /usr/mdec/installboot /usr/mdec/biosboot.sym /dev/rwd1h

Finally the RAID sets must be made auto-configurable and the system should be rebooted. After the
reboot everything is mounted from the RAID devices.

# raidctl -A root raid0
# shutdown -r now

180



Chapter 23 RAID-1 with RAIDframe

23.8 The first boot with RAID-1
The system should come up now and all filesystems should be on the RAID devices.

# df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/raid0a 10163764 291704 9363871 3% /
/dev/raid0e 63552304 1 60374687 0% /home

# swapctl -l
Device 1K-blocks Used Avail Capacity Priority
/dev/raid0b 1048576 0 1048576 0% 0

The RAID devices are not fully functional yet as the (non-existing) drive wd9 has failed.

# raidctl -s raid0
Components:

component0: failed
/dev/wd1a: optimal

23.9 Adding the first disk
First we need to relabel wd0 to have the same layout as wd1. Then we add wd0 as hot-space and initiate
the reconstruction for all RAID devices.

# disklabel /dev/wd1 > disklabel.wd1
# disklabel -R -r /dev/wd0 disklabel.wd1
# disklabel /dev/wd0

# raidctl -a /dev/wd0a raid0
# raidctl -F component0 raid0

Please note that the reconstruction is a slow process and can take several hours to complete.

# raidctl -S raid0
Reconstruction is 0% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.
Reconstruction status:

17% |****** | ETA: 01:58:08 -

After reconstruction both disks should be “optimal”.

# raidctl -s raid0
Components:

component0: spared
/dev/wd1a: optimal

Spares:
/dev/wd0a: used_spare

When the reconstruction is ready we need to install the boot loader on the first disk (wd0).

181



Chapter 23 RAID-1 with RAIDframe

# newfs /dev/wd0h
# /usr/mdec/installboot /usr/mdec/biosboot.sym /dev/rwd0h
# shutdown -r now

That’s it, we have a redundant RAID-1 host. The next thing we should do is to read the raid(4) and
raidctl(8) manual pages and educate yourself what to do when (not if) one of the drives fail. Finally the
reader must note that RAID systems do not make backups obsolete as they do not protect against rm -rf.

182



Chapter 24

The Internet Super Server

Many systems administrators, users, engineers and the like are familar with the internet super server or
inetd. Additionally, most are also quite familar with the relationship between several key files in the /etc
directory and inetd. Suprisingly there is very little documentation on the internet that is easily obtainable
which explains the basics of inetd and its relation to other files and the system as a whole.

24.1 Overview
In this document we will look at a simple definition of inetd, how several files that relate to inetd work
(not that these files are not related to other software), how to add a service to inetd and some
considerations both to use inetd for a particular service and times when a service might be better off
running outside of inetd.

24.2 What is Inetd
The internet super server listens on its own sockets, when it receives a request it then determines which
server to connect the request to and starts an instance of the server program.

Following is a very simple diagram to illustrate inetd:

pop3 ------ |
|

ftpd ------- | INETD | ---- Internet / DMZ / Switch / Whatever . . .
|

cvspserver - |

In the above diagram you can see the general idea. The inetd server receives a request and then starts the
appropiate server process. What inetd is doing is software multiplexing. An important note here, on
many other UNIX-like systems, inetd has a package called tcpwrappers as a security enhancment, on
NetBSD the secure behavoir of tcpwrappers was built in using libwrap.

24.3 Protocols
The first file is the protocols name data base which is /etc/protocols. This file has the information
pertaining to DARPA Internet protocols. The format of the protocols name data base is:

protocol_name number aliases

183



Chapter 24 The Internet Super Server

Lets look at the second entry in the /etc/protocols db as an example:

icmp 1 ICMP

Starting from the left, we see that the protocol name is icmp, the number is 1 and the only aliases listed is
ICMP.

24.4 Services
The next file to consider is the service name data base that can be found in /etc/services. This db
basically contains information about services and the mappings from protocol to port number. The
format of the /etc/services file is:

service_name port_number protocol_name aliases

Lets take a look at the ssh entries as an example:

ssh 22/tcp
ssh 22/udp

As we can see, from the left, the service name is ssh, the port number is 22, the protocols are both tcp
and udp. Notice that there is a separate entry for every protocol a service can use (even on the same port).

24.5 RPC
The rpc program number data base is kept in /etc/rpc and contains name mappings to rpc program
numbers, the format of the file is:

server_name program_number aliases

For example, here is the nfs entry:

nfs 100003 nfsprog

24.6 Inetd
Last and definitely not least of the files we are concerned with is the internet super-server file,
/etc/inetd.conf. The inetd.conf file basically provides enabling and mapping of services the
systems administrator would like to have multiplexed through inetd.

The previous files were very much informational for the system and hence their layout was also
relatively simple, the inetd.conf file, however, is a little more complex (but not too much) and
deserves a little deeper explanation.

The basic field layout of the inetd.conf file is:

184



Chapter 24 The Internet Super Server

service_name socket_type protocol wait/nowait user:group server_program arguments

service-name

The service name should match up with the /etc/services file for all standard services (it is at
least highly recommended), however, non-standard services you may be running locally do not, it is
important that you take care in selecting a non-standard service name so it does not clash with a
standard one.

socket-type

The communications socket type, the different types are stream dgram raw rdm and seqpacket. The
most common socket types are stream and dgram.

protocol

The protocol used, mostly tcp, tcp6, udp and udp6. It is worth noting that tcp and udp mean they
are backwards compatible with all previous versions, however, tcp4 specifically means
communication via ipv4 only. This can be taken a step forward by putting ipv46. In additon to
those, rpc uses rpc and tcp or rpc/tcp.

wait/nowait

This field tells inetd if it should wait for a server program to return or to keep processing a
connection steadily. Many connections to their server processes require answers after data transfers
are complete, where other types can keep transmitting on a connection continously, the latter is a
nowait and the former wait. In most cases, this entry corresponds to the socket-type, for example a
streaming connection would (most of the time) have a nowait value in this field.

user[:group]

This field is pretty obvious, the user and optionally a group that runs the server process which inetd
starts up.

server-program

This field is path to the program that gets started.

program-arguments

This field contains the program and additional arguments the systems administrator may need to
specifiy for the server program that is started.

That is all a lot to digest and there are other things the systems administrator can do with some of the
fields. Here is a sample line from an inetd.conf file:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd -ll

From the left, the service-name is ftp, socket-type is stream, protocol is tcp, wait/nowait is set to nowait,
the user is root, path is /usr/libexec/ftpd and program name and arguments is ftpd -ll. Notice in the last
field, the program name is different from the service-name.

185



Chapter 24 The Internet Super Server

24.7 Adding a Service
Many times a systems administrator will find that they need to add a service to their system that is not
already in inetd or they may wish to move a service to it because it does not get very much traffic. This is
usually pretty simple, so as an example we will look at adding a version of pop3 on a NetBSD system.

In this case we have retrieved and installed the cucipop package. This server is pretty simple to use, the
only oddities are different path locations. Since it is pop3 we know it is a stream oriented connection
with nowait. Using root will be fine, the only item that is different is the location of the program and the
name of the program itself.

So the first half of the new entry looks like this:

pop3 stream tcp nowait root

After installation, pkgsrc deposited cucipop in /usr/pkg/sbin/cucipop. So with the next field we
have:

pop3 stream tcp nowait root /usr/pkg/sbin/cucipop

Last, we want to use the Berkeley mailbox format, so our server program must be called with the -Y
option. This leaves the entire entry looking like so:

pop3 stream tcp nowait root /usr/pkg/sbin/cucipop cucipop -Y

Now, to have inetd use the new entry, we simply restart it using the rc script:

# /etc/rc.d/inetd restart

All done, in most cases, the software you are using has documentation that will specify the entry, in the
off case it does not, sometimes it helps to try and find something similar to the server program you will
be adding. A classic example of this is a MUD server which has built-in telnet. You can pretty much
borrow the telnet entry and change parts where needed.

