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Abstract

This advanced course demonstrates sophisticated and novel computer graphics programming
techniques, implemented in C using the widely available OpenGL library.

By explaining the concepts and demonstrating the techniques required to generate images of
greater realism and utility, the course helps students achieve two goals: they gain a deeper in-
sight into OpenGL functionality and computer graphics concepts, while expanding their “tool-
box” of useful OpenGL techniques.
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1 Introduction

Since its first release in 1992, OpenGL has been rapidly adopted as the graphics API of choice for
real-time interactive 3D graphics applications. The OpenGL state machine is easy to understand,
but its simplicity and orthogonality enable a multitude of interesting effects. The goal of this course
is to demonstrate how to generate more satisfying images using OpenGL. There are three general
areas of discussion: generating aesthetically pleasing or realistic looking basic images, computing
interesting effects, and generating more sophisticated images.

1.1 OpenGL Version

We have assumed that the attendees have a strong working knowledge of OpenGL. As much as possi-
ble we have tried to include interesting examples involving only those commands in the most recent
version of OpenGL, version 1.1, but we have not restricted ourselves to this version. At the time
of this writing, OpenGL 1.2 is imminent, but not yet available, so we’ve used its features when it
seemed sensible, but mention that we’re doing so.

OpenGL is an evolving standard and we have taken the liberty of incorporating material that uses
some multi-vendor extensions and, in some cases, vendor specific extensions. We do this to help
make you aware of extensions that we think have general usefulness and should be more widely
available.

The course notes include reprints of selected papers describing rendering techniques relevant to
OpenGL, but may refer to other APIs such as OpenGL’s predecessor, Silicon Graphics’ IRIS GL.
For new material developed for the course notes, we use terminology and notation consistent with
other OpenGL documentation.

1.2 Course Notes and Slide Set Organization

For a number of reasons, these course notes do not have a one-to-one correspondence with what we
present at the SIGGRAPH course. There is just too much material to present in a one-day course,
but we want to provide you with as much material as possible. The organization of the course pre-
sentation is constrained by presentation and time restrictions, and isn’t necessarily the optimal way
to organize the material. As a result, the slides and the course notes go their separate ways, and
unfortunately, it is impossible to track the presenter’s lectures using these notes.

We’ve tried to make up for this by making the slide set available on our web site, described in Sec-
tion 1.5. We intend to get an accurate copy of the course materials on the web site as early as possible
prior to the presentation.
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1.3 Acknowledgments

Once again this year, we tried to improve the quality of our existing course notes, add a significant
amount of new material, and still do our real jobs in a short amount of time. As before, we’ve had
a lot of great help:

For still more cool ideas and demos, we’d like to thank Kurt Akeley, Luis Barcena, Brian Cabral,
Angus Dorbie, Bob Drebin, Mark Peercy, Nacho Sanz-Pastor Revorio, Chris Tanner, and David Yu.

Our reviewers should also get credit for helping us fix up our mistakes: Sharon Clay, Robert
Grzeszczuk, Phil Lacroute, Mark Peercy, Lena Petrovic, Allan Schaffer, and Mark Stadler.

We have a production team! Linda Rae Sande performed invaluable production editing on the entire
set of course notes, improving them immensely. Dany Galgani managed to plow through nearly all
of our illustrations, bringing them up to an entirely new level of quality. Chris Everett has once again
helped us with the mysteries of PDF documents.
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reprints section.

Permission to reproduce [63] has been granted by Computer Graphics Forum.
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naud, Brian Cabral, Bob Drebin, Phil Lacroute, Mark Peercy, and David Yu.
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Mark Segal for having the endurance to review for us two years in a row.

We would like to acknowledge Atul Narkhede and Rob Wheeler for coding prototype algorithms,
and Chris Everett for once again providing his invaluable production expertise and assistance this
year, and Dany Galgani for some really nice illustrations.

We would also like to thank John Airey, Paul Heckbert, Phil Lacroute, Mark Segal, Michael
Teschner, and Tim Wiegand for providing material for inclusion in the reprints section.

Permission to reproduce [63] has been granted by Computer Graphics Forum.

2



Programming with OpenGL: Advanced Rendering

1.5 Course Notes Web Site

We’ve created a webpage for this course in SGI’s OpenGL web site. It contains an HTML version
of the course notes and downloadable source code for the demo programs mentioned in the text. The
web address is:

http://www.sgi.com/Technology/OpenGL/advanced sig98.html
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2 About OpenGL

Before getting into the intricacies of using OpenGL, we begin with a few comments about the phi-
losophy behind the OpenGL API and some of the caveats that come with it.

OpenGL is a procedural rather than descriptive interface. In order to generate a rendering of a red
sphere the programmer must specify the appropriate sequence of commands to set up the camera
view and modeling transformations, draw the geometry for a sphere with a red color. etc. Other
systems such as VRML [10] are descriptive; one simply specifies that a red sphere should be drawn
at certain coordinates. The disadvantage of using a procedural interface is that the application must
specify all of the operations in exacting detail and in the correct sequence to get the desired result.
The advantage of this approach is that it allows great flexibility in the process of generating the im-
age. The application is free to trade-off rendering speed and image quality by changing the steps
through which the image is drawn. The easiest way to demonstrate the power of the procedural in-
terface is to note that a descriptive interface can be built on top of a procedural interface, but not
vice-versa. Think of OpenGL as a “graphics assembly language”: the pieces of OpenGL function-
ality can be combined as building blocks to create innovative techniques and produce new graphics
capabilities.

A second aspect of OpenGL is that the specification is not pixel exact. This means that two different
OpenGL implementations are very unlikely to render exactly the same image. This allows OpenGL
to be implemented across a range of hardware platforms. If the specification were too exact, it would
limit the kinds of hardware acceleration that could be used; limiting its usefulness as a standard. In
practice, the lack of exactness need not be a burden — unless you plan to build a rendering farm
from a diverse set of machines.

The lack of pixel exactness shows up even within a single implementation, in that different paths
through the implementation may not generate the same set of fragments, although the specification
does mandate a set of invariance rules to guarantee repeatable behavior across a variety of circum-
stances. A concrete example that one might encounter is an implementation that does not accelerate
texture mapping operations, but accelerates all other operations. When texture mapping is enabled
the fragment generation is performed on the host and as a consequence all other steps that precede
texturing likely also occur on the host. This may result in either the use of different algorithms or
arithmetic with different precision than that used in the hardware accelerator. In such a case, when
texturing is enabled, a slightly different set of pixels in the window may be written compared to
when texturing is disabled. For some of the algorithms presented in this course such variability can
cause problems, so it is important to understand a little about the underlying details of the OpenGL
implementation you are using.
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Figure 1. T-intersection

3 Modeling

Rendering is only half the story. Great computer graphics starts with great images and geometric
models. This section describes some modeling rules and describes a high-performance method of
performing CSG operations.

3.1 Modeling Considerations

OpenGL is a renderer not a modeler. There are utility libraries such as the OpenGL Utility Library
(GLU) which can assist with modeling tasks, but for all practical purposes modeling is the applica-
tion’s responsibility. Attention to modeling considerations is important; the image quality is directly
related to the quality of the modeling. For example, undertessellated geometry produces poor silhou-
ette edges. Other artifacts result from a combination of the model and OpenGL’s ordering scheme.
For example, interpolation of colors determined as a result of evaluation of a lighting equation at the
vertices can result in a less than pleasing specular highlight if the geometry is not sufficiently sam-
pled. We include a short list of modeling considerations with which OpenGL programmers should
be familiar:

1. Consider using triangles, triangle strips and triangle fans. Primitives such as polygons and
quads are usually decomposed by OpenGL into triangles before rasterization. OpenGL does
not provide controls over how this decomposition is done, so for more predictable results, the
application should do the tessellation directly. Application tessellation is also more efficient
if the same model is to be drawn multiple times (e.g., multiple instances per frame, as part of a
multipass algorithm, or for multiple frames). The second release of the GLU library (version
1.1) includes a very good general polygon tessellator; it is highly recommended.

2. Avoid T-intersections (also called T-vertices). T-intersections occur when one or more trian-
gles share (or attempt to share) a partial edge with another triangle (Figure 1).
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Even though the geometry may be perfectly aligned when defined, after transformation it is no
longer guaranteed to be an exact match. Since finite-precision algorithms are used to rasterize
triangles, the edges will not always be perfectly aligned when they are drawn unless both edges
share common vertices. This problem typically manifests itself during animations when the
model is moved and cracks along the polygon edges appear and disappear. In order to avoid
the problem, shared edges should share the same vertex positions so that the edge equations
are the same.

Note that this requirement must be satisfied when seemingly separate models are sharing an
edge. For example, an application may have modeled the walls and ceiling of the interior of
a room independently, but they do share common edges where they meet. In order to avoid
cracking when the room is rendered from different viewpoints, the walls and ceilings should
use the same vertex coordinates for any triangles along the shared edges. This often requires
adding edges and creating new triangles to “stitch” the edges of abutting objects together
seamlessly.

3. The T-intersection problem has consequences for view-dependent tessellation. Imagine draw-
ing an object in extreme perspective so that some part of the object maps to a large part of the
screen and an equally large part of the object (in object coordinates) maps to a small portion of
the screen. To minimize the rendering time for this object, applications tessellate the object to
varying degrees depending on the area of the screen that it covers. This ensures that time is not
wasted drawing many triangles that cover only a few pixels on the screen. This is a difficult
mechanism to implement correctly; if the view of the object is changing, the changes in tessel-
lation from frame to frame may result in noticeable motion artifacts. Often it is best to either
undertessellate and live with those artifacts or overtessellate and accept reduced performance.
The GLU NURBS library is an example of a package which implements view-dependent tes-
sellation and provides substantial control over the sampling method and tolerances for the tes-
sellation.

4. Another problem related to the T-intersection problem occurs with careless specification of
surface boundaries. If a surface is intended to be closed, it should share the same vertex co-
ordinates where the surface specification starts and ends. A simple example of this would be
drawing a sphere by subdividing the interval [0; 2�] to generate the vertex coordinates. The
vertex at 0 must be the same as the one at 2�. Note that the OpenGL specification is very
strict in this regard as even the glMapGrid routine must evaluate exactly at the boundaries to
ensure that evaluated surfaces can be properly stitched together.

5. Another consideration is the quality of the attributes that are specified with the vertex coor-
dinates, in particular, the vertex (or face) normals and texture coordinates. When computing
normals for an object, sharp edges should have separate normals at common vertices, while
smooth edges should have common normals. For example, a cube is made up of six quadrilat-
erals where each vertex is shared by three polygons, but a different normal should be used for
each of the three instances of each vertex, but a sphere is made up of many polygons where all
vertices have common normals. Failure to properly set these attributes can result in unnatural
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lighting effects or shading techniques such as environment mapping will exaggerate the errors
resulting in unacceptable artifacts.

6. The final suggestion is to be consistent about the orientation of polygons. That is, ensure that
all polygons on a surface are oriented in the same direction (clockwise or counterclockwise)
when viewed from the outside. There are at least two reasons for maintaining this consistency.
First the OpenGL face culling method can be used as an efficient form of hidden surface elimi-
nation for convex surfaces and, second, several algorithms can exploit the ability to selectively
draw only the frontfacing or backfacing polygons of a surface.

3.2 Decomposition and Tessellation

Tessellation refers to the process of decomposing a complex surface such as a sphere into simpler
primitives such as triangles or quadrilaterals. Most OpenGL implementations are tuned to process
triangle strips and triangle fans efficiently. Triangles are desirable because they are planar, easy to
rasterize, and can always be interpolated unambiguously. When an implementation is optimized for
processing triangles, more complex primitives such as quad strips, quads, and polygons are decom-
posed into triangles early in the pipeline.

If the underlying implementation is performing this decomposition, there is a performance bene-
fit in performing this decomposition a priori, either when the database is created or at application
initialization time, rather than each time the primitive is issued. A second advantage of perform-
ing this decomposition under the control of the application is that the decomposition can be done
consistently and independently of the OpenGL implementation. Since OpenGL doesn’t specify its
decomposition algorithm, different implementations may decompose a given quadrilateral along dif-
ferent diagonals. This can result in an image that is shaded differently and has different silhouette
edges when drawn on two different OpenGL implementations.

Quadrilaterals may be decomposed by finding the diagonal that creates two triangles with the great-
est difference in orientation. A good way to find this diagonal is to compute the angles between the
normals at opposing vertices, compute the dot product, then choose the pair with the largest angle
(smallest dot product) as shown in Figure 2. The normals for a vertex can be computed by taking
the cross products of the the two vectors with origins at that vertex. An alternative decomposition
method is to split the quadrilateral into triangles that are closest to equal in size.

Tessellation of simple surfaces such as spheres and cylinders is not difficult. Most implementations
of the GLU library use a simple latitude-longitude tessellation for a sphere. While the algorithm is
simple to implement, it has the disadvantage that the triangles produced from the tessellation have
widely varying sizes. These widely varying sizes can cause noticeable artifacts, particularly if the
object is lit and rotating.

A better algorithm generates triangles with sizes that are more consistent. Octahedral and icosa-
hedral tessellations work well and are not very difficult to implement. An octahedral tessellation
approximates a sphere with an octahedron whose vertices are all on the unit sphere. Since the faces
of the octahedron are triangles they can easily be split into four triangles, as shown in Figure 3.
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Figure 2. Quadrilateral Decomposition

Each triangle is split by creating a new vertex in the middle of each edge and adding three new edges.
These vertices are scaled onto the unit sphere by dividing them by their distance from the origin
(normalizing them). This process can be repeated as desired, recursively dividing all of the triangles
generated in each iteration.

The same algorithm can be applied using an icosahedron as the base object, recursively dividing
all 20 sides. In both cases the algorithms can be coded so that triangle strips are generated instead
of independent triangles, maximizing rendering performance. It is not necessary to split the triangle
edges in half, since tessellating the triangle by other amounts, such as by thirds, or even any arbitrary
number, may produce a more desirable final uniform triangle size.

3.3 Generating Model Normals

Given an arbitrary polygonal model without precomputed normals, it is fairly easy to generate poly-
gon normals for faceted shading, but quite a bit more difficult to create correct vertex normals for
smooth shading. A simple cross product of two edges followed by a normalization of the result to
obtain a unit-length vector generates a facet normal. Computing a correct vertex normal must take
into account all facets that share that normal and whether or not all facets should contribute to the
normal. For best results, compute all normals before converting to triangle strips.

To compute the facet normal of a triangle, select one vertex, compute the vectors from that vertex to
the other two vertices, then compute the cross product of those two vectors. Figure 4 shows which
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Figure 3. Octahedron with Triangle Subdivision

vectors to use to compute a cross product for a triangle. The following code fragment generates a
facet normal for a triangle, assuming a clockwise polygon winding when viewed from the front:

/* Compute edge vectors */
x10 = x1 - x0;
y10 = y1 - y0;
z10 = z1 - z0;
x12 = x1 - x2;
y12 = y1 - y2;
z12 = z1 - z2;

/* Compute the cross product */

Vector V12

Vector V10

V1

V2

V0

Figure 4. Computing a Surface Normal from Edges’ Cross Product
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Figure 5. Computing Quadrilateral Surface Normal from Vertex Cross Product

cpx = (z10 * y12) - (y10 * z12);
cpy = (x10 * z12) - (z10 * x12);
cpz = (y10 * x12) - (x10 * y12);

/* Normalize the result to get the unit-length facet
normal */
r = sqrt(cpx * cpx + cpy * cpy + cpz * cpz);
nx = cpx / r;
ny = cpy / r;
nz = cpz / r;

Computing the facet normal of a polygon with more than three vertices can be a bit more tricky. Of-
ten such polygonsare not perfectly planar, so you may get a different result depending on which three
vertices are chosen. If the polygon is a quadrilateral one good method is to take the cross product of
the vectors between opposing vertices as shown in Figure 5. The following code fragment computes
the cross product for a quadrilateral:

/* Compute vectors */
x20 = x2 - x0;
y20 = y2 - y0;
z20 = z2 - z0;
x13 = x1 - x3;
y13 = y1 - y3;
z13 = z1 - z3;

/* Compute the cross product */
cpx = (z20 * y13) - (y20 * z13);
cpy = (x20 * z13) - (z20 * x13);
cpz = (y20 * x13) - (x20 * y13);

10



Programming with OpenGL: Advanced Rendering

0

1

2 2

3
0

1

Figure 6. Proper Winding for Shared Edge of Adjoining Facets

For polygons with more than four vertices it can be difficult to choose the best vertices to use for
computing the cross product. It is best to attempt to choose vertices that are the furthest apart from
each other, if possible, or average the result.

3.3.1 Consistent Vertex Winding

Some models come with polygons that are not all wound in a clockwise or counterclockwise di-
rection, but are a mixture of both. Those polygons that are wound inconsistently should have the
vertex order reversed. A good way to accomplish this is to find all common edges and verify that
neighboring polygon edges are drawn in the opposite order (see Figure 6).

To begin rewinding polygons, one polygon must be chosen as “correct”. All neighboring polygons
must then be found and made consistent with the “correct” polygon. This repeats recursively for each
new “correct” polygon until no more neighboring polygons can be found. If the model is a single
closed object, all polygons will now be consistent. However, if the model has multiple unconnected
pieces, another polygon that has not yet been tested must be found and the process must be repeated
until all polygons have been tested and made consistent.

The above method still leaves a 50-50 chance that the entire object is now wound backwards (assum-
ing an object with half of the facets wound clockwise and half wound counterclockwise). Short of
getting a human involved to look at the model, there are ways to check that the normals are pointing
outwards. One way is to find the geometric center of the object by computing the object bounding
box by finding the maximum and minimum X, Y and Z values, then computing the mid-point of the
bounding box. Next, select a vertex that is the maximum distance from this center point and com-
pute the (normalized) vector from the center point to this vertex. Then take the normal of one of
the facets that shares the distant vertex and compute the dot product of the two vectors. A positive
result indicates that the normals are all correct while a negative result indicates that the normals are
all backwards. If the normals are backwards, negate them all and reverse the windings of all facets.

There are still a few pathological cases that may not come out right, such as a model of a room where
it is desirable to view the inside walls, but the above method works for most cases.
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Figure 7. Splitting Normals for Hard Edges

3.3.2 Smooth Shading

To smoothly shade an object, the same normal should be used on a given vertex for all polygons that
share the vertex. The simplest way to do this is to add all (normalized) normals from the common
facets then renormalize the result [25]. This provides reasonable results for surfaces that are fairly
smooth, but does not look good for surfaces with sharp edges.

An object with a sharp corner, such as a cube, should look like it has a hard edge, rather than a soft
edge. The angle between polygons that should produce a hard edge can vary from model to model.
It is fairly clear that a 90 degree edge should always be considered a hard edge, but some models
look better with hard edges at angles less than 45 degrees while others look better with soft edges for
angles greater than 45 degrees. This particular parameter should generally be left under user control
with a good default probably right around 45 degrees.

To determine the angle between polygons, take the dot product of the facet normals (which must
be unit length). A dot product returns the cosine of the angle between the vectors. So, if the dot
product of the two normals is greater than the cosine of the desired hard edge angle, the edge should
be considered soft, otherwise it should be considered hard. To create a hard edge, a different normal
is generated for each side. Be sure to keep common normals for any remaining soft edges of the
surface.

Figure 7 shows an example of a mesh with two hard edges in it. The three vertices making up these
hard edges, v2, v3, and v4, need to be split using two separate normals. In the case of vertex v2,
one normal would apply to poly01 and poly02 and a different normal would apply to poly11 and
poly12. This makes sure that the edge between poly01 and poly02 still looks smooth while the edge
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Figure 8. Triangle Strip Winding

between poly02 and poly12 has a nice crease and looks like a sharp edge. Since v1 is not split, the
edge between poly01 and poly11 will look sharper near v2 and will become smoother as it gets closer
to v1. The edge between v1 and v0 would then be completely smooth. This is the desired effect.

For an object such as a cube, three hard edges will share one common vertex. In this case the edge
splitting algorithm needs to be repeated for the third edge to achieve the correct results.

3.4 Triangle-stripping

One of the simplest ways to speed up an OpenGL program while simultaneously saving storage
space is to convert independent triangles or polygons into triangle strips. If the model is generated di-
rectly from NURBS data or from some other regular geometry, it is quite straightforward to connect
the triangles together into longer strips. You must keep in mind whether you want the first triangle
to start off with a clockwise or counterclockwise winding, then all subsequent triangles in the list
will alternate winding (see Figure 8). Triangle fans must also be started with the correct winding,
but all subsequent triangles are wound in the same direction (see Figure 9).

Because OpenGL does not have a way to specify generalized triangle strips, the user must choose
between GL TRIANGLE STRIP and GL TRIANGLE FAN. In general, more triangles can be placed
into a strip than a fan. Triangle fans are great when a large convex polygon needs to be converted to
triangles or for geometry that is cone-shaped. Most other cases are best converted to triangle strips.

For regular meshes, triangle strips should be lined up side by side as shown in Figure 10. The goal
here is to minimize the number of total strips and try to avoid “orphan” triangles (also known as
singleton strips) that can’t be made part of a longer strip. It is possible to turn a corner in a triangle
strip by using redundant vertices and degenerate triangles as described in [17].
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Figure 9. Triangle Fan Winding
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Figure 10. A Mesh Made up of Multiple Triangle Strips
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Figure 11. “Greedy” Triangle Strip Generation

3.4.1 Greedy Tri-stripping

A fairly simple method of converting a model into triangle strips is sometimes known as greedy tri-
stripping. One of the early greedy algorithms was developed for IRIS GL which allowed swapping
of vertices to create direction changes to the facet with the least neighbors. However, with OpenGL
the only way to get the equivalent behavior of swapping vertices is to repeat a vertex and create a
degenerate triangle, which is much more expensive than the original vertex swap operation.

For OpenGL a better algorithm is to choose a polygon, convert it to triangles, then continue onto
the neighboring polygon from the last edge of the previous polygon. For a given starting polygon
beginning at a given edge, there are no choices as to which polygon is the best to choose next since
there is only one choice. The strip is continued until the triangle strip runs off the edge of the model
or runs into a polygon that is already a part of another strip (see Figure 11). For best results, pick a
polygon and go both directions as far as possible, then start the triangle strip from one end.

A triangle strip should not cross a hard edge, unless the vertices on that edge are repeated redun-
dantly, since you’ll want different normals for the two triangles on either side of that edge. Once
one strip is complete, the best polygon to choose for the next strip is often a neighbor to the polygon
at one end or the other of the previous strip. More advanced triangulation methods don’t try to keep
all triangles of a polygon together. For more information on such a method refer to [17].

3.5 Capping Clipped Solids with the Stencil Buffer

When dealing with solid objects it is often useful to clip the object against a plane and observe the
cross section. OpenGL’s user-defined clipping planes allow an application to clip the scene by a
plane. The stencil buffer provides an easy method for adding a “cap” to objects that are intersected
by the clipping plane. A capping polygon is embedded in the clipping plane and the stencil buffer
is used to trim the polygon to the interior of the solid.
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For more information on the techniques using the stencil buffer, see Section 14.

If some care is taken when constructing the object, solids that have a depth complexity greater than 2
(concave or shelled objects) and less than the maximum value of the stencil buffer can be rendered.
Object surface polygons must have their vertices ordered so that they face away from the interior
for face culling purposes.

The stencil buffer, color buffer, and depth buffer are cleared, and color buffer writes are disabled.
The capping polygon is rendered into the depth buffer, then depth buffer writes are disabled. The
stencil operation is set to increment the stencil value where the depth test passes, and the model is
drawn withglCullFace(GL BACK). The stencil operation is then set to decrement the stencil value
where the depth test passes, and the model is drawn with glCullFace(GL FRONT).

At this point, the stencil buffer is 1 wherever the clipping plane is enclosed by the frontfacing and
backfacing surfaces of the object. The depth buffer is cleared, color buffer writes are enabled, and
the polygon representing the clipping plane is now drawn using whatever material properties are
desired, with the stencil function set to GL EQUAL and the reference value set to 1. This draws the
color and depth values of the cap into the framebuffer only where the stencil values equal 1.

Finally, stenciling is disabled, the OpenGL clipping plane is applied, and the clipped object is drawn
with color and depth enabled.

3.6 Constructive Solid Geometry with the Stencil Buffer

Before continuing, the it may help for the reader to be familiar with the concepts of stencil buffer
usage presented in Section 14.

Constructive solid geometry (CSG) models are constructed through the intersection (\), union ([),
and subtraction (�) of solid objects, some of which may be CSG objects themselves[23]. The tree
formed by the binary CSG operators and their operands is known as the CSG tree. Figure 12 shows
an example of a CSG tree and the resulting model.

The representation used in CSG for solid objects varies, but we will consider a solid to be a collection
of polygons forming a closed volume. “Solid”, “primitive”, and “object” are used here to mean the
same thing.

CSG objects have traditionally been rendered through the use of ray-casting, which is slow, or
through the construction of a boundary representation (B-rep).

B-reps vary in construction, but are generally defined as a set of polygons that form the surface of the
result of the CSG tree. One method of generating a B-rep is to take the polygons forming the surface
of each primitive and trim away the polygons (or portions thereof) that don’t satisfy the CSG oper-
ations. B-rep models are typically generated once and then manipulated as a static model because
they are slow to generate.

Drawing a CSG model using stencil usually means drawing more polygons than a B-rep would con-
tain for the same model. Enabling stencil also may reduce performance. Nonetheless, some portions
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Figure 12. An Example Of Constructive Solid Geometry

of a CSG tree may be interactively manipulated using stencil if the remainder of the tree is cached
as a B-rep.

The algorithm presented here is from a paper by Tim F. Wiegand describing a GL-independent
method for using stencil in a CSG modeling system for fast interactive updates. The technique can
also process concave solids, the complexity of which is limited by the number of stencil planes avail-
able. A reprint of Wiegand’s paper is included in the Appendix.

The algorithm presented here assumes that the CSG tree is in “normal” form. A tree is in normal
form when all intersection and subtraction operators have a left subtree which contains no union
operators and a right subtree which is simply a primitive (a set of polygons representing a single
solid object). All union operators are pushed towards the root, and all intersection and subtraction
operators are pushed towards the leaves. For example, (((A\B)�C)[(((D\E)\G)�F ))[H
is in normal form; Figure 13 illustrates the structure of that tree and the characteristics of a tree in
normal form.

A CSG tree can be converted to normal form by repeatedly applying the following set of production
rules to the tree and then its subtrees:

1. X � (Y [ Z) ! (X � Y )� Z

2. X \ (Y [ Z) ! (X \ Y ) [ (X \ Z)

3. X � (Y \ Z) ! (X � Y ) [ (X � Z)

4. X \ (Y \ Z) ! (X \ Y ) \ Z
5. X � (Y � Z) ! (X � Y ) [ (X \ Z)

6. X \ (Y � Z) ! (X \ Y )� Z
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Figure 13. A CSG Tree in Normal Form

7. (X � Y ) \ Z ! (X \ Z)� Y

8. (X [ Y )� Z ! (X � Z) [ (Y � Z)

9. (X [ Y )\ Z ! (X \ Z) [ (Y \ Z)

X, Y, and Z here match either primitives or subtrees. Here’s the algorithm used to apply the produc-
tion rules to the CSG tree:

normalize(tree *t)
{

if (isPrimitive(t))
return;

do {
while (matchesRule(t)) /* Using rules given above */

applyFirstMatchingRule(t);
normalize(t->left);

} while (!(isUnionOperation(t) ||
(isPrimitive(t->right) &&
! isUnionOperation(T->left))));

normalize(t->right);
}

Normalization may increase the size of the tree and add primitives which do not contribute to the final
image. The bounding volume of each CSG subtree can be used to prune the tree as it is normalized.
Bounding volumes for the tree may be calculated using the following algorithm:
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findBounds(tree *t)
{

if (isPrimitive(t))
return;

findBounds(t->left);
findBounds(t->right);

switch (t->operation){
case union:
t->bounds = unionOfBounds(t->left->bounds,

t->right->bounds);
case intersection:
t->bounds = intersectionOfBounds(t->left->bounds,

t->right->bounds);
case subtraction:
t->bounds = t->left->bounds;

}
}

CSG subtrees rooted by the intersection or subtraction operators may be pruned at each step in the
normalization process using the following two rules:

1. if T is an intersection and not intersects(T->left->bounds, T->right->bounds),
delete T.

2. if T is a subtraction and not intersects(T->left->bounds, T->right->bounds), re-
place T with T->left.

The normalized CSG tree is a binary tree, but it’s important to think of the tree rather as a “sum of
products” to understand the stencil CSG procedure.

Consider all the unions as sums. Next, consider all the intersections and subtractions as products.
(Subtraction is equivalent to intersection with the complement of the term to the right. For example,
A � B = A \ �B.) Imagine all the unions flattened out into a single union with multiple children;
that union is the “sum”. The resulting subtrees of that union are all composed of subtractions and
intersections, the right branch of those operations is always a single primitive, and the left branch is
another operation or a single primitive. You should read each child subtree of the imaginary multiple
union as a single expression containing all the intersection and subtraction operations concatenated
from the bottom up. These expressions are the “products”. For example, you should think of ((A\
B)�C)[ (((G\D)�E)\F )[H as meaning (A\B�C)[ (G\D�E \F )[H . Figure 14
illustrates this process.

At this time redundant terms can be removed from each product. Where a term subtracts itself
(A � A), the entire product can be deleted. Where a term intersects itself (A \ A), that intersec-
tion operation can be replaced with the term itself.

19



Programming with OpenGL: Advanced Rendering

H

H

D   E
   G

 - F

A   B
 - C

F

G

ED

C

BA

((((A   B) - C)    (((D   E)   G) - F))   H) (A   B - C)    (D   E   G - F)   H

Figure 14. Thinking of a CSG Tree as a Sum of Products

All unions can be rendered simply by finding the visible surfaces of the left and right subtrees and
letting the depth test determine the visible surface. All products can be rendered by drawing the
visible surfaces of each primitive in the product and trimming those surfaces with the volumes of
the other primitives in the product. For example, to render A � B, the visible surfaces of A are
trimmed by the complement of the volume of B, and the visible surfaces of B are trimmed by the
volume of A.

The visible surfaces of a product are the front facing surfaces of the operands of intersections and
the back facing surfaces of the right operands of subtraction. For example, in (A � B \ C), the
visible surfaces are the front facing surfaces of A and C, and the back facing surfaces of B.

Concave solids are processed as sets of front or back facing surfaces. The “convexity” of a solid
is defined as the maximum number of pairs of front and back surfaces that can be drawn from the
viewing direction. Figure 15 shows some examples of the convexity of objects. The nth front sur-
face of a k-convex primitive is denoted Anf , and the nth back surface is Anb. Because a solid may
vary in convexity when viewed from different directions, accurately representing the convexity of
a primitive may be difficult and may also involve reevaluating the CSG tree at each new view. In-
stead, the algorithm must be given the maximum possible convexity of a primitive, and draws the
nth visible surface by using a counter in the stencil planes.

The CSG tree must be further reduced to a “sum of partial products” by converting each product to a
union of products, each consisting of the product of the visible surfaces of the target primitive with
the remaining terms in the product.
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Figure 15. Examples of n-convex Solids

For example, if A, B, and D are 1-convex and C is 2-convex:

(A� B \ C \D) !
(A0f � B \ C \D) [
(B0b \ A \ C \D) [
(C0f \ A�B \D) [
(C1f \ A�B \D) [
(D0f \ A \B \ C)

Because the target term in each product has been reduced to a single front or back facing surface,
the bounding volumes of that term will be a subset of the bounding volume of the original complete
primitive. Once the tree is converted to partial products, the pruning process may be applied again
with these subset volumes.

In each resulting child subtree representing a partial product, the leftmost term is called the “target”
surface, and the remaining terms on the right branches are called “trimming” primitives.

The resulting sum of partial products reduces the rendering problem to rendering each partial prod-
uct correctly before drawing the union of the results. Each partial product is rendered by drawing
the target surface of the partial product and then “classifying” the pixels generated by that surface
with the depth values generated by each of the trimming primitives in the partial product. If pixels
drawn by the trimming primitives pass the depth test an even number of times, that pixel in the target
primitive is “out”, and discarded. If the count is odd, the target primitive pixel is “in”’, and kept.

Because the algorithm saves depth buffer contents between each object, we optimize for depth saves
and restores by drawing as many of target and trimming primitives for each pass as we can fit in the
stencil buffer.
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The algorithm uses one stencil bit (Sp) as a toggle for trimming primitive depth test passes (parity),
n stencil bits for counting to the nth surface (Scount), where n is the smallest number for which 2n

is larger than the maximum convexity of a current object, and as many bits are available (Sa) to
accumulate whether target pixels have to be discarded. Because Scount will require the GL INCR

operation, it must be stored contiguously in the least-significant bits of the stencil buffer. Sp and
Scount are used in two separate steps, and so may share stencil bits.

For example, drawing 2 5-convex primitives would require 1 Sp bit, 3 Scount bits, and 2 Sa bits.
Because Sp and Scount are independent, the total number of stencil bits required would be 5.

Once the tree has been converted to a sum of partial products, the individual products are rendered.
Products are grouped together so that as many partial products can be rendered between depth buffer
saves and restores as the stencil buffer has capacity.

For each group, writes to the color buffer are disabled, the contents of the depth buffer are saved,
and the depth buffer is cleared. Then, every target in the group is classified against its trimming
primitives. The depth buffer is then restored, and every target in the group is rendered against the
trimming mask. The depth buffer save/restore can be optimized by saving and restoring only the
region containing the screen-projected bounding volumes of the target surfaces.

for each group
glReadPixels(...);
<classify the group>
glStencilMask(0); /* so DrawPixels won’t affect Stencil */
glDrawPixels(...);
<render the group>

Classification consists of drawing each target primitive’s depth value and then clearing those depth
values where the target primitive is determined to be outside the trimming primitives.

glClearDepth(far);
glClear(GL_DEPTH_BUFFER_BIT);
a = 0;
for (each target surface in the group)

for (each partial product targeting that surface)
<render the depth values for the surface>
for (each trimming primitive in that partial product)

<trim the depth values against that primitive>
<set Sa to 1 where Sa = 0 and Z < Zfar>
a++;

The depth values for the surface are rendered by drawing the primitive containing the the target sur-
face with color and stencil writes disabled. (Scount) is used to mask out all but the target surface. In
practice, most CSG primitives are convex, so the algorithm is optimized for that case.

if (the target surface is front facing)
glCullFace(GL_BACK);

22



Programming with OpenGL: Advanced Rendering

else
glCullFace(GL_FRONT);

if (the surface is 1-convex)
glDepthMask(1);
glColorMask(0, 0, 0, 0);
glStencilMask(0);
<draw the primitive containing the target surface>

else
glDepthMask(1);
glColorMask(0, 0, 0, 0);
glStencilMask(Scount);
glStencilFunc(GL_EQUAL, index of surface, Scount);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
<draw the primitive containing the target surface>
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);

Then each trimming primitive for that target surface is drawn in turn. Depth testing is enabled and
writes to the depth buffer are disabled. Stencil operations are masked to Sp and the Sp bit in the
stencil is cleared to 0. The stencil function and operation are set so that Sp is toggled every time
the depth test for a fragment from the trimming primitive succeeds. After drawing the trimming
primitive, if this bit is 0 for uncomplemented primitives (or 1 for complemented primitives), the
target pixel is “out”, and must be marked “discard”, by enabling writes to the depth buffer and storing
the far depth value (Zf ) into the depth buffer everywhere that the Sp indicates “discard”.

glDepthMask(0);
glColorMask(0, 0, 0, 0);
glStencilMask(mask for Sp);
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0, 0);
glStencilOp(GL_KEEP, GL_KEEP, GL_INVERT);
<draw the trimming primitive>
glDepthMask(1);

Once all the trimming primitives are rendered, the values in the depth buffer are Zf for all target
pixels classified as “out”. The Sa bit for that primitive is set to 1 everywhere that the depth value
for a pixel is not equal to Zf , and 0 otherwise.

Each target primitive in the group is finally rendered into the framebuffer with depth testing and
depth writes enabled, the color buffer enabled, and the stencil function and operation set to write
depth and color only where the depth test succeeds and Sa is 1. Only the pixels inside the volumes
of all the trimming primitives are drawn.
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glDepthMask(1);
glColorMask(1, 1, 1, 1);
a = 0;
for (each target primitive in the group)

glStencilMask(0);
glStencilFunc(GL_EQUAL, 1, Sa);
glCullFace(GL_BACK);
<draw the target primitive>
glStencilMask(Sa);
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
a++;

Further techniques are available for adding clipping planes (half-spaces), including more normaliza-
tion rules and pruning opportunities [63]. This is especially important in the case of the near clipping
plane in the viewing frustum.

Source code for dynamically loadable Inventor objects implementing this technique is available at
the Martin Center at Cambridge web site [64].
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4 Geometry and Transformations

OpenGL has a simple and powerful transformation model. Since the transformation machinery in
OpenGL is exposed in the form of the modelview and projection matrices, it’s possible to develop
novel uses for the transformation pipeline. This section describes some useful transformation tech-
niques, and provides some additional insight into the OpenGL graphics pipeline.

4.1 Stereo Viewing

Stereo viewing is a common technique to increase visual realism or enhance user interaction with 3D
scenes. Two views of a scene are created, one for the left eye, one for the right. Some sort of viewing
hardware is used with the display, so each eye only sees the view created for it. The apparent depth of
objects is a function of the difference in their positions from the left and right eye views. When done
properly, objects appear to have actual depth, especially with respect to each other. When animating,
the left and right back buffers are used, and must be updated each frame.

OpenGL supports stereo viewing, with left and right versions of the front and back buffers. In nor-
mal, non-stereo viewing, when not using both buffers, the default buffer is the left one for both front
and back buffers. Since OpenGL is window system independent, there are no interfaces in OpenGL
for stereo glasses, or other stereo viewing devices. This functionality is part of the OpenGL/Window
system interface library; the style of support varies widely.

In order to render a frame in stereo:

� The display must be configured to run in stereo mode.

� The left eye view for each frame must be generated in the left back buffer.

� The right eye view for each frame must be generated in the right back buffer.

� The back buffers must be displayed properly, according to the needs of the stereo viewing
hardware.

Computing the left and right eye views is fairly straightforward. The distance separating the two
eyes, called the interocular distance (IOD), must be determined. Choose this value to give the proper
spacing of the viewer’s eyes relative to the scene being viewed. Whether the scene is microscopic
or galaxy-wide is irrelevant. What matters is the size of the imaginary viewer relative to the objects
in the scene. This distance should be correlated with the degree of perspective distortion present in
the scene to produce a realistic effect.

4.1.1 Fusion Distance

The other parameter is the distance from the eyes where the lines of sight for each eye converge.
This distance is called the fusion distance. At this distance objects in the scene will appear to be on
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Figure 16. Stereo Viewing Geometry

the front surface of the display (“in the glass”). Objects farther than the fusion distance from the
viewer will appear to be “behind the glass” while objects in front will appear to float in front of the
display. The latter illusion is harder to maintain, since real objects visible to the viewer beyond the
edge of the display tend to destroy the illusion.

Although it is possible to create good looking stereo scenes using dimensionless quantities, the best
behavior occurs when everything is measured carefully. This is quite easy to do if the glFrustum
call is used rather than the gluPerspective call. Pick a unit of measurement, then use those units
for screen size, distance from viewer to screen, interocular distance, and so forth. It is a good idea to
keep the code that computes the screen parameters separate from the rest of the application, to make
it easier to port the program to different screen sizes or arrangements.

The view direction vector and the vector separating the left and right eye position are perpendicular
to each other. The two view points are located along a line perpendicular to the direction of view
and the “up” direction. The fusion distance is measured along the view direction. The position of
the viewer can be defined to be at one of the eye points, or halfway between them. In either case,
the left and right eye locations are positioned relative to it.

If the viewer is taken to be halfway between the stereo eye positions, and assuming gluLookAt has
been called to put the viewer position at the origin in eye space, then the fusion distance is measured
along the negative z axis (like the near and far clipping planes), and the two viewpoints are on either
side of the origin along the x axis, at (-IOD/2, 0, 0) and (IOD/2, 0, 0).

4.1.2 Computing the Transforms

The transformations needed for correct stereo viewing are simple translations and off-axis projec-
tions [13]. Computationally, the stereo viewing transforms happen last, after the viewing transform
has been applied to put the viewer at the origin. Since the matrix order is the reverse of the order of
operations, the viewing matrices should be applied to the modelview matrix first.
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The order of matrix operations should be:

1. Transform from viewer position to left eye view.

2. Apply viewing operation to get to viewer position (gluLookAt or equivalent).

3. Apply modeling operations.

4. Change buffers, repeat for right eye.

Assuming that the identity matrix is on the modelview stack and that we want to look at the origin
from a distance of EYE BACK:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity(); /* the default matrix */
glPushMatrix()
glDrawBuffer(GL_BACK_LEFT)
gluLookAt(-IOD/2.0, 0.0, EYE_BACK,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

<viewing transforms>
<modeling transforms>
draw()
glPopMatrix();
glPushMatrix()
glDrawBuffer(GL_BACK_RIGHT)
gluLookAt(IOD/2.0, 0.0, EYE_BACK,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

<viewing transforms>
<modeling transforms>
draw()
glPopMatrix()

This method of implementing stereo transforms changes the viewing transform directly using a sep-
arate call to gluLookAt for each eye view. Move fusion distance along the viewing direction from
the viewer position, and use that point for the center of interest of both eyes. Translate the eye po-
sition to the appropriate eye, then render the stereo view for the corresponding buffer. This method
is quite simple when real-world measurements are used.

An alternative, but less correct, method of implementing stereo transforms is to translate the views
left and right by half of the interocular distance, then rotate by the inverse tangent of the ratio between
the fusion distance and half of the interocular distance: angle = arctan(fusiondistanceIOD

2

) With this

method, each viewpoint is rotated towards the centerline halfway between the two viewpoints.
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4.2 Depth of Field

Normal viewing transforms act like a perfect pinhole camera; everything visible is in focus, regard-
less of how close or how far the objects are from the viewer. To increase realism, a scene can be
rendered to vary sharpness as a function of viewer distance, more accurately simulating a camera
with a finite depth of field.

Depth-of-field and stereo viewing are similar. In both cases, there is more than one viewpoint, with
all view directions converging at a fixed distance along the direction of view. When computing depth
of field transforms, however, we only use shear instead of rotation, and sample a number of view-
points, not just two, along an axis perpendicular to the view direction. The resulting images are
blended together.

This process creates images where the objects in front of and behind the fusion distance shift position
as a function of viewpoint. In the blended image, these objects appear blurry. The closer an object
is to the fusion distance, the less it shifts, and the sharper it appears.

The field of view can be expanded by increasing the ratio between the viewpoint shift and fusion
distance. This way objects have to be farther from the fusion distance to shift significantly.

For details on rendering scenes featuring a limited field of view see Section 9.1.

4.3 The Z Coordinate and Perspective Projection

The z coordinates are treated in the same fashion as the x and y coordinates. After transformation,
clipping and perspective division, they occupy the range -1.0 through 1.0. The glDepthRange

mapping specifies a transformation for the z coordinate similar to the viewport transformation used
to map x and y to window coordinates. The glDepthRange mapping is somewhat different from
the viewport mapping in that the hardware resolution of the depth buffer is hidden from the appli-
cation. The parameters to the glDepthRange call are in the range [0.0, 1.0]. The z or depth asso-
ciated with a fragment represents the distance to the eye. By default the fragments nearest the eye
(the ones at the near clip plane) are mapped to 0.0 and the fragments farthest from the eye (those at
the far clip plane) are mapped to 1.0. Fragments can be mapped to a subset of the depth buffer range
by using smaller values in the glDepthRange call. The mapping may be reversed so that frag-
ments furthest from the eye are at 0.0 and fragments closest to the eye are at 1.0 simply by calling
glDepthRange(1.0,0.0). While this reversal is possible, it may not be practical for the imple-
mentation. Parts of the underlying architecture may have been tuned for the forward mapping and
may not produce results of the same quality when the mapping is reversed.

To understand why there might be this disparity in the rendering quality, it’s important to understand
the characteristics of the window z coordinate. The z value specifies the distance from the fragment
to the plane of the eye. The relationship between distance and z is linear in an orthographic projec-
tion, but not in a perspective projection. In the case of a perspective projection, the amount of the
non-linearity is proportional to the ratio of far to near in theglFrustum call (or zFar to zNear in the
gluPerspective call). Figure 17 plots the window coordinate z value as a function of the eye-
to-pixel distance for several ratios of far to near. The non-linearity increases the resolution of the
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Figure 17: Window z to Eye z Relationship for near/far Ratios

z-values when they are close to the near clipping plane, increasing the resolving power of the depth
buffer, but decreasing the precision throughout the rest of the viewing frustum, thus decreasing the
accuracy of the depth buffer in the back part of the viewing volume.

For objects a given distance from the eye, however, the depth precision is not as bad as it looks in
Figure 17. No matter how far back the far clip plane is, at least half of the available depth range is
present in the first “unit” of distance. In other words, if the distance from the eye to the near clip
plane is one unit, at least half of the z range is used up in the first “unit” from the near clip plane
towards the far clip plane. Figure 18 plots the z range for the first unit distance for various ranges.
With a million to one ratio, the z value is approximately 0.5 at one unit of distance. As long as the
data is mostly drawn close to the near plane, the z precision is good. The far plane could be set to
infinity without significantly changing the accuracy of the depth buffer near the viewer.

To achieve greatest depth buffer precision, the near plane should be moved as far from the eye as
possible without touching the object, which would cause part or all of it to be clipped away. The
position of the near clipping plane has no effect on the projection of the x and y coordinates and
therefore has minimal effect on the image.

Putting the near clip plane closer to the eye than to the object results in loss of depth buffer precision.

In addition to depth buffering, the z coordinate is also used for fog computations. Some implemen-
tations may perform the fog computation on a per-vertex basis using eye z and then interpolate the
resulting colors whereas other implementations may perform the computation for each fragment. In
this case, the implementation may use the window z to perform the fog computation. Implementa-
tions may also choose to convert the computation into a cheaper table lookup operation which can
also cause difficulties with the non-linear nature of window z under perspective projections. If the
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Figure 18: Available Window z Depth Values near/far Ratios

implementation uses a linearly indexed table, large far to near ratios will leave few table entries for
the large eye z values. This can cause noticeable Mach bands in fogged scenes.

4.3.1 Depth Buffering

We have discussed some of the caveats of using depth buffering, but there are several other aspects
of OpenGL rasterization and depth buffering that are worth mentioning [2]. One big problem is that
the rasterization process uses inexact arithmetic so it is exceedingly difficult to handle primitives that
are coplanar unless they share the same plane equation. This problem is exacerbated by the finite
precision of depth buffer implementations. Many solutions have been proposed to handle this class
of problems, which involve coplanar primitives:

1. Decaling

2. Hidden line elimination

3. Outlined polygons

4. Shadows

Many of these problems have elegant solutions involving the stencil buffer, but it is still worth de-
scribing alternative methods to get more insight into the uses of the depth buffer.

The problem of decaling one coplanar polygon into another can be solved rather simply by using the
painter’s algorithm (i.e., drawing from back to front) combined with color buffer and depth buffer
masking, assuming the decal is contained entirely within the underlying polygon. The steps are:
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1. Draw the underlying polygon with depth testing enabled but depth buffer updates disabled.

2. Draw the top layer polygon (decal) also with depth testing enabled and depth buffer updates
still disabled.

3. Draw the underlying polygon one more time with depth testing and depth buffer updates en-
abled, but color buffer updates disabled.

4. Enable color buffer updates and continue on.

Outlining a polygon and drawing hidden lines are similar problems. If we have an algorithm to out-
line polygons, hidden lines can be removed by outlining polygons with one color and drawing the
filled polygons with the background color. Ideally a polygon could be outlined by simply connect-
ing the vertices together with line primitives. This seems similar to the decaling problem except that
edges of the polygon being outlined may be shared with other polygons and those polygons may not
be coplanar with the outlined polygon, so the decaling algorithm can not be used, since it relies on
the coplanar decal being fully contained within the base polygon.

The solution most frequently suggested for this problem is to draw the outline as a series of lines and
translate the outline a small amount towards the eye. Alternately, the polygon could be translated
away from the eye instead. Besides not being a particularly elegant solution, there is a problem in
determining the amount to translate the polygon (or outline). In fact, in the general case there is no
constant amount that can be expressed as a simple translation of the z object coordinate that will
work for all polygons in a scene.

Figure 19 shows two polygons (solid) with outlines (dashed) in the screen space y-z plane. One of
the primitive pairs has a 45-degree slope in the y-z plane and the other has a very steep slope. During
the rasterization process the depth value for a given fragment may be derived from a sample point
nearly an entire pixel away from the edge of the polygon. Therefore the translation must be as large
as the maximum absolute change in depth for any single pixel step on the face of the polygon. The
figure shows that the steeper the depth slope, the larger the required translation. If an unduly large
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constant value is used to deal with steep depth slopes, then for polygons which have a shallower
slope there is an increased likelihood that another neighboring polygon might end up interposed be-
tween the outline and the polygon. So it seems that a translation proportional to the depth slope is
necessary. However, a translation proportional to slope is not sufficient for a polygon that has con-
stant depth (zero slope) since it would not be translated at all. Therefore a bias is also needed. Many
vendors have implemented the EXT polygon offset extension that provides a scaled slope plus
bias capability for solving outline problems such as these and for other applications. A modified
version of this polygon offset extension has been added to the core of OpenGL 1.1 as well.

4.4 Image Tiling

When rendering a scene in OpenGL, the resolution of the image is normally limited to the worksta-
tion screen size. For interactive applications this is usually sufficient, but there may be times when
a higher resolution image is needed. Examples include color printing applications and computer
graphics recorded for film. In these cases, higher resolution images can be divided into tiles that fit
on the workstation’s framebuffer. The image is rendered tile by tile, with the results saved into off
screen memory, or perhaps a file. The image can then be sent to a printer or film recorder, or undergo
further processing, such has downsampling to produce an antialiased image.

One very straightforward way to tile an image is to manipulate the glFrustum call’s arguments.
The scene can be rendered repeatedly, one tile at a time, by changing the left, right, bottom and top
arguments arguments of glFrustum for each tile.

Computing the argument values is straightforward. Divide the original width and height range by
the number of tiles horizontally and vertically, and use those values to parametrically find the left,
right, top, and bottom values for each tile.

tile(i; j); i : 0 ! nTileshoriz ; j : 0! nTilesvert

righttiled(i) = leftorig +
rightorig � leftorig

nTileshoriz
� (i+ 1)

lefttiled(i) = leftorig +
rightorig � leftorig

nTileshoriz
� i

toptiled(j) = bottomorig +
toporig � bottomorig

nTilesvert
� (j + 1)

bottomtiled(j) = bottomorig +
toporig � bottomorig

nTilesvert
� j

In the equations above, each value of i and j corresponds to a tile in the scene. If the original scene
is divided into nTileshoriz by nTilesvert tiles, then iterating through the combinations of i and j
generate the left, right top, and bottom values for glFrustum to create the tile.

Since glFrustum has a shearing component in the matrix, the tiles stitch together seamlessly
to form the scene. Unfortunately, this technique would have to be modified for use with
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gluPerspective or glOrtho. There is a better approach, however. Instead of modifying the
perspective transform call directly, apply transforms to the results. The area of normalized device
coordinate (NDC) space corresponding to the tile of interest is translated and scaled so it fills the
NDC cube. Working in NDC space instead of eye space makes finding the tiling transforms easier,
and is independent of the type of projective transform.

Even though it’s easy to visualize the operations happening in NDC space, conceptually, you can
“push” the transforms back into eye space, and the technique maps into the glFrustum approach
described above.

For the transform operations to happen after the projection transform, the OpenGL calls must happen
before it. Here is the sequence of operations:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glScalef(xScale, yScale);
glTranslatef(xOffset, yOffset, 0.f);
setProjection();

The scale factors xScale and yScale scale the tile of interest to fill the the entire scene:

xScale =
sceneWidth

tileWidth

yScale =
sceneHeight

tileHeight

The offsets xOffset and yOffset are used to offset the tile so it is centered about the z axis. In
this example, the tiles are specified by their lower left corner relative to their position in the scene,
but the translation needs to move the center of the tile into the origin of the x-y plane in NDC space:

xOffset =
�2 � left

sceneWidth
+ (1� 1

nTileshoriz
)

yOffset =
�2 � bottom
sceneHeight

+ (1� 1

nTilesvert
)

As before nTileshoriz is the number of tiles that span the scene horizontally, while nTileshoriz is
the number of tiles that span the scene vertically.

Some care should be taken when computing left, bottom, tileWidth and tileHeight values. It’s
important that each tile is abutted properly with it’s neighbors. Ensure this by guarding against
round-off errors. Some code that properly computes these values is given below:
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/* tileWidth and tileHeight are GLfloats */
GLint bottom, top;
GLint left, right;
GLint width, height;
for(j = 0; j < num_vertical_tiles; j++) {

for(i = 0; i < num_horizontal_tiles; i++) {
left = i * tileWidth;
right = (i + 1) * tileWidth;
bottom = j * tileHeight;
top = (j + 1) * tileHeight;
width = right - left;
height = top - bottom;
/* compute xScale, yScale, xOffset,

yOffset */
}

}

Note that the parameter values are computed so that left+ tileWidth is guaranteed to be equal to
right and equal to left of the next tile over, even if tileWidth has a fractional component. If the
frustum technique is used, similar precautions should be taken with the left, right, bottom, and top
parameters to glFrustum.

4.5 Moving the Current Raster Position

Using the glRasterPos command, the raster position will be invalid if the specified position was
culled. Since glDrawPixels and glCopyPixels operations applied when the raster position is
invalid do not draw anything, it may seem that the lower left corner of a pixel rectangle must be
inside the clip rectangle. This problem may be overcome by using the glBitmap command. The
glBitmap command takes arguments xoff and yoffwhich specify an increment to be added to the
current raster position. Assuming the raster position is valid, it may be moved outside the clipping
rectangle by a glBitmap command. glBitmap is often used with a zero size rectangle to move the
raster position.

4.6 Preventing Clipping of Wide Lines and Points

It’s important to note that OpenGL points are clipped if their projected position is beyond the view-
port. If a point size other than 1 is specified with glPointSize, the object will appear to “pop” out
of view when the center of the wide point exits the viewport. This is because the point itself has no
area, and as such is clipped based solely on its position. An example scenario is shown in Figure 20.

Wide lines have the same problem. The line is clipped to the viewport, and thus some pixels con-
tributed by the original line are no longer drawn, as shown in Figure 20.

This problem is more significant in a multiple-display setting, such as a three-monitor flight simu-
lator, or in a multiple-viewport setting such as a cylindrical projection.
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Figure 20. Clipped Wide Primitives Can Still be Visible

These missing pixels can be restored by setting the scissor region to the visible area and then enlarg-
ing the viewport so that points and lines are clipped beyond the region in which they could contribute
pixels. For n-pixel wide points and lines, this margin is n�1 pixels. The viewing frustum has to be
enlarged based on the new viewport so that points are rasterized to the same pixels within the larger
viewport and scissor region as they were in the smaller viewport.

4.7 Distortion Correction

A workstation user with a single monitor and a monoptic visual will usually sit in a location relative
to his or her screen that closely approximates the single symmetric frustum typically supplied to
OpenGL as the view model.

In visual simulation applications with curved screens (“domes”), virtual reality “caves” and the like,
and any situation where the projection unit, projection surface, and viewing parameters don’t cor-
respond to a symmetric static frustum, some correction will be required to make the visible image
seem accurate and visibly consistent.

Visual inaccuracy is caused by the difference between the observer’s view of the surface and the
video projector’s view of the surface, and is exacerbated by a non-planar screen surface, such as a
spherical shell.

If the display surface has no skew component to it, like an ordinary computer monitor or a video
projector which is aligned perpendicular to the screen, but the observer’s view direction is not per-
pendicular to the screen, use an asymmetric frustum. This can be accomplished by providing appro-
priate left, right, top, and bottom parameters to glFrustum that form a near plane which is not
centered on the z axis.
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Figure 21. A Complex Display Configuration

If the display surface is askew, as it is if the projector is located above the observer as in a movie
theatre, the perspective distortion in the projection must be corrected. This can be accomplished by
rendering the scene using an asymmetric frustum as above, storing the rendered scene as a texture,
and then drawing a quad textured scene with a projective texture matrix corresponding to the off-
center video projector frustum.

Finally, if the display surface itself is non-planar, like the spherical and cylindrical screens used in
some flight simulators, a combination of the above technique and image warping is required to pro-
duce an accurate image.

� Create a uniform grid as viewed by the observer.

� Project the vertices of the grid onto the screen surface.

� Project the vertices from the screen surface onto a plane perpendicular to the display direction
of the video projector.

� Store the projected vertices’ normalized viewing coordinates [0; 1) on that plane as texture
coordinates for the original grid.

� Render the scene normally from the viewpoint of the observer.

� Transfer the image into a texture.

� Render the image textured onto the uniform grid with the warped texture vertices.
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Figure 22. A Configuration with Off-Center Projector and Viewer
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Figure 23. Distortion Correction Using Texture Mapping
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You may have to render a larger image than will finally be viewed so that the warped image does
not contain any blank areas.

For further information on imagewarping and dewarping, see Section 5.15.
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5 Texture Mapping

Texture mapping is one of the main techniques to improve the appearance of objects shaded with
OpenGL’s simple lighting model. Texturing is typically used to provide color detail for intricate sur-
faces, e.g., woodgrain, by modifying the surface color. Environment mapping is a view-dependent
texture mapping technique that modifies the specular and diffuse reflection, i.e., the environment is
reflected in the object. More generally texturing can be thought of as a method of perturbing (or
providing) parameters to the shading equation such as the surface normal (bump mapping), or even
the coordinates of the point being shaded (displacement mapping) based on a parameterization of
the surface defined by the texture coordinates. OpenGL 1.1 readily supports the first two techniques
(surface color manipulation and environment mapping). Texture mapping, using bump mapping,
can also solve some rendering problems in less obvious ways. This section reviews some of the de-
tails of OpenGL texturing support, outline some considerations when using texturing and suggest
some interesting algorithms using texturing.

5.1 Review

OpenGL supports texture images which are 1D or 2D and have dimensions that are a power of two.
Some implementations have been extended to support 3D and 4D textures. Texture coordinates are
assigned to the vertices of all primitives (including the raster position of pixel images). The texture
coordinates are part of a three dimensional homogeneous coordinate system (s,t,r,q). When a prim-
itive is rasterized a texture coordinate is computed for each pixel fragment. The texture coordinate is
used to look up a texel value from the currently enabled texture map. The coordinates of the texture
map range from [0..1]. OpenGL can treat coordinate values outside the range [0,1] in one of two
ways: clamp or repeat. In the case of clamp, the coordinates are simply clamped to [0,1] causing
the edge values of the texture to be stretched across the remaining parts of the polygon. In the case
of repeat the integer part of the coordinate is discarded resulting in a texture tile that repeats across
the surface. The texel value that results from the lookup can be used to modify the original surface
color value in one of several ways, the simplest being to replace the surface color with texel color,
either by modulating a white polygon or simply replacing the color value. Simple replacement was
added as an extension by some vendors to OpenGL 1.0 and is now part of OpenGL 1.1.

5.1.1 Filtering

OpenGL also provides a number of filtering methods to compute the texel value. There are separate
filters for magnification (many pixel fragment values map to one texel value) and minification (many
texel values map to one pixel fragment). The simplest of the filters is point sampling, in which the
texel value nearest the texture coordinates is selected. Point sampling seldom gives satisfactory re-
sults, so most applications choose some filter which does interpolation. For magnification, OpenGL
1.1 only supports linear interpolation between four texel values. Some vendors have also added sup-
port for a larger filter kernel, Filter4, in which the weighted sum of a 4x4 array of texels is used. For
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minification, OpenGL 1.1 supports various types of mipmapping [65], with the most useful (and
computationally expensive) being trilinear mipmapping (four samples taken from each of the near-
est two mipmap levels and then interpolating the two sets of samples). OpenGL does not provide
any built-in commands for generating mipmaps, but the GLU provides some simple routines for
generating mipmaps using a simple box filter.

5.1.2 Texture Environment

The process by which the final fragment color value is derived is called the texture environment func-
tion (glTexEnv) Several methods exist for computing the final color, each capable of producing a
particular effect. One of the most commonly used is the modulate function. For all practical pur-
poses the modulate function multiplies or modulates the original fragment color with the texel color.
Typically, applications generate white polygons, light them, and then use this lit value to modulate
the texture image to effectively produce a lit, textured surface. Unfortunately when the lit polygon
includes a specular highlight, the resulting modulated texture will not look correct since the specular
highlight simply changes the brightness of the texture at that point rather than the desired effect of
adding in some specular illumination. Some vendors have tried to address this problem with exten-
sions to perform specular lighting after texturing. Some other techniques that can be used to address
this problem will be discussed later.

The decal environment function performs simple alpha-blending between the fragment color and an
RGBA texture; for RGB textures it simply replaces the fragment color. Decal mode is undefined
for other texture formats (luminance, alpha, etc). The blend environment function uses the texture
value to control the mix of the incoming fragment color and a constant texture environment color.
OpenGL 1.1 adds a replace texture environment which substitutes the texel color for the incoming
fragment color. This effect can be achieved using the modulate environment, but replace has a lower
computational burden.

Another useful (and sometimes misunderstood) feature of OpenGL is the texture border. OpenGL
supports either a constant texture border color or a border that is a portion of the edge of the texture
image. The key to understanding texture borders is understanding how textures are sampled when
the texture coordinate values are near the edges of the [0,1] range and the texture wrap mode is set to
GL CLAMP. For point sampled filters, the computation is quite simple: the border is never sampled.
However, when the texture filter is linear and the texture coordinate reaches the extremes (0.0 or
1.0), however, the resulting texel value is a 50% mix of the border color and the outer texel of the
texture image at that edge (25% and 75% at the corners).

This is most useful when attempting to use a single high resolution texture image which is too large
for the OpenGL implementation to support as a single texture map. For this case, the texture can be
broken up into multiple tiles, each with a 1 pixel wide border from the neighboring tiles. The texture
tiles can then be loaded and used for rendering in several passes. For example, if a 1K by 1K texture
is broken up into four 512 by 512 images, the four images would correspond to the texture coordi-
nate ranges (0-0.5,0-0.5), (0.5,1.0,0-0.5), (0-0.5,0.5,1.0) and (.5-1.0,.5-1.0). As each tile is loaded,
only the portions of the geometry that correspond to the appropriate texture coordinate ranges for
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Figure 24. Texture Tiling

a given tile should be drawn. If you had a single triangle whose texture coordinates were (.1,.1),
(.1,.7), and (.8,.8), you would clip the triangle against the four tile regions and draw only the portion
of the triangle that intersects with that region as shown in Figure 24. At the same time, the original
texture coordinates need to be adjusted to correspond to the scaled and translated texture space rep-
resented by the tile. This transformation can be easily performed by loading the appropriate scale
and translation onto the texture matrix stack.

Unfortunately, OpenGL doesn’t provide much assistance for performing the clipping operation. If
the input primitives are quads and they are appropriately aligned in object space with the texture, then
the clipping operation is trivial; otherwise, it make invoke substantially more work. One method
to assist with the clipping would involve using stenciling to control which textured fragments are
kept. Then you are left with the problem of setting the stencil bits appropriately. The easiest way
to do this is to produce alpha values that are proportional to the texture coordinate values and use
glAlphaFunc to reject alpha values that you do not wish to keep. Unfortunately, you can’t easily
map a multidimensional texture coordinate value (e.g., s,t) to an alpha value by simply interpolating
the original vertex alpha values, so it would be best to use a multidimensional texture itself which
has some portion of the texture with zero alpha and some portion with it equal to one. The texture
coordinates are then scaled so that the textured polygon map to texels with an alpha of 1.0 for pixels
to be retained and 0.0 for pixels to be rejected.

5.2 Mipmap Generation

Having explored the possibility of tiling low resolution textures to achieve the effect of high resolu-
tion textures, you can now examine methods for generating better texturing results without resorting
to tiling. Again, OpenGL supports a modest collection of filtering algorithms, the highest quality of
the minification algorithms being GL LINEAR MIPMAP LINEAR. OpenGL does not specify a method
for generating the individual mipmap levels (LODs). Each level can be loaded individually, so it is
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possible, but probably not desirable, to use a different filtering algorithm to generate each mipmap
level.

The GLU library provides a very simple interface (gluBuild2DMipmaps) for generating all of the
2D levels required. The algorithm currently employed by most implementations is a box filter. There
are a number of advantages to using the box filter; it is simple, efficient, and can be repeatedly applied
to the current level to generate the next level without introducing filtering errors. However, the box
filter has a number of limitations that can be quite noticeable with certain textures. For example, if
a texture contains very narrow features (e.g., lines), then aliasing artifacts may be very pronounced.

The best choice of filter functions for generating mipmap levels is somewhat dependent on the man-
ner in which the texture will be used and it is also somewhat subjective. Some possibilities include
using a linear filter (sum of four pixels with weights [1/8,3/8,3/8,1/8]) or a cubic filter (weighted
sum of eight pixels). Mitchell and Netravali [41] propose a family of cubic filters for general image
reconstruction which can be used for mipmap generation. The advantage of the cubic filter over the
box is that it can have negative side lobes (weights) which help maintain sharpness while reducing
the image. This can help reduce some of the blurring effect of filtering with mipmaps.

When attempting to use a filtering algorithm other than the one supplied by the GLU library, it is
important to keep a couple of things in mind. The highest resolution (finest) image of the mipmap
(LOD 0) should always be used as the input image source for each level to be generated. For the
box filter, the correct result is generated when the preceding level is used as the input image for
generating the next level, but this is not true for other filter functions. Each time a new (coarser)
level is generated, the filter needs to be scaled to twice the width of the previous version of the filter.
A second consideration is that in order to maintain a strict factor of two reduction, filters with widths
wider than two need to sample outside the boundaries of the image. This is commonly handled by
using the value for the nearest edge pixel when sampling outside the image. However, a more correct
algorithm can be selected depending on whether the image is to be used in a texture in which a repeat
or clamp wrap mode is to be used. In the case of repeat, requests for pixels outside the image should
wrap around to the appropriate pixel counted from the opposite edge, effectively repeating the image.

Mipmaps may be generated using the host processor or using the OpenGL pipeline to perform some
of the filtering operations. For example, the GL LINEAR minification filter can be used to draw an
image of exactly half the width and height of an image which has been loaded into texture memory,
by drawing a quadrilateral with the appropriate transformation (i.e., the quad projects to a rectangle
one fourth the area of the original image). This effectively filters the image with a box filter. The
resulting image can then be read from the color buffer back to host memory for later use as LOD 1.
This process can be repeated using the newly generated mipmap level to produce the next level and
so on until the coarsest level has been generated.

The above scheme seems a little cumbersome since each generated mipmap level needs to be read
back to the host and then loaded into texture memory before it can be used to create the next level.
The glCopyTexImage capability, added in OpenGL 1.1, allows an image in the color buffer to be
copied directly to texture memory.

This process can still be slightly difficult in OpenGL 1.0 as it only allows a single texture of a given
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dimension (1D, 2D) to exist at any one time, making it difficult to build up the mipmap texture while
using the non-mipmapped texture for drawing. This problem is solved in OpenGL 1.1 with texture
objects which allow multiple texture definitions to coexist at the same time. However, it would be
much simpler if you could use the most recent level loaded as part of the mipmap as the current tex-
ture for drawing. OpenGL 1.1 only allows complete textures to be used for texturing, meaning that
all mipmap levels need to be defined. Some vendors have added yet another extension which can
deal with this problem (though that was not the original intent behind the extension). This third ex-
tension, the texture LOD extension (also available in OpenGL 1.2), limits the selection of mipmap
image arrays to a subset of the arrays that would normally be considered; that is, it allows an appli-
cation to specify a contiguous subset of the mipmap levels to be used for texturing. If the subset is
complete then the texture can be used for drawing. Therefore, you can use this extension to limit the
mipmap images to the level most recently created and use this to create the next smaller level. The
other capability of the LOD extension is the ability to clamp the LOD to a specified floating point
range so that the entire filtering operation can be restricted. This extension will be discussed in more
detail later on.

The above method outlines an algorithm for generating mipmap levels using the existing texture fil-
ters. There are other mechanisms within the OpenGL pipeline that can be combined to do the filter-
ing. Convolution can be implemented using the accumulation buffer (this will be discussed in more
detail in Section 12.3.3. A texture image can be drawn using a point sampling filter (GL NEAREST)
and the result added to the accumulation buffer with the appropriate weighting. Different pixels (tex-
els) from an NxN pattern can be selected from the texture by drawing a quad that projects to a region
1/N x 1/N of the original texture width and height with a slight offset in the s and t coordinates to
control the nearest sampling. Each time a textured quad is rendered to the color buffer it is accumu-
lated with the appropriate weight in the accumulation buffer. Combining point-sampled texturing
with the accumulation buffer allows the implementation of nearly arbitrary filter kernels. Sampling
outside the image, however, still remains a difficulty for wide filter kernels. If the outside samples
are generated by wrapping to the opposite edge, then the GL REPEAT wrap mode can be used.

5.3 Texture Map Limits

In addition to issues concerning the maximum texture resolution and the methods used for generat-
ing texture images there are also some pragmatic details with using texturing. Many OpenGL im-
plementations hardware accelerate texture mapping and have finite storage for texture maps being
used. Many implementations will virtualize this resource so that an arbitrarily large set of texture
maps can be supported within an application, but as the resource becomes oversubscribed perfor-
mance will degrade. In applications that need to use multiple texture maps there is a tension between
the available storage resources and the desire for improved image quality.

This simply means that it is unlikely that every texture map can have an arbitrarily high resolution
and still fit within the storage constraints; therefore, applications need to anticipate how textures will
be used in scenes to determine the appropriate resolution to use. Note that texture maps need not be
square; if a texture is typically used with an object that is projected to a non-square aspect ratio then
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Figure 25. Footprint in Anisotropically Scaled Texture

the aspect ratio of the texture can be scaled appropriately to make more efficient use of the available
storage.

5.4 Anisotropic Texture Filtering

Currently, OpenGL only provides an isotropic filter for texture minification. This means that the
amount of filtering done along the s and t axes of the texture is the same, and is the maximum of the
filtering needed along each of the two axes individually. This can lead to excessive blurring when a
texture is viewed at any angle angle other than straight on. If it is known that a texture will always
be viewed at a given angle or range of angles, it can be created in a way that reduces over-filtering.

Suppose a textured square is rendered as shown in the left of Figure 25. The texture is shown in the
right. Consider the fragment that is shaded dark. Its ideal footprint is shown in the diagram of the
texture as the dark inner region. But since the minification filter is isotropic, the actual footprint is
forced to a square that encloses the dark region. A mipmap level will be chosen in which this square
footprint is properly filtered for the fragment; in other words, a mipmap level will be selected in
which the size of this square is closest to the size of the fragment. That mipmap is not level zero but
level 1 or higher. Hence, at that fragment more filtering is needed along t than along s, but the same
amount of filtering is done in both. The result will be that the texture will be blurred more than it
needs to be.

To avoid this problem, do the extra filtering along t when you create the texture, and make the tex-
ture have the same width but only half the height. See Figure 25. The footprint now has an aspect
ratio that is more square, so the enclosing square is not much larger, and is closer to the size to the
fragment. Level 0 will be used instead of a higher level. Another way to think about this is that by
using a texture that is shorter along t, you reduce the amount of minification that is required along t.
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Figure 26. Creating a Set of Anisotropically Filtered Images

The closer the filtered mipmaps aspect ratio matches the projected aspect ratio of the geometry, the
more accurate the sampling will be. An application can minimize excessive blurring at the expense
of texture memory by creating a set of re-sampled mipmaps with different aspect ratios.

The application can choose the mipmap that most closely corresponds to the texture scaling ratio
being applied to the textured terrain. This ratio can be quickly estimated by computing the angle
between the viewers line of sight and a plane representing the terrains average orientation. Using
texture objects, the application can switch to the mipmap will provide the best results.

1. Re-sample the texture data into different aspect ratios (gluScaleImage can be used for this
purpose).

2. Create a set of mipmaps corresponding to each image aspect ratio.

3. At each frame, compute the best aspect ratio using the angle between the viewers line of sight
and the terrain.

4. Make the mipmap with the best aspect ratio current for texturing the terrain.

Since texture levels must have power of two dimensions, it would appear that the only aspect ratios
that can be prefiltered are 1:4, 1:2, 1:1, 2:1, 4:1, etc. You can actually define smaller aspect ratio step
size by using a combination of incomplete texture images and use of the texture transform matrix.
For example, say you want a ratio of 3:4. You cannot define a mipmap with lengths of this ratio, but
you can define a 1:1 ratio mipmap and define an image that is scaled into a 3:4 ratio within it. The
part of the texture that isn’t used should be placed along the top (maximum t coordinates) or right
(maximum s coordinates) edge of the texture image. The scaled image can be any size, as long as it
fits within the texture level. You can then create a mipmap in the normal way.

