
Real-Time GPU Rendering of Piecewise Algebraic Surfaces

Charles Loop∗
Microsoft Research

Jim Blinn†

Microsoft Research

Figure 1: Several states of an animated fourth order algebraic surface rendered in real-time using our technique.

Abstract

We consider the problem of real-time GPU rendering of algebraic
surfaces defined by Bézier tetrahedra. These surfaces are rendered
directly in terms of their polynomial representations, as opposed
to a collection of approximating triangles, thereby eliminating tes-
sellation artifacts and reducing memory usage. A key step in such
algorithms is the computation of univariate polynomial coefficients
at each pixel; real roots of this polynomial correspond to possibly
visible points on the surface. Our approach leverages the strengths
of GPU computation and is highly efficient. Furthermore, we com-
pute these coefficients in Bernstein form to maximize the stability
of root finding, and to provide shader instances with an early exit
test based on the sign of these coefficients. Solving for roots is done
using analytic techniques that map well to a SIMD architecture, but
limits us to fourth order algebraic surfaces. The general framework
could be extended to higher order with numerical root finding.

Keywords: algebraic surface rendering, implicit surface render-
ing, Bézier tetrahedra, GPU algorithms

1 Introduction

Graphics hardware has been optimized to rasterize triangles, storing
color and depth information in pixel memory. In recent years, the
computation of color and depth information per pixel has come un-
der programmer control [Gray 2003]. Such pixel processing maps
well to a SIMD architecture; allowing hardware vendors to exploit
parallelism and achieve high performance. These pixel programs,
or shaders, have evolved to support sophisticated appearance mod-
els to compute the color, or shade of a pixel. Ever larger and more

∗e-mail: cloop@microsoft.com
†e-mail: blinn@microsoft.com

complex shaders, combined with rapid gains in triangle through-
put, have lead to stunning realism in real-time synthetic imagery.
However, these advances have done little to aid in level-of-detail
(LOD) management. LOD management is needed to avoid under
sampling, or tessellation, artifacts when a curved surface is viewed
up close; and to avoid over sampling, wasting resources, both tem-
poral and spatial, when a densely triangulated surface is viewed
from afar.

In this paper, we leverage the processing power of a Graphics Pro-
cessing Unit (GPU) to directly render curved primitives. By render-
ing curved surfaces directly, as opposed to an approximating trian-
gle mesh, we avoid tessellation artifacts and the need for LOD man-
agement. Since we only need to store the (resolution-independent)
polynomial coefficients of a each surface element, this approach
requires less memory and bus bandwidth in general then a corre-
sponding (resolution-dependent) triangle mesh. Furthermore, true
surface normals can be used for lighting at each pixel, leading to
better surface renderings than one gets with interpolated Phong nor-
mals.

Our curved primitives are algebraic surfaces defined by trivariate
Bézier tetrahedra [de Boor 1987; Hoschek and Lasser 1989]. An
algebraic surface is an implicit surface defined as the solution of
a polynomial equation. We only render the portion of surface in-
side a bounding tetrahedron; this is analogous to curve segments
and surface patches that are the image of a bounded domain. The
restriction to a tetrahedron combined with simple continuity con-
ditions between adjacent tetrahedra enables the modeling of piece-
wise smooth surfaces.

In this paper, we consider analytic techniques for finding the zeros
of polynomials. This limits us to a maximum of degree 4 surfaces,
but this space is quite rich. Higher order surfaces could be rendered
using this framework if robust root finding with bounded iterations
were available on a GPU.

1.1 Previous Work

Piecewise smooth algebraic surfaces were introduced in [Sederberg
1985]. [Dahman 1989] proposed a scheme for interpolating po-
sition and normal data based on piecewise smooth second order
Bézier tetrahedra. Several similar schemes have appeared [Guo

1995; Bajaj 1997; Bangert and Prautzsch 1999]. These papers es-
tablish Bézier tetrahedra as a geometric modeling primitive, but not
as a rendering primitive.

There is extensive literature on rendering algebraic surfaces that
goes back several decades. An early scan-line system was devel-
oped at the University of Utah by Mahl [Mahl 1972]. A very good
overview of work in this area, with an extensive bibliography, can
be found in [Heckbert 1984]. Sederberg and Zundel [Sederberg
and Zundel 1989] have developed a scan-line algorithm for render-
ing algebraic surfaces. They find scan-line/silhouette intersections
to determine and fill visible intervals via interpolation. A GPU al-
gorithm for rendering implicit surface data has appeared [Hadwiger
et al. 2005], but this work is concerned with surfaces over a voxel
grid, not surfaces described by polynomials.