24.8 When to use or not to use inetd
The decision to add or move a service into or out of inetd is usually arrived at based on serverload. As an
example, on most systems the telnet daemon does not require as many new connections as say a mail
server. Most of the time the administrator has to feel out if a service should be moved.

A good example I have seen is mail services such as smtp and pop. I had setup a mail server in which
pop3 was in inetd and exim was running in standalone, I mistakenly assumed it would run fine since
there was a low amount of users, namely myself and a diagnostic account. The server was also setup to
act as a backup MX and relay in case another heavily used one went down. When I ran some tests I
discovered a huge time lag for pop connections remotely. This was because of my steady fetching of mail
and the diagnostic user constanty mailing diagnostics back and forth. In the end I had to move the pop3
service out of inetd.

186



Chapter 24 The Internet Super Server

The reason for moving the service is actually quite interesting. When a particular service becomes
heavily used, of course, it causes a load on the system. In the case of a service that runs within the inetd
meta daemon the effects of a heavily loaded service can also harm other services that use inetd. If the
multiplexor is getting too many requests for one particular service, it will begin to affect the performance
of other services that use inetd. The fix, in a situation like that, is to make the offending service run
outside of inetd so the response time of both the service and inetd will increase.

24.9 Other Resources
Following is some additional reading and information about topics covered in this document:

24.9.1 NetBSD/i386 Man Pages

• inetd(8) (http://netbsd.gw.com/cgi-bin/man-cgi/man?inetd+8+NetBSD-current)

• protocols(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?protocols+5+NetBSD-current)

• rpc(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?rpc+5+NetBSD-current)

• services(5) (http://netbsd.gw.com/cgi-bin/man-cgi/man?services+5+NetBSD-current)

24.9.2 Misc. Links

• IANA: Protocol Numbers and Assignment Services (http://www.iana.org/numbers.htm)

• RFC1700: Assigned Numbers (http://www.isi.edu/in-notes/rfc1700.txt)

187



Chapter 25

Miscellaneous operations

This chapter collects various topics, in sparse order, which didn’t find a place in the previous chapters.

25.1 Creating install boot floppies for i386
First of all, you need to be running a kernel with the vnd pseudo device enabled (this is the default for a
GENERIC kernel.).

1. First, you must create a valid kernel to put on your floppies, let’s call it FLOPPY. This kernel must
be derived from some INSTALL model. Then, you have a valid
/sys/arch/i386/compile/FLOPPY/netbsd file.

2. Go to /usr/src/distrib/i386/floppies/ramdisk and do

# make

This will create the ramdisk.fs file in the directory.

3. Go to /usr/src/distrib/i386/floppies/fdset and do

# make KERN=/sys/arch/i386/compile/FLOPPY/netbsd

This will create one or two (depending on the size of kernel) files named boot1.fs and boot2.fs

4. Transfer these files to the floppies with the commands

# dd if=boot1.fs of=/dev/fd0a bs=36b
# dd if=boot2.fs of=/dev/fd0a bs=36b

5. Put the first floppy in the drive and power on!

25.2 Creating a CD-ROM
To create a data CD-ROM the mkisofs and cdrecord programs can be used: both SCSI and IDE recorders
are supported. IDE/ATAPI drives are supported by NetBSD without the need of an emulation layer,
because the driver can receive ATAPI commands directly, which is a simple and elegant solution.

Two steps are required to create a CD: first the ISO image of the CD must be created on the hard drive
with the mkisofs program. Next, the image must be written to the CD with cdrecord. In the following
example an IDE/ATAPI CD-Writer supported by cdrecord is used. This is the dmesg output:

cd1 at atapibus1 drive 0: <HP CD-Writer Plus 8100> type 5 cdrom removable

188



Chapter 25 Miscellaneous operations

Note: when burning a CD the execution speed is critical: the data flow to the CD-Writer must be
constant and there can be no pauses; the data buffer of cdrecord must never be empty. This means
that it is better to burn CD’s when the system is idle or nearly idle (don’t recompile the kernel or
encode an MP3 while you are running cdrecord...)

25.2.1 Creating the ISO image

CD-ROM file systems

CD-ROM’s can be created using different (and sometimes incompatible) file systems.
Therefore it is possible that a CD created on one system cannot be read (or loses
information) on another system. This situation is manifest, for example, when you try to
read under NetBSD a CD created under Windows. The following paragraphs give a brief
overview of the most common file systems for CD-ROM’s.

The ISO9660 is the first format, having appeared in 1988, and represents a sort of common
denominator between different operating systems: Apple, MS-DOS, Unix and VMS. A
CD-ROM written under Windows with this format will have several limitations: 8.3 format
for file names and only 8 levels of nesting for subdirectories. For this reason if, for example,
you create a NetBSD installation CD under Windows, the file names which appeared
normal with Explorer will be truncated on the CD.

To solve this type of limitation, some sets of extensions to the original ISO9660 format have
been introduced. The drawback of these extensions is that they are not supported on all
platforms.

The Joliet format, introduced by Microsoft for DOS/Windows systems, extends ISO9660
with the support of long file names and more nested directories. This format is usually not
readable by Unix systems (it is supported by NetBSD-current.)

The Rock Ridge extensions were introduced for Unix systems to support Unix conventions
for file systems without losing the compatibility with the original ISO9660. This is the
format to use when creating a CD under NetBSD or another Unix system (in the following
paragraphs it will be explained how to create a CD compatible with both Joliet and Rock
Ridge.

In addition to these standards, there are other standards (for example El Torito which are
used to produce bootable CD’s, supported by all recent PC’s.

Since ISO images tend to be quite large, it is better to check that there is sufficient space on the hard disk
for the data that you are writing (up to 700MB.) To create the image, if the data are in the mydata
directory and its subdirectories, write the following command:

# mkisofs -flrTv -o cdimage mydata/

When the cdimage file has been created, it can be examined and browsed like a regular file system, to
check that there are no errors before writing it to the CD. For example:

# ls -l cdimage

189



Chapter 25 Miscellaneous operations

-rw-rw-r-- 1 auser user 284672 Dec 1 11:58 cdimage
# vnconfig -v vnd0 cdimage 512/556/1/1
# mount -r -t cd9660 /dev/vnd0c /mnt

... browsing su /mnt ...
# umount /mnt
# vnconfig -u vnd0

The value 556 is the result of the size of the cdimage file divided by 512.

Creating a hybrid CD: mkisofs can create CDs using the Joliet format; such CDs will be readable on
Microsoft platforms. It is also possible to create hybrid CDs, with both RockRidge and Joliet
extensions, which will be readable on Unix and Windows platforms. For example:

$ mkisofs -l -J -R -o cd.iso mydata/

Check the mkisofs man page for the details of the available options.

25.2.2 Writing the image to the CD
In the second step the image is written to the CD with the following command:

# cdrecord -v speed=2 dev=/dev/rcd1d cdimage

Note: for ATAPI drives the rcd#d must be used because the a device does not accept ATAPI
commands.

before writing the image it is possible to perform a test, disabling the laser: just add the -dummy and
-nofix options to the command line. For example:

# cdrecord -v -dummy -nofix speed=2 dev=/dev/rcd1d cdimage

The two steps, creating and burning the image, can be combined in a single command, without the need
to create a (big) temporary file on the hard disk. The command looks like this:

# (nice -18 mkisofs -flrT mydata/) | cdrecord -v fs=16m speed=2 dev=/dev/rcd1d -

The option fs=16m is used to allocate a bigger fifo, avoiding cdrecord buffer underflow errors (this
means that cdrecord has no data to write.)

25.2.3 Copying a CD
To copy directly a CD the -isosize option of cdrecord can be used. For example:

# cdrecord -v fs=16m -isosize speed=2 dev=/dev/rcd1d /dev/rcd0d

190



Chapter 25 Miscellaneous operations

Note: if you are using two IDE/ATAPI CD(-RW) it is better if they are connected to two different IDE
controllers (one to the primary and one to the secondary) because the data flow is better. This is an
example configuration:

wd0: hard disk, IDE primary master
cd0: CD reader, IDE primary slave
cd1: CD writer, IDE secondary master

25.2.4 Creating a bootable CD
Creating a bootable CD is only a matter of having a boot binary file to put on the CD: this boot file
emulates a floppy. Then the -b option of mkisofs can be used. For example:

# mkisofs -vr -b boot.fs -o cdimage mydata/

boot.fs is the boot binary for the CD. Note that the path of boot.fs must be relative to the mydata/
directory.