Using this mipmap for some textured geometry with a 3:4 ratio, results in an incorrect textured im-
age. Be sure to set the texture transform matrix to rescale the narrower side of the texture (in our
example in the t direction) by 3/4:
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Figure 27. Geometry Orientation and Texture Aspect Ratio
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Figure 28. Non Power-of-2 Aspect Ratio Using Texture Matrix
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This will change the apparent size ratio between the pixels and textures in the texture filtering sys-
tem, giving you the proper results. This technique would not work well with a wrapped texture; in
our example, there is a discontinuity in the image when you filter outside the range of 0 to 1 in t.
However, in our example, wrapping in s would work fine.

5.5 Paging Textures

As applications simulate higher levels of realism, the amount of texture memory they require can
increase dramatically. Texture memory is a limited, expensive resource, so loading high resolution
images as textures isn’t always feasible. Applications are often forced to resample their images at
a lower resolution to make them fit in texture memory, with a corresponding loss of realism and
image quality. If an application must view the entire textured image at high resolution, there may
be no alternative to this approach.

But many applications have texture requirements that can be structured so that only a small area
of large texture has to be shown at full resolution. For example when textures are used to produce
a realistic flight simulation environment, only the textured terrain close to the viewer has to show
fine detail; terrain far from the viewer is textured using low resolution texture levels, since a pixel
corresponding to these areas covers many texels at once. For many applications that use large texture
maps, the maximum amount of texture memory in use for any given viewpoint is bounded.

Applications can take advantage of this phenomena through texture paging. Rather than loading
complete levels of a large image, only the portion of the image closest to the viewer is kept in texture
memory. The rest of the image is stored in system memory, or on disk. As the viewer moves, the
contents of texture memory are updated to keep the closest portion of the image loaded.

There are two different approaches that could be used to address the problem. The first is to subdi-
vide the texture image into fixed sized tiles and selectively draw the geometry that corresponds to
each image tile, one at a time, reloading texture memory for each new tile. This approach is difficult
to implement. Tile boundaries are a problem for GL LINEAR filters since the locations where the
geometry crosses tile boundaries need to be resampled properly.

The problem could be addressed by clipping the geometry so that the texture coordinates are kept
within the [0.0, 1.0] range and then use texture borders to handle the edges of each image tile. Clip-
ping geometry to match each image tile itself can be a difficult problem, especially if the geome-
try is changing dynamically. For example, terrain close to the viewer might be replaced with more
highly tessellated geometry to increase realism, while geometry far from the viewer is tessellated
more coarsely to improve rendering performance. In general, forcing a correspondence between
texture and geometry beyond what is established by texture coordinates is something to be avoided,
since it adds additional complication and software quality problems to the application.

A more sophisticated solution is to take advantage of texture coordinate wrapping to page textures
without having to tile the textured geometry. To make this clear, consider a single level texture.
Define a viewing frustum that limits the amount of visible geometry to a small area, small enough
that the visible geometry can be easily textured. Now imagine that the entire texture image is stored
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in system memory. As the viewer moves, the image in texture memory can be updated so that it
exactly corresponds to the geometry visible in the viewing frustum:

1. Given the current view frustum, compute the visible geometry.

2. Set the texture transform matrix to map the visible texture coordinates into 0 to 1 in s and t.

3. Use glTexImage2D to load texture memory with the appropriate texel data, using
GL SKIP PIXELS and GL SKIP ROWS to index to the proper subregion.

This technique would remap the texture coordinates of the visible geometry to match texture mem-
ory, then load the matching texture image into texture memory using glTexImage2D.

5.5.1 Texture Subloading

While this technique works, it’s a very inefficient user of texture bandwidth. Even if the viewer
moves a small amount, the entire texture level is reloaded. Performance can be improved by taking
advantage of texture subloading.

If the viewer is smoothly traversing textured terrain, you can take advantage of the fact by incre-
mentally updating the contents of texture memory. Instead of completely reloading the contents of
texture memory, you can reload the section that has gone out of view from the last frame with the
portion of the image that has just come into view this frame. This technique works because of texture
coordinate wrapping. When GL TEXTURE WRAP S and GL TEXTURE WRAP T are set to GL REPEAT

(the default), the integer part of texture coordinates are discarded when mapping into texture mem-
ory. In effect, texture coordinates the go off the edge of texture memory on one side, “wrap around”
to the opposite side. Using subloading, the updating technique looks like this:

1. Given the current and previous view frustum, compute how the range of texture coordinates
have changed.

2. Transform the change of texture coordinates into one or more regions of texture memory that
need to be updated.

3. Use glTexSubImage to update the appropriate regions of texture memory, use
GL SKIP PIXELS and GL SKIP ROWS to index into the texture image.

If the subloads are computed properly, this technique does not require transforming texture coordi-
nates using the the texture transform matrix. Updating texture memory can take from 1 to 4 subloads.

On many systems, texture subloads can be very inefficient when narrow regions are being loaded.
The subloading method can be modified ensure that only subloads above a minimum size are al-
lowed, at the cost of some additional texture memory. The change is simple. Instead of updating
every time the view position changes, ignore position changes until the accumulated change requires
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a subload above the minimum size. Normally this will result in out of date texture data being visible
around the edges of the textured geometry. To avoid this, an invalid region is specified around the
periphery of the texture level, and the view frustum is adjusted so the that geometry textured from
the texels from the invalid region are never visible. This technique allows updates to be cached,
improving performance.

This paging technique depends on only a limited region of the textured geometry being visible. In
this example we’re depending on the limits of the view frustum to only allow properly textured ge-
ometry to be visible. If the view frustum were expanded, we’d see the texture image wrapping over
the surrounding geometry. Even with these limitations, this technique can be expanded to include
mipmapped textures.

Since OpenGL doesn’t understand paged mipmaps, the application can’t simply define a very large
mipmap and not expect the OpenGL implementation to try to allocate the texture memory needed
for all the mipmap levels. Instead the application must use the texture LOD control functional-
ity in OpenGL 1.2 (or the EXT texture lod extension) to define a small number of active lev-
els, using the GL TEXTURE BASE LEVEL, GL TEXTURE MAX LEVEL, GL TEXTURE MIN LOD and
GL TEXTURE MAX LOD with the glTexParameter call. An invalid region must be established and
a minimum size update must be set so that all levels can be kept in sync with each other when up-
dated. For example, a subload 32 texels wide at the top level must be accompanied by a subload 16
texels wide at the next coarser level, if mipmapping is going to filter properly. Multiple images at
different resolutionswill have to be kept in system memory as source images to load texture memory.

If the viewer zooms in or zooms out of the geometry, the texturing system may require levels that
aren’t available in the paged mipmap. The application can avoid this problem by computing the
mipmap levels that are needed for any given viewer position, and keeping a set of paged mipmaps
available, each representing a different set of LOD levels. The coarsest set could be a normal
mipmap, for when the viewer is very far away from the geometry.

5.5.2 Paging Images in System Memory

Up to this point, we’ve assumed that the texel data is available as a large contiguous image in system
memory. Just as texture memory is a limited resource, it also makes sense to conserve system mem-
ory as well. For very large texture images, the image data can be divided into tiles, and paged into
system memory. This paging can be kept separate from the paging going on from system memory to
texture memory. The only difference will be in the offsets required to index the proper region in sys-
tem memory to download, and increase the number of subloads required to update texture memory.
A sophisticated system can wrap texture image data in system memory just as texture coordinates
are wrapped in texture memory.

Consider the case of a two dimensional image roam, illustrated in Figure 29, in which the view is
moving to the right. As the view pans to the right, new texture tiles must be added to the right edge
of the current portion of the texture and old tiles could be discarded from the left edge.

Tiles discarded on the right side of the image create holes where new tiles could be loaded into the
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Figure 29. 2D Image Roam

texture, but there is a problem with the texture coordinates.

The ability to load subregions within a texture has other uses besides these paging applications.
Without this capability textures must be loaded in their entirety and their widths and heights must be
powers of two. In the case of video data, the images are typically not powers of two so a texture of
the nearest larger power of two can be created and only the relevant subregion needs to be loaded.
When drawing geometry, the texture coordinates are simply constrained to the fraction of the tex-
ture which is occupied with valid data. Mipmapping can not easily be used with non-power-of-two
image data since the coarser levels will contain image data from the invalid region of the texture.

5.6 Transparency Mapping and Trimming with Alpha

The alpha component in textures can be used to solve a number of interesting problems. Intricate
shapes such as an image of a tree can be stored in texture memory with the alpha component act-
ing as a matte (1 where the image is opaque, 0 where it is transparent, and a fractional value along
the edges). When the texture is applied to geometry, blending can be used to composite the image
into the color buffer or the alpha test can be used to discard pixels with a 0 alpha component using
GL EQUALS test. To maximize performance, set the alpha test to GL LESS and discard pixels with
a small alpha value, for example less than :05. This way some more pixels are discarded that don’t
contribute significantly to the image.

The advantage of using the alpha test instead of alpha blending is that blending typically degrades the
performance of fragment processing. With alpha testing fragments with zero alpha are rejected be-
fore they get to the color buffer. A disadvantage of alpha testing is that the edges will not be blended
into the scene so the edges will not be properly antialiased.

The alpha component of a texture can be used in other ways, for example, to cut holes in polygons
or to trim surfaces. An image of the trim region is stored in a texture map and when it is applied to
the surface, alpha testing or blending can be used to reject the trimmed region. This method can be
useful for trimming complex surfaces in scientific visualization applications.
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5.7 Billboards

It is often desirable to replace intricate geometry with simpler texture mapped geometry to increase
realism and performance. Billboarding is a technique in which complex objects such as trees are
drawn with simple planar texture mapped geometry and the geometry is transformed to face the
viewer. The transformation typically consists of a rotation to orient the object towards the viewer
and a translation to place the object in the correct position . For the case of the tree, an object with
roughly cylindrical symmetry, an axial rotation is used to rotate the geometry for the tree, typically
a quadrilateral, about the axis running parallel to the tree trunk.

For the simple case of the viewer looking down the negative z-axis and the up vector equal to the
positive y-axis, the angle of rotation can be determined by computing the eye vector from the model
view matrix M

~Veye = M�1

0
BB@

0
0
�1
0

1
CCA

and the rotation � about the y axis is computed as

cos � = ~Veye � ~Vfront
sin � = ~Veye � ~Vright

where

~Vfront = (0; 0; 1)

~Vright = (1; 0; 0)

Once � has been computed a rotation matrix r can be constructed for the rotation about the y-axis
(~Vup) and combined with the model view matrix as MR and used to transform the billboard geom-
etry.

To handle the more general case of an arbitrary billboard rotation axis, an intermediate alignment
rotation A of the billboard axis into the ~Vup axis is computed as

~axis = ~Vup � ~Vbillboard

cos � = ~Vup � ~Vbillboard
sin � = k ~axisk

and the matrix transformation is replaced with MAR. Note that the preceding calculations assume
that the projection matrix contains no rotational component.

In addition to objects which are cylindrically symmetric, it is also useful to compute transformations
for spherically symmetric objects such as smoke, clouds and bushes. Spherical symmetry allows
billboards to rotate up and down as well as left and right, whereas cylindrical behavior only allows
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Figure 30. Billboard with Cylindrical Symmetry

rotation to the left or right. Cylindrical behavior is suited to objects such as trees which should not
bend backward as the viewer’s altitude increases.

Objects which are spherically symmetric are rotated about a point to face the view and thus provide
more freedom in computing the rotations. An additional alignment constraint can be used to resolve
this freedom. For example, an alignment constraint which keeps the object oriented in a consistent
fashion, such as upright. This constraint can be enforced in object coordinates when the objective is
to maintain scene realism, perhaps to maintain the orientation of plume of smoke consistently with
other objects in a scene. The constraint can also be enforced in eye coordinates which can be used
to maintain alignment of an object relative to the screen, for example, keeping annotations such as
text aligned horizontally on the screen.

The computations for the spherically symmetric case are a minor extension of the computations for
the arbitrarily aligned cylindrical case. First an alignment transformation, A, is computed to rotate
the alignment axis onto the up vector followed by a rotation about the up vector to align the face of
the billboard with the eye vector. A is computed as

~axis = ~Vup � ~Valignment

cos � = ~Vup � ~Valignment

sin � = k ~axisk
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where ~Valignment is the billboard alignment axis with the component in the direction of the eye di-
rection vector removed

~Valignment = ~Vbillboard � (~Veye � ~Vbillboard)~Veye

A rotation about the up vector is then computed as for the cylindrical case.

5.8 Rendering Text

A novel use for texturing is rendering antialiased text [28]. Characters are stored in a 2D texture
map as for the tree image described above. When a character is to be rendered, a polygon of the
desired size is texture mapped with the character image. Since the texture image is filtered as part
of the texture mapping process, the quality of the rendered character can be quite good. Text strings
can be drawn efficiently by storing an entire character set within a single texture. Rendering a string
then becomes rendering a set of quads with the vertex texture coordinates determined by the position
of each character in the texture image. Another advantage of this method is that strings of charac-
ters may be arbitrarily oriented and positioned in three dimensions by orienting and positioning the
polygons.

The competing methods for drawing text in OpenGL include bitmaps, vector fonts, and outline fonts
rendered as polygons. The texture method is typically faster than bitmaps and comparable to vector
and outline fonts. A disadvantage of the texture method is that the texture filtering may make the
text appear somewhat blurry. This can be alleviated by taking more care when generating the texture
maps (e.g., sharpening them). If mipmaps are constructed with multiple characters stored in the same
texture map, care must be taken to ensure that map levels are clamped to the level where the image of
a character has been reduced to 1 pixel on a side. Characters should also be spaced far enough apart
that the color from one character does not contribute to that of another when filtering the images to
produce the levels of detail.

5.9 Texture Mosaicing

The method described above for grouping several images together in a single texture turns out to be
useful in other applications as well. In some OpenGL implementations the cost of binding a texture
object can limit the overall performance of the application when a large number of textures are being
used in each frame. The situation can be mitigated to some extent by packing textures which are
used in the same scene together in a single object to reduce the number of texture binds. Also, some
images may not need a full power of two for their width or height leaving an opportunity to use
texture memory more efficiently if multiple images can be packed together.

Geometry which uses an image within a mosaiced texture has its texture coordinates scaled and bi-
ased to index only the texels corresponding to its image. As in the case of character rendering, the
individual images in the mosaic must be separated far enough apart so that they do not interfere dur-
ing filtering. Careful attention should be paid to mipmap generation to ensure that multiple images
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are not blurred together in a level. The texture LOD clamping capability in OpenGL 1.2 can be used
to restrict the range of coarse LODs which are used or mosaiced textures may be constructed from
similar enough images that an appropriate single image can be constructed for each level of detail.
It may also be useful to pack images together which use the same texture environments to reduce
the number of texture environment changes as well.

5.10 Texture Coordinate Generation

Texture coordinates for a fragment are computed by interpolating the texture coordinates for a set of
vertices. OpenGL provides several mechanisms for specifying the texture coordinates at each vertex.
Texture coordinates may be supplied directly by the application us the glTexCoord commands or
vertex arrays, they may be generated automatically from parametric maps for evaluators, or they
may be generated directly by OpenGL using a generation function.

OpenGL supports two mechanisms for computing a texture coordinate directly: distance from a
plane, or the reflection vector using the vertex position and normal to compute this vector. The first
form is useful for making texture coordinates which are proportional to the distance from the object
to some other location and can be computed in either object coordinates or eye coordinates. The lat-
ter is useful for environment mapping with a sphere map. The texture coordinate generation function
is specified separately for each texture coordinate.

5.11 Color Coding and Contouring

One application for object linear coordinate generation is color coding objects by distance. For ex-
ample, a terrain model can be colored by altitude using a 1D texture map to hold the coloring scheme
and specifying a generation function for the s coordinate which measures the distance from the plane
y = 0. Suppose that the vertex coordinates are specified in meters and distances less than 50 meters
are colored blue, distances between 50 and 800 meters green, distances between 800 and 1000 me-
ters white. This means that a 1D texture map is created with the first 5% blue, the next 75% green
and the remaining 20% white. A 64 or 128 element texture map provides enough resolution to dis-
tinguish between the levels. Specifying GL OBJECT LINEAR for the texture generation mode and
an GL OBJECT PLANE equation of (0, 1/1000, 0, 0) for the s coordinate will set s to the y value of
the vertex scaled by 1/1000.

The same basic technique can be used to draw contour lines on an object, for example, in topog-
raphy applications to indicate lines of constant elevation. For this example, a 1D texture map is
used which is all one color except at regularly spaced intervals (say, every eighth texel) where a tick
mark is added in a different color. A coordinate wrap mode of GL REPEAT is used to create repeating
lines across the object being contoured. If a GL OBJECT LINEAR generation function is used then
the contours are anchored to the model. If a GL EYE LINEAR generation function is used then the
coordinates are evaluated in eye space and the contours stay fixed in space rather than moving with
the object.
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Figure 31. Contour Generation Using TexGen

5.12 Annotating Metrics

In [57], Teschner proposes a method for displaying metrics, such as 2D tick marks, on an object
using a 2D texture map containing the metrics. Texture coordinates are generated as a distance from
object coordinates to a reference plane. For the 2D case, two reference planes are used. An example
application for this technique is to create a 2D texture marked off with tick marks every kilometer
in both the s and t directions and map this texture on to terrain data using a GL REPEAT texture
coordinate wrap mode. An GL OBJECT LINEAR texture coordinate generation mode is used, with
the reference planes at x = 0 and z = 0 and a scale factor set such that a vertex coordinate which is
1km from the x�y or z�y plane produces a texture coordinate value equal to the distance between
two tick marks in texture coordinate space.

5.13 Projective Textures

Projective textures [56] use texture coordinates which are computed as the result of a projection.
The result is that the texture image can be subjected to a separate independent projection from the
viewing projection. This technique may be used to simulate effects such as slide projector or spot-
light illumination, to generate shadows, and to reproject a photograph of an object back onto the
geometry of the object. Several of these techniques are described in more detail in later sections of
these notes.

OpenGL generalizes the two component texture coordinate (s,t) to a four-component homogeneous
texture coordinate (s,t,r,q). The q coordinate is analogous to the w component in the vertex coordi-
nates. The r coordinate is used for three dimensional texturing in implementations that support that
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extension and is iterated in manner similar to sand t. OpenGL provides default values for r (0) and
q (1). The addition of the q coordinate adds very little extra work to the usual texture mapping pro-
cess. Rather than iterating (s,t,r) and dividing by 1/w at each pixel, the division becomes a division
by q/w. Thus, in implementations that perform perspective correction there is no extra rasterization
burden associated with processing q.

5.13.1 How to Project a Texture

Projecting a texture image into your synthetic environment requires many of the same steps that are
used to project the rendered scene onto the display. The key to projecting a texture is the contents
of the texture transform matrix. The matrix contains the concatenation of three transformations:

1. A modelview transform to orient the projection in the scene.

2. A projective transform (perspective or orthogonal).

3. A scale and bias to map the near clipping plane to texture coordinates.

The modelview and projection parts of the texture transform can be computed in the same way, with
the same tools that are used for the modelview and projection transform. For example, you can use
gluLookat to orient the projection, and glFrustum or gluPerspective to define a perspective
transformation.

The modelview transform is used in the same way as it is in the OpenGL viewing pipeline, to move
the viewer to the origin and the projection centered along the negativez axis. In this case, viewer can
be thought of a light source, and the near clipping plane of the projection as the location of the texture
image, which can be thought of as printed on a transparent film. Alternatively, you can conceptualize
a viewer at the view location, looking through the texture on the near plane, at the surfaces to be
textured.

The projection operation converts eye space into Normalized Device Coordinate (NDC) space. In
this space, the x, y, and z coordinates range from �1 to 1. When used in the texture matrix, the
coordinates are s, t, and r instead. The projected texture can be visualized as laying on the surface
of the near plane of the oriented projection defined by the modelview and projection parts to the
transform.

The final part of the transform scales and biases the texture map, which is defined in texture coordi-
nates ranging from 0 to 1, so that the entire texture image (or the desired portion of the image) covers
the near plane defined by the projection. Since the near plane is now defined in NDC coordinates,
Mapping the NDC near plane to match the texture image would require scaling by 1=2, then biasing
by 1=2, in both s and t. The texture image would be centered and cover the entire back plane. The
texture could also be rotated if the orientation of the projected image needed to be changed.

The projections are ordered in the same as the graphics pipeline, the modelview transform happens
first, then the projection, then the scale and bias to position the near plane onto the texture image:
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1. glMatrixMode(GL TEXTURE)

2. glLoadIdentity (start over)

3. glTranslatef(.5f, .5f, 0.f)

4. glScalef(.5f, .5f, 1.f) (texture covers entire NDC near plane)

5. Set the perspective transform (e.g., glFrustum).

6. Set the modelview transform (e.g., gluLookAt).

What about the texture coordinates for the primitives that the texture will be projected on? Since the
projection and modelview parts of the matrix have been defined in terms of eye space (where the
entire scene is assembled), the straightforward method is to create a 1-to-1 mapping between eye
space and texture space. This can be done by enabling texture generation to eye linear and setting
the eye planes to a one-to-one mapping:

� GLfloat Splane[] = f1.f, 0.f, 0.f, 0.fg;

� GLfloat Tplane[] = f0.f, 1.f, 0.f, 0.fg;

� GLfloat Rplane[] = f0.f, 0.f, 1.f, 0.fg;

� GLfloat Qplane[] = f0.f, 0.f, 0.f, 1.fg;

You could also use object space mapping, but then you’d have to take the current modelview trans-
form into account.

So when you’ve done all this, what happens? As each primitive is rendered, texture coordinates
matching the x, y, and z values that have been transformed by the modelview matrix are generated,
then transformed by the texture transformation matrix. The matrix applies a modelview and projec-
tion transform; this orients and projects the primitive’s texture coordinate values into NDC space (-1
to 1 in each dimension). These values are scaled and biased into texture coordinates. Then normal
filtering and texture environment operations are performed using the texture image.

If transformation and texturing is being applied to all the rendered polygons, how do you limit the
projected texture to a single area? There are a number of ways to do this. One is to simply only
render the polygons you intend to project the texture on when you have projecting texture active
and the projection in the texture transformation matrix. But this method is crude. Another way is
to use the stencil buffer in a multipass algorithm to control what parts of the scene are updated by a
projected texture. The scene can be rendered without the projected texture, the stencil buffer can be
set to mask off an area, and the scene re-rendered with the projected texture, using the stencil buffer
to mask off all but the desired area. This can allow you to create an arbitrary outline for the projected
image, or to project a texture onto a surface that has a surface texture.
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There is a very simple method that works when you want to project a non-repeating texture onto
an untextured surface. Set the GL MODULATE texture environment, set the texture repeat mode to
GL CLAMP, and set the texture border color to white. When the texture is projected, the surfaces
outside the texture itself will default to the texture border color, and be modulated with white. This
will leave the areas textured with the border color unchanged, since each color component will be
scaled by one.

Filtering considerations are the same as for normal texturing; the size of the projected textures rel-
ative to screen pixels determines minification or magnification. If the projected image will be rela-
tively small, mipmapping may be required to get good quality results. Using good filtering is espe-
cially important if the projected texture moves from frame to frame.

Please note that like the viewing projections, the texture projection is not really optical. Unless spe-
cial steps are taken, the texture will affect all surfaces within the projection, both in front and in back
of the projection. Since there is no implicit view volume clipping (like there is with the OpenGL
viewing pipeline), the application needs to be carefully modeled to avoid undesired texture projec-
tions, or user defined clipping planes can be used to control where the projected texture appears.

5.14 Environment Mapping

OpenGL directly supports environment mapping using spherical environment maps. A sphere map
is a single texture of a perfectly reflecting sphere in the environment where the viewer is infinitely
far from the sphere. The environment behind the viewer (a hemisphere) is mapped to a circle in
the center of the map. The hemisphere in front of the viewer is mapped to a ring surrounding the
circle. Sphere maps can be generated using a camera with an extremely wide-angle (or fish eye) lens.
Sphere map approximations can also be generated from a six-sided (or cube) environment map by
using texture mapping to project the six cube faces onto a sphere.

OpenGL provides a texture generation function (GL SPHERE MAP) which maps a vertex normal to a
point on the sphere map. Applications can use this capability to do simple reflection mapping (shade
totally reflective surfaces) or use the framework to do more elaborate shading such as Phong lighting
[57]. Applications of environment mapping are discussed in Sections 8.3 and 9.3.2.

5.15 Image Warping and Dewarping

Image warping or dewarping may be implemented using texture mapping by defining a correspon-
dence between a uniform polygonal mesh and a warped mesh. The points of the warped mesh are
assigned the corresponding texture coordinates of the uniform mesh and the mesh is texture mapped
with the original image. Using this technique, simple transformations such as zoom, rotation or
shearing can be efficiently implemented. The technique also easily extends to much higher order
warps such as those needed to correct distortion in satellite imagery.
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5.16 3D Textures

Three dimensional textures are a logical extension of 2D textures. In 3D textures, texels become unit
cubes in texel space. They are packed into a rectangular parallelepiped, each dimension constrained
to be a power of two. This texture map occupies a volume, rather than a rectangular region, and is
accessed using three texture coordinates; s, t, and r. As with 2D textures, texture coordinates range
from 0 to 1 in each dimension. Filtering is controlled in the same fashion as 2D textures, using
texture parameters and texture environment.

5.16.1 Using 3D Textures

In OpenGL, 3D textures have much in common with 2D and 1D textures. Texture parameters
and texture environment calls are the same, using the GL TEXTURE 3D EXT target in place of
GL TEXTURE 2D or GL TEXTURE 1D.

Internal and external formats and types are the same, although a particular OpenGL implementation
may limit the 3D texture formats.

3D textures need to be accessed with s, t, and r texture coordinates instead of just s and t. The
additional texture coordinate complexity, combined with the common uses for 3D textures, means
texture coordinate generation is used more commonly for 3D textures than for 2D and 1D.

3D texture maps take up a large amount of texture memory, and are expensive to change dynamically.
This can affect multipass algorithms that require multiple passes with different textures.

The texture matrix operates on 3D texture coordinates in the same way that it does for 2D and 1D
textures. A 3D texture volume can be translated, rotated, scaled, or have other transforms applied
to it. Applying a transformation to the texture matrix is a convenient and high performance way to
manipulate a 3D texture when it is too expensive to alter the texel values directly.

3D Textures vs. Mipmaps A clear distinction should be made between 3D textures and
mipmapped 2D textures. 3D textures can be thought of as a solid block of texture, requiring a third
texture coordinate r, to access any given texel. A 2D mipmap is a series of 2D texture maps, each
filtered to a different resolution. Texels from the appropriate level(s) are chosen and filtered, based
on the relationship between texel and pixel size on the primitive being textured.

Like 2D textures, 3D texture maps can be mipmapped. Instead of resampling a 2D layer, the entire
texture volume is filtered down to an eighth of its volume by averaging eight adjacent texels on one
level down to a single texel on the next. Mipmapping serves the same purpose in both 2D and 3D
texture maps; it provides a means of accurately filtering when the projected texel size is small relative
to the pixels being rendered.

59



Programming with OpenGL: Advanced Rendering

5.16.2 3D Textures to Render Solid Materials

A direct 3D texture application is rendering solid objects composed of heterogeneous material. An
example is rendering a statue made of marble or wood. The object itself is composed of polygons
or NURBS surfaces bounding the solid. Combined with proper texgen values, rendering the surface
using a 3D texture of the material makes the object appear cut out of the material. With 2D textures
objects often appear to have the material laminated on the surface. The difference can be striking
when there are obvious 3D coherencies in the material, combined with sharp angles in the object’s
surface.

Rendering a solid with 3D texture is straightforward:

Create the 3D texture The texture data for the material is organized as a three dimensional ar-
ray. Often the material is generated procedurally. As with 2D textures, proper filtering and
sampling of the data must be done to avoid aliasing. A mipmapped 3D texture will increase
realism of the object. OpenGL doesn’t support a gluBuild3DMipmaps command, so the
mipmaps need to created by the application. Be sure to check to see if the size of the texture
you want to create is supported by the system, and there is sufficient texture memory available
by calling glTexImage3DEXT with GL PROXY TEXTURE 3D EXT to find a supported size.
You can also call glGet with GL MAX 3D TEXTURE SIZE EXT to find the maximum allowed
size of any dimension in a 3D texture for your implementation of OpenGL, though the result
may be more conservative than the result of a proxy query.

Create Texture Coordinates For a solid surface, usingglTexGen to create the texture coordinates
is the easiest approach. Define planes for s, t, and r in eye space. Adjusting the scale has more
effect on texture quality than the position and orientation of the planes, since scaling affects
how the texture is sampled.

Enable Texturing Use glEnable(GL TEXTURE 3D EXT) to enable 3D texture mapping. Be sure
to set the texture parameters and texture environment appropriately. Check to see what re-
strictions your implementation puts on these values.

Render the Object Once configured, rendering with 3D texture is no different than other texturing.

5.16.3 3D Textures as Multidimensional Functions

Instead of thinking of a 3D texture as a 3D volume of data, it can be thought of as a 2D texture map
that varies as a function of the r coordinate value. Since the 3D texture filters in three dimensions,
changing the r value smoothly blends from one 2D texture image to the next.

An obvious application is animated 2D textures. A 3D texture can animate a sequence of images by
using the r value as time. Since the images are interpolated, temporal aliasing is reduced.

Another application is generalized billboards. A normal billboard is a 2D texture applied to a poly-
gon that always faces the viewer. Billboards of objects such as trees behave poorly when the viewer
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Figure 32. 3D Textures as 2D Textures Varying with R

views the object from above. A 3D texture billboard can change the textured image as a function of
viewer elevation angle, blending a sequence of images between side view and top view, depending
on the viewer’s position.

5.17 Line Integral Convolution (LIC) with Texture

Displaying vector flow fields is an important scientific visualization technique. There are a number
ways to do it; two common and useful methods are distributingvector icons over the field or drawing
streamlines. Line integral convolution is another technique for visualizing vector fields and has the
advantage of being able to visualize large and detailed vector fields in a reasonable display area.

Line integral convolution involves selectively blurring a reference image as a function of the vector
field to be displayed. The reference image can be anything, but to make the results clearer, is usually
an spatially uncorrelated image (e.g., a noise image). The resulting image appears stretched and
squished along the directions of the distorting vector field streamlines, visualizing the flow with a
minimum of display resolution. Vortices, sources, sinks and other discontinuities are clear shown in
the resulting image, and the viewer can get an immediate grasp of the flow fields “big picture”.

In each case, you start with a vector field, sampled as a discrete grid of normalized vectors. You also
need an image that is non-uniform and spatially uncorrelated, so correlations you apply to it will be
more obvious. The goal is to process the image with the vector field, using line integral convolution,
so you can visualize it. Note that in this technique, you will concentrate on the direction of the flow
field, not its velocity; this is why the vector values at each gridpoint are normalized.

The processed image can be calculated directly using a special convolution technique. A represen-
tative set of vector values on the vector grid are chosen. Special convolution kernels are created

61



Programming with OpenGL: Advanced Rendering

Figure 33. Line Integral Convolution

shaped like the local streamline at that vector by tracing local field flow forwards and backwards
some user-defined distance. The resulting curve is used as a convolution kernel to convolve the un-
derlying image. This process is repeated over the entire image using a sampling of the vectors in the
vector field.

Mathematically, for each location p in the input vector field, a parametric curve P (p; s) is generated
which passes through the location and follows the vector field for some distance in either direction.
To create an output pixel F 0(p), a weighted sum of the values of the input image F along the curve
is computed. The weighting function is k(x). Thus the continuous form of the equation is:

F 0(p) =

RL
�L F (P (p; s))k(s)dsRL

�L k(s)ds

To discretize the equation, use values P0::l along the curve P (p; s):

F 0(p) =

Pl
i=0 F (Pi)hiPl

i=0 hi

5.17.1 Sampling

How accurately the processed image represents the vector field depends on how accurately the line
convolution kernels follow the flow fields streamlines. Since the convolution kernels are only dis-
cretely sampling a continuous flow field, they are inaccurate in general. Areas of flow that are chang-
ing slowly will be represented well, but rapidly changing regions of the flow field (such as the center
of vortices and other singularities) will be incorrectly described or missed altogether.

There are various ways of optimizing the sampling intervals to minimize this this problem, with
different tradeoffs between computation time and resulting accuracy. The numerical analysis topics
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Figure 34. Line Integral Convolution with OpenGL

involved are beyond the scope of this document, and are well covered elsewhere [8, 39]. For our
purposes, we’ll use the simplest and least accurate method – a fixed spatial sampling interval.

5.17.2 Using OpenGL to Create Line Integral Convolution (LIC) Images

Instead of generating a series of custom convolution kernels and applying them to an image, you can
use a texture mapping approach. This variant has the advantage that it’s reasonably easy to imple-
ment and runs quickly, especially on systems with good texturing and accumulation buffer support,
since it is parallelizing the convolution operations.

The concept is simple; a surface, tessellated into a mesh, is textured with an image to be processed.
Each vertex on the surface has a texture coordinate associated with it. Instead of convolving the im-
age with a series of streamline convolution kernels, the texture coordinates at each vertex are shifted
parallel to flow field vector local to that vertex. This process, called advection, is done repeatedly
in a series of displacements parallel to the flow vectors, with the resulting series distorted images
combined using the accumulation buffer.

The texture coordinates at each grid location are displaced parallel to the local field vector in a fixed
series of steps. The displacement is done both parallel and antiparallel to the field vector at the ver-
tex. The amount of displacement for each step and the number of steps determines the accuracy and
appearance of the line integral convolution. The application generally sets a global value describing
the length of the displacement range for all of the texture coordinates on the surface; the number of
displacements along that length is computed per vertex, as a function of the local field’s curl.
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5.17.3 Line Integral Convolution Procedure

Next, make some simplifying assumptions to make the procedure simple:

1. The supplied flow field vector grid matches the tessellated textured surface; there’s a one-to-
one correspondence between vector and vertex.

2. Set a fixed number of displacements (n) at each vertex.

These assumptions allow you to simply use the vector associated with each vertex on the tessellated
surface when computing texture displacements. You can also simply calculate the displacements by
parameterizing the vector and computing evenly spaced texture coordinate locations displaced along
the vector direction, both forwards and backwards.

Given these assumptions, the procedure looks like this:

1. Update the texture coordinates at each vertex on the surface.

2. Render the surface using the noise texture and the displaced texture coordinates.

3. Accumulate the resulting image in the accumulation buffer, scaling by 1=n.

4. Repeat the steps above n times, then return the accumulated image.

5. Perform histogram equalization or image scaling to maximize contrast.

5.17.4 Details

Since the most of the work goes into updating the texture coordinates, it makes sense to use vertex
arrays to represent the textured surface. Using a vertex array provides two benefits; it simplifies the
representation of the texture coordinates (they can be kept in a 2D array), and it potentially increases
rendering performance since usingglDrawElements has an index array that can eliminate the need
for sending shared texture and vertex coordinates multiple times, and reduces function call overhead.

Scaling each accumulation uniformly is not optimal. The displacement of the texture coordinates
is most accurate close to the grid vector; so each image contribution can be scaled as an inverse
function of distance from from the vector. The farther the displacement from the original flow field
vector, the less accurate the advection can potentially be, and the smaller accumulation scale factor
is. Obviously more sophisticated algorithms can be implemented that adjust scale based on a com-
puted, rather than assumed, accuracy. Any scaling algorithm should take into account the maximum
and minimum possible color values after accumulating to avoid pixel color overflow or underflow.

In many implementations, the performance of this algorithm will be limited by the speed of the con-
volution operation. For some applications, a blend operation can be substituted with a loss of resolu-
tion accuracy; the scaling operation can be provided by changing the intensity of the base polygon.
Watch out for overflow and underflow of the blended color values.
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5.17.5 Maximizing Contrast

There are a couple of obvious methods to maximize the effects of the flow field being visualized, in
particular, to contract the blurring tendency from the the random noise texels being blended together.
One simple method is to scale and bias the image to maximize its contrast. The imaging subset makes
this easy. Process the image by doing a pixel copy, turning on sink after the minmax operation. With
the minimum and maximum values obtained, you can execute glCopyPixels again, setting scale
and bias in the pixel pipeline to scale and bias the image.

Or you can do a full histogram equalization. Using the histogram feature, copy the image through
the pixel pipeline, then process the resulting histogram to create a lookup table. The lookup table
will balance the intensities into a linear ramp. Again use copypixels to remap the pixel intensity
values. In detail:

1. glEnable(GL MIN MAX)

2. glMinmax(GL MIN MAX, GL LUMINANCE, GL TRUE)

3. glCopyPixels of LIC Image.

4. glGetMinmax to get minimum and maximum pixel values.

5. Compute a scale and bias value to get full 0 to 1 dynamic range.

6. glDisable(GL MIN MAX)

7. glDisable(GL MIN MAX)

8. glPixelTransfer to set scale and bias value.

9. glCopyPixels of LIC Image to rescale it.

5.17.6 Going Farther

The approach described here to generate line integral convolution images is very simplistic. More
sophisticated algorithms will decouple the surface tessellation from the flow field grid, and more
finely subdivide the tessellationsurface where there rapidly changing flows to properly sample them.
This subdivision algorithm should be backed with a rigorous sampling approach so that the results
can can be trusted within given accuracy bounds. A subdivision algorithm must also recognize and
handle various types of flow discontinuities.

This technique can easily be extended into three dimensions, using 3D textures. Volume visualiza-
tion techniques, described in Section 13 in these notes, can be used to visualize the 3D LIC image.
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Detail texture 

Figure 35. Detail Textures

5.18 Detail Textures

Texture filtering can become unrealistic when magnifying. When the viewer is close to a texture
surface, and single texels start to cover many pixels. The linear magnification filtering of these texels
results in an unrealistically smoothed image with little surface detail. Not only does the image look
unrealistic, but the lack of high frequency spatial information on the surface makes it more difficult
to get realistic height and and motion cues when moving over the surface.

Ideally, every texture will have enough fine levels that any normal view of the textured surface will
always have sufficient high frequency spatial data. But providing extra levels are expensive. With
mipmapping, each fine level requires four times as many texels as the next coarser one. In some
cases, it’s worth it. The finer levels contain much more visual information that’s useful to the appli-
cation.

But sometimes it’s not. A very high resolution image of an object will contain surface details, but
the details can be very similar across the surface. For example, a close-up photo of a road may show
a lot of asphalt detail that’s pretty similar across the entire road. Providing a mipmap level of this
detail would consume a lot of texture memory, without adding a lot of useful image data. Yet this
detail provides important motion and height cues, and keeps the level from looking too blurry.

A detail texture is one solution to this problem. A representative section of a high resolution image is
chosen, and its high frequency information extracted. The extracted information is stored in a small
texture that contains just a fraction of the entire image.

The main mipmapped textured can then have fewer, lower resolution levels. When the viewer is
close to the textured surface, the detail texture is combined with the filtered base texture to provide
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Texture magnification is easy to compute in this view; 
magnification is a function of height above ground.

Figure 36. Special Case Texture Magnification

high frequency information to the result. Since the detail texture is small, its pattern is repeated over
the entire visible surface.

It is assumed that the detailed texture contains only high frequency image features. These features
are changing rapidly even across a small detail texture, so there are no low frequency components
to cause tiling artifacts when repeating the detail texture across the textured surface.

Detail textures shouldn’t contribute anything to a texture that isn’t magnifying. When implementing
detail texturing, you must be careful to fade in detail texturing as a function of the magnification of
the base texture.

One way to do this is to gradually blend in the detail texture contribution as a function of distance
from the textured surface. In many cases, application specific constraints can simplify the problem.
For example, a flight simulator may have a look down mode that only needs a height above ground
and a precomputed scaling factor to determine magnification level. If the simulator’s view frustum
brings the entire visible textured surface into view at nearly the same magnification, this solution
can work well.

In the general case, however, computing texture magnification can be difficult. You must consider
the visible vertices of the textured surface, the texture coordinate scaling resulting from the current
modelview and projection transformations, the current texture generations settings, and the values
in the texture transformation matrix. One way around this is to add detail texture support in the
OpenGL implementation. This is done in the detail texture extension GL SGIS detail texture

supported on SGI hardware. This extension blends in the detail texture as a function of magnifica-
tion, and allows the detail texture either to add to or modulate the base texture.
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5.18.1 Signed Intensity Detail Textures

One technique that avoids having to compute the base texture magnification is to create a signed
detail texture. The detail texture image created so that it has both positive and negative intensity
values, with an average value over the detail texture of zero; when combined with the base image, it
modifies it, adding high frequency components to the textured image. The detail texture is combined
with the base texture in a separate pass, using alpha blending.

Different blend functions can be used, depending on whether you want to add in the detail tex-
ture or modulate with it. In the first pass the image is drawn with the base texture, in the sec-
ond pass, The detail texture is made current, and since it is higher resolution, the texture coor-
dinate mapping is changed, either by changing the texgen mapping or with the texture transfor-
mation matrix. Blending mode is enabled, and the blend function is set. If the blend function is
glBlendFunc(GL ONE, GL ONE), the detail texture is added to the base texture. If the blend func-
tion is glBlendFunc(GL ZERO, GL SRC COLOR), the detail texture will modulate the base tex-
ture.

The clever part of this algorithm is how the detail texture combines with the base texture as a func-
tion of magnification. The detail texture is applied to the same geometry as the base texture. The
texturing system is configured so that the detail texture is at an offset magnification value relative to
the base texture; it minifies if the base texture isn’t magnifying. The minification filtering will cause
the signed intensity components to blend together.

If the average intensity of the detail texture is zero, it will have little or no contribution to the image.
As both the detail and base texture are zoomed, the filtering of the detail texture begins to magnify,
and the signed intensity values stop canceling each other out.

Although a signed texture value can’t be blended directly, it can be simulated by using a subtractive
blend and a biasing term. The signed texels of the detail texture are first converted to positive values.
For example, if the texture values range from -1/4 to 1/2, the texels can be biased by 1/4. Then
the texture images applied and blended normally. After the two textures are combined, a third pass
subtracts out the 1/4 bias term from the textured image.

1. Create a signed detail texture image ranging from -1/4 to 1/2.

2. Bias the image to make it non-negative.

3. Render the surface with the base texture.

4. Enable blending.

5. Set blend function to modulate or add.

6. Re-render the surface using the detail texture with different texture coordinates.

7. glBlendEquation(GL FUNC REVERSE SUBTRACT)

8. Render the image unlit with a gray color (equal to the bias term) to remove the biasing term.
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Figure 37. Subtracting out Low Frequencies

5.18.2 Making Detail Textures

Detail textures contain the high frequency components from the texture image. The high frequency
information is extracted, not generated from scratch. So you must start with a high resolution version
of the desired texture.

The first step is to choose the size of the detail texture, and select a region of the detailed image that
contains high frequency details representative of the entire image. Now extract the high frequency
components of that region. One technique is to remove the high frequency components from one
copy of the region by blurring it. This can be done with an image processing application, or you can
use gluScaleImage to scale the image down, then up again. For more sophisticated filtering, you
can use a blurring convolutionkernel, assuming your implementation of OpenGL supports the imag-
ing subset. Enable convolution, set the appropriate blurring filter kernel and use glCopyPixels to
process the image.

Now subtract the blurred image from the unprocessed one. You can do this using the subtractive
blend mode or with the accumulation buffer. The result will be a signed image that contains the
high frequency components of the image. You will have to be careful to add a biasing value before
subtracting (or before returning the image from the accumulation buffer) to avoid negative pixel
values, since the frame buffer will clamp them. If you have the imaging subset, you can use the
minmax feature to find the range of pixel values in both the sharp and blurry parts of the detail texture
image before you subtract them. You can then use the results to find the proper biasing term.

5.19 Gradual Cutaway Views

Engineering drawings of complex objects (such as automobiles) may show a cutaway view, remov-
ing some layers of the object (such as the outer shell) in order to reveal the object’s inner components
and their respective positions. When the purpose of the drawing is more sales-oriented, the cutaway
view may be done in a more artistic style, with the cut edge of object’s outer shell is cut gradually,
the parts of the edge closer to the viewer becoming more and more transparent. Additional stylistic
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touches can be added by showing the seams of the object shell, and have them also fade to trans-
parency at a slightly different rate than the shell surface itself.

This effect can be done in a straightforward way using OpenGL. This technique uses texture map-
ping and texture coordinate generation to modulate the alpha component of an object’s shell. The
object must be divided into two parts that can be rendered separately; the object’s shell and the ob-
ject’s interior. The interior is rendered first in a standard fashion, using depth buffering. The object
shell is rendered, but a one-dimensional texture map containing an alpha component ramp is used
to modulate the object color.

If alpha blending is enabled, using glBlendMode(GL SRC ALPHA, GL ONE MINUS SRC ALPHA),
the texture map will scale down the alpha component of the shell as it gets closer to the viewer,
rendering it more transparent. The edges of the shell can be rendered as a separate pass, using a
slightly different 1D texture map or different texgen plane equation to produce a different rate of
transparency change from that of the shell surface.

Since the shell itself is blended, it must be handled as a transparent object to avoid render order
artifacts. Both depth buffering and alpha blending using source alpha/1 - source alpha require depth
sorted primitives in order to work reliably. The shell should be sorted so the surfaces more distant
from the viewer are rendered first. If the shell is convex, and the surface primitives are oriented
consistently, an easy way to do this is with face culling. If the shell primitives are oriented to be
outward facing, rendering the shell twice, first with front face, then back face culling will draw the
surfaces in the proper depth order. For more information, see Section 10 in these course notes.

5.19.1 Steps to Generating a Cutaway Shell

1. Draw the object internals with depth buffering.

2. Enable and configure a 1 dimensional texture ramp; use GL ALPHA as the format.

3. Enable and configure texture coordinate generation for the s component; use eye linear, and
set the s eye plane to map �z over the range of the object shell cutaway from 0 to 1.

4. Enable blending, and set the blend mode: source is GL SRC ALPHA, destination is
GL ONE MINUS SRC ALPHA.

5. Render the shell of the object in depth order; most distant objects first. For convex shells, this
could be done using face culling.

6. Load a different texture ramp in the 1D texture map.

7. Render the shell edges; you can do this by re-rendering the shell after call glPolygonMode
with the mode set to GL LINE.

If you want to render the shell edges, you’ll need to use polygon offset, or some other method,
such as using the stencil buffer, to avoid z fighting. A reasonable setting to try would be
glPolygonOffset(-1.f, -1.f).
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Figure 38. Gradual Cutaway Using a 1D Texture
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5.19.2 Refinements

There are a number of parameters you will want to adjust for maximum effect. One is the shape of
the texture ramp for both the shell and the shell edges. A linear ramp produces a somewhat abrupt
cutoff; tapering the beginning and end of the ramp will produce a smoother transition. The texture
ramps can also be adjusted by changing the texgen s eye plane. Changing the plane values can move
the distance and the range of the cutaway transition zone.

Since both the shell and the interior of the object will be lit, there is some question as to what the
back surface of the shell revealed by the cutaway should look like. As before, aesthetics and the
surrounding scene will determine what’s best. Some choices would be showing the back of the shell
in a darker version of the shell’s color, unlit. Another possibility is to use back face lighting on the
shell’s interior.

5.19.3 Rendering a Surface Textured Shell

The steps above assume an untextured object shell. If the shell itself has a surface texture, things
get more involved. The preference would be to apply both the 2D surface texture and the 1D
transparency texture ramp simultaneously. In order to blend two textures together, use a multi-
pass method. The basic idea is to separate the blend function glBlendFunc(GL SRC ALPHA,

GL ONE MINUS SRC ALPHA) into two separate steps. There are now three objects to consider; in-
ternal components of the object, the shell of the object textured with a surface texture, and the shell
of the object textured with the 1D alpha texture. The alpha textured shell is used to adjust the trans-
parency of the other two objects separately.

Two approaches suggest themselves, based on your hardware’s capabilities. If your system supports
an alpha buffer, the approach is only a little more complicated. If you don’t, you can do it with two
buffers.

5.19.4 Alpha Buffer Approach

You render the internal object as before, then adjust the transparency of the resulting image
by rendering the alpha-textured shell with the blend mode set to glBlendFunc(GL ZERO,

GL ONE MINUS SRC ALPHA). The alpha values from the shell are used to scale the image of the
object internals that have been rendered into the framebuffer. The alpha values themselves are also
saved into the alpha buffer.

Now depth buffer update is disabled, and the surface textured shell is rendered, with the blend mode
set to glBlendFunc(GL ONE MINUS DST ALPHA, GL ONE). In this way the internal part of the
object, which has already been scaled by 1� srcalpha is summed with the surface textured shell,
which is blended by 1� (1� srcalpha) = srcalpha, giving the desired result.
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1. Configure a window that can store alpha color values.

2. Draw the object internals with depth buffering.

3. Mask off depth buffer updates.

4. Enable blend mode.

5. glBlendFunc(GL ZERO, GL ONE MINUS SRC ALPHA)

6. Draw alpha textured shell to adjust internal objects’ transparency.

7. glBlendFunc(GL ONE MINUS DST ALPHA, GL ONE)

8. Disable 1D Texturing Enable 2D texturing.

9. Render surface textured shell.

5.19.5 No Alpha Buffer Approach

If you don’t have an alpha buffer to store intermediate alpha values, then you’ll have to render two
images, one of the internal objects, one of the surface textured shell, then combine the two images
using blending.

The first steps are the same as the alpha buffer approach: You render the internal object as before,
then adjust the transparency of the resulting image by rendering the alpha textured shell with the
blend mode set to glBlendFunc(GL ZERO, GL ONE MINUS SRC ALPHA). The alpha values from
the shell are used to scale the image of the object internals that have been rendered into the frame-
buffer. This time the alpha values are lost.

In a separate buffer (or different area of the window) Render the surface textured shell. Now adjust
the transparency of this image by re-rendering the shell using only the alpha texture. This time the
blend mode should be glBlendFunc(GL ZERO, GL SRC ALPHA). This image now has it’s trans-
parency adjusted.

Now you can combine the two images using glCopyPixels with the blend function set to
glBlendFunc(GL ONE, GL ONE). This brings the two halves of the blend operation together.

There is one problem. There is no depth testing between the transparent shell and the internal objects
images. You can also take care of this using a stencil buffer technique described in Section 14. The
technique allows you, in effect, copy an image with its depth information.

The stencil buffer is used to save the results of depth comparing the two images’ depth values, and
used as a per-pixel mask to control the merging of the two images. See Section 14.4 for details.
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5.20 Procedural Texture Generation

Procedurally generated textures are a diverse topic; we concentrate on those based on filtered noise
functions . They are commonly used to simulate effects from phenomena such as fire, smoke, clouds,
and marble formation. These textures are described in detail in [16], which provides the basis for
much of this section.

5.20.1 Filtered Noise Functions

A filtered noise function is simply a function created by filtering impulses of random amplitude over
the domain. There are a variety of ways to distribute the impulses spatially and to filter those im-
pulses; these methods determine the character of the function and, in turn, the character of the pro-
cedural texture created from the function. Regardless of the method chosen, a filtered noise function
should have certain properties [16], some of which are:

� It is a repeatable pseudorandom function of its inputs.

� It has a known range, typically -1 to 1.

� It is band-limited, with a maximum frequency of about 1 per domain unit.

Given such a function, we can build a more interesting function by making dilated versions of the
original such that each one has a frequency of 2, 4, 8, etc. These are called the octaves of the original
function. The octaves are then composited together with the original noise function using some set of
weights. The result is a band-limited function which gives the impression of controlled randomness
in each frequency band.

One way of distributing noise impulses is to space them uniformly along the coordinate axes, as
in a lattice. In value noise, the function itself interpolates the values at the lattice points, while in
gradient noise the gradient of the function interpolates the values at the lattice points [16]. Gradient
noise is similar to the noise function implemented in the RenderMan shading language.

Lattice noises can exhibit axis-aligned artifacts. Lewis [37] describes sparse convolution, a way
to avoid such artifacts by distributing the impulses using a stochastic process, and van Wijk [59]
describes a similar technique called spot noise.

Although the noise functions described in [16] are generally 3D, we first discuss how to generate a
2D noise function, because it is more straightforward to construct in a 2D framebuffer and because
some simple interesting effects can be created with it.

5.20.2 Generating Noise Functions

Filtered noise functions are typically implemented as continuous functions that can be sampled at
an arbitrary domain value. However, for some applications a set of uniformly spaced samples of the
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function may suffice. In these cases, a discrete version of the function can be created in the frame-
buffer using OpenGL. In the following, we do not distinguish between the terms noise function and
discrete noise function .

A simple way to create lattice noise is to create a texture with random values for the texels, and
then to draw a textured rectangle with a bilinear texture filter at an appropriate magnification. How-
ever, bilinear interpolation produces poor results, especially when creating the lower octaves, where
values are interpolated across a large area. Some OpenGL implementations support bicubic texture
filtering, which may produce results of acceptable quality. However, a particular implementation of
bicubic filtering may have limited subtexel precision, causing noticeable banding at the lower oc-
taves. Both bilinear and bicubic filters also have the limitation that they produce only value noise;
gradient noise is not possible. We suggest another approach.

5.20.3 High Resolution Filtering

The accumulation buffer can be used to convolve a high resolution filter with a relatively small image
under magnification. That is what we need to make the different octaves; the octave representing
the lowest frequency band will be created from a very small input image under large magnification.
Suppose we want to create a 512x512 output image by convolving a 64x64 filter with a 4x4 input
image. Our filter takes a 2x2 array of samples from the input image at a time, but is discretized into
64x64 values in order to generate an output image of the desired size. The input image is shown on
the left in Figure 39 with each texel numbered. The output image is shown on the left in Figure 40.
Note that each texel of the input image will make a contribution to a 64x64 region of the output
image. Consider these regions for texels 5, 7, 13, and 15 of the input image; they are adjacent to
each other and have no overlap, as shown by the dotted lines on the left in Figure 40. Hence, these
four texels can be evaluated in the same pass without interfering with each other. Making use of
this fact, we redistribute the texels of the input image into four 2x2 textures as shown in the right of
Figure 39. We also create a 64x64 texture that contains the filter function; this texture will be used
to modulate the contribution of the input texel over a 64x64 region of the color buffer. The steps to
evaluate the texels in Texture D are:

1. Using the filter texture, draw four filter functions into the alpha planes with the appropriate x
and y offset, as shown on the right in Figure 40.

2. Enable alpha blending and set the source blend factor to GL DST ALPHA and the destination
blend factor to GL ZERO.

3. Set the texture magnification filter to GL NEAREST.

4. Draw a rectangle to the dotted region with Texture D, noting the offset of 64 pixels in both x
and y.

5. Accumulate the result into the accumulation buffer.
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Figure 39. Input Image

Repeat the above procedure for TexturesA,B, andC with the appropriatex and y offsets, and return
the contents of the accumulation buffer to the color buffer.

A wider filter requires more passes of the above procedure, and also requires that the original texture
be divided into more small textures. For example, if we had chosen a filter that covers a 4x4 array of
input samples instead of 2x2, we would have to make 16 passes instead of 4, and we would have to
distribute the texels into 16 1x1 textures. Increasing the size of either the output image or the input
image, however, has no effect on the number of passes.

5.20.4 Spectral Synthesis

Now that we can create a single frequency noise function using the framebuffer, we need to create
the different octaves and to composite them into one texture. For each octave:

1. Scale the texture matrix by a power of 2 in both s and t.

2. Translate the texture matrix by a random offset in both s and t.

3. Set the texture wrap mode to GL REPEAT for s and t.

4. Draw a textured rectangle.

5. Accumulate the color buffer contents.
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Figure 40. Output Image

The random translation is an attempt to minimize the amount of overlap between each octave’s tex-
els; without it, every octave would use texels from the same corner of the input image. The accu-
mulation is typically done with a scale factor that controls the weight we want to give each octave.

5.20.5 Other Noise Functions

Gradient noise can be created using the same method described above, but with a different filter.
The technique described above can also create noise that is not aligned on a lattice. To create sparse
convolutionnoise [37] or spot noise [59], instead of drawing the entire point-sampled texture at once,
draw one texel and one copy of the filter at a time for each random location.

5.20.6 Turbulence

To create an illusion of turbulent flow, first-derivative discontinuities are introduced into the noise
function by taking the absolute value of the function. AlthoughOpenGL does not include an absolute
value operator for framebuffer contents, the same effect can be achieved by the following:

1. glAccum(GL LOAD,1.0);

2. glAccum(GL ADD,-0.5);

3. glAccum(GL MULT,2.0);

4. glAccum(GL RETURN,1.0);

5. Save the image in the color buffer to a texture, main memory, or other color buffer.
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6. glAccum(GL RETURN,-1.0);

7. Draw the saved image from Step 5 using GL ONE as both the source blend factor and the des-
tination blend factor.

The calls with GL ADD and GL MULTmap the values in the accumulation buffer from the range [0,1]
to [-1,1]; this is needed because values retrieved from the color buffer into the accumulation buffer
are positive. Since values from the accumulation buffer are clamped to [0,1] when returned, the
first GL RETURN clamps all negative values to 0 and returns the positive values intact. The second
GL RETURN clamps the positive values to 0, and negates and returns the negative values. The color
buffer needs to be saved after the first GL RETURN because the second GL RETURN overwrites the
color buffer; OpenGL does not define blending for accumulation buffer operations.

5.20.7 Example: Image Warping

A common use of a 2D noise texture is to distort the texture coordinates while drawing a 2D image,
thus warping the image. A noise function is created in the framebuffer as described above, read
back to the host, and used as texture coordinates (or offsets to texture coordinates) to render the
image. Since color values in OpenGL are normalized to the range 0.0 to 1.0, if one is careful the
image returned to the host may be used without much conversion; assuming that the modelview and
texture matrixes are set up to accept values in this range, the returned data may be used directly for
rendering.

Another similar use of a 2D noise texture is to distort the reflection of an image. In OpenGL, reflec-
tions on a flat surface can be done by reflecting a scene across the surface. The results can be copied
from the framebuffer to texture memory, and in turn drawn with distorted texture coordinates. The
shape and form of the distortion can be controlled by modulating the contents of the framebuffer af-
ter the noise texture is drawn but before it is copied to texture memory. This can produce interesting
effects such as water ripples.

5.20.8 Generating 3D Noise

Using the techniques described above for generating a 2D noise function, we can generating a 3D
noise function by making 2D slices and filtering them. A 2D slice spans the s and t axes of the lattice,
and corresponds to a slice of the lattice at a fixed r.

Suppose we want to make a 64x64x64 noise function with a frequency of 1 per domain unit, using
the same filtering (but one that now takes 2x2x2 input samples) as in the 2D example above. We first
create 2 slices, one for r= 0.0 and one for r =1.0. Then we create the 62 slices in between 0 and 1
by interpolating the two slices. This interpolation can take place in the color buffer using blending,
or it can take place in the accumulation buffer. Functions with higher frequencies are created in a
similar way. Widening the filter dramatically increases the number of passes; going from a 2x2x2
filter to 4x4x4 requires 16 times as many passes.
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To synthesize a function with different frequencies, we create a 3D noise function for each frequency,
and composite the different frequencies using a set of weights, just as we do in the 2D case. It is clear
that a large amount of memory is required to store the different 3D noise functions. These operations
may be reordered so that less total memory is required, perhaps at the expense of more interpolation
passes.

5.20.9 Generating 2D Noise to Simulate 3D Noise

We have described a method for creating 2D noise functions. In the case of lattice noise, these 2D
functions correspond to a 2D slice of the lattice. There are cases where we want to model a 3D noise
function and where such a 2D function is inadequate. For example, to draw a vase that looks like it
was carved from a solid block of marble, we cannot use a lattice 2D noise function.

However, we can create a 2D noise function that approximates the appearance of a true 3D noise
function, using spot noise [59]. We take into account the object space coordinates of the geometry,
and generate only spots that are close enough to the geometry to make a contribution to the 3D noise
at those points. The difficulty is how to render the spot in such a way that at each fragment the value
of the spot is determined by the object space distance from the center of the spot to that fragment.
Depending on the complexity of the geometry, we may be able to make an acceptable approximation
to the correct spot value by distorting the spot texture. One possible way to improve the approxi-
mation is to compensate for a nonuniform mapping of the noise texture to the geometry. Van Wijk
describes how he does this by nonuniformly scaling a spot. Approximating the correct spot value is
most important when generating the lower octaves, where the spots are largest and errors are most
noticeable.

5.20.10 Trade-offs Between 3D and 2D Techniques

A 3D texture can be used with arbitrary geometry without much additional work if your OpenGL im-
plementation supports 3D textures. However, generating a 3D noise texture requires a large amount
of memory and a large number of passes, especially if you use a filter that convolves a large number
of input values at a time. A 2D texture as we just described doesn’t require nearly as many passes to
create, but it does require knowledge of the geometry and additional computation in order to properly
shape the spot.
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6 Blending

OpenGL provides a rich set of blending operations which can be used to implement transparency,
compositing, painting, and other effects. Rasterized fragments are linearly combined with pixels in
the selected color buffers, clamped to 1.0 and then written to the color buffers. The glBlendFunc
command selects the source and destination blend factors. The most frequently used factors are
GL ZERO, GL ONE, GL SRC ALPHA and GL ONE MINUS SRC ALPHA. OpenGL 1.1 specifies additive
blending, but vendors have added extensions to allow other blending equations such as subtraction
and reverse subtraction, and several of these extensions are standard commands in OpenGL 1.2, or
are part of the ”imaging subset” of OpenGL 1.2 (see Section 12.1.4).

Most OpenGL implementations use fixed point representations for color throughout the fragment
processing path. The color component resolution is typically 5, 8, or 12 bits. Resolution problems
usually show up when attempting to blend many images into the color buffer, for example, in some
volume rendering techniques or multilayer composites. Some of these problems can be alleviated
using the accumulation buffer instead, but the accumulation buffer does not provide the same flexi-
bility for building up results.

OpenGL does not require that implementations support an alpha buffer (“destination alpha”) for stor-
ing alpha values like the other color components. For many applications this is not a limitation, but
there is a class of multipass operations where maintaining the current computed alpha value is nec-
essary.

6.1 Compositing

The OpenGL blending operation does not directly implement the compositing operations described
by Porter and Duff [51]. The difference is that in their compositing operations the colors are pre-
multiplied by the alpha value and the resulting factors used to scale the colors are simplified af-
ter this scaling. It has been proposed that OpenGL be extended to include the ability to premulti-
ply the source color values by alpha to better match the Porter and Duff operations. In the mean-
time, its certainly possible to achieve the same effect by computing the premultiplied values in the
color buffer itself. For example, if there is an image in the color buffer, a new image can be gen-
erated which multiplies each color component by its alpha value and leaves the alpha value un-
changed by performing a glCopyPixels operation with blending enabled and the blending func-
tion set to (GL SRC ALPHA,GL ZERO). To ensure that the original alpha value is left intact, use the
glColorMask command to disable updates to the alpha component during the copy operation.

6.2 Advanced Blending

OpenGL 1.1 only allows simple additive combinations of the source and destination color compo-
nents during blending. Two ways in which the blending operations have been extended by vendors
include the ability to blend with a constant color and the ability to use other blending equations. The
blending color extension (EXT blend color) adds a constant RGBA color state variable which can
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be used as a blending factor in the blend equation. This capability can be very useful for implement-
ing blends between two images without needing to specify the individual source and destination al-
pha components on a per pixel basis.

The blend equation extension (EXT blend minmax) provides the framework for specifying alter-
nate blending equations. For example, in OpenGL 1.1, the accumulation buffer is the only mecha-
nism which allows pixel values to be subtracted, but there is no easy method to include a per-pixel
scaling factor such as alpha, so a subtractive blending equation has been implemented as an exten-
sion to 1.1 and is part of the imaging subset in OpenGL 1.2. Min and max functions are useful in
image processing algorithms (e.g., for computing maximum intensity projections) and are also im-
plemented as an extension to 1.1 and as part of the 1.2 imaging subset.

6.3 Painting

Two dimensional painting applications can make interesting use of texturing and blending. An ar-
bitrary image can be used as a paint brush, using blending to accumulate the contribution over time.
The image source (paint brush) can be geometry or a pixel image. A texture mapped quad under
an orthographic projection can be used in the same way as a pixel image and often more efficiently
(when texture mapping is hardware accelerated).

An interesting way to implement the painting process is to precompute the effect of painting the
entire image with the brush and then use blending to selectively expose the painted area as the brush
passes over the area. This can be implemented efficiently with texturing by using the fully painted
image as a texture map, blending the source image mapped on the brush with the current image
stored in the color buffer. Use a geometric shape and translate the < s; t > texture coordinates
as the < x; y > coordinates move across the image. The main advantage of this technique is that
elaborate paint/brush combinations can be efficiently computed across the entire image all at once
rather than performing localized computations in the area covered by the brush.

6.4 Blending with the Accumulation Buffer

The accumulation buffer is designed for combining multiple images. Instead of simply replacing
pixel values with incoming pixel fragments, the fragments are scaled and then added to the existing
pixel value. In order to maintain accuracy over many blending operations, the accumulation buffer
has a higher number of bits per color component than a typical color buffer.

The accumulation buffer can be cleared like any other buffer. You can use glClearAccum to set the
red, green, blue, and alpha components of its clear color. Clear the accumulation buffer by bitwise
or’ing in the GL ACCUM BUFFER BIT value to the parameter of the glClear command.

You can’t render directly into the accumulation buffer. Instead you render into a selected color
buffer, then use glAccum to accumulate that image into the accumulation buffer. The glAccum

command reads from the currently selected read buffer. You can set the buffer you want it to read
from using the glReadBuffer command.
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Op Value Action

GL ACCUM read from selected buffer, scale by value, then add into ac-
cumulation buffer

GL LOAD read from selected buffer, scale by value, then use image
to replace contents of accumulation buffer

GL RETURN scale image by value, then copy into buffers selected for
writing

GL ADD add value to R, G, B, and A components of every pixel in
accumulation buffer

GL MULT clamp value to range -1 to 1, then scale R, G, B, and A com-
ponents of every pixel in accumulation buffer.

Table 1: glAccum op values

The glAccum command takes two arguments, op and value. The possible settings for op are de-
scribed in Table 1.

Since you must render to another buffer before accumulating, a typical approach to accumulating
images is to render images to the back buffer some number of times, accumulating each image into
the accumulation buffer. When the desired number of images have been accumulated, the contents
of the accumulation buffer are copied into the back buffer, and the buffers are swapped. This way,
only the final accumulated image is displayed.

Here is an example procedure for accumulating n images:

1. Call glDrawBuffer(GL BACK) to render to the back buffer only.

2. Call glReadBuffer(GL BACK) so that the accumulation buffer will read from the back
buffer.

Note that the first two steps are only necessary if the application has changed the selected draw and
read buffers. If the visual is double buffered, these settings are the default.

3. Clear the back buffer with glClear, then render the first image.

4. Call glAccum(GL LOAD, 1.f/n); this allows you to avoid a separate step to clear the ac-
cumulation buffer.

5. Alter the parameters of your image, and re-render it.

6. Call glAccum(GL ACCUM,1.f/n) to add the second image into the first.

7. Repeat the previous two steps n - 2 more times...

8. Call glAccum(GL RETURN, 1.f) to copy the completed image into the back buffer.
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The accumulation buffer provides a way to take “multiple exposures” of a scene, while maintaining
good color resolution. There are a number of image effects that can be implemented with the ac-
cumulation buffer to improve the realism of a rendered image [29, 46], including antialiasing, mo-
tion blur, soft shadows, and depth of field. To create these effects, render the image multiple times,
making small, incremental changes to the scene position (or selected objects within the scene), and
accumulate the results.

6.5 Blending Transitions

When generating real-time or interactive imagery, often the application may switch between dif-
ferent representations of an object. A different representation may be chosen which provides more
detail or less detail, takes less time to render, or for a variety of other reasons. The two represen-
tations may not be similar enough to generate the same pixels on the screen, so the transition may
generate an objectionable “pop” on the screen. The apparent discontinuity can be reduced by fading
the old representation in and the new representation over a number of frames using blending. The
new representation is rendered with glBlendFunc(GL SRC ALPHA, GL ONE) and the old repre-
sentation with glBlendFunc(GL ONE MINUS SRC ALPHA, GL ONE), varying alpha from 0 to 1
over a few frames.
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7 Antialiasing

Aliasing refers to the jagged edges and other rendering artifacts commonly associated with
computer-generated drawings. It is caused by the presence of higher frequency renderings than can
be represented by the pixel samples. Lines are much more susceptible to aliasing problems because
every pixel drawn is part of an edge while most pixels of polygon models are in the middle where
there are no high frequences. More detailed explanations of why this is so are available in [44], [45],
[38], and [11].

7.1 Line and Point Antialiasing

Line and point antialiasing should be considered separately from polygon antialiasing since the tech-
niques are usually quite different. Mathematically, a line is infinitely thin. Attempting to compute
the percentage of a pixel covered by an infinitely thin object would be impossible, so generally one
of the following two methods is used:

1. The line is modeled as a long, thin, single-pixel-wide quadrilateral. The percentage of pixel
coverage is computed for each pixel touching the line and this coverage percentage is used as
the alpha value for blending.

2. The line is modeled as an infinitely thin transparent glowing object. This method treats a line
as if drawn on a vector stroke display where the display draws a line by deflecting the electron
beam as opposed to a raster display that moves the beam in horizontal scans and varies the
beam intensity. This approach requires the implementation to compute the effective shape of
an electron beam as it moves across the CRT phosphors.

To antialias points or lines in OpenGL, you need to enable antialiasing by calling glEnable and
passing in GL POINT SMOOTH or GL LINE SMOOTH, as appropriate. You can also provide a qual-
ity hint by calling glHint. The hint parameter can be GL FASTEST to indicate that the most effi-
cient option should be chosen, GL NICEST to indicate the highest quality option should be chosen,
or GL DONT CARE to indicate no preference.

When antialiasing is enabled, OpenGL computes the an alpha value representing either the fraction
of each pixel that is covered by the line or point or the beam intensity for the pixel as a function
of the distance of the pixel center from the line center. The setting of the GL LINE SMOOTH and the
GL POINT SMOOTH hints determine how accurate the calculation is when rendering lines and points,
respectively. When the hint is set to GL NICEST, a larger filter function may be applied causing more
fragments to be generated and rendering to slow down.

No matter which line antialiasing method is used in your particular version of OpenGL, you can
approximate either by choosing the right blend equation. The important point to remember is that
antialiased lines and points are a form of transparentprimitive, so you need to enable blending so that
the incoming pixel fragment will be combined with the value already in the framebuffer, depending
on the alpha value.
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The best approximation of a one-pixel-wide quadrilateral is achieved by setting the blending factors
to GL SRC ALPHA (source) and GL ONE MINUS SRC ALPHA (destination). To best approximate the
lines of a stroke display, use GL ONE for the destination factor. Note that this second blend equation
only works well on a black background and does not produce good results when drawn over bright
objects.

As with all transparent primitives, antialiased lines and points should not be drawn until all opaque
objects have been drawn first. Depth buffer testing should remain enabled, but depth buffer updat-
ing should be disabled using glDepthMask(GL FALSE). Antialiased lines drawn with full depth
buffering enabled produces incorrect line crossings and can result significantly worse rendering ar-
tifacts than with antialiasing disabled when a lot of lines are drawn close together.

If the destination blend mode is set to GL ONE MINUS SRC ALPHA there may be visible order depen-
dent rendering artifacts if the antialiased primitives are not drawn in back to front order. There are
no such order dependent problems with a setting of GL ONE, however. It is best to pick the method
that best suits your particular application.

Incorrect monitor gamma settings are much more likely to become apparent with antialiased lines
than shaded polygons. Broadcast television uses a gamma value of 2.22. The gamma value needed
to correct most color CRTs is usually between 2.0 and 2.6. Some workstation manufacturers use
values as low as 1.6 to enhance the perceived contrast of rendered images even though it produces
a definite intensity nonlinearity in displayed images. Signs of insufficient gamma are “roping” of
lines and moire patterns where many lines come together. Too much gamma produces a “washed
out” appearance.

Antialiasing in color index mode is trickier because you have to load the color map correctly to get
primitive edges to blend with the background color. When antialiasing is enabled, the last four bits
of the color index indicate the coverage value. Thus, you need to load sixteen contiguous colormap
locations with a color ramp ranging from the background color to the object’s color. This technique
only works well when drawing wireframe images, where the lines and points typically need to be
blended with a constant background. If the lines and/or points need to be blended with background
polygons or images, RGBA rendering should be used.

7.2 Polygon Antialiasing

Antialiasing the edges of filled polygons is similar to antialiasing points and lines. However, an-
tialiasing polygons in color index mode isn’t practical since object intersections are more prevalent
and you really need to use OpenGL blending to get decent results.

To enable polygon antialiasing call glEnable with GL POLYGON SMOOTH. This causes pixels on
the edges of the polygon to be assigned fractional alpha values based on their coverage. Also, if you
want, you can supply a value for GL POLYGON SMOOTH HINT.