1.2 Algorithm Overview

We render an algebraic surface corresponding to a Bézier tetrahe-
dron by encoding coefficient data as vertex attributes and rasteriz-
ing the projected triangle faces. A pixel shader program is executed
that performs the following at each pixel

1. Compute coefficients of a univariate polynomial in z.

2. Find real roots to determine if the surface is visible.

3. Determine if the visible surface is inside tetrahedron.

4. Calculate the surface normal.

5. Compute shading.

Our contributions address steps 1 through 4, to take advantage of
the strengths of the GPU to efficiently and accurately perform these
calculations at high framerate, producing artifact-free images.

2 Mathematics of Algebraic Surfaces

An algebraic surface of degree d can be defined by a Bézier tetra-
hedron as follows

∑
i+ j+k+l=d

bi j k l

(
d

i j k l

)
ris jtkul = 0, (1)

where bi j k l are scalar valued weights that control the shape of the
surface, and r,s, t,and u are barycentric coordinates (r + s+ t +u =
1) of a point in space with respect to some world space domain
tetrahedron T = [v0 v1 v2 v3]

T (each row of T corresponds to a
vertex). When r,s, t, and u satisfy Equation (1) and are all pos-
itive, then the surface lies inside the tetrahedron. The weights
have a geometric interpretation reminiscent of parametric Bézier
curves and surfaces. Each weight bi j k l is associated with position
(iv0 + j v1 +kv2 + l v3)/d, forming a tetrahedral array as illustrated
in Figure 2. Positive and negative weights act as attractive or repel-
lent forces in the vicinity of the position of the weight.

As with parametric Bézier curves and surfaces, there are affine re-
lationships that must be satisfied between the weights of adjacent
tetrahedral elements for derivative continuity up to any order. This
makes it possible to build piecewise smooth collections of Bézier
tetrahedra to represent complex shapes.

For every Bézier tetrahedron there is a unique symmetric multi-
affine map known as its blossom or polar form [Ramshaw 1989]. It
is well known that the blossom of a polynomial in Bézier form can
be evaluated using deCastlejau’s algorithm. For Bézier tetrahedra

b2000 b0002
b1001

b1100 b0011

b0020
b0110

b0200

b1010

v0 v3

v1

v2

Figure 2: A Quadratic Bézier tetrahedron. On the left, the layout of
Bézier weights within a tetrahedron. On the right, vertex labeling
together with an algebraic surface restricted to the tetrahedron.

this requires the implementation of arrays with tetrahedral indexing.
As an alternative but equivalent approach, we evaluate a blossom
using a symmetric tensor. A tensor is a higher dimensional analog
of a matrix, where the number of indices is referred to as the rank of
the tensor. Using tensors allows us to express and evaluate blossoms
in terms of dot products that are native operations on a GPU.

Tensor algebra generalizes the notion of dot product and matrix
multiplication to tensor contraction. We represent this using Ein-
stein index notation. This notation places contravariant indices as
superscripts and covariant indices as subscripts. An expression that
has the same symbol, typically a Greek letter, in a superscript and a
subscript means that an implied summation is performed over that
index. (A detailed tutorial is given in Chapter 20 of [Blinn 2003])

In tensor notation, a degree d Bézier tetrahedron is defined as d
contractions

rα1 · · ·rαd Bα1···αd = 0, (2)

where B is a symmetric rank d tensor containing the Bézier weights,
and r = [r s t u]. The elements of tensor B are assigned Bézier
weights by

Bα1···αd = beα1 +···+eαd
,

where eα is 4-tuple with a 1 at position α , and zeros elsewhere.

We prefer tensor notation as it maps directly to a dot product imple-
mentation. For example in the case d = 2, B is a 4× 4 matrix and
we can write Equation (2) as r · (r ·B)T = 0. For arbitrary degree d
Einstein index notion avoids nested parenthesis. Using tensors has
greater computational complexity than tetrahedral arrays; evalua-
tion of (2) is O(4d) while evaluation of (1) is only O(d3). In prac-
tice however, the shader compiler (Microsoft’s High Level Shader
Language - HLSL) is able to take advantage of symmetries in B and
eliminate the redundant computations inherent in the evaluation of
(2).