25.3 Synchronizing the system clock
It is not unusual to find that the system clock is wrong, often by several minutes: for some strange reason
it seems that computer clocks are not very accurate. The problem gets worse if you administer many
networked hosts: keeping the clocks in sync can easily become a nightmare. To solve this problem, the
NTP protocol (version 3) comes to our aid: this protocol can be used to synchronize the clocks of a
network of workstations using one or more NTP servers.

Thanks to the NTP protocol it is possible to adjust the clock of a single workstation but also to
synchronize an entire network. The NTP protocol is quite complex, defining a hierarchical master-slave
structure of servers divided in strata: the top of the hierarchy is occupied by stratum 1 servers, connected
to an external clock (ex. a radio clock) to guarantee a high level of accuracy. Underneath, stratum 2
servers synchronize their clocks with stratum 1, and so on. The accuracy decreases as we proceed
towards lower levels. This hierarchichal structure avoids the congestion which could be caused by having
all hosts refer to the same (few) stratum 1 servers. If, for example, you want to synchronize a network,
you don’t connect all the hosts to the same public stratum 1 server. Instead, you create a local server
which connects to the main server and the remaining hosts synchronize their clocks with the local server.

Fortunately, to use the NTP tools you don’t need to understand the details of the protocol and of its
implementation (if you are interested, refer to RFC 1305) and you only need to know how to configure
and start some programs. The base system of NetBSD already contains the necessary tools to utilize this
protocol (and other time related protocols, as we’ll see), derived from the xntp implementation. This
section describes a simple method to always have a correct system time.

First, it is necessary to find the address of the public NTP servers to use as a reference; a detailed listing
can be found at http://www.eecis.udel.edu/~mills/ntp/servers.html. As an example, for Italy the two
stratum 1 servers tempo.cstv.to.cnr.it and time.ien.it can be used.

191



Chapter 25 Miscellaneous operations

Next, to adjust the system clock give the following command as root:

# ntpdate -b tempo.cstv.to.cnr.it time.ien.it

(substitute the names ot the servers in the example with the ones that you are actually using. Option -b

tells ntpdate to set the system time with the settimeofday system call, instead of slewing it with adjtime
(the default.) This option is suggested when the difference between the local time and the correct time
can be considerable.

As you’ve seen, ntpdate is not difficult to use. The next step is to start it automatically, in order to always
have the correct system time. If you have a permanent connection to the Internet, you can start the
program at boot with the following line of /etc/rc.conf:

ntpdate=YES ntpdate_hosts="time.ien.it"

The name of the NTP server to use is specified in the ntpdate_hosts variable; if you leave this field
empty, the boot script will try to extract the name from the /etc/ntp.conf file.

If you don’t have a permanent Internet connection (ex. you have a dial-up modem connection through an
ISP) you can start ntpdate from the ip-up script, as explained in Chapter 11. In this case add the
following line to the ip-up script:

/usr/sbin/ntpdate -s -b time.ien.it

(the path is mandatory or the script will probably not find the executable.) Option -s diverts logging
output from the standard output (this is the default) to the system syslog(3) facility, which means that the
messages from ntpdate will usually end up in /var/log/messages.

Besides ntpdate there are other useful NTP commands. It is also possible to turn one of the local hosts
into an NTP server for the remaining hosts of the network. The local server will synchronize its clock
with a public server. For this type of configuration you must use the xntpd daemon and create the
/etc/ntp.conf configuration file. For example:

server time.ien.it
server tempo.cstv.to.cnr.it

Xntpd can be started too from rc.conf, using the relevant option:

xntpd=YES

NTP is not your only option if you want to synchronize your network: you can also use the timed
daemon, which was developed for 4.3BSD. Timed too uses a master-slave hierarchy: when started on an
host, timed asks the network time to a master and ajusts the local clock accordingly. A mixed structure,
using both timed and xntpd can be used. One of the local hosts gets the correct time from a public NTP
server and is the timed master for the remaining hosts of network, which become its clients and
synchronize their clocks using timed. This means that the local server must run both NTP and timed;
care must be taken that they don’t interfere with each other (timed must be started with the -F

hostname option so that it doesn’t try to adjust the local clock.)

192



Chapter 25 Miscellaneous operations

25.4 Installing the boot manager
Sysinst, the NetBSD installation program, can install the NetBSD boot manager on the hard disk. The
boot manager can also be installed or reconfigured at a later time, if needed, with the fdisk command.
For example:

# fdisk -B wd0

If NetBSD doesn’t boot from the hard disk, you can boot it from the installation floppy and start the
kernel on the hard disk. Insert the installation disk and, at the boot prompt, give the following command:

> boot wd0a:netbsd

This boots the kernel on the hard disk (use the correct device, for example sd0a for a SCSI disk.)

Note: sometimes fdisk -B doesn’t give the expected result (at least it happened to me), probably if
you install/remove other operating systems like Windows 95. In this case, try a fdisk /mbr from DOS
and then run again fdisk from NetBSD.

25.5 Deleting the disklabel
Though this is not an operation that you need to perform frequently, it can be useful to know how to do it
in case of need. Please be sure to know exactly what you are doing before performing this kind of
operation. For example:

# dd if=/dev/zero of=/dev/rwd0c bs=8k count=1

The previous command deletes the disklabel (not the MBR partition table.) To completely delete the
disk, the wd0d device must be used. For example:

# dd if=/dev/zero of=/dev/rwd0d bs=8k

25.6 Speaker
I found this tip on a mailing list (I don’t remember the author.) To output a sound from the speaker (for
example at the end of a long script) the kernel spkr device can be used, which is mapped on
/dev/speaker. For example:

echo ’BPBPBPBPBP’ > /dev/speaker

Note: the spkr device is not enabled in the generic kernel; a customized kernel is needed.

193



Chapter 25 Miscellaneous operations

25.7 Forgot root password?
If you forget root’s password, not all is lost and you can still “recover” the system with the following
steps: boot single user, mount / and change root’s password. In detail:

1. Boot single user: when the boot prompt appears and the five seconds countdown starts, give the
following command:

> boot -s

2. At the following prompt

Enter pathname of shell or RETURN for sh:

press Enter.

3. Write the following commands:

# fsck -y /
# mount -u /
# fsck -y /usr
# mount /usr

4. Change root’s password with passwd.

5. Use the exit command to go to multiuser mode.

25.8 Adding a new hard disk
This section describes how to add a new hard disk to an already working NetBSD system. In the
following example a new SCSI controller and a new hard disk, connected to the controller, will be added.
If you don’t need to add a new controller, skip the relevant part and go to the hard disk configuration. The
installation of an IDE hard disk is identical; only the device name will be different (wd# instead of sd#).

As always, before buying new hardware, consult the hardware compatibility list of NetBSD and make
sure that the new device is supported by the system.

When the SCSI controller has been physically installed in the system and the new hard disk has been
connected, it’s time to restart the computer and check that the device is correctly detected, using the
dmesg command. This is the sample output for an NCR-875 controller:

ncr0 at pci0 dev 15 function 0: ncr 53c875 fast20 wide scsi
ncr0: interrupting at irq 10
ncr0: minsync=12, maxsync=137, maxoffs=16, 128 dwords burst, large dma fifo
ncr0: single-ended, open drain IRQ driver, using on-chip SRAM
ncr0: restart (scsi reset).
scsibus0 at ncr0: 16 targets, 8 luns per target
sd0(ncr0:2:0): 20.0 MB/s (50 ns, offset 15)
sd0: 2063MB, 8188 cyl, 3 head, 172 sec, 512 bytes/sect x 4226725 sectors

194



Chapter 25 Miscellaneous operations

If the device doesn’t appear in the output, check that it is supported by the kernel that you are using; if
necessary, compile a customized kernel (see Chapter 9.)

