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Abstract

This advanced course demonstrates sophisticated and novel computer graphics programming
techniques, implemented in C using the widely available OpenGL library.

By explaining the concepts and demonstrating the techniques required to generate images of
greater realism and utility, the course hel ps students achieve two goals: they gain a deeper in-
sight into OpenGL functionality and computer graphics concepts, while expanding their “tool-
box” of useful OpenGL techniques.
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1 Introduction

Sinceitsfirst release in 1992, OpenGL has been rapidly adopted as the graphics API of choice for
real -time interactive 3D graphics applications. The OpenGL state machine is easy to understand,
but its simplicity and orthogonality enable a multitude of interesting effects. The goal of thiscourse
is to demonstrate how to generate more satisfying images using OpenGL. There are three genera
areas of discussion: generating aesthetically pleasing or realistic looking basic images, computing
interesting effects, and generating more sophisticated images.

1.1 OpenGL Version

We have assumed that the attendees have astrong working knowledgeof OpenGL . Asmuch as possi-
blewe havetried to includeinteresting examplesinvolving only those commands in the most recent
version of OpenGL, version 1.1, but we have not restricted ourselves to this version. At the time
of thiswriting, OpenGL 1.2 isimminent, but not yet available, so we've used its features when it
seemed sensible, but mention that we' re doing so.

OpenGL is an evolving standard and we have taken the liberty of incorporating materia that uses
some multi-vendor extensions and, in some cases, vendor specific extensions. We do thisto help
make you aware of extensions that we think have general usefulness and should be more widely
available.

The course notes include reprints of selected papers describing rendering techniques relevant to
OpenGL, but may refer to other APIs such as OpenGL's predecessor, Silicon Graphics' IRIS GL.
For new material developed for the course notes, we use terminology and notation consistent with
other OpenGL documentation.

1.2 Course Notesand Slide Set Organization

For anumber of reasons, these course notes do not have a one-to-one correspondence with what we
present at the SIGGRAPH course. Thereisjust too much material to present in aone-day course,
but we want to provide you with as much material as possible. The organization of the course pre-
sentation is constrained by presentation and time restrictions, and isn’t necessarily the optimal way
to organize the material. As a result, the slides and the course notes go their separate ways, and
unfortunately, it isimpossibleto track the presenter’slectures using these notes.

WEe' ve tried to make up for this by making the slide set available on our web site, described in Sec-
tion 1.5. Weintend to get an accurate copy of the course materialsontheweb siteas early as possible
prior to the presentation.
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1.5 Course NotesWeb Site

WEe' ve created awebpage for this course in SGI's OpenGL web site. It containsan HTML version
of the course notes and downl oadabl e source code for the demo programs mentionedin thetext. The

web addressis:
http://www.sgi.com/Technol ogy/OpenGL /advanced sig98.html
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2 About OpenGL

Before getting into the intricacies of using OpenGL, we begin with afew comments about the phi-
losophy behind the OpenGL API and some of the caveats that come with it.

OpenGL isa procedura rather than descriptive interface. In order to generate arendering of ared
sphere the programmer must specify the appropriate sequence of commands to set up the camera
view and modeling transformations, draw the geometry for a sphere with a red color. etc. Other
systems such as VRML [10] are descriptive; one simply specifies that a red sphere should be drawn
at certain coordinates. The disadvantage of using a procedural interfaceisthat the application must
specify all of the operationsin exacting detail and in the correct sequence to get the desired result.
The advantage of this approach isthat it allows great flexibility in the process of generating theim-
age. The application is free to trade-off rendering speed and image quality by changing the steps
through which the image is drawn. The easiest way to demonstrate the power of the procedural in-
terface is to note that a descriptive interface can be built on top of a procedura interface, but not
vice-versa. Think of OpenGL as a*“graphics assembly language’: the pieces of OpenGL function-
ality can be combined as building blocksto create innovativetechniques and produce new graphics
capabilities.

A second aspect of OpenGL isthat the specificationisnot pixel exact. Thismeansthat two different
OpenGL implementationsare very unlikely to render exactly the sameimage. Thisallows OpenGL
to beimplemented across arange of hardware platforms. If the specification weretoo exact, it would
[imit the kinds of hardware accel eration that could be used; limiting its usefulness as a standard. In
practice, the lack of exactness need not be a burden — unless you plan to build a rendering farm
from adiverse set of machines.