3 Per Frame Processing

3.1 Transformation to Screen Space

We transform both the Bézier tetrahedron vertices T and weights
B to screen space for rendering. We use a standard 4× 4 matrix
M, formed as the product of world, view, and perspective matri-
ces, that takes world space points to screen space. For our pur-
poses, screen space is a 4D projective space where pixel coordi-
nates [x y] ∈ [−1,1]× [−1,1] and depth z correspond to w = 1. The

symmetric rank d tensor B is defined with respect to barycentric
coordinates r = [r s t u]. By definition of barycentric coordinates

x = r ·T,

where x is a point in world space. The composite transform from
barycentric coordinates to screen space, x̃, is written

x̃ = r · (T ·M) .

Therefore, the barycentric coordinates of a screen space point are

r = x̃ ·
(

M−1 ·T−1
)

= x̃ ·W.

Note that due to the projective nature of W, the components r may
not sum to 1; though they may be normalized to do so. From this,
we can transform tensor weights B to screen space by

B̃β1···βd
= Wα1

β1
· · ·Wαd

βd
Bα1···αd .

Note that only the unique elements of B̃ need be computed. In
screen space our original algebraic surface can be written

x̃β1 · · · x̃βd B̃β1···βd
= 0. (3)

Transforming the bounding tetrahedron T and weight tensor B to
screen space for rendering has the advantage that all viewing rays
become parallel to the z axis. This simplification leads to more com-
pact formulae for the coefficients of ray/surface intersection poly-
nomials. An alternative approach is to transform the viewing rays
into the barycentric coordinate system of each Bézier tetrahedron,
and solve a univariate equation in this space. This approach has
the advantage that the weight tensor B need not be transformed,
avoiding possible precision loss. We take the former approach as
the details are more straightforward and fewer interpolated vertex
attributes are needed.

3.2 Rendering Primitives

We have experimented with two different approaches to rendering
tetrahedra. The obvious solution is to render the front facing tri-
angular faces. Using this approach we can take advantage of GPU
vertex processing by creating a vertex shader program to transform
data, as outlined in the previous section. There are two disadvan-
tages of this however. First, much of the computation being done
per tetrahedron must be duplicated at each of the four tetrahedral
vertices. Second, an important aspect of our computation is deter-
mining visibility within a tetrahedron; having to consider all four
bounding planes (the faces) on input to a pixel shader creates a
complicated interval that z values must be tested against, resulting
in instruction sequences with many branches.

Instead, we perform vertex processing on the CPU and submit post
transformed triangles to the GPU. We have not done a rigorous
analysis of this design tradeoff on current (circa 2006) graphics
hardware. However, we anticipate this will be the better approach
on next generation GPUs that will support per triangle shader calls
[Blythe 2006], and these computations can migrate back to the
GPU.

Our approach to rendering a tetrahedron is to render the non over-
lapping triangles that cover the convex hull in screen space. This
is similar to the approach taken in [Shirley and Tuchman 1990].
There are two cases, illustrated in Figure 3. We can determine if
a projected tetrahedron T̃ is case a) or b) by examining the inverse
matrix T̃−1. The columns of this matrix represent the four planes

a) b)

Figure 3: Two case for the screen space projection of a tetrahedron.

containing the faces of T̃. We count the number of negative z values
(third component) among these planes; case a) occurs when there
are 1 or 3, case b) when there are 2. We don’t worry about degen-
erate faces as these are not drawn by the hardware.

In case a) we draw 3 triangles and in case b) we draw 4 triangles.
We store as vertex attributes zmin and zmax, representing the mini-
mum and maximum z values that occur along a z-axis ray through
each vertex. When interpolated, these attributes provide the z ex-
tent of the tetrahedron at each pixel. If a root does not occur in
this range, then the surface will not be visible at the corresponding
pixel.

4 Per Pixel Processing

For a given pixel [x y], we must determine if a real z exists so that
x̃ = [x y z 1] satisfies Equation (3). In other words, we must find the
roots of a degree d polynomial in z whose coefficients vary from
pixel to pixel. At each pixel, we would like to compute the Bézier
form of this univariate polynomial restricted to the interval

[
zp,zq

]
,

where zp and zq are the interpolated values of zmin and zmax (from
the previous section) representing the z extent of the interior of the
tetrahedron at the current pixel. We use Bézier form to get optimal
numerical conditioning[Farouki and Rajan 1987], and to allow a
pixel shader an early exist test if all coefficients have the same sign.