Now the partitions can be created using the fdisk command. First, check the current status of the disk:

# fdisk sd0
NetBSD disklabel disk geometry:
cylinders: 8188 heads: 3 sectors/track: 172 (516 sectors/cylinder)

BIOS disk geometry:
cylinders: 524 heads: 128 sectors/track: 63 (8064 sectors/cylinder)

Partition table:
0: sysid 6 (Primary ’big’ DOS, 16-bit FAT (> 32MB))

start 63, size 4225473 (2063 MB), flag 0x0
beg: cylinder 0, head 1, sector 1
end: cylinder 523, head 127, sector 63

1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

In this example the hard disk already contains a DOS partition, which will be deleted and replaced with a
native NetBSD partition. The command fdisk -u sd0 allows to modify interactively the partitions. The
modified data will be written on the disk only before exiting and fdisk will request a confirmation before
writing, so you can work relaxedly.

Disk geometries

The geometry of the disk reported by fdisk can appear confusing. Dmesg reports 4226725
sectors with 8188/3/172 for C/H/S, but 8188*3*172 gives 4225008 and not 4226725. What
happens is that most modern disks don’t have a fixed geometry and the number of sectors
per track changes depending on the cylinder: the only interesting parameter is the number of
sectors. The disk reports the C/H/S values but it’s a fictitious geometry: the value 172 is the
result of the total number of sectors (4226725) divided by 8188 and then by 3.

To make things more confusing, the BIOS uses yet another “fake” geometry (C/H/S
524/128/63) which gives a total of 4225536, a value which is a better approximation to the
real one than 425008. To partition the disk we will use the BIOS geometry, to mantain
compatibility with other operating systems, although we will loose some sectors (4226725 -
4225536 = 1189 sectors = 594 KB.)

To create the BIOS partitions the command fdisk -u must be used; the result is the following:

Partition table:
0: sysid 169 (NetBSD)

start 63, size 4225473 (2063 MB), flag 0x0
beg: cylinder 0, head 1, sector 1
end: cylinder 523, head 127, sector 63

1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

195



Chapter 25 Miscellaneous operations

Now it’s time to create the disklabel fot the NetBSD partition. The correct steps to do this are:

# disklabel sd0 > tempfile
# vi tempfile
# disklabel -R -r sd0 tempfile

If you try to create the disklabel directly with

# disklabel -e sd0

you get the following message

disklabel: ioctl DIOCWDINFO: No disk label on disk;
use "disklabel -r" to install initial label

because the disklabel does not yet exist on the disk.

Now we create some disklabel partitions, editing the tempfile as already explained. The result is:

# size offset fstype [fsize bsize cpg]
a: 2048004 63 4.2BSD 1024 8192 16 # (Cyl. 0*- 3969*)
c: 4226662 63 unused 0 0 # (Cyl. 0*- 8191*)
d: 4226725 0 unused 0 0 # (Cyl. 0 - 8191*)
e: 2178658 2048067 4.2BSD 1024 8192 16 # (Cyl. 3969*- 8191*)

Note: when the disklabel has been created it is possible to optimize it studying the output of the
command newfs -n /dev/sd0a, which warns about the existence of unallocated sectors at the end of
a disklabel partition. The values reported by newfs can be used to adjust the sizes of the partitions
with an iterative process.

The final operation is the creation of the file systems for the newly defined partitions (a and e.)

# newfs /dev/sd0a
# newfs /dev/sd0e

The disk is now ready for usage, and the two partitions can be mounted. For example:

# mount /dev/sd0a /mnt

25.9 Password file is busy?
If you try to modify a password and you get the mysterious message “Password file is busy”, it probably
means that the file /etc/ptmp has not been deleted from the system. This file is a temporary copy of the
/etc/master.passwd file: check that you are not loosing important information and then delete it
(ptmp, not master.passwd.)

196



Chapter 25 Miscellaneous operations

Note: if the file /etc/ptmp exists you can also receive a warning message at system startup. For
example:

root: password file may be incorrect - /etc/ptmp exists

25.10 How to rebuild the devices in /dev
First shutdown to single user, partitions still mounted “rw” (read-write); You can do that by just typing
shutdown now while you are in multi user mode, or reboot with the -s option and make / and /dev
read-writable by doing.

# mount -u /
# mount -u /dev

Then:

# mkdir /nudev
# cd /nudev
# cp /dev/MAKEDEV* .
# sh ./MAKEDEV all
# cd /
# mv dev odev
# mv nudev dev
# rm -r odev

Or if you fetched all the sources in /usr/src:

# mkdir /nudev
# cd /nudev
# cp /usr/src/etc/MAKEDEV.local .
# cp /usr/src/etc/etc.$arch/MAKEDEV .
# sh ./MAKEDEV all
# cd /
# mv dev odev; mv nudev dev
# rm -r odev

You can determine $arch by

# uname -m

or

# sysctl hw.machine_arch

Using the second way by copying the new MAKEDEV’s from the source tree will add some additional
devices in at least the i386 architecture. For example now it’s possible to have 16 partitions instead of 8.
If you use the “old” MAKEDEV’s from /dev, the additional devices wont be made.

197



Appendix A.

Information

A.1 Guide history
This guide was born as a collection of sparse notes that I wrote mostly for myself. When I realized that
they could be useful to other NetBSD users I started collecting them and created the first version of the
guide using the groff formatter. In order to “easily” get a wider variety of output formats (eg. HTML and
PostScript/PDF), I made the “mistake” of moving to SGML/DocBook, which is the current format of the
sources. The format was changed to XML/DocBook later due to better tools and slightly more knownow
on customisations.

The following open source tools were used to write and format the guide:

• the vi editor which ships with NetBSD (nvi.)

• the libxslt parser from GNOME for transforming XML/DocBook into HTML.

• the TeX system from the NetBSD packages collection. TeX is used as a backend to produce the PS
and PDF formats.

• the tgif program for drawing the figures.

• the gimp and xv programs for converting between image formats and making small modifications to
the figures.

Many thanks to all the people involved in the development of these great tools.

198



Appendix B.

Contributing to the NetBSD
guide

There is a interest for both introductory and advanced documentation on NetBSD: this is probably a sign
of the increased popularity of this operating system and of a growing user base. It is therefore important
to keep adding new material to this guide and improving the existing stuff.

Whatever your level of expertise with NetBSD, you can contribute to the development of this guide. This
appendix explains how you can contribute to the NetBSD guide and what you should know before you
start.

If you are a beginner and you found this guide helpful, please send your comments and suggestions to
<www@NetBSD.org>. For example, if you tried something described here and it didn’t work for you, or
if you think that something is not clearly explained, or if you have an idea for a new chapter, etc: this
type of feedback is very useful.

If you are an intermediate or advanced user, please consider contributing new material to the guide: you
could write a new chapter or improve an existing one.

If you have some spare time, you could translate the guide into another language.

If you have some spare time, you could translate the guide into another language.

Whatever you choose to do, don’t start working before having contacted us, in order to avoid duplicating
efforts.

B.1 Translating the guide
If you want to translate the guide the first thing to do is, as already said, to contact <www@NetBSD.org>
or to write to the <netbsd-docs@NetBSD.org> mailing list. There are several possible scenarios:

• someone else is already working on a translation into your language; you could probably help him.

• nobody is currently working on a translation into your language, but some chapters have already been
translated and you can translate the remaining chapters.

• you start a new translation. Of course you don’t need to translate all the guide: this is a big effort, but if
you start translating one or two chapters it’ll be a good starting point for someone else.

Even if a translation is already available, it is always necessary to keep it up do date with respect to the
master version when new material is added or corrections are made: you could become the mantainer of
a translation.

199



Appendix B. Contributing to the NetBSD guide

B.1.1 What you need to start a translation
In order to translate the guide you must get the guide sources. Send an e-mail to me and I’ll send you the
latest sources, makefiles, etc.

In short, all you need is:

• the guide sources

• a text editor, such as vi or emacs.