In order to get the polygons blended correctly when they overlap, you need to sort the polygons
in front to back order in eye space. This method does not work without sorting. Before render-
ing, disable depth testing, enable blending and set the blending factors to GL SRC ALPHA SATURATE
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(source) and GL ONE (destination). The final color will be the sum of the destination color and the
scaled source color; the scale factor is the smaller of either the incoming source alpha value or one
minus the destination alpha value. This means that for a pixel with a large alpha value, successive
incoming pixels have little effect on the final color because one minus the destination alpha is almost
zero.

Since the accumulated coverage is stored in the color buffer, destination alpha is required for this
algorithm to work. Thus you must request a visual or pixel format with destination alpha. OpenGL
does not require implementations to support a destination alpha buffer so visual selection may fail.

7.3 Multisampling

Multisampling is an antialiasing method that provides high quality results. It is available as an
OpenGL extension from at least one vendor. In this technique additional subpixel storage is main-
tained as part of the color, depth and stencil buffers. Instead of using alpha for coverage, coverage
masks are computed to help maintain sub-pixel coverage information for all pixels. Current im-
plementations support four, eight, and sixteen samples per pixel. The method allows for full scene
antialiasing at a modest performance penalty but a more substantial storage penalty (since sub-pixel
samples of color, depth, and stencil need to be maintained for every pixel). This technique does not
entirely replace the methods described above, but is complementary. Antialiased lines and points us-
ing alpha coverage can be mixed with multisampling as well as the accumulation buffer antialiasing
method.

7.4 Antialiasing With Textures

You can also antialias points and lines using the filtering provided by texturing. For example, to
draw antialiased points, create a texture image containing a filled circle with a smooth (antialiased)
boundary. Then apply the texture to the point making sure that the center of the texture is aligned
with the point’s coordinates and using the texture environment GL MODULATE. This method has the
advantage that any point shape may be accommodated simply by varying the texture image.

A similar technique can be used to draw antialiased line segments of any width. The texture image
is a filtered circle as described above. Instead of a line segment, a texture mapped rectangle, whose
width is the desired line width, is drawn centered on and aligned with the line segment. If line seg-
ments with round ends are desired, these can be added by drawing an additional textured rectangle
on each end of the line segment.

You can also use alpha textures to accomplish antialiasing. Simply create an image of a circle where
the alpha values are one in the center and go to zero as you move from the center out to an edge. The
alpha texel values would then be used to blend the point or rectangle fragments with the pixel values
already in the framebuffer.
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7.5 Antialiasing with Accumulation Buffer

Accumulation buffers can be used to antialias a scene without having to depth sort the primitives
before rendering. A supersampling technique is used, where the entire scene is offset by small, sub-
pixel amounts in screen space, and accumulated. The jittering can be accomplished by modifying
the transforms used to represent the scene.

One straightforward jittering method is to modify the projection matrix, adding small translations in
x and y. Care must be taken to compute the translations so that they shift the scene the appropriate
amount in window coordinate space. Fortunately, computing these offsets is straightforward. To
compute a jitter offset in terms of pixels, divide the jitter amount by the dimension of the object
coordinate scene, then multiply by the appropriate viewport dimension. The example code fragment
below shows how to calculate a jitter value for an orthographic projection; the results are applied to
a translate call to modify the modelview matrix:

void ortho_jitter(GLfloat xoff, GLfloat yoff)
{

GLint viewport[4];
GLfloat ortho[16];
GLfloat scalex, scaley;

glGetIntegerv(GL_VIEWPORT, viewport);
/* this assumes that only a glOrtho() call has been
applied to the projection matrix */
glGetFloatv(GL_PROJECTION_MATRIX, ortho);

scalex = (2.f/ortho[0])/viewport[2];
scaley = (2.f/ortho[5])/viewport[3];
glTranslatef(xoff * scalex, yoff * scaley, 0.f);

}

If the projection matrix wasn’t created by calling glOrtho or gluOrtho2D, then you will need to
use the viewing volume extents (right, left, top, bottom) to compute scalex and scaley as follows:

GLfloat right, left, top, bottom;

scalex = ((right-left)/viewport[2];
scaley = ((top-bottom)/viewport[3];

The code is very similar for jittering a perspective projection. In this example, we jitter the frustum
itself:

void frustum_jitter(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far,
GLdouble xoff, GLdouble yoff)

{
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GLfloat scalex, scaley;
GLint viewport[4];

glGetIntegerv(GL_VIEWPORT, viewport);
scalex = (right - left)/viewport[2];
scaley = (top - bottom)/viewport[3];

glFrustum(left - xoff * scalex,
right - xoff * scalex,
top - yoff * scaley,
bottom - yoff * scaley,
near, far);

}

The jittering values you choose should fall in an irregular pattern. In other words, it is undesirable
to have the sample points line up in any direction. This reduces aliasing artifacts by making them
“noisy”. Selected subpixel jitter values, organized by the number of samples needed, are taken from
the OpenGL Programming Guide, and are shown in Table 2. (Note that some of these patterns are
a little more regular horizontally and vertically than is optimal.)

Using the accumulation buffer, you can easily trade off quality and speed. For higher quality images,
simply increase the number of scenes that are accumulated. Although it is simple to antialias the
scene using the accumulation buffer, it is much more computationally intensive and probably slower
than the polygon antialiasing method described above.
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Count Values
2 f0.25, 0.75g, f0.75, 0.25g
3 f0.5033922635, 0.8317967229g, f0.7806016275, 0.2504380877g,

f0.2261828938, 0.4131553612g
4 f0.375, 0.25g, f0.125, 0.75g, f0.875, 0.25g, f0.625, 0.75g
5 f0.5, 0.5g, f0.3, 0.1g, f0.7, 0.9g, f0.9, 0.3g, f0.1, 0.7g
6 f0.4646464646, 0.4646464646g, f0.1313131313, 0.7979797979g,

f0.5353535353, 0.8686868686g, f0.8686868686, 0.5353535353g,
f0.7979797979, 0.1313131313g, f0.2020202020, 0.2020202020g

8 f0.5625, 0.4375g, f0.0625, 0.9375g, f0.3125, 0.6875g, f0.6875, 0.8125g,
f0.8125, 0.1875g, f0.9375, 0.5625g, f0.4375, 0.0625g, f0.1875, 0.3125g

9 f0.5, 0.5g, f0.1666666666, 0.9444444444g, f0.5, 0.1666666666g,
f0.5, 0.8333333333g, f0.1666666666, 0.2777777777g,
f0.8333333333, 0.3888888888g, f0.1666666666, 0.6111111111g,
f0.8333333333, 0.7222222222g, f0.8333333333, 0.0555555555g

12 f0.4166666666, 0.625g, f0.9166666666, 0.875g, f0.25, 0.375g,
f0.4166666666, 0.125g, f0.75, 0.125g, f0.0833333333, 0.125g, f0.75, 0.625g,
f0.25, 0.875g, f0.5833333333, 0.375g, f0.9166666666, 0.375g,
f0.0833333333, 0.625g, f0.583333333, 0.875g

16 f0.375, 0.4375g, f0.625, 0.0625g, f0.875, 0.1875g, f0.125, 0.0625g,
f0.375, 0.6875g, f0.875, 0.4375g, f0.625, 0.5625g, f0.375, 0.9375g,
f0.625, 0.3125g, f0.125, 0.5625g, f0.125, 0.8125g, f0.375, 0.1875g,
f0.875, 0.9375g, f0.875, 0.6875g, f0.125, 0.3125g, f0.625, 0.8125g

Table 2: Sample Jittering Values
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8 Lighting

This section discusses varies ways of improving and refining the lighting of your scenes using
OpenGL.

8.1 Phong Shading

8.1.1 Phong Highlights with Texture

One of the problems with the OpenGL lighting model is that specular radiance is computed before
textures are applied in the normal pipeline sequence. To achieve more realistic looking results, spec-
ular highlights should be computed and added to image after the texture has been applied. This can
be accomplished by breaking the shading process into two passes. In the first pass diffuse radiance is
computed for each surface and then modulated by the texture colors to be applied to the surface and
the result written to the color buffer. In the second pass the specular highlight is computed for each
polygon and added to the image in the framebuffer using a blending function which sums 100% of
the source fragment and 100% of the destination pixels. For this particular example we will use an
infinite light and a local viewer. The steps to produce the image are as follows:

1. Define the material with appropriate diffuse and ambient reflectance and zero for the specular
reflectance coefficients.

2. Define and enable lights.

3. Define and enable texture to be combined with diffuse lighting.

4. Define modulate texture environment.

5. Draw lit, textured object into the color buffer with the vertex colors set to 1.0.

6. Define new material with appropriate specular and shininess and zero for diffuse and ambient
reflectance.

7. Disable texturing, enable blending, set the blend function to GL ONE, GL ONE.

8. Draw the specular-lit, non-textured geometry.

9. Disable blending.

8.1.2 Improved Highlight Shape

This implements the basic algorithm, but the Gouraud shaded specular highlight still leaves some-
thing to be desired. We can improve on the specular highlight by using environment mapping to
generate a higher quality highlight. We generate a sphere map consisting only of a Phong highlight
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[50] and then use the GL SPHERE MAP texture coordinate generation mode to generate texture co-
ordinates which index this map. For each polygon in the object, the reflection vector is computed
at each vertex. Since the coordinates of the vector are interpolated across the polygon and used to
lookup the highlight, a much more accurate sampling of the highlight is achieved compared to in-
terpolation of the highlight value itself. The sphere map image for the texture map of the highlight
can be computed by rendering a highly tessellated sphere lit with only a specular highlight using
the regular OpenGL pipeline. Since the light position is effectively encoded in the texture map, the
texture map needs to be recomputed whenever the light position is changed.

The nine step method outlined above needs minor modifications to incorporate the new lighting
method:

6. Disable lighting.

7. Load the sphere map texture, enable the sphere map texgen function.

8. Enable blending, set the blend function to GL ONE, GL ONE.

9. Draw the unlit, textured geometry with vertex colors set to 1.0.

10. Disable texgen, disable blending.

With a little work the technique can be extended to handle multiple light sources. OpenGL 1.2 in-
cludes new functionality which enables the per-vertex lighting computation to compute a specular
contribution separate from the ambient, diffuse, and emissive contributions and adds this specular
contribution in after the application of the texture environment. Since this contribution is calculated
per-vertex and interpolated it solves the specular-after-texture problem, but it does provide any ad-
ditional improvement in the shape or quality of the highlight, so the above technique remains useful
for improving the highlight quality.

8.1.3 Spotlight Effects using Projective Textures

The projective texture technique described earlier can be used to generate a number of interesting il-
lumination effects. One of the possible effects is spotlight illumination. The OpenGL lighting model
already includes a spotlight illumination model, providing control over the cutoff angle (spread of
the cone), the exponent (concentration across the cone), direction of the spotlight, and attenuation
as a function of distance. The OpenGL model typically suffers from undersampling of the light.
Since the lighting model is only evaluated at the vertices and the results are linearly interpolated,
if the geometry being illuminated is not sufficiently tessellated incorrect illumination contributions
are computed. This typically manifests itself by a dull appearance across the illuminated area or ir-
regular or poorly defined edges at the perimeter of the illuminated area. Since the projective method
samples the illumination at each pixel the undersampling problem is eliminated.

Similar to the Phong highlight method, a suitable texture map must be generated. The texture is an
intensity map of a cross-section of the spotlight’s beam. The same type of exponent parameter used
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in the OpenGL model can be incorporated or a different model entirely can be used. If 3D textures
are available the attenuation due to distance can be approximated using a 3D texture in which the
intensity of the cross-section is attenuated along the r-dimension. When geometry is rendered with
the spotlight projection, the r coordinate of the fragment is proportional to the distance from the light
source.

In order to determine the transformation needed for the texture coordinates, it is easiest to think
about the case of the eye and the light source being at the same point. In this instance the tex-
ture coordinates should correspond to the eye coordinates of the geometry being drawn. The sim-
plest method to compute the coordinates (other than explicitly computing them and sending them to
the pipeline from the application) is to use an GL EYE LINEAR texture generation function with an
GL EYE PLANE equation. The planes simply correspond to the vertex coordinate planes (e.g., the s
coordinate is the distance of the vertex coordinate from the y-z plane, etc.). Since eye coordinates
are in the range [-1.0, 1.0] and the texture coordinates need to be in the range [0.0, 1.0], a scale and
translate of 0.5 is applied to s and t using the texture matrix. A perspective spotlight projection trans-
formation can be computed using gluPerspective and combined into the texture transformation
matrix. The transformation for the general case when the eye and light source are not in the same
position can be computed by incorporating into the texture matrix the inverse of the transformations
used to move the light source away from the eye position.

With the texture map available, the method for rendering the scene with the spotlight illumination
is as follows:

1. Initialize the depth buffer.

2. Clear the color buffer to a constant value which represents the scene ambient illumination.

3. Draw the scene with depth buffering enabled and color buffer writes disabled.

4. Load and enable the spotlight texture, set the texture environment to GL MODULATE.

5. Enable the texgen functions, load the texture matrix.

6. Enable blending and set the blend function to GL ONE, GL ONE.

7. Disable depth buffer updates and set the depth function to GL EQUAL.

8. Draw the scene with the vertex colors set to 1.0.

9. Disable the spotlight texture, texgen and texture transformation.

10. Set the blend function to GL DST COLOR.

11. Draw the scene with normal illumination.

There are three passes in the algorithm. At the end of the first pass the ambient illumination has been
established in the color buffer and the depth buffer contains the resolved depth values for the scene.
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In the second pass the illumination from the spotlight is accumulated in the color buffer. By using
the GL EQUAL depth function, only visible surfaces contribute to the accumulated illumination. In
the final pass the scene is drawn with the colors modulated by the illumination accumulated in the
first two passes to arrive at the final illumination values.

The algorithm does not restrict the use of texture on objects, since the spotlight texture is only used in
the second pass and only the scene geometry is needed in this pass. The second pass can be repeated
multiple times with different spotlight textures and projections to accumulate the contributions of
multiple light sources.

There are a couple of considerations that also should be mentioned. Texture projection along the
negative line-of-sight of the texture (back projection) can contribute undesired illumination. This
can be eliminated by positioning a clip plane at the near plane of the line-of-site. Also, OpenGL
does not guarantee pixel exactness when various modes are enabled or disabled. This can manifest
itself in undesirable ways during multipass algorithms. For example, enabling texture coordinate
generation may cause fragments with different depth values to be generated compared to the case
when texture coordinate generation is not enabled. This problem can be overcome by re-establishing
the depth buffer values between the second and third pass. This is done by redrawing the scene with
color buffer updates disabled and the depth buffering configured the same as for the first pass.

It is also possible to render the entire scene in a single pass. If none of the objects in the scene are
textured, the complete image could be rendered once, if the ambient illumination can be summed
with spotlight illumination while the objects are rendered. Some vendors have added an additive
texture environment function as an extension which makes this operation feasible. A cruder method
that works in OpenGL 1.1 involves illuminating the scene using normal OpenGL lighting, using the
spotlight texture modulate the scene brightness.

8.1.4 Phong Shading by Adaptive Tessellation

Phong highlights can also be approached with a modeling technique. The surface can be adaptively
tessellated until the difference between ( ~H � ~N)n terms on triangle vertices drops below a prede-
termined value. The advantage of this technique is that it can be done as a separate pre-processing
step. The disadvantage is that it increases the complexity of the modeled object. This can be costly
if:

� The model will have to be clipped by a large number of user-defined clipping planes.

� The model will have tiled textures applied to it.

� The performance of the application/system is already triangle limited.

8.2 Light Maps

A light map is a texture map applied to a material to simulate the effect of a local light source. Like
specular highlights, it can be used to improve the appearance of local light sources without resorting
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to excessive tessellation of the objects in the scene. A excellent example of an application using
lightmaps is the interactive PC game QuakeTM . This game uses light maps to simulate the effects
of local light sources, both stationary and moving, to great effect.

Using lightmaps usually requires a multipass algorithm, unless the objects being mapped are untex-
tured. A texture simulating the light’s effect on the object is created, then applied to one or more
objects in the scene. Appropriate texture coordinates are generated, and texture transformations can
be used to position the light, and create moving or changing light effects. Multiple light sources can
be generated with a combination of more complex texture maps and/or more passes to the algorithm.

Light maps are often luminance textures, which are applied to the object usingGL MODULATE as the
value for GL TEXTURE ENV MODE. Colored lights can also be simulated by using an RGB texture.

Light maps can often produce satisfactory lighting effects at lower resolutions than normal textures.
It is often not necessary to produce mipmaps; choosingGL LINEAR for the minification and magni-
fication filters is sufficient. Of course, the minimum quality of the lighting effect is a function of the
intended application.

8.2.1 2D Texture Light Maps

A 2D light map is a texture map applied to the surfaces of a scene, modulating the intensity of the
surfaces to simulate the effects of a local light. If the surface is already textured, then applying the
light map becomes a multipass operation, modulating the intensity of a surface detail texture.

A 2D light map can be generated analytically, creating a bright spot in luminance or color values
that drops off appropriately with increasing distance from the light center. As with other lighting
equations, a quadratic drop off, modified with linear and constant terms can be used to simulate a
variety of lights, depending on the area of the emitting source.

Since generating new textures takes time and consumes valuable texture memory, it is a good strat-
egy to create a few canonical light maps, based on intensity drop-off characteristics and color, then
use them for a number of different lights by transforming the texture coordinates. If the light source
is isotropic, then simple translations and scales can be used to position the light appropriately on the
surface, while scales can be used to adjust the size of the lighting effect, simulating different sizes
of lights and distance from the lighted surface.

In order to apply a light map to a surface properly, the position of the light in the scene must be pro-
jected onto each surface of interest. This position shows where the bright spot will be. The perpen-
dicular distance of the light from the surface can be used to adjust the bright spot size and brightness.
One approach is to generate texture coordinates, orienting the generating planes with each surface
of interest, then translating and scaling the texture matrix to position the light on the surface. This
process is repeated for every surface affected by the light.

In order to repeat this process for multiple lights (without resorting to a multilight lightmap) or to
light textured surfaces, the lighting must be done as a series of passes. This can be done two ways.
The more straightforward way is to blend the entire scene. The other way is to blend together the
surface texture and light maps to create a texture for each surface. This texture will represent the
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contributions of the surface texture and all lightmaps affecting its surface. The merged texture is
then applied to the surface. Although more involved, the second method produces a higher quality
result.

For each surface:

1. Transform the surface so that it is perpendicular to the direction of view (maximize its visible
surface). Scale the image so that its area in pixels matches the desired size of the final texture.

2. Render the transformed surface into the frame buffer (this can be done in the back buffer). If
it is textured, render it with the surface texture.

3. Re-render the surface, using the appropriate light map. Adjust the GL EYE PLANE equations
and the texture transform to position the light correctly on the surface. Use the appropriate
blend function.

4. Repeat the previous step with each light visible to the surface.

5. Copy the image into a texture using glCopyTexImage2D.

6. When you’ve created textures for all lit surfaces, render the scene using the new textures.

Since switching between textures must be done quickly, and lightmap textures tend to be small, use
texture objects to switch between different light maps and surface textures to improve performance.

With either approach, the blending is a modulation of the colors of the existing texture. This can be
done by rendering with the blend function (GL ZERO, GL SRC COLOR). If the light map is composed
of luminance values than the individual destination color components will be scaled equally, if the
light map represents a colored light, then the color components of the destination will be scaled by
the red, green, and blue components of the light map texel values.

Note that each modulation pass attenuates the surface color. The results will become increasingly
dim. If surfaces require a large number of lights, the dynamic range of light maps can be compressed
to avoid excessive darkening. Instead of ranging from 1.0 (full light) to 0.0 (no light), They can range
from 1.0 (full light) to 0.5 or 0.75 (no light). The no light value can be adjusted as a function of the
number of lights in the scene.

Here are the steps for using 2D Light Maps:

1. Create the 2D light data. “Canonical lights” can be defined at the center of the texture, with
the intensity dropping off in a realistic fashion towards the edges. In order to avoid artifacts,
make sure the intensity of the light field is the same at all the edges of the texture volume.

2. Define a 2D texture, using GL REPEAT for the wrap values in s, t, and r. Minification and
magnification should be GL LINEAR to make the changes in intensity smoother. For perfor-
mance reasons, make this texture a texture object.
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3. Render the scene without the lightmap, using surface textures as appropriate.

4. For each light in the scene:

(a) For each surface in the scene:

i. Cull surfaces that cannot “see” the current light.
ii. Find the plane of the surface.

iii. Align the GL EYE PLANE for GL s and GL t with the surface plane.
iv. Scale and translate the texture coordinates to position and size the light on the sur-

face.
v. Render the surface using the appropriate blend function and lightmap texture.

An alternative to simple light maps is to use projective textures to draw light sources. This is a good
approach when doing spotlight effects. It’s not as useful for isotropic light sources, since you’ll have
to tile your projections to make the light shine in all directions. See the projective texture description
in Section 8.1.2 and in Section 5.13 for more details.

8.2.2 3D Texture Light Maps

3D Textures can also be used as light maps. One or more light sources are represented in 3D data,
then the 3D texture is applied to the entire scene. The main advantage of using 3D textures for light
maps is that it’s easy to calculate the proper texture coordinates. The textured light source can be
positioned globally with the appropriate texture transformations then the scene is rendered, using
glTexGen to generate the proper s, t, and r coordinates.

The light source can be moved by changing the texture matrix. The resolution of the light field is
dependent on the texture resolution.

A useful approach is to define a canonical light field in 3D texture data, then use it to represent mul-
tiple lights at different positions and sizes by applying texture translations and scales to shift and
resize the light. Multiple lights can be simulated by accumulating the results of each light source on
the scene.

To ensure that the light source can be shifted easily, set GL TEXTURE WRAP S, GL TEXTURE WRAP T,
and GL TEXTURE WRAP R EXT to GL REPEAT. Then the light can be shifted to any location in the
scene. Be sure that the texel values in the light map are the same at all boundaries of the texture;
otherwise you’ll be able to see the edges of the texture as vertical and horizontal “shadows” in the
scene.

Although it is uncommon, some types of light fields would be very hard to do without 3D textures.
A complex light source, whose brightness and range varies as a function of distance from the light
source could be best done with a 3D texture. An example might be a “disco ball” effect where a
light source has beams emanating out from the center, with some beams shining farther than oth-
ers. A complex light source could be made more impressive by combining light maps with volume
visualization techniques. For example the light beams could be made visible in fog.
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The light source itself can be a simple piece of geometry textured with the rest of the scene. Since
it is at the source of the textured light, it will be textured brightly.

For better realism, good lighting effects should be combined with the shadowing techniques de-
scribed in Section 9.4.

Procedure:

1. Create the 3D light data. A “canonical light” can be defined at the center of the texture vol-
ume, with the intensity dropping off in a realistic fashion towards the edges. In order to avoid
artifacts, make sure the intensity of the light field is the same at all the edges of the texture
volume.

2. Define a 3D texture, using GL REPEAT for the wrap values in S, t, and R. Minification and
magnification should be GL LINEAR to make the changes in intensity smoother.

3. Render the scene without the lightmap, using surface textures as appropriate.

4. Define planes in eye space so that glTexGen will cause the texture to span the visible scene.

5. If you have textured surfaces, adding a lightmap becomes a multipass technique. Use the ap-
propriate blending function to modulate the surface color.

6. Render the image with the light map, and texgen enabled. Use the appropriate texture trans-
form to position and scale the light source correctly.

7. Repeat steps 1-2 and 4-6 for each light source.

There are disadvantages to using 3D light maps:

� 3D textures are not widely supported yet, so your application will not be as portable.

� 3D textures use a lot of texture memory. 2D textures are more efficient for light maps.

8.3 Other Lighting Models

Up to this point we have largely discussed the Phong lighting model. The diffuse and specular terms
for a single light are given by the following equation:

dmdlmax( ~N � ~L; 0) + smslmax( ~H � ~N; 0)n

Section 8.1.1 discusses the use of sphere mapping to replace the OpenGL per-vertex specular illumi-
nation computation with one performed at each pixel. The specular contribution in the texture map
is computed using the Phong formulation above. However, the Phong model can be substituted with
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other bi-directional reflectance functions to achieve other lighting effects. Since the texture coordi-
nates are computed with a sphere mapping function, the resulting texture mapping operation accu-
rately approximates view-dependent specular reflectance distributions.

One improvement that can be made is to add a Fresnel reflection term, F�,[31] to the specular equa-
tion:

dmdlmax( ~N � ~L; 0) + F�smslmax( ~H � ~N; 0)n

The Fresnel term specifies the ratio the amount of reflected light to the amount of transmitted (re-
fracted) light. It is a function of the angle of incidence, �i, the angle of refraction �t and the material
properties of the object (dielectric, metal, etc. as described in Section 8.6). The effect of the Fresnel
term is to attenuate light as a function of its incident and reflected directions as well as its wavelength.
Light is hardly reflected from dielectrics such as glass at normal incidence, for example, while be-
ing almost totally reflected at glancing angles. This attenuation is independent of wavelength. The
absorption of metals, on the other hand, can be a function of the wavelength in, for instance, copper
and gold. At glancing angles, the light color is unaltered in reflection, but at normal incidence the
light is modulated by the color of the metal.

Since the sphere map serves as a table which is indexed by the the reflection vector, the Fresnel
effects can be included in the environment map by simply computing the specular equation with the
Fresnel term to modulate and shift the color. This can be performed as a post-processing step on an
existing environment map by computing the Fresnel reflection coefficient at each angle of incidence
and modulating the sphere map. Reflection, refraction and sphere mapping are discussed in more
detail in Section 9.3. Other bi-directional reflectance functions can be encoded in a sphere map in a
similar fashion.

8.4 Global Illumination

The lighting models described thus far have been relatively simple. The subtleties of real lighting
are often captured using a global illumination model. Global illumination models using radiosity
or ray tracing are generally too computationally complex to perform in real-time. However, if the
objects and light sources comprising the environment are static it is possible to perform the global
illumination calculations as a preprocessing step and then display the results interactively. Such an
approach is both practical and useful for applications such as architectural walkthroughs. The tech-
nique is typically employed for diffuse illumination solutions since view-independent (ideal) diffuse
illumination can be represented as a single value (color) at each object vertex.

In [61] Walter, et. al. describe a method for rendering global illumination solutions which contain
view-independent directionally variant lighting effects using the specular term in the OpenGL light-
ing model to approximate the directionally varying lighting information and the emissive term to
approximate the directionally invariant illumination (i.e., diffuse illumination). In this method, a set
of OpenGL lights are treated as a set of basis functions which are summed together while the object
is rendered to yield a more general directional distribution. The OpenGL light parameters such as
position or intensity coefficients have no relationship to the light sources in the original model, but
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instead serve as a compact representation for the directional illuminationof an object. Each rendered
object has its own set of lights which are called virtual lights.

The method works on a global illumination solution which stores a number of samples of the direc-
tionally varying illumination at each object vertex. The parameters for the virtual lights of a partic-
ular object are determined using a fitting procedure consisting of a number of heuristics. The main
idea is to produce a set of solutions for a number of specular exponent values and then choose the
exponent value which minimizes the mean-squared error using a least squares method. A solution
at a given exponent value is determined as follows:

1. Choose a specular exponent value.

2. Find the vertex on the object with the largest directional radiance.

3. Choose a light direction to align the specular lobe with this brightest direction.

4. Choose an intensity coefficient to match the radiance at the point on the object.

5. Compute the specular contribution at other points on the object and subtract from the radiance.

6. Repeat steps 2-5 using updated object radiance until all lights have been used.

7. At each vertex compute the specular and emission coefficients using a least squares fit.

Once the lighting parameters have been determined the model is rendered using the glLight and
glMaterial commands to set the directional light parameters and specular exponent for each ob-
ject and the glMaterial command to set the specular reflectance and and emitted intensity at each
vertex. The rendering speed for the model is limited by the geometric complexity of the model and
the ability of the OpenGL implementation to deal with multiple light sources and material changes
at each vertex. Rendering performance may be improved by rendering in multiple passes to limit
the number of active lights or the number of material parameter changes in each pass. For example,
usingglColorMaterial and glColor to change only the emitted intensity or specular reflectance
in each pass and framebuffer blending to sum the results together.

8.5 Bump Mapping with Textures

Bump mapping [6], like texture mapping, is a technique to add more realism to synthetic images
without adding a lot of geometry. Texture mapping adds realism by attaching images to geometric
surfaces. Bump mapping adds per-pixel surface relief shading, increasing the apparent complexity
of the surface.

Surfaces that should have a patterned roughness are good candidates for bump mapping. Examples
include oranges, strawberries, stucco, wood, etc.

A bump map is an array of values that represent an object’s height variations on a small scale. A
custom renderer is used to map these height values into changes in the local surface normal. These
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Figure 41. Bump Mapping: Shift and Subtract Image

perturbed normals are combined with the surface normal, and the results are used to evaluate the
lighting equation at each pixel.

The technique described here uses texture maps to generate bump mapping effects without requir-
ing a custom renderer [1] [49]. This multipass algorithm is an extension and refinement of texture
embossing [54].

The first derivative of the height values of the bump map can found by the following process:

1. Render the image as a texture.

2. Shift the texture coordinates at the vertices.

3. Re-render the image as a texture, subtracting from the first image.

Consider a one dimensional bump map for simplicity. The map only varies as a function of s. As-
suming that the height values of the bump map can be represented as a height function f(s), then the
three step process above would be like doing the following: f(s) � f(s + shift). If the shift was
by one texel in s, you would have f(s) � f(s + 1

w
), where w is the width of the texture in texels.

This is a different form of f(s)�f(s+1)
1 which is just the basic derivative formula. So shifting and

subtracting results in the first derivative of f(s), f 0(s).

In the two dimensional case, the height function is f(s; t), and shifting and subtracting creates a
directional derivative of f(s; t). This technique is used to create embossed images.

With more precise shifting of the texture coordinates, we can get general bump mapping from this
technique.

8.5.1 Tangent Space

In order to accurately shift, the light source direction ~L must be rotated into tangent space. Tangent
space has 3 perpendicular axes, ~T , ~B and ~N . ~T , the tangent vector, is parallel to the direction of
increasing s or t on a parametric surface. ~N , the normal vector, is perpendicular to the local surface.
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Figure 42. Tangent Space Defined at Polygon Vertices

~B, the binormal, is perpendicular to both ~N and ~T , and like ~T , also lies on the surface. They can be
thought of as forming a coordinate system that is attached to surface, keeping the ~T and ~B vectors
pointing along the tangent of the surface, and ~N pointing away. If the surface is curved, the tangent
space orientation changes at every point on the surface.

In order to create a tangent space for a surface, it must be mapped parametrically. But since this
technique requires applying a 2D texture map to the surface, the object must already be parametri-
cally mapped in s and t. If the surface is already mapped with a surface detail texture, the s and t
coordinates of that mapping can be reused. If it is a NURBS surface, the s and t values of that map-
ping can be used. The only requirement for bump mapping to work is that the parametric mapping
be consistent on the polygon. Of course, to avoid “cracking” between polygons, the mapping should
be consistent across the entire surface.

The light source must be rotated into tangent space at each vertex of the polygon. To find the tangent
space vectors at a vertex, use the vertex normal for ~N , find the tangent axis by finding the vector
direction of increasing s in the object’s coordinate system (the direction of the texture’s s axis in the
object’s space). You could use the texture’s t axis as the tangent axis instead if it is more convenient.
Find ~B by computing the cross product of ~N and ~T . The normalized values of these vectors can be
used to create a rotation matrix: 2

6664
Tx Ty Tz 0
Bx By Bz 0
Nx Ny Nz 0
0 0 0 1

3
7775

This matrix rotates the ~T vector, defined in object space, into the x axis of tangent space, the ~B vector
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Figure 43. Shifting Bump Mapping to Create Normal Components

into the y axis, and the normal vector into the z axis. It rotates a vector from object space into tangent
space. If the ~T , ~B, and ~N vectors are defined in eye space, then it converts from eye space to tangent
space. For all non-planar surfaces, this matrix will differ at each vertex of the polygon.

Now you can apply this matrix to the light direction vector ~L, transforming it into tangent space at
each vertex. Use the transformed x and y components of the light vector to shift the texture coordi-
nates at the vertex.

The resulting image, after shifting and subtracting is part of ~N � ~L computed in tangent space at
every texel. In order to get the complete dot product, you need to add in the rotated z component
of the light vector. This is done as a separate pass, blending the results with the previous image, but
adding, not subtracting this time. It turns out that this third component is the same as adding in the
Gouraud shaded version of the polygon to the textured one.

So the steps for diffuse bump mapping are:

1. Render the polygon with the bump map textured on it. Since the bump map modifies the poly-
gon color, you can get the diffuse color you want by coloring the polygon with kd.

2. Find ~N , ~T and ~B at each vertex.

3. Use the vectors to create a rotation matrix.

4. Use the matrix to rotate the light vector ~L into tangent space.

5. Use the rotatedx and y components of ~L to shift the s and t texture coordinates at each polygon
vertex.
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6. Re-render the bump map textured polygon using the shifted texture coordinates.

7. Subtract the second image from the first.

8. Render the polygon Gouraud shaded with no bump map texture.

9. Add this image to result.

In order to improve accuracy, this process can be done using the accumulation buffer. The bump
mapped objects in the scene are rendered with the bump map, re-rendered with the shifted bump
map and accumulated with a negative weight, then re-rendered again using Gouraud shading and no
bump map texture, accumulated normally.

The process can be extended to find bump mapped specular highlights. The process is repeated, this
time using the halfway vector ( ~H) instead of the light vector. The halfway vector is computed by

averaging the light and viewer vectors
~L+~V
2 . Here are the steps for finding specular bump mapping:

1. Render the polygon with the bump map textured on it.

2. Find ~N , ~T and ~B at each vertex.

3. Use the vectors to create a rotation matrix.

4. Use the matrix to rotate the halfway vector ~H into tangent space.

5. Use the rotated x and y components of ~H to shift the s and t texture coordinates at each poly-
gon vertex.

6. Re-render the bump map textured polygon using the shifted texture coordinates.

7. Subtract the second image from the first.

8. Render the polygon Gouraud shaded with no bump map texture, this time use ~H instead of ~L.
Use a polygon whose color is equal to the specular color you want, ks.

9. Now you have ( ~H � ~N) , but you want ( ~H � ~N)
n

To raise the result to a
power, you can load power function values into the texture color table, using
glColorTableSGI with GL TEXTURE COLOR TABLE SGI as its target, then enabling
GL TEXTURE COLOR TABLE SGI. With the color lookup table loaded and enabled, when
you texture and blend the specular contribution to the result, the texture filtering will raise
the specular dot product to the proper power. If you don’t have this extension, then you
can process the texel values on the host, or limit yourself to non-bump mapped specular
highlights.

10. Add this image to result.

Combine the two images together to get both contributions in the image.
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8.5.2 Going for Higher Quality

The previous technique renders the entire scene multiple times. If very high quality is important,
the texture itself can be processed separately, then applied to the scene as a final step. The previous
technique yields lower quality results where the texture is less perpendicular to the line of sight in
the image, due to the object geometry. If the texture is processed before being applied to the image,
we avoid this problem.

To process the texture separately, the vertices of the object must be mapped to a square grid. The
rest of the steps are the same, because the relationship between light source and the vertex normals
hasn’t changed. When the new texture map has been created, copy it back into texture memory, and
use it to render the object.

8.5.3 Blending

If you choose not to use the accumulation buffer, acceptable results can be obtained by blending.
Because of the subtraction step, you’ll have to remap the color values to avoid negative results. Since
the image values range from 0 to 1, the range of values after subtraction can be -1 (0 - 1) to 1 (1 - 0).

Scale and bias the bump map values to remap the results to the 0 to 1 range. Once you’ve made all
three passes, it is safe to remap the values back to their original 0 to 1 range. This scaling and biasing,
combined with less bits of color precision, makes this method inferior to using the accumulation
buffer.

8.5.4 Why Does This Work?

By shifting and subtracting the bump map, you’re finding the directional derivative of the bump
map’s height function.

By rotating the light vector into tangent space, then using the x and y components for the shift values,
you’re finding the component of the perturbed normal vector aligned with the light. In tangent space,
the unperturbed normal is a unit vector along the z axis. When the shifted values are non-zero, they
represent the magnitude of the component of the perturbed normal in the direction of the light source.
Since the perturbed normal component is parallel to the light source vector (in tangent space), the
dot product of this component with the light reduces to a scale operation, which is what a texture
map with the texture environment set to modulate does.

Since the perturbed normal is relative to the smooth surface normal, we take the smoothed normal
contribution into account when we add in the Gouraud shaded polygon.

There is an assumption that the perturbed normal is not much different from the smoothed surface
unit normal, so that the length of the perturbed normal is not much different from one. If this as-
sumption wasn’t true, we’d have to create and modulate in an extra texture that would renormalize
the perturbed normal. This can be done, at the cost of an extra texturing pass, if more accuracy is
needed.
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8.5.5 Limitations

Although this technique does correctly bump map the surface efficiently, there are limitations to its
accuracy.

Bump Map Sampling The bump map height function is not continuous, but is sampled into the
texture. The resolution of the texture affects how faithfully the bump map is represented. In-
creasing the size of the bump map texture can improve the sampling of the high frequency
height components.

Texture Resolution The shifting and subtraction steps produce the directional derivative. Since
this is a forward differencing technique, the highest frequency component of the bump map
increases as the shift is made smaller. As the shift is made smaller, more demands are made
of the texture coordinate precision. The shift can become smaller than the texture filtering
implementation can handle, leading to noise and aliases effects. A good starting point is to
size the shift components so their vector magnitude is a single texel.

Surface Curvature The tangent coordinate axes are different at each point on a curved surface.
This technique approximates this by finding the tangent space transforms at each vertex. Tex-
ture mapping interpolates the different shift values from each vertex across the polygon. For
polygons with very different vertex normals, this approximation can break down. A solution
would be to subdivide the polygons until their vertex normals are parallel to within some error
limit.

Maximum Bump Map Slope The bump map normals used in this technique are good approxima-
tions if the bump map slope is small. If there are steep tangents in the bump map, the assump-
tion that the perturbed normal is length one becomes inaccurate, and the highlights appear too
bright. This can be corrected by creating a fourth pass, using a modulating texture derived
from the original bump map. Each value of the texel is one over the length of the perturbed
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8.6 Choosing Material Properties

OpenGL provides a full lighting model to help produce realistic objects. The library provides no
guidance, however, on finding the proper lighting material parameters to simulate specific materi-
als. This section categorizes common materials, provides some guidance for choosing representative
material properties, and provides a table of material properties for common materials.

8.6.1 Modeling Material Type

Material properties are modeled with the following OpenGL parameters:

105



Programming with OpenGL: Advanced Rendering

GL AMBIENT How ambient light reflects from the material surface. This is an RGBA color vector.
The magnitude of each component indicates how much the light of that component is being
reflected.

GL DIFFUSE How diffuse reflection from light sources reflect from the material surface. This is an
RGBA color vector. The magnitude of each component indicates how much the light of that
component is being reflected.

GL SPECULAR How specular reflection from a light source reflects from the material. This is an
RGBA color vector. The magnitude of each component indicates how much the light of that
component is being reflected.

GL EMISSION How much of what color is being emitted from this object. This is an RGBA color
vector. The magnitude of each component indicates how much light of that component is
glowing from the material. Since this parameter is only useful for glowing objects, we’ll ig-
nore it in this section.

GL SHININESS How mirror-like the specular reflection is from this material. This is a single inte-
ger. The larger the number, the more rapidly the specular reflection drops off as the viewing
angle diverges from the reflection vector.

For lighting purposes, materials can be described by the type of material, and the smoothness
of its surface. Material type is simulated by the relationship between color components of the
GL AMBIENT, GL DIFFUSE and GL SPECULAR parameters. Surface smoothness is simulated by the
overall magnitude of the GL AMBIENT, GL DIFFUSE and GL SPECULAR parameters, and the value
of GL SHININESS. As the magnitude of these components get closer to one, and the GL SHININESS

value increases, the material appears to have a smoother surface.

For lighting purposes, material type can be divided into four categories: dielectrics, metals, com-
posites, and other materials.

Dielectrics These are the most common category. These are non-conductive materials, such as
plastic or wood, which don’t have free electrons. The result is that dielectrics have relatively low
reflectivity, and have a reflectivity that is independent of light color. Because they don’t interact with
the light much, many dielectrics are transparent. The ambient, diffuse and specular colors tend to
be the same.

Powdered dielectrics tend to look white because of the high surface area between the dielectric and
the surrounding air. Because of this high surface area, they also tend to reflect diffusely.

Metals Metals are conductive and have free electrons. As a result, metals are opaque and tend to
be very reflective, and their ambient, diffuse, and specular colors tend to be the same. How the free
electrons are excited by light at different wavelengths determines the color of the metal. Materials
like steel and nickel have nearly the same response over all visible wavelengths, resulting in a grayish
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reflection. Copper and gold, on the other hand, reflect long wavelengths more strongly than short
ones, giving them their reddish and yellowish colors.

The color of light reflected from metals is also a function of incident and exiting light directions. This
can’t be modeled accurately with the OpenGL lighting model, compromising the metallic look of
objects. However, a modified form of environment mapping (such as the OpenGL sphere mapping)
can be used to approximate the proper visual effect.

Composite Materials Common composites, like plastic and paint, are composed of a dielectric
binder with metal pigments suspended in them. As a result, they combine the reflective properties
of metals and dielectrics. Their specular reflection is dielectric, their diffuse reflection is like metal.

Other Materials Other materials that don’t fit into the above categories are materials such as thin
films, and other exotics.

8.6.2 Modeling Material Smoothness

As mentioned before, the apparent smoothness of a material is a function of how strongly it re-
flects and the size of the specular highlight. This is affected by the overall magnitude of the
GL AMBIENT, GL DIFFUSE and GL SPECULAR parameters, and the value of GL SHININESS. Here
are some heuristics that describe useful relationships between the magnitudes of these parameters:

1. The spectral color of the GL AMBIENT and GL DIFFUSE parameters should be the same.

2. The magnitudes of GL DIFFUSE and GL SPECULAR should sum to a value close to one. This
helps prevent color value overflow.

3. The value of GL SHININESS should increase as the magnitude of GL SPECULAR approaches
one.

No promise is made that these relationships, or the values in Table 3 will provide a perfect imitation
of a given material. The empirical model used by OpenGL emphasizes performance, not physical
exactness.

For an excellent description of material properties, see [31].
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Material GL AMBIENT GL DIFFUSE GL SPECULAR GL SHININESS

Brass 0.329412 0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
1.0 1.0 1.0

Bronze 0.2125 0.714 0.393548 25.6
0.1275 0.4284 0.271906
0.054 0.18144 0.166721
1.0 1.0 1.0

Polished 0.25 0.4 0.774597 76.8
Bronze 0.148 0.2368 0.458561

0.06475 0.1036 0.200621
1.0 1.0 1.0

Chrome 0.25 0.4 0.774597 76.8
0.25 0.4 0.774597
0.25 0.4 0.774597
1.0 1.0 1.0

Copper 0.19125 0.7038 0.256777 12.8
0.0735 0.27048 0.137622
0.0225 0.0828 0.086014
1.0 1.0 1.0

Polished 0.2295 0.5508 0.580594 51.2
Copper 0.08825 0.2118 0.223257

0.0275 0.066 0.0695701
1.0 1.0 1.0

Gold 0.24725 0.75164 0.628281 51.2
0.1995 0.60648 0.555802
0.0745 0.22648 0.366065
1.0 1.0 1.0

Polished 0.24725 0.34615 0.797357 83.2
Gold 0.2245 0.3143 0.723991

0.0645 0.0903 0.208006
1.0 1.0 1.0

Pewter 0.105882 0.427451 0.333333 9.84615
0.058824 0.470588 0.333333
0.113725 0.541176 0.521569
1.0 1.0 1.0

Table 3: Parameters for Common Materials
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Material GL AMBIENT GL DIFFUSE GL SPECULAR GL SHININESS

Silver 0.19225 0.50754 0.508273 51.2
0.19225 0.50754 0.508273
0.19225 0.50754 0.508273
1.0 1.0 1.0

Polished 0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911

0.23125 0.2775 0.773911
1.0 1.0 1.0

Emerald 0.0215 0.07568 0.633 76.8
0.1745 0.61424 0.727811
0.0215 0.07568 0.633
0.55 0.55 0.55

Jade 0.135 0.54 0.316228 12.8
0.2225 0.89 0.316228
0.1575 0.63 0.316228
0.95 0.95 0.95

Obsidian 0.05375 0.18275 0.332741 38.4
0.05 0.17 0.328634
0.06625 0.22525 0.346435
0.82 0.82 0.82

Pearl 0.25 1.0 0.296648 11.264
0.20725 0.829 0.296648
0.20725 0.829 0.296648
0.922 0.922 0.922

Ruby 0.1745 0.61424 0.727811 76.8
0.01175 0.04136 0.626959
0.01175 0.04136 0.626959
0.55 0.55 0.55

Turquoise 0.1 0.396 0.297254 12.8
0.18725 0.74151 0.30829
0.1745 0.69102 0.306678
0.8 0.8 0.8

Black 0.0 0.01 0.50 32
Plastic 0.0 0.01 0.50

0.0 0.01 0.50
1.0 1.0 1.0

Black 0.02 0.01 0.4 10
Rubber 0.02 0.01 0.4

0.02 0.01 0.4
1.0 1.0 1.0
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9 Scene Realism

9.1 Motion Blur

This is probably one of the easiest effects to implement. Simply re-render a scene multiple times, in-
crementing the position and/or orientation of an object in the scene. The object will appear blurred,
suggesting motion. This effect can be incorporated in the frames of an animation sequence to im-
prove its realism, especially when simulating high-speed motion.

The apparent speed of the object can be increased by dimming its blurred path. This can be done by
accumulating the scene without the moving object, setting the value parameter to be larger than 1/n.
Then re-render the scene with the moving object, setting the value parameter to something smaller
than 1/n. For example, to make a blurred object appear 1/2 as bright, accumulated over 10 scenes,
do the following:

1. Render the scene without the moving object, using glAccum(GL LOAD,.5f).

2. Accumulate the scene 10 more times, with the moving object, using
glAccum(GL ACCUM,.05f).

Choose the values to ensure that the non-moving parts of the scene retain the same overall brightness.

It’s also possible to use different values for each accumulation step. This technique could be used
to make an object appear to be accelerating or decelerating. As before, ensure that the overall scene
brightness remains constant.

If you are using motion blur as part of a real-time animated sequence, and your value is constant,
you can improve the latency of each frame after the first n dramatically. Instead of accumulating
n scenes, then discarding the image and starting again, you can subtract out the first scene of the
sequence, add in the new one, and display the result. In effect, you’re keeping a “running total” of
the accumulated images.

The first image of the sequence can be “subtracted out” by rendering that image, then accumulating
it with glAccum(GL ACCUM, -1.f/n). As a result, each frame only incurs the latency of drawing
two scenes; adding in the newest one, and subtracting out the oldest.

9.2 Depth of Field

OpenGL’s perspective projections simulate a pinhole camera; everything in the scene is in perfect
focus. Real lenses have a finite area, which causes only objects within a limited range of distances
to be in focus. Objects closer or farther from the camera are progressively more blurred.

The accumulation buffer can be used to create depth of field effects by jittering the eye point and the
direction of view. These two parameters change in concert, so that one plane in the frustum doesn’t
change. This distance from the eye point is thus in focus, while distances nearer and farther become
more and more blurred.
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Figure 44. Jittered Eye Points
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To create depth of field blurring, the perspective transform changes described for antialiasing in Sec-
tion 7.5 are expanded somewhat. This code modifies the frustum as before, but adds in an additional
offset. This offset is also used to change the modelview matrix; the two acting together change the
eye point and the direction of view:

void frustum_depthoffield(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far,
GLdouble xoff, GLdouble yoff,
GLdouble focus)

{
glFrustum(left - xoff * near/focus,

right - xoff * near/focus,
top - yoff * near/focus,
bottom - yoff * near/focus,
near, far);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(-xoff, -yoff);

}

The variables xoff and yoff now jitter the eye point, not the entire scene. The focus variable de-
scribes the distance from the eye where objects will be in perfect focus. Think of the eye point jit-
tering as sampling the surface of a lens. The larger the lens, the greater the range of jitter values,
and the more pronounced the blurring. The more samples taken, the more accurate a sampling of
the lens. You can use the jitter values given in Section 7.5.

This function assumes that the current matrix is the projection matrix. It sets the frustum, then sets
the modelview matrix to the identity, and loads it with a translation. The usual modelview transfor-
mations could then be applied to the modified modelview matrix stack. The translate would become
the last logical transform to be applied.

9.3 Reflections and Refractions

In both rendering and interactive computer graphics, substantial effort has been devoted to the mod-
eling of reflected and refracted light. This is not surprising – almost all the light perceived in the
world is reflected. This section describes several ways to create the effects of reflection and refrac-
tion using OpenGL beginning with a very brief review of the relevant physics. Pointers to more
detailed descriptions are provided.

From elementary physics, the angle of reflection of a ray is equal to the angle of incidence of the
ray (Figure 45). This property is known as the Law of Reflection [12]. The reflected ray lies in the
plane defined by the incident ray and the surface normal.

Refraction is defined as the “change in the direction of travel as light passes from one medium to
another” [12]. This change in direction is caused by the difference in the speed of light traveling
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Figure 45. Reflection and Refraction: Lower has Higher Index of Refraction

through the two mediums. The refractivity of a material is characterized by the index of refraction
of the material, or the ratio of the speed of light in the material to the speed of light in a vacuum [12].

The direction of a light ray after it passes from one medium to another is computed from the direction
of the incident ray, the normal of the surface at the intersection of the incident ray, and the indices of
refraction of the two materials. The behavior is shown in Figure 45. The first medium through which
the ray passes has an index of refraction n1 and the second has an index of refraction n2. The angle
of incidence, �1, is the angle between the incident ray and the surface normal. The refracted ray
forms the angle �2 with the normal. The incident and refracted rays are coplanar. The relationship
between the angle of incidence and the angle of refraction is stated as Snell’s Law[12]:

n1 cos�1 = n2 cos�2 (1)

If n1 > n2 (light is passing from a more refractive material to a less refractive material), past some
critical angle the incident ray will be bent so far that it will not cross the boundary. This phenomenon
is known as total internal reflection and is illustrated in Figure 46 [12].

When a ray hits a surface, some light is reflected off the surface and some is transmitted. The weight-
ing of the transmitted and reflected light is determined by the Fresnel equations.

More details about reflection and refraction can be gleaned from most college physics books. For
more details on the reflection and transmission of light from a computer graphics perspective, consult
one of several general computer graphics books or books on radiosity or ray tracing [9], [22], [31].

9.3.1 Planar Reflectors

This section discusses the modeling of planar reflective surfaces. Two techniques are discussed: a
technique which uses the stencil buffer to draw the reflected geometry in the proper location and
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Figure 46. Total Internal Reflection

a technique which uses texture mapping to make an image of the reflected geometry which is then
texture mapped onto the reflective polygon. Both techniques construct the scene in two (or more)
passes.

Planar Reflections and Refractions Using the Stencil Buffer The effects of specular reflection
can be approximated by a two-pass technique using the stencil buffer. During the first pass, you will
render the reflected image of the scene. During the second pass, you will render the non-reflected
view of the scene, using the stencil buffer to prevent the reflected image from being drawn over.

As an example, consider a model of a room with a mirror on one wall. Compute the plane containing
the mirror and define an eye point from which you wish to render the scene. During the first pass,
place the eye point at the desired location (using a gluLookAt command or something similar).
Next, draw the scene as it looks reflected through the plane containing the mirror. This can be envi-
sioned in two ways, shown in Figures 47 and 48. In the first illustration, you reflect the viewpoint.
In the second illustration,you reflect the scene. The ways of considering the problem are equivalent.
Both are presented here since reflecting the viewpoint will tie into the next section, but many people
seem to find reflecting the scene more intuitive. The sequence of steps for the first pass is as follows:

1. Initialize the modelview and projection matrices to the identity (glLoadIdentity).

2. Set up a projection matrix using the glFrustum command.

3. Set up the “real” eye point at the desired position using a gluLookAt command (or something
similar).

4. Reflect the viewing frustum (or the scene) through the plane containing the reflector by com-
puting a reflection matrix and combining it with the current modelview or projection matrices
using the glMultMatrix command.
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5. Draw the scene.

6. Move the eye point back to its “real” position.

Objects drawn in the first pass look as they would when seen in the mirror, except that you ignore
the fact that the mirror may not fill the entire field of view. That is to say, imagine that the entire
plane containing the mirror is reflective, but in reality the mirror does not cover the entire plane.
Parts of the scene may be drawn which will not be visible. For example, the lowest box in the scene
in Figure 48 is drawn, but its reflection is not visible in the mirror. You will fix this in the second
pass.

When rendering from the reflected eye point, points on the plane through which you reflect maintain
the same position in eye space as when you render from the original eye point. For example, corners
of the reflective polygon are in the same location when viewed from the reflected eye point as from
the original viewpoint. This may seem more believable if one imagines that you are reflecting the
scene, instead of the eye point.

One implementation problem during the first pass is that you should not draw the mirror or it will
obscure your reflected image. This problem may be solved by backface culling, or by having the
graphics application recognize the mirror (and objects in the same plane as the mirror).

You may wish to produce a magnified or minified reflection by moving the reflected viewpoint back-
wards or forwards along its line of sight. If the position is the same distance as the eye point from
the mirror then an image of the same scale will result.

Start the second pass by setting the eye point up at the “real” location. Next, draw the mirror poly-
gon. Mask out portions of the reflected scene which you drew in the first pass, but which should not
be visible. This is accomplished using the stencil buffer. First, clear the stencil and depth buffers.
Next, draw the mirror polygon into the stencil buffer and depth buffers, setting the stencil value to
1. You may or may not wish to render the mirror polygon to the color buffers at this point. If you
do, the mirror must not be opaque or it will completely obscure our reflected scene. You can give
the appearance of a dirty, not purely reflective, mirror by drawing it using one of the transparency
techniques discussed in Section 10. After drawing the mirror, configure the stencil test to pass where
ever the stencil buffer value is not equal to 1. Then clear the color buffers, which erases all parts of
the reflected scene except those in the mirror polygon. After the clear, disable the stencil test and
draw the scene. The list of steps for the second pass is:

1. Clear the stencil and depth buffers (glClear(GL COLOR BUFFER BIT |

GL DEPTH BUFFER BIT)).

2. Configure the stencil buffer such that a 1 will be stored at each pixel touched by a polygon:

glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
glStencilFunc(GL_ALWAYS, 1, 1);
glEnable(GL_STENCIL_TEST);

3. Disable drawing into the color buffers (glColorMask(0, 0, 0, 0)).
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4. Draw the mirror polygon.

5. Reconfigure the stencil test:

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilFunc(GL_NOTEQUAL);

6. Draw the scene.

7. Disable the stencil test (glDisable(GL STENCIL TEST)).

The frame is now complete.

See Section 3 for more information on modeling.

Planar Reflections using Texture Mapping A technique similar to the stencil buffer tech-
nique uses texture mapping. The first pass is identical to the first pass of the previous tech-
nique: draw the reflected scene. After drawing the scene, copy the image into a texture (using the
glCopyTexImage2D command). During the second pass, this texture is mapped onto the reflective
polygon. The sequence of steps for the second pass is as follows:

1. Position the viewer at the “real” eye point.

2. Draw the non-reflective objects in the scene.

3. Bind the texture containing the reflected image.

4. Draw the reflective object with the appropriate texture coordinates.

The texture coordinates at the vertices of the reflective object must be in the same location as the
vertices of the reflective object in the texture. These coordinates may be computed by figuring the
projection of the corners of the object into the viewing plane used to compute the reflection map (the
command gluProject may prove helpful). Alternately, the texture matrix can be loaded with the
composite modelview and projection matrices and postmultiplied by a scale of 1 divided by the size
in pixels of the region used to compute the texture. The texture coordinates would then be the model
coordinates of the vertices.

The texture mapping technique may be more efficient on some systems. Also,you may be able to
use a reflection texture during several frames (see below).

Interreflections Either the stencil technique or the texture mapping technique may be used to
model scenes with interreflections. Each algorithm uses additional passes for each “bounce” that
the light takes, stopping when the reflected image added by the pass is too small to be significant.

Using the stencil technique, draw the reflected image with the most “bounces” from the viewpoint
first. Compute the viewpoint for this pass by repeatedly reflecting the viewpoint through the reflec-
tive polygons. On each pass, draw the scene, move the viewpoint to the next position, and draw the
scene using the stencil buffer to mask the reflective polygons from the previous passes.
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Using the texture technique, first create textures for each of the reflective objects. Then initialize the
textures to some known value (choice of this value will be discussed below). Next, iterate over the
primitives, drawing the scene for each one and copying the results to the primitive’s reflection map
as described above. Repeat this process until you have determined that the additional passes are not
having a significant effect.

The choice of the initial reflection map values can have an effect on the number of passes required.
The initial reflection value will generally appear as a smaller part of the picture oneach of the passes.
Stop the iteration when the initial reflection is small enough that the viewer will not notice that it
is not correct. By setting the initial reflection to something reasonable, you can achieve this state
earlier. A good initial guess is to set the map to the average color of the scene. In a multiframe
application with moving objects or a moving viewpoint, you could leave the reflection map with the
contents from the previous frame. This use of previous results is one of the advantages of the texture
mapping technique.

9.3.2 Sphere Mapping

Sphere mapping is an implementation of environment mapping. Environment mapping is a com-
puter graphics technique which uses a two-dimensional image (or images) containing the incident
illumination from every direction at a given point. When rendering, the light from the point is com-
puted as a function of the outgoing direction and the environment map. The outgoing direction is
used to choose one or more incoming directions, or points in the environment map, which are used
to compute the outgoing color [48]. In general, only one environment map point is used for each
outgoing ray, resulting in a perfect specular reflection.

In rendering, you often use a single environment map for an entire object by assuming that the single
environment map is a reasonable approximation of the environment map which would be computed
at each point on the object. This approximation is correct if the object is a sphere and the viewer
and other objects in the scene are infinitely far away. The approximation becomes less correct if
the object has interreflections (i.e., it’s not convex) and if the viewer and other objects are not at
infinity. In interactive polygonal rendering, make the additional assumption that the indices into the
environment map may be computed at each vertex and linearly interpolated over each polygon. In
spite of these simplifying assumptions, results in practice are generally quite good.

While rendering, compute the outgoing direction as a function of the eye point and the normal at the
surface. You can use environment maps to represent any effect that depends only upon the viewing
direction and the surface normal. These effects include specular and directional diffuse reflection,
refraction, and Phong lighting. Several of these effects are discussed in the context of OpenGL’s
sphere mapping capability.

Sphere mapping is a type of environment mapping in which the irradiance image is equivalent to
that which would be seen in a perfectly reflective hemisphere when viewed using an orthographic
projection [48]. This concept is illustrated in Figure 49. The sphere map is computed in the viewing
plane. The width and height of the plane are equal to the diameter of the sphere. Rays fired using the
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Figure 49. Creating a Sphere Map

orthographic projection are shown in blue (dark gray). In the center of the sphere, the ray reflects
back to the viewer. Along the edges of the sphere, the rays are tangent and go behind the sphere.

Note that since the sphere map computes the irradiance at a single point, the sphere is infinitely small.
Since the projection is orthographic, this implies that each texel in the image is also infinitely small.
In effect, you take the limit as the size of the sphere (and the size of each texel) approaches 0. All
of the rays along the outside of the sphere will map to the same point directly behind the sphere in
the environment.

Using a Sphere Map OpenGL provides a mechanism to generate s and t texture coordinates at
vertices based on the current normal and the direction to the eye point. The generated coordinates
are then used to index a sphere map image which has been bound as a texture.

The vector from the eye point to the vertex is denoted as ~U , normalized to ~U 0. Since the computation
is performed in eye coordinates, the eye is located at the origin and ~U is equal to the location of the
vertex. The current normal ~N is transformed to eye coordinates, becoming ~N 0. The reflected vector
~R can be computed as:

~R = 2( ~N 0 � ~U 0) ~N 0 � ~U 0 (2)

We define:
m = 2

q
R2
x +R2

y + (Rz + 1)2 (3)
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Figure 50. Sphere Map Coordinate Generation

Then the texture coordinates are calculated as:

s =
Rx

m
+

1

2

t =
Ry

m
+

1

2

This computation happens internally to OpenGL in the texture coordinate generation step.

To use sphere mapping in OpenGL, the following steps are performed:

1. Bind the texture containing the sphere map.

2. Set sphere mapping texture coordinate generation (glTexGen(GL S,

GL TEXTURE GEN MODE, GL SPHERE MAP)) and glTexGen(GL T,

GL TEXTURE GEN MODE, GL SPHERE MAP)).

3. Enable texture coordinate generation (glEnable(TEXTURE GEN S) and
glEnable(TEXTURE GEN T)).

4. Draw the object, providing correct normals on a per-face or per-vertex basis.

Generating a Sphere Map for Specular Reflection Several techniques exist to generate a spec-
ular sphere map. Two physical approaches are worth mentioning. In the first approach, the user
literally takes a picture of a reflective sphere. Figure 51 was generated in this fashion. This tech-
nique is problematic in that the camera is visible in the reflection map. In the second approach, a
fisheye lens approximates the sphere mapping. The problem with this technique is that no fisheye
lens can provide the 360� field of view required for a correct result.
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Figure 51. Reflection Map Created Using a Reflective Sphere

A sphere map can also be generated programmatically. Consider the circle of the environment map
within the square texture to be a unit circle. For each point (s; t) in the unit circle, you can compute
a point ~P on the sphere:

Px = s

Py = t

Pz =
q
1:0� P 2

x � P 2
y

Since you are dealing with a unit sphere, the normal at ~P is equal to ~P . Given the vector ~E toward
the eye point, you can compute the reflected vector ~R:

~R = ~N � ( ~N � ~E) � 2� ~E (4)

In OpenGL, it is assumed that the eye point is looking down the negative z axis, so ~E = (0; 0; 1).
Equation 4 reduces to:

Rx = Nx �Nz � 2
Ry = Ny �Nz � 2

Rz = Nz �Nz � 2� 1

The assumption that the ~E = (0; 0; 1) means that OpenGL’s sphere mapping is actually not view-
independent. The implications of this assumption will be discussed below with the other limitations
of the sphere mapping technique.

The rays are intersected with the environment to determine the irradiance. A simple implementation
of the algorithm is shown in the following pseudocode:
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void gen_sphere_map(GLsizei width, GLsizei height, GLfloat pos[3],
GLfloat (*tex)[3])

{
GLfloat ray[3], color[3], p[3];
GLfloat s,t;
int i, j;

for (j = 0; j < height; j++) {
t = 2.0 * ((float)j / (float)(height-1) - .5);
for (i = 0; i < width; i++) {
s = 2.0 * ((float)i / (float)(width - 1) - .5);

if (s*s + t*t > 1.0) continue;

/* compute the point on the sphere (aka the normal) */
p[0] = s;
p[1] = t;
p[2] = sqrt(1.0 - s*s - t*t);

/* compute reflected ray */
ray[0] = p[0] * p[2] * 2;
ray[2] = p[1] * p[2] * 2;
ray[3] = p[2] * p[2] * 2 - 1;
fire_ray(pos, ray, tex[j*width + i]);

}
}

}

Note that you could easily optimize the routine such that the bounds on i in the inner for loop were
intelligently set based on j.

The most interesting part of the computation has been encapsulated inside the fire ray routine.
fire ray performs the ray/environment intersection given the starting point and the direction of
the ray. Using the ray, it computes the color and puts the results into its third parameter (which is
the appropriate location in the texture map).

A naive implementation such as the one above will lead to sampling artifacts. In reality, a texel in the
image projects to a volume which should be intersected with the environment. To filter, you should
choose several rays in this volume and combine the results.

The intersection and color computation can be done in several ways. You may use a model of the
scene and a ray tracing package. Alternately, you can represent the scene as six images which form
the faces of a cube centered around the point for which the sphere map is being created. The images
represent what a camera with a 90� field of view and a focal point at the center of the square would
see in the given direction. The six images may be generated with OpenGL or a rendering package,
or can be captured with a camera. Figure 52 shows six images which were acquired using a camera.
Once the six images have been acquired, the rays from the point are intersected with the cube to
provide the sphere map texel values. Figure 53 shows the map generated from the cube faces in
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Figure 52. Image Cube Faces Captured at a Cafe in Palo Alto, CA
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Figure 53. Sphere Map Generated from Image Cube Faces in Figure 52

Figure 52.

An alternate implementation uses OpenGL’s texture mapping capabilities to create the sphere map.
The algorithm takes as input the six cube faces. It then draws a tessellated hemisphere six times,
mapping one of the faces into its correct location during each pass. The image of the sphere becomes
the sphere map. Texture coordinates and the texture matrix combine to map the proper texels onto the
sphere. At the vertices on the tessellated sphere, the values are correct. The interpolation between
the vertices is not correct, but is generally a good approximation.

The texture mapping accelerated technique to generate sphere maps and the CPU technique de-
scribed above are implemented in an example program found on the course web site.

Multipass Techniques and Interreflections Scenes containing two reflective objects may be ren-
dered using sphere maps created via a multipass algorithm. Begin by creating an initial sphere map
for each of the reflective objects in the scene. Choice of initial values was discussed in detail in Sec-
tion 48. Then iterate over the objects, recreating the sphere maps with the current sphere maps of
the other objects applied. The following pseudocode illustrates how this algorithm might be imple-
mented:

do {
for (each reflective object obj with center c) {
initialize the viewpoint to look along the axis (0, 0, -1)
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translate the viewpoint to c
render the view of the scene (except for obj)
save rendered image as cube1
rotate the viewer to look along (0, 0, 1)
render the view of the scene
save rendered image as cube2
rotate the viewer to look along (0, -1, 0)
render the view of the scene
save rendered image as cube3
rotate the viewer to look along (0, 1, 0)
render the view of the scene
save rendered image as cube4
rotate the viewer to look along (-1, 0, 0)
render the view of the scene
save rendered image as cube5
rotate the viewer to look along (1, 0, 0)
render the view of the scene
save rendered image as cube6
using the cube images, update the sphere map of obj

}
} while (sphere map has not converged)

Note that during the rendering of the scene, other reflective objects must have their most recent
sphere maps applied. Detection of convergence can be tricky. The simplest technique is to iterate
a certain number of times and assume the results will be good. More sophisticated approaches can
look at the change in the sphere maps for a given pass, or compute the maximum possible change
given the projected area of the reflective objects. Once the sphere maps have been created, you can
draw the scene from any viewpoint. If none of the objects are moving, the sphere maps for each
object can be created at program startup.

Other Sphere Mapping Techniques Sphere mapping may be used to approximate effects other
the specular reflection. Any effect which is dependent only on the surface normal can be approx-
imated, including Phong shading and refractive effects. You can use your sphere map to store the
outgoing color and intensity as a function of the normal. When computing your specular sphere map,
this color was determined by firing a ray which had been reflected about the normal. To compute a
different type of sphere map, determine the color using a different method. For example, to create
a Phong lighting map, you can take the dot product of the normal direction and the direction to the
light source.

Limitations of Sphere Mapping Although sphere mapping is generally convincing, it is not gen-
erally correct. Most of the artifacts come from the fact that the sphere map is generated at a single
point and then applied over a large number of points. Objects with interreflections cannot be handled
correctly. If reflected objects are close to the reflective object, their reflections should appear differ-
ently when viewed from different points on the reflector. Using sphere maps, this will not happen.
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Sphere mapping results are only correct if you assume that all the reflective objects are infinitely far
from the reflective object.

Fixing the eye point along the vector (0; 0; 1) also leads to incorrect results. The same normal in
eyespace will always map to the same location in the sphere map. A normal which points directly at
the eye point maps to the center of the sphere map. A normal which points directly away from the
user maps to the circle around the sphere map. Two important advantages of this simplification are
that it significantly reduces the cost of computing r and that it ensures that the parts of the sphere map
which have the best filtering are mapped to the primitives which face the user. In general, primitives
which face the user will cover large areas in screen space and will be the focus of the user’s attention.

Interpolation of the texture coordinates also leads to artifacts. Texture coordinates are computed at
the vertices and linearly interpolated across the polygon. Unfortunately, the sphere map is not in a
linear space, so this interpolation is not correct. Additionally, the linear interpolation will not take
into account the fact that the points at the edge of the circle all map to the same location. Coordinates
may be interpolated within the circle of the sphere map when they should be interpolated across the
boundary.

9.4 Creating Shadows

Shadows are an important way to add realism to a scene. There are a number of trade-offs possible
when rendering a scene with shadows. Just as with lighting, there are increasing levels of realism
possible, paid for with decreasing levels of rendering performance.

Shadows are composed of two parts, the umbra and the penumbra. The umbra is the area of a shad-
owed object that isn’t visible from any part of the light source. The penumbra is the area of a shad-
owed object that can receive some, but not all of the light. A point source light would have no penum-
bra, since no part of a shadowed object can receive part of the light.

Penumbras form a transition region between the umbra and the lighted parts of the object; they vary
as function of the geometry of the light source and the shadowing object. Since shadows tend to have
high contrast edges, They are more unforgiving with respect to aliasing artifacts and other rendering
errors.

Although OpenGL doesn’t support shadows directly, there are a number of ways to implement them
with the library. They vary in difficulty to implement, and quality of results. The quality varies as
a function of two parameters. The complexity of the shadowing object, and the complexity of the
scene that is being shadowed.

9.4.1 Projection Shadows

An easy-to-implement type of shadow can be created using projection transforms [58]. An object is
simply projected onto a plane, then rendered as a separate primitive. Computing the shadow involves
applying a orthographic or perspective projection matrix to the modelview transform, then rendering
the projected object in the desired shadow color.
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Here is the sequence needed to render an object that has a shadow cast from a directional light on
the z axis down onto the x, y plane:

1. Render the scene, including the shadowing object in the usual way.

2. Set the modelview matrix to identity, then call glScalef(1.f, 0.f, 1.f).

3. Make the rest of the transformation calls necessary to positionand orient the shadowingobject.

4. Set the OpenGL state necessary to create the correct shadow color.

5. Render the shadowing object.

In the last step, the second time the object is rendered, the transform flattens it into the object’s
shadow. This simple example can be expanded by applying additional transforms before the
glScalef call to position the shadow onto the appropriate flat object. Applying this shadow is sim-
ilar to decaling a polygon with another coplanar one. Depth buffering aliasing must be taken into
account. To avoid depth aliasing problems, the shadow can be slightly offset from the base polygon
using polygon offset, the depth test can be disabled, or the stencil buffer can be used to ensure cor-
rect shadow decaling. The best approach is probably depth buffering with polygon offset. This way
the depth buffering will minimize the amount of clipping you will have to do to the shadow.

The direction of the light source can be altered by applying a shear transform after the glScalef
call. This technique is not limited to directional light sources. A point source can be represented by
adding a perspective transform to the sequence.

Although you can construct an arbitrary shadow from a sequence of transforms, it might be easier to
just construct a projection matrix directly. The function below takes an arbitrary plane, defined as a
plane equation inAx+By+Cz+D = 0 form, and a light position in homogeneous coordinates. If
the light is directional, the w value should be 0. The function concatenates the shadow matrix with
the current matrix.

static void
myShadowMatrix(float ground[4], float light[4])
{

float dot;
float shadowMat[4][4];

dot = ground[0] * light[0] +
ground[1] * light[1] +
ground[2] * light[2] +
ground[3] * light[3];

shadowMat[0][0] = dot - light[0] * ground[0];
shadowMat[1][0] = 0.0 - light[0] * ground[1];
shadowMat[2][0] = 0.0 - light[0] * ground[2];
shadowMat[3][0] = 0.0 - light[0] * ground[3];
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shadowMat[0][1] = 0.0 - light[1] * ground[0];
shadowMat[1][1] = dot - light[1] * ground[1];
shadowMat[2][1] = 0.0 - light[1] * ground[2];
shadowMat[3][1] = 0.0 - light[1] * ground[3];

shadowMat[0][2] = 0.0 - light[2] * ground[0];
shadowMat[1][2] = 0.0 - light[2] * ground[1];
shadowMat[2][2] = dot - light[2] * ground[2];
shadowMat[3][2] = 0.0 - light[2] * ground[3];

shadowMat[0][3] = 0.0 - light[3] * ground[0];
shadowMat[1][3] = 0.0 - light[3] * ground[1];
shadowMat[2][3] = 0.0 - light[3] * ground[2];
shadowMat[3][3] = dot - light[3] * ground[3];

glMultMatrixf((const GLfloat*)shadowMat);
}

Projection Shadow Trade-offs This method of shadow volume is limited in a number of ways.
First, it is very difficult to use to shadow onto anything other than flat surfaces. Although you could
project onto a polygonal surface, by carefully casting the shadow onto the plane of each polygon
face, you would then have to clip the result to the polygon’s boundaries. Sometimes depth buffer-
ing can do the clipping for you; casting a shadow to the corner of a room composed of just a few
perpendicular polygons is feasible with this method.