Our goal is to find a univariate polynomial in Bézier form

d

∑
i=0

(
d
i

)
(1− v)d−ivi ai = 0, (4)

that corresponds to (3) with x and y held constant and reparame-
terized so that v ∈ [0,1] corresponds to z ∈ [

zp,zq
]
. Note that each

Bézier coefficient ai will depend on pixel coordinates x and y. To
find the coefficients ai, we define

p =
[
x y zp 1

]
and q =

[
x y zq 1

]
. (5)

so that a point in screen space can be written

x̃ = (1− v) p + vq.

If we plug this into Equation (3) the coefficients ai can be written

a0 = pβ1 · · ·pβd B̃β1···βd
,

...

ai = qβ1 · · ·qβi pβi+1 · · ·pβd B̃β1···βd
, (6)

...

ad = qβ1 · · ·qβd B̃β1···βd
.

Next, we show how to compute these Bézier coefficients on the
GPU in an efficient way.

4.1 Interpolating Coefficients

At each pixel we must evaluate Equations (6) given p and q derived
from that pixel. The problem is how to pass the tensor B̃ to the pixel
shader. This data will be different for every tetrahedron rendered.
That is, it will change for every 3 or 4 triangles that are drawn. The
mechanism we use is to store a variant of the tensor B̃ as attributes
on the vertices of triangles.

The GPU will interpolate vertex attributes when rasterizing a trian-
gle. The interpolation is done in a perspectively correct way. That
is, vertex attributes are interpolated in non-linear fashion consistent
with any projective foreshortening induced by the viewing transfor-
mation. However, if w = 1 for each vertex, then the interpolation
will be linear. We take advantage of this linear interpolation to do
useful work and to reduce the amount of data stored in vertex at-
tribute memory.

This idea is based on the following observation. Each of the co-
efficients a0, . . . ,ad−1 (all but ad) in equations (6) have a common
factor of

pβd B̃β1···βd
≡ p · B̃. (7)

This is a symmetric tensor of rank (d −1) with
(d+2

d−1

)
unique el-

ements. Suppose that p = rw0 + sw1 + tw2, where each w j =[
x j y j zmin j 1

]
, are the vertices of a screen space triangle. It fol-

lows by linearity of dot products that

p · B̃ = r
(
w0 · B̃

)
+ s

(
w1 · B̃

)
+ t

(
w2 · B̃

)
.

Therefore, we can determine the partially collapsed rank (d −1)
tensor p · B̃ at each pixel by evaluating w j · B̃ at the vertices of a

triangle and assigning the
(d+2

d−1

)
unique elements as vertex attribute

data. The GPU will interpolate these values when rasterizing the
triangle, giving us the unique elements of p · B̃ at the current pixel.
The advantages of this scheme are 1) we save space by passing a
tensor of one less rank to the shader, and 2) we utilize the GPU in-
terpolator do the initial tensor collapse computation in the process.

The pixel shader program uses the interpolated data to reconstruct
the symmetric rank (d −1) tensor p · B̃ from its unique elements, as
well as the points p and q, see equation (5). Pixel coordinates x and
y are determined by reverse mapping the contents of a hardware reg-
ister (Shader Model 3.0 [Microsoft Corp 2006]) through the view-
port transform, and the values zp and zq have been interpolated as
vertex attribute data (Section 3). The coefficients a0, . . .ad−1 are
computed using Equations (6). These are implemented as a se-
quence of GPU native 4 element dot products.

It remains to compute the final coefficient ad . To do this, we write
point q as

q = p + δ z,

where δ =
(
zq − zp

)
, and z = [0 0 1 0]. The coefficient ad be-

comes

ad = (p + δ z)β1 · · ·(p + δ z)βd B̃β1···βd
,

=
d

∑
i=0

(
d
i

)
δ i zβ1 · · ·zβi pβi+1 · · ·pβd B̃β1···βd

, (8)

a polynomial in δ (The first and last terms of this summation are
well-formed if we adopt the notational convention that, for a se-
quence of identical tensors, when the first summation subindex is
greater than the second, those tensors are eliminated from the ex-
pression). Note that the dot product of z with a tensor simply se-
lects the third element. So the expression for ad is a weighted sum

of elements of tensors that we have already evaluated to compute
a0 . . .ad−1; with the exception of

zβ1 · · ·zβd B̃β1···βd
= B̃3, . . . ,3︸ ︷︷ ︸

d

.