Note: don’t start working with HTML or other formats: it will be very difficult to convert you work to
SGML/DocBook, the format used by the NetBSD guide.

B.1.2 Writing SGML/DocBook
In order to translate the guide you don’t need to learn SGML/DocBook: get the SGML/DocBook
sources and work directly on them, in order to reuse the existing format (i.e. tags) in your work. For
example, to translate the previous note, you would do the following:

1. load the english source of the current chapter, ap-contrib.sgml, in your editor.

2. find the text of the previous note. You will see something like:

<note>
<para>

don’t start working with HTML or other formats:
it will be very difficult to convert you work
to SGML/DocBook, the format used by the NetBSD
guide.

</para>
</note>

3. add your translation between the tags, after the english version. The text now looks like this:

<note>
<para>

don’t start working with HTML or other formats:
it will be very difficult to convert you work
to SGML/DocBook, the format used by the NetBSD
guide.
your translation goes here
your translation goes here
your translation goes here

</para>
</note>

4. delete the four lines of english text between the tags leaving your translation.

<note>
<para>

your translation goes here

200



Appendix B. Contributing to the NetBSD guide

your translation goes here
your translation goes here

</para>
</note>

When you write the translation please use the same indentation and formatting style of the original text.
See Section B.3 for an example.

One problem that you will probably face when writing the DocBook text is that of national characters
(eg. accented letters like “è”). You can use these characters in your source document but it’s preferable to
replace them with SGML entities. For example, “è” is written as “&egrave;”. Of course this makes your
source text difficult to write and to read; the first problem, writing, can be solved using a good editor with
macro capabilities. Vi and emacs, which are very popular choices, both have this feature and you can
map the accented keys of you keyboard to generate the required entities automatically. For example, for
vi you can put a line like the following in your .exrc file:

map! è &egrave;

Appendix C explains how to install the software tools to generate HTML and other formats from the
DocBook sources. This is useful if you want to check your work (i.e. make sure you didn’t inadvertedly
delete some tag) or to see what the output looks like, but it is not a requirement for a translation. If you
don’t want to install the software tools, send me the sources and I’ll check them and create the various
output formats.

B.2 Sending contributions
If you want to contribute some material to the guide you have several options, depending on the amount
of text you want to write. If you just want to send a small fix, the easiest way to get it into the guide it to
send it to <www@NetBSD.org> via e-mail. If you plan to write a substantial amount of text, such as a
section or a chapter, you can choose among many formats:

• SGML/DocBook; this is the preferred format. If you choose to use this format, please get the guide
sources and use them as a template for the indentation and text layout, in order to keep the formatting
consistent.

• text; if the formatting is kept simple, it is not difficult to convert text to SGML format.

• HTML; handwritten HTML (i.e. written with a text editor) is preferred over automatically generated
HTML because it is easier to convert. There is no real advantage in using HTML except that it gives a
better idea of you want your text to look like. Another small benefit is that the HTML text probably
already contains the required entities for accented characters, etc.

• other formats are also accepted if you really can’t use any of the previous ones.

B.3 SGML/DocBook template
For the guide I use a formatting style similar to a program. The following is a template:

201



Appendix B. Contributing to the NetBSD guide

<chapter id="chap-xxxxx">
<title>This is the title of the chapter</title>

<para>
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph.

</para>

<!-- ============================================================= -->

<sect1>
<title>This is the title of a sect1</title>

<para>
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph. This is the text of a paragraph.
This is the text of a paragraph.

</para>

<!-- ........................................................... -->

<sect2>
<title>This is the title of a sect2</title>

<para>
A sect2 is nested inside a sect1.

</para>
</sect2>

</sect1>

<!-- ============================================================= -->

<sect1>
<title>This is the title of another sect1</title>

<para>
An itemized list:
<itemizedlist>

<listitem>
<para>
text

</para>
</listitem>
<listitem>

<para>
text

</para>
</listitem>

</itemizedlist>
</para>

202



Appendix B. Contributing to the NetBSD guide

</sect1>
</chapter>

The defaults are:

• two spaces for each level of indentation

• lines not longer than 72 characters.

• use separator lines (comments) between sect1/sect2.

203



Appendix C.

Getting started with
XML/DocBook

HFHFHF - THIS WHOLE SECTION NEEDS REWRITING FOR THE NEW XML/DocBook based
setup!!! Either ask Grant to do it or maybe even rip out the whole thing. - HFHFHF

This appendix describes the installation of the tools needed to produce a formatted version of the
NetBSD guide. XML/DocBook and the XSLT are not described here, but at the end of this appendix
there is a section containing links to useful documents which can get you started.

The XML/DocBook environment can be installed using the netbsd-docs meta-package; this is the easiest
way and you are encouraged to use it. This appendix describes the installation of the components one by
one and can be used for a more fine grained installation or as a reference for troubleshooting your
installation.

Note: the netbsd-docs meta-package installs some packages which are not described in this
document because they are not needed for the NetBSD guide. These are:

• iso12083-1993

• unproven-pthreads-0.17nb2

• opensp-1.4

• html-4.0b

This document describes the installation of the XML tools using precompiled packages. For details on
packages see Chapter 10.

Note: the version numbers of the tools that we are going to install can change, as new versions are
added to the package system.

C.1 What is XML/DocBook
XML (Standard Generalized Markup Language) is a language which is used to define other languages
based on markups, i.e. with XML you can define the grammar (i.e. the valid constructs) of markup
languages. HTML, for example, can be defined using XML. If you are a programmer, think of XML like
the BNF (Backus-Naur Form): a tool used to define grammars.

204



Appendix C. Getting started with XML/DocBook

DocBook is a markup template defined using XML; DocBook lists the valid tags that can be used in a
DocBook document and how they can be combined together. If you are a programmer, think of DocBook
as the grammar of a language specified with the BNF. For example, it says that the tags

<para> ... </para>

define a paragraph, and that a <para> can be inside a <sect1> but that a <sect1> cannot be inside a
<para>.

Therefore, when you write a document, you write a document in DocBook and not in XML: in this
respect DocBook is the counterpart of HTML (although the markup is richer and the concepts are
different.)

The DocBook specification (i.e. the list of tags and rules) is called a DTD (Document Type Definition.)

In short, a DTD defines how your source documents look like but it gives no indication about the format
of your final (compiled) documents. A further step is required: the DocBook sources must be converted
to some other representation like, for example, HTML or PDF. This step is performed by a tool like Jade,
which applies the DSSSL transforms to the source document. DSSSL (Document Style Semantics and
Specification Language) is a format used to define the stylesheets necessary to perform the conversion
from DocBook to other formats.

The life of a DocBook document is thus the following:

• DocBook source document.

• the DocBook DTD is used by nsgmls to “validate” the document.

• Jade is used to apply the DSSSL stylesheets to the source document and generate a new document.

It is still not possible to print or view this document. The new document is just the original document
where formatting directives have been added and DocBook tags removed; it could be HTML, RTF,
TeX, etc.

• a formatter (HTML viewer, Word or another RTF word processor, TeX, ...) is used to create the final
version of the source document.

Therefore what you need to start working is

• a DTD for DocBook.

• the DSSSL stylesheets used by Jade, to generate HTML/RTF, etc.

• the Jade program and the nsgmls parser.

C.2 Jade
Jade is an XML/XML parser which implements the DSSSL engine. The Jade package includes the
validating parser, nsgmls.

205



Appendix C. Getting started with XML/DocBook

Note: OpenJade is a more recent version of Jade. It currently doesn’t compile on NetBSD. It is not
needed for the NetBSD guide.

Install Jade using a precompiled package:

# pkg_add jade-1.2.1.tgz

You will find some documentation in /usr/pkg/share/doc/jade/index.htm, but the most
important directory installed is /usr/pkg/share/sgml/jade/: this is where you can find Jade’s
catalog file.

C.3 DocBook
The next thing that you need to install is the DocBook DTD (i.e. the template used to write DocBook
documents.)

This package requires the package with the character entity sets from ISO 8879:1986. Therefore let’s add
the entities:

# pkg_add iso8879-1986.tgz

The entities are installed in the directory /usr/pkg/share/sgml/iso8879/ and the catalog file is
/usr/pkg/share/sgml/iso8879/catalog.