The other problem with projection shadows is controlling the shadow’s color. Since the shadow is a
squashed version of the shadowing object, not the polygon being shadowed, there are limits to how
well you can control the shadow’s color. Since the normals have been squashed by the projection op-
eration, trying to properly light the shadow is impossible. A shadowed polygon with an interpolated
color won’t shadow correctly either, since the shadow is a copy of the shadowing object.

9.4.2 Shadow Volumes

This technique treats the shadows cast by objects as polygonal volumes. The stencil buffer is used
to find the intersection between the polygons in the scene and the shadow volume [34].

The shadow volume is constructed from rays cast from the light source, intersecting the vertices
of the shadowing object, then continuing outside the scene. Defined in this way, the shadow vol-
umes are semi-infinite pyramids, but the same results can be obtained by truncating the base of the
shadow volume beyond any object that might be shadowed by it. This gives you a polygonal sur-
face, whose interior volume contains shadowed objects or parts of shadowed objects. The polygons
of the shadow volume are defined so that their front faces point out from the shadow volume itself.

The stencil buffer is used to compute which parts of the objects in the scene are in the shadow vol-
ume. It uses a non-zero winding rule technique. For every pixel in the scene, the stencil value is
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incremented as it crosses a shadow boundary going into the shadow volume, and decrements as it
crosses a boundary going out. The stencil operations are set so this increment and decrement only
happens when the depth test passes. As a result, pixels in the scene with non-zero stencil values
identify the parts of an object in shadow.

Since the shadow volume shape is determined by the vertices of the shadowing object, it’s possible
to construct a complex shadow volume shape. Since the stencil operations will not wrap past zero,
it’s important to structure the algorithm so that the stencil values are never decremented past zero,
or information will be lost. This problem can be avoided by rendering all the polygons that will
increment the stencil count first (i.e., the front facing ones), then rendering the back facing ones.

Another issue with counting is the position of the eye with respect to the shadow volume. If the eye
is inside a shadow volume, the count of objects outside the shadow volume will be �1, not zero.
This problem is discussed in more detail in Section 9.4. The algorithm takes this case into account
by initializing the stencil buffer to 1 if the eye is inside the shadow volume.

Here’s the algorithm for a single shadow and light source:

1. The color buffer and depth buffer are enabled for writing, and depth testing is enabled.

2. Set attributes for drawing in shadow. Turn off the light source.

3. Render the entire scene.

4. Compute the polygons enclosing the shadow volume.
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5. Disable the color and depth buffer for writing, but leave the depth test enabled.

6. Clear the stencil buffer to 0 if the eye is outside the shadow volume, or 1 if inside.

7. Set the stencil function to always pass.

8. Set the stencil operations to increment if the depth test passes.

9. Turn on back face culling.

10. Render the shadow volume polygons.

11. Set the stencil operations to decrement if the depth test passes.

12. Turn on front face culling.

13. Render the shadow volume polygons.

14. Set the stencil function to test for equality to 0.

15. Set the stencil operations to do nothing.

16. Turn on the light source.

17. Render the entire scene.

When the entire scene is rendered the second time, only pixels that have a stencil value equal to
zero are updated. Since the stencil values were only changed when the depth test passes, this value
represents how many times the pixel’s projection passed into the shadow volume minus the number
of times it passed out of the shadow volume before striking the closest object in the scene (after that
the depth test will fail). If the shadow boundary was crossed an even number of times, the pixel
projection hit an object that was outside the shadow volume. The pixels outside the shadow volume
can therefore “see” the light, which is why it is turned on for the second rendering pass.

For a complicated shadowing object, it make sense to find its silhouette vertices, and use only these
for calculating the shadow volume. These vertices can be found by looking for any polygon edges
that either (1) surround a shadowing object composed of a single polygon, or (2) is shared by two
polygons, one which is facing towards the light source, one which is facing away. You can determine
which direction the polygons are facing by taking a dot product of the polygon’s facet normal with
the direction of the light source, or by a combination of selection and front/back face culling

Multiple Light Sources The algorithm can be easily extended to handle multiple light sources.
For each light source, repeat the second pass of the algorithm, clearing the stencil buffer to “zero”,
computing the shadow volume polygons, and rendering them to update the stencil buffer. Instead of
replacing the pixel values of the unshadowed scenes, choose the appropriate blending function and
add that light’s contribution to the scene for each light. If more color accuracy is desired, use the
accumulation buffer.
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The accumulation buffer can also be used with this algorithm to create soft shadows. Jitter the light
source position and repeat the steps described above for multiple light sources.

Shadow Volume Trade-offs Shadow volumes can be very efficient if the shadowing object is sim-
ple. Difficulties occur when the shadowing object is a complex shape, making it difficult to compute
a shadow volume. Ideally, the shadow volume should be generated from the vertices along the sil-
houette of the object, as seen from the light. This isn’t a trivial problem for complex shadowing
objects.

Since the stencil count for objects in shadow depends on whether the eye point is in the shadow or
not, making the algorithm independent of eye position is more difficult. One solution is to intersect
the shadow volume with the view frustum, and use the result as the shadow volume. This can be a
non-trivial CSG operation.

In certain pathological cases, the shape of the shadow volume may cause a stencil value underflow
even if you render the front facing shadow polygons first. To avoid this problem, you can choose a
“zero” value in the middle of the stencil values representable range. For an 8 bit stencil buffer, you
could choose 128 as the “zero” value. The algorithm would be modified to initialize and test for this
value instead of zero. The “zero” should be initialized to “zero” + 1 if the eye is inside the shadow
volume.

Shadow volumes will test your polygon renderer’s handling of adjacent polygons. If there are any
rendering problems, such as “double hits”, the stencil count can get messed up, leading to grossly
incorrect shadows.

9.4.3 Shadow Maps

Shadow maps use the depth buffer and projective texture mapping to create a screen space method
for shadowing objects [52, 56]. Its performance is not directly dependent on the complexity of the
shadowing object.

The scene is transformed so that the eye point is at the light source. The objects in the scene are
rendered, updating the depth buffer. The depth buffer is read back, then written into a texture map.
This texture is mapped onto the primitives in the original scene, as viewed from the eye point, using
the texture transformation matrix, and eye space texture coordinate generation. The value of the
texture’s texel value, the texture’s “intensity”, is compared against the texture coordinate’s r value
at each pixel. This comparison is used to determine whether the pixel is shadowed from the light
source. If the r value of the texture coordinate is greater than texel value, the object was in shadow.
If not, it was lit by the light in question.

This procedure works because the depth buffer records the distances from the light to every object
in the scene, creating a shadow map. The smaller the value, the closer the object is to the light. The
transform and texture coordinate generation is chosen so that x, y, and z locations of objects in the
scene map to the s and t coordinates of the proper texels in the shadow texture map, and to r values
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corresponding to the distance from the light source. Note that the r values and texel values must be
scaled so that comparisons between them are meaningful.

Both values measure the distance from an object to the light. The texel value is the distance between
the light and the first object encountered along that texel’s path. If the r distance is greater than the
texel value, this means that there is an object closer to the light than this one. Otherwise, there is
nothing closer to the light than this object, so it is illuminated by the light source. Think of it as a
depth test done from the light’s point of view.

Shadow maps can almost be done with the OpenGL 1.1 implementation. However, the ability to
compare the texture’s r component against the corresponding texel value is missing. There is an
OpenGL extension, SGIX shadow, that performs the comparison. As each texel is compared, the
results set the fragment’s alpha value to 0 or 1. The extension can be described as using the shadow
texture r value test to mask out shadowed areas using alpha values.

Shadow Map Trade-offs Shadow maps have an advantage, being an image space technique, that
they can be used to shadow any object that can be rendered. You don’t have to find the silhouette
edge of the shadowing object, or clip the object being shadowed. This is similar to the argument
made for depth buffering vs. an object-based hidden surface removal technique, such as depth sort.

The same image space drawbacks are also true. Since the shadow map is point sampled, then mapped
onto objects from an entirely different point of view, aliasing artifacts are a problem. When the tex-
ture is mapped, the shape of the original shadow texel doesn’t necessarily map cleanly to the pixel.
Two major types of artifacts result from these problems; aliased shadow edges, and self-shadowing
“shadow acne” effects.

These effects can’t be fixed by simply averaging shadow map texel values. These values encode
distances. They must be compared against r values, and generate a Boolean result. Averaging the
texel values results in distance values that are simply incorrect. What needs to be blended are the
Boolean results of the r and texel comparison. The SGIX shadow extension does this, blending four
adjacent comparison results to produce an alpha value. Other techniques can be used to suppress
aliasing artifacts:

1. Increase shadow map/texture spatial resolution. Silicon Graphics supports off-screen buffers
on some systems, called a p-buffer, whose resolution is not tied to the window size. It can be
used to create a higher resolution shadow map.

2. Jitter the shadow texture by modifying the projection in the texture transformation matrix. The
r/texel comparisons can then be averaged to smooth out shadow edges.

3. Modify the texture projection matrix so that the r values are biased by a small amount. Making
the r values a little smaller is equivalent to moving the objects a little closer to the light. This
prevents sampling errors from causing a curved surface to shadow itself. This r biasing can
also be done with polygon offset.

132



Programming with OpenGL: Advanced Rendering

One more problem with shadow maps should be noted. It is difficult to use the shadow map tech-
nique to cast shadows from a light surrounded by objects. This is because the shadow map is created
by rendering the entire scene from the light’s point of view. It’s not always possible to come up with
a transform to do this, depending on the geometric relationship between the light and the objects in
the scene.

9.4.4 Soft Shadows by Jittering Lights

Most shadow techniques create a very “hard” shadow edge; surfaces in shadow, and surfaces being
lit are separated by a sharp, distinct boundary, with a large change in surface brightness. This is an
accurate representation for distant point light sources, but is unrealistic for many real-world lighting
environments.

An accumulation buffer can let you render softer shadows, with a more gradual transition from lit to
unlit areas. These soft shadows are a more realistic representation of area light sources, which create
shadows consisting of an umbra (where none of the light is visible) and penumbra (where part of the
light is visible).

Soft shadows are created by rendering the shadowed scene multiple times, and accumulating into
the accumulation buffer. Each scene differs in that the position of the light source has been moved
slightly. The light source is moved around within the volume where the physical light being modeled
would be emitting energy. To reduce aliasing artifacts, it’s best to move the light in an irregular
pattern.

Shadows from multiple, separate light sources can also be accumulated. This allows the creation
of scenes containing shadows with non-trivial patterns of light and dark, resulting from the light
contributions of all the lights in the scene.

9.4.5 Soft Shadows Using Textures

Heckbert and Herf describe an alternative technique for rendering soft shadows by creating a tex-
ture for each partially shadowed polygon in the scene [32]. This texture represents the effect of the
scene’s lights on the polygon.

For each shadowed polygon, an image is rendered which represents the contribution of each light
source for each shadowed polygon, and that image is used as a texture in the final scene containing
the shadowed polygon. Shadowing polygons are projected onto the shadowed polygon from the
direction of the sample point on the light source. The accumulation buffer is used to average the
results of that projection for several points (typically 16) on the polygonrepresenting the light source.

The algorithm finds a single quadrilateral that tightly bounds the shadowed polygon in the plane
of that polygon. The quad and the sample point on the light source are used to create a viewing
frustum that projects intervening polygons onto the shadowed polygon. Multiple shadow textures
per polygon are avoided because each “lighting” frustum shares the base quadrilateral, and so the
shadowing results can all be accumulated into the same texture.
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A pass is made for each sample point on each light source. The color buffer is cleared to the color
of the light, and then the projected polygons are drawn with the ambient color of the scene. The
resulting image is then added into the accumulation buffer. The final accumulation buffer result is
copied into texture memory and is applied during the final scene as the polygon’s texture.

Care must be taken to choose an image resolution for the shadow texture that looks acceptable on
the final polygon. Depth testing and texturing can be disabled to improve performance during the
projection pass. It may be necessary to save the accumulation buffer at intervals and average the
results if the contribution of a shadow pass exceeds the resolution of the accumulation buffer.

A paper describing this technique in detail and other information on shadow generation algorithms
is available at Heckbert and Herf’s web site [33].
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10 Transparency

Transparent objects are common in everyday life and using them can add significant realism to gen-
erated scenes. In this section, we describe several techniques used to render transparent objects in
OpenGL.

10.1 Screen-Door Transparency

One of the simpler transparency techniques is known as screen-door transparency. Screen-door
transparency uses a bit mask to cause certain pixels not to be rasterized. The percentage of bits in
the bitmask which are set to 1 is equivalent to the transparency of the object [18].

In OpenGL, screen-door transparency is implemented using polygon stippling. The command
glPolygonStipple defines a 32x32 polygon stipple pattern. When stippling is enabled (using
glEnable(GL POLYGON STIPPLE)) the low-order x and y bits of the screen coordinates of each
fragment are used to index into the stipple pattern. If the corresponding bit of the stipple pattern is
0, the fragment is rejected. If the bit is 1, rasterization continues.

Since the lookup into the stipple pattern takes place in screen space, a different pattern should be
used for objects which overlap, even if the transparency of the objects is the same. If the same stipple
pattern is used, the same pixels in the framebuffer would be drawn for each object. Of the transparent
objects, only the last (or the closest, if depth buffering is enabled) would be visible.

The biggest advantage of screen-door transparency is that the objects do not need to be sorted. Also,
rasterization may be faster on some systems using the screen-door technique than using other tech-
niques such as alpha blending. Since the screen-door technique operates on a per-fragment basis, the
results will not look as smooth as if another technique had been used. However, patterns that repeat
on a 2x2 grid are the smoothest and a 50% transparent “checkerboard” pattern looks quite smooth
on most systems.

10.2 Alpha Blending

To draw semi-transparent geometry, the most common technique is to use alpha blending. In this
technique, the alpha value for each fragment drawn reflects the transparency of that object. (To be
totally correct, the alpha value actually represents the opacity, since an alpha value of 1.0 represents
a 100% opaque surface). Each fragment is combined with the values in the framebuffer using the
blending equation:

Cout = Csrc �Asrc + (1� Asrc) � Cdst (5)

Here, Cout is the output color which will be written to the frame buffer. Csrc and Asrc are the
source color and alpha, which come from the fragment. Cdst is the destination color, which
is the color value currently in the framebuffer at the location. This equation is specified using
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the OpenGL command glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA). Blending
is then enabled with glEnable(GL BLEND).

Transparent primitives drawn using alpha blending should always be drawn after all opaque primi-
tives are drawn. Unless the transparent objects are sorted in back to front order, depth buffer updates
must be disabled using glDepthMask(GL FALSE), although depth buffer compares should remain
enabled.

If the objects are not sorted and drawn in back to front order, the above blending equation produces
order-dependent rendering artifacts that can be quite objectionable. If sorting of the scene is unde-
sirable, order dependencies can be eliminated by using GL ONE for the destination factor rather than
GL ONE MINUS SRC ALPHA. This method does not look as natural, especially when transparent ob-
jects are drawn over light objects, but it requires no sorting.

A common mistake when implementing alpha blended transparency is to assume that it requires a
framebuffer with an alpha channel. The alpha value used for blended transparency comes down the
graphics pipeline with each fragment; the alpha values in the framebuffer (GL DST ALPHA) are not
actually used, so no alpha buffer is required.

The alpha value of the fragment can be set in several ways. If lighting is not being used, the alpha
value can be set using a 4- component color command such as glColor4f. If lighting is enabled,
the fourth color component of the diffuse reflectance coefficient of the material corresponds to the
transparency of the object.

If texturing is enabled, the source of the alpha channel is controlled by the texture internal format,
the texture environment function, and the texture environment constant color. The interaction is
described in more detail in the glTexEnv man page. Many intricate effects can be implemented
using alpha values from textures.

10.3 Sorting

The sorting step can be complicated. The sorting should be done in eye coordinates, so it is necessary
to transform the geometry to eye coordinates in some fashion. If transparent objects interpenetrate,
the individual triangles should be sorted and drawn from back to front. Ideally, polygons which
interpenetrate should be tessellated along their intersections, sorted, and drawn independently, but
this is typically not required to get good results. Frequently only crude or perhaps no sorting at all
gives acceptable results.

If there is a single transparent object, or multiple transparent objects which do not overlap in screen
space (i.e., each screen pixel is touched by at most one of the transparent objects), a shortcut may
be taken under certain conditions. If the objects are closed, convex, and viewed from the outside,
culling may be used to draw the backfacing polygons prior to the front facing polygons. The steps
are as follows:

1. Enable culling: glEnable(GL CULL FACE).

2. Configure face culling to eliminate front facing polygons: glCullFace(FRONT).
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3. Draw the object.

4. Configure face culling to eliminate back facing polygons: glCullFace(BACK).

5. Draw the object again.

6. Disable culling: glDisable(GL CULL FACE).

We assume that the vertices of the polygons of the object are arranged in a counter-clockwise direc-
tion when the object is viewed from the outside. If necessary, we can specify that polygons oriented
clockwise should be considered front-facing with the glFrontFace command.

Drawing depth buffered opaque objects mixed with transparent objects takes somewhat more care.
The usual trick is to draw the background and opaque objects first in any order with depth testing en-
abled, depth buffer updates enabled, and blending disabled. Next, the transparent objects are drawn
from back to front with blending enabled, depth testing enabled but depth buffer updates disabled
so that transparent objects do not occlude each other.

10.4 Using the Alpha Function

The alpha function is used to discard fragments based upon a comparison of the fragment’s alpha
value with a reference value. The comparison function and the reference value are specified with
the command glAlphaFunc. The alpha test is enabled with glEnable(GL ALPHA TEST).

The alpha test is frequently used to draw complicated geometry using texture maps on polygons.
For example, a tree can be drawn as a picture of a tree on a single rectangle. The parts of the texture
which are part of the tree have an alpha value of 1; parts of the texture which are not part of the tree
have an alpha value of 0. This technique is often combined with billboarding (Section 5.7), in which
a rectangle is turned to perpetually face the eye point.

Like polygon stippling, the alpha function discards fragments instead of drawing them into the
framebuffer. Therefore sorting of the primitives is not necessary (unless some other mode like al-
pha blending is enabled). The disadvantage is that pixels must be completely opaque or completely
transparent.

10.5 Using Multisampling

On systems which support the multisample extension (SGIS multisample), the per-fragment sam-
ple mask may be used to change the transparency of an object. This method is basically identical to
screen-door transparency described in Section 10.1, but at a sub-pixel (fragment) level.

One technique involves GL SAMPLE ALPHA TO MASK SGIS. If transparent objects in a scene do not
overlap, GL SAMPLE ALPHA TO MASK SGISmay be used. This parameter causes the alpha of a frag-
ment to be mapped to a sample mask which will be bitwise ANDed with the fragment’s mask. The
value of the generated sample mask is implementation-dependent and is a function of the pixel lo-
cation and the fragment’s alpha value. If two objects were drawn at the same location with the same
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transparency, the sample mask would be the same and the same samples would be touched. If two
objects were drawn at the same location with different transparencies, results may or may not be
acceptable.

The simplest technique is to use the glSampleMaskSGIS command to set the value of the
GL SAMPLE MASK SGIS. This value is used to generate a temporary mask which is bitwise ANDed
with the fragment’s mask. Again, results may not be correct if transparent objects overlap.

Currently, SGIS multisample is supported by Silicon Graphics and Hewlett Packard.
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Figure 55. Dilating, Fading Smoke

11 Natural Phenomena

The are a large number of naturally occurring phenomena such as smoke, fire and clouds which are
challenging to render at interactive rates with any semblance of realism. A common solution is to re-
duce the requirement for complex geometry by using textures. Many of the techniques use a combi-
nation of geometry and texture which vary as a function of time or other parameters such as distance
from the viewer.

11.1 Smoke

Modeling smoke potentially requires some sophisticated physics, but surprisingly realistic images
can be generated using fairly simple techniques. One such technique involves capturing a 2D cross
section or image of a puff of smoke with both luminance and alpha channels for the image. The
image can then be texture mapped onto a quadrilateral and blended into the scene. The billboard
techniques outlined in Section 5.7 can be used to ensure that the image is transformed to face the
user. Using a GL MODULATE texture environment, the color and alpha value of the quadrilateral can
be used to control the color and transparency of the smoke in order to simulate different types of
smoke. For example, smoke from an oil fire would be dark and opaque, whereas steam from a flare
stack would be much lighter in color.

The size, position, orientation, and opacity of the quadrilateral can be varied as a function of time to
simulate the puff of smoke enlarging, drifting and dissipating over time.

More realistic effects can be achieved using volumetric techniques. Instead of a 2D image, a 3D vol-
umetric image of smoke is rendered using the algorithms described in Section 13. Again, dynamics
can be simulated by varying the position, size and transparency of the volume. More complex dy-
namics can be simulated by applying local distortions or deformations to the texture coordinates of
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Figure 56. Vapor Trail

the volume lattice rather than simply applying uniform transformations. The volumetric shading
technique described in Section 13.11 can be used to illuminate the smoke.

There are many procedural techniques which can be used to synthesize both 2D and 3D textures
[16].

11.2 Vapor Trails

Vapor trails emanating from a jet or a missile can be rendered using methods similar to the painting
technique described in Section 6.3. A circular, wispy 2D image such as that used in the preceding
section is used to generate the vapor pattern over some unit interval by rendering it as a billboard.
A texture image consisting only of alpha values is used to modulate the alpha values of a white bill-
board polygon. The trajectory of the airborne object is painted using multiple overlapping copies
of the billboard as shown in Figure 56. Over time the individual billboards gradually enlarge and
fade. The program for rendering a trail is largely an exercise in maintaining an active list of the po-
sition, orientation and time since creation for each billboard used to paint the trail. As each billboard
polygon exceeds a threshold transparency value it can be discarded from the list.

11.3 Fire

The simplest techniques for rendering fire involve applying static images and movie loops as textures
to billboards.

A static image of fire can be constructed from a noise texture; Section 5.19.5 describes how to make
a noise texture using OpenGL. The weights for different frequency components should be chosen
to reflect the spectral structure of fire, and turbulence can also be incorporated effectively into the
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texture. The texture is mapped to a billboard polygon. Several such textures, composited together,
can create the appearance of multiple layers of intermingling flames. Finally, the texture coordinates
may be distorted vertically to simulate the effect of flames rising and horizontally to mimic the effect
of winds.

A sequence of fire textures can be played as an animation. The abrupt manner in which fire moves
and changes intensity can be modeled using the same turbulence techniques used to create the fire
texture itself. The speed of the animation playback, as well as the distortion applied to the texture
coordinates of the billboard, might be controlled using a turbulent noise function. To create the ani-
mation a series of texture objects is created, each one containing one image from the fire sequence.
During playback the set of texture objects is sequenced through, one each frame, mapping the current
texture to a quadrilateral using a modulate texture environment.

11.4 Explosions

Explosion effects can be rendered by combining the techniques for smoke, vapor, and fire. A static
image of a fireball is drawn centered in the middle of the explosion and dilated and faded over some
time period. At the same time, the vapor and smoke rendering techniques are combined to cause a
smoke trail to rise from the center of the explosion.

11.5 Clouds

Clouds, like smoke, have an amorphous structure without well defined surfaces and boundaries. In
recent times, computationally intensive physical modeling techniques have given way to simplified
mathematical models which are both computationally tractable and aesthetically pleasing [21, 16].

The main idea behind these techniques involves generating a realistic 2D or 3D texture function t
using a fractal or spectral based function. Gardner suggests a Fourier-like sum of sine waves with
phase shifts

t(x; y) = k
nX
i=1

(ci sin(fxix+ pxi) + t0)
nX
i=1

(ci sin(fyiy + pyi) + t0)

with the relationships

fxi+1 = 2fxi

fyi+1 = 2fyi

ci+1 = :707ci

pxi =
�

2
sin(fyi�1y); i > 1

pyi =
�

2
sin(fxi�1x); i > 1

Care must be taken using this technique to choose values to avoid a regular pattern in the texture.
Alternatively, texture generation techniques described in Section 5.19.5 can be used.
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A stochastic method, based on work by Fournier and Miller [19, 40], uses a midpoint displacement
technique called Diamond-Square for generating a set of random values on a uniform grid. These
generated values are interpreted as opacity values and correspond to the cloud density at a given
point. The algorithm is iterative and during each iteration two steps are executed. The first, the di-
amond step takes four corners of a square and produces a new value at the center of the square by
averaging the values at the four corners and adding a random number in the range [�1; 1]. The sec-
ond step, the square step, consists of taking the corners of the four diamonds that were generated in
the diamond step (they share the center point of the diamond step) and generating a new center value
for each diamond by averaging its four corners and adding a random number in the range [�1; 1].
During the square step, attention must be paid to diamonds at the edges of the grid as they will wrap
around to the opposite side of the grid. During each iteration the number of squares processed is
increased by a factor of four. To produce smooth variations in the generated values, the range of
the random value added during the generation of center points is reduced by some fraction for each
iteration.

Seed values for the first few iterations of the algorithm may be used to control the overall shape of
the cloud.

Any of these techniques can be used to produce a 2D texture which can be used to render a cloud
layer. A cloud layer is simulated by drawing a large textured polygon in the sky at a fixed altitude.
A luminance cloud texture is used to blend a white constant texture environment color into a blue
sky polygon.

Some of the dynamic aspects of clouds can be simulated by vary parameters over time. Cloud de-
velopment can be simulated by scaling and biasing the luminance values in the texture. Drifting can
be simulated by moving the texture pattern across the sky, i.e., transforming the texture coordinates.
Ground fog can be simulated by drawing the thin cloud layer between the viewer and ground rather
than the viewer and the sky.

Gardner also suggests using ellipsoids to simulate 3D cloud structures. The texture data is generated
using a 3-dimensional extension of the Fourier synthesis method outlined above and the textures are
applied with increasing transparency near the boundary of the ellipsoid. These 3D textures can also
be combined with the volume rendering techniques described in Section 13 to produce 3D cloud
images. In order to improve the performance of the rendering, the full volume rendering algorithm
need not be used. In particular, the cloud may be assumed to be elliptical and opaque at the center.
Therefore, the interior of the cloud can be drawn as a polygonal shell and the outer edges of the cloud
using the volume rendering techniques.

11.6 Water

A large body of research has been done into modeling, shading, and reproducing optical effects of
water [62, 47, 20], yet most methods still present a large computation burden to achieve a realis-
tic image. Nevertheless, it is possible to borrow from these approaches and achieve modest results
while retaining interactive performance [36, 16].
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y = a∗sin(f ∗x)

Figure 57. Water Modeled as a Height Field

The dynamics of wind and waves can be simulated using procedural models and rendered using
meshes or height fields. The geometry is textured using simple procedural texture images. Multi-
pass rendering techniques can be used to layer additional effects such as surf. Environment mapping
can be used to simulate reflections from the surface. Specular illumination using environment map-
ping can be combined with the Fresnel reflection model from Section 8.3 to create a more physically
accurate lighting model. The bump mapping technique from Section 8.5 can be used to create the
illusion of ripples without modeling them in the geometry. The bump map can be animated as part of
the simulation to animate the ripples. The combination of reflection mapping and a dynamic model
for ripples provides a visually compelling image. Alternatively, synthetic perturbations to the tex-
ture coordinates as outlined in Section 5.20.7 can also be used.

Small swells can be modeled using a texture mapped height field. The height of the vertices can be
modulated with a sinusoid to simulate simple wave patterns as showing in Figure 57. The frequency
and amplitude of the waves can be varied to achieve different effects. The phase of the sinusoid can
be varied over time to create wave motion.

Optical effects such as caustics can be approximated using parts of the OpenGL pipeline as described
by Nishita and Nakamae [46] but interactive frame rates are not likely to be achieved. Instead such
effects can be faked using textures to modulate the intensity of any geometry that lies below the sur-
face. Other below-surface effects can also be simulated. Movements of the water (surge) can be sim-
ulated by perturbing the vertex coordinates of submerged objects, again using sinusoids. Blueish-
green fog can be used to simulate light attenuation in water.
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11.7 Light Points

OpenGL has direct support for rendering both aliased and antialiased points, but these simple facili-
ties are usually insufficient for simulating small light sources, such as stars, beacons, runway lights,
etc. In particular, the size of OpenGL points is not affected by perspective projections. To render
more realistic looking small light sources it is necessary to change some combination of the size and
brightness of the source as a function of distance from the eye.

The brightness attenuation a as a function of distance, d, can be approximated by using the same
equation used in the OpenGL lighting equation

1

kc + kld+ kqd2

Attenuation can be achieved by modulating the point size by the square root of the attenuation

sizeeffective = size �p
a

As the point size approaches the size of a single pixel the resolution of the raster display system
will cause artifacts. To avoid this problem the point can be made semi-transparent once it crosses
a particular size threshold. The alpha value is proportional to the ratio of the point area determined
from the size attenuation computation to the area of the point being rendered

alpha =

�
sizeeffective
sizethreshold

�2

More complex behavior such as defocusing, perspective distortionand directionality of light sources
can be achieved by using an image of the light lobe as a texture map combined with billboarding
to keep the light lobe oriented towards the viewer. An advantage of using texture mapping is that
the quadrilateral or other geometry that the texture is applied to is automatically scaled by the per-
spective projection so rendering the correct size is less of an issue. To effectively simulate distance
attenuation it may, however be necessary to select different texture patterns according to distance
from the eye.

11.8 Other Atmospheric Effects

OpenGL provides a primitive capability for rendering atmospheric effects such as fog, mist and haze.
It is useful to simulate the affects of atmospheric effects on visibility to increase realism, and it al-
lows the database designer to cover up a multitude of sins such as “dropping” polygons near the far
clipping plane in order to sustain a fixed frame rate.

OpenGL implements fogging by blending the fog color with the incoming fragments using a fog
blending factor, f ,

C = fCin + (1� f)Cfog
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This blending factor is computed using one of three equations: exponential (GL EXP), exponential-
squared (GL EXP2), and linear (GL LINEAR)

f = e�(density�z)

f = e�(density�z)
2

f =
end� z

end� start

where z is the eye-coordinate distance between the viewpoint and the fragment center.

Linear fog is frequently used to implement intensity depth-cuing in which objects closer to the
viewer are drawn at higher intensity [18]. The effect of intensity as a function of distance is achieved
by blending the incoming fragments with a black fog color.

The exponential fog equation has some physical basis. It is the result of integrating a uniform attenu-
ation between the object and the viewer. The exponential-squared function includes the attentuation
for reflected light which has passed through the attenuation layer twice, once for the incident path
and again for the reflected path. The exponential and exponential-squared functions can be used to
represent a number of atmospheric effects using different combinations of fog colors and density
values. Since OpenGL does not fog the pixel values during a clear operation, the value of f at the
far plane, far,

ffar = e�(density�far)

can be used to determine the color to which to clear the background

Cbg = ffarCin + (1� ffar)Cfog

where Cin is the color to which the background would be cleared without fog enabled.

As mentioned earlier, the obscured visibility of objects near the far plane can be exploited to over-
come various problems such as drawing time overruns, level-of-detail transitions, and database pag-
ing. However, in practice it has been found that the exponential function doesn’t attenuate distant
fragments rapidly enough, so exponential-squared fog can be used to achieve a sharper fall-off in
visibility. Some vendors have gone a step further and provided more control over the fog function
by allowing applications to control the fog value through a spline curve.

There are other problems that OpenGL’s primitive fog model does not address. For example, emis-
sive geometry such as the light points described above should be attenuated less severely than non-
emissive geometry. This effect can be approximated by precompensating the color values for emis-
sive geometry, or reducing the fog density when emissive geometry is drawn. Neither of these so-
lutions is completely satisfactory since colors values are clamped to 1.0 in OpenGL, limiting the
amount of precompensation that can be done. Many OpenGL implementations use lookup table
methods to efficiently compute the fog function, so changes to the fog density may result in expen-
sive table recomputations. To overcome this problem some vendors have provided a mechanism to
bias the eye-coordinate distance, avoiding the need to recompute the fog lookup table.

If OpenGL fog processing is bypassed it is possible to do more sophisticated atmospheric effects
using multipass techniques. The OpenGL fog computation can be thought of as simple table lookup
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using the eye-coordinate distance. The result is used as a blend factor for blending between the frag-
ment color and fog color. A similar operation can be implemented using glTexGen to generate the
eye-coordinate distance for each fragment and a 1D texture for the fog function. Using a specially
constructed 2D or 3D texture and a more sophisticated, texture coordinate generation function, it
is possible to compute more complex fog functions incorporating parameters such as altitude and
eye-coordinate distance.

11.9 Particle Systems

Some objects are difficult to represent as a set of surface primitives, even taking advantage of trans-
parency and texture mapping techniques. These include objects that have poorly defined or dy-
namic topologies, or have no solid surface. Natural phenomena that meet this criteria include smoke,
clouds, fire, water, etc.

Particle systems can be used to represent these objects. A particle system is a large set of simple
primitive objects which are processed as a group to represent an object. The characteristics of these
objects, such as size, position, color, and the lifetime of the particle itself, can be changed dynam-
ically. If these parameters of the particles are coordinated, the collection of particles can represent
an object.

11.9.1 Representing Particles

Since you’d like to use a lot of particles to create more realistic objects, you’d like to render them as
cheaply as possible. One good candidate primitive is an OpenGL point. Unaliased single points of
default size are rendered as single fragments. They can be thought of as very small screen aligned
rectangular billboards, since they are always oriented towards the viewer.

It’s important to pass points to the graphics hardware as efficiently as possible. Display lists are
very efficient, but since the characteristics of the points are usually changing from frame to frame,
vertex arrays would be a better choice. Vertex arrays avoid the overhead of multiple function calls
per vertex, and have an additional advantage; the primitive data is organized in array form. This
is useful since some or all of the point characteristics must be updated by the program each frame.
It’s important that this be done efficiently, or the updating can become the bottleneck, starving the
graphics hardware.

A particle system program has these basic components:

Particles in particle systems can be organized in tables, indexed by the particle, containing particle
characteristics to be updated each frame. This representation works well with vertex array represen-
tation, since the tables can be used directly to render the updated particles.

Interleaved or non-interleaved vertex arrays can be used, depending on the complexity of the parti-
cle system parameters. Parameters directly used for rendering, such as x; y; z position can be inter-
mixed in the table with non-rendering parameters, such as current velocity. Vertex array strides can
be adjusted to intermix these two types of information, or they can be kept separated. Since particle
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Figure 58. Particle System Block Diagram
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update performance is important, particle tables may have many non-rendering values to support
incremental update algorithms.

When choosing a vertex array representation, keep in mind that OpenGL implementations often
have higher performance using interleaved arrays that are densely packed. We recommend using
glInterleavedArrayswhen possible. Of course, the data structure may have be adjusted to op-
timize for either rendering speed or particle update performance, depending on which part of the
system is the performance bottleneck.

11.9.2 Particle Sizes

If particles are very small, or the particles are clustered tightly together some distance from the
viewer, good effects are possible with particles of a single size. If the particles are moving a large
distance towards or away from the viewer, a constant sized particle may appear unrealistic. Particles
of changing sizes can lead to performance penalties. Changing point size can be a costly operation
in OpenGL. Whenever possible, sort and group the particles by size when rendering to minimize
the number of glPointSize calls. Sorting overhead can be minimized in many cases by using
an incremental sorting algorithm, since points generally move only a small distance from frame to
frame.

If the GL EXT point parameters extension is available, you can use glPointParameterfEXT
and glPointParameterfvEXT to set parameters that control point size as a function of distance
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from the viewer. This extension should be carefully benchmarked to see if your implementation can
handle a set points with unsorted distance values efficiently. If not, then the points should still be
sorted (or perhaps just partially sorted) to increase rendering efficiency.

Often sorting can be minimized by quantizing point sizes to a few distinct values. Groups of points
within a given bounding volumes can be all set to an average size appropriate for that volume. As
before, the effectiveness of quantizing particle size will depend on the behavior of particles in a par-
ticular system.

11.9.3 Large and Small Points

If the particle size is increased from the default, the rectangular nature of the point representation
may become too apparent. Point antialiasing can be used to render the points as circles rather than
squares. Benchmark the performance of antialiased points of various sizes on your system to deter-
mine the overhead of using this feature. Be sure to also take into account the fact that you’ll have to
use alpha blending to make point antialiasing work.

If a particle must appear smaller than a single pixel, its alpha value can be reduced to make it more
transparent (remember to enable blending), simulating the brightness of a smaller particle. Another
technique that is faster but may not look as good is to reduce the intensity of the particle’s color
instead of it’s alpha. See Section 11.7 for more information.

11.9.4 Antialiasing

Antialiasing particles, both spatially and temporally, can be an important consideration, especially if
particles are moving slowly. Antialiasing points will cause the particles to move more smoothly as
they cross pixel boundaries, since fragments with fractional alpha values will be generated. Another
technique is to use the particle positions between two adjacent frames to orient a line centered at the
particle’s current position, and draw an antialiased line instead of a point. If the line’s length and
alpha are varied as a function of current velocity, you can create a motion blur effect.

If high quality is important and performance isn’t, or you have very good hardware support, the
accumulation buffer can be used to generate excellent antialiasing and motion blur. The particles
for a given frame can be rendered repeatedly and accumulated. The particle positions can be jittered
for spatial antialiasing, and the particle re-rendered along its direction of motion can produce motion
blur effects. For more information, see Section 7.5 in these notes, and the accumulation buffer paper
in the 1990 SIGGRAPH Proceedings [29] reprinted in these course notes.

11.9.5 “Fat” Particles

Up until this point, we’ve dealt with very simple representations of particles. We don’t have to limit
ourselves to simple points, however. In OpenGL, points can be texture mapped and lit, providing
ways to achieve more particle effects. It may also make sense to consider using small textured quads
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instead of points to represent particles for some systems. The quads can be textured with a texture
map containing alpha values to describe its shape, transparency and color. Using more complex par-
ticles may allow you to use less particles to achieve the same visual effect, enhancing performance.

One problem with using quads or other surface primitives is that, unless you want to expose their
planar nature, you will have to billboard them. Billboarding is rotating each quad so that it always
faces the viewer. Since you control the orientation of the particles, this only becomes a problem
when the viewing transformation changes. See Section 5.7 in these notes.

Some implementations have a billboarding extension, called GL sprite, which will orient surfaces
automatically. Implementation performance may vary, and since surfaces can all be oriented to-
gether, it may still be faster to billboard the surfaces yourself. Benchmark to be sure.

11.9.6 Particle Systems in a Scene

Particle systems can be difficult to integrate seamlessly into a complex scene. They are often not
depth buffered, relying on the the accumulated light contributions of all the particles to create a par-
ticular effect. The rest of the scene will probably require depth buffering, however, so both the depth
test and depth buffer update state needs to be managed within the scene. Although particles can be
lit, it is extremely expensive to try to cause each particle to act as an OpenGL light source, espe-
cially since the number of simultaneous available OpenGL lights are limited. Instead a few light
sources can be placed in the system to represent an overall lighting effect. Blending state must also
be managed, since antialiased particles require alpha blending to work.

11.10 Precipitation

Precipitation effects such as rain and snow can be modeled and rendered using the particle techniques
described above. The task can be broken down into several tasks:

1. Realistic particle rendering.

2. Computing particle dynamics.

3. Managing particle lifetime.

The basic particle rendering techniques are described in the preceding section. Using snowflakes as
an example; individualflakes can be rendered as white colored points. Ideally the particle size should
be rendered correctly under perspective projection as discussed for light points in Section 11.7. Since
the real-life particles are subject to the effects of gravity, wind, thermal convection, etc, the modeled
dynamics should include these effects. However, much of the complexity lies in the management
of the particle lifetime. Again, considering the snow example, a running simulation must be main-
tained for the entire world, not just the portion that is currently visible. Particle dynamics may cause
particles to move from a portion of the world which is not currently visible to the visible portion or
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vice versa. In the snow example, particles may shrink and disappear to mimic the melting effects of
the sun.

One of the more difficult problems with managing the lifetime of particles is the end of life of the
particle. Usually snowflakes accumulate to form a layer of snow over the objects upon which they
fall. One way to model this is to terminate the particle dynamics when the particle strikes a surface
(using a collision detection algorithm), but continue to draw it in its final position. A difficulty with
this solution is that the number of particles which need to be drawn each frame will grow without
bound. Another way to solve this problem is to draw the surfaces upon which the particles are falling
as textured surfaces and when a particle strikes the surface, remove the particle from the dynamic
system and incorporate it into the texture map used to render the surface. This solution allows the
number of particles in the system to reach a steady state, but creates a new problem of efficiently
managing the texture maps for the collision surfaces.

One way to maintain these texture maps is to use the rendering pipeline to update the maps. At the
beginning of a simulation the texture map for a surface is clean. At the end of each frame, the par-
ticles which are to be retired this frame are drawn with an orthographic projection onto the textured
surface (the viewpoint is perpendicular to the surface) using the current version of the texture and
the resulting image replaces the current texture map. In order to avoid rendering artifacts when tran-
sitioning a particle from its live state to the texture map, it may be necessary to fade the live particle
away over a few frames introducing a new limbo state for particles during this transition period.

Using a texture map for collided snow particles provides an efficient mechanism for maintaining a
constant number of particles in the system and it works well for simulating the initial accumulation of
precipitation on an uncovered surface. However, it does not serve as a realistic model for continued
accumulation since it only simulates a one dimensional layer. To simulate continued accumulation,
the model must be enhanced.

Changing our example from snow to rain, some of the properties of the precipitation change. Rain
particles typically contain more mass than snow particles and are thus affected differently by grav-
ity and wind. Heavy rain may be better simulated using short antialiased line segments rather than
points to simulate motion blurring.

The initial accumulation of rain is a more complex problem than snow. In the case of snow, an
opaque accumulation is built up over time. For rain, the rain drops are semi-transparent and they
affect the surface characteristics and thus the surface shading of the collision surface in a more sub-
tle manner. One way to model this effect is to create a texture map similar to the one created for the
snow model. However, this map is used in conjunction with a multipass shading technique for the
rest of the scene, partitioning the scene into two collections of pixels: those which are wet and those
which are dry. The scene is drawn twice using two different shading models, one which renders ob-
jects which appear wet and another which renders objects with a dry appearance. The texture map
is used to choose which computation to store in the framebuffer on a pixel by pixel basis.

Another method to reduce the rendering workload and increase the performance of the simulation is
to reduce the number of particles using a “hollywood” technique. In this scheme rather than render-
ing particles throughout the entire volume a “curtain” of particles is rendered in front of the viewer.
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The use of motion blurring and fog along with lighting to simulate an overcast sky can make the
illusion more convincing. It is still possible to simulate simple accumulation of precipitation by
choosing points on collision surfaces at random (within the parameterization of the simulation) and
blending them into texture maps as described above.
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12 Image Processing

12.1 Introduction

One of the strengths of OpenGL is that it provides tools for both image processing and 3D render-
ing. OpenGL is designed with the understanding that many image processing tools are useful for
3D graphics and vice versa. For example, convolution may be used to implement depth-of-field ef-
fects. Conversely, many operations typically thought of as image processing operations may be cast
as geometric rendering and texture mapping operations. Electronic light tables (ELTs), used in de-
fense imaging, require image transformations which can be implemented using OpenGL’s textured
drawing capabilities. This section demonstrates how to apply the pixel transfer pipeline, texturing,
and fragment operations to the image processing problems of color manipulation, convolution, and
image warping.

12.1.1 The Pixel Transfer Pipeline

The pixel transfer pipeline is the part of OpenGL most typically thought of in image processing ap-
plications. The pipeline is a configurable series of operations which are applied to each pixel during
any command that moves pixels between the framebuffer, host memory, and texture memory, in-
cluding:

� glDrawPixels

� glReadPixels

� glTexImage*D

� glTexSubImage*D

� glGetTexImage*D

� glCopyPixels

� glCopyTexImage*D

� glCopyTexSubImage*D

These operations move image data which falls into one of the following categories:

� Color index values

� Color values (RGBA, luminance, luminance/alpha, red, green, ...)

� Stencil buffer values

� Depth values
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The “pixel transfer pipeline” processes each of these categories of data differently. For image pro-
cessing, operations on color data are generally the most interesting. Before any operations are
applied, source data in any color format (for example, GL LUMINANCE) and type (for example,
GL UNSIGNED BYTE) is converted into floating-point RGBA components. All color pixel transfer
operations operate on images of this type and format. After the pixel transfer operations have been
applied, the image is converted to its destination type and format.

Base OpenGL defines only a few pixel transfer operations, which are controlled using the
glPixelTransfer command. The operations are:

� GL INDEX SHIFT and GL INDEX OFFSET, which are applied only to color index images.

� Scale and bias values which are applied to each channel of RGBA images.

� Scale and bias values which are applied to depth values.

� Pixel maps, discussed in detail in Section 12.2.3.

The pixel transfer pipeline is the part of OpenGL that has grown the most through OpenGL exten-
sions. Some of the more interesting extensions will be discussed in this section, including the ven-
dors who support each extension in OpenGL 1.1 as of April 1998. Where possible, we will mention
techniques to achieve equivalent results on systems that do not support the extension.

12.1.2 Geometric Drawing and Texturing

OpenGL’s texturing capabilities are discussed in detail in Section 5. These capabilities can be put
to work to solve image processing problems. By texturing an input image onto a grid represented
as geometry, we can apply arbitrary deformations to the image. Given the textured draw rates of
OpenGL implementations that accelerate texturing in hardware, very impressive performance can
often be achieved though the use of textured geometry. Image processing applications using textur-
ing are discussed in Section 12.4.

12.1.3 The Framebuffer and Per-Fragment Operations

Per-fragment and framebuffer operations can be used to operate on pixels of an image in parallel.
Additionally,multiple images may be combined in a variety of ways. Blending and the accumulation
buffer are two areas of interest. These features are discussed in detail in Section 6. The accumulation
buffer is particularly important since it provides several fundamental operations:
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� Scaling of an image by a constant:

– glAccum(GL MULT, <scale>)

– glAccum(GL LOAD, <scale>)

– glAccum(GL RETURN, <scale>)

� Biasing of an image by a constant:

– glAccum(GL ADD, <scale>)

– Clear of framebuffer with color <scale>, followed by glAccum(GL LOAD, 1)

� Linear combination of two images on a pixel-by-pixel basis: glAccum(GL LOAD,

<scale1>) followed by glAccum(GL ACCUM, <scale2>)

The accumulation buffer and blending are discussed in subsequent sections in terms of the image
processing operations that use them.

12.1.4 The Imaging Subset in OpenGL 1.2

Several extensions to OpenGL 1.1 are incorporated as standard commands in OpenGL 1.2 as part
of the optional imaging subset:

� Color tables (SGI texture color table in 1.1)

� Convolution during pixel transfer (EXT convolution)

� The color matrix (SGI color matrix)

� Histogram and minmax functions (EXT histogram) during pixel transfer

� The blending equation and the enumerants for constant color/alpha blending, sub-
tractive blending (EXT blend subtract), and blending with min and max operators
(EXT blend minmax).

This group of extensions to the pixel transfer pipeline are useful to a class of applications that per-
form image processing.

The imaging subset provides color table support (glColorTable) in the pixel transfer pipeline
before the convolution operation (GL COLOR TABLE), after convolution and before applica-
tion of the color matrix (GL POST CONVOLUTION COLOR TABLE), and after the color matrix
(GL POST COLOR TABLE). Scale and bias are available for each color table.

The subset provides 1D, 2D and separable convolutions (glConvolutionFilter*D and
glSeparableFilter2D) in the pixel transfer pipeline, including scale and bias parameters.

Histogram and min and max functions are provided through glHistogram and glMinMax.

154



Programming with OpenGL: Advanced Rendering

The imaging subset also provides support for glBlendEquation and glBlendColor and the
blending modes GL CONSTANT COLOR, GL ONE MINUS CONSTANT COLOR, GL CONSTANT ALPHA,
and GL ONE MINUS CONSTANT ALPHA.

If an implementation supports the imaging subset, all of the above features are supported. If the
implementation doesn’t support it, using these features will result in GL INVALID OPERATION or
GL INVALID ENUM.

You can determine if an OpenGL 1.2 implementation implements the imaging subset by checking
the result of glGetString(GL EXTENSIONS) for the substring “ARB imaging”.

The imaging subset of OpenGL 1.2 is supported by the following vendors as of April, 1998:

� Silicon Graphics

� Hewlett Packard

� Sun Microsystems, Inc.

� Intergraph Computer Systems

12.2 Colors and Color Spaces

This section considers ways to modify the pixels of an image on a local basis. That is, each output
pixel will be a function of a single corresponding input pixel. Convolution, a non-local operation,
will be considered in the next section.

12.2.1 The Accumulation Buffer: Interpolation and Extrapolation

Haeberli and Voorhies [27] have suggested several interesting image processing techniques using
linear interpolation and extrapolation. Each technique is stated in terms of the formula:

out = (1� x) � in0 + x � in1 (6)

This equation is evaluated on a per-pixel basis. in0 and in1 are the input images, out is the output
image, and x is the blending factor. If x is between 0 and 1, the equations describe a linear interpo-
lation. If x is allowed to range outside [0::1], the result is extrapolation [27].
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In the limited case where 0 � x � 1, these equations may be implemented using the accumulation
buffer via the following steps:

1. Draw in0 into the color buffer.

2. Load in0, scaling by (1� x) (glAccum(GL LOAD, (1-x))).

3. Draw in1 into the color buffer.

4. Accumulate in1, scaling by x (glAccum(GL ACCUM,x)).

5. Return the results (glAccum(GL RETURN, 1)).

It is assumed that in0 and in1 are between 0 and 1. Since the accumulation buffer can only store
values in the range [�1::1], for the case x < 0 or x > 1, the equation must be implemented in
a different way. Given the value x, you can modify equation 6 and derive a list of accumulation
buffer operations to perform the operation. Define a scale factor s such that:

s = max(x; 1� x)

Equation 6 becomes:

out = s(
(1� x)

s
in0 +

x

s
in1)

and the list of steps becomes:

1. Compute s.

2. Draw in0 into the color buffer.

3. Load in0, scaling by (1�x)
s (glAccum(GL LOAD, (1-x)/s)).

4. Draw in1 into the color buffer.

5. Accumulate in1, scaling by x
s

(glAccum(GL ACCUM, x/s)).

6. Return the results, scaling by s (glAccum(GL RETURN, s)).

The techniques suggested by Haeberli and Voorhies use a degenerate image as in0 and an appropriate
value of x to move toward or away from that image. To increase brightness, in0 is set to a black
image and x > 1. To change contrast, in0 is set to a gray image of the average luminance value
of in1. Decreasing x (toward the gray image) decreases contrast; increasing x increases contrast.
Saturation may be varied using a luminance version of in1 as in0. (For information on converting
RGB images to luminance, see Section 12.2.4.) Sharpening may be accomplished by setting in0 to
a blurred version of in1 [27].

156



Programming with OpenGL: Advanced Rendering

12.2.2 Pixel Scale and Bias Operations

Scale and bias operations can be used to adjust the colors of images. Also, they can be used to select
and expand a small range of values in the input image. Scales and biases are applied at several lo-
cations in the pixel transfer pipeline. In general, scales and biases are controlled with eight floating
point values (a scale and a bias for each channel).

The first scale and bias in the pixel transfer pipeline is part of base OpenGL and is specified with
glPixelTransfer(<pname>, <value>) where <pname> specifies one of GL RED SCALE,
GL RED BIAS, GL GREEN SCALE, GL GREEN BIAS, GL BLUE SCALE, GL BLUE BIAS,
GL ALPHA SCALE, or GL ALPHA BIAS. Other sets of scale and bias values are associated with the
color matrix extension (SGI color matrix) and the convolution extension (EXT convolution),
both of which are part of the imaging subset of OpenGL 1.2.

12.2.3 Look-Up Tables

One useful tool for color modification is the look-up table. Generally speaking, a look-up table maps
an input value to a location in a table, and replaces that value with the table entry. Two look-up tables
in OpenGL, pixel maps and color tables, map components independently in one-dimensional tables.
These mechanisms provide efficient mapping for applications requiring no correspondence between
the channels of the image. A third mechanism, pixel texturing, uses the OpenGL texturing capability
to perform multi-dimensional look-ups.

Pixel Maps Pixel maps are a feature of base OpenGL which allow certain look-up operations to
be performed. OpenGL maintains tables which map:

� The red channel to the red channel (GL PIXEL MAP R TO R)

� The green channel to the green channel (GL PIXEL MAP G TO G)

� The blue channel to the blue channel (GL PIXEL MAP B TO B)

� The alpha channel to the alpha channel (GL PIXEL MAP A TO A)

� Color indices to color indices (GL PIXEL MAP I TO I)

� Stencil indices to stencil indices (GL PIXEL MAP S TO S)

� Color indices to RGBA values (GL PIXEL MAP I TO R, GL PIXEL MAP I TO G,
GL PIXEL MAP I TO B, and GL PIXEL MAP I TO A)

Tables that map color indices to RGBA values are used automatically whenever an image with
a color index format is transferred to a destination which requires an RGBA image. For exam-
ple, performing a glDrawPixels of a color index image to an RGBA framebuffer would re-
sult in application of the I to RGBA pixel maps. Other tables are enabled with the commands
glPixelTransfer(GL MAP COLOR, 1) and glPixelTransfer(GL MAP STENCIL, 1).
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Pixel maps are defined using the glPixelMap command and queried using the glGetPixelMap
command. Details on the use of these commands may be found in [7]. The sizes of the pixel maps
are not tied together in any way. For example, the R to R pixel map does not need to be the same
size as the G to G pixel map.

Each system provides a constant, GL MAX PIXEL MAP TABLE, which gives the maximum size of a
pixel map which may be defined.

The Color Table Extension The color table extension, SGI color table, provides additional
look-up tables in the OpenGL pixel transfer pipeline. Although the capabilities of color tables and
pixel maps are similar, the semantics are different.

The color table extension defines the following look-up tables:

� “First” color table (GL COLOR TABLE SGI)

� Post convolution color table (GL POST CONVOLUTION COLOR TABLE SGI)

� Post color matrix color table (GL POST COLOR MATRIX COLOR TABLE SGI)

Each table is independently enabled and disabled using the glEnable and glDisable commands.
One, two, or all three of the tables may be applied during the same operation. Color index images
have to be converted to RGBA images using the I to RGBA pixel maps described in the previous
section before they can be passed through the RGBA portion of the pixel transfer pipeline.

Color tables are specified using the glColorTableEXT and glCopyColorTableEXT commands
and are queried using the glGetColorTableEXT command. The man pages for these commands
provide details on their use. Note that unlike the RGBA to RGBA pixel maps, all channels of a color
table are specified at the same time.

When a color table is specified, an internal format parameter (for example, GL RGB or
GL LUMINANCE EXT) gives the channels present in the table. When the color table is applied
to an image (which is by definition RGBA), channels of the image which are not present in the
color table are left unmodified. In this way, color tables are more flexible than pixel maps, which
replace all channels of the input image.

Although color tables provide similar functionality to pixel maps and may prove more useful in cer-
tain circumstances, they do not replace pixel maps in the OpenGL pipeline and the tables managed
by pixel maps and color tables are independent. It is possible to apply both a pixel map and a color
table (or color tables) during the same pixel operation (although the utility of this is questionable).
The maximum sizes and relative efficiencies of pixel maps and color tables vary from platform to
platform.

The color table extension in OpenGL 1.1 is supported by the following vendors:

� Silicon Graphics
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� Hewlett Packard

� Sun Microsystems, Inc.

The Texture Color Table Extension The texture color table extension
(SGI texture color table) provides a color table (GL TEXTURE COLOR TABLE SGI) which is
applied to texels after filtering and prior to combination with the fragment color with the texture
environment operation. The procedures to define, enable, and disable the texture color table are the
same as those of the tables in SGI color table.

The texture color table extension is currently supported by the following vendors:

� Silicon Graphics

� Evans & Sutherland

� Hewlett Packard

� Sun Microsystems, Inc.

The texture color table is not part of the imaging subset of OpenGL 1.2.

The Pixel Texture Extension The pixel texture extension (SGIX pixel texture) allows multi-
dimensional lookups through OpenGL’s texturing capability. Remember that OpenGL defines ras-
terization of a pixel image during a glDrawPixels or glCopyPixels command as the generation
of a fragment for each pixel in the image. Per-fragment operations are applied, including texturing
(if enabled). If the input image contained color data, each fragment’s color comes from the color of
the pixel that generated it. The texture coordinate of the fragment is taken from the current raster
position, which is generally not useful because the texture coordinate will be constant over the pixel
rectangle. The pixel texture extension allows the texture coordinates s, t, q, and r of the fragment to
be copied from the color coordinates R, G, B, and A of the pixel. With three and four dimensional
textures (EXT texture3D and SGIS texture4D), arbitrary effects can be implemented (although
the texture storage requirements to do so can be staggering).

The pixel texture extension is supported by the following vendors:

� Silicon Graphics

Pixel texture is not part of the imaging subset of OpenGL 1.2.

Equivalent Functionality Without SGIX pixel texture There is no way to apply a true mul-
tidimensional lookup to a pixel image without SGIX pixel texture. In some cases, pixel maps
and color tables may be used as a substitute. Blending, accumulation buffer operations, or scale/bias
operations may be used when the function to be applied is linear and each channel is independent.
In other cases, the application will have to perform the lookup on the host or draw a textured point
for each pixel in the image.
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12.2.4 The Color Matrix Extension

The color matrix extension (SGI color matrix) defines a 4x4 color matrix which is managed us-
ing the same commands as the projection, modelview, or texture matrix. The color matrix premul-
tiplies RGBA colors in the pixel transfer pipeline and as such can be used to perform linear color
space conversions.

Since the color matrix is treated like any other matrix, it is always enabled and defaults to the identity
matrix. To change the contents of the color matrix, the current matrix mode must be set to GL COLOR

using glMatrixMode. After that, the color matrix may be manipulated using the same commands
as any other matrix; for example, glLoadMatrix, glPushMatrix, and glPopMatrix.

The color matrix extension is currently supported on the following platforms:

� Silicon Graphics

Equivalent Functionality Without SGI color matrix Unfortunately, the functionality of
SGI color matrix is difficult to efficiently duplicate on systems which do not support the exten-
sion. In the case where the image is going from the host to the framebuffer (a glDrawPixels opera-
tion), the best way to handle the situation is the split the image up into red, green, blue, and alpha im-
ages (via application processing or a draw followed by reads with format set to GL RED, GL GREEN,
GL BLUE, or GL ALPHA). The red, green, blue, and alpha images can be drawn as GL LUMINANCE

images. RGBA scale operations are applied, with the four values equal to the row of the matrix
corresponding to source channel. The images are composited in the framebuffer using blending
(glBlendFunc(GL ONE, GL ONE)).

Scale and Bias Scale and bias operations may be performed using the color matrix. A scale factor
can be applied using the glScale command. A bias is equivalent to a translation and may be ap-
plied using the glTranslate command. Using glScale and glTranslate, the R scale or bias is
put in the x parameter, the G scale or bias in the y parameter, and the B scale or bias in the z param-
eter. Modifications to the A channel must be specified using glLoadMatrix or glMultMatrix.
In general, using the color matrix to implement scale and bias will be slower than using a transfer
operation which implements scale and bias directly, but management of state may be easier using
color matrices. Also, the scale and bias could be rolled into another color matrix operation.

Conversion to Luminance Converting a color image into a luminance image may be accom-
plished by scaling each component by its weight in the luminance equation.2
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The recommended weight values forRw,Gw, andBw are 0:3086,0:6094, and 0:0820. Some authors
have used the values from the YIQ color conversion equation (0:299,0:587, and 0:114), but Haeberli
notes that these values are incorrect in a linear RGB color space.[26]

Modifying Saturation The saturation of a color is the distance of that color from a gray of equal
intensity.[18] Haeberli has suggested modifying saturation using the equation:2

6664
R0

G0

B0

A

3
7775 =

2
6664
a d g 0
b e h 0
c f i 0
0 0 0 1

3
7775
2
6664
R

G
B

A

3
7775

where:

a = (1� s) �Rw + s

b = (1� s) �Rw

c = (1� s) �Rw

d = (1� s) �Gw

e = (1� s) �Gw + s

f = (1� s) �Gw

g = (1� s) �Bw

h = (1� s) �Bw

i = (1� s) �Bw + s

withRw, Gw, and Bw as described in the above section. Since the saturation of a color is the differ-
ence between the color and a gray value of equal intensity, it is comforting to note that setting s to 0
gives the luminance equation. Setting s to 1 leaves the saturation unchanged; setting it to �1 takes
the complement of the colors [26].

Hue Rotation Changing the hue of a color may be accomplished by loading a rotation about the
gray vector (1; 1; 1). This operation may be performed in one step using the glRotate command.
The matrix may also be constructed via the following steps [26]:

1. Load the identity matrix (glLoadIdentity).

2. Rotate such that the gray vector maps onto the z axis using the glRotate command.

3. Rotate about the z axis to adjust the hue (glRotate(<degrees>, 0, 0, 1)).

4. Rotate the gray vector back into position.

Unfortunately, a naive application of glRotate will not preserve the luminance of the image. To
avoid this problem, you must make sure that areas of constant luminance map to planes perpen-
dicular to the z axis when you perform the hue rotation. Recalling that the luminance of a vector
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(R;G;B) is equal to:
(R;G;B) � (Rw; Gw; Bw)

you realize the plane of constant luminance k is defined by:

(R;G;B) � (Rw; Gw; Bw) = k

Therefore, the vector (Rw; Gw; Bw) is perpendicular to planes of constant luminance. The algorithm
for matrix construction becomes the following [26]:

1. Load the identity matrix.

2. Apply a rotation matrix M such that the gray vector (1; 1; 1)maps onto the positive z axis.

3. Compute (R0

w; G
0

w; B
0

w) = M(Rw; Gw; Bw). Apply a skew transform which maps
(R0

w; G
0

w; B
0

w) to (0; 0; B0

w). This matrix is:
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4. Rotate about the z axis to adjust the hue.

5. Apply the inverse of the shear matrix.

6. Apply the inverse of the rotation matrix.

It is possible to compute a single matrix as a function of Rw, Gw, Bw, and the degrees of rotation
which performs this operation.

CMY Conversion The CMY color space describes colors in terms of the subtractive primaries:
cyan, magenta, and yellow. CMY is used mainly for hardcopy devices such as color printers. Gen-
erally, the conversion from RGB to CMY follows the equation [18]:2
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CMY conversion may be performed using the color matrix or a scale and bias operation. The con-
version is equivalent to a scale by �1 and a bias by +1. Using the 4x4 color matrix, the equation
may be restated as: 2
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Here, the incoming alpha channel must be equal to 1. If the source is RGB, the 1 will be added
automatically in the format conversion stage of the pipeline.

A related color space, CMYK, uses a fourth channel (K) to represent black. Since conversion to
CMYK requires a min() operation, it cannot be performed using the color matrix.

The extension EXT CMYKA also supports conversion to and from CMYK and CMYKA. This exten-
sion is currently supported by Evans & Sutherland.

YIQ Conversion The YIQ color space is used in U.S. color television broadcasting. Conversion
from RGBA to YIQA may be accomplished using the color matrix:2
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(Generally, YIQ is not used with an alpha channel so the fourth component is eliminated.) The in-
verse matrix is used to map YIQ to RGBA [18].

12.3 Convolutions

12.3.1 Introduction

Convolutions are used to perform many common image processing operations including sharpen-
ing, blurring, noise reduction, embossing, and edge enhancement. This section begins with a very
brief overview of the mathematics of the convolution operation. More detailed explanations of the
mathematics and uses of the convolution operation can be found in many books on computer graph-
ics and image processing such as [18]. After this brief mathematical introduction, this section will
describe two ways to perform convolutions using OpenGL: via the accumulation buffer and via the
convolution extension.

12.3.2 The Convolution Operation

The convolution operation is a mathematical operation which takes two functions f(x) and g(x)
and produces a third function h(x). Mathematically, convolution is defined as:

h(x) = f(x) � g(x) =
Z +1

�1

f(�)g(x� �)d� (7)

g(x) is referred to as the filter. The integral only needs to be evaluated over the range where g(x��)
is nonzero (called the support of the filter).[18]
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In spatial domain image processing, you discretize the operation. f(x) becomes an array of pixels
F [x]. The kernel g(x) is an array of values G[0:::(width� 1)] (assume finite support). Equation 7
becomes:

H [x] =
width�1X
i=0

F [x+ i]G[i] (8)

Two-Dimensional Convolutions Since you generally operate on two-dimensional images in im-
age processing, extend Equation8 to:

H [x][y] =
height�1X

j=0

width�1X
i=0

F [x+ i][y + j]G[i][j] (9)

During convolution, the value for a pixel in the output image is calculated by aligning the filter array
(kernel) with the pixel at the same location in the input image and summing the values of the pixels
in the input array multiplied by the corresponding values in the filter array.

The algorithm can be visualized as a loop over the width and height of the input image. In the loop,
the filter is typically centered over each input pixel. Another loop over the width and height of the
filter multiplies the values in the filter array with the values under the filter in the input image. The
results of the multiplication are added together and stored in the output image in the same< x; y >

location as the pixel in the input image. The output and input images are kept logically separate so
that the results of one step in the loop don’t affect later steps in the loop.

The convolution filter may have a single element per-pixel, where the RGBA components are scaled
by the same value, or the filter may have separate red, green, blue, and alpha values for each element.

Separable Filters In the general case, the two-dimensional convolution operation requires
(width�height)multiplications for each output pixel. Separable filters are a special case of general
convolution in which the filter

G[0::(width� 1)][0::(height� 1)]

can be expressed in terms of two vectors

Grow[0::(width� 1)]Gcol[0::(height� 1)]

such that for each (i; j)�([0::(width� 1)]; [0::(height� 1)])

G[i][j] = Grow[i] �Gcol[j]

If the filter is separable, the convolution operation may be performed using only (width+ height)
multiplications for each output pixel. Applying the separable filter to Equation9 becomes:

H [x][y] =
height�1X

j=0

width�1X
i=0

F [x+ i][y + j]Grow[i]Gcol[j]
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Which can be simplified to:

H [x][y] =
height�1X

j=0

Gcol[j]
width�1X
i=0

F [x+ i][y + j]Grow[i]

To apply the separable convolution, first apply Grow as though it were a width by 1 filter. Then
apply Gcol as though it were a 1 by height filter.

12.3.3 Convolutions Using the Accumulation Buffer

The convolution operation may be implemented by building the output image in the accumulation
buffer. For each kernel entryG[i][j], translate the input image by (�i;�j) from its original position
and then accumulate the translated image using the command glAccum(GL ACCUM, G[i][j]).
This translation can be performed by glCopyPixels but an application may be able to more effi-
ciently redraw the image shifted usingglViewport. width�height translations and accumulations
must be performed. Skip clearing the accumulation buffer by using GL LOAD instead of GL ACCUM

for the first accumulation.

Here is an example of using the accumulation buffer to convolve using a Sobel filter, commonly used
to do edge detection. This filter is used to find horizontal edges:2
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Since the accumulation buffer can only store values in the range (-1..1), first modify the kernel such
that at any point in the computation the values do not exceed this range:2

64 �1 �2 �1
0 0 0
1 2 1

3
75 = 4 �

2
64

�1
4

�2
4

�1
4

0 0 0
1
4

2
4

1
4

3
75

The operations needed to apply the filter are:

1. Draw the input image.

2. glAccum(GL LOAD, 1/4)

3. Translate the input image left by one pixel.

4. glAccum(GL ACCUM, 2/4)

5. Translate the input image left by one pixel.

6. glAccum(GL ACCUM, 1/4)
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7. Translate the input image right by two pixels and down by two pixels.

8. glAccum(GL ACCUM, -1/4)

9. Translate the input image left by one pixel.

10. glAccum(GL ACCUM, -2/4)

11. Translate the input image left by one pixel.

12. glAccum(GL ACCUM, -1/4)

13. Return the results to the framebuffer (glAccum(GL RETURN, 4)).

In this example, each pixel in the output image is the combination of pixels in the 3 by 3 pixel square
whose lower left corner is at the output pixel. At each step, the image is shifted so that the pixel that
would have been under the kernel element with the value used is under the lower left corner. As an
optimization, ignore locations where the kernel is equal to zero.

A general algorithm for the 2D convolution operation is:

Draw the input image
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
glAccum(GL_ACCUM, G[i][j]*scale);
Move or redraw the input image to the left by 1 pixel

}
Move or redraw the input image to the right by width pixels
Move or redraw the input image down by 1 pixel

}
glAccum(GL_RETURN, 1/scale);

scale is a value chosen to ensure that the intermediate results cannot go outside a certain range.
In the Sobel filter example, scale = 4. Assuming the input values are in (0::1), scale can be
naively computed using the following algorithm:

float minPossible = 0, maxPossible = 1;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
if (G[i][j] < 0) {

minPossible += G[i][j];
} else {

maxPossible += G[i][j];
}

}
}
scale = 1.0 / ((-minPossible > maxPossible) ?

-minPossible : maxPossible);
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Since the accumulation buffer has limited precision, more accurate results can be obtained by chang-
ing the order of the computation and computing scale accordingly. Additionally, if values in the
input image can be constrained to a smaller range, scale can be made larger, which may also give
more accurate results.

For separable kernels, convolution can be implemented using width + height image translations
and accumulations. A general algorithm is:

Draw the input image
for (i = 0; i < width; i++) {
glAccum(GL_ACCUM, Grow[i] * rowScale);
Move or redraw the input image to the left 1 pixel

}
glAccum(GL_RETURN, 1 / rowScale);
for (j = 0; j < height; j++) {
glAccum(GL_ACCUM, Gcol[j] * colScale);
Move or redraw the framebuffer image down by 1 pixel

}
glAccum(GL_RETURN, 1 / colScale);

In this example, it is assumed that scales for the row and column filters have been determined in a
similar fashion to the general two-dimensional filter, such that the accumulation buffer values will
never go out of range.

12.3.4 The Convolution Extension

The convolution extension, EXT convolution, defines a stage in the OpenGL pixel transfer
pipeline which applies a 1D, separable 2D, or general 2D convolution. The 1D convolution
is applied only to 1D texture downloads and is infrequently used. 2D kernels are specified
using the commands glConvolutionFilter2DEXT, glCopyConvolutionFilter2DEXT,
and glSeparableFilter2DEXT. The convolution stage is enabled using the enu-
merant GL CONVOLUTION 2D EXT or GL SEPARABLE 2D EXT. Filters are queried using
glGetConvolutionFilterEXT and glGetSeparableFilterEXT.

The maximum permitted convolution size is machine-dependent and may be queried using
glGetConvolutionParameterfvEXT with the parameters GL MAX CONVOLUTION WIDTH EXT

and GL MAX CONVOLUTION HEIGHT EXT.

The relative performance of separable and general filters varies from platform to platform, but it is
best to specify a separable filter whenever possible.

EXT convolution is currently supported by the following vendors:

� Silicon Graphics

� Hewlett Packard

� Sun Microsystems, Inc.
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12.3.5 Useful Convolution Filters

This section briefly describes several useful convolution filters. The filters may be applied to an im-
age using either the convolution extension or the accumulation buffer technique. Unless otherwise
noted, the kernels presented are normalized (that is, the kernel weights sum to 0).

You should keep in mind that this section is intended only as a very basic reference. Numerous texts
on image processing provide more details and other filters including [42].

Line detection Detection of one pixel wide lines can accomplished with the following filters:

Horizontal Edges 2
64 �1 �1 �1

2 2 2
�1 �1 �1

3
75

Vertical Edges 2
64 �1 2 �1
�1 2 �1
�1 2 �1

3
75

Left Diagonal Edges 2
64 2 �1 �1
�1 2 �1
�1 �1 2

3
75

Right Diagonal Edges 2
64 �1 �1 2
�1 2 �1
2 �1 �1

3
75

Gradient Detection (Embossing) Changes in value over 3 pixels can be detected using kernels
called Gradient Masks or Prewitt Masks. The direction of the change from darker to lighter is de-
scribed by one of the points of the compass. The 3x3 kernels are as follows:

North 2
64 �1 �2 �1

0 0 0
1 2 1

3
75
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West 2
64 �1 0 1
�2 0 2
�1 0 1

3
75

East 2
64 1 0 �1

2 0 �2
1 0 �1

3
75

South 2
64 1 2 1

0 0 0
�1 �2 �1

3
75

Northeast 2
64 0 �1 �2

1 0 �1
2 1 0

3
75

Smoothing and Blurring Smoothing and blurring operations are low-pass spatial filters. They
reduce or eliminate high-frequency aspects of an image.

Arithmetic Mean The arithmetic mean simply takes an average of the pixels in the kernel. Each
element in the filter is equal to 1 divided by the total number of elements in the filter. Thus the 3x3
arithmetic mean filter is: 2

64
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

3
75

Basic Smooth: 3x3 (not normalized) 2
64 1 2 1

2 4 2
1 2 1

3
75
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Basic Smooth: 5x5 (not normalized)

2
666664

1 1 1 1 1
1 4 4 4 1
1 4 12 4 1
1 4 4 4 1
1 1 1 1 1

3
777775

High-pass Filters A high-pass filter enhances the high-frequency parts of an image. This type of
filter is used to sharpen images.