This constant value must be included in the set of interpolated ver-
tex attribute data. But it turns out that this value, along with three
others are also needed to calculate the tangent plane to a point on
the surface, described in Section 4.3.

Once we have determined the Bézier coefficients of Equation (4),
we see if any zeroes that lie in the range [0,1]. The first thing we can
do is an early-out test. If all of the ai have the same sign then, by the
convex hull property, there can be no roots in [0,1], and the pixel
shader can exit early. Terminating the pixel shader in this way can
boost performance since the expense of unnecessary root finding
can be avoided, see Figure 4. If we cannot exit the pixel shader,
we must look for real roots. Our analytic root finding scheme is
outlined in the next section.

Figure 4: Torus model shaded by: blue) pixel culled by Bézier coef-
ficient sign test, red) positive quartic discriminant, green) negative
quartic discriminant.

4.2 Root Finding

There are basically two approaches to any root finding problem:
iterative and analytic. Most of the literature on Bernstein-based
root finding discusses the iterative technique [Farouki and Rajan
1988]. Analytic techniques, however, are better for pixel shader
code as they have bounded computation. For polynomials of degree
2, 3 and 4 expressed in the power basis there are relatively simple
closed form solutions. We will now see how to adapt these to the
Bernstein basis.

To see this most clearly let us consider a degree 3 polynomial and
compare it with a general homogeneous cubic polynomial in (x,w)
(This use of the variables x and w is local to this section, and are
not related to earlier uses.)

f (v) = a0 (1− v)3 +3a1 (1− v)2 v+3a2 (1− v)v2 +a3v3,

f (x,w) = a0 w3 +3a1 w2 x+3a2 wx2 +a3x3.

So any roots (x,w) to the homogeneous polynomial (using the
Bernstein basis coefficient values) will give roots of the original
polynomial according to the formula v = x/(x+w). Another way
to look at this is to realize that the conversion between the power
and Bernstein bases is simply the result of a homogeneous projec-
tive transformation in parameter space.

[
x w

]
=

[
v 1

][
1 −1
0 1

]

This explains the initially surprising fact that the formulas for dis-
criminants of polynomials are the same in terms of either Bernstein
and power coefficients: the discriminant is simply an invariant un-
der parameter space transformation.

We now turn our attention to finding stable solutions to homoge-
neous polynomials. The first step in conventional polynomial root
finding is to “depress” the polynomial by translating it in parameter
space to make a new polynomial in [x̃ w̃] with coefficients ãi but
where ãd−1 is zero. In our notation the translation amount for each
degree d is the same: ad−1/ad . We can express the translation be-
tween the original [x w] space and the depressed [x̃ w̃] space as a
matrix product

[
x w

]
=

[
x̃ w̃

][
1 0

−ad−1 ad

]

This works most of the time, but we can see that the matrix is very
ill conditioned when ad is small compared with ad−1. There are,
however, many other 2×2 matrices that we can use that will make
the new coefficient ãd−1 = 0. These may be projective transforma-
tions of parameter space rather than simple translations, but as long
as their matrix is nonsingular (and hopefully very nonsingular) the
process works. A little algebra will show that, given an arbitrary
first row [p q], a matrix that will depress the polynomial will be:

[
x w

]
=

[
x̃ w̃

][
p q

− fw (p,q) fx (p,q)

]

Where the subscripts on the f denote partial derivatives. The deter-
minant of this transformation is simply d times f (p,q). So to find
a transformation that is not singular we need to find a [p q] that is
not a root of the polynomial f . While finding a completely optimal
[p q] may be possible, we have had good results by the following
simple choices: [p q] = [1 0] (this generates the original transla-
tion), [0 1] (this effectively reverses the order of the coefficients,
solving for w/x instead of x/w, and then inverts the results), [1 1]
and [1 −1] (these do a 45 degree rotation in parameter space and
rescue us when both ad and a0 are extremely small). The choice
of which of these to use is based on which will give the largest
value of | f (p,q)|. For the simple [p q] values used here this leads
to fairly simple decision code. (Of course a large determinant does
not guarantee that the transformation is nicely conditioned, but our
experience has shown that it is adequate.) To avoid possible singu-
larities we must use at least one more [p q] choice than the number
of roots of the polynomial. For example, a cubic polynomial that
has its three roots near [1 0] , [0 1] and [1 1] could still be nicely
depressed by the choice [p q] = [1 −1]. (In fact, for quartics we
really need five choices, although we haven’t needed to implement
that as yet.) Once the polynomial has been pre-conditioned by
application of one of these transforms we then solve it by tech-
niques based on [Blinn 2005] and the Ferrari technique described
in [Herbison-Evans 1995]. The results are post transformed back
to the original [x w] space by the 2× 2 transform. The conversion
back to [v 1] space (another 2× 2 transform) can be merged with
this.