Now we can install the DocBook DTD.

# pkg_add docbook-4.1.tgz

Despite its name this package installs several versions of the DocBook DTD (i.e. 2.4.1, 3.0, 3.1, 4.0, 4.1).
This lets you process documents which use different versions of the DTD.

Note: the current version of the NetBSD guide uses version 4.1 of the DocBook DTD. Therefore the
other versions are not strictly necessary for the guide. Each version requires less than 250 KB so
you might want to keep them in order to process other documents.

The root of the installation is /usr/pkg/share/sgml/docbook/4.1/. Each version of the DTD has a
separate directory and each has its catalog file, eg. /usr/pkg/share/sgml/docbook/4.1/catalog.

C.4 The DSSSL stylesheets
Now it’s time to install the DSSSL stylesheets:

# pkg_add dsssl-docbook-modular-1.57.tgz

206



Appendix C. Getting started with XML/DocBook

The stylesheets install their catalog too, in
/usr/pkg/share/sgml/docbook/dsssl/modular/catalog. You will find the documentation of
the Modular DocBook stylesheets in
/usr/pkg/share/sgml/docbook/dsssl/modular/doc/index.html.

C.5 Using the tools
Let’s try to use the tools that we have installed and produce an HTML version of the english guide.

Cd to the base directory of the guide and then:

$ cd en
$ make netbsd.html

You will get a long list of errors, because the XML parser, nsgmls, can’t find the catalog files. Therefore,
type the following commands (and add them to your ~/.profile):

SGML_ROOT=/usr/pkg/share/sgml
SGML_CATALOG_FILES=${SGML_ROOT}/jade/catalog
SGML_CATALOG_FILES=${SGML_ROOT}/iso8879/catalog:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/docbook/3.0/catalog:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/docbook/3.1/catalog:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/docbook/4.0/catalog:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/docbook/4.1/catalog:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/docbook/dsssl/modular/catalog:$SGML_CATALOG_FILES
export SGML_CATALOG_FILES

Note: modify the commands if you are using a csh style shell.

When the SGML_CATALOG_FILES environment variable is active, do another

$ make netbsd.html
nsgmls -sv netbsd.sgml
nsgmls:I: SP version "1.3.3"
jade -d ../dsl/myhtml.dsl -t sgml -o netbsd.html netbsd.sgml

This time everything goes well and the HTML version of the guide is generated. The RTF version is
created in the same way:

$ make netbsd.rtf
nsgmls -sv netbsd.sgml
nsgmls:I: SP version "1.3.3"

207



Appendix C. Getting started with XML/DocBook

jade -d ../dsl/myrtf.dsl -t rtf -o netbsd.rtf netbsd.sgml

With this setup you can create only the HTML and RTF versions; the generation of PS and PDF requires
the installation and configuration of TeX and Jadetex.

C.6 An alternative approach to catalog files
In my installations I usually create a master catalog file which references all the other catalog files. If
you like this approach, create the /usr/pkg/share/sgml/catalog file containing the following lines:

CATALOG "/usr/pkg/share/sgml/docbook/3.0/catalog"
CATALOG "/usr/pkg/share/sgml/docbook/3.1/catalog"
CATALOG "/usr/pkg/share/sgml/docbook/4.0/catalog"
CATALOG "/usr/pkg/share/sgml/docbook/4.1/catalog"
CATALOG "/usr/pkg/share/sgml/docbook/dsssl/modular/catalog"
CATALOG "/usr/pkg/share/sgml/iso8879/catalog"
CATALOG "/usr/pkg/share/sgml/jade/catalog"

When you have created this file you can simplify your ~/.profile like this:

SGML_CATALOG_FILES=/usr/pkg/share/sgml/catalog
export SGML_CATALOG_FILES

C.7 Producing PostScript output
To create a printable version of the guide the following steps are needed:

• installing TeX

• enabling the hyphenation for the italian language

• creating the hugelatex format required by jadetex

• installing jadetex

The following sections describe each of the steps in detail.

C.7.1 Installing TeX
You don’t need to do anything special to install TeX; it’s a huge package, but thanks to the package
system it is easy to install. To add the packages that you need (the version numbers could be different):

# pkg_add teTeX-share-1.0.2.tgz
# pkg_add teTeX-bin-1.0.7nb1.tgz

208



Appendix C. Getting started with XML/DocBook

C.7.2 Enabling hyphenation for the italian language
The NetBSD guide is currently available in three languages: english, french and italian. Of these, only
english and french are automatically hyphenated by TeX. To turn on hyphenation for the italian
language, some simple steps are required:

Edit /usr/pkg/share/texmf/tex/generic/config/language.dat and remove the comment
(%) from the line of the italian hyphenation. I.e.

%italian ithyph.tex

becomes

italian ithyph.tex

Note: as more translations of the guide become available, you will probably need to enable other
hyphenation patterns as well.

Now the latex and pdflatex formats must be recreated:

# cd /usr/pkg/share/texmf/web2c
# fmtutil --byfmt latex
# fmtutil --byfmt pdflatex

If you check, for example, latex.log you will find something like

Babel <v3.6Z> and hyphenation patterns for american, french, german,
ngerman, italian, nohyphenation, loaded.

Note: there are many ways to perform these operations, depending on your level of expertise with
the TeX system (mine is very low.) For example, you could use the texconfig interactive program, or
you could recreate the formats by hand using the tex program.

If you know a better way of doing the operations described in this appendix, please let me know.

C.7.3 Creating the hugelatex format
Jadetex requires the hugelatex format, which is not included in the default installation of teTeX. Make a
backup copy of /usr/pkg/share/texmf/web2c/texmf.cnf and add the following lines at the end
the file (we will need the jadetex and pdfjadetex settings when we install Jadetex later):

% hugelatex settings
main_memory.hugelatex = 1100000
param_size.hugelatex = 1500

209



Appendix C. Getting started with XML/DocBook

stack_size.hugelatex = 1500
hash_extra.hugelatex = 15000
string_vacancies.hugelatex = 45000
pool_free.hugelatex = 47500
nest_size.hugelatex = 500
save_size.hugelatex 5000
pool_size.hugelatex = 500000
max_strings.hugelatex 55000
font_mem_size.hugelatex = 400000

% jadetex & pdfjadetex
main_memory.jadetex = 1500000
param_size.jadetex = 1500
stack_size.jadetex = 1500
hash_extra.jadetex = 15000
string_vacancies.jadetex = 45000
pool_free.jadetex = 47500
nest_size.jadetex = 500
save_size.jadetex 5000
pool_size.jadetex = 500000
max_strings.jadetex 55000

main_memory.pdfjadetex = 2500000
param_size.pdfjadetex = 1500
stack_size.pdfjadetex = 1500
hash_extra.pdfjadetex = 50000
string_vacancies.pdfjadetex = 45000
pool_free.pdfjadetex = 47500
nest_size.pdfjadetex = 500
save_size.pdfjadetex 5000
pool_size.pdfjadetex = 500000
max_strings.pdfjadetex 55000

This is how the hugelatex format can be created according to the Jadetex installation guide:

# cp -R /usr/pkg/share/texmf/tex/latex/config /tmp
# cd /tmp/config
# tex -ini -progname=hugelatex latex.ini
# mv latex.fmt hugelatex.fmt
# mv hugelatex.fmt /usr/pkg/share/texmf/web2c
# ln -s /usr/pkg/bin/tex /usr/pkg/bin/hugelatex

Note: as before, there is more than one way to create the hugelatex format. The one outlined above
is more thoroughly described in the Jadetex install guide.

Another possibility is to add the following lines describing the hugelatex format to the fmtutil.cnf

file (in the /usr/pkg/share/texmf/web2c directory)

# hugelatex format created for jadetex
hugelatex tex language.dat latex.ini

210



Appendix C. Getting started with XML/DocBook

save the file and run the command

fmtutil --byfmt hugelatex.