Basic High-Pass Filter: 3x3 2
64 �1 �1 �1
�1 9 �1
�1 �1 �1

3
75

Basic High-Pass Filter: 5x5
2
666664

0 �1 �1 �1 0
�1 2 �4 2 �1
�1 �4 13 �4 �1
�1 2 �4 2 �1
0 �1 �1 �1 0

3
777775

Laplacian Filter The Laplacian is used to enhance discontinuities. The 3x3 kernel is:2
64 0 �1 0
�1 4 �1
0 �1 0

3
75

and the 5x5 is: 2
666664

1 1 1 1 1
1 1 1 1 1
1 1 24 1 1
1 1 1 1 1
1 1 1 1 1

3
777775

Sobel Filter The Sobel filter consists of two kernels which detect horizontal and vertical changes
in an image. If both are applied to an image, the results can by used to compute the mag-
nitude and direction of the edges in the image. If the application of the Sobel kernels re-
sults in two images which are stored in the arrays Gh[0..(height-1][0..(width-1)] and
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Gv[0..(height-1)][0..(width-1)], the magnitude of the edge passing through the pixel x,
y is given by:

Msobel[x][y] =
q
Gh[x][y]2+Gv[x][y]2 = jGh[x][y]j+ jGv[x][y]j

(you are justified in using the magnitude representation since the values represent the magnitude of
orthogonal vectors). The direction can also be derived from Gh and Gv:

�sobel[x][y] = tan�1(
Gv[x][y]

Gh[x][y]
)

The 3x3 Sobel kernels are:

Horizontal 2
64 �1 �2 �1

0 0 0
1 2 1

3
75

Vertical 2
64 �1 0 1
�2 0 2
�1 0 1

3
75

12.3.6 Correlation and Feature Detection

The correlation operation is defined mathematically as:

h(x) = f(x) � g(x) =
Z +1

�1

f�(�)g(x+ �)d� (10)

The f�(�) is the complex conjugate of f(�), but since this section will discuss correlation for signals
which only contain real values, substitute f(�).

Correlation is useful for feature detection; applying correlation to an image that possibly contains a
target feature and an image of that feature forms local maxima or pixel value ”spikes” in candidate
positions. This is useful in detecting letters on a page, or the position of armaments on a battlefield.
Correlation can also be used to detect motion, such as the velocity of hurricanes in a satellite image
or the jittering of an unsteady camera.

For two-dimensional discrete images, you may use Equation 9 to evaluate correlation.

The convolution extension (EXT convolution) in OpenGL may be used to apply correlation to an
image, but only for features no larger than the maximum convolution kernel size. For larger images
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or platforms which do not supply the convolution extension, use the accumulation buffer technique
for convolution. (It is worth the effort to consider an alternative method, such as applying a multi-
plication in the frequence domain [24], if your feature and candidate images are very large.)

Once you have applied convolution, your application will need to find the ”spikes” to determine
where features have been detected. To aid this process, it may be useful to apply thresholding with
a color table (SGI color table) to convert candidates pixels to one value and non-candidates to
another.

One method used for finding features uses the following steps:

� Draw a small image containing just the feature to detect.

� Create a convolution filter containing that image.

� Transfer the image to the convolution filter using glCopyConvolutionFilter2DEXT.

� Draw your candidate image into the color buffers.

� Optionally configure a threshold for candidate pixels:

– Create a color table using glColorTableSGI.

– glEnable(GL POST CONVOLUTION COLOR TABLE SGI).

� glEnable(GL CONVOLUTION 2D EXT)

� Apply pixel transfer to your candidate image using glCopyPixels.

� Read back the frame buffer using glReadPixels.

� Measure candidate pixel locations.

If your candidate image comes from a source other than the OpenGL color buffer, use
glDrawPixels to apply the pixel transfer pipeline to your image.

If features in the candidate image are not pixel-exact, for example if they are rotated slightly or
blurred, it may be necessary to create the feature image using jittering and blending, and then lower
the acceptance threshold in the color table.

12.4 Image Warping

12.4.1 The Pixel Zoom Operation

OpenGL provides control over the generation of fragments from pixels via the pixel zoom operation.
Zoom factors are specified using glPixelZoom. Negative zooms are used to specify reflections.

Pixel zooming may prove faster than the texture mapping techniques described below on some sys-
tems, but do not provide as fine a control over filtering.
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12.4.2 Warps Using Texture Mapping

Image warping or dewarping may be implemented using texture mapping by defining a correspon-
dence between a uniform polygonal mesh and a warped mesh. The points of the warped mesh are
assigned the corresponding texture coordinates of the uniform mesh and the mesh is rendered texture
mapped with the original image. Using this technique, simple transformations such as zoom, rota-
tion, or shearing can be efficiently implemented. The technique also easily extends to much higher-
order warps such as those needed to correct distortion in satellite imagery.
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13 Volume Visualization with Texture

Volume rendering is a useful technique for visualizing three dimensional arrays of sampled data.
Examples of sampled 3D data can range from computational fluid dynamics, medical data from CAT
or MRI scanners, seismic data, or any volumetric information where geometric surfaces are difficult
to generate or unavailable. Volume visualization provides a way to see through the data, revealing
complex 3D relationships.

There are a number of approaches for visualization of volume data. Many of them use data anal-
ysis techniques to find the contour surfaces inside the volume of interest, then render the resulting
geometry with transparency.

The 3D texture approach is a direct data visualization technique, using 2D or 3D textured data slices,
combined using a blending operator [14]. The approach described here is equivalent to ray casting
[30] and produces the same results. Unlike ray casting, where each image pixel is built up ray by
ray, this approach takes advantage of spatial coherence. The 3D texture is used as a voxel cache,
processing all rays simultaneously, one 2D layer at a time. Since an entire 2D slice of the voxels are
“cast” at one time, the resulting algorithm is much faster with hardware-accelerated texture than ray
casting.

This section is divided into two approaches, one using 2D textures, the other using a 3D texture.
Although the 3D texture approach is simpler and yields superior results overall, 3D textures are cur-
rently still an EXT extension in OpenGL and are not universally available like 2D textures. 3D tex-
turing will be available as part of OpenGL 1.2, so both methods [14] are described here.

13.1 Overview of the Technique

The technique for visualizingvolume data is composed of two parts. First the texture data is sampled
with planes parallel to the viewport and stacked along the direction of view. These planes are ren-
dered as polygons, clipped to the limits of the texture volume. These clipped polygons are textured
with the volume data, and the resulting images are blended together, from back to front, towards the
viewing position. As each polygon is rendered, its pixel values are blended into the framebuffer to
provide the appropriate transparency effect. See Figure 59.

If the OpenGL implementation doesn’t support 3D textures, a more limited version of the technique
can be used, where 3 sets of 2D textures are created, one set for each major plane of the volume data.
The process then proceeds as with the 3D case, except that the slices are constrained to be parallel
to one of the three 2D texture sets.

Close-up views of the volume cause sampling errors to occur at texels that are far from the line of
sight into the data. To correct this problem, use a series of concentric tessellated spheres centered
around the eye point, rather than a single flat polygon, to generate each textured “slice” of the data.
As with flat slices, the spherical shells should be clipped to the data volume, and each textured shell
blended from back to front. See Figure 60.
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Figure 59. Slicing a 3D Texture to Render Volume

13.2 3D Texture Volume Rendering

Using 3D textures for volume rendering is the most desirable method. The slices can be oriented
perpendicular to the viewer’s line of sight, and creating spherical slices for close-up views doesn’t
lead to sampling errors.

Here are the steps for rendering a volume using 3D textures:

1. Load the volume data into a 3D texture. This is done once for a particular data volume.

2. Choose the number of slices, based on the criteria in Section 13.5. Usually this matches the
texel dimensions of the volume data cube.

3. Find the desired viewpoint and view direction.

4. Compute a series of polygons that cut through the data perpendicular to the direction of view.
Use texture coordinate generation to texture the slice properly with respect to the 3D texture
data.

5. Use the texture transform matrix to set the desired orientation of the textured images on the
slices.

6. Render each slice as a textured polygon, from back to front. A blend operation is performed at
each slice; the type of blend depends on the desired effect. See the blend equation descriptions
in Section 13.4 for details.
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Eye

Volume

Shells

Figure 60. Slicing a 3D Texture with Spherical Shells

7. As the viewpoint and direction of view changes, recompute the data slice positions and update
the texture transformation matrix as necessary.

13.3 2D Texture Volume Rendering

Volume rendering with 2D textures is more complex and does not provide as good results as 3D
textures, but can be used on any OpenGL implementation.

The problem with 2D textures is that the data slice polygons can’t always be perpendicular to the
view direction. Three sets of 2D texture maps are created, each set perpendicular to one of the major
axes of the data volume. These texture sets are created from adjacent 2D slices of the original 3D
volume data along a major axis. The data slice polygons must be aligned with whichever set of 2D
texture maps is most parallel to it. In the worst case, the data slices are canted 45 degrees from the
view direction.

The more edge-on the slices are to the eye, the worse the data sampling is. In the extreme case of
an edge-on slice, the textured values on the slices aren’t blended at all. At each edge pixel, only one
sample is visible, from the line of texel values crossing the polygon slice. All the other values are
obscured.

For the same reason, sampling the texel data as spherical shells to avoid aliasing when doing close-
ups of the volume data, isn’t practical with 2D textures.
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Here are the steps for rendering a volume using 2D textures:

1. Generate the three sets of 2D textures from the volume data. Each set of 2D textures is oriented
perpendicular to one of volume’s major axes. This processing is done once for a particular data
volume.

2. Choose the number of slices, based on the criteria in Section 13.5. Usually this matches the
texel dimensions of the volume data cube.

3. Find the desired viewpoint and view direction.

4. Find the set of 2D textures most perpendicular to the direction of view. Generate data slice
polygons parallel to the 2D texture set chosen. Use texture coordinate generation to texture
each slice properly with respect to its corresponding 2D texture in the texture set.

5. Use the texture transform matrix to set the desired orientation of the textured images on the
slices.

6. Render each slice as a textured polygon, from back to front. A blend operation is performed at
each slice; the type of blend depends on the desired effect. See the blend equation descriptions
in Section 13.4 for details.

7. As the viewpoint and direction of view changes, recompute the data slice positions and update
the texture transformation matrix as necessary. Always orient the data slices to the 2D texture
set that is most closely aligned with it.

13.4 Blending Operators

There a number of common blending functions used in volume visualization. They are described
below.

13.4.1 Over

The over operator [51] is the most common way to blend for volume visualization. Volumes blended
with the over operator approximate the flow of light through a colored, transparent material. The
transparency of each point in the material is determined by the value of the texel’s alpha channel.
Texels with higher alpha values tend to obscure texels behind them, and stand out through the ob-
scuring texels in front of them.

The over operator can be implemented in OpenGL by setting the blend function to perform the over
operation:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
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13.4.2 Attenuate

The attenuate operator simulates an X-ray of the material. With attenuate, the texel’s alpha appears
to attenuate light shining through the material along the view direction towards the viewer. The texel
alpha channel models material density. The final brightness at each pixel is attenuated by the total
texel density along the direction of view.

Attenuation can be implemented with OpenGL by scaling each element by the number of slices, then
summing the results. This can be done by combination of the appropriate blend function and blend
color:

glBlendFunc(GL_CONSTANT_ALPHA_EXT, GL_ONE)
glBlendColorEXT(1.f, 1.f, 1.f, 1.f/number_of_slices)

13.4.3 Maximum Intensity Projection

Maximum Intensity Projection, or MIP, is used in medical imaging to visualize blood flow. MIP
finds the brightest texel alpha from all the texture slices at each pixel location. MIP is a contrast
enhancing operator; structures with higher alpha values tend to stand out against the surrounding
data.

MIP can be implemented with OpenGL using the blend minmax extension:

glBlendEquationEXT(GL_MAX_EXT)

13.4.4 Under

Volume slices rendered front to back with the under operator give the same result as the over operator
blending slices from back to front. Unfortunately, OpenGL doesn’t have an exact equivalent for the
under operator, although using glBlendFunc(GL ONE MINUS DST, GL DST) is a good approxi-
mation. Use the over operator and back to front rendering for best results. See Section 6.1 for more
details.

13.5 Sampling Frequency

There are a number of factors to consider when choosing the number of slices (data polygons) to use
when rendering your volume:

Performance It’s often convenient to have separate “interactive” and “detail” modes for viewing
volumes. The interactive mode can render the volume with a smaller number of slices, im-
proving the interactivity at the expense of image quality. Detail mode – rendering with more
slices – can be invoked when the volume being manipulated slows or stops.
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Cubical Voxels The data slice spacing should be chosen so that the texture sampling rate from slice
to slice is equal to the texture sampling rate within each slice. Uniform sampling rate treats
3D texture texels as cubical voxels, which minimizes resampling artifacts.

For a cubical data volume, the number of slices through the volume should roughly match the
resolution in texels of the slices. When the viewing direction is not along a major axis, the
number of sample texels changes from plane to plane. Choosing the number of texels along
each side is usually a good approximation.

Non-linear blending The over operator is not linear, so adding more slices doesn’t just make the
image more detailed. It also increases the overall attenuation, making it harder to see density
details at the “back” of the volume. Strictly speaking, if you change the number of slices used
to render the volume, the alpha values of the data should be rescaled. There is only one correct
sample spacing for a given data set’s alpha values. Generally, it doesn’t buy you anything to
have more slices than you have voxels in your 3D data.

Perspective When viewing a volume in perspective, the density of slices should increase with dis-
tance from the viewer. The data in the back of the volume should appear denser as a result of
perspective distortion. If the volume isn’t being viewed in perspective, then uniformly spaced
data slices are usually the best approach.

Flat vs. Spherical Slices If you are using spherical slices to get good close-ups of the data, then the
slice spacing should be handled in the same way as for flat slices. The spheres making up the
slices should be tessellated finely enough to avoid concentric shells from touching each other.

2D vs. 3D Textures 3D textures can sample the data in the s, T , or r directions freely. 2D textures
are constrained to s and t. 2D texture slices correspond exactly to texel slices of the volume
data. To create a slice at an arbitrary point would require resampling the volume data.

Theoretically, the minimum data slice spacing is computed by finding the longest ray cast through
the volume in the view direction, transforming the texel values found along that ray using the transfer
function (if there is one), then finding the highest frequency component of the transformed texels,
and using double that number for the minimum number of data slices for that view direction.

This can lead to a large number of slices. For a data cube 512 texels on a side, the worst case would
be at least 1024

p
3 slices, or about 1774 slices. In practice, however, the volume data tends to be

bandwidth limited; and in many cases choosing the number of data slices to be equal to the vol-
ume’s dimensions, measured in texels, works well. In this example, you may get satisfactory results
with 512 slices, rather than 1774. If the data is very blurry, or image quality is not paramount (for
example, in “interactive mode”), this value could be reduced by a factor of two or four.

13.6 Shrinking the Volume Image

For best visual quality, render the volume image so that the size of a texel is about the size of a
pixel. Besides making it easier to see density details in the image, larger images avoid the problems
associated with under-sampling a minified volume.
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Reducing the volume size will cause the texel data to be sampled to a smaller area. Since the over
operator is non-linear, the shrunken data will interact with it to yield an image that is different, not
just smaller. The minified image will have density artifacts that are not in the original volume data.

If a smaller image is desired, first render the image full size in the desired orientation, then shrink
the resulting 2D image.

13.7 Virtualizing Texture Memory

Volume data doesn’t have to be limited to the maximum size of 3D texture memory. The visualiza-
tion technique can be virtualized by dividing the data volume into a set of smaller “bricks”. Each
brick is loaded into texture memory, then data slices are textured and blended from the brick as usual.
The processing of bricks themselves is ordered from back to front relative to the viewer. The process
is repeated with each brick in the volume until the entire volume has been processed.

To avoid sampling errors at the edges, data slice texture coordinates should be adjusted so they don’t
use the surface texels of any brick. The bricks themselves are oriented so that they overlap by one
volume texel with their immediate neighbors. This allows the results of rendering each brick to com-
bine seamlessly. For more information on paging textures, see Section 5.5.

13.8 Mixing Volumetric and Geometric Objects

In many applications it is useful to display both geometric primitives and volumetric data sets in the
same scene. For example, medical data can be rendered volumetrically, with a polygonal prosthesis
placed inside it. The embedded geometry may be opaque or transparent.

The Opaque geometric objects are rendered first using depth buffering. The volumetric data slice
polygons are then drawn, with depth testing still enabled. Depth buffer updating should be masked
off if the slice polygons are being rendered from front to back (for most volumetric operators, data
slices are rendered back to front). With depth testing enabled, the pixels of volume planes behind
the object aren’t rendered, while the planes in front of the object blend it in. The blending of the
planes in front of the object gradually obscure it, making it appear embedded in the volume data.

If the object itself should be transparent, it must be rendered along with the data slice polygons a
slice at a time. The object is chopped into slabs using user defined clipping planes.The slab thickness
corresponds to the spacing between volume data slices. Each slab of object corresponds to one of
the data slices. Each slice of the object is rendered and blended with its corresponding data slice
polygon, as the polygons are rendered back to front.

13.9 Transfer Functions

Different alpha values in volumetric data often correspond to different materials in the volume being
rendered. To help analyze the volume data, a non-linear transfer function can be applied to the texels,
highlighting particular classes of volume data. This transformation function can be applied through
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one of OpenGL’s lookup tables. The SGI texture color table extension applies a lookup table
to texels values during texturing, after the texel value is filtered.

Since filtering adjusts the texel component values, a more accurate method is to apply the lookup
table to the texel values before the textures are filtered. If the EXT color table table extension is
available, then a colortable in the pixel path can be used to process the texel values while the texture
is loaded. If lookup tables aren’t available, the processing can be done to the volume data by the
application, before loading the texture.

If the paletted texture extension (EXT paletted texture) is available and the 3D texture can be
stored simply as color table indices, it is possible to rapidly change the resulting texel component
values by changing the color table.

13.10 Volume Cutting Planes

Additional surfaces can be created on the volume with user defined clipping planes. A clipping plane
can be used to cut through the volume, exposing a new surface. This technique can help expose the
volume’s internal structure. The rendering technique is the same, with the addition of one or more
clipping planes defined while rendering and blending the data slice polygons.

13.11 Shading the Volume

In addition to visualizing the voxel data, the data can be lit and shaded. Since there are no explicit
surfaces in the data, lighting is computed per volume texel.

The direct approach to shading is to do it on the host. The volumetric data can be processed to find
the gradient at each voxel. Then the dot product between the gradient vector, now used as a normal,
and the light is computed, and the results saved as 3D data. The volumetric data now contains the
intensity at each point in the data, instead of data density. Specular intensity can be computed the
same way, and combined so that each texel contains the total light intensity at every sample point in
the volume. This processed data can then be visualized in the manner described previously.

The problem with this technique is that a change of light source (or viewer position, if specular light-
ing is desired) requires that the data volume be reprocessed. A more flexible approach is to save the
components of the gradient vectors as color components in the 3D texture. Then the lighting can be
done while the data is being visualized. One way to do this is to transform the texel data using the
color matrix extension. The light direction can be processed to form a matrix that when multiplied
by the texture color components (now containing the components of the normal at that point), will
produce the dot product of the two. The color matrix is part of the pixel path, so this processing can
be done when the texture is being loaded. Now the 3D texture contains lighting intensities as before,
but the dot product calculations are done in the pixel pipeline, not in the host.

The data’s gradient vectors could also be computed interactively, as an extension of the texture
bump-mapping technique described in Section 8.5. Each data slice polygon is treated as a surface
polygon to be bump-mapped. Since the texture data must be shifted and subtracted, then blended
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with the shaded polygon to generate the lit slice before blending, the process of generating lit slices
must be processed separately from the blending of slices to create the volume image.

13.12 Warped Volumes

The data volume can be warped by non-linearly shifting the texture coordinates of the data slices. For
more warping control, tessellate the vertices to provide more vertex locations to perturb the texture
coordinate values. Among other things, very high quality atmospheric effects, such as smoke, can
be produced with this technique.
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Comparison Description of comparison test between reference and stencil value

GL NEVER always fails
GL ALWAYS always passes
GL LESS passes if reference value is less than stencil buffer
GL LEQUAL passes if reference value is less than or equal to stencil buffer
GL EQUAL passes if reference value is equal to stencil buffer
GL GEQUAL passes if reference value is greater than or equal to stencil buffer
GL GREATER passes if reference value is greater than stencil buffer
GL NOTEQUAL passes if reference value is not equal to stencil buffer

Table 4: Stencil Buffer Comparisons

14 Using the Stencil Buffer

The stencil buffer is like the depth and color buffers, except stencil pixels don’t represent colors or
depths, but have application-specific meanings. The stencil buffer isn’t directly visible like the color
buffer, but the bits in the stencil planes form an unsigned integer that affects and is updated by draw-
ing commands, through the stencil function and the stencil operations. The stencil function controls
whether a fragment is discarded or not by the stencil test, and the stencil operation determines how
the stencil planes are updated as a result of that test [43].

Stencil buffer actions are part of OpenGL’s fragment operations. Stencil testing occurs immediately
after the alpha test, and immediately before the depth test. If GL STENCIL TEST is enabled, and
stencil planes are available, the application can control what happens under three different scenarios:

1. The stencil test fails.

2. The stencil test passes, but the depth test fails.

3. Both the stencil and the depth test pass.

Whether a stencil operation for a given fragment passes or fails has nothing to do with the color
or depth value of the fragment. The stencil operation is a comparison between the value in the
stencil buffer for the fragment’s destination pixel and the stencil reference value. A mask is bit-
wise AND-ed with the value in the stencil planes and with the reference value before the compari-
son is applied. The reference value, the comparison function, and the comparison mask are set by
glStencilFunc. The comparison functions available are listed in Table 4.

Stencil function and stencil test are often used interchangeably in these notes, but the “stencil test”
specifically means the application of the stencil function in conjunction with the stencil mask.

If the stencil test fails, the fragment is discarded (the color and depth values for that pixel remain
unchanged) and the stencil operation associated with the stencil test failing is applied to that stencil
value. If the stencil test passes, then the depth test is applied. If the depth test passes (or if depth
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Stencil Operation Results of Operation on Stencil Values

GL KEEP stencil value unchanged
GL ZERO stencil value set to zero
GL REPLACE stencil value replaced by stencil reference value
GL INCR stencil value incremented
GL DECR stencil value decremented
GL INVERT stencil value bitwise inverted

Table 5: Stencil Buffer Operations

testing is disabled or if the visual does not have a depth buffer), the fragment continues on through
the pixel pipeline, and the stencil operation corresponding to both stencil and depth passing is applied
to the stencil value for that pixel. If the depth test fails, the stencil operation set for stencil passing
but depth failing is applied to the pixel’s stencil value.

Thus, the stencil test controls which fragments continue towards the framebuffer, and the stencil
operation controls how the stencil buffer is updated by the results of both the stencil test and the
depth test.

The stencil operations available are described in Table 5.

The glStencilOp call sets the stencil operations for all three stencil test results: stencil fail, stencil
pass/depth buffer fail, and stencil pass/depth buffer pass.

Writes to the stencil buffer can be disabled and enabled per bit by glStencilMask. This allows
an application to apply stencil tests without the results affecting the stencil values. Keep in mind,
however, that the GL INCR and GL DECR operations operate on each stencil value as a whole, and
may not operate as expected when the stencil mask is not all ones. Stencil writes can also be disabled
by calling glStencilOp(GL KEEP, GL KEEP, GL KEEP).

There are three other important ways of controlling and accessing the stencil buffer. Every
stencil value in the buffer can be set to a desired value by calling glClearStencil and
glClear(GL STENCIL BUFFER BIT). The contents of the stencil buffer can be read into system
memory using glReadPixelswith the format parameter set to GL STENCIL INDEX. The contents
of the stencil buffer can also be set using glDrawPixels.

Different machines support different numbers of stencil bits per pixel. Use
glGetIntegerv(GL STENCIL BITS, ...) to see how many bits are available. If multi-
ple stencil bits are available, glStencilMask(a)nd the mask argument to glStencilFunc

can be used to divide up the stencil buffer into a number of different sections. This allows the
application to store separate stencil values per pixel within the same stencil buffer.

The following sections describe how to use the stencil buffer in a number of useful multipass ren-
dering techniques.
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Figure 61. Using Stencil to Dissolve Between Images

14.1 Dissolves with Stencil

Stencil buffers can be used to mask selected pixels on the screen. This allows for pixel by pixel
compositing of images. You can draw geometry or arrays of stencil values to control, per pixel,
what is drawn into the color buffer. One way to use this capability is to composite multiple images.

A common film technique is the “dissolve”, where one image or animated sequence is replaced with
another, in a smooth sequence. The stencil buffer can be used to implement arbitrary dissolve pat-
terns. The alpha planes of the color buffer and the alpha function can also be used to implement this
kind of dissolve, but using the stencil buffer frees up the alpha planes for motion blur, transparency,
smoothing, and other effects.

The basic approach to a stencil buffer dissolve is to render two different images, using the stencil
buffer to control where each image can draw to the framebuffer. This can be done very simply by
defining a stencil test and associating a different reference value with each image. The stencil buffer
is initialized to a value such that the stencil test will pass with one of the images’ reference values,
and fail with the other. An example of a dissolve partway between two images is shown in Figure 61.

At the start of the dissolve (the first frame of the sequence), the stencil buffer is all cleared to one
value, allowing only one of the images to be drawn to the framebuffer. Frame by frame, the stencil
buffer is progressively changed (in an applicationdefined pattern) to a different value, one that passes
only when compared against the second image’s reference value. As a result, more and more of the
first image is replaced by the second.

Over a series of frames, the first image “dissolves” into the second, under control of the evolving
pattern in the stencil buffer.
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Here is a step-by-step description of a dissolve.

1. Clear the stencil buffer with glClear(GL STENCIL BUFFER BIT).

2. Disable writing to the color buffer, using glColorMask(GL FALSE, GL FALSE,

GL FALSE, GL FALSE).

3. If the values in the depth buffer should not change, use glDepthMask(GL FALSE).

For this example, we’ll have the stencil test always fail, and set the stencil operation to write the
reference value to the stencil buffer. Your application will also need to turn on stenciling before you
begin drawing the dissolve pattern.

1. Turn on stenciling; glEnable(GL STENCIL TEST).

2. Set stencil function to always fail; glStencilFunc(GL NEVER, 1, 1).

3. Set stencil op to write 1 on stencil test failure; glStencilOp(GL REPLACE, GL KEEP,

GL KEEP).

4. Write the dissolve pattern to the stencil buffer by drawing geometry or using glDrawPixels.

5. Disable writing to the stencil buffer with glStencilMask(GL FALSE).

6. Set stencil function to pass on 0; glStencilFunc(GL EQUAL, 0, 1).

7. Enable color buffer for writing with glColorMask(GL TRUE, GL TRUE, GL TRUE,

GL TRUE).

8. If you’re depth testing, turn depth buffer writes back on with glDepthMask.

9. Draw the first image. It will only be written where the stencil buffer values are 0.

10. Change the stencil test so only values that are 1 pass; glStencilFunc(GL EQUAL, 1, 1).

11. Draw the second image. Only pixels with stencil value of 1 will change.

12. Repeat the process, updating the stencil buffer, so that more and more stencil values are 1,
using your dissolve pattern, and redrawing image 1 and 2, until the entire stencil buffer has
1’s in it, and only image 2 is visible.

If each new frame’s dissolve pattern is a superset of the previous frame’s pattern, image 1 doesn’t
have to be re-rendered. This is because once a pixel of image 1 is replaced with image 2, image
1 will never be redrawn there. Designing the dissolve pattern with this restriction can improve the
performance of this technique.

14.2 Decaling with Stencil

In the dissolve example, the stencil buffer controls where pixels were drawn from an entire scene.
Using stencil to control pixels drawn from a particular primitive can help solve a number of impor-
tant problems:
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Rendered Directly Decaled Using Stencil

Figure 62. Using Stencil to Render Co-planar Polygons

1. Drawing depth-buffered, co-planar polygons without z-buffering artifacts.

2. Decaling multiple textures on a primitive.

The idea is similar to a dissolve: write values to the stencil buffer that mask the area you want to
decal. Then use the stencil mask to control two separate draw steps; one for the decaled region, one
for the rest of the polygon.

A useful example that illustrates the technique is rendering co-planar polygons. If one polygon is
to be rendered directly on top of another (runway markings, for example), the depth buffer can’t
be relied upon to produce a clean separation between the two. This is due to the quantization of
the depth buffer. Since the polygons have different vertices, the rendering algorithms can produce
z values that are rounded to the wrong depth buffer value, so some pixels of the back polygon may
show through the front polygon. In an application with a high frame rate, this results in a shimmering
mixture of pixels from both polygons (commonly called “Z fighting” or “flimmering”). An example
is shown in in Figure 62.

To solve this problem, the closer polygons are drawn with the depth test disabled, on the same pixels
covered by the farthest polygons. It appears that the closer polygons are “decaled” on the farther
polygons.

Decaled polygons can be drawn with the following steps:

1. Turn on stenciling; glEnable(GL STENCIL TEST).

2. Set stencil function to always pass; glStencilFunc(GL ALWAYS, 1, 1).
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3. Set stencil op to set 1 if depth passes, 0 if it fails; glStencilOp(GL KEEP, GL ZERO,

GL REPLACE).

4. Draw the base polygon.

5. Set stencil function to pass when stencil is 1; glStencilFunc(GL EQUAL, 1, 1).

6. Disable writes to stencil buffer; glStencilMask(GL FALSE).

7. Turn off depth buffering; glDisable(GL DEPTH TEST).

8. Render the decal polygon.

The stencil buffer doesn’t have to be cleared to an initial value; the stencil values are initialized as
a side effect of writing the base polygon. Stencil values will be one where the base polygon was
successfully written into the framebuffer, and zero where the base polygon generated fragments that
failed the depth test. The stencil buffer becomes a mask, ensuring that the decal polygon can only
affect the pixels that were touched by the base polygon. This is important if there are other primitives
partially obscuring the base polygon and decal polygons.

There are a few limitations to this technique. First, it assumes that the decal polygon doesn’t extend
beyond the edge of the base polygon. If it does, you’ll have to clear the entire stencil buffer before
drawing the base polygon, which is expensive on some machines. If you are careful to redraw the
base polygon with the stencil operations set to zero the stencil after you’ve drawn each decaled poly-
gon, you will only have to clear the entire stencil buffer once, for any number of decaled polygons.

Second, if the screen extents of the base polygons you’re decaling overlap, you’ll have to perform
the decal process for one base polygon and its decals before you move on to another base and decals.
This is an important consideration if your application collects and then sorts geometry based on its
graphics state, where the rendering order of geometry may be changed by the sort.

This process can be extended to allow a number of overlapping decal polygons, the number of decals
limited by the number of stencil bits available for the visual. The decals don’t have to be sorted. The
procedure is the similar to the previous algorithm, with the following extensions.

Assign a stencil bit for each decal and the base polygon. The lower the number, the higher the priority
of the polygon. Render the base polygon as before, except instead of setting its stencil value to one,
set it to the largest priority number. For example, if there were three decal layers, the base polygon
would have a value of 8.

When you render a decal polygon, only draw it if the decal’s priority number is lower than the
pixels it’s trying to change. For example, if the decal’s priority number was 1, it would be able
to draw over every other decal and the base polygon; glStencilFunc(GL LESS, 1, 0) and
glStencilOp(GL KEEP, GL REPLACE, GL REPLACE).

Decals with the lower priority numbers will be drawn on top of decals with higher ones. Since the
region not covered by the base polygon is zero, no decals can write to it. You can draw multiple
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decals at the same priority level. If you overlap them, however, the last one drawn will overlap the
previous ones at the same priority level.

Multiple textures can be drawn onto a polygon with a similar technique. Instead of writing decal
polygons, the same polygon is drawn with each subsequent texture and an alpha value to blend the
old pixel color and the new pixel color together.

14.3 Finding Depth Complexity with the Stencil Buffer

Finding depth complexity, or how many fragments were generated for each pixel in a depth buffered
scene, is important for analyzing graphics performance. It indicates how well polygons are dis-
tributed across the framebuffer and how many fragments were generated and discarded, clues for
application tuning.

One way to show depth complexity is to use the color values of the pixels in the scene to indicate
the number of times a pixel was written. It is relatively easy to draw an image representing depth
complexity with the stencil buffer. The basic approach is simple. Increment a pixel’s stencil value
every time the pixel is written. When the scene is finished, read back the stencil buffer and display
it in the color buffer, color coding the different stencil values.

This technique generates a count of the number of fragments generated for each pixel, whether the
depth test failed or not. By changing the stencil operations, a similar technique could be used to
count the number of fragments discarded after failing the depth test or to count the number of times
a pixel was covered by fragments passing the depth test.

Here’s the procedure in more detail:

1. Clear the depth and stencil buffer;
glClear(GL STENCIL BUFFER BIT|GL DEPTH BUFFER BIT).

2. Enable stenciling; glEnable(GL STENCIL TEST).

3. Set up the proper stencil parameters; glStencilFunc(GL ALWAYS, 0, 0),
glStencilOp(GL KEEP, GL INCR, GL INCR).

4. Draw the scene.

5. Read back the stencil buffer with glReadPixels, using GL STENCIL INDEX as the format
argument.

6. Draw the stencil buffer to the screen using glDrawPixelswith GL COLOR INDEX as the for-
mat argument.

You can control the mapping of stencil values to colors by glPixelMap. You can map the
stencil values to either RGBA or color index values, depending on the type of color buffer
to which you’re writing. In color index mode, you must turn on the color mapping with
glPixelTransferi(GL MAP COLOR, GL TRUE).
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14.4 Compositing Images with Depth

Compositing separate images together is a useful technique for increasing the complexity of a scene
[15]. An image can be saved to memory, then drawn to the screen using glDrawPixels. Both the
color and depth buffer contents can be copied into the framebuffer. This is sufficient for 2D style
composites, where objects are drawn on top of each other to create the final scene. To do true 3D
compositing, it is necessary to use the color and depth values simultaneously, so that depth testing
can be used to determine which surfaces are obscured by others.

The stencil buffer can be used for true 3D compositing in a two pass operation. The color buffer
is disabled for writing, the stencil buffer is cleared, and the saved depth values are copied into the
framebuffer. Depth testing is enabled, insuring that only depth values that are closer to the original
can update the depth buffer. glStencilOp is called to set a stencil buffer bit if the depth test passes.

The stencil buffer now contains a mask of pixels that were closer to the view than the pixels of
the original image. The stencil function is changed to accomplish this masking operation, the color
buffer is enabled for writing, and the color values of the saved image are drawn to the frame buffer.

This technique works because the fragment operations, in particular the depth test and the stencil test,
are part of both the geometry and imaging pipelines in OpenGL. Here is the technique in more detail.
It assumes that both the depth and color values of an image have been saved to system memory, and
are to be composited using depth testing to an image in the framebuffer:

1. Clear the stencil buffer using glClear, or’ing in GL STENCIL BUFFER BIT.

2. Disable the color buffer for writing with glColorMask.

3. Set stencil values to 1 when the depth test passes by calling glStencilFunc(GL ALWAYS,

1, 1), and glStencilOp(GL KEEP, GL KEEP, GL REPLACE).

4. Ensure depth testing is set; glEnable(GL DEPTH TEST), glDepthFunc(GL LESS).

5. Draw the depth values to the framebuffer withglDrawPixels, usingGL DEPTH COMPONENT

for the format argument.

6. Set the stencil buffer to test for stencil values of 1 with glStencilFunc(GL EQUAL, 1,

1) and glStencilOp(GL KEEP, GL KEEP, GL KEEP).

7. Disable the depth testing with glDisable(GL DEPTH TEST).

8. Draw the color values to the framebuffer with glDrawPixels, using GL RGBA as the format
argument.

At this point, both the depth and color values will have been merged, using the depth test to control
which pixels from the saved image would update the framebuffer. Compositing can still be prob-
lematic when merging images with coplanar polygons.
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This process can be repeated to merge multiple images. The depth values of the saved im-
age can be manipulated by changing the values of GL DEPTH SCALE and GL DEPTH BIAS with
glPixelTransfer. This technique could allow you to squeeze the incoming image into a limited
range of depth values within the scene.
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15 Line Rendering Techniques

15.1 Wireframe Models

If your goal is to draw a true wireframe model, as opposed to drawing a hidden line rendering of a
model or highlighting edges of a model, there are several methods available (listed here in order of
least efficient to most efficient):

1. Draw the model as polygons in line mode using glBegin(GL POLYGON) and
glPolygonMode(GL FRONT AND BACK, GL LINE).

This method is by far the easiest if you’re already displaying the model as a shaded solid, since
it involves a single mode change. However, it is likely to be significantly slower than the other
methods both because more processing usually occurs for polygons than for lines and because
every edge that is common to two polygons will be drawn twice. This method is undesirable
when using antialiased lines as well, because each line that is drawn twice will be brighter
than any lines drawn just once.

2. Draw the polygons as line loops using glBegin(GL LINE LOOP).

This method is almost as simple as the first, requiring only a change to the glBegin call.
However, except for possibly eliminating the extra processing required for polygons it has all
of the other undesirable features as well.

3. Extract the edges from the model and draw as independent lines using glBegin(GL LINES).

This method is more work than the previous two because each edge must be identified and all
duplicates removed. However, the extra work only needs to be done once and every time the
model is drawn it will be drawn much faster.

4. Extract the edges from the model and connect as many as possible into long line strips using
glBegin(GL LINE STRIP).

For just a little bit more effort than the GL LINES method, lines sharing common end-points
can be connected into larger line strips. This has the advantage of requiring less storage, less
data transfer bandwidth, and makes most efficient use of any line drawing hardware.

15.2 Hidden Lines

This section describes a technique to draw wireframe objects with the hidden lines removed or drawn
in a style different from the ones that are visible. This technique can clarify complex line drawings
of objects, and improve their appearance [35] [4].

The algorithm assumes that the object is composed of polygons. The algorithm first renders the
polygons of the objects, then the edges themselves, which make up the line drawing. During the
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first pass, only the depth buffer is updated. During the second pass, the depth buffer only allows
edges that are not obscured by the objects polygons to be rendered.

Here’s the algorithm in detail:

1. Disable writing to the color buffer with glColorMask.

2. Enable depth testing with glEnable(GL DEPTH TEST).

3. Render the object as polygons.

4. Enable writing to the color buffer.

5. Render the object as edges using one of the methods described in Section 15.1.

In order to improve the appearance of the edges (which are likely to show depth buffer aliasing arti-
facts), use polygon offset or stencil decaling techniques to draw the polygon edges. The following
technique works well, although its not completely general. Use the stencil buffer to mask where all
the lines, both hidden and visible, are. Then use the stencil function to prevent the polygon render-
ing from updating the depth buffer where the stencil values have been set. When the visible lines
are rendered, there is no depth value conflict, since the polygons never touched those pixels.

Here’s the modified algorithm:

1. Disable writing to the color buffer with glColorMask.

2. Disable depth testing; glDisable(GL DEPTH TEST).

3. Enable stenciling; glEnable(GL STENCIL TEST).

4. Clear the stencil buffer.

5. Set the stencil buffer to set the stencil values to 1 where pixels are drawn;
glStencilFunc(GL ALWAYS, 1, 1); glStencilOp(GL KEEP, GL KEEP,

GL REPLACE).

6. Render the object as edges.

7. Use the stencil buffer to mask out pixels where the stencil value is 1;
glStencilFunc(GL EQUAL, 1, 1) and glStencilOp(GL KEEP, GL KEEP,

GL KEEP).

8. Render the object as polygons.

9. Turn off stenciling glDisable(GL STENCIL TEST).

10. Enable writing to the color buffer.
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11. Render the object as edges using one of the methods described in Section 15.1.

This algorithm works reasonably well unless all of the hidden and visible lines are not the same color,
or if colors are interpolated between end-points. In this case, it’s possible for a hidden and visible
line to overlap, in which case the most recent line will be the one that is drawn.

Instead of removing hidden lines, sometimes it’s desirable to render them with a different color or
pattern. This can be done with a modification of the algorithm:

1. Leave the color depth buffer enabled for writing.

2. Set the color and/or pattern you want for the hidden lines.

3. Render the object as edges.

4. Disable writing to the color buffer.

5. Render the object as polygons.

6. Set the color and/or pattern you want for the visible lines.

7. Render the object as edges using one of the methods described in Section 15.1.

In this technique, all the edges are drawn twice; first with the hidden line pattern, then with the visible
one. Rendering the object as polygons updates the depth buffer, preventing the second pass of line
drawing from effecting the hidden lines.

15.2.1 glPolygonOffset

In addition to the above methods which enable and disable various modes during the two
passes of rendering, the glPolygonOffset command may be used to move the lines
and polygons relative to each other. If the edges are drawn as lines in polygon mode,
glEnable(GL POLYGON OFFSET LINE) can be used to move the lines a little bit in front of
the polygons. If a faster version of drawing the lines is used (as described in Section 15.1),
glEnable(GL POLYGON OFFSET FILL) will move the polygon surfaces a little bit behind the
lines.

Keep in mind, however, that glPolygonOffset is designed to provide greater offsets for poly-
gons viewed more edge-on than for polygons that are flatter relative to the screen. This means that
additional work is done for each polygon which could slow down rendering. An advantage, how-
ever, is that once the parameters have been tuned for a particular OpenGL implementation, the same
unmodified code should work well on other implementations.
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15.2.2 glDepthRange

Similar effects are available using glDepthRange but both the polygons and the edges are drawn
at the maximum speed for each type of primitive. This is done by moving the zNear value out a little
bit from 0.0 while setting the zFar to 1.0 for all normal drawing. Then when the edges are drawn
move the zNear value to 0.0 and reduce the zFar value by the same amount. The offset should be at
least 0.00001, depending on the depth buffer accuracy and amount perspective used in the projection
matrix, and may need to be significantly greater in many cases.

The general algorithm for an offset of EDGE OFFSET is:

glDepthRange(EDGE_OFFSET, 1.0);
<draw all non-edge geometry>

glDepthRange(0.0, 1.0 - EDGE_OFFSET);
<draw all edges>

As with all algorithms described in this manual, it is up to the user to select the hidden line (or edge
highlighting) method that best meets his needs after considering ease of implementation, speed, and
image quality.

15.3 Haloed Lines

Haloing lines can make it easier to understand a wireframe drawing. Lines that pass behind other
lines stop short a little before passing behind. It makes it clearer which line is in front of the other.

Haloed lines can be drawn using the depth buffer. The technique has two passes. First disable writing
to the color buffer; the first pass only updates the depth buffer. Set the line width to be greater than
the normal line width you’re using. The width you choose will determine the extent of the halos.
Render the lines. Now set the line width back to normal, and enable writing to the color buffer.
Render the lines again. Each line will be bordered on both sides by a wider “invisible line” in the
depth buffer. This wider line will mask out other lines as they pass beneath it.

1. Disable writing to the color buffer.

2. Enable the depth buffer for writing.

3. Increase line width.

4. Render lines.

5. Restore line width.

6. Enable writing to the color buffer.

7. Ensure that depth testing is on, passing on GL LEQUAL.
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Figure 63. Haloed Line

8. Render lines.

This method will not work where multiple lines with the same depth meet. Instead of connecting,
all of the lines will be “blocked” by the last wide line drawn. There can also be depth buffer alias-
ing problems when the wide line z values are changed by another wide line crossing it. This effect
becomes more pronounced if the narrow lines are widened to improve image clarity.

To avoid this problem, use polygon offset to move narrower visible lines in front of the obscuring
lines when the lines are being drawn as polygons in line mode. The minimum offset should be used to
avoid lines from one surface of the object “popping through” the lines of a another surface separated
by only a small depth value.

If the vertices of the objects faces are oriented to allow face culling, Then face culling can be used
to sort the object surfaces and allow a more robust technique: The lines of the objects back faces
are drawn, then obscuring wide lines of the front face are drawn, then finally the narrow lines of the
front face are drawn. No special depth buffer techniques are needed.

1. Cull the front faces of the object.

2. Draw the object as lines.

3. Cull the back faces of the object.

4. Draw the object as wide lines in the background color.

5. Draw the object as lines.

Since the depth buffer isn’t needed, there are no depth aliasing problems. The backface culling tech-
nique is fast and works well, but is not general. It won’t work for multiple obscuring or intersecting
objects.
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15.4 Silhouette Edges

Sometimes it can be useful for highlighting purposes to draw a silhouette edge around a complex
object. A silhouette edge defines the outer boundaries of the object with respect to the viewer.

The stencil buffer can be used to render a silhouette edge around an object. With this technique, you
can render the object, then draw a silhouette around it, or just draw the silhouette itself [53].

The object is drawn 4 times; each time displaced by one pixel in the x or y direction. This offset
must be done in window coordinates. An easy way to do this is to change the viewport coordinates
each time, changing the viewport transform. The color and depth values are turned off, so only the
stencil buffer is affected.

Every time the object covers a pixel, it increments the pixel’s stencil value. When the four passes
have been completed, the perimeter pixels of the object will have stencil values of 2 or 3. The interior
will have values of 4, and all pixels surrounding the object exterior will have values of 0 or 1.

Here is the algorithm in detail:

1. If you want to see the object itself, render it in the usual way.

2. Clear the stencil buffer to zero.

3. Disable writing to the color and depth buffers.

4. Set the stencil function to always pass, set the stencil operation to increment.

5. Translate the object by +1 pixel in y, using glViewport.

6. Render the object.

7. Translate the object by -2 pixels in y, using glViewport.

8. Render the object.

9. Translate by +1 pixel x and +1 pixel in y.

10. Render.

11. Translate by -2 pixel in x.

12. Render.

13. Translate by +1 pixel in x. You should be back to the original position.

14. Turn on the color and depth buffer.

15. Set the stencil function to pass if the stencil value is 2 or 3. Since the possible values range
from 0 to 4, the stencil function can pass if stencil bit 1 is set (counting from 0).

16. Rendering any primitive that covers the object will draw only the pixels of the silhouette. For
a solid color silhouette, render a polygon of the color desired over the object.
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15.5 Preventing Smooth Wide Line Overlap

When drawing a series of wide smoothed lines that overlap, such as an outline composed of a
GL LINE LOOP, more than one fragment may be produced for a given pixel. Since smooth lines
require enabling GL BLEND, this may cause the pixel to appear brighter or darker than expected, as
the fragments add more color to that pixel than in other locations.

An application may use a combination of the stencil test and alpha test to pass only the fragments
that have the highest alpha, and therefore contribute the most color to a pixel. This technique uses
repeated application of the alpha test to pass fragments with decreasing alpha, and uses the stencil
test and buffer to mark where fragments previously passed. This has the effect of sorting fragments
by alpha value.

glClear(GL_STENCIL_BUFFER_BIT);
glEnable(GL_STENCIL_TEST);
glEnable(GL_ALPHA_TEST);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glStencilFunc(GL_NOTEQUAL, 1, 0xff);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
for(a = .98f; a >= 0.0f; a -= .02f) {

glAlphaFunc(GL_GREATER, a);
/* draw lines here */

}

Because this draws the line set repeatedly (50 times in this example), you should consider the alpha
values likely to be used by your application and alter the loop appropriately.

For example, to improve performance by reducing the number of iterations, your application may
favor higher alpha values by increasing the step size as the value in the loop decreases, or simply
end the loop early.

On the other hand, if your application requires more accuracy, it is possible to iterate through every
possible alpha value and pass only the fragments in each iteration that match each specific alpha
value.

15.6 End Caps On Wide Lines

If wide lines form a loop, like a silhouette edge or the outline of a polygon, it may be necessary to fill
regions where one line ends and another begins, to give the appearance of a rounded joint. Smoothed
wide points may be applied at the ends of the line segments to form an end cap.

Use an algorithm like the one presented in Section15.5 to avoid saturating pixels with the line and
point color.
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16 Tuning Your OpenGL Application

Tuning your software allows it to use hardware capabilities more effectively. Writing high-
performance code is usually more complex than just following a set of rules. More often, it involves
making trade-offs between special functionality, quality, and performance.

Since different hardware accelerators achieve optimal performance in different ways, not all rules
apply in all cases. Some performance rules of thumb are applicable to most every OpenGL imple-
mentation – software or hardware – and others can be hardware-specific. This section provides many
hints that may be used to tune your OpenGL application for optimal performance.

16.1 What Is Pipeline Tuning?

Traditional software tuning focuses on finding and tuning hot spots, the 10% of the code in which
a program spends 90% of its time. Most graphics hardware accelerators are arranged in a pipeline,
where one stage may perform vertex transformation and lighting while another draws the actual pix-
els into the framebuffer. Because these stages operate in parallel, it is appropriate to use a different
approach: look for bottlenecks – overloaded stages that are holding up other processes.

At any time, one stage of the pipeline is the bottleneck. Reducing the time spent in that bottleneck is
the best way to improve performance. Conversely, doing work that further narrows the bottleneck,
or that creates a new bottleneck somewhere else, can further degrade performance.

If different parts of the hardware are responsible for different parts of the pipeline, the workload may
instead be increased at one part of the pipeline without degrading performance, as long as that part
does not become a new bottleneck. In this way, an application can sometimes be altered to draw, for
example, a higher-quality image with no performance degradation.

Different programs (or portions of programs) stress different parts of the pipeline, so it’s important
to understand which elements in the graphics pipeline are the bottlenecks for your program.

Note that in a software implementation, the CPU does all the work. As a result, it doesn’t make sense
to increase the work for any stage if another is using more CPU time; you’d be increasing the total
amount of work for the CPU and decreasing performance.

16.1.1 Three-Stage Model of the Graphics Pipeline

The graphics pipeline consists of three conceptual stages. All three parts may be implemented in
software or parts of the pipeline may be performed by a hardware graphics accelerator. The concep-
tual model is useful in either case: it helps you to know where your application spends its time. The
stages are:

� The application program running on the CPU, feeding commands to the graphics subsystem
(always on the CPU)
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� The geometry subsystem, which performs per-vertex operations such as coordinate transfor-
mations, lighting, texture coordinate generation, and clipping (may be hardware-accelerated)

� The raster subsystem, which performs per-pixel operations such as the simple operation of
writing color values into the framebuffer, or more complex operations like depth buffering,
alpha blending, and texture mapping (may be hardware accelerated)

The amount of work required from the different pipeline stages varies depending on the application.
For example, consider a program that draws a small number of large polygons. Because there are
only a few polygons, the pipeline stage that performs geometry operations is lightly loaded. Because
those few polygons cover many pixels on the screen, the pipeline stage that does rasterization is
heavily loaded.

In this example, you must speed up the rasterization stage, either by drawing fewer pixels, or by
drawing pixels in a way that takes less time by turning off modes like texturing, blending, or depth-
buffering. In addition, because spare capacity is available in the per-polygon stage, you may be
able to increase the workload at that stage without degrading performance. For example, use a more
complex lighting model, or define geometries such that they remain the same size but look more
detailed because they are composed of a larger number of polygons.

16.1.2 Finding Bottlenecks in Your Application

The basic strategy for isolating bottlenecks is to measure the time it takes to execute part or all of
program and then change the code in ways that add or subtract work at a single point in the graphics
pipeline. If changing the amount of work at a given stage does not alter performance appreciably,
that stage is not the bottleneck. If there is a noticeable difference in performance, you’ve found a
bottleneck.

Application bottlenecks. To see if your application is the bottleneck, remove as much graphics
work as possible, while preserving the behavior of the application in terms of the number of instruc-
tions executed and the way memory is accessed. Often, changing just a few OpenGL calls is a suf-
ficient test. For example, replacing the vertex and normal calls glVertex3fv and glNormal3fv

with color subroutine calls (glColor3fv) preserves the CPU behavior while eliminating all draw-
ing and lighting work in the graphics pipeline. If making these changes does not significantly im-
prove performance, then your application is the bottleneck.

Geometry bottlenecks. Programs that create bottlenecks in the geometry (per-vertex) stage are
termed transform limited. To test for bottlenecks in geometry operations, change the program so that
the application code runs at the same speed and the same number of pixels are filled, but the geom-
etry work is reduced. For example, if you are using lighting, call glDisablewith a GL LIGHTING

argument to temporarily turn off lighting. If performance improves, your application has a geometry
bottleneck. For more information, see “Tuning the Geometry Subsystem”.
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Performance Parameter Pipeline Stage

Amount of data per polygon All stages
Application overhead Application
Transform rate and geometry mode setting Geometry subsystem
Total number of polygons in a frame Geometry and raster subsystem
Number of pixels filled Raster subsystem
Fill rate for the current mode settings Raster subsystem
Duration of screen and/or depth buffer clear Raster subsystem

Table 6: Factors Influencing Performance

On some of the faster hardware accelerators the bus between the CPU and the graphics hardware can
limit the number of polygons sent from the application to the geometry subsystems. If removing the
glColor3fv or glNormal3fv calls shows a speed improvement on such a system, the bus may be
the bottleneck.

Rasterization bottlenecks. Programs that cause bottlenecks at the rasterization (per-pixel) stage
in the pipeline are fill limited. To test for bottlenecks in rasterization operations, shrink objects or
make the window smaller to reduce the number of active pixels. This technique won’t work if your
program alters its behavior based on the sizes of objects or the size of the window. You can also
reduce the work done per pixel by turning off per-pixel operations such as depth-buffering, texturing,
or alpha blending. If any of these experiments speed up the program, it has a fill bottleneck. For more
information, see “Tuning the Raster Subsystem”.

Many programs draw a variety of things, each of which stress different parts of the system. De-
compose such a program into pieces and time each piece. You can then focus on tuning the slowest
pieces.

Since correct double buffering waits for the vertical retrace of the monitor before switching the
buffer, you will only be able to time your application in units of the monitor refresh rate (e.g. 1/60
of a second), unless you run your tests in single-buffered mode. Single buffered behavior can be
achieved with a double buffered visual by drawing to the front buffer. Screen clears and all the other
normal operations can remain the same.

Table 6 provides an overview of factors that may limit rendering performance and the part of the
pipeline to which they belong.

16.2 Optimizing Your Application Code

16.2.1 Optimize Cache and Memory Usage

On most systems, memory is structured in a hierarchy that contains a small amount of faster, more
expensive memory at the top (e.g., CPU registers) and a large amount of slower memory at the base
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(e.g., hard disks). As memory is referenced, it is automatically copied into higher levels of the hier-
archy, so data that is referenced most often migrates to the fastest memory locations.

The goal of machine designers and programmers is to maximize the chance of finding data as high
up in this memory hierarchy as possible. To achieve this goal, algorithms for maintaining the hi-
erarchy, embodied in the hardware and the operating system, assume that programs have locality
of reference in both time and space; that is, programs are much more likely to access a location re-
cently accessed or those nearby it, than elsewhere. Performance increases if you respect the degree
of locality required by each level in the memory hierarchy.

Minimizing Cache Misses. Most CPUs have first-level instruction and data caches on chip and
many have second-level caches that are bigger but somewhat slower. Memory accesses are much
faster if the data is already loaded into the first-level cache. When your program accesses data that
isn’t in one of the caches, a cache miss occurs. This causes a block of consecutively addressed words,
including the data that your program just accessed, to be loaded into the cache. Since cache misses
are costly, you should try to minimize them, using these tips:

� Keep frequently accessed data together. Store and access frequently used data in flat, sequen-
tial data structures and avoid pointer indirection. This way, the most frequently accessed data
remains in the first-level cache as much as possible.

� Access data sequentially. Each cache miss brings in a block of consecutively addressed words
of needed data. If you are accessing data sequentially then each cache miss will bring in n
words (where n is system dependent); if you are accessing only every nth word, then you will
constantly be bringing in unneeded data, degrading performance.

� Avoid simultaneously traversing several large buffers of data, such as an array of vertex co-
ordinates and an array of colors within a loop since there can be cache conflicts between the
buffers. Instead, pack the contents into one buffer whenever possible. If you are using vertex
arrays, try to use interleaved arrays. (For more information on vertex arrays see “Rendering
Geometry Efficiently”.)

Some framebuffers have cache-like behaviors as well. It is a good idea to group geometry so that
the drawing is done to one part of the screen at a time. Using triangle strips and polylines tends to
do this while simultaneously offering other performance advantages as well.

16.2.2 Store Data in a Format That is Efficient for Rendering

Putting some extra effort into generating a simpler database makes a significant difference when
traversing that data for display. A common tendency is to leave the data in a format that is good for
loading or generating the object, but non-optimal for actually displaying it. For peak performance,
do as much of the work as possible before rendering. This preprocessing is typically performed when
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an application can temporarily be non-interactive, such as at initialization time or when changing
from a modeling to a fast-rendering mode.

See “Rendering Geometry Efficiently” and “Rendering Images Efficiently” for tips on how to store
your geometric data and image data to make it more efficient for rendering.

Minimizing State Changes. Your program will almost always benefit if you reduce the number
of state changes. A good way to do this is to rearrange your scene data according to what state is
set and render primitives with the same state settings together. Mode changes should be ordered so
that the most expensive state changes occur least often. Typically it is expensive to change texture
binding, material parameters, fog parameters, texture filter modes, and the lightingmodel. However,
some experimentation will be required to determine which state settings are most expensive on your
target systems. For example, on systems that accelerate rasterization, it may not be that expensive
to change rasterization controls such as the depth test function and whether or not depth testing is
enabled. However, if you are running on a system with software rasterization, this may cause cached
graphics state, such as function pointers or automatically generated code, to be flushed and regen-
erated.

Your target OpenGL implementation may not optimize state changes that are redundant, so it’s also
important for your application to avoid setting the same state values twice, such as enabling lighting
when it is already enabled.

16.2.3 Per-Platform Tuning

Many of the performance tuning techniques discussed here (e.g., minimizing the number of state
changes and disabling features that aren’t required) are a good idea no matter what system you are
targeting. Other tuning techniques are specific to particular system. OpenGL implementations vary
widely, so inexpensive commands on one platform may be expensive on another. For example, be-
fore you sort your database based on state changes, you need to determine which state changes are
the most expensive for each system on which you are interested in running.

In addition, you may want to modify the behavior of your program depending on which modes are
fast. This is especially important for programs that must run faster than a particular frame rate. Fea-
tures may need to be disabled in order to maintain interactivity. For example, if a particular texture
mapping environment is slow on one of your target systems, you may need to disable texture map-
ping or change the texture environment whenever your program is running on that platform.

Before you can tune your program for each of the target platforms, you need to characterize those
platforms’ performance. This isn’t always straightforward. Often a particular device is able to ac-
celerate certain features, but not all at the same time. Thus it is important to test the performance
for combinations of features that you will be using. For example, a graphics adapter may accelerate
texture mapping but only for certain texture parameters and texture environment settings. Even if
all texture modes are accelerated, experimentation will be required to see how many textures you
can use at once without causing the adapter to page textures in and out of the local memory.
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An even more complicated situation arises if the graphics adapter has a shared pool of memory that
is allocated to several tasks. For example, the adapter may not have a framebuffer deep enough to
contain a depth buffer and a stencil buffer. In this case, the adapter would be able to accelerate both
depth buffering and stenciling but not at the same time. Or perhaps, depth buffering and stenciling
can both be accelerated but only for certain stencil buffer depths.

Typically, per-platform testing is done at initialization time. You should do some trial runs through
your data with different combinations of state settings and calculate the time it takes to render in
each case. You may want to save the results in a file so your program doesn’t have to do this each
time it starts up. You can find an example of how to measure the performance of particular OpenGL
operations and save the results using the isfast program on the web site.

16.3 Tuning the Geometry Subsystem

16.3.1 Use Expensive Modes Efficiently

OpenGL offers many features that create sophisticated effects with excellent performance. How-
ever, these features have some performance cost, compared to drawing the same scene without them.
Use these features only where their effects, performance, and quality are justified.

� Turn off features when they are not required. Once a feature has been turned on, it can slow
the transform rate even when it has no visible effect.

For example, the use of fog can slow the transform rate of polygons. When the polygons
are too close to show fog, or when the fog density is set to zero, turn off fog explicitly with
glDisable(GL FOG).

� Minimize mode changes. Be especially careful about expensive mode changes such as chang-
ing glDepthRange parameters and changing fog parameters when fog is enabled.

� For optimum performance of most software renderers and many hardware renderers as well,
use flat shading. This reduces the number of lighting computations from one per-vertex to one
per-primitive, and also reduces the amount of data that must be processed for each primitive.
Keep in mind that long triangle strips approach one vertex per primitive and may show little
benefit from flat shading.

16.3.2 Optimizing Transformations

OpenGL implementations are often able to optimize transform operations if the matrix type is
known. Follow these guidelines to achieve optimal transform rates:

� Use glLoadIdentity to initialize a matrix, rather than loading your own copy of the identity
matrix.
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� Use specific matrix calls such as glRotate, glTranslate, and glScale rather than com-
posing your own rotation, translation, or scale matrices and calling glLoadMatrix and/ or
glMultMatrix.

16.3.3 Optimizing Lighting Performance

OpenGL offers a large selection of lighting features. The penalties some features carry may vary
depending on the hardware you’re running on. Be prepared to experiment with the lighting config-
uration.

As a general rule, use the simplest possible lighting model: a single infinite light with an infinite
viewer. For some local effects, try replacing local lights with infinite lights and a local viewer. Keep
in mind, however, that not all rules listed here increase performance for all architectures.

Use the following settings for peak performance lighting:

� Single infinite light.

� Nonlocal viewing. Set GL LIGHT MODEL LOCAL VIEWER to GL FALSE in glLightModel

(the default).

� Single-sided lighting. Set GL LIGHT MODEL TWO SIDE to GL FALSE in glLightModel (the
default).

� If two-sided lighting is used, use the same material properties for front and back by specifying
GL FRONT AND BACK.

� Don’t use per-vertex color.

� Disable GL NORMALIZE. Since it is usually only necessary to renormalize when the model-
view matrix includes a scaling transformation, consider preprocessing the scene to eliminate
scaling.

In addition, follow these guidelines to achieve peak lighting performance:

� Avoid using multiple lights.

There may be a sharp drop in lighting performance when adding lights.

� Avoid using local lights.

Local lights are noticeably more expensive than infinite lights.

� Use positional light sources rather than spot lights.

If local lights must be used, a positional light is less expensive than a spot light.
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� Don’t change material parameters frequently.

Changing material parameters can be expensive. If you need to change the material parame-
ters many times per frame, consider rearranging the scene to minimize material changes. Also
consider using glColorMaterial if you need to change some material parameters often,
rather than using glMaterial to change parameters explicitly. Changing material parame-
ters inside a glBegin/glEnd sequence can be more expensive than changing them outside.

The following code fragment illustrates how to change ambient and diffuse material parame-
ters at every polygon or at every vertex:

glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
/* Draw triangles: */
glBegin(GL_TRIANGLES);
/* Set ambient and diffuse material parameters: */
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
...
glEnd();

� Avoid local viewer.

Local viewing: SettingGL LIGHT MODEL LOCAL VIEWER to GL TRUEwithglLightModel,
while using infinite lights only, reduces performance by a small amount. However, each ad-
ditional local light noticeably degrades the transform rate.

� Disable two-sided lighting.

Two-sided lighting illuminates both sides of a polygon. This is much faster than the alternative
of drawing polygons twice. However, using two-sided lighting can be significantly slower
than one-sided lighting for a single rendering of an object.

� Disable GL NORMALIZE.

If possible, provide unit-length normals and don’t call glScale to avoid the overhead of
GL NORMALIZE. On some OpenGL implementations it may be faster to simply rescale the nor-
mal, instead of renormalizing it, when the modelview matrix contains a uniform scale matrix.
The normal rescaling functionality in OpenGL 1.2, or the EXT rescale normal extension
for older OpenGL versions, can be used to improve the performance of this case. If it is sup-
ported, you can enable GL RESCALE NORMAL EXT and the normal will be rescaled making re-
normalization unnecessary.

� Avoid changing the GL SHININESS material parameter if possible.

Some portions of the lighting calculation may be approximated with a table, and changing the
GL SHININESS value may force those tables to be regenerated.
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16.3.4 Advanced Geometry-Limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited drawing. Follow these
guidelines to draw objects with complex surface characteristics:

� Use texture to replace complex geometry.

Texture mapping can be used instead of extra polygons to add detail to a geometric object.
This can greatly simplify geometry, resulting in a net speed increase and an improved picture,
as long as it does not cause the program to become fill-limited. However, since many hardware
implementations are slower to fill textured pixels than non-textured pixels, large areas to be
covered with a simple texture can often be drawn faster if drawn as geometry.

� Use textured polygons as single-polygon billboards.

Billboards are polygons that are fixed at a point and rotated about an axis, or about a point, so
that the polygon always faces the viewer. Billboards can be used for distant objects to save
geometry.

� Use glAlphaFunc in conjunction with one or more textures to give the effect of rather com-
plex geometry on a single polygon.

Consider drawing an image of a complex object by texturing it onto a single polygon. Set
alpha values to zero in the texture outside the image of the object. (The edges of the object
can be antialiased by using alpha values between zero and one.) Orient the polygon to face the
viewer. To prevent pixels with zero alpha values in the textured polygon from being drawn,
call glAlphaFunc(GL NOTEQUAL, 0.0).

This effect is often used to create objects like trees that have complex edges or many holes
through which the background should be visible (or both).

� Eliminate objects or polygons that will be out of sight or too small to see.

16.4 Tuning the Raster Subsystem

An explosionof both data and operations is required to rasterize a polygon as individualpixels. Typi-
cally, the operations include depth comparison, Gouraud shading, color blending, logical operations,
texture mapping, and possibly antialiasing. The following techniques can improve performance for
a fill-limited applications.

16.4.1 Using Backface/Frontface Removal

To reduce fill-limited drawing, use backface and frontface removal. For example, if you are drawing
a sphere, half of its polygons are backfacing at any given time. Backface and frontface removal is
done after transformation calculations but before per-fragment operations. This means that backface
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removal may make transform-limited polygons somewhat slower, but make fill-limited polygons
significantly faster. You can turn on backface removal when you are drawing an object with many
backfacing polygons, then turn it off again when drawing is completed. Back face removal has the
added advantage of eliminating x-fighting problems on objects with sharp edges.

16.4.2 Minimizing Per-Pixel Calculations

Another way to improve fill-limited drawing is to reduce the work required to render fragments.

Avoid Unnecessary Per-Fragment Operations. Turn off per-fragment operations for objects that
do not require them, and structure the drawing process to minimize their use without causing exces-
sive toggling of modes. For example, if you are using alpha blending to draw some partially trans-
parent objects, make sure that you disable blending when drawing the opaque objects. Also, if you
enable alpha test to render textures with holes through which the background can be seen, be sure to
disable alpha testing when rendering textures or objects with no holes. It also helps to sort primitives
so that primitives that require alpha blending or alpha test to be enabled, are drawn at the same time
(and hopefully after all non-transparent primitives).

Use Simple Fill Algorithms for Large Polygons. If you are drawing very large polygons such
as “backgrounds”, your performance will be improved if you use simple fill algorithms. For ex-
ample, you should set glShadeModel to GL FLAT if smooth shading isn’t required. Also, disable
per-fragment operations such as depth buffering, if possible. If you need to texture the background
polygons, consider using GL REPLACE for the texture environment. Keep in mind that on many ar-
chitectures, a clear operation can be significantly faster than drawing large polygons.

Use the Depth Buffer Efficiently. Any rendering operation can become fill-limited for large poly-
gons. Clever structuring of drawing can eliminate or minimize per-pixel depth buffering operations.
For example, if large backgrounds are drawn first, they do not need to be depth buffered. It is better
to disable depth buffering for the backgrounds and then enable it for other objects where it is needed.

Games and flight simulators often use this technique. The sky and ground are drawn with depth
buffering disabled, then the polygons lying flat on the ground (runway and grid) are drawn without
suffering a performance penalty. Finally, depth buffering is enabled for drawing the mountains and
airplanes.

There are many other special cases in which depth buffering might not be required. For example,
terrain, ocean waves, and 3D function plots are often represented as height fields (X-Y grids with
one height value at each lattice point). It’s straightforward to draw height fields in back-to-front or-
der by determining which edge of the field is furthest away from the viewer, then drawing strips of
triangles or quadrilaterals parallel to that starting edge and working forward. The entire height field
can be drawn without depth testing provided it doesn’t intersect any piece of previously-drawn ge-
ometry. Depth values need not be written at all, unless subsequently-drawndepth buffered geometry
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might intersect the height field; in that case, depth values for the height field should be written, but
the depth test can be avoided by calling glDepthFunc(GL ALWAYS).

16.4.3 Optimizing Texture Mapping

Follow these guidelines when rendering textured objects:

� Avoid frequent switching between texture maps. If you have many small textures, consider
combining them into a single larger, mosaiced texture. Rather than switching to a new texture
before drawing a textured polygon choose texture coordinates that select the appropriate small
texture tile within the large texture.

� Use texture objects to encapsulate texture data. Place all the glTexImage calls (including
mipmaps) required to completely specify a texture and the associatedglTexParameter calls
(which set texture properties) into a texture object and bind this texture object to the rendering
context. This allows the implementation to compile the texture into a format that is optimal
for rendering and, if the system accelerates texturing, to efficiently manage textures on the
graphics adapter.

� Try to keep texture references localized between polygons. Some implementations use
caching to optimize texture mapped rendering. Keeping the texture references localized when
sending a batch of polygons to OpenGL can reduce the cache misses.

� If possible, use glTexSubImage*D to replace all or part of an existing texture image rather
than the more costly operations of deleting and creating an entire new image.

� Call glAreTexturesResident to make sure that all your textures are resident during ren-
dering. (On systems where texturing is done on the host, glAreTexturesResident always
returns GL TRUE.) If necessary, reduce the size or internal format resolution of your textures
until they all fit into memory. If such a reduction creates intolerably fuzzy textured objects,
you may use higher resolutions and specify which textures are important to keep in texture
memory by using glPrioritizeTextures.

� Use smaller texel sizes. There is often a tradeoff between texel size and the speed of texture
filtering, with smaller texel sizes typically performing better. Applications should try to mini-
mize the width of a texel internal format to something like GL RGBA4 or GL RGB5 A1 for color
textures and 8 bit components for luminance or luminance alpha textures unless the applica-
tion requires the extra color resolution.

� Avoid expensive texture filter modes. On some systems, trilinear filtering is much more ex-
pensive than point sampling or bilinear filtering.
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16.4.4 Clearing the Color and Depth Buffers Simultaneously

The most basic per-frame operations are clearing the color and depth buffers. On some systems,
there are optimizations for common special cases of these operations.

Whenever you need to clear both the color and depth buffers, don’t clear each buffer independently.
Instead use glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT).

Also, be sure to disable dithering before clearing.

16.5 Rendering Geometry Efficiently

16.5.1 Using Peak-Performance Primitives

This section describes how to draw geometry with optimal primitives. Consider these guidelines to
optimize drawing:

� Use connected primitives (line strips, triangle strips, triangle fans, and quad strips).

Connected primitives are desirable because they reduce the amount of data both stored and
transferred, and the amount of per-polygon or per-line work done by the OpenGL. Be sure
to put as many vertices as possible in a glBegin/ glEnd sequence to amortize the cost of a
glBegin and glEnd.

� Avoid using glBegin(GL POLYGON).

When rendering independent triangles, use glBegin(GL TRIANGLES) instead of
glBegin(GL POLYGON). Also, when rendering independent quadrilaterals, use
glBegin(GL QUADS).

� Batch primitives between glBegin and glEnd.

Use a single call to glBegin(GL TRIANGLES) to draw multiple independent triangles
rather than calling glBegin(GL TRIANGLES) multiple times. Also, use a single call to
glBegin(GL QUADS) to draw multiple independent quadrilaterals, and a single call to
glBegin(GL LINES) to draw multiple independent line segments.

� Use “well-behaved” polygons–convex and planar, with only three or four vertices.

Concave and self-intersecting polygons must be tessellated by the GLU library before they
can be drawn, and are therefore prohibitively expensive. Nonplanar polygons and polygons
with large numbers of vertices are more likely to exhibit shading artifacts.

If your database has polygons that are not well-behaved, perform an initial one-time pass over
the database to transform the troublemakers into well- behaved polygons and use the new
database for rendering. You can store the results in OpenGL display lists. Using connected
primitives results in additional gains.
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� Minimize the data sent per vertex.

Polygon rates can be affected directly by the number of normals or colors sent per polygon.
Setting a color or normal per vertex, regardless of the glShadeModel used, may be slower
than setting only a color per polygon, because of the time spent sending the extra data and
resetting the current color. The number of normals and colors per polygon also directly affects
the size of a display list containing the object.

� Group like primitives and minimize state changes to reduce pipeline revalidation.

� Keep primitive data consistent.

Try to send the same type of data for each vertex of a primitive. In other words, if the first
vertex has an associated color or normal, the primitive can often be more efficiently processed
if all the following vertices also have a color or normal.

� For wireframe objects, GL LINES, GL LINE STRIP andGL LINE LOOP are likely to be signif-
icantly faster than drawing polygons as lines using glPolygonMode(GL FRONT AND BACK,

GL LINE). First, the lines only are drawn once rather than twice. Second, lines representing
the polygon edges of a closed object can easily be turned into long polylines which take up
less space and are drawn more efficiently than individual lines.

16.5.2 Using Vertex Arrays

Vertex arrays are available in OpenGL 1.1. They offer the following benefits:

� The OpenGL implementation can take advantage of uniform data formats.