4.3 Computing Surface Normals

If no real root v ∈ [0, 1] is found then the current pixel shader in-
stance is terminated. Otherwise we take the smallest root v and
shade the pixel by first computing the normal to a point on the sur-
face x̃ = (1− v) p + vq by collapsing the tensor B̃ down to the
tangent plane using

lβ1
= x̃β2 · · · x̃βd B̃β1···βd

.

Note that this expression is identical to Equation (3), with one less
factor of x̃, resulting in a covariant vector (a plane). By making the
substitution x̃ = p+(vδ) z, we can write the tangent plane as

lβ1
= (p + (vδ) z)β2 · · ·(p + (vδ) z)βd B̃β1···βd

,

=
d−1

∑
i=0

(
d −1

i

)
(vδ)i zβ2 · · ·zβi+1 pβi+2 · · ·pβd B̃β1···βd

, (9)

a polynomial in (vδ). Just as in (8), this is a weighted sum of
previously computed tensors; with the exception of

zβ2 · · ·zβd B̃β1···βd
= B̃β1,3, . . . ,3︸ ︷︷ ︸

d−1

. (10)

This constant 4-tuple is added to the set of interpolated vertex at-
tributes; note that the third element is the lone value needed to com-
pute ad from equation (8). Equations (8) and (9) are closely related
and share many common factors that an implementation should take
advantage of.

Example We illustrate the procedure for the cubic surface case
d = 3. We can think of the symmetric rank 3 tensor B̃ as a 4-tuple
of 4×4 matrices

B̃ =
[

B̃1 B̃2 B̃3 B̃4
]
.

For each of the three vertices w j, j = 0,1,2, of a screen space tri-
angle we form a symmetric 4×4 matrix

G j =
[

w j · B̃1 w j · B̃2 w j · B̃3 w j · B̃4
]
.

The following values are assigned as attributes of each vertex w j ;
the 10 scalar values on and above the diagonal of G j that we label
t0, . . . , t9; the vector [t10 t11 t12 t13] = B̃3,3 (the third row of B̃3,
see Equation (10)); and the bounds (t14, t15) = (zmin j,zmax j). The
GPU will interpolate t0 . . .t15 over the triangle, calling our pixel
shader program with this input data.

The pixel shader then reconstructs, from the input data, the sym-
metric 4×4 matrix

H =

⎡
⎢⎣

t0 t1 t2 t3
t1 t4 t5 t6
t2 t5 t7 t8
t3 t6 t8 t9

⎤
⎥⎦

that represents the product p · B̃ for the current pixel [x y]. We set
p = [x y t14 1], q = [x y t15 1], h = [t10 t11 t12 t13] and δ = (t15 − t14).
The univariate cubic coefficients are computed

a0 = p · (p ·H) , a1 = q · (p ·H) , a2 = q · (q ·H) ,

and

a3 = p · (p ·H) + 3δ (p ·H)3 + 3δ 2 H3,3 + δ 3 h3.

If a0, . . . ,a3 have the same sign, we terminate processing. Other-
wise, we find the roots of the polynomial

a0 (1− v)3 + 3a1 (1− v)2 v + 3a2 (1− v) v2 + a3 v3,

in closed form. If no real root v is found in [0,1], we terminate
processing. Otherwise, taking the smallest root v, we compute the
tangent plane as follows.

l = p ·H + 2 (vδ) H3 + (vδ)2 h.

Note that H3 in the above expression refers to the 3rd row (or col-
umn) of H. We map v from the local pixel interval [0,1] the global
interval[t14, t15] (≡ [

zp,zq
]
) to get the output depth

z = vδ + t14.

The tangent plane l is transformed to world space (by M · l), where
the leading 3-tuple is normalized and the resulting surface normal
is used for lighting calculations to determine the output color.