C.7.4 Installing Jadetex

Note: you can get jadetex from http://www.tug.org/applications/jadetex/

Fetch the most recent distribution of Jadetex (currently jadetex-3.6.zip), unzip it, then:

# cd jadetex
# make install
# mktexlsr

When you install the jadetex and pdfjadetex format files are copied to the tex tree along with other utility
files.

The jadetex distribution contains two manual pages that are not installed automatically. You can just
copy them manually; for example:

# cp jadetex.1 pdfjadetex.1 /usr/local/man/man1

Now you are ready to create the Postscript version of the NetBSD guide (and of any document you like,
of course.)

C.8 Links
You can find a simple and well written introduction to SGML/DocBook and a description of the tools in
SGML comme format de fichier universel (http://casteyde.christian.free.fr/tools/SGML.html).

The official DocBook home page (http://www.oasis-open.org/docbook/) is where you can find the
definitive documentation on DocBook. You can also read online or download a copy of the book
DocBook: The Definitive Guide (http://www.oasis-open.org/docbook/documentation/reference/) by
Norman Walsh and Leonard Muellner.

For DSSSL start looking at http://nwalsh.com.

Jade/OpenJade sources and info can be found on the OpenJade Home Page
(http://openjade.sourceforge.net/).

If you want to produce Postscript and PDF documents from your DocBook source, look at the home
page of JadeTex (http://www.tug.org/applications/jadetex).

211



Appendix C. Getting started with XML/DocBook

The home page of Markus Hoenicka (http://ourworld.compuserve.com/homepages/hoenicka_markus/)
explains everything you need to know if you want to work with SGML/DocBook on the Windows NT
platform.

212



Appendix D.

Acknowledgements

This document was originally created by Federico Lupi. Since then, it has been updated and maintained
by the NetBSD www team and it has progressed thanks to the contributions of many people who have
volunteered their time and effort, supplied material and sent in suggestions and corrections.

D.1 Original acknowledgements
Federico’s original credits are:

• Paulo Aukar

• Grant Beattie, converted to XML DocBook.

• Manolo De Santis, Audio Chapter

• Eric Delcamp, Boot Floppies

• Hubert Feyrer, who contributed the Introduction to TCP/IP Networking in Section 11.1 including Next
generation Internet protocol - IPv6 and the section on getting IPv6 Connectivity & Transition via 6to4
in Section 11.3.5. Helped the SGML to XML transition.

• Jason R. Fink

• Daniel de Kok, audio and linux chapters fixes.

• Reinoud Koornstra, CVS chapter and rebuilding /dev in th Misc chapter.

• Brian A. Seklecki <lavalamp@burghcom.com> who contributed the CCD Chapter.

• Guillain Seuillot

• Martti Kuparinen, RAIDframe documentation.

• David Magda

D.2 Current acknowledgements
This document is currently maintained by the NetBSD www team. Thanks to their efforts, the document
is kept up to date and available online at all times. In addition, special thanks go to (in alphabetical
order):

• Jason R. Fink, for maintaining this document and integrating changes.

• Daniel de Kok, for constant contributions of new chapters, maintenance of existing chapters and his
translation work.

213



Appendix D. Acknowledgements

• Hiroki Sato, for allowing us to build PDF and PS versions of this document.

• Jan Schaumann, for maintenance work and www/htdocs managment.

214


	The NetBSD Operating System
	Table of Contents
	List of Figures
	List of Examples
	
	Purpose of this guide
	Chapter 1 
	What is NetBSD?
	1.1 The story of NetBSD
	1.2 NetBSD features
	1.3 Supported platforms
	1.4 NetBSD's target users
	1.5 Applications for NetBSD
	1.6 The philosophy of NetBSD
	1.7 How to get NetBSD

	Chapter 2 
	New features in NetBSD 2.0
	2.1 What's new in NetBSD 2.0?
	2.1.1 Native threads
	2.1.2 Kernel events notification framework kqueue
	2.1.3 systrace
	2.1.4 UFSv2
	2.1.5 Java support
	2.1.6 Verified Exec
	2.1.7 Cryptographic disk driver
	2.1.8 Nonexecutable stack and heap
	2.1.9 New toolchain

	2.2 New ports and enhancements to existing ports
	2.2.1 amd64
	2.2.2 evbsh5
	2.2.3 i386
	2.2.4 macppc
	2.2.5 sparc

	2.3 The NetBSD Packages Collection (pkgsrc)

	Chapter 3 
	Installation
	3.1 Documentation
	3.2 The layout of a NetBSD installation
	3.3 Installation
	3.3.1 Keyboard
	3.3.2 Geometries
	3.3.3 Partitions
	3.3.4 Hard disk space requirements
	3.3.5 Retry


	Chapter 4 
	Example Installation
	4.1 Installation example
	4.1.1 Preparing the installation
	4.1.2 Creating the installation floppy
	4.1.3 Last preparatory steps
	4.1.4 Beginning the installation
	4.1.5 Partitions
	4.1.6 Disklabel
	4.1.7 Creating a disklabel
	4.1.8 Final operations
	4.1.9 Choosing the installation media


	Chapter 5 
	The first boot
	5.1 If something went wrong
	5.2 Login
	5.3 Changing the keyboard layout
	5.4 The man command
	5.5 Changing the root password
	5.6 Changing the shell
	5.7 System time
	5.8 Basic configuration /etc/rc.conf
	5.9 Rebooting the system

	Chapter 6 
	The second boot
	6.1 dmesg
	6.2 Mounting the CDROM
	6.3 Mounting the floppy
	6.4 Accessing a DOS/Windows partition
	6.5 Adding users
	6.6 Shadow passwords
	6.7 Stopping and rebooting the system

	Chapter 7 
	Printing
	7.1 Enabling the printer daemon
	7.2 Configuring /etc/printcap
	7.3 Configuring Ghostscript
	7.4 Printer management commands
	7.5 Remote printing

	Chapter 8 
	Using the build.sh Front End
	8.1 Building the tools
	8.2 Cross Compiling a Kernel
	8.3 Build & Release
	8.4 Environment Variables
	8.4.1 Changing the Destination Directory
	8.4.2 Static Builds


	Chapter 9 
	Compiling the kernel
	9.1 Installing the kernel sources
	9.2 Italian keyboard layout
	9.3 Recompiling the kernel
	9.4 Build the toolchain
	9.5 Creating the kernel configuration file
	9.6 Configuring the kernel
	9.7 Generating dependencies and recompiling
	9.8 If something went wrong

	Chapter 10 
	The package collection
	10.1 Installing the package collection
	10.2 Updating the package collection
	10.3 Example: installing a program from source
	10.3.1 Downloading the sources
	10.3.2 Compiling and installing

	10.4 Example: installing a binary package
	10.5 Package management commands
	10.6 Quick Start Packaging Guide
	10.6.1 Tools
	10.6.1.1 url2pkg
	10.6.1.2 Template package
	10.6.1.3 pkglint

	10.6.2 Getting Started
	10.6.2.1 Using url2pkg

	10.6.3 Filling in the Rest
	10.6.4 Checking with pkglint
	10.6.5 Running and Checking Build/Installs
	10.6.6 Submitting a Package Using sendpr
	10.6.7 Final Notes


	Chapter 11 
	Networking
	11.1 Introduction to TCP/IP Networking
	11.1.1 Audience
	11.1.2 Supported Networking Protocols
	11.1.3 Supported Media
	11.1.3.1 Serial Line
	11.1.3.2 Ethernet

	11.1.4 TCP/IP Address Format
	11.1.5 Subnetting and Routing
	11.1.6 Name Service Concepts
	11.1.6.1 /etc/hosts
	11.1.6.2 Domain Name Service (DNS)
	11.1.6.3 Network Information Service (NIS/YP)
	11.1.6.4 Other

	11.1.7 Next generation Internet protocol IPv6
	11.1.7.1 The Future of the Internet
	11.1.7.2 What good is IPv6?
	11.1.7.2.1 Bigger Address Space
	11.1.7.2.2 Mobility
	11.1.7.2.3 Security