� The glInterleavedArrays call lets you specify packed vertex data easily. Packed vertex
formats are typically faster for OpenGL to process.

� The glDrawArrays call reduces subroutine call overhead.

� The glDrawElements call reduces subroutine call overhead and also reduces per-vertex cal-
culations because vertices may be reused. Be aware that using indexed vertices may introduce
other problems with cache misses if the access pattern corresponding to the indexes is irreg-
ular enough. Indexed arrays are often most useful with implementations which perform the
vertex processing on the CPU and may tend to degrade the performance of systems which
have fast geometry processing in the acclerator if they become bottlenecked by the memory
subsystem.

� Use the EXT compiled vertex array extension if it is available. This extension allows
you to lock down the portions of the arrays that you are using. This way the OpenGL im-
plementation can DMA the arrays to the graphics adapter or reuse per-vertex calculations for
vertices that are shared by adjacent primitives.
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If you use glBegin and glEnd instead of glDrawArrays or glDrawElements calls, put as many
vertices as possible between the glBegin and the glEnd calls.

16.5.3 Using Display Lists

You can often improve performance by storing frequently used commands in a display list. If you
plan to redraw the same geometry multiple times, or if you have a set of state changes that need to
be applied multiple times, consider using display lists. Display lists allow you to define the geome-
try and/or state changes once and execute them multiple times. Some graphics hardware may store
display lists in dedicated memory or may store the data in an optimized form for rendering.

The biggest drawback of using display lists is data expansion. The display list contains an entire
copy of all your data plus additional data for each command and for each list. As a result, tuning
for display lists focuses mainly on reducing storage requirements. Performance improves if the data
that is being traversed fits in the cache. Follow these rules to optimize display lists:

� Call glDeleteLists to delete display lists that are no longer needed. This frees storage
space used by the deleted display lists and expedites the creation of new display lists.

� Avoid duplication of display lists. For example, if you have a scene with 100 spheres of dif-
ferent sizes and materials, generate one display list that is a unit sphere centered about the
origin. Then reference the sphere many times, setting the appropriate material properties and
transforms each time.

� Make the display lists as flat as possible, but be sure not to exceed the cache size. Avoid using
an excessive hierarchy with many invocations to glCallList. Each glCallList invoca-
tion requires the OpenGL implementation to do some work (e.g., a table lookup) to find the
designated display list. A flat display list requires less memory and yields simpler and faster
traversal. It also improves cache coherency.

On the other hand, excessive flattening increases the size. For example, if you’re drawing
a car with four wheels, having a hierarchy with four pointers from the body to one wheel is
preferable to a flat structure with one body and four wheels.

� Avoid creating very small display lists. Very small lists may not perform well since there is
some overhead when executing a list. Also, it is often inefficient to split primitive definitions
across display lists.

� If appropriate, store state settings with geometry; it may improve performance.

For example, suppose you want to apply a transformation to some geometric objects and then
draw the result. If the geometric objects are to be transformed in the same way each time, it
is better to store the matrix in the display list.
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16.5.4 Balancing Polygon Size and Pixel Operations

The optimum size of polygons depends on the other operations going on in the pipeline:

� If the polygons are too large for the fill-rate to keep up with the rest of the pipeline, the ap-
plication is fill-rate limited. Smaller polygons balance the pipeline and increase the polygon
rate, allowing finer looking details and better lighting without changing the overall time to
draw the object.

� If the polygons are too small for the rest of the pipeline to keep up with filling, then the appli-
cation is transform limited. Larger and fewer polygons, or fewer vertices, balance the pipeline
and increase the fill rate allowing the object to be drawn faster.

16.6 Rendering Images Efficiently

To improve performance when drawing pixel rectangles, follow these guidelines:

� Disable all per-fragment operations.

� Disable texturing and fog.

� Define images in the native hardware format so type conversion is not necessary.

� Know where the bottleneck is.

Similar to polygon drawing, there can be a pixel-drawing bottleneck due to overload in host
bandwidth, processing, or rasterizing. When all modes are off, the path is most likely limited
by host bandwidth, and a wise choice of host pixel format and type pays off tremendously. For
this reason, using type GL UNSIGNED BYTE, for the image components is sometimes faster.

Zooming up pixels may create a raster bottleneck.

� A big pixel rectangle has a higher throughput (that is, pixels per second) than a small rectangle.
Because the imaging pipeline is tuned to trade off a relatively large setup time with a high
throughput, a large rectangle amortizes the setup cost over many pixels.

16.7 Tuning Animation

Tuning animation requires attention to some factors not relevant in other types of applications. This
section discusses those factors.
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16.7.1 Factors Contributing to Animation Speed

The smoothness of an animation depends on its frame rate. The more frames rendered per second,
the smoother the motion appears.

Smooth animation also requires double buffering. In double buffering, one framebuffer holds the
current frame, which is scanned out to the monitor by video hardware, while the rendering hardware
is drawing into a second buffer that is not visible. When the new framebuffer is ready to be displayed,
the system swaps the buffers. The system must wait until the next vertical retrace period between
raster scans to swap the buffers, so that each raster scan displays an entire stable frame, rather than
parts of two or more frames.

Frame rates must be integral multiples of the screen refresh time, which is 16.7 msec (milliseconds)
for a 60-Hz monitor. If the draw time for a frame is slightly longer than the time for n raster scans,
the system waits until the n+1st vertical retrace before swapping buffers and allowing drawing to
continue, so the total frame time is (n+1)*16.7 msec. It may be very hard to make the final transition
from one half of the display subsystem’s refresh time to full speed, because you will need to speed
up your program by a factor of at least two.

To summarize: A change in the time spent rendering a frame when double buffering has no visible
effect unless it changes the total time to a different integer multiple of the screen refresh time.

If you want an observable performance increase, you must reduce the rendering time enough to take
a smaller number of 16.7 msec raster scans. Alternatively, if performance is acceptable, you can
add work without reducing performance, as long as the rendering time does not exceed the current
multiple of the raster scan time.

To help monitor timing improvements, turn off double buffering by always drawing to the front
buffer. If you don’t, it’s difficult to know if you’re near a 16.7 msec boundary.

16.7.2 Optimizing Frame Rate Performance

The most important aid for optimizing frame rate performance is taking timing measurements in
single-buffer mode only. For more detailed information, see “Taking Timing Measurements”.

In addition, follow these guidelines to optimize frame rate performance:

� Reduce drawing time to a lower multiple of the screen refresh time.

This is the only way to produce an observable performance increase.

� Perform non-graphics computation after swapping buffers.

If an implementation allows control to return to a program while waiting to swap the color
buffers, the program is free to do non-graphics computation. Therefore, the procedure for
rendering a frame could be: call swapbuffers immediately after sending the last graphics call
for the current frame, perform computation needed for the next frame, then execute OpenGL
calls for the next frame.
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� Do non-drawing work after a screen clear.

Clearing a full screen can take time. If you make additional drawing calls immediately after a
screen clear, you may fill up the graphics pipeline and force the program to stall. Instead, do
some non-drawing work after the clear.

If you are rotating or otherwise moving an object at a fixed speed, it is wise to base the transformation
on the amount of time spent rendering the frame rather than a fixed amount per frame, so that the
motion doesn’t speed up or slow down as scene complexity or viewing angle changes.

16.8 Taking Timing Measurements

Timing, or benchmarking, parts of your program is an important part of tuning. It helps you deter-
mine which changes to your code have a noticeable effect on the speed of your application.

To achieve performance that is demonstrably close to the best the hardware can achieve, you can
first follow the more general tuning tips provided here, but you then need to apply a rigorous and
systematic analysis.

16.8.1 Benchmarking Basics

A detailed analysis involves examining what your program is asking the system to do and then cal-
culating how long that should take, based on the known performance characteristics of the hardware.
Compare this calculation of expected performance with the performance actually observed and con-
tinue to apply the tuning techniques until the two match more closely. At this point, you have a de-
tailed accounting of how your program spends its time, and you are in a strong position both to tune
further and to make appropriate decisions considering the speed-versus-quality trade-off.

The following parameters determine the performance of most applications:

� Total number of polygons in a frame

� Transform rate for the given polygon type and mode settings

� Number of pixels filled

� Fill rate for the given mode settings

� Duration of color and depth buffer clear

� Duration of buffer swap

� Length of time spent in application overhead

� Number of attribute changes and time per change
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16.8.2 Achieving Accurate Timing Measurements

Consider these guidelines to get accurate timing measurements:

� Take measurements on a quiet system. Verify that no unusual activity is taking place on your
system while you take timing measurements. Terminate other applications. For example,
don’t have a clock or a network application like sendmail running while you are benchmark-
ing.

� Choose timing trials that are not limited by the clock resolution.

Use a high-resolution clock and make measurements over a period of time that’s at least one
hundred times the clock resolution. A good rule of thumb is to benchmark something that
takes at least two seconds so that the uncertainty contributed by the clock reading is less than
one percent of the total error. To measure something that’s faster, write a loop to execute the
test code repeatedly.

� Benchmark static frames.

Verify that the code you are timing behaves identically for each frame of a given timing trial.
If the scene changes, the current bottleneck in the graphics pipeline may change, making your
timing measurements meaningless. For example, if you are benchmarking the drawing of a
rotating airplane, choose a single frame and draw it repeatedly, instead of letting the airplane
rotate, or make sure the rotation covers the same angles every time. Once a single frame has
been analyzed and tuned, look at frames that stress the graphics pipeline in different ways,
then analyze and tune them individually.

� Compare multiple trials.

Run your program multiple times and try to understand variance in the trials. Variance may
be due to other programs running, system activity, prior memory placement, or other factors.

� Call glFinish before reading the clock at the start and at the end of the time trial.

This is important if you are using a machine with hardware acceleration because the graphics
commands are put into a hardware queue in the graphics subsystem, to be processed as soon
as the graphics pipeline is ready. The CPU can immediately do other work, including issuing
more graphics commands until the queue fills up.

When benchmarking a piece of graphics code, you must include in your measurements the
time it takes to process all the work left in the queue after the last graphics call. Call glFinish
at the end of your timing trial, just before sampling the clock. Also call glFinish before
sampling the clock and starting the trial, to ensure no graphics calls remain in the graphics
queue ahead of the process you are timing.
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16.8.3 Achieving Accurate Benchmarking Results

To benchmark performance for a particular code fragment, follow these steps:

� Determine how many polygons are being drawn and estimate how many pixels they cover
on the screen. Have your program count the polygons when you read in the database. To
determine the number of pixels filled, start by making a visual estimate. Be sure to include
surfaces that are hidden behind other surfaces, and notice whether or not backface elimination
is enabled. For greater accuracy, use feedback mode and calculate the actual number of pixels
filled or use the stencil buffer technique described in Section 14.3.

� Determine the transform and fill rates on the target system for the mode settings you are using.
Refer to the product literature for the target system to determine some transform and fill rates.
Determine others by writing and running small benchmarks.

� Divide the number of polygons drawn by the transform rate to get the time spent on per-
polygon operations.

� Divide the number of pixels filled by the fill rate to get the time spent on per-pixel operations.

� Measure the time spent in the application. To determine time spent executing instructions in
the application, stub out the OpenGL calls and benchmark your application.

This process takes some effort to complete. In practice, it’s best to make a quick start by making
some assumptions, then refine your understanding as you tune and experiment. Ultimately, you need
to experiment with different rendering techniques and do repeated benchmarks, especially when the
unexpected happens.
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17 Portability Considerations

Think about portability from the beginning of the development cycle. Although this is a standard
mantra for software development, it’s important that OpenGL application developers in particular
be aware of the flexibility of OpenGL and provide a way for their program to gracefully fall back
onto an alternative algorithm or exit when a required implementation characteristic is not available.

17.1 General Concerns

Your OpenGL application should be at least a little flexible about the features it has available. A
common goal is an application which can run well on almost all OpenGL platforms, and can also
use the exceptional features on some platforms for high-speed and/or high-quality rendering.

It is unrealistic to expect an application developer to provide code that determines the best possible
combination of modes and techniques for a given piece of hardware given both available features
and those features’ performance. However, a reasonable amount of time spent checking implemen-
tation characteristics at runtime can allow an application to better leverage an implementation with
acceleration.

For example, one extreme is to develop an application that does not use the stencil buffer because
the developer does not know if it will be available. The other extreme is to provide a fully general
algorithm that uses 0, 1, or however many bits are available in the stencil buffer. A middle ground
that maximizes portability, development time, and utilization of accelerated hardware might be to
provide an algorithm that uses no stencil and an algorithm that uses 1 stencil bit and chooses between
them at runtime based on querying the implementation.

17.1.1 Handle Runtime Feature Availability Carefully

OpenGL implementations vary widely in their support of buffer sizes and the availability of some
buffers, such as stencil and the alpha channel, especially among PC hardware. Be prepared to pro-
ceed with a limited number of bits per component, and be prepared to drop back on an alternative
algorithm if you need but cannot get, for example, the accumulation buffer and the stencil buffer.

Implementations may choose to provide some extensions but not others. Check at runtime for the
extensions available to you and then choose whether the implementation has the capability for a
more interesting algorithm, such as 3D texturing for volume rendering (Section 13). You can check
for an extension by checking the result of glGetString(GL EXTENSIONS) for the substring cor-
responding to the extension.

When writing programs which automatically configure to the available extensions the program may
use the dynamic linking capabilities of the underlying operating system to acquire addresses of the
functions implementing the new commands. On most UNIX systems the dlopen, dlsym, and
dlclose commands may be used to manipulate dynamic libraries and query functions. On Win-
dows systems the commands LoadLibrary, GetProcAddress, and FreeLibrary provide sim-
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ilar functionality. Portable programs should use dynamic binding rather than relying on linking ex-
plicitly with extension function symbols.

Other capabilities to check include:

� The size available for textures, convolution kernels, color tables, and histograms.

� The precision of the accumulation buffer.

� The availability of specific resolutions of texture-internal formats.

� Whether hints are honored (glHint).

� The maximum recursion depth allowed during display list traversal.

� The maximum stack depth available for different OpenGL transforms.

� The maximum number of lights available.

Textures and other state elements that provide PROXY targets can test for the success of a state el-
ement binding without changing the actual values for that piece of state. You can identify the size
available for one object by attempting to bind a very large object, then steadily reduce the size re-
quested until the proxy parameters are accepted. A proxy binding that fails sets the state values for
the proxy target to 0, while one that succeeds sets the proxy values to the parameters provided in the
proxy call.

Note that the convolution extension doesn’t provide a PROXY target but you can
directly query the maximum width and height of the convolution kernel through
glGetConvolutionParameter*EXT using GL MAX CONVOLUTION WIDTH EXT and
GL MAX CONVOLUTION HEIGHT EXT.

17.1.2 Extensions and OpenGL Versioning

Some current OpenGL features were introduced first as extensions and eventually incorporated into
the OpenGL core in a later version. For example, the glPolygonOffset command is both an
extension and a part of OpenGL 1.1. Usually when an extension is incorporated into an OpenGL
version, the extension suffixes from the commands and enumerants are removed and functionality
is unchanged from the extension specification. In rare cases, the behavior diverges from the orig-
inal extension when implementation experience suggests useful improvements. For example, the
EXT polygon offset, EXT vertex array and EXT blend logicop extensions changed a lit-
tle when they were added to OpenGL 1.1, whereas the EXT texture3D, EXT texture lod, ex-
tensions remained essentially the same when their functionality was incorporated into OpenGL 1.2.

Some implementations of new versions of OpenGL may continue to support both the extension as
well as the new version of the functionality. For cases where the core functionality behavior has
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diverged from the extension specification, the implemented extension behavior should still be com-
patible with the original extension specification.

While it is best to try to write applications to the latest version of OpenGL, sometimes it is desir-
able to support new and older versions of OpenGL as well as extensions within the same application
in order to maximize the number of platforms the application will run on. To achieve this, the ap-
plication must provide both compile-time and run-time guards to test for the existence of needed
functionality for both the OpenGL version numbers and extension availability. At compile-time the
OpenGL version can be tested with #ifdef GL VERSION 1 1 and #ifdef GL VERSION 1 2 and
the run-time version can be tested with glGetString(GL VERSION). The first few characters of
the version string will contain the current version number: 1.0, 1.1, or 1.2.

17.1.3 Source Compatibility Across OpenGL SDKs

Whether an implementation of OpenGL provides an extension or subset is determinable at runtime.
However, the software development kit, including the link library and the headers, may not define
some of the symbols or tokens used by an extension. If your application must be portable in source
code form, it’s important to place #ifdef/#endif guards around code that uses extensions.

For example, the preprocessor token GL EXT texture3D is defined in compile environments that
export the 3D texture extension command and enumerants. Even if the implementation supports 3D
texturing, you will not be able to compile or link your program if you use the symbols.

Keep this difference between compile-time and run-time availability in mind when designing both
your source distribution and your application binary.

17.1.4 Characterize Platform Performance

Section 16 briefly discusses characterizing the performance of your application.

One of OpenGL’s goals is to allow a program using the base API to “just work,” no matter where
it runs or is compiled. An implementation cannot be called OpenGL if it does not pass an exhaus-
tive set of conformance tests that guarantee all the base features of OpenGL are available and are
mathematically correct. However, that guarantee says nothing about the performance an application
can expect. It will probably be necessary to check at run time some of the combinations of modes
and states your application could use, and decide at that time which combination provides enough
performance to be desirable.

Some typical features to check for performance availability include:

� Blending

� GL LINEAR and GL * MIPMAP * filters for texturing

� RGBA texture modes as opposed to color index textures
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� Display lists if application data is largely static

� Vertex arrays and interleaved vertex arrays, if appropriate

� Convolution and other imaging extensions

� 3D textures

Example libraries pdb and isfast implement this notion of characterizing mode combinations.
These libraries can be found by searching the OpenGL web sitewww.opengl.org and can be down-
loaded at the time of writing from http://reality.sgi.com/gold/OpenGL/isfast.html.

17.2 Windows versus UNIX

When writing samples and prototype code and even production applications, keep in mind that dif-
ferent UNIX implementations and Windows 95/NT have different APIs, provide different system
services, and can even provide substantially different development environments (such as contents
of include files, location of libraries, etc.). Here are a few things to look out for when writing a
program under UNIX with the intent to port to Windows:

� Avoid the identifiers near and far, which are reserved words in most Windows compilers.
Common replacements are nnear and ffar.

� The math constant M PI isn’t provided by at least one Win32 development environment. You
may find adding the following code after #include <math.h> to be helpful:

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

� Do not #include <unistd.h>, as it contains UNIX-specific definitions. At the very least,
check with your Windows environment before using functions or constants from unistd.

� The constants EXIT SUCCESS and EXIT FAILURE may not be available. You could include
code to define these constants similar to the above code for M PI.

� Single-precision versions of trigonometric functions such as sinf and cosf while desirable
for performance may not be available on all platforms.

A more in-depth list of portability considerations is available in the file Portability.txt in the
GLUT 3.6 distribution. GLUT is described in more detail in Section 19.
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17.3 3D Texture Portability

3D Textures aren’t currently a core feature in OpenGL, but can be accessed as an extension. It is
an EXT extension, indicating more than one vendor supports it. Even when 3D texture maps are
supported, the application writer must be careful to consider the level of support present in the ap-
plication. Texture map size may be limited, and 3D mipmapping is often not supported. Available
internal and external formats and types may be restricted. All of these restrictions can be queried at
run time, and with care, portable code can be produced.

Consider writing your 3D texture applications so that they revert to a 2D texturing mode if 3D tex-
tures aren’t supported. See Section 13 for an example of a 3D texture algorithm that will work, with
lower quality, using 2D textures.
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18 List of Demo Programs

This list shows the demonstration programs available on the Programming with OpenGL: Advanced
Rendering web site at:

http://www.sgi.com/Technology/OpenGL/advanced sig97.html

The programs are grouped by the sections in which they’re discussed. Each line gives a short de-
scription of the program.

Modeling

� tvertex.c - show problems caused by t-vertices

� quad decomp.c - shows example of quadrilateral decomposition

� tess.c - shows examples of sphere tessellation

� cap.c - shows how to cap the region exposed by a clipping plane

� csg.c - shows how to render CSG solids with the stencil buffer

� gen normals.c - shows how to generate correct normals

Geometry and Transformations

� depth.c - compare screen and eye space z

� decal.c - shows how to decal coplanar polygons with the stencil buffer

� hiddenline.c - shows how to render wireframe objects with hidden lines

� stereo.c - shows how to generate stereo image pairs

� tile.c - shows how to tile images

� raster.c - shows how to move the current raster position off-screen

� frustum z.c - shows an object and its place in view frustum

� inaccuracies.c - provides examples of precision inaccuracy problems

� hidden.c - shows how polygon offset works with depth range

� stereoview.c - shows how to do stereo viewing right

� clipwide.c - shows how to avoid clipping wide lines and points

� distort.c - shows how to correct projection distortion using texture
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Texture Mapping

� mipmap lines.c - shows different mipmap generation filters

� genmipmap.c - shows how to use the OpenGL pipeline to generate mipmaps

� textile.c - shows how to tile textures

� texpage.c - shows how to page textures

� mippage.c - shows how to page a mipmapped texture

� textrim.c - shows how to trim textures

� textext.c - shows how draw characters with texture maps

� terrain.c - shows how to do elevation color coding and metrics

� contour.c = shows hot to do contouring

� projtex.c - shows how to use projective textures

� cyl billboard.c - shows how to do cylindrical billboards

� sph billboard.c - shows how to do spherical billboards

� warp.c - shows how to warp images with textures

� noise.c - shows how to make a filtered noise function

� spectral.c - shows how to make a spectral function from filtered noise

� spotnoise.c - shows how to use spot noise

� tex3dsolid.c - renders a solid image with a 3d texture

� tex3dfunc.c - creates a 2d texture that varies with r value

� makedetail.c - shows how to create a detail texture

� detail.c - shows how to use a detail texture

� aniso.c - shows how to create and use anisotropic textures

� cutaway.c - shows how to create a gradual cutaway
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Blending

� comp.c - shows Porter/Duff compositing

� transp.c - shows how to draw transparent objects

� imgproc.c - shows image processing operations

� transparent.c - shows transparency, ordering, culling interactions

Antialiasing

� lineaa.c - shows how to draw antialiased lines

� texaa.c - shows how to antialias with texture

� accumaa.c - shows how to antialias a scene with the accumulation buffer

� aalines.c - more on antialiased lines

� aasolid.c - shows how to antialias solids

Lighting

� envphong.c - shows how to draw phong highlights with environment mapping

� lightmap2d.c - shows how to do 2D texture lightmaps

� lightmap3d.c - shows how to do 3D texture lightmaps

� bumpmap.c - shows how to bumpmap with texture

� fresnel.c - shows an example of how to render Fresnel reflections

Scene Realism

� motionblur.c - shows how to do motion blur with the accumulation buffer

� field.c - shows how to achieve depth of field effects with the accumulation buffer

� genspheremap.c - shows how to generate sphere maps

� mirror.c - shows how to do planar mirror reflections

� projshadow.c - shows how to render projection shadows

� shadowvol.c - shows how to render shadows with shadow volumes

� shadowmap.c - shows how to render shadows with shadow maps
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� softshadow.c - shows how to do soft shadows with the accumulation buffer by jittering light
sources

� softshadow2.c - shows how to do soft shadows by creating lighting textures with the accumu-
lation buffer

Transparency

� screendoor.c - shows how to do screen-door transparency

� alphablend.c - shows how to do transparency with alpha blending

Natural Phenomena

� smoke.c - shows how to render smoke

� smoke3d.c - shows how to render 3D smoke using volumetric techniques

� vapor.c - shows how render a vapor trail

� texmovie.c - shows how to create a texture movie

� fire.c - shows how to animate fire

� explode.c - shows how to create an explosion

� dscloud.c - create a cloud image using diamond-square technique

� cloud.c - shows how to render a cloud layer

� cloudlayer.c - shows how to create ground fog

� cloud3d.c - shows how to render a 3D cloud using volumetric techniques

� fire.c - shows how to render fire using movie loops

� water.c - shows an example water rendering technique

� bubble.c - shows an example of how to render a bubble

� underwater.c - shows an exmple of rendering an underwater scene

� lightpoint.c - shows how to render point light sources

� particle.c - shows how to create particle systems

� snow.c - shows an example of rendering falling snow

� rain.c - shows an example of rendering falling rain
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Image Processing

� convolve.c - shows how to convolve with the accumulation buffer

� cmatrix - shows how to modify colors with a color matrix

Volume Visualization with Texture

� vol2dtex.c - volume visualization with 2D textures

� vol3dtex.c - volume visualization with 3D textures

Using the Stencil Buffer

� dissolve.c - shows how to do dissolves with the stencil buffer

� zcomposite.c - shows how to composite depth-buffered images with the stencil buffer

Line Rendering Techniques

� haloed.c - shows how to draw haloed lines using the depth buffer

� silhouette.c - shows how to draw the silhouette edge of an object with the stencil buffer

� solid to line.c - shows how to draw solid objects as lines

� overlap.c - shows how to draw wide, smoothed line loops with rounded edges
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19 GLUT, the OpenGL Utility Toolkit

The example programs for these notes use ”GLUT”, a utility toolkit created by Mark Kilgard and
contributed to widely by the graphics community.

GLUT is easy to use and simple, so it may appeal to beginning OpenGL users. OpenGL users of
all experience levels can use GLUT to rapidly prototype an algorithm using OpenGL and not spend
time writing the code to configure an X Window, setting up a Win32 color map, etc.

The GLUT library provides a number of convenience functions for handling window systems and
input devices. Applications can request an OpenGL visual using a set of attributes and manipulate
the window that provides that visual through a window-system-independent API.

GLUT provides pop-up menu support and device handling support for a variety of devices such as
keyboard, mouse, and trackball, and invokes user-supplied callbacks to handle window events such
as exposure and resizing.

GLUT also offers utility routines for drawing several geometric shapes as solids or wireframe mod-
els, including spheres, tori, and teapots.

Text rendering is also simplified by GLUT. Several bitmap and stroke fonts are provided with the
GLUT distribution.

GLUT is available on most UNIX platforms, MacOS, and Windows
NT/95, and other operating systems. It can be downloaded from
http://www.opengl.org/Developers/Documentation/glut.html.

228



Programming with OpenGL: Advanced Rendering

20 Equations

This section describes some important formula and matrices referred to in the text.

20.1 Projection Matrices

20.1.1 Perspective Projection

The call glFrustum(l, r, b, t, n, f) generates R, where:
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20.1.2 Orthographic Projection

The call glOrtho(l, r, b, t, u, f) generates R, where:

R =

0
BBB@

2
r�l

0 0 � r+l
r�l

0 2
t�b 0 � t+b

t�b

0 0 � 2
f�n

�f+n
f�n

0 0 0 1

1
CCCA and R�1 =

0
BBB@

r�l
2 0 0 r+l

2

0 t�b
2 0 t+b

2

0 0 f�n
2

n+f
2

0 0 0 1

1
CCCA

R is defined as long as l 6= r, t 6= b, and n 6= f .

20.1.3 Perspective z-Coordinate Transformations

The z value in eye coordinates, zeye , can be computed from the window coordinate z value, zwindow ,
using the near and far plane values, near and far, from the glFrustum command and the viewport
near and far values, farvp and nearvp, from the glDepthRange command using the equation:

zeye =

far near(farvp�nearvp)
far�near

zwindow � (far+near)(farvp�nearvp)
2(far�near) � farvp+nearvp

2

The z window coordinate is computed from the eye coordinate z using the equation:

zwindow =

"
far + near

far � near
+

2 far near

zeye(far � near)

# �
farvp � nearvp

2

�
+
farvp + nearvp

2
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20.2 Lighting Equations

20.2.1 Attenuation Factor

The attenuation factor is defined to be:

attenuation factor =
1

kc + kld+ kqd2

where

d = distance between the light’s position and the vertex

kc = GL CONSTANT ATTENUATION

kl = GL LINEAR ATTENUATION

kq = GL QUADRATIC ATTENUATION

If the light is directional, the attenuation factor is 1.

20.2.2 Spotlight Effect

The spotlight effect evaluates to one of three possible values, depending on whether the light is ac-
tually a spotlight and whether the vertex lies inside or outside the cone of illumination produced by
the spotlight:

� 1 if the light isn’t a spotlight (GL SPOT CUTOFF is 180.0).

� 0 if the light is a spotlight but the vertex lies outside the cone of illumination produced by the
spotlight.

� (maxfv � d; 0g)GL SPOT EXPONENT where: v = (vx; vy; vz) is the unit vector that points
from the spotlight (GL POSITION) to the vertex.

d = (dx; dy; dz) is the spotlight’s direction (GL SPOT DIRECTION), assuming the light is a
spotlight and the vertex lies inside the cone of illumination produced by the spotlight.

The dot product of the two vectors v and d varies as the cosine of the angle between them;
hence, objects directly in line get maximum illumination, and objects off the axis have their
illumination drop as the cosine of the angle.

To determine whether a particular vertex lies within the cone of illumination, OpenGL evaluates
(maxfv̂ � d̂; 0g) where v̂ and d̂ are as defined above. If this value is less than the cosine of the spot-
light’s cutoff angle (GL SPOT CUTOFF), then the vertex lies outside the cone; otherwise, it’s inside
the cone.
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20.2.3 Ambient Term

The ambient term is simply the ambient color of the light scaled by the ambient material property:

ambientlight � ambientmaterial

20.2.4 Diffuse Term

The diffuse term needs to take into account whether light falls directly on the vertex, the diffuse color
of the light, and the diffuse material property:

(maxfl � n; 0g) � diffuselight � diffusematerial

where:

l = (lx; ly; lz) is the unit vector that points from the vertex to the light position (GL POSITION).

n = (nx; ny; nz) is the unit normal vector at the vertex.

20.2.5 Specular Term

The specular term also depends on whether light falls directly on the vertex. If ~l � ~n is less than or
equal to zero, there is no specular component at the vertex. (If it’s less than zero, the light is on the
wrong side of the surface.) If there’s a specular component, it depends on the following:

� The unit normal vector at the vertex (nx; ny; nz).

� The sum of the two unit vectors that point between (1) the vertex and the light position and (2)
the vertex and the viewpoint (assuming that GL LIGHT MODEL LOCAL VIEWER is true; if it’s
not true, the vector (0; 0; 1) is used as the second vector in the sum). This vector sum is nor-
malized (by dividing each component by the magnitude of the vector) to yield s = (sx; sy; sz).

� The specular exponent (GL SHININESS).

� The specular color of the light (GL SPECULARlight).

� The specular property of the material (GL SPECULARmaterial).

Using these definitions, here’s how OpenGL calculates the specular term:

(maxfs � n; 0g)shininess � specularlight � specularmaterial

However, if ~l � ~n = 0, the specular term is 0.
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20.2.6 Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following represents the
entire lighting calculation in RGBA mode.

vertex color = emissionmaterial +

ambientlightmodel � ambientmaterial +
n�1X
i=0

 
1

kc + kld+ kqd2

!
(spotlight effect)i

(ambientlight � ambientmaterial +

(maxfl � n; 0g) � diffuselight � diffusematerial +

(maxfs � n; 0g)shininess � specularlight � specularmaterial)i
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Abstract

Generating images of texture mapped geometry requires
projecting surfaces onto a two-dimensional screen. If
this projection involves perspective, then a division
must be performed at each pixel of the projected surface
in order to correctly calculate texture map coordinates.
We show how a simple extension to perspective-

correct texture mapping can be used to create vari-
ous lighting e�ects. These include arbitrary projec-
tion of two-dimensional images onto geometry, realis-
tic spotlights, and generation of shadows using shadow
maps[10]. These e�ects are obtained in real time using
hardware that performs correct texture mapping.

CR Categories and Subject Descriptors: I.3.3
[Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - color, shading, shadowing, and
texture
Additional Key Words and Phrases: lighting,

texture mapping

1 Introduction

Producing an image of a three-dimensional scene re-
quires �nding the projection of that scene onto a two-
dimensional screen. In the case of a scene consisting of
texture mapped surfaces, this involves not only deter-
mining where the projected points of the surfaces should
appear on the screen, but also which portions of the
texture image should be associated with the projected
points.
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If the image of the three-dimensional scene is to ap-
pear realistic, then the projection from three to two di-
mensions must be a perspective projection. Typically,
a complex scene is converted to polygons before projec-
tion. The projected vertices of these polygons determine
boundary edges of projected polygons.
Scan conversion uses iteration to enumerate pixels on

the screen that are covered by each polygon. This itera-
tion in the plane of projection introduces a homogeneous
variation into the parameters that index the texture of
a projected polygon. We call these parameters texture
coordinates. If the homogeneous variation is ignored in
favor of a simpler linear iteration, incorrect images are
produced that can lead to objectionable e�ects such as
texture \swimming" during scene animation[5]. Correct
interpolation of texture coordinates requires each to be
divided by a common denominator for each pixel of a
projected texture mapped polygon[6].
We examine the general situation in which a tex-

ture is mapped onto a surface via a projection, after
which the surface is projected onto a two dimensional
viewing screen. This is like projecting a slide of some
scene onto an arbitrarily oriented surface, which is then
viewed from some viewpoint (see Figure 1). It turns out
that handling this situation during texture coordinate
iteration is essentially no di�erent from the more usual
case in which a texture is mapped linearly onto a poly-
gon. We use projective textures to simulate spotlights
and generate shadows using a method that is well-suited
to graphics hardware that performs divisions to obtain
correct texture coordinates.

2 Mathematical Preliminaries

To aid in describing the iteration process, we introduce
four coordinate systems. The clip coordinate system
is a homogeneous representation of three-dimensional
space, with x, y, z, and w coordinates. The origin of
this coordinate system is the viewpoint. We use the
term clip coordinate system because it is this system
in which clipping is often carried out. The screen co-
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ordinate system represents the two-dimensional screen
with two coordinates. These are obtained from clip co-
ordinates by dividing x and y by w, so that screen co-
ordinates are given by xs = x=w and ys = y=w (the
s superscript indicates screen coordinates). The light
coordinate system is a second homogeneous coordinate
system with coordinates xl, yl , zl, and wl; the origin of
this system is at the light source. Finally, the texture
coordinate system corresponds to a texture, which may
represent a slide through which the light shines. Tex-
ture coordinates are given by xt = xl=wl and yt = yl=wl

(we shall also �nd a use for zt = zl=wl). Given (xs; ys),
a point on a scan-converted polygon, our goal is to �nd
its corresponding texture coordinates, (xt; yt).

Figure 2 shows a line segment in the clip coordi-
nate system and its projection onto the two-dimensional
screen. This line segment represents a span between two
edges of a polygon. In clip coordinates, the endpoints

of the line segment are given by

Q
1
= (x1; y1; z1; w1) and Q2 = (x2; y2; z2; w2):

A point Q along the line segment can be written in clip
coordinates as

Q = (1� t)Q1 + tQ2 (1)

for some t 2 [0; 1]. In screen coordinates, we write the
corresponding projected point as

Qs = (1� ts)Qs
1
+ tsQs

2
(2)

where Qs
1
= Q1=w1 and Q

s
2
= Q2=w2.

To �nd the light coordinates of Q given Qs, we must
�nd the value of t corresponding to ts (in general t 6= ts).
This is accomplished by noting that

Qs = (1�ts)Q1=w1+t
sQ2=w2 =

(1� t)Q1 + tQ2

(1� t)w1 + tw2

(3)

and solving for t. This is most easily achieved by choos-
ing a and b such that 1�ts = a=(a+b) and ts = b=(a+b);
we also choose A and B such that (1� t) = A=(A+B)
and t = B=(A+ B). Equation 3 becomes

Qs =
aQ1=w1 + bQ2=w2

(a+ b)
=

AQ1 +BQ2

Aw1 +Bw2

: (4)

It is easily veri�ed that A = aw2 and B = bw1 satisfy
this equation, allowing us to obtain t and thus Q.
Because the relationship between light coordinates

and clip coordinates is a�ne (linear plus translation),
there is a homogeneous matrix M that relates them:

Ql =MQ =
A

A +B
Ql

1
+

B

A+ B
Ql

2
(5)

where Ql
1
= (xl

1
; yl

1
; zl

1
; wl

1
) andQl

2
= (xl

2
; yl

2
; zl

2
; wl

2
) are

the light coordinates of the points given by Q1 and Q2

in clip coordinates.
We �nally obtain

Qt = Ql=wl

=
AQl

1
+BQl

2

Awl
1
+Bwl

2

=
aQl

1
=w1 + bQl

2
=w2

a(wl
1
=w1) + b(wl

2
=w2)

: (6)

Equation 6 gives the texture coordinates correspond-
ing to a linearly interpolated point along a line segment
in screen coordinates. To obtain these coordinates at
a pixel, we must linearly interpolate xl=w, yl=w, and
wl=w, and divide at each pixel to obtain

xl=wl =
xl=w

wl=w
and yl=wl =

yl=w

wl=w
: (7)



(For an alternate derivation of this result, see [6].)
If wl is constant across a polygon, then Equation 7

becomes

s =
s=w

1=w
and t =

t=w

1=w
; (8)

where we have set s = xl=wl and t = yl=wl. Equation 8
governs the iteration of texture coordinates that have
simply been assigned to polygon vertices. It still implies
a division for each pixel contained in a polygon. The
more general situation of a projected texture implied
by Equation 7 requires only that the divisor be wl=w
instead of 1=w.

3 Applications

To make the various coordinates in the following exam-
ples concrete, we introduce one more coordinate system:
the world coordinate system. This is the coordinate sys-
tem in which the three-dimensional model of the scene
is described. There are thus two transformation ma-
trices of interest: Mc transforms world coordinates to
clip coordinates, and Ml transforms world coordinates
to light coordinates. Iteration proceeds across projected
polygon line segments according to equation 6 to obtain
texture coordinates (xt; yt) for each pixel on the screen.

3.1 Slide Projector

One application of projective texture mapping consists
of viewing the projection of a slide or movie on an arbi-
trary surface[9][2]. In this case, the texture represents
the slide or movie. We describe a multi-pass drawing
algorithm to simulate �lm projection.
Each pass entails scan-converting every polygon in the

scene. Scan-conversion yields a series of screen points
and corresponding texture points for each polygon. As-
sociated with each screen point is a color and z-value,
denoted c and z, respectively. Associated with each cor-
responding texture point is a color and z-value, denoted
c� and z� . These values are used to modify correspond-
ing values in a framebu�er of pixels. Each pixel, denoted
p, also has an associated color and z-value, denoted cp
and zp.
A color consists of several indepenedent components

(e.g. red, green, and blue). Addition or multiplication
of two colors indicates addition or multiplication of each
corresponding pair of components (each component may
be taken to lie in the range [0; 1]).
Assume that zp is initialized to some large value for all

p, and that cp is initialized to some �xed ambient scene
color for all p. The slide projection algorithm consists
of three passes; for each scan-converted point in each
pass, these actions are performed:

Pass 1 If z < zp, then zp  z (hidden surface
removal)

Pass 2 If z = zp, then cp  cp + c� (illumination)

Pass 3 Set cp = c � cp (�nal rendering)

Pass 1 is a z-bu�ering step that sets zp for each pixel.
Pass 2 increases the brightness of each pixel accord-
ing to the projected spotlight shape; the test ensures
that portions of the scene visible from the eye point are
brightened by the texture image only once (occlusions
are not considered). The e�ects of multiple �lm projec-
tions may be incorporated by repeating Pass 2 several
times, modifyingMl and the light coordinates appropri-
ately on each pass. Pass 3 draws the scene, modulating
the color of each pixel by the corresponding color of the
projected texture image. E�ects of standard (i.e. non-
projective) texture mappingmay be incorporated in this
pass. Current Silicon Graphics hardware is capable of
performing each pass at approximately 105 polygons per
second.
Figure 3 shows a slide projected onto a scene. The

left image shows the texture map; the right image shows
the scene illuminated by both ambient light and the pro-
jected slide. The projected image may also be made to
have a particular focal plane by rendering the scene sev-
eral times and using an accumulation bu�er as described
in [4].
The same con�guration can transform an image cast

on one projection plane into a distinct projection plane.
Consider, for instance, a photograph of a building's fa-
cade taken from some position. The e�ect of viewing
the facade from arbitrary positions can be achieved by
projecting the photograph back onto the building's fa-
cade and then viewing the scene from a di�erent vantage
point. This e�ect is useful in walk-throughs or 
y-bys;
texture mapping can be used to simulate buildings and
distant scenery viewed from any viewpoint[1][7].

3.2 Spotlights

A similar technique can be used to simulate the e�ects
of spotlight illumination on a scene. In this case the
texture represents an intensity map of a cross-section of
the spotlight's beam. That is, it is as if an opaque screen
were placed in front of a spotlight and the intensity at
each point on the screen recorded. Any conceivable spot
shape may be accommodated. In addition, distortion
e�ects, such as those attributed to a shield or a lens,
may be incorporated into the texture map image.
Angular attenuation of illumination is incorporated

into the intensity texture map of the spot source. At-
tenuation due to distance may be approximated by ap-
plying a function of the depth values zt = zl=wl iterated
along with the texture coordinates (xt; yt) at each pixel
in the image.
This method of illuminatinga scene with a spotlight is

useful for many real-time simulation applications, such



Figure 3. Simulating a slide projector.

as aircraft landing lights, directable aircraft taxi lights,
and automotive headlights.

3.3 Fast, Accurate Shadows

Another application of this technique is to produce
shadows cast from any number of point light sources.
We follow the method described by Williams[10], but in
a way that exploits available texture mapping hardware.
First, an image of the scene is rendered from the view-

point of the light source. The purpose of this render-
ing is to obtain depth values in light coordinates for
the scene with hidden surfaces removed. The depth
values are the values of zl=wl at each pixel in the im-
age. The array of zt values corresponding to the hidden
surface-removed image are then placed into a texture
map, which will be used as a shadow map[10][8]. We
refer to a value in this texture map as z� .
The generated texture map is used in a three-pass ren-

dering process. This process uses an additional frame-
bu�er value �p in the range [0; 1]. The initial conditions
are the same as those for the slide projector algorithm.

Pass 1 If z < zp, then zp  z, cp  c (hidden
surface removal)

Pass 2 If z� = zt, then �p  1; else �p  0 (shadow
testing)

Pass 3 cp  cp + (c modulated by �p) (�nal ren-
dering)

Pass 1 produces a hidden surface-removed image of the
scene using only ambient illumination. If the two values
in the comparison in Pass 2 are equal, then the point
represented by p is visible from the light and so is not
in shadow; otherwise, it is in shadow. Pass 3, drawn
with full illumination, brightens portions of the scene
that are not in shadow.
In practice, the comparison in Pass 2 is replaced with

z� > zt+�, where � is a bias. See [8] for factors governing
the selection of �.

This technique requires that the mechanism for set-
ting �p be based on the result of a comparison between
a value stored in the texture map and the iterated zt.
For accuracy, it also requires that the texture map be
capable of representing large z� . Our latest hardware
posseses these capabilites, and can perform each of the
above passes at the rate of at least 105 polygons per
second.
Correct illumination frommultiple colored lights may

be produced by performing multiple passes. The
shadow e�ect may also be combined with the spotlight
e�ect described above, as shown in Figure 4. The left
image in this �gure is the shadow map. The center
image is the spotlight intensity map. The right image
shows the e�ects of incorporating both spotlight and
shadow e�ects into a scene.
This technique di�ers from the hardware implemen-

tation described in [3]. It uses existing texture map-
ping hardware to create shadows, instead of drawing
extruded shadow volumes for each polygon in the scene.
In addition, percentage closer �ltering [8] is easily sup-
ported.

4 Conclusions

Projecting a texture image onto a scene from some light
source is no more expensive to compute than simple tex-
ture mapping in which texture coordinates are assinged
to polygon vertices. Both require a single division per-
pixel for each texture coordinate; accounting for the tex-
ture projection simply modi�es the divisor.
Viewing a texture projected onto a three-dimensional

scene is a useful technique for simulating a number of
e�ects, including projecting images, spotlight illumina-
tion, and shadows. If hardware is available to perform
texture mapping and the per-pixel division it requires,
then these e�ects can be obtained with no performance
penalty.



Figure 4. Generating shadows using a shadow map.
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Executive Summary

As of today, texture mapping is used in visual simulation and computer animation to reduce geometric
complexity while enhancing realism. In this report, this common usage of the technology is extended by
presenting application models of real−time texture mapping that solve a variety of visualization problems in
the general technical and scientific world, opening new ways to represent and analyze large amounts of
experimental or simulated data.

The topics covered in this report are:

• Abstract definition of the texture mapping concept
• Visualization of properties on surfaces by color coding
• Information filtering on surfaces
• Real−time volume rendering concepts
• Quality−enhanced surface rendering

In the following sections, each of these aspects will be described in detail. Implementation techniques are
outlined using pseudo code that emphasizes the key aspects. A basic knowledge in GL programming is
assumed. Application examples are taken from the chemical market. However, for the scope of this report
no particular chemical background is required, since the data being analyzed can in fact be replaced by any
other source of technical, scientific or engineering information processing.

Note, that this report discusses the potential of released advanced graphics technology in a very detailed
fashion. The presented topics are based on recent and ongoing research and therefore subjected to change.

The methods described are the result of a team−work involving scientists from different research areas and
institutions, and is called theTexture Team,consisting of the following members:

• Prof. Juergen Brickmann, Technische Hochschule, Darmstadt, Germany
• Dr. Peter Fluekiger, Swiss Scientific Computing Center, Manno, Switzerland
• Christian Henn, M.E. Mueller−Institute for Microscopy, Basel, Switzerland
• Dr. Michael Teschner, Silicon Graphics Marketing, Basel, Switzerland

Further support came from SGI’s Advanced Graphics Division engineering group.

Colored pictures and sample code are available from sgigate.sgi.com via anonymous ftp. The files will be
there starting November 1st 1993 and will be located in the directory pub/SciTex.

For more information, please contact:

Michael Teschner (41) 61 67 09 03 (phone)
SGI Marketing, Basel (41) 61 67 12 01 (fax)
Erlenstraesschen 65
CH−4125 Riehen, Switzerland micha@basel.sgi.com (email)
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1 Introduction

Texture mapping [1,2] has traditionally been used to add realism in computer generated images. In recent
years, this technique has been transferred from the domain of software based rendering systems to a
hardware supported feature of advanced graphics workstations. This was largely motivated by visual
simulation and computer animation applications that use texture mapping to map pictures of surface texture
to polygons of 3−D objects [3].

Thus, texture mapping is a very powerful approach to add a dramatic amount of realism to a computer
generated image without blowing up the geometric complexity of the rendered scenario, which is essential
in visual simulators that need to maintain a constant frame rate. E.g., a realistically looking house can be
displayed using only a few polygons with photographic pictures of a wall showing doors and windows
being mapped to. Similarly, the visual richness and accuracy of natural materials such as a block of wood
can be improved by wrapping a wood grain pattern around a rectangular solid.

Up to now, texture mapping has not been used in technical or scientific visualization, because the above
mentioned visual simulation methods as well as non−interactive rendering applications like computer
animation have created a severe bias towards what texture mapping can be used for, i.e. wooden [4] or
marble surfaces for the display of solid materials, or fuzzy, stochastic patterns mapped on quadrics to
visualize clouds [5,6].

It will be demonstrated that hardware−supported texture mapping can be applied in a much broader range of
application areas. Upon reverting to a strict and formal definition of texture mapping that generalizes the
texture to be a general repository for pixel−based color information being mapped on arbitrary 3−D
geometry, a powerful and elegant framework for the display and analysis of technical and scientific
information is obtained.

2 Abstract definition of the texture mapping concept

In the current hardware implementation of SGI [7], texture mapping is an additional capability to modify
pixel information during the rendering procedure, after the shading operations have been completed.
Although it modifies pixels, its application programmers interface is vertex−based. Therefore texture
mapping results in only a modest or small increase in program complexity. Its effect on the image
generation time depends on the particular hardware being used: entry level and interactive systems show a
significant performance reduction, whereas on third generation graphics subsystems texture mapping may
be used without any performance penalty.
Three basic components are needed for the texture mapping procedure: (1) the texture, which is defined in
the texture space, (2) the 3−D geometry, defined on a per vertex basis and (3) a mapping function that links
the texture to the vertex description of the 3−D object.

The texture space [8,9] is a parametric coordinate space which can be 1,2 or 3 dimensional. Analogous to
the pixel (picture element) in screen space, each element in texture space is called texel (texture element).
Current hardware implementations offer flexibility with respect to how the information stored with each
texel is interpreted. Multi−channel colors, intensity, transparency or even lookup indices corresponding to a
color lookup table are supported.

In an abstract definition of texture mapping, the texture space is far more than just a picture within a
parametric coordinate system: the texture space may be seen as a special memory segment, where a variety
of information can be deposited which is then linked to object representations in 3−D space. Thus this
information can efficiently be used to represent any parametric property that needs to be visualized.

Although the vertex−based nature of 3−D geometry in general allows primitives such as points or lines to
be texture−mapped as well, the real value of texture mapping emerges upon drawing filled triangles or
higher order polygons.

The mapping procedure assigns a coordinate in texture space to each vertex of the 3−D object. It is
important to note that the dimensionality of the texture space is independent from the dimensionality of the
displayed object. E.g., coding a simple property into a 1−D texture can be used to generate isocontour lines
on arbitrary 3−D surfaces.
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Figure 1: Color coding with RGB interpolation (left) and texture mapping (right).

This problem can be solved by storing the color ramp as a 1−D texture. In contrast to the above described
procedure, the scalar property information is used as the texture coordinates for the surface vertices. The
color interpolation is then performed in the texture space, i.e. the coloring is evaluated at every pixel
(Figure 1 right). High contrast variation in the color code is now possible, even on sparsely tessellated
surfaces.

It is important to note that, although the texture is one−dimensional, it is possible to tackle a 3−D problem.
The dimensionality of texture space and object space is independent, thus they do not affect each other.
This feature of the texture mapping method, as well as the difference between texture interpolation and
color interpolation is crucial for an understanding of the applications presented in this report.

3 Color−coding based application solutions

Color−coding is a popular means of displaying scalar information on a surface [10]. E.g., this can be used
to display stress on mechanical parts or interaction potentials on molecular surfaces.

The problem with traditional, Gouraud shading−based implementations occurs when there is a high
contrast color code variation on sparsely tesselated geometry: since the color coding is done by assigning
RGB color triplets to the vertices of the 3−D geometry, pixel colors will be generated by linear
interpolation in RGB color space.

As a consequence, all entries in the defined color ramp laying outside the linear color ramp joining two
RGB triplets are never taken into account and information will be lost. In Figure 1, a symmetric grey scale
covering the property range is used to define the color ramp. On the left hand side, the interpolation in the
RGB color space does not reflect the color ramp. There is a substantial loss of information during the
rendering step.

With a highly tessellated surface, this problem can be reduced. An alignment of the surface vertices with
the expected color code change or multi−pass rendering may remove such artifacts completely. However,
these methods demand large numbers of polygons or extreme algorithmic complexity, and are therefore
not suited for interactive applications.
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Figure 2: Electrostatic potential coded on the solvent accessible surface of ethanol. 

Figure 2 shows the difference between the two procedures with a concrete example: the solvent accessible
surface of the ethanol molecule is colored by the electrostatic surface potential, using traditional RGB color
interpolation (left) and texture mapping (right).

The independence of texture and object coordinate space has further advantages and is well suited to
accommodate immediate changes to the meaning of the color ramp. E.g., by applying a simple 3−D
transformation like a translation in texture space the zero line of the color code may be shifted. Applying a
scaling transformation to the texture adjusts the range of the mapping. Such modifications may be
performed in real−time.

With texture mapping, the resulting sharp transitions from one color−value to the next significantly
improves the rendering accuracy. Additionally, these sharp transitions help to visually understand the
object’s 3−D shape.

3.1 Isocontouring on surfaces

Similar to the color bands in general color−coding, discrete contour lines drawn on an object provide
valuable information about the object’s geometry as well as its properties, and are widely used in visual
analysis applications. E.g., in a topographic map they might represent height above some plane that is either
fixed in world coordinates or moves with the object [11]. Alternatively, the curves may indicate intrinsic
surface properties, such as an interaction potential or stress distributions.

With texture mapping, discrete contouring may be achieved using the same setup as for general color
coding. Again, the texture is 1−D, filled with a base color that represents the objects surface appearance. At
each location of a contour threshold, a pixel is set to the color of the particular threshold. Figure 3 shows an
application of this texture to display the hydrophobic potential of Gramicidine A, a channel forming
molecule as a set of isocontour lines on the surface of the molecular surface.

Scaling of the texture space is used to control the spacing of contour thresholds. In a similar fashion,
translation of the texture space will result in a shift of all threshold values. Note that neither the underlying
geometry nor the texture itself was modified during this procedure. Adjustment of the threshold spacing is
performed in real−time, and thus fully interactive.
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Figure 4: Display of metrics on a Zeolithe’s molecular surface with a 2−D texture.

Figure 3: Isocontour on a molecular surface with different scaling in texture space.

3.2 Displaying metrics on arbitrary surfaces

An extension of the concept presented in the previous section can be used to display metrics on an arbitrary
surface, based on a set of reference planes. Figure 4 demonstrates the application of a 2−D texture to attach
tick marks on the solvent accessible surface of a zeolithe.

In contrast to the property−based, per vertex binding of texture coordinates, the texture coordinates for the
metric texture are generated automatically: the distance of an object vertex to a reference plane is
calculated by the harware and on−the−fly translated to texture coordinates. In this particular case two
orthogonal planes are fixed to the orientation of the object’s geometry. This type of representation allows
for exact measurement of sizes and distance units on a surface.
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Figure 5: Solvent accessible surface of Gramicidine A, showing the ESP filtered with the MLP.

The surface is color−coded, or grey−scale as in the printed example, only at those loactions, where the
surface has a certain lipophobicity. The surface parts with lipophilic behavior are clamped to white. In this
example the information is filtered using a delta type function, suppressing all information not exceeding a
specified threshold. In other cases, a continouos filter may be more appropriate, to allow a more fine
grained quantification.

3.3 Information filtering

The concept of using a 1−D texture for color−coding of surface properties may be extended to 2−D or even
3−D. Thus a maximum of three independent properties can simultaneously be visualized. However,
appropriate multidimensional color lookup tables must be designed based on a particular application,
because a generalization is either non−trivial or eventually impossible. Special care must be taken not to
overload the surface with too much information.

One possible, rather general solution can be obtained by combining a 1−D color ramp with a 1−D threshold
pattern as presented in the isocontouring example, i.e. color bands are used for one property, whereas
orthogonal, discrete isocontour lines code for the second property. In this way it is possible to display two
properties simultaneously on the same surface, while still being capable of distinguishing them clearly.

Another approach uses one property to filter the other and display the result on the objects surface,
generating additional insight in two different ways: (1) the filter allows the scientist to distinguish between
important and irrelevant information, e.g. to display the hot spots on an electrostatic surface potential, or (2)
the filter puts an otherwise qualitative property into a quantitative context, e.g., to use the standard deviation
from a mean value to provide a hint as to how accurate a represented property actually is at a given location
on the object surface.

A good role model for this is the combined display of the electrostatic potential (ESP) and the molecular
lipophilic potential (MLP) on the solvent accessible surface of Gramicidine A. The electrostatic potential
gives some information on how specific parts of the molecule may interact with other molecules, the
molecular lipophilic potential gives a good estimate where the molecule has either contact with water
(lipophobic regions) or with the membrane (lipophilic regions). The molecule itself is a channel forming
protein, and is loacted in the membrane of bioorganisms, regulating the transport of water molecules and
ions. Figure 5 shows the color−coding of the solvent accessible surface of Gramicidine A against the ESP
filtered with the MLP. The texture used for this example is shown in Figure 8.
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Figure 6: Clipping of the solvent accessible surface of Gramicidine A according to the MLP.

There is a distinct advantage in using alpha texture as a component for information filtering: irrelevant
information can be completely eliminated, while geometric information otherways hidden within the
surface is revealed directly in the context of the surface. And again, it is worthwhile to mention, that by a
translation in texture space, the clipping range can be changed interactively!

Another useful application is to filter the electrostatic potential with the electric fileld. Taking the absolute
value of the electric field, the filter easily pinpoints the areas of the highest local field gradient, which helps
in identifying the binding site of an inhibitor without further interaction of the scientist. With translation in
the texture space, one can interactively modify the filter threshold or change the appearance of the color
ramp.

3.4 Arbitrary surface clipping

Color−coding in the sense of information filtering affects purely the color information of the texture map.
By adding transparency as an additional information channel, a lot of flexibility is gained for the
comparison of multiple property channels. In a number of cases, transparency even helps in geometrically
understanding of a particular property. E.g., the local flexibility of a molecule structure according to the
crystallographically determined B−factors can be visually represented: the more rigid the structure is, the
more opaque the surface will be displayed. Increasing transparency indicates higher floppyness of the
domains. Such a transparency map may well be combined with any other color coded property, as it is of
interest to study the dynamic properties of a molecule in many different contexts.

An extension to the continuous variation of surface transparency as in the example of molecular flexibility
mentioned above is the use of transparency to clip parts of the surface away completely, depending on a
property coded into the texture. This can be achieved by setting the alpha values at the appropriate vertices
directly to zero. Applied to the information filtering example of Gramicidine A, one can just clip the surface
using a texture where all alpha values in the previously white region a set to 0, as is demonstrated in Figure
6.
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Figure 7: Example of a 2−D texture used for information filtering, with different transformations applied:
original texture (left), translation in s coordinates to adjust filter threshold (middle) and scaling along in t 

coordinates to change meaning of the texture colors (right).  

The texture environment defines how the texure modifies incoming pixel values. In this case we want to
keep the information from the lighting calculation and modulate this with the color coming from the
texture image:

3.5 Color−coding pseudo code example

All above described methods for property visualization on object surfaces are based upon the same texture
mapping requirements. Neither are they very demanding in terms of features nor concerning the amount of
texture memory needed.

Two options are available to treat texture coordinates that fall outside the range of the parametric unit
square. Either the texture can be clamped to constant behaviour, or the entire texture image can be
periodically repeated. In the particular examples of 2−D information filtering or property clipping, the
parametric s coordinate is used to modify the threshold (clamped), and the t coordinate is used to change the
appearance of the color code (repeated). Figure 7 shows different effects of transforming this texture map,
while the following pseudo code example expresses the presented texture setup. GL specific calls and
constants are highlighted inboldface:

texParams = {
TX_MINIFILTER , TX_POINT,
TX_MAGFILTER, TX_POINT,
TX_WRAP_S, TX_CLAMP,
TX_WRAP_T, TX_REPEAT,
TX_NULL

};

texdef2d (
texIndex,numTexComponents,
texWidth,texHeight,texImage,
numTexParams,texParams

);

texbind (texIndex);

The texture image is an array of unsigned integers, where the packing of the data depends on the number of
components being used for each texel.
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Figure 8: Schematic representation of the drawTexturedSurface()  routine.

texEnvParams = {
TV_MODULATE, TV_NULL

};

tevdef (texEnvIndex,numTexEnvParams,texEnvParams);
tevbind (texEnvIndex);

Matrix transformations in texture space must be targeted to a matrix stack that is reserved for texture
modifications:

mmode( MTEXTURE);
translate (texTransX,0.0,0.0);
scale (1.0,texScaleY,1.0);

mmode( MVIEWING);

The drawing of the object surface requires the binding of a neutral material to get a basic lighting effect.
For each vertex, the coordinates, the surface normal and the texture coordinates are traversed in form of
calls tov3f , n3f andt2f .

Theafunction() call is only needed in the case of surface clipping. It will prevent the drawing of any
part of the polygon that has a texel color with alpha = 0:

pushmatrix ();
loadmatrix (modelViewMatrix);
if(clippingEnabled) {

afunction (0, AF_NOTEQUAL);
}
drawTexturedSurface();

popmatrix ();

v3f(coo)

n3f (norm)

for (all vertices) { n3f(), t2f(), v3f() } 

t2f(quality)
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4 Real−time volume rendering techniques

Volume rendering is a visualization technique used to display 3−D data without an intermediate step of
deriving a geometric representation like a solid surface or a chicken wire. The graphical primitives being
characteristic for this technique are called voxels, derived from volume element and analog to the pixel.
However, voxels describe more than just color, and in fact can represent opacity or shading parameters as
well.

A variety of experimental and computational methods produce such volumetric data sets: computer
tomography (CT), magnetic resonance imaging (MRI), ultrasonic imaging (UI), confocal light scanning
microscopy (CLSM), electron microscopy (EM), X−ray crystallography, just to name a few. Characteristic
for these data sets are a low signal to noise ratio and a large number of samples, which makes it difficult to
use surface based rendering technique, both from a performance and a quality standpoint.

The data structures employed to manipulate volumetric data come in two flavours: (1) the data may be
stored as a 3−D grid, or (2) it may be handled as a stack of 2−D images. The former data structure is often
used for data that is sampled more or less equally in all the three dimensions, wheras the image stack is
preferred with data sets that are high resolution in two dimensions and sparse in the third.

Historically, a wide variety of algorithms has been invented to render volumetric data and range from ray
tracing to image compositing [12]. The methods cover an even wider range of performance, where the
advantage of image compositing clearly emerges, where several images are created by slicing the volume
perpendicular to the viewing axis and then combined back to front, thus summing voxel opacities and colors
at each pixel.

In the majority of the cases, the volumetric information is stored using one color channel only. This allows
to use lookup tables (LUTs) for alternative color interpretation. I.e., before a particular entry in the color
channel is rendered to the frame buffer, the color value is interpreted as a lookup into a table that aliases the
original color. By rapidly changing the color and/or opacity transfer function, various structures in the
volume are interactively revealed.

By using texture mapping to render the images in the stack, a performance level is reached that is far
superior to any other technique used today and allows the real−time manipulation of volumetric data. In
addition, a considerable degree of flexibility is gained in performing spatial transformations to the volume,
since the transformations are applied in the texture domain and cause no performance overhead.

4.1 Volume rendering using 2−D textures

As a linear extension to the original image compositing algotrithm, the 2−D textures can directly replace the
images in the stack. A set of mostly quadrilateral polygons is rendered back to front, with each polygon
binding its own texture if the depth of the polygon corresponds to the location of the sampled image.
Alternatively, polygons inbetween may be textured in a two−pass procedure, i.e. the polygon is rendered
twice, each time binding one of the two closest images as a texture and filtering it with an appropriate linear
weighting factor. In this way, inbetween frames may be obtained even if the graphics subsystem doesn’t
support texture interpolation in the third dimension.

The resulting volume looks correct as long as the polygons of the image stack are alligned parallel to the
screen. However, it is important to be able to look at the volume from arbitrary directions. Because the
polygon stack will result in a set of lines when being oriented perpendicular to the screen, a correct
perception of the volume is no longer possible.

This problem can easily be soved. By preprocessing the volumetric data into three independent image stacks
that are oriented perpendicular to each other, the most appropriate image stack can be selected for rendering
based on the orientation of the volume object. I.e., as soon as one stack of textured polygons is rotated
towards a critical viewing angle, the rendering function switches to one of the two additional sets of
textured polygons, depending on the current orientation of the object.



− 1 2−  SGI, August  4, 1995Version 1.0

Figure 9:  Slice plane through the water density surrounding a sugar molecule. 

4.2 Volume rendering using 3−D textures

As described in the previous section, it is not only possible, but almost trivial to implement real−time
volume rendering using 2−D texture mapping. In addition, the graphics subsystems will operate at peak
performance, because they are optimized for fast 2−D texture mapping. However, there are certain
limitations to the 2−D texture approach: (1) the memory required by the triple image stack is a factor of
three larger than the original data set, which can be critical for large data sets as they are common in medical
imaging or microscopy, and (2) the geometry sampling of the volume must be aligned with the 2−D textures
concerning the depth, i.e. arbitrary surfaces constructed from a triangle mesh can not easily be colored
depending on the properties of a surrounding volume.

For this reason, advanced rendering architectures support hardware implementations of 3−D textures. The
correspondence between the volume to be rendered and the 3−D texture is obvious. Any 3−D surface can
serve as a sampling device to monitor the coloring of a volumetric property. I.e., the final coloring of the
geometry reflects the result of the intersection with the texture. Following this principle, 3−D texture
mapping is a fast, accurate and flexible technique for looking at the volume.

The simplest application of 3−D textures is that of a slice plane, which cuts in arbitrary orientations through
the volume, which is now represented directly by the texture. The planar polygon being used as geometry in
this case will then reflect the contents of the volume as if it were exposed by cutting the object with a knife,
as shown in Figure 9: since the transformation of the sampling polygon and that of the 3−D texture is
independent, it may be freely oriented within the volume. The property visualized in Figure 9 is the
probability of water beeing distributed around a sugar molecule. The orientation of the volume, that means
the transformation in the texture space is the same as the molecular structure. Either the molecule, together
with the volumetric texture, or the slicing polygon may be reoriented in real−time.

An extension of the slice plane approach leads to complete visualization of the entire volume. A stack of
slice planes, oriented in parallel to the computer screen, samples the entire 3−D texture. The planes are
drawn back to front and in sufficiently small intervals. Geometric transformations of the volume are
performed by manipulating the orientation of the texture, keeping the planes in screen−parallel orientation,
as can be seen in Figure 10, which shows a volume rendered example of a medical application.

This type of volume visualization is greatly enhanced by interactive updates of the color lookup table used
to define the texture. In fact a general purpose color ramp editor may be used to vary the lookup colors or
the transparency based on the scalar information at a given point in the 3−D volume.
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Figure 10:  Volume rendering of MRI data using a stack of screen−parallel sectioning planes, 
which is cut in half to reveal detail in the inner part of the object.

5 High quality surface rendering

The visualization of solid surfaces with a high degree of local curvature is a major challenge for accurate
shading, and where the simple Gouraud shading [13] approach always fails. Here, the lighting calculation is
performed for each vertex, depending on the orientation of the surface normal with respect to the light
sources. The output of the lighting calculations is an RGB value for the surface vertex. During rasterization
of the surface polygon the color value of each pixel is computed by linear interpolation between the vertex
colors. Aliasing of the surface highlight is then a consequence of undersampled surface geometry, resulting
in moving Gouraud banding patterns on a surface rotating in real−time, which is very disturbing. Moreover,
the missing accuracy in shading the curved surfaces often leads to a severe loss of information on the
object’s shape, which is not only critical for the evaluation and analysis of scientific data, but also for the
visualization of CAD models, where the visual perception of shape governs the overall design process.

Figure 11 demonstrates this problem using a simple example: on the left, the sphere exhibits typical
Gouraud artifacts, on the right the same sphere is shown with a superimposed mesh that reveals the
tessellation of the sphere surface. Looking at these images, it is obvious how the shape of the highlight of
the sphere was generated from linear interpolation. When rotating the sphere, the highlight begins to
oscillate, depending on how near the surface normal at the brightest vertex is with respect to the precise
highlight position.

The slice plane concept can be extended to arbitrarily shaped objects. The idea is to probe a volumetric
property and to display it wherever the geometric primitives of the probing object cut the volume. The
probing geometry can be of any shape, e.g. a sphere, collecting information about the property at a certain
distance from a specified point, or it may be extended to describe the surface of an arbitrary object.

The independence of the object’s transformation from that of the 3−D texture, offers complete freedom in
orienting the surface with respect to the volume. As a further example of a molecular modeling
application, this provides an opportunity to look at a molecular surface and have the information about a
surrounding volumetric property updated in real−time, based on the current orientation of the surface.
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Figure 12: Phong shaded sphere using surface normals as a lookup for the texture coordinate.

Figure 11: Gouroud shading artifacts on a moderately tessellated sphere.

Correct perception of the curvature and constant, non oscillating highlights can only be achieved with
computationally much more demanding rendering techniques such as Phong shading [14]. In contrast to
linear interpolation of vertex colors, the Phong shading approach interpolates the normal vectors for each
pixel of a given geometric primitive, computing the lighting equation in the subsequent step for each pixel.
Attempts have been made to overcome some of the computationally intensive steps of the procedure [15],
but their performance is insufficient to be a reasonable alternative to Gouraud shading in real−time
applications.

5.1 Real−time Phong shading

With 2−D texture mapping it is now possible to achieve both, high performance drawing speed and highly
accurate shading. The resulting picture compares exactly to the surface computed with the complete Phong
model with infinite light sources.

The basic idea is to use the image of a high quality rendered sphere as texture. The object’s unit length
surface normal is interpreted as texture coordinate. Looking at an individual triangle of the polygonal
surface, the texture mapping process may be understood as if the image of the perfectly rendered sphere
would be wrapped piecewise on the surface polygons. In other words, the surface normal serves as a lookup
vector into the texture, acting as a 2−D lookup table that stores precalculated shading information.

The advantage of such a shading procedure is clear: the interpolation is done in texture space and not in
RGB, therefore the position of the highlight will never be missed. Note that the tessellation of the texture
mapped sphere is exactly the same as for the Gouraud shaded reference sphere in Figure 11.
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Figure 13: Application of the texture mapped Phong shading to a complex surface representing a 
biomolecular structure. The closeups demonstrate the difference between Gouraud shading (above right) and 

Phong shading (below right)  when implemented using texture mapping

5.2 Phong shading pseudo code example

The setup for the texture mapping as used for Phong shading is shown in the following code fragment:

texParams = {
TX_MINIFILTER , TX_POINT,
TX_MAGFILTER, TX_BILINEAR ,
TX_NULL

};

texdef2d (
texIndex,numTexComponents,
texWidth,texHeight,texImage,
numTexParams,texParams

);

As previously mentioned, this method of rendering solid surfaces with highest accuracy can be applied to 
arbitrarily shaped objects. Figure 13 shows the 3−D reconstruction of an electron microscopic experiment, 
visualizing a large biomolecular complex, the asymmetric unit membrane of the urinary bladder. The 
difference between Gouraud shading and the texture mapping implementation of Phong shading is obvious, 
and for the sake of printing quality, can be seen best when looking at the closeups. Although this trick is so 
far only applicable for infinitely distant light sources, it is a tremendous aid for the visualization of highly 
complex surfaces.
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Figure 15: Schematic representation of the drawTexPhongSurface()  routine.

6 Conclusions

Silicon Graphics has recently introduced a new generation of graphics subsystems, which support a variety
of texture mapping techniques in hardware without performance penalty. The potential of using this
technique in technical, scientific and engineering visualization applications has been demonstrated.

Hardware supported texture mapping offers solutions to important visualization problems that have either
not been solved yet or did not perform well enough to enter the world of interactive graphics applications.
Although most of the examples presented here could be implemented using techniques other than texture
mapping, the tradeoff would either be complete loss of performance or an unmaintainable level of
algorithmic complexity.

Most of the examples were taken from the molecular modelling market, where one has learned over the

texbind (texIndex);

texEnvParams = { TV_MODULATE, TV_NULL };

tevdef (texEnvIndex,numTexEnvParams,texEnvParams);
tevbind (texEnvIndex);

As texture, we can use any image of a high quality rendered sphere either with RGB or one intensity
component only. The RGB version allows the simulation of light sources with different colors.

The most important change for the vertex calls in this model is that we do not pass the surface normal data
with then3f command as we normally do when using Gouraud shading. The normal is passed as texture
coordinate and therefore processed with thet3f command.

Surface normals are transformed with the current model view matrix, although only rotational components
are considered. For this reason the texture must be aligned with the current orientation of the object. Also,
the texture space must be scaled and shifted to cover a circle centered at the origin of the s/t coordinate
system, with a unit length radius to map the surface normals:

mmode( MTEXTURE);
loadmatrix (identityMatrix);
translate (0.5,0.5,0.0);
scale (0.5,0.5,1.0);
multmatrix (rotationMatrix);

mmode( MVIEWING);

drawTexPhongSurface();
v3f(coo)

t3f (norm)

for (all vertices) { t3f(), v3f()  } 
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years to handle complex 3−D scenarios interactively and in an analytic manner. What has been shown here
can also be applied in other areas of scientific, technical or engineering visualization. With the examples
shown in this report, it should be possible for software engineers developing application software in other
markets to use the power and flexibility of texture mapping and to adapt the shown solutions to their
specific case.

One important, general conclusion may be drawn from this work: one has to leave the traditional mind set
about texture mapping and go back to the basics in order to identify the participating components and to
understand their generic role in the procedure. Once this step is done it is very simple to use this technique
in a variety of visualization problems.

All examples were implemented on a Silicon Graphics Crimson Reality Engine [7] equipped with two raster
managers. The programs were written in C, either in mixed mode GLX or pure GL.
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Abstract

Texture mapping has traditionally been used to add
realism to computer graphics images. In recent years,
this technique has moved from the domain of software
rendering systems to that of high performance graphics
hardware.

But texture mapping hardware can be used for many
more applications than simply applying diffuse pat-
terns to polygons.

We survey applications of texture mapping including
simple texture mapping, projective textures, and image
warping. We then describe texture mapping techniques
for drawing anti-aliased lines, air-brushes, and anti-
aliased text. Next we show how texture mapping may
be used as a fundamental graphics primitive for volume
rendering, environment mapping, color interpolation,
contouring, and many other applications.