In order to make the preceding example more clear, we have shown
several redundant calculations. A good implementation would op-
timize these away. The actual encoding of the preceding example
into shader code is straightforward due to the expressive power of
HLSL.

5 Results

Figure 5 shows a collection of curved surfaces rendered in real time
using our algorithm. The top row shows a collection of piecewise
quadratic shapes; the cone, cylinder and sphere examples are de-
fined by a single equation, but modeled here in a piecewise fashion.
The extruded @ symbol was constructed using a technique similar
to that of [Loop and Blinn 2005]. The bottom row shows a single
cubic and two quartic shapes defined by Bézier tetrahedra.

The HLSL compiler aggressively eliminates common subexpres-
sions and emits GPU assembler instructions (a device indepen-
dent intermediate form that the GPU driver translates into machine
code). The following table gives assembler instruction counts for
various shader tasks.

Degree Coefficients Roots Shading Total
2 15 65 37 117
3 37 168 37 242
4 66 193 37 296

The meaning of the column headings are as follows: Degree is the
polynomial degree of the Bézier tetrahedra being rendered; Coeffi-
cients refers to the calculation of the univariate Bézier coefficients
at each pixel (step 1 of Section 1.2); Roots refers to finding the roots
of the univariate polynomial (steps 2, 3, and 4); Shading refers to
lighting calculations (step 5); and Total is the total number of as-
sembler instructions in the shader.

Performance on a particular GPU is related to the number of pixel
shader instances executed per frame. This will depend on screen
resolution, and the number, size, and degree of the projected tetra-
hedra. Our tests were run on an nVidia GeForce 7800 GTX at a res-
olution of 640×480 where the objects depicted in Figure 5 roughly
fill the screen, we see frames rates in excess of 1200 fps for a sin-
gle quadratic tetrahedron, and approximately 500 fps for a quartic
tetrahedron. As depth complexity increases, frame rate decreases.
The quadratic bowling pins model in Figure 5 was designed to test
moderate depth complexity, and we see roughly 75 fps for screen
filling views. The animated blobs shown in Figure 1 runs at close
to 300 fps.

6 Limitations and Future Work

The images shown here illustrate the utility of this algorithm. There
are some concerns that we now discuss.

6.1 Numerical Precision

A significant portion of our computations are performed during ver-
tex attribute interpolation. In Shader Model 3.0, vertex attributes
used as texture coordinates are represented and operated upon as
32 bit floating point numbers. As a result, we have not experienced
major problems with numerical precision induced by the hardware.

Significant precision loss in the determination of the univariate
polynomial coefficients at each pixel can occur when the distribu-
tion of z values is skewed by the choice of near and far clipping
planes used in the projection matrix. This problem can be avoided
by using a unique projection matrix for each tetrahedron whose near
and far planes match the z extent of the tetrahedron.

6.2 Self Intersections

The described technique works well for the surfaces illustrated here.
The root finding is stable for all pixels where a single root repre-
sents the visible portion of the surface. It does experience some
minor problems where there are double (or more) roots in the v
polynomial. Sometimes numerical noise will cause this to be re-
ported as a complex conjugate pair and be rejected in the real-root-
finding process. This can occur in two situations: near silhouette
edges (where a missed pixel exactly on the edge will not make an
obvious artifact) and near self intersections (where a missed pixel
will leave a visible hole in the object). The bottom right of Fig-
ure 5 shows a particularly difficult case. While it does have some
artifacts, they are noticeable only in a small region. We regard the
problem with self intersecting surfaces as a nuisance but not as a
fatal flaw. We envision the typical use of this algorithm would be
to render piecewise smooth surfaces that model some real-world
smooth object. A designer is unlikely to make such a surface out of
self-intersecting pathological pieces. Never the less, we are investi-
gating better root finding algorithms and more precise interpolation
techniques. These will be reported in [Blinn 2006]

6.3 Anti Aliasing

While we have not addressed anti-aliasing in this paper there are
several techniques that we are experimenting with. Aliased edges
can be of two types. First, the boundary intersection curve of the
surface with a tetrahedral face could be left open. This can be han-
dled by the anti-aliasing technique described for 2D curves in space
described in [Loop and Blinn 2005]. Second, the silhouette curve of
the surface must be anti-aliased. This curve is defined as the locus
where the discriminant of the v polynomial is zero. Simple formu-
las for this discriminant for orders 2, 3, and 4 are given in [Blinn
2003], see pages 259, 262, and 267. Given that we can evaluate this
discriminant and use the graphics hardware to find its gradient over
pixel coordinates, a pixel unit distance function for the silhouette
can be easily computed.