	11.1.7.3 Changes to IPv4
	11.1.7.3.1 Addressing
	11.1.7.3.2 Multiple Addresses
	11.1.7.3.3 Multicasting
	11.1.7.3.4 Name Resolving in IPv6



	11.2 Practice
	11.2.1 A walk through the kernel configuration
	11.2.2 Overview of the network configuration files
	11.2.3 Connecting to the Internet
	11.2.3.1 Getting the connection information
	11.2.3.2 resolv.conf and nsswitch.conf
	11.2.3.3 Creating the directories for pppd
	11.2.3.4 Connection script and chat file
	11.2.3.5 Authentication
	11.2.3.5.1 PAP/CHAP authentication
	11.2.3.5.2 Login authentication

	11.2.3.6 pppd options
	11.2.3.7 Testing the modem
	11.2.3.8 Activating the link
	11.2.3.9 Using a script for connection and disconnection

	11.2.4 Creating a small home network
	11.2.5 Connecting two PCs through a serial line
	11.2.5.1 Connecting NetBSD with BSD or Linux
	11.2.5.2 Connecting NetBSD and Windows NT
	11.2.5.3 Connecting NetBSD and Windows 95


	11.3 Advanced Topics
	11.3.1 IPNAT
	11.3.1.1 Configuring the gateway/firewall
	11.3.1.2 Configuring the clients
	11.3.1.3 Some useful commands

	11.3.2 Bridge
	11.3.2.1 Bridge example

	11.3.3 NFS
	11.3.3.1 NFS setup example

	11.3.4 Setting up /net with amd
	11.3.4.1 Introduction
	11.3.4.2 Actual setup

	11.3.5 IPv6 Connectivity & Transition via 6to4
	11.3.5.1 Getting 6to4 IPv6 up & running
	11.3.5.2 Obtaining IPv6 Address Space for 6to4
	11.3.5.3 How to get connected
	11.3.5.4 Security Considerations
	11.3.5.5 Data Needed for 6to4 Setup
	11.3.5.6 Kernel Preparation
	11.3.5.7 6to4 Setup
	11.3.5.8 Quickstart using pkgsrc/net/6to4
	11.3.5.9 Known 6to4 Gateway
	11.3.5.10 Conclusion & Further Reading

	Bibliography


	Chapter 12 
	The Domain Name System
	12.1 Notes and PreRequisites
	12.2 What is DNS?
	12.3 The DNS Files
	12.3.1 /etc/namedb/named.conf
	12.3.1.1 options
	12.3.1.2 zone diverge.org

	12.3.2 /etc/namedb/localhost
	12.3.3 /etc/named/zone.127.0.0
	12.3.4 /etc/namedb/diverge.org
	12.3.5 /etc/namedb/1.168.192
	12.3.6 /etc/namedb/root.cache

	12.4 Using DNS
	12.5 Setting up a caching only name server
	12.5.1 Testing the server


	Chapter 13 
	Mail and news
	13.1 sendmail
	13.1.1 Configuration with genericstable
	13.1.2 Testing the configuration
	13.1.3 Using an alternative MTA

	13.2 fetchmail
	13.3 Reading and writing mail with mutt
	13.4 Strategy for receiving mail
	13.5 Strategy for sending mail
	13.6 Advanced mail tools
	13.7 News with tin

	Chapter 14 
	Console drivers
	14.1 wscons
	14.1.1 50 lines text mode with wscons
	14.1.2 wsmouse

	14.2 pccons
	14.3 pcvt
	14.3.1 Changing the screen size


	Chapter 15 
	Editing
	15.1 Introducing vi
	15.1.1 The vi interface
	15.1.2 Switching to Edit Mode
	15.1.3 Switching Modes & Saving Buffers to Files
	15.1.4 Yanking and Putting
	15.1.4.1 Oops I Did Not Mean to do that!

	15.1.5 Navigation in the Buffer
	15.1.6 Searching a File, the Alternate Navigational Aid
	15.1.6.1 Additional Navigation Commands

	15.1.7 A Sample Session

	15.2 Configuring vi
	15.2.1 Extensions to .exrc
	15.2.2 Documentation

	15.3 Using tags with vi

	Chapter 16 
	X
	16.1 What is X?
	16.2 Configuration
	16.3 The mouse
	16.4 The keyboard
	16.5 The monitor
	16.6 The video card
	16.6.1 XFree 3.x
	16.6.2 XFree86 4.x

	16.7 Starting X
	16.8 Customizing X
	16.9 Other window managers
	16.10 Graphical login with xdm

	Chapter 17 
	Linux emulation
	17.1 Emulation setup
	17.1.1 Configuring the kernel
	17.1.2 Installing the Linux libraries
	17.1.3 Installing Acrobat Reader

	17.2 Directory structure

	Chapter 18 
	Audio
	18.1 Basic hardware elements
	18.2 BIOS settings
	18.3 Configuring the audio device
	18.4 Configuring the kernel audio devices
	18.5 Advanced commands
	18.5.1 audioctl(1)
	18.5.2 mixerctl(1)
	18.5.3 audioplay(1)
	18.5.4 audiorecord(1)


	Chapter 19 
	Obtaining sources by CVS
	19.1 Fetching system and userland source
	19.2 Fetching pkgsrc

	Chapter 20 
	CCD Configuration
	20.1 Install physical media
	20.2 Configure Kernel Support
	20.3 Disklabel each volume member of the CCD
	20.4 Configure the CCD
	20.5 Initialize the CCD device
	20.6 Create a 4.4BSD/UFS filesystem on the new CCD device
	20.7 Mount the filesystem

	Chapter 21 
	The cryptographic device driver
	21.1 Configuring kernel support
	21.2 Setting up a cgd device
	21.3 Swap encryption

	Chapter 22 
	rc.d System
	22.1 The rc.d Configuration
	22.2 The rc.d Scripts
	22.3 The Role of rcorder and rc Scripts
	22.4 Additional Reading

	Chapter 23 
	RAID1 with RAIDframe
	23.1 Introduction
	23.2 Initial install
	23.3 Setting up the second disk
	23.4 Configuring the RAID device
	23.5 Setting up filesystems
	23.6 Setting up kernel dumps
	23.7 Moving the existing files into the new filesystems
	23.8 The first boot with RAID1
	23.9 Adding the first disk

	Chapter 24 
	The Internet Super Server
	24.1 Overview
	24.2 What is Inetd
	24.3 Protocols
	24.4 Services
	24.5 RPC
	24.6 Inetd
	24.7 Adding a Service
	24.8 When to use or not to use inetd
	24.9 Other Resources
	24.9.1 NetBSD/i386 Man Pages
	24.9.2 Misc. Links


	Chapter 25 
	Miscellaneous operations
	25.1 Creating install boot floppies for i386
	25.2 Creating a CDROM
	25.2.1 Creating the ISO image
	25.2.2 Writing the image to the CD
	25.2.3 Copying a CD
	25.2.4 Creating a bootable CD

	25.3 Synchronizing the system clock
	25.4 Installing the boot manager
	25.5 Deleting the disklabel
	25.6 Speaker
	25.7 Forgot root password?
	25.8 Adding a new hard disk
	25.9 Password file is busy?
	25.10 How to rebuild the devices in /dev

	Appendix A. 
	Information
	A.1 Guide history

	Appendix B. 
	Contributing to the NetBSD guide
	B.1 Translating the guide
	B.1.1 What you need to start a translation
	B.1.2 Writing SGML/DocBook

	B.2 Sending contributions
	B.3 SGML/DocBook template

	Appendix C. 
	Getting started with XML/DocBook
	C.1 What is XML/DocBook
	C.2 Jade
	C.3 DocBook
	C.4 The DSSSL stylesheets
	C.5 Using the tools
	C.6 An alternative approach to catalog files
	C.7 Producing PostScript output
	C.7.1 Installing TeX
	C.7.2 Enabling hyphenation for the italian language
	C.7.3 Creating the hugelatex format
	C.7.4 Installing Jadetex

	C.8 Links

	Appendix D. 
	Acknowledgements
	D.1 Original acknowledgements
	D.2 Current acknowledgements