CR Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image Generation; I.3.7
[Computer Graphics]: Three-Dimensional Graphics
and Realism - color, shading, shadowing, texture-mapping,
line drawing, and anti-aliasing

1 Introduction

Texture mapping[Cat74][Hec86] is a powerful tech-
nique for adding realism to a computer-generated
scene. In its basic form, texture mapping lays an image
(the texture) onto an object in a scene. More general
forms of texture mapping generalize the image to other
information; an “image” of altitudes, for instance, can
be used to control shading across a surface to achieve
such effects as bump-mapping.

Because texture mapping is so useful, it is being
provided as a standard rendering technique both in
graphics software interfaces and in computer graph-
ics hardware[HL90][DWS+88]. Texture mapping can
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therefore be used in a scene with only a modest in-
crease in the complexity of the program that generates
that scene, sometimes with little effect on scene genera-
tion time. The wide availability and high-performance
of texture mapping makes it a desirable rendering tech-
nique for achieving a number of effects that are nor-
mally obtained with special purpose drawing hard-
ware.

After a brief review of the mechanics of texture map-
ping, we describe a few of its standard applications.
We go on to describe some novel applications of tex-
ture mapping.

2 Texture Mapping

When mapping an image onto an object, the color of the
object at each pixel is modified by a corresponding color
from the image. In general, obtaining this color from
the image conceptually requires several steps[Hec89].
The image is normally stored as a sampled array, so a
continuous image must first be reconstructed from the
samples. Next, the image must be warped to match
any distortion (caused, perhaps, by perspective) in the
projected object being displayed. Then this warped
image is filtered to remove high-frequency components
that would lead to aliasing in the final step: resampling
to obtain the desired color to apply to the pixel being
textured.

In practice, the required filtering is approximated by
one of several methods. One of the most popular is
mipmapping[Wil83]. Other filtering techniques may also
be used[Cro84].

There are a number of generalizations to this basic
texture mapping scheme. The image to be mapped
need not be two-dimensional; the sampling and fil-
tering techniques may be applied for both one- and
three-dimensional images[Pea85]. In the case of a three-
dimensional image, a two-dimensional slice must be
selected to be mapped onto an object’s boundary, since
the result of rendering must be two-dimensional. The
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image may not be stored as an array but may be pro-
cedurally generated[Pea85][Per85]. Finally, the image
may not represent color at all, but may instead describe
transparency or other surface properties to be used in
lighting or shading calculations[CG85].

3 Previous Uses of Texture Map-
ping

In basic texture mapping, an image is applied to a poly-
gon (or some other surface facet) by assigning texture
coordinates to the polygon’s vertices. These coordi-
nates index a texture image, and are interpolated across
the polygon to determine, at each of the polygon’s pix-
els, a texture image value. The result is that some por-
tion of the texture image is mapped onto the polygon
when the polygon is viewed on the screen. Typical
two-dimensional images in this application are images
of bricks or a road surface (in this case the texture image
is often repeated across a polygon); a three-dimensional
image might represent a block of marble from which
objects could be “sculpted.”

3.1 Projective Textures

A generalization of this technique projects a texture
onto surfaces as if the texture were a projected slide or
movie[SKvW+92]. In this case the texture coordinates
at a vertex are computed as the result of the projection
rather than being assigned fixed values. This technique
may be used to simulate spotlights as well as the re-
projection of a photograph of an object back onto that
object’s geometry.

Projective textures are also useful for simulating
shadows. In this case, an image is constructed that rep-
resents distances from a light source to surface points
nearest the light source. This image can be computed by
performing z-buffering from the light’s point of view
and then obtaining the resulting z-buffer. When the
scene is viewed from the eyepoint, the distance from
the light source to each point on a surface is computed
and compared to the corresponding value stored in the
texture image. If the values are (nearly) equal, then
the point is not in shadow; otherwise, it is in shadow.
This technique should not use mipmapping, because
filtering must be applied after the shadow comparison
is performed[RSC87].

3.2 Image Warping

Image warping may be implemented with texture map-
ping by defining a correspondence between a uni-
form polygonal mesh (representing the original im-
age) and a warped mesh (representing the warped

image)[OTOK87]. The warp may be affine (to gen-
erate rotations, translations, shearings, and zooms) or
higher-order. The points of the warped mesh are as-
signed the corresponding texture coordinates of the
uniform mesh, and the mesh is texture mapped with
the original image. This technique allows for easily-
controlled interactive image warping. The technique
can also be used for panning across a large texture im-
age by using a mesh that indexes only a portion of the
entire image.

3.3 Transparency Mapping

Texture mapping may be used to lay transparent or
semi-transparent objects over a scene by representing
transparency values in the texture image as well as
color values. This technique is useful for simulating
clouds[Gar85] and trees for example, by drawing ap-
propriately textured polygons over a background. The
effect is that the background shows through around
the edges of the clouds or branches of the trees. Texture
map filtering applied to the transparency and color val-
ues automatically leads to soft boundaries between the
clouds or trees and the background.

3.4 Surface Trimming

Finally, a similar technique may be used to cut holes
out of polygons or perform domain space trimming on
curved surfaces[Bur92]. An image of the domain space
trim regions is generated. As the surface is rendered, its
domain space coordinates are used to reference this im-
age. The value stored in the image determines whether
the corresponding point on the surface is trimmed or
not.

4 Additional Texture Mapping Ap-
plications

Texture mapping may be used to render objects that are
usually rendered by other, specialized means. Since it is
becoming widely available, texture mapping may be a
good choice to implement these techniques even when
these graphics primitives can be drawn using special
purpose methods.

4.1 Anti-aliased Points and Line Segments

One simple use of texture mapping is to draw anti-
aliased points of any width. In this case the texture
image is of a filled circle with a smooth (anti-aliased)
boundary. When a point is specified, it’s coordinates
indicate the center of a square whose width is deter-
mined by the point size. The texture coordinates at the
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Figure 1. Anti-aliased line segments.

square’s corners are those corresponding to the corners
of the texture image. This method has the advantage
that any point shape may be accommodated simply by
varying the texture image.

A similar technique can be used to draw anti-aliased,
line segments of any width[Gro90]. The texture image
is a filtered circle as used above. Instead of a line seg-
ment, a texture mapped rectangle, whose width is the
desired line width, is drawn centered on and aligned
with the line segment. If line segments with round
ends are desired, these can be added by drawing an
additional textured rectangle on each end of the line
segment (Figure 1).

4.2 Air-brushes

Repeatedly drawing a translucent image on a back-
ground can give the effect of spraying paint onto a
canvas. Drawing an image can be accomplished by
drawing a texture mapped polygon. Any conceivable
brush “footprint”, even a multi-colored one, may be
drawn using an appropriate texture image with red,
green, blue, and alpha. The brush image may also eas-
ily be scaled and rotated (Figure 2).

4.3 Anti-aliased Text

If the texture image is an image of a character, then a
polygon textured with that image will show that char-
acter on its face. If the texture image is partitioned
into an array of rectangles, each of which contains the
image of a different character, then any character may
be displayed by drawing a polygon with appropriate
texture coordinates assigned to its vertices. An advan-
tage of this method is that strings of characters may

be arbitrarily positioned and oriented in three dimen-
sions by appropriately positioning and orienting the
textured polygons. Character kerning is accomplished
simply by positioning the polygons relative to one an-
other (Figure 3).

Antialiased characters of any size may be obtained
with a single texture map simply by drawing a polygon
of the desired size, but care must be taken if mipmap-
ping is used. Normally, the smallest mipmap is 1 pixel
square, so if all the characters are stored in a single tex-
ture map, the smaller mipmaps will contain a number
of characters filtered together. This will generate unde-
sirable effects when displayed characters are too small.
Thus, if a single texture image is used for all characters,
then each must be carefully placed in the image, and
mipmaps must stop at the point where the image of a
single character is reduced to 1 pixel on a side. Alterna-
tively, each character could be placed in its own (small)
texture map.

4.4 Volume Rendering

There are three ways in which texture mapping may be
used to obtain an image of a solid, translucent object.
The first is to draw slices of the object from back to
front[DCH88]. Each slice is drawn by first generating
a texture image of the slice by sampling the data rep-
resenting the volume along the plane of the slice, and
then drawing a texture mapped polygon to produce the
slice. Each slice is blended with the previously drawn
slices using transparency.

The second method uses 3D texture mapping[Dre92].
In this method, the volumetric data is copied into the
3D texture image. Then, slices perpendicular to the
viewer are drawn. Each slice is again a texture mapped
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Figure 2. Painting with texture maps.

Figure 3. Anti-aliased text.

polygon, but this time the texture coordinates at the
polygon’s vertices determine a slice through the 3D tex-
ture image. This method requires a 3D texture mapping
capability, but has the advantage that texture memory
need be loaded only once no matter what the view-
point. If the data are too numerous to fit in a single
3D image, the full volume may be rendered in multiple
passes, placing only a portion of the volume data into
the texture image on each pass.

A third way is to use texture mapping to implement
“splatting” as described by[Wes90][LH91].

4.5 Movie Display

Three-dimensional texture images may also be used to
display animated sequences[Ake92]. Each frame forms
one two-dimensional slice of a three-dimensional tex-

ture. A frame is displayed by drawing a polygon with
texture coordinates that select the desired slice. This
can be used to smoothly interpolate between frames of
the stored animation. Alpha values may also be asso-
ciated with each pixel to make animated “sprites”.

4.6 Contouring

Contour curves drawn on an object can provide valu-
able information about the object’s geometry. Such
curves may represent height above some plane (as in a
topographic map) that is either fixed or moves with the
object[Sab88]. Alternatively, the curves may indicate
intrinsic surface properties, such as geodesics or loci of
constant curvature.

Contouring is achieved with texture mapping by first
defining a one-dimensional texture image that is of con-
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Figure 4. Contouring showing distance from a plane.

stant color except at some spot along its length. Then,
texture coordinates are computed for vertices of each
polygon in the object to be contoured using a texture co-
ordinate generation function. This function may calculate
the distance of the vertex above some plane (Figure 4),
or may depend on certain surface properties to produce,
for instance, a curvature value. Modular arithmetic is
used in texture coordinate interpolation to effectively
cause the single linear texture image to repeat over and
over. The result is lines across the polygons that com-
prise an object, leading to contour curves.

A two-dimensional (or even three-dimensional) tex-
ture image may be used with two (or three) texture
coordinate generation functions to produce multiple
curves, each representing a different surface character-
istic.

4.7 Generalized Projections

Texture mapping may be used to produce a non-
standard projection of a three-dimensional scene, such
as a cylindrical or spherical projection[Gre86]. The tech-
nique is similar to image warping. First, the scene is
rendered six times from a single viewpoint, but with
six distinct viewing directions: forward, backward, up,
down, left, and right. These six views form a cube en-
closing the viewpoint. The desired projection is formed
by projecting the cube of images onto an array of poly-
gons (Figure 5).

4.8 Color Interpolation in non-RGB Spaces

The texture image may not represent an image at all,
but may instead be thought of as a lookup table. In-
termediate values not represented in the table are ob-
tained through linear interpolation, a feature normally
provided to handle image filtering.

One way to use a three-dimensional lookup table is to
fill it with RGB values that correspond to, for instance,
HSV (Hue, Saturation, Value) values. The H, S, and V
values index the three dimensional tables. By assigning
HSV values to the vertices of a polygon linear color in-
terpolation may be carried out in HSV space rather than
RGB space. Other color spaces are easily supported.

4.9 Phong Shading

Phong shading with an infinite light and a local viewer
may be simulated using a 3D texture image as follows.
First, consider the function of x, y, and z that assigns
a brightness value to coordinates that represent a (not
necessarily unit length) vector. The vector is the reflec-
tion off of the surface of the vector from the eye to a
point on the surface, and is thus a function of the nor-
mal at that point. The brightness function depends on
the location of the light source. The 3D texture image
is a lookup table for the brightness function given a re-
flection vector. Then, for each polygon in the scene, the
reflection vector is computed at each of the polygon’s
vertices. The coordinates of this vector are interpolated
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Figure 5. 360 Degree fisheye projection.

across the polygon and index the brightness function
stored in the texture image. The brightness value so
obtained modulates the color of the polygon. Multi-
ple lights may be obtained by incorporating multiple
brightness functions into the texture image.

4.10 Environment Mapping

Environment mapping[Gre86] may be achieved
through texture mapping in one of two ways. The first
way requires six texture images, each corresponding to
a face of a cube, that represent the surrounding environ-
ment. At each vertex of a polygon to be environment
mapped, a reflection vector from the eye off of the sur-
face is computed. This reflection vector indexes one of
the six texture images. As long as all the vertices of the
polygon generate reflections into the same image, the
image is mapped onto the polygon using projective tex-
turing. If a polygon has reflections into more than one
face of the cube, then the polygon is subdivided into
pieces, each of which generates reflections into only
one face. Because a reflection vector is not computed at
each pixel, this method is not exact, but the results are
quite convincing when the polygons are small.

The second method is to generate a single texture
image of a perfectly reflecting sphere in the environ-
ment. This image consists of a circle representing the
hemisphere of the environment behind the viewer, sur-
rounded by an annulus representing the hemisphere in
front of the viewer. The image is that of a perfectly
reflecting sphere located in the environment when the
viewer is infinitely far from the sphere. At each polygon
vertex, a texture coordinate generation function gen-
erates coordinates that index this texture image, and
these are interpolated across the polygon. If the (nor-
malized) reflection vector at a vertex is r = (x y z ),
and m =

p
2(z + 1), then the generated coordinates

are x=m and y=m when the texture image is indexed

Texture
Image

(0,0,1)

(x, y, z)

z+1
2( )xt , yt ,

(xt , yt)

2(z+1)
xxt =

2(z+1)

yyt =

Note:
2(z+1)x2 + y2 + (z +1)2 =

Figure 6. Spherical reflection geometry.

by coordinates ranging from -1 to 1. (The calculation
is diagrammed in Figure 6). This method has the dis-
advantage that the texture image must be recomputed
whenever the view direction changes, but requires only
a single texture image with no special polygon subdi-
vision (Figure 7).

4.11 3D Halftoning

Normal halftoned images are created by thresholding
a source image with a halftone screen. Usually this
halftone pattern of lines or dots bears no direct rela-
tionship to the geometry of the scene. Texture map-
ping allows halftone patterns to be generated using a
3D spatial function or parametric lines of a surface (Fig-
ure 8). This permits us to make halftone patterns that
are bound to the surface geometry[ST90].
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Figure 7. Environment mapping.

Figure 8. 3D halftoning.

5 Conclusion

Many graphics systems now provide hardware that
supports texture mapping. As a result, generating a
texture mapped scene need not take longer than gener-
ating a scene without texture mapping.

We have shown that, in addition to its standard uses,
texture mapping can be used for a large number of
interesting applications, and that texture mapping is a
powerful and flexible low level graphics drawing prim-
itive.
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Abstract

This paper describes an algorithm for simulating soft shadows at interactive rates using graphics hardware. On current graphics
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After this precomputation, soft shadows in a static scene can be displayed in real-time with simple texture mapping of the
radiance textures. All pixel operations employed by the algorithm are supported in hardware by existing graphics workstations.
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1 Introduction
Shadows are both an important visual cue for the perception of

spatial relationships and an essential component of realistic images.
Shadows differ according to the type of light source causing them:
point light sources yield hard shadows, while linear and area (also
known as extended) light sources generally yield soft shadows with
an umbra (fully shadowed region) and penumbra (partially shad-
owed region).

The real world contains mostly soft shadows due to the finite size
of sky light, the sun, and light bulbs, yet most computer graphics
rendering software simulates only hard shadows, if it simulates
shadows at all. Excessive sharpness of shadow edges is often a
telltale sign that a picture is computer generated.

Shadows are even less commonly simulated with hardware ren-
dering. Current graphics workstations, such as Silicon Graphics
(SGI) and Hewlett Packard (HP) machines, provide z-buffer hard-
ware that supports real-time rendering of fairly complex scenes.
Such machines are wonderful tools for computer aided design and
visualization. Shadows are seldom simulated on such machines,
however, because existing algorithms are not general enough, or
they require too much time or memory. The shadow algorithms
most suitable for interaction on graphics workstations have a cost
per frame proportional to the number of point light sources. While
such algorithms are practical for one or two light sources, they are
impractical for a large number of sources or the approximation of
extended sources.

We present here a new algorithm that computes the soft shad-
ows due to extended light sources. The algorithm exploits graphics
hardware for fast projective (perspective) transformation, clipping,
scan conversion, texture mapping, visibility testing, and image av-
eraging. The hardware is used both to compute the shading on
the surfaces and to display it, using texture mapping. For diffuse
scenes, the shading is computed in a preprocessing step whose cost
is proportional to the number of light source samples, but while the
scene is static, it can be redisplayed in time independent of the num-
ber of light sources. The method is also useful for simulating the
hard shadows due to a large number of point sources. The memory
requirements of the algorithm are also independent of the number
of light source samples.

1.1 The Idea
For diffuse scenes, our method works by precomputing, for each

polygon in the scene, a radiance texture [12,14] that records the
color (outgoing radiance) at each point in the polygon. In a diffuse
scene, the radiance at each surface point is view independent, so it
can be precomputed and re-used until the scene geometry changes.
This radiance texture is analogous to the mesh of radiosity values
computed in a radiosity algorithm. Unlike a radiosity algorithm,
however, our algorithm can compute this texture almost entirely in
hardware.

The key idea is to use graphics hardware to determine visibility
and calculate shading, that is, to determine which portions of a
surface are occluded with respect to a given extended light source,
and how brightly they are lit. In order to simulate extended light
sources, we approximate them with a number of light sample points,
and we do visibility tests between a given surface point and each
light sample. To keep as many operations in hardware as possible,
however, we do not use a hemicube [7] to determine visibility.
Instead, to compute the shadows for a single polygon, we render
the scene into a scratch buffer, with all polygons except the one
being shaded appropriately blackened, using a special projective
projection from the point of view of each light sample. These views
are registered so that corresponding pixels map to identical points on

the polygon. When the resulting hard shadow images are averaged,
a soft shadow image results (figure 1). This image is then used
directly as a texture on the polygon in order to simulate shadows
correctly. The textures so computed are used for real-time display
until the scene geometry changes.

In the remainder of the paper, we summarize previous shadow
algorithms, we present our method for diffuse scenes in more detail,
we discuss generalizations to scenes with specular and general re-
flectance, we present our implementation and results, and we offer
some concluding remarks.

2 Previous Work
2.1 Shadow Algorithms

Woo et al. surveyed a number of shadow algorithms [19]. Here
we summarize soft shadows methods and methods that run at inter-
active rates. Shadow algorithms can be divided into three categories:
those that compute everything on the fly, those that precompute just
visibility, and those that precompute shading.

Computation on the Fly. Simple ray tracing computes everything
on the fly. Shadows are computed on a point-by-point basis by
tracing rays between the surface point and a point on each light
source to check for occluders. Soft shadows can be simulated by
tracing rays to a number of points distributed across the light source
[8].

The shadow volume approach is another method for computing
shadows on the fly. With this method, one constructs imaginary
surfaces that bound the shadowed volume of space with respect
to each point light source. Determining if a point is in shadow
then reduces to point-in-volume testing. Brotman and Badler used
an extended z-buffer algorithm with linked lists at each pixel to
support soft shadows using this approach [4].

The shadow volume method has also been used in two hardware
implementations. Fuchs et al. used the pixel processors of the
Pixel Planes machine to simulate hard shadows in real-time [10].
Heidmann used the stencil buffer in advanced SGI machines [13].
With Heidmann’s algorithm, the scene must be rendered through
the stencil created from each light source, so the cost per frame
is proportional to the number of light sources times the number
of polygons. On 1991 hardware, soft shadows in a fairly simple
scene required several seconds with his algorithm. His method
appears to be one of the algorithms best suited to interactive use on
widely available graphics hardware. We would prefer, however, an
algorithm whose cost is sublinear in the number of light sources.

A simple, brute force approach, good for casting shadows of
objects onto a plane, is to find the projective transformation that
projects objects from a point light onto a plane, and to use it to
draw each squashed, blackened object on top of the plane [3], [15,
p. 401]. This algorithm effectively multiplies the number of objects
in the scene by the number of light sources times the number of
receiver polygons onto which shadows are being cast, however,
so it is typically practical only for very small numbers of light
sources and receivers. Another problem with this method is that
occluders behind the receiver will cast erroneous shadows, unless
extra clipping is done.

Precomputation of Visibility. Instead of computing visibility on
the fly, one can precompute visibility from the point of view of each
light source.

The z-buffer shadow algorithm uses two (or more) passes of z-
buffer rendering, first from the light sources, and then from the
eye [18]. The z-buffers from the light views are used in the final
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Figure 1: Hard shadow images from 2�2 grid of sample points on light source.

Figure 2: Left: scene with square light source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows
on receiver. Center: Approximate soft shadows resulting from 2�2 grid of sample points; the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16�16 sampling). This image is used as the texture on the receiver at left.

pass to determine if a given 3-D point is illuminated with respect to
each light source. The transformation of points from one coordinate
system to another can be accelerated using texture mapping hard-
ware [17]. This latter method, by Segal et al., achieves real-time
rates, and is the other leading method for interactive shadows. Soft
shadows can be generated on a graphics workstation by rendering the
scene multiple times, using different points on the extended light
source, averaging the resulting images using accumulation buffer
hardware [11].

A variation of the shadow volume approach is to intersect these
volumes with surfaces in the scene to precompute the umbra and
penumbra regions on each surface [16]. During the final rendering
pass, illumination integrals are evaluated at a sparse sampling of
pixels.

Precomputation of Shading. Precomputation can be taken fur-
ther, computing not just visibility but also shading. This is most
relevant to diffuse scenes, since their shading is view-independent.
Some of these methods compute visibility continuously, while oth-
ers compute it discretely.

Several researchers have explored continuous visibility methods
for soft shadow computation and radiosity mesh generation. With
this approach, surfaces are subdivided into fully lit, penumbra, and
umbra regions by splitting along lines or curves where visibility
changes. In Chin and Feiner’s soft shadow method, polygons are
split using BSP trees, and these sub-polygons are then pre-shaded
[6]. They achieved rendering times of under a minute for simple
scenes. Drettakis and Fiume used more sophisticated computational
geometry techniques to precompute their subdivision, and reported
rendering times of several seconds [9].

Most radiosity methods discretize each surface into a mesh of
elements and then use discrete methods such as ray tracing or
hemicubes to compute visibility. The hemicube method computes
visibility from a light source point to an entire hemisphere by pro-
jecting the scene onto a half-cube [7]. Much of this computation
can be done in hardware. Radiosity meshes typically do not resolve
shadows well, however. Typical artifacts are Mach bands along the
mesh element boundaries and excessively blurry shadows. Most
radiosity methods are not fast enough to support interactive changes
to the geometry, however. Chen’s incremental radiosity method is
an exception [5].

Our own method can be categorized next to hemicube radiosity
methods, since it also precomputes visibility discretely. Its tech-
nique for computing visibility also has parallels to the method of
flattening objects to a plane.

2.2 Graphics Hardware
Current graphics hardware, such as the Silicon Graphics Reality

Engine [1], can projective-transform, clip, shade, scan convert, and
texture tens of thousands of polygons in real-time (in 1/30 sec.).
We would like to exploit the speed of this hardware to simulate soft
shadows.

Typically, such hardware supports arbitrary 4�4 homogeneous
transformations of planar polygons, clipping to any truncated pyra-
midal frustum (right or oblique), and scan conversion with z-
buffering or overwriting. On SGI machines, Phong shading (once
per pixel) is not possible, but faceted shading (once per polygon) and
Gouraud shading (once per vertex) are supported. Phong shading
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can be simulated by splitting polygons into small pieces on input. A
common, general form for hardware-supported illumination is dif-
fuse reflection from multiple point spotlight sources, with a texture
mapped reflectance function and attenuation:

Ic(x; y) = Tc(u; v)
X
l

cos �l cos �0e
l Llc

�+ �rl + 
r2
l

where c is color channel index (= r, g, or b), Ic(x; y) is the pixel
value at screen space (x; y), Tc(u; v) is a texture parameterized
by texture coordinates (u; v), which are a projective transform of
(x; y), �l is the polar angle for the ray to light source l, �0

l is the
angle away from the directional axis of the light source, e is the
spotlight exponent, Llc is the radiance of light l, rl is distance to
light source l, and �, �, and 
 are constants controlling attenuation.
Texture mapping, lights, and attenuation can be turned on and off
independently on a per-polygon basis. Most systems also support
Phong illumination, which has an additional specular term that we
have not shown. The most advanced, expensive machines support
all of these functions in hardware, while the cheaper machines do
some of these calculations in software. Since the graphics subrou-
tine interface, such as OpenGL [15], is typically identical on any
machine, these differences are transparent to the user, except for
the dramatic differences in running speed. So when we speak of a
computation being done “in hardware”, that is true only on high end
machines.

The accumulation buffer [11], another feature of some graphics
workstations, is hardware that allows a linear combination of images
to be easily computed. It is capable of computing expressions of
the general form:

Ac(x; y) =
X
i

�iIic(x; y)

where Iic is a channel of image i, and Ac is a channel of the
accumulator array.

3 Diffuse Scenes
Our shadow generation method for diffuse scenes takes advantage

of these hardware capabilities.
Direct illumination in a scene of opaque surfaces that emit or

reflect light diffusely is given by the following formula:

Lc(x) = �c(x)

�
Lac +

Z
lights

cos+� cos+�
0

�r2
v(x;x0)Lc(x

0) dx0

�
;

where, as shown in Figure 3,
� x = (x; y; z) is a 3-D point on a reflective surface, and x0 is

a point on a light source,
� � is polar angle (angle from normal) at x, �0 is the angle at x0,
� r is the distance between x and x0,
� �, �0, and r are functions of x and x0,
� Lc(x) is outgoing radiance at point x for color channel c, due

to either emission or reflection, Lac is ambient radiance,
� �c(x) is reflectance,
� v(x;x0) is a Boolean visibility function that equals 1 if point
x is visible from point x0, else 0,

� cos+� = max(cos �; 0), for backface testing, and
� the integral is over all points on all light sources, with respect

to dx0, which is an infinitesimal area on a light source.
The inputs to the problem are the geometry, the reflectance �c(x),
and emitted radiance Lc(x

0) on all light sources, the ambient radi-
ance Lac, and the output is the reflected radiance function Lc(x).

receiver R

x'li x
θ' θ

light l

r

Figure 3: Geometry for direct illumination. The radiance at point
x on the receiver is being calculated by summing the contributions
from a set of point light sources at x0

li on light l.

3.1 Approximating Extended Light Sources
Although such integrals can be solved in closed form for planar

surfaces with no occlusion (v � 1), the complexity of the visibility
function makes these integrals intractable in the general case. We
can compute approximations to the integral, however, by replacing
each extended light source l by a set of nl point light sources:

Lc(x
0) �

X
l

nlX
i=1

ali Lc(x
0) �(x0

� x
0

li);

where �(x) is a 3-D Dirac delta function, x0

li is sample point i on
light source l, and ali is the area associated with this sample point.
Typically, each sample on a light source has equal area: ali=al=nl,
where al is the area of light source l.

With this approximation, the radiance of a reflective surface point
can be computed by summing the contributions over all sample
points on all light sources:

Lc(x) = �c(x)Lac

+ �c(x)
X
l

nlX
i=1

ali
cos+�li cos+�

0

li

�r2
li

v(x;x0

li)Lc(x
0

li):
(1)

The formulas above can be generalized to linear and point light
sources, as well as area light sources.

The most difficult and expensive part of the above calculation
is evaluation of the visibility function v, since it requires global
knowledge of the scene, whereas the remaining factors require only
local knowledge. But computing v is necessary in order to simulate
shadows. The above formula could be evaluated using ray tracing,
but the resulting algorithm would be slow due to the large number
of light source samples.

3.2 Soft Shadows in Hardware
Equation (1) can be rewritten in a form suitable to hardware

computation:

Lc(x) = �c(x)Lac

+
X
l

nlX
i=1

�
ali �c(x)

�� cos+�li cos+�
0

li Lc(x
0

li)

�r2
li

�
v(x;x0

li):

(2)

Each term in the inner summation can be regarded as a hard
shadow image resulting from a point light source at x0

li, where x is
a function of screen (x; y).

That summand consists of the product of three factors. The first
one, which is an area times the reflectance of the receiving polygon,
can be calculated in software. The second factor is the cosine of
the angle on the receiver, times the cosine of the angle on the light
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Figure 4: Pyramid with parallelogram base. Faces of pyramid are
marked with their plane equations.

source, times the radiance of the light source, divided by r2. This
can be computed in hardware by rendering the receiver polygon
with a single spotlight at x0

li turned on, using a spotlight exponent
of e = 1 and quadratic attenuation. On machines that do not support
Phong shading, we will have to finely subdivide the polygon. The
third factor is visibility between a point on a light source and each
point on the receiver. Visibility can be computed by projecting all
polygons between light source point x0

li and the receiver onto the
receiver.

We want to simulate soft shadows as quickly as possible. To take
full advantage of the hardware, we can precompute the shading for
each polygon using the formula above, and then display views of
the scene from moving viewpoints using real-time texture mapping
and z-buffering.

To compute soft shadow textures, we need to generate a number
of hard shadow images and then average them. If these hard shadow
images are not registered (they would not be, using hemi-cubes),
then it would be necessary to resample them so that corresponding
pixels in each hard shadow image map to the same surface point in
3-D. This would be very slow. A faster alternative is to choose the
transformation for each projection so that the hard shadow images
are perfectly registered with each other.

For planar receiver surfaces, this is easily accomplished by ex-
ploiting the capabilities of projective transformations. If we fit a
parallelogram around the receiver surface of interest, and then con-
struct a pyramid with this as its base and the light point as its apex,
there is a 4�4 homogeneous transformation that will map such a
pyramid into an axis-aligned box, as described shortly.

The hard shadow image due to sample point i on light l is created
by loading this special transformation matrix and rendering the
receiver polygon. The polygon is illuminated by the ambient light
plus a single point light source at x0

li, using Phong shading or a
good approximation to it. The visibility function is then computed
by rendering the remainder of the scene with all surfaces shaded as
if they were the receiver illuminated by ambient light: (r; g; b) =
(�rLar; �gLag; �bLab). This is most quickly done with z-buffering
off, and clipping to a pyramid with the receiver polygon as its base.
Drawing each polygon with an unsorted painter’s algorithm suffices
here because all polygons are the same color, and after clipping,
the only polygon fragments remaining will lie between the light
source and the receiver, so they all cast shadows on the receiver.
To compute the weighted average of the hard shadow images so
created, we use the accumulation buffer.

3.3 Projective Transformation of a Pyramid to a Box
We want a projective (perspective) transformation that maps a

pyramid with parallelogram base into a rectangular parallelepiped.
The pyramid lies in object space, with coordinates (xo; yo; zo). It

has apex a and its parallelogram base has one vertex at b and edge
vectors ex and ey (bold lower case denotes a 3-D point or vector).
The parallelepiped lies in what we will call unit screen space, with
coordinates (xu; yu; zu). Viewed from the apex, the left and right
sides of the pyramid map to the parallel planes xu = 0 and xu = 1,
the bottom and top map to yu=0 and yu=1, and the base plane and
a plane parallel to it through the apex map to zu = 1 and zu =1,
respectively. See figure 4.

A 4�4 homogeneous matrix effecting this transformation can be
derived from these conditions. It will have the form:

M =

8>>>>>>:
m00 m01 m02 m03

m10 m11 m12 m13

0 0 0 1
m30 m31 m32 m33

9>>>>>>; ;

and the homogeneous transformation and homogeneous division to
transform object space to unit screen space are:8>>>>>>:

x
y
1
w

9>>>>>>; =M

8>>>>>>:
xo

yo

zo

1

9>>>>>>; and

8>>>:
xu

yu

zu

9>>>; =

8>>>:
x=w
y=w
1=w

9>>>; :

The third row of matrixM takes this simple form because a constant
zu value is desired on the base plane. The homogeneous screen
coordinates x, y, and w are each affine functions of xo, yo, and zo

(that is, linear plus translation). The constraints above specify the
value of each of the three coordinates at four points in space – just
enough to uniquely determine the twelve unknowns inM.

The w coordinate, for example, has value 1 at the points b,
b+ex, and b+ey, and value 0 at a. Therefore, the vector nw =
ey�ex is normal to any plane of constant w, thus fixing the first
three elements of the last row of the matrix within a scale factor:
(m30;m31;m32)

T =�wnw. Settingw to 0 ata and 1 atb constrains
m33=��wnw �a and �w=1=nw �ew, where ew=b� a. The first
two rows of M can be derived similarly (see figure 4). The result
is:

M =

8>>>>>>:
�xnxx �xnxy �xnxz ��xnx �b

�ynyx �ynyy �ynyz ��yny �b

0 0 0 1
�wnwx �wnwy �wnwz ��wnw �a

9>>>>>>; ;

where

nx = ew�ey

ny = ex�ew

nw = ey�ex

and
�x = 1=nx �ex

�y = 1=ny �ey

�w = 1=nw �ew

:

Blinn [3] uses a related projective transformation for the genera-
tion of shadows on a plane, but his is a projection (it collapses 3-D
to 2-D), while ours is 3-D to 3-D. We use the third dimension for
clipping.

3.4 Using the Transformation
To use this transformation in our shadow algorithm, we first fit

a parallelogram around the receiver polygon. If the receiver is a
rectangle or other parallelogram, the fit is exact; if the receiver is
a triangle, then we fit the triangle into the lower left triangle of the
parallelogram; and for more general polygons with four or more
sides, a simple 2-D bounding box in the plane of the polygon can
be used. It is possible to go further with projective transformations,
mapping arbitrary planar quadrilaterals into squares (using the ho-
mogeneous texture transformation matrix of OpenGL, for example).
We assume for simplicity, however, that the transformation between
texture space (the screen space in these light source projections) and
object space is affine, and so we restrict ourselves to parallelograms.
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3.5 Soft Shadow Algorithm for Diffuse Scenes
To precompute soft shadow radiance textures:

turn off z-buffering
for each receiver polygon R

choose resolution for receiver’s texture (sx�sy pixels)
clear accumulator image of sx�sy pixels to black
create temporary image of sx�sy pixels
for each light source l

first backface test: if l is entirely behind R
or R is entirely behind l, then skip to next l

for each sample point i on light source l
second backface test: if x0

li is behind R then skip to next i
compute transformation matrix M, where a=x0

li,
and the base parallelogram fits tightly around R

set current transformation matrix to scale(sx; sy; 1)�M
set clipping planes to zu;near=1 � � and zu;far=big
draw R with illumination from x0

li only, as described in
equation (2), into temp image

for each other object in scene
draw object with ambient color into temp image

add temp image into accumulator image with weight al=nl
save accumulator image as texture for polygon R

A hard shadow image is computed in each iteration of the i loop.
These are averaged together to compute a soft shadow image, which
is used as a radiance texture. Note that objects casting shadows need
not be polygonal; any object that can be quickly scan converted will
work well.

To display a static scene from moving viewpoints, simply:

turn on z-buffering
for each object in scene

if object receives shadows, draw it textured but without illumination
else draw object with illumination

3.6 Backface Testing
The cases where cos+� cos+�

0=0 can be optimized using backface
testing.

To test if polygon p is behind polygon q, compute the signed
distances from the plane of polygon q to each of the vertices of
p (signed positive on the front of q and negative on the back). If
they are all positive, then p is entirely in front of q, if they are all
nonpositive, p is entirely in back, otherwise, part of p is in front of
q and part is in back.

To test if the apex a of the pyramid is behind the receiver R that
defines the base plane, simply test if nw �ew�0.

The above checks will ensure that cos �>0 at every point on the
receiver, but there is still the possibility that cos �0

� 0 on portions
of the receiver (i.e. that the receiver is only partially illuminated by
the light source). This final case should be handled at the polygon
level or pixel level when shading the receiver in the algorithm above.
Phong shading, or a good approximation to it, is needed here.

3.7 Sampling Extended Light Sources
The set of samples used on each light source greatly influences the

speed and quality of the results. Too few samples, or a poorly chosen
sample distribution, result in penumbras that appear stepped, not
continuous. If too many samples are used, however, the simulation
runs too slowly.

If a uniform grid of sample points is used, the stepping is much
more pronounced in some cases. For example, if a uniform grid of
m�m samples is used on a parallelogram light source, an occluder
edge coplanar with one of the light source edges will cause m big

steps, while an occluder edge in general position will cause m2

small steps.
Stochastic sampling [8] with the same number of samples yields

smoother penumbra than a uniform grid, because the steps no longer
coincide. We use a jittered uniform grid because it gives good results
and is very easy to compute.

Using a fixed number of samples on each light source is ineffi-
cient. Fine sampling of a light source is most important when the
light source subtends a large solid angle from the point of view of
the receiver, since that is when the penumbra is widest and stepping
artifacts would be most visible. A good approach is to choose the
light source sample resolution such that the solid angle subtended
by the light source area associated with each sample is below a
user-specified threshold.

The algorithm can easily handle diffuse (non-directional) light
sources whose outgoing radiance varies with position, such as
stained glass windows. For such light sources, importance sam-
pling might be preferable: concentration of samples in the regions
of the light source with highest radiance.

3.8 Texture Resolution
The resolution of the shadow texture should be roughly equal to

the resolution at which it will be viewed (one texture pixel mapping
to one screen pixel); lower resolution results in visible artifacts such
as blocky shadows, and higher resolution is wasteful of time and
memory. In the absence of information about probable views, a
reasonable technique is to set the number of pixels on a polygon’s
texture, in each dimension, proportional to its size in world space us-
ing a “desired pixel size” parameter. With this scheme, the required
texture memory, in pixels, will be the total world space surface area
of all polygons in the scene divided by the square of the desired
pixel size.

Texture memory for triangles can be further optimized by packing
the textures for two triangles into one rectangular texture block.

If there are too many polygons in the scene, or the desired pixel
size is too small, the texture memory could be exceeded, causing
paging of texture memory and slow performance.

Radiance textures can be antialiased by supersampling: gener-
ating the hard and initial soft shadow images at several times the
desired resolution, and then filtering and downsampling the images
before creating textures. Textured surfaces should be rendered with
good texture filtering.

Some polygons will contain penumbral regions with respect to
a light source, and will require high texture resolution, but others
will be either totally shadowed (umbral) or totally illuminated by
each light source, and will have very smooth radiance functions.
Sometimes these functions will be so smooth that they can be ad-
equately approximated by a single Gouraud shaded polygon. This
optimization saves significant texture memory and speeds display.

This idea can be carried further, replacing the textured planar
polygon with a mesh of coplanar Gouraud shaded triangles. For
complex shadow patterns and radiance functions, however, textures
may render faster than the corresponding Gouraud approximation,
depending on the relative speed of texture mapping and Gouraud-
shaded triangle drawing, and the number of triangles required to
achieve a good approximation.

3.9 Complexity
We now analyze the expected complexity of our algorithm (worst

case costs are not likely to be observed in practice, so we do not
discuss them here). Although more sophisticated schemes are pos-
sible, we will assume for the purposes of analysis that the same set
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Figure 5: Shadows are computed on plane R and projected onto the
receiving object at right.

of light samples are used for shadowing all polygons. Suppose we
have a scene with s surfaces (polygons), a total of n=

P
l
nl light

source samples, a total of t radiance texture pixels, and the output
images are rendered with p pixels. We assume the depth complexity
of the scene (the average number of surfaces intersecting a ray) is
bounded, and that t and p are roughly linearly related. The average
number of texture pixels per polygon is t=s.

With our technique, preprocessing renders the scene ns times.
A painter’s algorithm rendering of s polygons into an image of t=s
pixels takesO(s+t=s) time for scenes of bounded depth complexity.
The total preprocessing time is thus O(ns2+nt), and the required
texture memory is O(t). Display requires only z-buffered texture
mapping of s polygons to an image of p pixels, for a time cost
of O(s+p). The memory for the z-buffer and output image is
O(p)=O(t).

Our display algorithm is very fast for complex scenes. Its cost is
independent of the number of light source samples used, and also
independent of the number of texture pixels (assuming no texture
paging).

For scenes of low or moderate complexity, our preprocessing
algorithm is fast because all of its pixel operations can be done in
hardware. For very complex scenes, our preprocessing algorithm
becomes impractical because it is quadratic in s, however. In such
cases, performance can be improved by calculating shadows only on
a small number of surfaces in the scene (e.g. floor, walls, and other
large, important surfaces), thereby reducing the cost toO(nsst+nt),
where st is the number of textured polygons.

In an interactive setting, a progressive refinement of images can
be used, in which hard shadows on a small number of polygons
(precomputation with n= 1, st small) are rendered while the user
is moving objects with the mouse, a full solution (precomputation
withn large, st large) is computed when they complete a movement,
and then top speed rendering (display with texture mapping) is used
as the viewer moves through the scene.

More fundamentally, the quadratic cost can be reduced using
more intelligent data structures. Because the angle of view of most
of the shadow projection pyramids is narrow, only a small fraction
of the polygons in a scene shadow a given polygon, on average.
Using spatial data structures, entire objects can be culled with a few
quick tests [2], obviating transformation and clipping of most of
the scene, speeding the rendering of each hard shadow image from
O(s+t=s) to O(s�+t=s), where � � :3 or so.

An alternative optimization, which would make the algorithm
more practical for the generation of shadows on complex curved or
many-faceted objects, is to approximate a receiving object with a
plane, compute shadows on this plane, and then project the shadows
onto the object (figure 5). This has the advantage of replacing
many renderings with a single rendering, but its disadvantage is that
self-shadowing of concave objects is not simulated.

3.10 Comparison to Other Algorithms
We can compare the complexity of our algorithm to other algo-

rithms capable of simulating soft shadows at near-interactive rates.
The main alternatives are the stencil buffer technique by Heidmann,
the z-buffer method by Segal et al., and hardware hemicube-based
radiosity algorithms.

The stencil buffer technique renders the scene once for each light
source, so its cost per frame is O(ns+np), making it difficult
to support soft shadows in real-time. With the z-buffer shadow
algorithm, the preprocessing time is acceptable, but the memory
cost and display time cost are O(np). This makes the algorithm
awkward for many point light sources or extended light sources
with many samples (large n). When soft shadows are desired, our
approach appears to yield faster walkthroughs than either of these
two methods, because our display process is so fast.

Among current radiosity algorithms, progressive radiosity using
hardware hemicubes is probably the fastest method for complex
scenes. With progressive radiosity, very high resolution hemicubes
and many elements are needed to get good shadows, however. While
progressive radiosity may be a better approach for shadow genera-
tion in very complex scenes (very large s), it appears slower than
our technique for scenes of moderate complexity because every
pixel-level operation in our algorithm can be done in hardware, but
this is not the case with hemicubes, since the process of summing
differential form factors while reading out of the hemicube must be
done in software [7].

4 Scenes with General Reflectance
Shadows on specular surfaces, or surfaces with more general

reflectance, can be simulated with a generalization of the diffuse
algorithm, but not without added time and memory costs.

Shadows from a single point light source are easily simulated
by placing just the visibility function v(x;x0) in texture memory,
creating a Boolean shadow texture, and computing the remaining
local illumination factors at vertices only. This method costsO(sst+
t) for precomputation, and O(s+p) for display.

Shadows from multiple point light sources can also be simulated.
After precomputing a shadow texture for each polygon when illu-
minated with each light source, the total illumination due to n light
sources can be calculated by rendering the scene n times with each
of these sets of shadow textures, compositing the final image using
blending or with the accumulation buffer. The cost of this method
is nt one-bit texture pixels and O(ns+np) display time.

Generalizing this method to extended light sources in the case of
general reflectance is more difficult, as the computation involves the
integration of light from polygonal light sources weighted by the
bidirectional reflectance distribution functions (BRDFs). Specular
BRDF’s are spiky, so careful integration is required or the highlights
will betray the point sampling of the light sources. We believe,
however, that with careful light sampling and numerical integration
of the BRDF’s, soft shadows on surfaces with general reflectance
could be displayed with O(nt) memory and O(ns+np) time.

5 Implementation
We implemented our diffuse algorithm using the OpenGL sub-

routine library, running with the IRIX 5.3 operating system on an
SGI Crimson with 100 MHz MIPS R4000 processor and Reality
Engine graphics. This machine has hardware for texture mapping
and an accumulation buffer with 24 bits per channel.

The implementation is fairly simple, since OpenGL supports
loading of arbitrary 4�4 matrices, and we intentionally cast our
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shading formulas in a form that maps cleanly into OpenGL’s model.
The source code is about 2,000 lines of C++. Our implementation
renders at about 900�900 resolution, and uses 24-bit textures at
sizes of 2kx �2ky pixels, for 2 � kx; ky � 8. Phong shading is
simulated by subdividing each receiver polygon into a grid of 8�8-
pixel parallelograms during preprocessing.

Our software allows interactive movement of objects and the
camera. When the scene geometry is changed, textures are recom-
puted. On a scene with s= 749 polygons, st = 3 of them textured,
with two area light sources sampled with n= 8 points total, gen-
erating textures with about t = 200; 000 pixels total, and a final
picture of about p= 810; 000 pixels, preprocessing has a redisplay
rate of 2 Hz. For simple scenes, the slowest part of preprocessing
is the transfer of radiance textures from system memory to texture
memory.

When only the view is changed, we simply redisplay the scene
with texture mapping. The use of OpenGL display lists helps us
achieve 30 Hz rates in most cases. When we allocate more radiance
texture memory than the hardware can hold, however, paging slows
redisplay.

Since we know the size and perceptual importance of each object
at modeling time, we have found it convenient to have each receiver
object control the number of light source samples that are used to
illuminate it. The floor and walls, for example, might specify many
light source samples, while table and chairs might specify a single
light source sample. To facilitate further testing of shadow sampling,
a slider that acts as a multiplier on the requested number of samples
per light source is provided. More automatic and intelligent light
sampling schemes are certainly possible.

6 Results
The color figures illustrate high quality results achievable in a few

seconds with fine light source sampling. Figure 6 shows a scene
with 6,142 polygons, 3 of them shadowed, which was computed in
5.5 seconds using n= 32 light samples total on two light sources.
Figure 7 illustrates the calculation of shadows on more complex
objects, with a total of st=25 shadowed polygons. For this image,
7�7 light sampling was used when shadowing the walls and floor,
while 3�3 sampling was used to compute shadows on the table top,
and 2�2 sampling was used for the table legs. The textures for
the table polygons are smaller than those for the walls and floor, in
proportion to their world space size. This image was calculated in
13 seconds.

7 Conclusions
We have described a simple algorithm for generating soft shadows

at interactive rates by exploiting graphics workstation hardware.
Previous shadow generation methods have not supported both the
computation and display of soft shadows at these speeds.

To achieve real time rates with our method, one probably needs
hardware support for transformation, clipping, scan conversion, tex-
ture mapping, and accumulation buffer operations. In coming years,
such hardware will only become more affordable, however. Soft-
ware implementations will also work, of course, but at reduced
speeds.

For most scenes, realistic images can be generated by computing
soft shadows only for a small set of polygons. This will run quite
fast. If it is necessary to compute shadows for every polygon, our
preprocessing method has quadratic growth with respect to scene
complexity s, but we believe this can be reduced to about O(s1:3),
using spatial data structures to cull off-screen objects.

Once preprocessing is done, the display cost is independent of
the number and size of light sources. This cost is little more than
the display cost without shadows.

The method also has potential as a form factor calculation tech-
nique for progressive radiosity.
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Figure 6: Shadows on walls and floor, computed in 5.5 seconds.

Figure 7: Shadows on walls, floor, and table, computed in 13 seconds.
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Abstract

We describe a CSG rendering algorithm that requires no evaluation of the CSG tree beyond normal-
ization and pruning. It renders directly from the normalized CSG tree and primitives described (to
the graphics system) by their facetted boundaries. It behaves correctly in the presence of user de�ned,
\near" and \far" clipping planes. It has been implemented on standard graphics workstations using
Iris GL ? and OpenGL ? graphics libraries. Modestly sized models can be evaluated and rendered at
interactive (less than a second per frame) speeds. We have combined the algorithm with an existing
B-rep based modeller to provide interactive rendering of incremental updates to large models.

1. Introduction

Constructive Solid Geometry (CSG) within an inter-
active modelling environment provides a simple and
intuitive approach to solid modelling. In conventional
modelling systems primitives are �rst positioned, a
boolean operation is performed and the results then
rendered. Often the correct position cannot be gauged
easily from display of the primitives alone. A sequence
of trial and error may be initiated or perhaps a break
from the normal modelling process to calculate the
correct position numerically. Conceptual modelling is
inhibited | usually a design is fully 
edged before
modelling commences. Interactive rendering o�ers the
promise of a modelling system where designers can
easily explore possibilities within the CSG paradigm.
For instance, a designer could drag a hole de�ned by a
complex solid through a workpiece, observing the new
forms that emerge.

Interactive rendering of CSG models has previ-
ously been implemented with special purpose hard-
ware ?; ?; ?. We believe that such systems should be
based on an existing, commonly available graphics li-
brary. Use of an existing graphics library simpli�es de-
velopment, protects investment in proprietary graph-
ics hardware, and leverages o� future improvements

y Supported by Informatix, Inc. Tokyo.

in the hardware supported by the library. Conversion
of the CSG tree for a model into a boundary repre-
sentation (B-rep) meets this goal but is typically too
slow for interactive modi�cation.

The surfaces in the B-rep of a model are a subset
of the surfaces of the primitives in the CSG tree for
the model. Conversion to a B-rep is then the clas-
si�cation of the surfaces of each primitive into por-
tions that are \inside", \outside", or \on" the surface
of the fully evaluated model. Display of the model
only requires classi�cation of the points on the sur-
faces which project to each pixel. Point classi�cation
is much simpler than surface classi�cation. Geomet-
rically, point classi�cation requires intersection of the
primitives with rays through each pixel, while surface
classi�cation requires intersection of the primitive sur-
faces with each other.

Thibault and Naylor ? describe a surface classi�ca-
tion based approach. They build BSP trees for each
primitive and perform the classi�cation by merging
the trees together. The resulting tree is equivalent to
a BSP tree built from the B-rep of the model. The
complete evaluation process is too slow for interac-
tive rendering. They describe an incremental version
of their algorithm which provides interactive rendering
speeds within a modelling environment.

There are variations of most rendering algorithms
which use point classi�cation. These include ray trac-
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2 T. F. Wiegand / Interactive Rendering of CSG Models

ing ?, scan line methods ?, and depth-bu�er methods
?; ?; ?. Much attention has been focused on optimis-
ing point classi�cation for this purpose ?. These al-
gorithms all add point classi�cation within the lowest
levels of the standard algorithms. We require an al-
gorithm which can be implemented using an existing
graphics library.

Goldfeather, Molnar, Turk and Fuchs ? describe
an algorithm that �rst normalizes a CSG tree be-
fore rendering the normalized form. It operates in a
SIMD pixel parallel way on an augmented frame bu�er
(Pixel-planes 4) which has two depth (Z) bu�ers, two
color bu�ers and 
ag bits per pixel. We have devel-
oped a new version of this algorithm capable of being
implemented using an existing graphics library on a
conventional graphics workstation. Our algorithm re-
quires a single depth bu�er, single color bu�er, stencil
(
ag bits) bu�er and the ability to save and restore
the contents of the depth bu�er.

In section ?? we review the algorithm described by
Goldfeather et. al. ?. We have restructured the presen-
tation of the ideas to make them more amenable to im-
plementation on a conventional graphics workstation.
Our implementation is described in section ??. In sec-
tion ?? we describe the integration of user de�ned,
\near" and \far" clipping planes into the algorithm.
In section ?? we describe use of the algorithm within
an interactive modelling system. The system main-
tains fully evaluated B-rep versions of models and uses
the rendering algorithm for interactive changes to the
models. Section ?? presents performance statistics for
our current implementation using the Silicon Graphics
GL library ?.

2. Rendering a CSG tree using pixel parallel

operations

We would advise interested readers to refer to Gold-
feather et. al. ? for a fuller description of the algorithm
which we summarize in this section.

A CSG tree is either a primitive or a boolean combi-
nation of sub-trees with intersection(\), subtraction(�)
or union([) operators. A CSG tree is in normal (sum
of products) form when all intersection or subtraction
operators have a left subtree which contains no union
operators and a right subtree that is simply a primi-
tive. For example (((A\B)�C)[(D\(E�(F\G))))[H,
where A{H represent primitives, is in normal form.
We shall assume left association of operators so the
previous expression can be written as (A\B�C)[(D\
E�F\G)[H. This expression has three products. The
primitives A, B, D, E, G, H are uncomplemented, C
and F are complemented.

The normalization process recursively applies a set

of production rules to a CSG tree which use the as-
sociative and distributive properties of boolean opera-
tions. Determining an appropriate rule and applying it
uses only local information (type of current node and
child node types). The production rules and algorithm
used are :

1. X�(Y [ Z) ! (X�Y )�Z
2. X\(Y [ Z) ! (X\Y ) [ (X\Z)
3. X�(Y \Z) ! (X�Y ) [ (X�Z)
4. X\(Y \Z) ! (X\Y )\Z
5. X�(Y �Z) ! (X�Y ) [ (X\Z)
6. X\(Y �Z) ! (X\Y )�Z
7. (X�Y )\Z ! (X\Z)�Y
8. (X [ Y )�Z ! (X�Z) [ (Y �Z)
9. (X [ Y )\Z ! (X\Z) [ (Y \Z)

proc normalize(T : tree)
f

if T is a primitive f
return

g
repeat f

while T matches a rule from 1{9 f
apply �rst matching rule

g
normalize(T .left)

g until (T .op is a union) or
((T .right is a primitive) and
(T .left is not a union))

normalize(T .right)
g

Goldfeather et. al. ? show that the algorithm ter-
minates, generates a tree in normal form and does
not add redundant product terms or repeat primitives
within a product.

Normalization can add many primitive leaf nodes to
a tree with a possibly exponential increase in tree size.
In most cases, a large number of the products gener-
ated by normalization play no part in the �nal image,
because their primitives do not intersect. A limited
amount of geometric information (bounding boxes of
primitives) is used to prune CSG trees as they are
normalized. Bounding boxes are computed for each
operator node using the rules :

1. Bound(A [B) = Bound(Bound(A) [ Bound(B))
2. Bound(A\B) = Bound(Bound(A) \Bound(B))
3. Bound(A�B) = Bound(A)

Here A and B are arbitrary child nodes. After each
step of the normalization algorithm the tree is pruned
by applying the following rules to the current node :
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1. A\B ! ;, if Bound(A) does not
intersect Bound(B).

2. A�B ! A, if Bound(A) does not
intersect Bound(B).

Normalization of the tree allows simpli�cation of the
rendering problem. The union of two or more solids
can be rendered using the standard depth (Z) bu�er
hidden surface removal algorithm used by most graph-
ics workstations. The rendering algorithm needs only
to render the correct depth and color for each product
in the normalized CSG tree and then allow the depth
bu�er to combine the results for each product.

Each product can be rendered by rendering each vis-
ible surface of a primitive and trimming (intersecting
or subtracting) the surface with the remaining primi-
tives in the product. The visible surfaces are the front
facing surfaces of uncomplemented primitives and the
back facing surfaces of complemented primitives. This
observation allows a further rewriting of the CSG tree
where each product is split into a sum of partial prod-
ucts. A convex primitive has one pair of front and back
surfaces per pixel. A non-convex primitive may have
any number of pairs of front and back surfaces per
pixel. A k-convex primitive is de�ned as one that has
at most k pairs of front and back surfaces per pixel
from any view point. We shall use the notation Ak to
represent a k-convex primitive and Afn to represent
the nth front surface (numbered 0 to k � 1) of primi-
tive Ak and Abn to represent the nth back surface of
Ak. In the common case of convex primitives, we shall
drop the numerical subscripts. Thus, A�B expands to
(Af�B)[(Bb\A) in sum of partial products form; while
A2�B expands to (Af0�B)[ (Af1�B)[ (Bb\A2). We
call the primitive whose surface is being rendered the
target primitive of the partial product. The remaining
primitives are called trimming primitives.

The sum of partial products form again simpli-
�es the rendering problem. It is now reduced to cor-
rectly rendering partial products before combining the
results with the depth bu�er. Additional di�erence
pruning may also be carried out when products have
been expanded to partial products :

3 Ab\B ! ;, if Bound(A) does not
intersect Bound(B).

A partial product is rendered by �rst rendering the
target surface of the partial product. Each pixel in
the surface is then classi�ed in parallel against each
of the trimming primitives. To be part of the partial
product surface, each pixel must be in with respect to
any uncomplemented primitives and out with respect
to any complemented ones. Those pixels which do not
meet these criteria are trimmed away (colour set to
background, depth set to initial value).
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Figure 1: Classifying per pixel depth values against a
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Primitives must be formed from closed (possibly
nested) facetted shells. Pixels can then be classi�ed
against a trimming primitive by counting the number
of times a primitive fragment is closer during scan con-
version of the primitive's faces. If the result is odd the
pixel is in with respect to the primitive (�gure ??).
Pixels can be classi�ed in parallel by using a 1 bit 
ag
per pixel whose value is toggled whenever scan conver-
sion of a trimming primitive fragment is closer than
the pixel's depth value.

Figure ?? illustrates the process for A�B looking
along the view direction shown in �gure ??. First, Af

is rendered, classi�ed against B and trimmed (Af�B).
Then Bb is rendered, classi�ed against A and trimmed
(Bb\A). Finally, the two renders are composited to-
gether.

Rendering the appropriate surface of a convex prim-
itive is simple as there is only one pair of front and
back surfaces per pixel. Most graphics libraries sup-
port front and back face culling modes. To render all
possible surfaces of an arbitrary k-convex primitive
separately requires a log2 k bit count per pixel. To ren-
der the jth front (or back) facing surface of a primitive,
the front (or back) facing surfaces are rendered incre-
menting the count for each pixel and only enabling
writes to the colour and depth bu�ers for which the
count is equal to j.

3. Implementation on a conventional graphics

workstation

The algorithm described in section ?? maps naturally
onto a hardware architecture which can support two
depth bu�ers, two colour bu�ers and a stencil bu�er.
One pair of depth and colour bu�ers, together with the
stencil bu�er, are used to render each partial product.
The results are then composited into the other pair
of bu�ers. Unfortunately, conventional graphics work-
station hardware typically supports only one depth
bu�er. One approach is to use the hardware provided
depth, colour and stencil bu�ers to render partial
products; retrieving the results from the hardware and
compositing in local workstation memory. The �nal re-
sult can then be returned direct to the frame bu�er.
This approach does not make the best use of the work-
station hardware. Modern hardware tends to be highly
pipelined. Interrupting the pipeline to retrieve results
for each partial product will have a considerable per-
formance penalty. In addition, the hardware is typi-
cally optimized for 
ow of data from local memory,
through the pipeline and into the frame bu�er. Data
paths from the frame bu�er back to local memory are
likely to be slow, especially given the volume of data
to be retrieved compared to the compact instructions
given to the hardware to draw the primitives. Finally,

the compositing operation in local memory will receive
no help from the hardware.

Our approach attempts to extract the maximum
bene�t from any graphics hardware by minimizing the
tra�c between local memory and the hardware and
by making sure that the hardware can be used for all
rendering and compositing operations. The idea is to
divide the rendering process into two phases | clas-
si�cation and �nal rendering. Before rendering begins
the current depth bu�er contents are saved into local
memory. We then classify each partial product surface
in turn. An extra stencil bu�er bit (accumulator) per
surface stores the results of the classi�cation. During
this process updates to the colour bu�er are disabled.
Once classi�cation is complete, we restore the depth
bu�er to the saved state and enable updates to the
colour bu�er. Finally, each partial product surface is
rendered again using the stored classi�cation results
as a mask (or stencil) to control update of the frame
bu�er. At the same time the depth bu�er acts to com-
posite the pixels which pass the stencil test with those
already rendered.

The number of surfaces for which we can perform
classi�cation is limited by the depth of the stencil
bu�er. If the capacity of the stencil bu�er is exceeded
the surfaces must be processed in multiple passes with
the depth bu�er saved and restored during each pass.
We can reduce the amount of data that needs to be
copied by only saving the parts of the depth bu�er that
will be modi�ed by classi�cation during each pass. The
�rst pass of each frame does not need to save the depth
bu�er at all as the values are known to be those pro-
duced by the initial clear. Instead of restoring, the
depth bu�er is cleared again. Thus, for simple models
rendered at the start of a frame, no depth bu�er save
and restore is needed at all.

A surface may appear in more than one partial prod-
uct in the normalized CSG tree. We exploit this by us-
ing the same accumulator bit for all partial products
with the same surface. Classi�cation results for each
partial product are ORed with the current contents of
the accumulator.

The stencil bits are partitioned into count bits
(Scount), a parity bit (Sp) and an accumulator bit (Sa)
per surface. log2 k count bits are required where k is
the maximum convexity of any primitive with a sur-
face being classi�ed in the current pass. The count and
parity bits are used independently and may be over-
lapped. Table ?? shows the number of stencil bu�er
bits required to classify and render a single surface
for primitives of varying convexity. The algorithm re-
quires an absolute minimum of 2 bits for 1-convex and
2-convex primitives, classifying and rendering a single
surface in a pass. In practice nearly all primitives used
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Convexity 1 2 3{4 5{8 9{16 17-32 33-64 65{128

Sp 1 1 1 1 1 1 1 1
Scount 0 1 2 3 4 5 6 7
Sp and Scount 1 1 2 3 4 5 6 7
With 1 accumulator (S0) 2 2 3 4 5 6 7 8
With 3 accumulators (S0::2) 4 4 5 6 7 8 9 10
With 7 accumulators (S0::6) 8 8 9 10 11 12 13 14

Table 1: Stencil bu�er usage with primitive convexity

in pure CSG trees are 1-convex. With 8 stencil bits the
algorithm can render from 7 1-convex primitives, to 1
surface of a 128-convex primitive, in a single pass.

Partial products are gathered into groups such that
all the partial products in a group can be classi�ed
and rendered in one pass. The capacity of a group
is de�ned as the number of di�erent target surfaces
that partial products in the group may contain. Ca-
pacity is dependent on the stencil bu�er depth and
the greatest convexity of any of the target primitives
in the group (table ??). Groups are formed by adding
partial products in ascending order of target primitive
convexity. Once one partial product with a particular
target surface is added, all others with the same target
surface can be added without using any extra capac-
ity. Adding a partial product with a higher convexity
than any already in the group will reduce the group
capacity. If there is insu�cient capacity to add the
minimum convexity remaining partial product, a new
group must be started.

Each group is processed in a separate pass in which
all target surface primitives are classi�ed and then
rendered. Frame bu�er wide operations are limited to
areas de�ned by the projection of the bounding box
of the current group or partial product. We present
pseudo-code for the complete rendering process be-
low. The procedures \glPrim(prim, tests, bu�ers, ops,
pops)" and \glSet(value, tests, bu�er, ops, pops)"
should be provided by the graphics library. The �rst
renders (scan converts) a primitive where \tests" are
the tests performed at each pixel to determine if it
can be updated, \bu�ers" speci�es the set of bu�ers
enabled for writing if the \tests" pass (where C is
colour, Z is depth and S is stencil), \ops" are opera-
tions performed on the stencil bits at each pixel in the
primitive, and \pops" are operations to be performed
on the stencil bits at each pixel only if \tests" pass.
The second procedure is similar but attempts to glob-
ally set values for all pixels. Iris GL ? and OpenGL
? are two graphics libraries which provide equivalents
to the glPrim and glSet procedures described here.
We use the symbol ZP to denote the depth value at

a pixel due to the scan conversion of a primitive, P .
Hence, \ZP < Z" is the familiar Z bu�er hidden sur-
face removal test. We use Zf to represent the furthest
possible depth value.

glSet(0, ALWAYS, S, ;, ;)
glSet(\far", ALWAYS, Z, ;, ;)
for �rst group G f

classify(G)
glSet(Zf , ALWAYS, Z, ;, ;)
renderGroup(G)

g for each subsequent group G f
save depth bu�er
glSet(Zf , ALWAYS, Z, ;, ;)
classify(G)
restore depth bu�er
renderGroup(G)

g

proc classify(G : group)
f

a = 0
for each target surface B in G f

for each partial product R f
renderSurface(B)
for each trimming primitive P in R f

trim(P )
g
glSet(1, Sa = 0 & Z 6= Zf , Sa, ;, ;)
glSet(Zf , ALWAYS, Z, ;, ;)

g
a = a+ 1

g
g

proc renderGroup(G : group)
f

a = 0
for each target primitive P in G f

glPrim(P , Sa = 1 & ZP < Z, C & Z, ;, ;)
glSet(0, ALWAYS, Sa, ;, ;)
a = a+ 1

g
g

c
 The Eurographics Association 1997



6 T. F. Wiegand / Interactive Rendering of CSG Models

Maximum Target Primitive Convexity
Capacity

1 2 3{4 5{8 9{16 17-32 33-64 65{128

2 1 1 - - - - - -
3 2 2 1 - - - - -
4 3 3 2 1 - - - -

Stencil Bu�er Depth 5 4 4 3 2 1 - - -
6 5 5 4 3 2 1 - -
7 6 6 5 4 3 2 1 -
8 7 7 6 5 4 3 2 1

Table 2: Group Capacity

BC

D
E

A

Figure 4: (a) Primitives, (b) Rendering (A\B [A�
C)\(A\D [A�E)

proc renderSurface(B : surface)
f

P = target primitive containing B
n = surface number of B
k = convexity of P
if P is uncomplemented f
enable back face culling

g else f
enable front face culling

g
if k = 1 f
glPrim(P , ALWAYS, Z, ;, ;)

g else f
glPrim(P , Scount = n, Z, inc Scount, ;)
glSet(0, ALWAYS, Scount, ;, ;)

g
g

proc trim(P : primitive)
f

glPrim(P , ZP < Z, ;, ;, toggle Sp)
if P is uncomplemented f
glSet(Zf , Sp = 0 , Z, ;, ;)

g else f
glSet(Zf , Sp = 1 , Z, ;, ;)

g
glSet(0, ALWAYS, Sp, ;, ;)

g

Group 0

Group 1 Group 2

Group 3 Group 4

Figure 5: Rendering each product group separately

Figure ?? shows �ve primitives and a rendered CSG
tree of the primitives. The expression ((A\B) [ (A�
C))\((A\D) [ (A�E)) normalizes to (A\B\D) [
(A\D�C) [ (A\B�E) [ (A�C�E). Expanding to
partial products and grouping gives :

0: (Af\B\D)[(Af\D�C)[(Af\B�E)[(Af�C�E)
1: (Bf\A\D)[ (Bf\A�E)
2: (Cb\A\D) [ (Cb\A�E)
3: (Df\A\B) [ (Df\A�C)
4: (Eb\A\B) [ (Eb\A�C)

Figure ?? shows the result of rendering each prod-
uct group separately. Product groups 2 and 4 are not
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visible in the combined image as they are behind the
surfaces from groups 1 and 3.

4. Clipping planes and half spaces

Interactive inspection of solid models is aided by
means of clipping planes which can help reveal inter-
nal structure. After a clipping plane has been de�ned
and activated all subsequently rendered geometry is
clipped against the plane and the parts on the out
side discarded. The rendering of solids as closed shells
means that clipping will erroneously reveal the interior
of a shell when a portion of the shell is clipped away.
Rossignac, Megahed and Schneider ? describe a stencil
bu�er based technique for \capping" shells where they
intersect a clipping plane. Their algorithm will also
highlight interferences (intersections) between solids
on the clipping plane.

Clipping a solid and then capping is equivalent to
intersection with a half space. We can trivially render
an intersection between a solid S and a halfspace H
by constructing a convex polygonal primitive P where
one face lies on the plane de�ning H and has edges
which do not intersect the bounding box of S. The
other faces of P should not intersect S at all. Render-
ing S\P is equivalent to rendering the solid de�ned
by S\H.

Rossignac, Megahed and Schneider's ? capping al-
gorithm can be easily integrated with our algorithm
to make use of auxiliary clipping planes in rendering
CSG trees involving halfspaces. As a halfspace is in�-
nite we assume that it will always be intersected with
a �nite primitive in any CSG expression. Note that
S�H is equivalent to S\H where H is simply H with
the normal of the halfspace de�ning plane reversed.

A halfspace acts as a trimming primitive by acti-
vating a clipping plane for the halfspace during the
rendering of the target primitive. The stencil bu�er
is unused. The set of halfspaces in a product can be
considered as a 1-convex target primitive. Its surface
can be rendered by rendering the de�ning plane (or
rather a su�ciently large polygon lying on the plane)
of each halfspace while clipping planes are active for
each of the other halfspaces. Each clipping plane is de-
activated while it is being rendered to prevent it from
clipping itself.

proc render(H : halfspace set)
f

for each de�ning plane P of H f
Activate clipping plane de�ned by P

g
for each front facing de�ning plane P of H f

Deactivate clipping plane de�ned by P
renderPlane(P )

Activate clipping plane de�ned by P
g
for each de�ning plane P of H f

Deactivate clipping plane de�ned by P
g

g

This approach has three advantages over rendering
halfspaces as normal primitives. Firstly, the halfspace
set only has to be rendered as a target primitive, all
trimming by halfspaces uses the clipping planes. Sec-
ondly, each target primitive is clipped, reducing the
amount of data written to the frame bu�er at the
cost of the extra geometry processing required by clip-
ping. Thirdly, a solid/halfspace intersection can be
correctly rendered using the algorithm for 1-convex
solids (k = 1), independent of actual primitive con-
vexity.

Rendering a k-convex target primitive using the al-
gorithm for 1-convex solids results in the nearest sur-
face being drawn (with depth bu�ering active). The
nearest surface (after clipping) of a concave primitive
will be visible in the intersection with a half space.
Rendering an arbitrary CSG tree using the 1-convex
algorithm will render the result of evaluating the CSG
description on the \nearest spans" (nearest front to
nearest back facing surface for each pixel) of each
primitive. For interactive use the nearest spans are of-
ten all we are interested in. If not, then clipping planes
may be used to delimit regions of interest within which
the nearest spans will be correctly rendered. Thus, a
lower cost, reduced quality mode of rendering is also
available.

In addition to user de�ned clipping planes, all ge-
ometry is usually clipped to \near" and \far" planes.
These planes are perpendicular to the viewing direc-
tion. All geometry must be further from the eye posi-
tion than the near plane and nearer than the far plane.
The near and far planes also de�ne the mapping of dis-
tances from the eye point to values stored in the depth
bu�er. Points on the near plane map to the minimum
depth bu�er value and points on the far plane map to
the maximum depth bu�er value. The algorithm de-
scribed in section ?? will fail if any primitive is clipped
by either the near or far clipping plane.

In practice the far clipping plane can always be
safely positioned beyond the primitives. The near
plane is more troublesome. Firstly, it cannot be posi-
tioned behind the eye point. Secondly, the resolution
of the depth bu�er is critically dependent on the posi-
tion of the near clip plane. It should be positioned as
far from the eye point as possible. Consider rendering
A�B and positioning the eye in the hole in A formed
by subtracting B. Near plane clipping is unavoidable.
We can extend our algorithm to cap trimming prim-
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BC

D
E

A
F

Figure 6: (a) Primitives, (b) Rendering (A\B [A�
C)\(A\D [A�E)\F

itives if they will be subject to near plane clipping.
Clipping of target primitives is not a problem unless
the eye point is positioned inside the evaluated CSG
model.

The trimming primitive is rendered twice while tog-
gling Sp; �rstly, with the depth bu�er test disabled;
secondly, with the depth bu�er test enabled. The �rst
render sets the parity bit where capping is required.
The second completes the classi�cation as above.

proc trim(P : primitive)
f

glPrim(P , ALWAYS, ;, ;, toggle Sp)
glPrim(P , ZP < Z, ;, ;, toggle Sp)
if P is uncomplemented f
glSet(Zf , Sp = 0 , Z, ;, ;)

g else f
glSet(Zf , Sp = 1 , Z, ;, ;)

g
glSet(0, ALWAYS, Sp, ;, ;)

g

Figure ?? shows our earlier example intersected
with a single clipping plane / half space. The nor-
malized CSG description is (A\B\D\F )[ (A\D\
F�C) [ (A\B\F�E) [ (A\F�C�E).

The normalization and pruning algorithm described
in section ?? needs to be extended to cope with half-
space primitives. The extensions required are in the
form of additional rules for bounding box generation,
normalization and pruning (H is a halfspace) :

Bounding Box Generation

4. Bound(A\H) = Bound(A)

Normalization

0. X�H ! X\H

Pruning

4. A\H ! ;, if Bound(A) is outside H.
5. A\H ! A, if Bound(A) is inside H.
6. A\H�B ! A\H, if Bound(B) is outside H.
7. Ab\H ! Ab, if Bound(A) is inside H.
8. Hf�A ! Hf , if Bound(A) does not intersect H.