The real challenge of anti-aliasing is z ordering for α-blending. We
could sort the tetrahedra by smallest z value, and present them to
the GPU in back to front order. But this simple sorting approach
does not guarantee correct results for overlapping tetrahedra.

Figure 5: Some sample piecewise algebraic surfaces composed of Bézier tetrahedra and rendered using our technique.

References

BAJAJ, C. 1997. Implicit surface patches. In Introduction to Im-
plicit Surfaces, Morgan Kaufman, J. Bloomenthal, Ed., 98–125.

BANGERT, C., AND PRAUTZSCH, H. 1999. Quadric splines. Com-
puter Aided Geometric Design 16, 6, 497–525.

BLINN, J. 2003. Jim Blinn’s Corner Notation, notation, notation.
Morgan Kaufmann.

BLINN, J. 2005. How to solve a quadratic equation. IEEE CG &
A 25, 6 (November/December), 76.

BLINN, J. 2006. Jim Blinn’s Corner. IEEE CG & A.

BLYTHE, D. 2006. The Direct3D 10 System. ACM Transactions
on Graphics. Siggraph Conference Proceedings.

DAHMAN, W. 1989. Smooth peicewise quadric surfaces. In Math-
matical Methods in Computer Aided Geometric Design, Acad-
memic Press, T. Lyche and L. Schumaker, Eds., 181–194.

DE BOOR, C. 1987. B-form basics. In Geometric Modeling: Al-
gorithms and New Trends, G. Farin, Ed. SIAM, 131–148.

FAROUKI, R. T., AND RAJAN, V. T. 1987. On the numerical
condition of polynomials in bernstein form. Computer Aided
Geometric Design 4, 191–216.

FAROUKI, R. T., AND RAJAN, V. T. 1988. Algorithms for poly-
nomials in bernstein form. Computer Aided Geometric Design
5, 1–26.

GRAY, K. 2003. The Microsoft DirectX 9 Programmable Graphics
Pipeline. Microsoft Press.

GUO, B. 1995. Quadric and cubic bitetrahedral patches. The Visual
Computer 11, 5, 253–262.

HADWIGER, M., SIGG, C., SCHARSACH, H., BÜHLER, K., AND
GROSS, M. 2005. Real-time ray-casting and advanced shading
of discrete isosurfaces. In Eurographics, Blackwell Publishing,
M. Alexa and J. Marks, Eds., vol. 24.

HECKBERT, P. 1984. The mathematics of quadric surface rendering
and soid. Tech. Rep. 3-D Technical Memo 4, New York Institute
of Technology. available from: www-2.cs.cmu.edu/∼ph.

HERBISON-EVANS, D. 1995. Solving quartics and cubics for
graphics. In Graphics Gems V. , AP Professional, Chestnut Hill
MA.

HOSCHEK, J., AND LASSER, D. 1989. Fundamentals of Computer
Aided Geometric Design. A K Peters. English translation by L
Schumaker, 1993.

LOOP, C., AND BLINN, J. 2005. Resolution independent curve
rendering using programmable graphics hardware. ACM Trans-
actions on Graphics 24, 3, 1000–1009. Siggraph Conference
Proceedings.

MAHL, R. 1972. Visible surface algorithms for quadric patches.
IEEE Trans. Computers (Jan.), 1–4.

MICROSOFT CORP. 2006. Direct3d 9 reference. In In Direct3D 9
graphics. http://msdn.microsoft.com/directx.

RAMSHAW, L. 1989. Blossoms are polar forms. Computer Aided
Geometric Design 6, 4 (November), 323–358.

SEDERBERG, T. W., AND ZUNDEL, A. K. 1989. Scan line display
of algebraic surfaces. Siggraph 1998 Conference Proceeding 23,
3.

SEDERBERG, T. 1985. Piecewise algebraic surface patches. Com-
puter Aided Geometric Design 2, 1-3, 53–60.

SHIRLEY, P., AND TUCHMAN, A. A. 1990. Polygonal approx-
imation to direct scalar volume rendering. In Proceedings San
Diego Workshop on Volume Visualization, Computer Graphics,
vol. 24, 63–70.