Our earlier example (�gure ??) contains many prun-
ing possibilities. The normalized CSG tree is (A\B\
D\F )[ (A\D\F�C)[ (A\B\F�E)[ (A\F�C�E).
Using rule 1 removes the product A\B\D\F as B
and D don't intersect. Rule 2 will reduce the products
A\D\F�C and A\B\F�E to A\D\F and A\B\F
as the complemented primitives do not intersect the
product. Rule 4 removes the product A\B\F , rule 5 re-
duces A\D\F to A\D and rule 6 reduces A\F�C�E
to A\F�E. The normalized and geometric pruned
CSG tree is then (A\D\F ) [ (A\F�E). Expanding
to partial products gives (Af\D\F )[ (Df\A\F )[
(Ff\A\D)[ (Af\F�E)[ (Ff\A�E)[ (Eb\A\F ).
Finally, di�erence pruning will reduce Eb\A\F to
Eb\A (rule 7) and Ff\A�E to Ff\A (rule 8).

We also prune products against the viewing volume
for the current frame and classify trimming primitive
bounding boxes against the near clipping plane to de-
termine whether the extra capping step is necessary.

5. Interactive Rendering

We have incorporated our rendering algorithm in a
simple, interactive solid modelling system built with
standard components. The main framework is pro-
vided by the Inventor object-oriented 3D toolkit ?.
A model is represented by a directed acyclic graph
of nodes. Operations on models, such as rendering
or picking, are performed by means of actions. The
toolkit may be extended by providing user written
nodes and actions. Conventional solid modelling oper-
ations are provided by the ACIS geometric modeller ?.
ACIS is an object-oriented, boundary representation,
solid modelling kernel.

Our modelling system adds new node types to In-
ventor which support ACIS modelled solids and CSG
trees of solids. We also add a new rendering action
which uses our stencil bu�er CSG display algorithm to
render CSG trees described by Inventor node graphs.
A CSG evaluate action uses ACIS to fully evaluate
a CSG tree allowing the tree to be replaced with a
single evaluated solid node. All the standard Inventor
interactive tools are available for editing models.

The system supports large CSG trees while main-
taining interactive rendering speeds. During display
and editing of a large CSG tree, only a small part of
the model will be changing at any time. We \cache"
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Cached

Uncached
.

−

Move

Figure 7: Direct rendering of a CSG tree with cached
geometry : (a) all caches valid, (b) limited direct ren-
dering when a primitive is moved

fully evaluated geometry obtained from the solid mod-
eller at each internal node in the CSG tree. As caches
become invalidated through editing of the model, por-
tions of the tree are rendered directly (see �gure ??),
while the cached geometry is re-evaluated in the back-
ground (possibly on other workstations in a common
network).

Current use of the system follows a common pat-
tern. A user will quickly position and combine prim-
itives using the solid modelling capabilities. During
this stage the model is simple enough for the user
to envisage the CSG operations required and to posi-
tion primitives correctly. Figure ?? shows an example
model of two intersecting corridors. Firstly, the space
occupied by the corridors is modelled using 5 cubes
and two cylinders which are unioned together. The
corridors are then subtracted from a block. At this
point the user wanted to position a skylight through
the intersection of the corridors. Unsure of the exact
positioning required, or the sort of results possible, the
user roughly positioned a cylinder (the hole) and sub-
tracted it from the model. A transparent instance of
the primitive is also displayed by the system for ref-
erence. A manipulator was then used to drag the hole
through the model revealing an unexpected new form.
When satis�ed with the positioning the hole is \�xed"
in position. The �xing process doesn't change the in-
ternal representation of the model (it's still a complete
CSG tree). It merely hides the apparatus used for in-
teractive manipulation of the hole. The hole can be
un�xed at any time and repositioned. This process of
rough positioning, boolean combination and precise
editing is then repeated.

6. Performance

The time complexity of our algorithm is proportional
to the number of rendering operations carried out. We

shall consider the rendering of one surface as a single
rendering operation. Each pixel oriented \bookkeep-
ing" operation is considered as an equivalent single
unit. These operations have a lower geometry over-
head than surface rendering but access more pixels.
Equivalent functionality could be achieved by per-
forming the bookkeeping operations with a repeated
surface render. As in ?, we ignore the negligible nor-
malization and pruning cost. We present the results
for our current implementation of the algorithm. For
reasons of clarity, some operations are described sep-
arately in section ??, whilst being implemented as a
single operation.

Table ?? shows the number of rendering opera-
tions required for simple steps within the algorithm.
The rendering algorithm is O((kj)2) for each product
where j is the number of primitives in the product
and k is the convexity of the primitives. The number
of products generated by tree normalization is depen-
dent on the structure of the tree and the geometry
of the primitives with a worst case exponential rela-
tionship between number of primitives and products.
In practice, both we, and Goldfeather et. al. ?, have
found that the number of products after pruning is
between O(n) and O(n2) in the total number of prim-
itives. The average product length, j, tends to be small
and independent of the total number of primitives.
Where long products arise they tend to be of the form
A�B�C�D�E::: and are susceptible to di�erence
pruning.

Table ?? provides performance statistics for the
eight sample models in �gure ??. The images are 500
by 500 pixels and were rendered on a Silicon Graphics
5 span 310/VGXT with a single 33Mhz R3000 proces-
sor. The VGXT has an 8 bit stencil bu�er. The �rst
part of the table provides statistics on normalization
and pruning. We include the number of primitives in
the CSG expression, total triangles used to represent
the primitives and the number of passes required. The
number and average length of partial products pro-
duced by normalization with and without pruning are
given. The second part of the table provides a break-
down of rendering operations into target rendering,
classi�cation & trimming and bookkeeping operations.
The third part of the table provides a breakdown of
rendering time in seconds; both for rendering opera-
tions and depth bu�er save/restore time. The depth
bu�er save/restore time is given for the general case
algorithm and for the optimization possible when the
model is the �rst thing rendered in the current frame.

Table ?? shows rendering times together with num-
ber of passes required for di�erent stencil bu�er sizes.
The increases in time are modest because the imple-
mentation only saves and restores the areas of the
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Convexity 1-convex (k = 1) k-convex
Clipping None Near None Near

Classify Target Surface k k k+ 1 k + 1
Trimming Primitive 2k + 1 4k + 1 2k + 1 4k + 1
Render Target Surface k k k+ 1 k + 1

Table 3: Rendering Operations per Step

Model a b c d e f g h(part) h(full)

Primitives 2 4 7 31 4 8 2 12 72
Triangles 96 256 408 1532 176 496 1928 8888 5536
Partial Products 2 6 32 34 5 14 3 13 72
Average Length 2 3 4 20.4 2.6 7 2 1.2 2.6
Partial Products (pruned) 2 6 32 34 5 14 3 13 72
Average Length (pruned) 2 3 4 2.7 2.6 3 2 1.2 2.3
Passes 1 1 1 5 1 2 1 1 11

Target Render Ops 2 4 7 30 4 8 5 25 72
Classi�cation & Trimming Ops 4 18 128 92 13 42 8 8 164
Bookkeeping Render Ops 4 18 128 92 13 42 10 10 164
Total Render Ops 10 40 263 214 30 92 23 43 400

Target Time 0.005 0.003 0.038 0.039 0.008 0.017 0.031 0.009 0.118
Classi�cation & Trimming Time 0.026 0.049 0.405 0.268 0.052 0.104 0.033 0.011 0.178
Bookkeeping Time 0.023 0.056 0.180 0.197 0.024 0.108 0.016 0.078 0.098
Save and Restore Time (general) 0.103 0.100 0.114 0.239 0.088 0.217 0.039 0.009 0.236
Save and Restore Time (�rst) 0.004 0.004 0.001 0.136 0.001 0.111 0.002 0.000 0.214
Total Time (general) 0.165 0.215 0.668 0.772 0.182 0.434 0.126 0.075 0.673
Total Time (�rst) 0.066 0.119 0.555 0.669 0.095 0.328 0.089 0.067 0.650

Table 4: Rendering times (seconds) and statistics

Stencil Bits 8 7 6 5 4 3 2

Model (c) 0.668(1) 0.670(2) 0.701(2) 0.735(2) 0.763(3) 0.782(4) 0.801(7)
Model (d) 0.772(5) 0.779(5) 0.804(6) 0.818(8) 0.837(10) 0.866(15) 0.884(30)
Model (f) 0.434(2) 0.435(2) 0.442(2) 0.426(2) 0.449(3) 0.475(4) 0.504(8)

Table 5: Rendering time and number of passes with varying stencil size
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depth bu�er that are changed during the classi�cation
stage. If less work is done in each pass the changed
depth bu�er areas typically become smaller. There is
scope for further optimization of save and restore as
the variations in times for the same number of passes
shows. The di�erent stencil bu�er size causes a change
in the composition of product groups. Placing partial
products whose projected bounding boxes overlap into
the same product groups will reduce the total area to
be saved and restored.

Our algorithm performs particularly well in the sort
of situations encountered within our interactive mod-
elling system. Typically there is only ever one \dynam-
ically" rendered CSG expression, usually involving a
simple 1-convex \tool" and a more complex \work-
piece" (�gure ??(g)). Often we can achieve better per-
formance by ignoring the top most caches of complex
workpieces in order to expose more of the CSG tree
to pruning. For example, in �gure ??(h) an expres-
sion like (A [ B [ C [ D [ ::)�X can be pruned to
A�X[B[C [D[ ::. This can vastly reduce both the
number of polygons to be rendered (about 3{5 times as
many polygons have to be rendered for A�B compared
to A [ B) and the size of the screen area involved in
bookkeeping and depth bu�er save and restore opera-
tions. We provide rendering times for both cached (ta-
ble ?? h(full)) and uncached cases (table ?? h(part))
of �gure ??(h). The coloured primitives are those that
are being \moved", the other geometry can be ren-
dered from caches. The version that makes use of the
caches is about 9 times faster than the fully rendered
version. However, the triangle count is higher because
the cached geometry has a more complex boundary
than the original primitives.

Our implementation's performance compares well
with that obtained by specialized hardware and pure
software solutions. Figure ??(d) is our version of a
model rendered by Goldfeather et. al. ? on Pixel-
Planes 4. They report a total rendering time of 4:02
seconds compared with our time of 0:67 seconds. The
VGX architecture machine used for our tests was in-
troduced in 1990 when Pixel-Planes 4 was nearing the
end of its lifetime. Pixel-Planes 5 (the most recent
machine in the Pixel-Planes series ?) has performance
some 50 times better than Pixel-Planes 4 on a full
system with 32 geometry processors and 16 renderers.
Such a system would have performance 10 times that
of our implementation | at a far greater cost.

Figure ??(f) is our version of a model rendered by
Thibault and Naylor's BSP tree based algorithm ?.
Their total rendering time is 7:2 seconds for a model
with 158 polygons on a VAX 8650. Our time is 0:3
seconds for a model with 496 triangles. Our algorithm

also scales better with increasing numbers of polygons
(O(kn) compared with O(nlogn)).

6.1. Other implementations

We have also implemented the algorithm using
OpenGL ? and tested it on our VGXT, a Silicon
Graphics R3000 Indigo with starter graphics, and an
Indigo2 Extreme. The algorithm should run under any
OpenGL implementation. On the systems we tested
performance was comparable to the GL version in all
areas except depth bu�er save and restore. This oper-
ation was about 100 times slower than the GL equiv-
alent. The problem appears to be a combination of
poor performance tuning and a speci�cation which re-
quires conversion of the depth bu�er values to and
from normalized 
oating point. This problem should
be resolved with the release of more mature OpenGL
implementations. Single pass renders with the frame
start optimization (the common case for our interac-
tive modeller) run at full speed.

7. Conclusion

We have presented an algorithm which directly ren-
ders an arbitrary CSG tree and is suitable for use
in interactive modelling applications. Unlike Gold-
feather et. al. ?, our algorithm requires only a sin-
gle color bu�er, a single depth bu�er, a stencil bu�er
and the ability to save and restore the contents of
the depth bu�er. It can be implemented on many
graphics workstations using existing graphics libraries.
Like Rossignac, Megahed and Schneider ?, the algo-
rithm can display cross-sections of solids using clip-
ping planes but is far more 
exible. For instance, the
algorithm could be used to directly display interfer-
ences between solids by rendering the intersection of
the solids.

The algorithm has been implemented on an SGI
310/VGXT using the GL graphics library and has
been integrated into an experimental modelling sys-
tem. Performance compares well with specialized
hardware and pure software algorithms for complete
evaluation and rendering. The algorithm performs
particularly well for incremental updates in an inter-
active modelling environment.
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Figure 8: Dragging a hole though the model reveals an unexpected new form
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Abstract
We present a bump mapping method that requires minimal hard-
ware beyond that necessary for Phong shading. We eliminate the
costly per-pixel steps of reconstructing a tangent space and perturb-
ing the interpolated normal vector by a) interpolating vectors that
have been transformed into tangent space at polygon vertices and b)
storing a precomputed, perturbed normal map as a texture. The sav-
ings represents up to a factor of two in hardware or time compared
to a straightforward implementation of bump mapping.

CR categories and subject descriptors: I.3.3 [Computer
Graphics]: Picture/Image generation; I.3.7 [Image Processing]: En-
hancement

Keywords: hardware, shading, bump mapping, texture map-
ping.

1 INTRODUCTION
Shading calculations in commercially available graphics systems
have been limited to lighting at the vertices of a set of polygons,
with the resultant colors interpolated and composited with a texture.
The drawbacks of Gouraud interpolation [9] are well known and in-
clude diffused, crawling highlights and mach banding. The use of
this method is motivated primarily by the relatively large cost of the
lighting computation. When done at the vertices, this cost is amor-
tized over the interiors of polygons.

The division of a computation into per-vertex and per-pixel com-
ponents is a general strategy in hardware graphics acceleration [1].
Commonly, the vertex computations are performed in a general
floating point processor or cpu, while the per-pixel computations
are in special purpose, fixed point hardware. The division is a
function of cost versus the general applicability, in terms of qual-
ity and speed, of a feature. Naturally, the advance of processor and
application-specific integrated circuit technology has an impact on
the choice.

Because the per-vertex computations are done in a general pro-
cessor, the cost of a new feature tends to be dominated by additional
per-pixel hardware. If this feature has a very specific application,
the extra hardware is hard to justify because it lays idle in applica-
tions that do not leverage it. And in low-end or game systems,where
every transistor counts, additional rasterization hardware is partic-
ularly expensive. An alternative to extra hardware is the reuse of
existing hardware, but this option necessarily runs much slower.

�fpeercy,airey,cabralg@sgi.com
2011 N. Shoreline Boulevard
Mountain View, California 94043-1389

Shading quality can be increased dramatically with Phong shad-
ing [13], which interpolates and normalizes vertex normal vectors
at each pixel. Light and halfangle vectors are computed directly in
world space or interpolated, either of which requires their normal-
ization for a local viewer and light. Figure 1 shows rasterization

H interp

L interp

N interp normalize

normalize

normalize

illumination

Figure 1. One implementation of Phong shading hardware.

hardware for one implementation of Phong shading, upon which
we base this discussion.1 This adds significant cost to rasterization
hardware. However higher quality lighting is almost universally
desired in three-dimensional graphics applications, and advancing
semiconductor technology is making Phong shading hardware more
practical. We take Phong shading and texture mapping hardware as
a prerequisite for bump mapping, assuming they will be standard in
graphics hardware in the future.

Bump mapping [3] is a technique used in advancedshading appli-
cations for simulating the effect of light reflecting from small pertur-
bations across a surface. A single component texture map, f(u; v),
is interpreted as a height field that perturbs the surface along its nor-
mal vector, N = (Pu � Pv)=j(Pu � Pv)j, at each point. Rather
than actually changing the surface geometry, however, only the nor-
mal vector is modified. From the partial derivatives of the surface
position in the u and v parametric directions (Pu andPv ), and the
partial derivatives of the image height field in u and v (fu and fv),
a perturbed normal vectorN0 is given by [3]:

N
0 = ((Pu � Pv) +D)=j(Pu � Pv) +Dj (1)where
D = �fu(Pv �N)� fv(N�Pu) (2)

In these equations, Pu and Pv are not normalized. As Blinn
points out [3], this causes the bump heights to be a function of the
surface scale becausePu�Pv changes at a different rate thanD. If
the surface scale is doubled, the bump heights are halved. This de-
pendence on the surface often is an undesirable feature, and Blinn
suggests one way to enforce a constant bump height.

A full implementation of these equations in a rasterizer is imprac-
tical, so the computation is divided among a preprocessing step, per-
vertex, and per-pixel calculations. A natural method to implement
bump mapping in hardware, and one that is planned for a high-end
graphics workstation [6], is to compute Pu � Pv , Pv � N, and
N�Pu at polygon vertices and interpolate them to polygon interi-
ors. The perturbed normal vector is computed and normalized as in
Equation 1, with fu and fv read from a texture map. The resulting
normal vector is used in an illumination model.

The hardware for this method is shown in Figure 2. BecausePu
1Several different implementations of Phong shading have been suggested

[11][10][4][5][7][2] with their own costs and benefits. Our bump mapping algorithm
can leverage many variations, and we use this form as well as Blinn’s introduction of
the halfangle vector for clarity.
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Figure 2. A suggested implementation of bump mapping hard-
ware.

and Pv are unbounded, the three interpolators, the vector addition,
vector scaling, and normalization must have much greater range and
precision than those needed for bounded vectors. These require-
ments are noted in the figure. One approximation to this implemen-
tation has been been proposed [8], wherePv �N andN�Pu are
held constant across a polygon. While avoiding their interpolation,
this approximation is known to have artifacts [8].

We present an implementation of bump mapping that leverages
Phong shading hardware at full speed, eliminating either a large in-
vestment in special purpose hardware or a slowdown during bump
mapping. The principal idea is to transform the bump mapping
computation into a different reference frame. Because illumination
models are a function of vector operations (such as the dot product)
between the perturbed normal vector and other vectors (such as the
light and halfangle), they can be computed relative to any frame. We
are able to push portions of the bump mapping computation into a
preprocess or the per-vertex processor and out of the rasterizer. As
a result, minimal hardware is added to a Phong shading circuit.

2 OUR BUMP-MAPPING ALGORITHM
We proceed by recognizing that the original bump mapping approx-
imation [3] assumes a surface is locally flat at each point. The per-
turbation is, therefore, a function only of the local tangent space.
We define this space by the normal vector, N, a tangent vector,
T = Pu=jPuj, and a binormal vector, B = (N � T). T, B, and
N form an orthonormal coordinate system in which we perform the
bump mapping. In this space, the perturbed normal vector is (see
appendix):

N
0

TS = (a; b; c)=
p

a2 + b2 + c2 (3)

a = �fu(B � Pv) (4)
b = �(fvjPuj � fu(T � Pv)) (5)
c = jPu � Pvj (6)

The coefficients a, b, and c are a function of the surface itself (via
Pu and Pv) and the height field (via fu and fv). Provided that the
bump map is fixed to a surface, the coefficients can be precomputed
for that surface at each point of the height field and stored as a texture
map (we discuss approximations that relax the surface dependence
below). The texel components lie in the range -1 to 1.

The texture map containing the perturbed normal vector is filtered
as a simple texture using, for instance, tri-linear mipmap filtering.
The texels in the coarser levels of detail can be computed by filter-
ing finer levels of detail and renormalizing or by filtering the height
field and computing the texels directly from Equations 3-6. It is well
known that this filtering step tends to average out the bumps at large

minifications, leading to artifacts at silhouette edges. Proper filter-
ing of bump maps requires computing the reflected radiance over all
bumps contributing to a single pixel, an option that is not practical
for hardware systems. It should also be noted that, after mipmap in-
terpolation, the texture will not be normalized, so we must normal-
ize it prior to lighting.

For the illumination calculation to proceed properly, we trans-
form the light and halfangle vectors into tangent space via a 3 � 3
matrix whose columns areT,B, andN. For instance, the light vec-
tor, L, is transformed by

LTS = L

�
T B N

# # #

�
(7)

Now the diffuse term in the illumination model can be computed
from the perturbed normal vector from the texture map and the trans-
formed light: N0

TS
� LTS . The same consideration holds for the

other terms in the illumination model.
The transformations of the light and halfangle vectors should be

performed at every pixel; however, if the change of the local tan-
gent space across a polygon is small, a good approximation can be
obtained by transforming the vectors only at the polygon vertices.
They are then interpolated and normalized in the polygon interiors.
This is frequently a good assumption because tangent space changes
rapidly in areas of high surface curvature, and an application will
need to tessellate the surfaces more finely in those regions to reduce
geometric faceting.

This transformation is, in spirit, the same as one proposed by
Kuijk and Blake to reduce the hardware required for Phong shading
[11]. Rather than specifying a tangent and binormal explicitly, they
rotate the reference frames at polygon vertices to orient all normal
vectors in the same direction (such as (0; 0; 1)). In this space, they
no longer interpolate the normal vector (an approximation akin to
ours that tangent space changes slowly). If the bump map is iden-
tically zero, we too can avoid an interpolation and normalization,
and we will have a result similar to their approximation. It should
be noted that the highlight in this case is slightly different than that
obtained by the Phong circuit of Figure 1, yet it is still phenomeno-
logically reasonable.

The rasterization hardware required for our bump mapping algo-
rithm is shown in Figure 3; by adding a multiplexer to the Phong
shading hardware of Figure 1, both the original Phong shading and
bump mapping can be supported. Absent in the implementation
of Figure 2, this algorithm requires transforming the light and hal-
fangle vectors into tangent space at each vertex, storing a three-
component texture map instead of a two-component map, and hav-
ing a separate map for each surface. However, it requires only a mul-
tiplexer beyondPhong shading, avoids the interpolation of (Pv�N)
and (N�Pu), the perturbation of the normal vector at each pixel,
and the extended range and precision needed for arithmetic on un-
bounded vectors. Effectively, we have traded per-pixel calculations
cast in hardware for per-vertex calculations done in the general ge-
ometry processor. If the application is limited by the rasterization, it
will run at the same speed with bump mapping as with Phong shad-
ing.
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N interp normalize

normalize
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illumination

texture

H
TS
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TS

N’
TS

Figure 3. One implementation of our bump mapping algorithm.



Figure 4.The pinwheel height field is used as a bump map for the
tesselated, bicubic surface.

2.1 Object-Space Normal Map
If the texture map is a function of the surface parameterization, an-
other implementation is possible: the lighting model can be com-
puted in object space rather than tangent space. Then, the texture
stores the perturbed normal vectors in object space, and the light and
halfangle vectors are transformed into object space at the polygon
vertices and interpolated. Thus, the matrix transformation applied
to the light and halfangle vectors is shared by all vertices, rather than
one transformation for each vertex. This implementation keeps the
rasterization hardware of Figure 3, significantly reduces the over-
head in the geometry processor, and can coexist with the first for-
mulation.

2.2 Removing the surface dependence
The primary drawback of our method is the surface dependence of
the texture map. The dependence of the bumps on surface scale is
shared with the traditional formulation of bump mapping. Yet in ad-
dition, our texture map is a function of the surface, so the height field
can not be shared among surfaces with different parameterizations.
This is particularly problematic when texture memory is restricted,
as in a game system, or during design when a bump map is placed
on a new surface interactively.

All of the surface dependencies can be eliminated under the as-
sumption that, locally, the parameterization is the same as a square
patch (similar to, yet more restrictive than, the assumption Blinn
makes in removing the scale dependence [3]). Then, Pu and Pv
are orthogonal (Pu � Pv = T � Pv = 0) and equal in magnitude
(jPuj = jPv j). To remove the bump dependence on surface scale,

Figure 4. Bump mapping using the hardware implementation
shown in Figure 2.

Figure 6.Bump mapping with the hardware in Figure 3, and the
texture map from Eqns 3-6.

we simply choose jPuj = jPv j = k, where k is a constant giving
a relative height of the bumps. This, along with the orthogonality
condition, reduce Equations 3-6 to

N
0

TS
= (a; b; c)=

p
a2 + b2 + c2 (8)

a = �kfu (9)
b = �kfv (10)

c = k2 (11)

The texture map becomes a function only of the height field and not
of the surface geometry, so it can be precomputed and used on any
surface.

The square patch assumption holds for several important sur-
faces, such as spheres, tori, surfaces of revolution, and flat rectan-
gles. In addition, the property is highly desirable for general sur-
faces because the furtherPu andPv are from orthogonal and equal
in magnitude, the greater the warp in the texture map when applied
to a surface. This warping is typically undesirable, and its elimina-
tion has been the subject of research [12]. If the surface is already
reasonably parameterized or can be reparameterized, the approxi-
mation in Equations 8-11 is good.

3 EXAMPLES
Figures 5-7 compare software simulations of the various bump map-
ping implementations. All of the images, including the height field,
have a resolution of 512x512 pixels. The height field, Figure 4, was

Figure 7.Bump mapping with the hardware in Figure 3, and the
texture map from Eqns 8-11.



chosen as a pinwheel to highlight filtering and implementation ar-
tifacts, and the surface, Figure 4, was chosen as a highly stretched
bicubic patch subdivided into 8x8x2 triangles to ensure thatPu and
Pv deviate appreciably from orthogonal. The texture maps were fil-
tered with trilinear mipmapping.

Figure 5 shows the image computed from the implementation of
bump mapping from Figure 2. The partial derivatives, fu and fv , in
this texture map and the others were computed with the derivative
of a Gaussian covering seven by seven samples.

Figures 6 and 7 show our implementation based on the hardware
of Figure 3; they differ only in the texture map that is employed.
Figure 6 uses a texture map based on Equations 3-6. Each texel
was computed from the analytic values of Pu andPv for the bicu-
bic patch. The difference between this image and Figure 5 is almost
imperceptible, even under animation, as can be seen in the enlarged
insets. The texture map used in Figure 7 is based on Equations 8-
11, where the surface dependence has been removed. Minor differ-
ences can be seen in the rendered image compared to Figures 5 and
6; some are visible in the inset. All three implementations have sim-
ilar filtering qualities and appearance during animation.

4 DISCUSSION
We have presented an implementation of bump mapping that, by
transforming the lighting problem into tangent space, avoids any
significant new rasterization hardware beyond Phong shading. To
summarize our algorithm, we

� precompute a texture of the perturbed normal in tangent space
� transform all shading vectors into tangent space per vertex
� interpolate and renormalize the shading vectors
� fetch and normalize the perturbed normal from the texture
� compute the illumination model with these vectors

Efficiency is gained by moving a portion of the problem to the ver-
tices and away from special purpose bump mapping hardware in the
rasterizer; the incremental cost of the per-vertex transformations is
amortized over the polygons.

It is important to note that the method of transforming into tangent
space for bump mapping is independent of the illumination model,
provided the model is a function only of vector operations on the
normal. For instance, the original Phong lighting model, with the
reflection vector and the view vector for the highlight, can be used
instead of the halfangle vector. In this case, the view vector is trans-
formed into tangent space and interpolated rather than the halfan-
gle. As long as all necessary shading vectors for the illumination
model are transformed into tangent space and interpolated, lighting
is proper.

Our approach is relatively independent of the particular imple-
mentation of Phong shading, however it does require the per-pixel
illumination model to accept vectors rather than partial illumination
results. We have presented a Phong shading circuit where almost no
new hardware is required, but other implementations may need extra
hardware. For example, if the light and halfangle vectors are com-
puted directly in eye space, interpolators must be added to support
our algorithm. The additional cost still will be very small compared
to a straightforward implementation.

Phong shading likely will become a standard addition to hardware
graphics system because of its general applicability. Our algorithm
extends Phong shading in such an effective manner that it is natural
to support bump mapping even on the lowest cost Phong shading
systems.
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APPENDIX
Here we derive the perturbed normal vector in tangent space, a ref-
erence frame given by tangent, T = Pu=jPuj; binormal, B =
(N�T); and normal,N, vectors. Pv is in the plane of the tangent
and binormal, and it can be written:

Pv = (T � Pv)T+ (B �Pv)B (12)

Therefore

Pv �N = (B �Pv)T� (T � Pv)B (13)

The normal perturbation (Equation 2) is:

D = �fu(Pv �N)� fv jPujB (14)
= �fu(B � Pv)T� (fvjPuj � fu(T �Pv))B (15)

Substituting the expression for D and Pu � Pv = jPu � PvjN
into Equation 1, normalizing, and taking TTS = (1; 0; 0), BTS =
(0; 1; 0), andNTS = (0; 0; 1) leads directly to Equations 3-6.
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Abstract
Several existing volume rendering algorithms operate by factoring
the viewing transformation into a 3D shear parallel to the data slices,
a projection to form an intermediate but distorted image, and a 2D
warp to form an undistorted final image. We extend this class of
algorithms in three ways. First, we describe a new object-order
rendering algorithm based on the factorization that is significantly
faster than published algorithms with minimal loss of image qual-
ity. Shear-warp factorizations have the property that rows of vox-
els in the volume are aligned with rows of pixels in the intermediate
image. We use this fact to construct a scanline-based algorithm that
traverses the volume and the intermediate image in synchrony, tak-
ing advantage of the spatial coherence present in both. We use spa-
tial data structures based on run-length encoding for both the vol-
ume and the intermediate image. Our implementation running on
an SGI Indigo workstation renders a 2563 voxel medical data set
in one second. Our second extension is a shear-warp factorization
for perspective viewing transformations, and we show how our ren-
dering algorithm can support this extension. Third, we introduce
a data structure for encoding spatial coherence in unclassified vol-
umes (i.e. scalar fields with no precomputed opacity). When com-
bined with our shear-warp rendering algorithm this data structure al-
lows us to classify and render a 2563 voxel volume in three seconds.
The method extends to support mixed volumes and geometry and is
parallelizable.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms.

Additional Keywords: Volume rendering, Coherence, Scientific
visualization, Medical imaging.

1 Introduction
Volume rendering is a flexible technique for visualizing scalar fields
with widespread applicability in medical imaging and scientific vi-
sualization, but its use has been limited because it is computation-
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ally expensive. Interactive rendering rates have been reported using
large parallel processors [17] [19] and using algorithms that trade off
image quality for speed [10] [8], but high-quality images take tens of
seconds or minutes to generate on current workstations. In this pa-
per we present a new algorithm which achieves near-interactive ren-
dering rates on a workstation without significantly sacrificing qual-
ity.

Many researchers have proposed methods that reduce rendering
cost without affecting image quality by exploiting coherence in the
data set. These methods rely on spatial data structures that encode
the presence or absence of high-opacity voxels so that computa-
tion can be omitted in transparent regions of the volume. These
data structures are built during a preprocessing step from a classified
volume: a volume to which an opacity transfer function has been
applied. Such spatial data structures include octrees and pyramids
[13] [12] [8] [3], k-d trees [18] and distance transforms [23]. Al-
though this type of optimization is data-dependent, researchers have
reported that in typical classified volumes 70-95% of the voxels are
transparent [12] [18].

Algorithms that use spatial data structures can be divided into two
categories according to the order in which the data structures are tra-
versed: image-order or object-order. Image-order algorithms oper-
ate by casting rays from each image pixel and processing the voxels
along each ray [9]. This processing order has the disadvantage that
the spatial data structure must be traversed once for every ray, result-
ing in redundant computation (e.g. multiple descents of an octree).
In contrast, object-order algorithms operate by splatting voxels into
the image while streaming through the volume data in storage order
[20] [8]. However, this processing order makes it difficult to imple-
ment early ray termination, an effective optimization in ray-casting
algorithms [12].

In this paper we describe a new algorithm which combines the ad-
vantages of image-order and object-order algorithms. The method
is based on a factorization of the viewing matrix into a 3D shear
parallel to the slices of the volume data, a projection to form a dis-
torted intermediate image, and a 2D warp to produce the final im-
age. Shear-warp factorizations are not new. They have been used
to simplify data communication patterns in volume rendering algo-
rithms for SIMD parallel processors [1] [17] and to simplify the gen-
eration of paths through a volume in a serial image-order algorithm
[22]. The advantage of shear-warp factorizations is that scanlines
of the volume data and scanlines of the intermediate image are al-
ways aligned. In previous efforts this property has been used to de-
velop SIMD volume rendering algorithms. We exploit the property
for a different reason: it allows efficient, synchronized access to data
structures that separately encode coherence in the volume and the
image.

The factorization also makes efficient, high-quality resampling
possible in an object-order algorithm. In our algorithm the resam-
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Figure 1: A volume is transformed to sheared object space for a par-
allel projection by translating each slice. The projection in sheared
object space is simple and efficient.

pling filter footprint is not view dependent, so the resampling com-
plications of splatting algorithms [20] are avoided. Several other
algorithms also use multipass resampling [4] [7] [19], but these
methods require three or more resampling steps. Our algorithm re-
quires only two resampling steps for an arbitrary perspective view-
ing transformation, and the second resampling is an inexpensive 2D
warp. The 3D volume is traversed only once.

Our implementation running on an SGI Indigo workstation can
render a 2563 voxel medical data set in one second, a factor of at
least five faster than previous algorithms running on comparable
hardware. Other than a slight loss due to the two-pass resampling,
our algorithm does not trade off quality for speed. This is in con-
trast to algorithms that subsample the data set and can therefore miss
small features [10] [3].

Section 2 of this paper describes the shear-warp factorization and
its important mathematical properties. We also describe a new ex-
tension of the factorization for perspective projections. Section 3
describes three variants of our volume rendering algorithm. The
first algorithm renders classified volumes with a parallel projection
using our new coherence optimizations. The second algorithm sup-
ports perspective projections. The third algorithm is a fast classifi-
cation algorithm for rendering unclassified volumes. Previous al-
gorithms that employ spatial data structures require an expensive
preprocessing step when the opacity transfer function changes. Our
third algorithm uses a classification-independent min-max octree
data structure to avoid this step. Section 4 contains our performance
results and a discussion of image quality. Finally we conclude and
discuss some extensions to the algorithm in Section 5.

2 The Shear-Warp Factorization
The arbitrary nature of the transformation from object space to im-
age space complicates efficient, high-quality filtering and projection
in object-order volume rendering algorithms. This problem can be
solved by transforming the volume to an intermediate coordinate
system for which there is a very simple mapping from the object co-
ordinate system and which allows efficient projection.

We call the intermediate coordinate system “sheared object
space” and define it as follows:

Definition 1: By construction, in sheared object space all
viewing rays are parallel to the third coordinate axis.

Figure 1 illustrates the transformation from object space to sheared
object space for a parallel projection. We assume the volume is sam-
pled on a rectilinear grid. The horizontal lines in the figure represent
slices of the volume data viewed in cross-section. After transforma-
tion the volume data has been sheared parallel to the set of slices that
is most perpendicular to the viewing direction and the viewing rays
are perpendicular to the slices. For a perspective transformation the
definition implies that each slice must be scaled as well as sheared
as shown schematically in Figure 2.

viewing rays

image
plane

volume
slices

shear and scale

project

warp

center of
projection

Figure 2: A volume is transformed to sheared object space for a per-
spective projection by translating and scaling each slice. The pro-
jection in sheared object space is again simple and efficient.

Definition 1 can be formalized as a set of equations that transform
object coordinates into sheared object coordinates. These equations
can be written as a factorization of the view transformation matrix
Mview as follows:

Mview = P � S �Mwarp

P is a permutation matrix which transposes the coordinate system in
order to make the z-axis the principal viewing axis. S transforms the
volume into sheared object space, and Mwarp transforms sheared
object coordinates into image coordinates. Cameron and Undrill [1]
and Schröder and Stoll [17] describe this factorization for the case
of rotation matrices. For a general parallel projection S has the form
of a shear perpendicular to the z-axis:

Spar =

0
B@

1 0 0 0
0 1 0 0
sx sy 1 0
0 0 0 1

1
CA

where sx and sy can be computed from the elements of Mview. For
perspective projections the transformation to sheared object space
is of the form:

Spersp =

0
B@

1 0 0 0
0 1 0 0
s0x s0y 1 s0w
0 0 0 1

1
CA

This matrix specifies that to transform a particular slice z0 of
voxel data from object space to sheared object space the slice
must be translated by (z0s

0

x; z0s
0

y) and then scaled uniformly by
1=(1 + z0s

0

w). The final term of the factorization is a matrix which
warps sheared object space into image space:

Mwarp = S�1 � P�1 �Mview

A simple volume rendering algorithm based on the shear-warp
factorization operates as follows (see Figure 3):

1. Transform the volume data to sheared object space by translat-
ing and resampling each slice according to S. For perspective
transformations, also scale each slice. P specifies which of the
three possible slicing directions to use.

2. Composite the resampled slices together in front-to-back order
using the “over” operator [15]. This step projects the volume
into a 2D intermediate image in sheared object space.

3. Transform the intermediate image to image space by warping
it according to Mwarp. This second resampling step produces
the correct final image.
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Figure 3: The shear-warp algorithm includes three conceptual steps:
shear and resample the volume slices, project resampled voxel scan-
lines onto intermediate image scanlines, and warp the intermediate
image into the final image.

The parallel-projection version of this algorithm was first described
by Cameron and Undrill [1]. Our new optimizations are described
in the next section.

The projection in sheared object space has several geometric
properties that simplify the compositing step of the algorithm:

Property 1: Scanlines of pixels in the intermediate
image are parallel to scanlines of voxels in the volume
data.

Property 2: All voxels in a given voxel slice are
scaled by the same factor.

Property 3 (parallel projections only): Every voxel
slice has the same scale factor, and this factor can be cho-
sen arbitrarily. In particular, we can choose a unity scale
factor so that for a given voxel scanline there is a one-
to-one mapping between voxels and intermediate-image
pixels.

In the next section we make use of these properties.

3 Shear-Warp Algorithms
We have developed three volume rendering algorithms based on the
shear-warp factorization. The first algorithm is optimized for paral-
lel projections and assumes that the opacity transfer function does
not change between renderings, but the viewing and shading param-
eters can be modified. The second algorithm supports perspective
projections. The third algorithm allows the opacity transfer func-
tion to be modified as well as the viewing and shading parameters,
with a moderate performance penalty.

3.1 Parallel Projection Rendering Algorithm
Property 1 of the previous section states that voxel scanlines in the
sheared volume are aligned with pixel scanlines in the intermedi-
ate image, which means that the volume and image data structures
can both be traversed in scanline order. Scanline-based coherence
data structures are therefore a natural choice. The first data structure
we use is a run-length encoding of the voxel scanlines which allows
us to take advantage of coherence in the volume by skipping runs
of transparent voxels. The encoded scanlines consist of two types

non-opaque
pixel

opaque
pixel

Figure 4: Offsets stored with opaque pixels in the intermediate im-
age allow occluded voxels to be skipped efficiently.

of runs, transparent and non-transparent, defined by a user-specified
opacity threshold. Next, to take advantage of coherence in the im-
age, we store with each opaque intermediate image pixel an offset to
the next non-opaque pixel in the same scanline (Figure 4). An im-
age pixel is defined to be opaque when its opacity exceeds a user-
specified threshold, in which case the corresponding voxels in yet-
to-be-processed slices are occluded. The offsets associated with the
image pixels are used to skip runs of opaque pixels without exam-
ining every pixel. The pixel array and the offsets form a run-length
encoding of the intermediate image which is computed on-the-fly
during rendering.

These two data structures and Property 1 lead to a fast scanline-
based rendering algorithm (Figure 5). By marching through the vol-
ume and the image simultaneously in scanline order we reduce ad-
dressing arithmetic. By using the run-length encoding of the voxel
data to skip voxels which are transparent and the run-length encod-
ing of the image to skip voxels which are occluded, we perform
work only for voxels which are both non-transparent and visible.

For voxel runs that are not skipped we use a tightly-coded loop
that performs shading, resampling and compositing. Properties 2
and 3 allow us to simplify the resampling step in this loop. Since the
transformation applied to each slice of volume data before projec-
tion consists only of a translation (no scaling or rotation), the resam-
pling weights are the same for every voxel in a slice (Figure 6). Al-
gorithms which do not use the shear-warp factorization must recom-
pute new weights for every voxel. We use a bilinear interpolation fil-
ter and a gather-type convolution (backward projection): two voxel
scanlines are traversed simultaneously to compute a single interme-
diate image scanline at a time. Scatter-type convolution (forward
projection) is also possible. We use a lookup-table based system for
shading [6]. We also use a lookup table to correct voxel opacity for
the current viewing angle since the apparent thickness of a slice of
voxels depends on the viewing angle with respect to the orientation
of the slice.

The opaque pixel links achieve the same effect as early ray ter-
mination in ray-casting algorithms [12]. However, the effectiveness
of this optimization depends on coherence of the opaque regions of
the image. The runs of opaque pixels are typically large so that many
pixels can be skipped at once, minimizing the number of pixels that
are examined. The cost of computing the pixel offsets is low be-
cause a pixel’s offset is updated only when the pixel first becomes

transparent voxel run

non-transparent voxel run

opaque image pixel run

non-opaque image pixel run

voxel scanline:

intermediate
image
scanline:

workskip workskip skip

resample and
composite

Figure 5: Resampling and compositing are performed by streaming
through both the voxels and the intermediate image in scanline or-
der, skipping over voxels which are transparent and pixels which are
opaque.
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original voxel

resampled voxel

Figure 6: Since each slice of the volume is only translated, every
voxel in the slice has the same resampling weights.

opaque.
After the volume has been composited the intermediate image

must be warped into the final image. Since the 2D image is small
compared to the size of the volume this part of the computation
is relatively inexpensive. We use a general-purpose affine image
warper with a bilinear filter.

The rendering algorithm described in this section requires a run-
length encoded volume which must be constructed in a preprocess-
ing step, but the data structure is view-independent so the cost to
compute it can be amortized over many renderings. Three encod-
ings are computed, one for each possible principal viewing direc-
tion, so that transposing the volume is never necessary. During ren-
dering one of the three encodings is chosen depending upon the
value of the permutation matrix P in the shear-warp factorization.
Transparent voxels are not stored, so even with three-fold redun-
dancy the encoded volume is typically much smaller than the orig-
inal volume (see Section 4.1). Fast computation of the run-length
encoded data structure is discussed further at the end of Section 3.3.

In this section we have shown how the shear-warp factorization
allows us to combine optimizations based on object coherence and
image coherence with very low overhead and simple, high-quality
resampling. In the next section we extend these advantages to a per-
spective volume rendering algorithm.

3.2 Perspective Projection Rendering Algorithm
Most of the work in volume rendering has focused on parallel pro-
jections. However, perspective projections provide additional cues
for resolving depth ambiguities [14] and are essential to correctly
compute occlusions in such applications as a beam’s eye view for ra-
diation treatment planning. Perspective projections present a prob-
lem because the viewing rays diverge so it is difficult to sample
the volume uniformly. Two types of solutions have been proposed
for perspective volume rendering using ray-casters: as the distance
along a ray increases the ray can be split into multiple rays [14], or
each sample point can sample a larger portion of the volume using
a mip-map [11] [16]. The object-order splatting algorithm can also
handle perspective, but the resampling filter footprint must be re-
computed for every voxel [20].

The shear-warp factorization provides a simple and efficient solu-
tion to the sampling problem for perspective projections. Each slice
of the volume is transformed to sheared object space by a transla-
tion and a uniform scale, and the slices are then resampled and com-
posited together. These steps are equivalent to a ray-casting algo-
rithm in which rays are cast to uniformly sample the first slice of
volume data, and as each ray hits subsequent (more distant) slices
a larger portion of the slice is sampled (Figure 2). The key point is
that within each slice the sampling rate is uniform (Property 2 of the
factorization), so there is no need to implement a complicated mul-
tirate filter.

The perspective algorithm is nearly identical to the parallel pro-
jection algorithm. The only difference is that each voxel must be
scaled as well as translated during resampling, so more than two
voxel scanlines may be traversed simultaneously to produce a given
intermediate image scanline and the voxel scanlines may not be tra-
versed at the same rate as the image scanlines. We always choose a
factorization of the viewing transformation in which the slice clos-

est to the viewer is scaled by a factor of one so that no slice is ever
enlarged. To resample we use a box reconstruction filter and a box
low-pass filter, an appropriate combination for both decimation and
unity scaling. In the case of unity scaling the two filter widths are
identical and their convolution reduces to the bilinear interpolation
filter used in the parallel projection algorithm.

The perspective algorithm is more expensive than the parallel
projection algorithm because extra time is required to compute re-
sampling weights and because the many-to-one mapping from vox-
els to pixels complicates the flow of control. Nevertheless, the algo-
rithm is efficient because of the properties of the shear-warp factor-
ization: the volume and the intermediate image are both traversed
scanline by scanline, and resampling is accomplished via two sim-
ple resampling steps despite the diverging ray problem.

3.3 Fast Classification Algorithm
The previous two algorithms require a preprocessing step to run-
length encode the volume based on the opacity transfer function.
The preprocessing time is insignificant if the user wishes to generate
many images from a single classified volume, but if the user wishes
to experiment interactively with the transfer function then the pre-
processing step is unacceptably slow. In this section we present a
third variation of the shear-warp algorithm that evaluates the opac-
ity transfer function during rendering and is only moderately slower
than the previous algorithms.

A run-length encoding of the volume based upon opacity is not an
appropriate data structure when the opacity transfer function is not
fixed. Instead we apply the algorithms described in Sections 3.1–
3.2 to unencoded voxel scanlines, but with a new method to deter-
mine which portions of each scanline are non-transparent. We allow
the opacity transfer function to be any scalar function of a multi-
dimensional scalar domain:

� = f(p; q; :::)

For example, the opacity might be a function of the scalar field and
its gradient magnitude [9]:

� = f(d; jrdj)

The function f essentially partitions a multi-dimensional feature
space into transparent and non-transparent regions, and our goal is
to decide quickly which portions of a given scanline contain voxels
in the non-transparent regions of the feature space.

We solve this problem with the following recursive algorithm
which takes advantage of coherence in both the opacity transfer
function and the volume data:

Step 1: For some block of the volume that contains the current
scanline, find the extrema of the parameters of the opac-
ity transfer function (min(p);max(p);min(q);max(q); :::).
These extrema bound a rectangular region of the feature space.

Step 2: Determine if the region is transparent, i.e. f evaluated for
all parameter points in the region yields only transparent opac-
ities. If so, then discard the scanline since it must be transpar-
ent.

Step 3: Subdivide the scanline and repeat this algorithm recur-
sively. If the size of the current scanline portion is below a
threshold then render it instead of subdividing.

This algorithm relies on two data structures for efficiency (Fig-
ure 7). First, Step 1 uses a precomputed min-max octree [21]. Each
octree node contains the extrema of the parameter values for a sub-
cube of the volume. Second, to implement Step 2 of the algorithm
we need to integrate the function f over the region of the feature
space found in Step 1. If the integral is zero then all voxels must
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Figure 7: A min-max octree (a) is used to determine the range of the
parameters p; q of the opacity transfer function f(p; q) in a subcube
of the volume. A summed area table (b) is used to integrate f over
that range of p; q. If the integral is zero (c) then the subcube contains
only transparent voxels.

be transparent.� This integration can be performed in constant time
using a multi-dimensional summed-area table [2] [5]. The voxels
themselves are stored in a third data structure, a simple 3D array.

The overall algorithm for rendering unclassified data sets pro-
ceeds as follows. The min-max octree is computed at the time the
volume is first loaded since the octree is independent of the opac-
ity transfer function and the viewing parameters. Next, just before
rendering begins the opacity transfer function is used to compute
the summed area table. This computation is inexpensive provided
that the domain of the opacity transfer function is not too large.
We then use either the parallel projection or the perspective projec-
tion rendering algorithm to render voxels from an unencoded 3D
voxel array. The array is traversed scanline by scanline. For each
scanline we use the octree and the summed area table to determine
which portions of the scanline are non-transparent. Voxels in the
non-transparent portions are individually classified using a lookup
table and rendered as in the previous algorithms. Opaque regions
of the image are skipped just as before. Note that voxels that are ei-
ther transparent or occluded are never classified, which reduces the
amount of computation.

The octree traversal and summed area table lookups add over-
head to the algorithm which were not present in the previous algo-
rithms. In order to reduce this overhead we save as much computed
data as possible for later reuse: an octree node is tested for trans-
parency using the summed area table only the first time it is visited
and the result is saved for subsequent traversals, and if two adjacent
scanlines intersect the same set of octree nodes then we record this
fact and reuse information instead of making multiple traversals.

This rendering algorithm places two restrictions on the opacity
transfer function: the parameters of the function must be precom-
putable for each voxel so that the octree may be precomputed, and
the total number of possible argument tuples to the function (the
cardinality of the domain) must not be too large since the summed
area table must contain one entry for each possible tuple. Context-
sensitive segmentation (classification based upon the position and
surroundings of a voxel) does not meet these criteria unless the seg-
mentation is entirely precomputed.

The fast-classification algorithm presented here also suffers from
a problem common to many object-order algorithms: if the major
viewing axis changes then the volume data must be accessed against
the stride and performance degrades. Alternatively the 3D array
of voxels can be transposed, resulting in a delay during interactive
viewing. Unlike the algorithms based on a run-length encoded vol-
ume, it is typically not practical to maintain three copies of the unen-
coded volume since it is much larger than a run-length encoding. It
is better to use a small range of viewpoints while modifying the clas-
sification function, and then to switch to one of the previous two ren-
dering methods for rendering animation sequences. In fact, the oc-

�The user may choose a non-zero opacity threshold for transparent vox-
els, in which case a thresholded version of f must be integrated: let f 0 = f

whenever f exceeds the threshold, and f 0 = 0 otherwise.

|
0

|
90

|
180

|
270

|
360

|0

|500

|1000

|1500

 Rotation Angle (Degrees)

 R
en

de
rin

g 
T

im
e 

(m
se

c.
)

Max: 1330 msec.
Min: 1039 msec.
Avg: 1166 msec.

Figure 11: Rendering time for a parallel projection of the head data
set as the viewing angle changes.

tree and the summed-area table can be used to convert the 3D voxel
array into a run-length encoded volume without accessing transpar-
ent voxels, leading to a significant time savings (see the “Switch
Modes” arrow in Figure 12). Thus the three algorithms fit together
well to yield an interactive tool for classifying and viewing volumes.

4 Results
4.1 Speed and Memory
Our performance results for the three algorithms are summarized
in Table 1. The “Fast Classification” timings are for the algorithm
in Section 3.3 with a parallel projection. The timings were mea-
sured on an SGI Indigo R4000 without hardware graphics accel-
erators. Rendering times include all steps required to render from
a new viewpoint, including computation of the shading lookup ta-
ble, compositing and warping, but the preprocessing step is not in-
cluded. The “Avg.” field in the table is the average time in sec-
onds for rendering 360 frames at one degree angle increments, and
the “Min/Max” times are for the best and worst case angles. The
“Mem.” field gives the size in megabytes of all data structures. For
the first two algorithms the size includes the three run-length encod-
ings of the volume, the image data structures and all lookup tables.
For the third algorithm the size includes the unencoded volume, the
octree, the summed-area table, the image data structures, and the
lookup tables. The “brain” data set is an MRI scan of a human head
(Figure 8) and the “head” data set is a CT scan of a human head (Fig-
ure 9). The “brainsmall” and “headsmall” data sets are decimated
versions of the larger volumes.

The timings are nearly independent of image size because this
factor affects only the final warp which is relatively insignificant.
Rendering time is dependent on viewing angle (Figure 11) because
the effectiveness of the coherence optimizations varies with view-
point and because the size of the intermediate image increases as
the rotation angle approaches 45 degrees, so more compositing op-
erations must be performed. For the algorithms described in Sec-
tions 3.1–3.2 there is no jump in rendering time when the major
viewing axis changes, provided the three run-length encoded copies
of the volume fit into real memory simultaneously. Each copy con-
tains four bytes per non-transparent voxel and one byte per run. For
the 256x256x226 voxel head data set the three run-length encodings
total only 9.8 Mbytes. All of the images were rendered on a work-
station with 64 Mbytes of memory. To test the fast classification al-
gorithm (Section 3.3) on the 2563 data sets we used a workstation
with 96 Mbytes of memory.

Figure 12 gives a breakdown of the time required to render the
brain data set with a parallel projection using the fast classification
algorithm (left branch) and the parallel projection algorithm (right
branch). The time required to warp the intermediate image into the
final image is typically 10-20% of the total rendering time for the
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Figure 8: Volume rendering with a par-
allel projection of an MRI scan of a hu-
man brain using the shear-warp algo-
rithm (1.1 sec.).

Figure 9: Volume rendering with a par-
allel projection of a CT scan of a human
head oriented at 45 degrees relative to
the axes of the volume (1.2 sec.).

Figure 10: Volume rendering of the same
data set as in Figure 9 using a ray-caster
[12] for quality comparison (13.8 sec.).

Figure 13: Volume rendering with a par-
allel projection of the human head data
set classified with semitransparent skin
(3.0 sec.).

Figure 14: Volume rendering with a
parallel projection of an engine block
with semitransparent and opaque sur-
faces (2.3 sec.).

Figure 15: Volume rendering with a par-
allel projection of a CT scan of a human
abdomen (2.2 sec.). The blood vessels
contain a radio-opaque dye.

Figure 16: Volume rendering with a perspective projection of the
engine data set (3.8 sec.).

(a) (b) (c)

Figure 17: Comparison of image quality with bilinear and trilinear
filters for a portion of the engine data set. The images have been
enlarged. (a) Bilinear filter with binary classification. (b) Trilinear
filter with binary classification. (c) Bilinear filter with smooth clas-
sification.
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Data set Size (voxels) Parallel projection (x3.1) Perspective projection (x3.2) Fast classification (x3.3)
Avg. Min/Max Mem. Avg. Min/Max Mem. Avg. Min/Max Mem.

brainsmall 128x128x109 0.4 s. 0.37–0.48 s. 4 Mb. 1.0 s. 0.84–1.13 s. 4 Mb. 0.7 s. 0.61–0.84 s. 8 Mb.
headsmall 128x128x113 0.4 0.35–0.43 2 0.9 0.82–1.00 2 0.8 0.72–0.87 8
brain 256x256x167 1.1 0.91–1.39 19 3.0 2.44–2.98 19 2.4 1.91–2.91 46
head 256x256x225 1.2 1.04–1.33 13 3.3 2.99–3.68 13 2.8 2.43–3.23 61

Table 1: Rendering time and memory usage on an SGI Indigo workstation. Times are in seconds and include shading, resampling, projection
and warping. The fast classification times include rendering with a parallel projection. The “Mem.” field is the total size of the data structures
used by each algorithm.
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run-length
encoding
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final
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120 msec.

8.5 sec.
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Switch
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Preprocess Dataset

Figure 12: Performance results for each stage of rendering the brain
data set with a parallel projection. The left side uses the fast classi-
fication algorithm and the right side uses the parallel projection al-
gorithm.

parallel projection algorithm. The “Switch Modes” arrow shows the
time required for all three copies of the run-length encoded volume
to be computed from the unencoded volume and the min-max octree
once the user has settled on an opacity transfer function.

The timings above are for grayscale renderings. Color renderings
take roughly twice as long for parallel projections and 1.3x longer
for perspective because of the additional resampling required for the
two extra color channels. Figure 13 is a color rendering of the head
data set classified with semitransparent skin which took 3.0 sec. to
render. Figure 14 is a rendering of a 256x256x110 voxel engine
block, classified with semi-transparent and opaque surfaces; it took
2.3 sec. to render. Figure 15 is a rendering of a 256x256x159 CT
scan of a human abdomen, rendered in 2.2 sec. The blood vessels
of the subject contain a radio-opaque dye, and the data set was clas-
sified to reveal both the dye and bone surfaces. Figure 16 is a per-
spective color rendering of the engine data set which took 3.8 sec.
to compute.

For comparison purposes we rendered the head data set with a
ray-caster that uses early ray termination and a pyramid to exploit
object coherence [12]. Because of its lower computational overhead
the shear-warp algorithm is more than five times faster for the 1283

data sets and more than ten times faster for the 2563 data sets. Our
algorithm running on a workstation is competitive with algorithms
for massively parallel processors ([17], [19] and others), although
the parallel implementations do not rely on coherence optimizations
and therefore their performance results are not data dependent as
ours are.

Our experiments show that the running time of the algorithms in
Sections 3.1–3.2 is proportional to the number of voxels which are
resampled and composited. This number is small either if a signif-
icant fraction of the voxels are transparent or if the average voxel

opacity is high. In the latter case the image quickly becomes opaque
and the remaining voxels are skipped. For the data sets and clas-
sification functions we have tried roughly n2 voxels are both non-
transparent and visible, so we observe O(n2) performance as shown
in Table 1: an eight-fold increase in the number of voxels leads to
only a four-fold increase in time for the compositing stage and just
under a four-fold increase in overall rendering time. For our render-
ing of the head data set 5% of the voxels are non-transparent, and for
the brain data set 11% of the voxels are non-transparent. Degraded
performance can be expected if a substantial fraction of the classi-
fied volume has low but non-transparent opacity, but in our experi-
ence such classification functions are less useful.

4.2 Image Quality
Figure 10 is a volume rendering of the same data set as in Figure 9,
but produced by a ray-caster using trilinear interpolation [12]. The
two images are virtually identical.

Nevertheless, there are two potential quality problems associated
with the shear-warp algorithm. First, the algorithm involves two
resampling steps: each slice is resampled during compositing, and
the intermediate image is resampled during the final warp. Multiple
resampling steps can potentially cause blurring and loss of detail.
However even in the high-detail regions of Figure 9 this effect is
not noticeable.

The second potential problem is that the shear-warp algorithm
uses a 2D rather than a 3D reconstruction filter to resample the vol-
ume data. The bilinear filter used for resampling is a first-order filter
in the plane of a voxel slice, but it is a zero-order (nearest-neighbor)
filter in the direction orthogonal to the slice. Artifacts are likely to
appear if the opacity or color attributes of the volume contain very
high frequencies (although if the frequencies exceed the Nyquist
rate then perfect reconstruction is impossible).

Figure 17 shows a case where a trilinear interpolation filter out-
performs a bilinear filter. The left-most image is a rendering by the
shear-warp algorithm of a portion of the engine data set which has
been classified with extremely sharp ramps to produce high frequen-
cies in the volume’s opacity. The viewing angle is set to 45 degrees
relative to the slices of the data set—the worst case—and aliasing is
apparent. For comparison, the middle image is a rendering produced
with a ray-caster using trilinear interpolation and otherwise identical
rendering parameters; here there is virtually no aliasing. However,
by using a smoother opacity transfer function these reconstruction
artifacts can be reduced. The right-most image is a rendering using
the shear-warp algorithm and a less-extreme opacity transfer func-
tion. Here the aliasing is barely noticeable because the high frequen-
cies in the scalar field have effectively been low-pass filtered by the
transfer function. In practice, as long as the opacity transfer function
is not a binary classification the bilinear filter produces good results.

5 Conclusion
The shear-warp factorization allows us to implement coherence op-
timizations for both the volume data and the image with low compu-
tational overhead because both data structures can be traversed si-
multaneously in scanline order. The algorithm is flexible enough to
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accommodate a wide range of user-defined shading models and can
handle perspective projections. We have also presented a variant of
the algorithm that does not assume a fixed opacity transfer function.
The result is an algorithm which produces high-quality renderings
of a 2563 volume in roughly one second on a workstation with no
specialized hardware.

We are currently extending our rendering algorithm to support
data sets containing both geometry and volume data. We have
also found that the shear-warp algorithms parallelize naturally for
MIMD shared-memory multiprocessors. We parallelized the resam-
pling and compositing steps by distributing scanlines of the inter-
mediate image to the processors. On a 16 processor SGI Challenge
multiprocessor the 256x256x223 voxel head data set can be ren-
dered at a sustained rate of 10 frames/sec.
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Abstract

This paper describes a technique for using a simple shad-
ing method, such as the Phong lighting model, to approxi-
mate the appearance calculated by a more accurate method.
The results are then suitable for rapid display using exist-
ing graphics hardware and portable via standard graphics
API's. Interactive walkthroughs of view-independent non-
di�use global illumination solutions are explored as the mo-
tivating application.

CR Categories: I.3.7 [Computer Graphics]: Three Di-
mensional Graphics and Realism|Shading

Keywords: interactive walkthroughs, non-di�use appear-
ance, global illumination, Phong shading

1 INTRODUCTION

This paper describes a method to take a view-independent
non-di�use global illumination solution and approximate it
in a form that is suitable for rapid display and interac-
tive walkthroughs. The method �ts \virtual lights" to each
object that, when displayed using a simple Phong lighting
model, will closely reproduce its correct appearance.
One goal of realistic computer graphics is to let a viewer

experience a virtual space as if they were physically present
in a real space. There are many possible aspects to this
mimicry, but here we will emphasize two facets. We want
the viewer to be able to move about and explore the space
in a natural and unrestricted way, and we want to match the
appearance of the real space as closely as possible.
Real lighting is complex and subtle. Global illumination

calculations are necessary if we hope to duplicate its appear-
ance. These calculations are expensive, but if we are willing
to restrict ourselves to a static environment, this part of the
simulation can done as a pre-process. However, we still need
to display the results rapidly if we want interactive walk-
throughs. To accomplish this, we would like to leverage the
existing 3D graphics hardware/software infrastructure.
Unfortunately, there is no standard format for storing

non-di�use lighting information; previously this has meant
displaying a di�use-only approximation to the actual appear-
ance. While the results can be impressive, the absence of
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Figure 1: Approximation process.

directionally dependent lighting e�ects, such as glossy high-
lights, means that important perceptual cues are missing.
The continuing popularity of the Phong [10] lighting

model1 is a testament to the importance of including such
highlights. Most current graphics API's include a Phong-
style lighting model for fast shading. These lighting models
are much too simplistic to accurately compute global illu-
mination, but we can still make use of them. Instead of
viewing Phong as a lighting model, we can think of it as
a set of \appearance basis functions" which can be used
to approximately reproduce the results of a more accurate
method.
The basic process is outlined in Figure 1. We start from

a view-independent non-di�use global illumination solution.
For each non-di�use object, we �t a set of \virtual lights"
that, under the Phong lighting model, will reproduce its
computed appearance as closely as possible. By utilizing
directionally varying parts of the Phong model, the results
will contain non-di�use aspects of the original solution, al-
though there will also be some loss of directional information
due to the limitations of the Phong \basis functions". The
results can then be displayed using a standard Phong light-
ing model.
The translated model can easily be displayed using stan-

dard graphics API's (e.g. OpenGL, VRML, or Direct3D)
and can even be embedded in display lists. This makes
the model portable and suitable for the existing highly op-
timized 3D graphics display systems. The results are also
much more compact than the original global illumination
solutions. Most importantly, we apply the lesson of the pop-
ular but physically impossible Phong lighting model: even
fairly approximate highlights are better than none.

1.1 Related Work

Several researchers have proposed methods for generating
and displaying view-independent non-di�use global illumi-
nation solutions (e.g. [6, 11]). Practical application of such
methods has so far been hampered by their high compu-
tational cost, large storage requirements, and slow display

1In this paper we use the term Phong somewhat loosely to
mean the Phong model, the Blinn-Phong model [3] or any similar
simple direct lighting model.
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speeds. We hope the methods presented here may help push
them toward greater use.
Image-based techniques represent a very di�erent route to

non-di�use walkthroughs. They store the illumination in a
set of images instead of on surfaces. Image rendering algo-
rithms such as [4, 7, 8] are then used to quickly interpolate
new viewpoints from the precomputed images for a walk-
through. These methods o�er some potential advantages,
but it is not yet known how well they will scale to walk-
throughs of larger environments. We consider them to be
promising, but take a di�erent approach here.
Environment or re
ection maps [1, 5, 12] have long been

used for the rapid display of directionally dependent e�ects.
Their main di�erence from our work lies in their application.
They are usually used as a small extension to a simplistic
direct lighting model, whereas we are �tting our directional
e�ects in order to reproduce the appearance computed by a
physically-based method. In the future, environment maps
may be used in a manner similar to our virtual lights.
Multi-pass rendering techniques are another way to per-

form walkthroughs with non-di�use e�ects. They can imple-
ment a variety of extensions to the standard Phong lighting
model such as shadows, mirror re
ections, refraction, and
translucency [2]. The results can be striking and they can
handle dynamic environments, which is a major advantage.
The problem is that the number of passes required per image
increases rapidly with the number of lights and the number
of lighting e�ects simulated. To keep the frame rate inter-
active, one is forced to limit the environment and choose a
somewhat ad hoc lighting model.

2 OVERVIEW

Before our technique is used, we assume that a view-
independent non-di�use global illumination solution has
been computed for the environment of interest. For each ob-
ject, this solution will specify its appearance as the amount
of light leaving (by emission and/or re
ection) every point
on the object and in each direction. For simplicity we will
assume that this information is speci�ed at a number of se-
lected points which we will refer to as vertices.
An example of a directional light pattern leaving a vertex

is shown in 2D at the left in Figure 2. Our goal is to repro-
duce this pattern using parts of the Phong lighting model.
The Phong model allows us two kinds of basis functions: a
di�use or directionally invariant type and the \Phong lobes",
or directionally dependent parts, which are caused by spe-
ci�c lights. The di�use basis is commonly used to encode
di�use global illumination solutions. The new idea of this
paper is to also use the \Phong lobes" to approximate non-
di�use appearance as illustrated in Figure 2.

Light

Light

Figure 2: Directional light pattern leaving a vertex. Left:
exact or computed pattern, Middle: di�use basis and two
\Phong lobe" basis functions, Right: approximated pattern
using the basis functions.

We need to be aware of the many limitations in the Phong
model. Some of these make perfect sense (e.g. limit on the
number of active lights). Others are somewhat arbitrary and
due to the fact that the designers were thinking of Phong as a
lighting model rather than as \appearance basis functions".
For instance, there is a specular exponent parameter which
controls the width of the Phong lobes. We would like to
use di�erent exponents for di�erent lights, and thus �t using
lobes of several di�erent sizes. We cannot because in the
usual Phong lighting model, the exponent is a property of
the surface and not a property of the lights.
Given these various restrictions, we must decide which

parts and parameters will be the most useful. For each ob-
ject, we have chosen to use a single set of directional light
sources and a single specular exponent. Additionally, at each
vertex we set a di�use coe�cient and a specular coe�cient.
Together, the exponent, light positions, and light intensities
determine the shape of the specular basis function at each
vertex as shown in Figure 3. The vertex coe�cients then
specify the mixture of the di�use and specular basis func-
tions which will serve as our approximation.

Exact Diffuse Specular

Figure 3: Directional light patterns at selected vertices on an
object. Left: exact or computed patterns, Middle: di�use
basis function, Right: specular basis functions induced by
three directional lights shown as arrows. Previous methods
approximated the exact pattern using only the di�use basis,
while we use both the di�use and specular.

Setting these parameters is a non-linear optimization
problem. At �rst we tried using a general purpose non-linear
optimization procedure, but found that this took a long time
and often did not converge. Instead, we have developed a
simple set of heuristics for choosing reasonable values. Fur-
ther optimization could then be done using these values as
the initial guess, although we do not currently do this. We it-
eratively perform a simple three stage �tting process, where
a subset of the parameters are set in each stage.
For each object we start by assuming some value for the

specular exponent which �xes the shape of the specular
lobes, and iteratively �tting a set of lights. We �nd the
brightest value among all vertices and directions on the ob-
ject, and select the light direction that will create a Phong
lobe centered in that direction for that vertex and the light
intensity that will reproduce this maximum value (assuming
the specular coe�cient is 1.0 for now). The e�ect of this
new light is subtracted from each vertex and the process is
repeated until some maximum number of lights have been
�t.
Once the exponent and lights are chosen, the shape of

the specular basis functions is determined. The problem is
now a linear optimization, and we set the two coe�cients
for each vertex using simple least squares �tting. Finally,
we repeat this process with di�erent values of the exponent
and choose the exponent which gives the best �t in the least
squares step.
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Figure 4: An environment containing a teapot shown using
virtual lights.

We cannot expect to achieve an exact �t, but this proce-
dure guarantees there will be highlights in the places where
the object has its brightest highlights. Note that each ob-
ject gets its own set of \virtual lights" which do not a�ect
other objects. These lights do not cast shadows and need
not correspond to real lights in the environment. For exam-
ple, several lights may be used to better simulate a highlight
whose shape is di�erent than that of a Phong lobe, or lights
may correspond to an indirect light source such as the ceiling
above a halogen light.

3 IMPLEMENTATION

For our implementation we have worked with OpenGL's ver-
sion of the Phong shading model [9].

3.1 OpenGL's Lighting Model

OpenGL uses a simple lighting model to approximate the di-
rect illumination of surfaces by light sources. This lighting
model consists of four components: emitted, ambient, dif-
fuse, and specular. These are intended to simulate, respec-
tively: light emitted by a surface (glow), multiply re
ected
indirect lighting, di�usely re
ected direct lighting, and spec-
ularly re
ected glossy highlights from lights. Lights can be
ambient, directional, positional, or spotlights and have am-
bient, di�use and specular coe�cients. OpenGL guarantees
that at least eight lights are available. Surfaces have emitted,
ambient, di�use, and specular coe�cients, and a shininess
parameter that controls the size of the highlights.
In our implementation, we only use the emitted and spec-

ular components, along with directional light sources. The
emitted, ambient, and di�use components all produce direc-
tionally invariant lighting at a vertex and are thus redundant
for our purposes. We use the emitted component to encode
the di�use part of our solution. The specular component is
directionally varying and depends on the shininess of the ma-
terial, the light direction relative to the surface, the surface
normal, and the viewing direction relative to the surface.
Using only the emitted and specular components, the

OpenGL lighting equation for determining vertex colors be-
comes:

emitted +
X

lights

max(s � n; 0)shininess � specularlight � specularvertex

where n is the vertex normal, and s is the vector obtained
by adding the light direction and the view direction and
normalizing.

Figure 5: Comparison of original data for the teapot (left)
and our approximation using 8 lights (right) shown from
three viewpoints.

3.2 The Fitting Process

We compute the initial data by computing a radiosity solu-
tion via density estimation [13] and then performing a gather
at each vertex and storing the results for a discrete set of out-
going directions. The details are not important and many
other methods are possible. For each object, we then need
to �nd the emitted and specular values for each vertex, the
directions and intensity values for its lights, and its shininess
value. Our algorithm for a single object is:

Repeat
Choose a shininess value
Repeat
Subtract e�ects of existing lights from input light data
Find the maximum di�erence
Add directional light to cause a highlight at this maximum
Set light intensities to match input data at their maxima

until all lights have been �t
For each vertex
Set emitted and specular values by least squares �tting

until shininess search is done

We search for the shininess (i.e. exponent) which mini-
mizes the least squares error. We currently use a golden sec-
tion search method which eliminates a portion of the search
interval on each iteration.

4 RESULTS

We computed a global illumination solution for the environ-
ment shown in Figure 4 displayed using eight \virtual lights"
per specular object. This scene contains the familiar Utah
teapot which we use as a an example object to demonstrate
our results. A comparison between the computed teapot and
our �tted approximation with eight \virtual lights" is shown
in Figure 5. The results are perceptually convincing over-
all although small di�erences can easily be seen. We also
compare results when using fewer �tted lights in Figure 6.
The real test of our techniques is in walkthroughs of non-

di�use environments. We can only show images here, but
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Figure 6: Comparison of original data for the teapot (left)
and our approximation using 2 (middle) and 8 (right) virtual
lights.

Figure 7: Our environment shown with virtual lights and
di�use only (virtual lights turned o�).

we have included a live walkthrough of our environment in
the video proceedings. Figure 7 shows images of this envi-
ronment both with and without the virtual lights to demon-
strate how much they contribute perceptually.

4.1 Limitations and Open Issues

While our results match the computed solutions surprisingly
well, there are many limitations to how well we can cur-
rently mimic real appearance. Some of these are fundamen-
tal to the technique (e.g. mirrors simply require too much
directional information), but others could be alleviated with
changes in both our implementation and in the graphics dis-
play interfaces.

Some improvements, such as using positional instead of
directional lights or �nding a perceptually better �tting pro-
cess, are possible now. But many others would require ex-
tensions or additions to the current graphics API's. Some
potentially useful extensions would be the ability to vary the
specular exponent per light and having a separate specular
coe�cient for each light at each vertex.

Gouraud interpolation is a major source of artifacts and
requires that the curved surfaces be �nely tessellated. True
Phong shading would reduce these problems, but is rarely
available because it is more computationally demanding.

While we use standard graphics API's, we use them in a
hitherto unusual way. Many systems are not properly opti-
mized for the sequence of operations we use. For instance
on many OpenGL systems there is a very large (> 4�) per-
formance penalty for varying more than one property per
vertex (in our case emitted and specular coe�cients). We
have achieved good performance using a two pass technique,
one pass for the di�use component and a second for the
specular. Another possibility is to leave the specular coe�-
cient �xed at the cost of some additional loss of quality. But
this problem should largely disappear if our method gains
acceptance and is considered during system optimization.

5 CONCLUSIONS

We have presented a technique for using a simple shading
model, such as Phong, to approximate the non-di�use ap-
pearance calculated by some more accurate method. This
technique can translate view-independent non-di�use global
illumination solutions into a form that is more compact,
portable, and suitable for fast display. This allows for non-
di�use walkthroughs which are perceptually better than tra-
ditional di�use-only walkthroughs.
Moreover, by targeting our results toward standard graph-

ics API's such as OpenGL, we can utilize the existing 3D
graphics display infrastructure and allow designers to easily
optimize their systems for our type of solutions. Finally, we
have suggested a few ways in which future graphics API's
could be enhanced to better enable the reproduction of non-
di�use appearance.
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