The lack of pixel exactness shows up even within a single implementation, in that different paths
through the implementation may not generate the same set of fragments, athough the specification
does mandate a set of invariance rules to guarantee repeatabl e behavior across a variety of circum-
stances. A concrete exampl e that one might encounter isan implementation that does not accel erate
texture mapping operations, but accelerates all other operations. When texture mapping is enabled
the fragment generation is performed on the host and as a consequence all other steps that precede
texturing likely also occur on the host. This may result in either the use of different algorithms or
arithmetic with different precision than that used in the hardware accelerator. In such a case, when
texturing is enabled, a dightly different set of pixelsin the window may be written compared to
when texturing is disabled. For some of the algorithms presented in this course such variability can
cause problems, so it isimportant to understand a little about the underlying details of the OpenGL
implementation you are using.
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T-intersection at A

Figure 1. T-intersection

3 Modeling

Rendering is only half the story. Great computer graphics starts with great images and geometric
models. This section describes some modeling rules and describes a high-performance method of
performing CSG operations.

3.1 Modeling Considerations

OpenGL isarenderer not amodeler. There are utility libraries such as the OpenGL Utility Library
(GLU) which can assist with modeling tasks, but for al practical purposes modelingisthe applica
tion’sresponsibility. Attentionto modeling considerationsisimportant; theimage quality isdirectly
related tothe quality of themodeling. For example, undertessellated geometry produces poor silhou-
ette edges. Other artifacts result from a combination of the model and OpenGL’s ordering scheme.
For example, interpolation of colorsdetermined as aresult of evaluation of alighting equation at the
vertices can result in alessthan pleasing specular highlight if the geometry is not sufficiently sam-
pled. We include a short list of modeling considerations with which OpenGL programmers should
be familiar:

1. Consider using triangles, triangle strips and triangle fans. Primitives such as polygons and
guads are usualy decomposed by OpenGL into triangles before rasterization. OpenGL does
not provide controlsover how this decompositionis done, so for more predictabl e results, the
application should do the tessellation directly. Application tessellation is aso more efficient
if thesame model isto be drawn multipletimes (e.g., multipleinstances per frame, aspart of a
multipass a gorithm, or for multipleframes). The second release of the GLU library (version
1.1) includes a very good genera polygon tessellator; it is highly recommended.

2. Avoid T-intersections (also called T-vertices). T-intersections occur when one or more trian-
gles share (or attempt to share) a partial edge with another triangle (Figure 1).
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Even though the geometry may be perfectly aligned when defined, after transformationitisno
longer guaranteed to be an exact match. Sincefinite-precision algorithmsare used to rasterize
triangles, theedgeswill not alwaysbe perfectly aligned when they are drawn unlessboth edges
share common vertices. This problem typically manifestsitself during animations when the
model is moved and cracks aong the polygon edges appear and disappear. In order to avoid
the problem, shared edges should share the same vertex positions so that the edge equations
are the same.

Note that this requirement must be satisfied when seemingly separate models are sharing an
edge. For example, an application may have modeled the walls and ceiling of the interior of
aroom independently, but they do share common edges where they meet. In order to avoid
cracking when the room is rendered from different viewpoints, the walls and ceilings should
use the same vertex coordinates for any triangles along the shared edges. This often requires
adding edges and creating new triangles to “stitch” the edges of abutting objects together
seamlessly.

. The T-intersection problem has consequencesfor view-dependent tessellation. Imagine draw-
ing an object in extreme perspective so that some part of the object maps to alarge part of the
screen and an equally large part of the object (in object coordinates) mapsto asmall portion of
the screen. To minimizethe rendering timefor thisobject, applicationstessellate the object to
varying degrees depending on the area of the screenthat it covers. Thisensuresthat timeisnot
wasted drawing many triangles that cover only afew pixels on the screen. Thisisadifficult
mechanism to implement correctly; if theview of the object ischanging, thechangesin tessel-
lation from frame to frame may result in noticeable motion artifacts. Often it isbest to either
undertessellateand livewith those artifacts or overtessell ate and accept reduced performance.
The GLU NURBS library isan example of apackage which implements view-dependent tes-
sellation and providessubstantial control over the sampling method and tolerancesfor the tes-
sdllation.

. Another prablem related to the T-intersection problem occurs with carel ess specification of
surface boundaries. If a surface isintended to be closed, it should share the same vertex co-
ordinates where the surface specification starts and ends. A simple example of thiswould be
drawing a sphere by subdividing the interval [0, 27| to generate the vertex coordinates. The
vertex at 0 must be the same as the one a 27. Note that the OpenGL specification is very
strictinthisregard aseven thegl MapGri d routine must evaluate exactly at the boundariesto
ensure that evaluated surfaces can be properly stitched together.

. Another consideration is the quality of the attributes that are specified with the vertex coor-
dinates, in particular, the vertex (or face) normals and texture coordinates. When computing
normals for an object, sharp edges should have separate normals at common vertices, while
smooth edges should have common normals. For example, acubeismade up of six quadrilat-
eralswhere each vertex is shared by three polygons, but a different normal should be used for
each of thethreeinstancesof each vertex, but asphereis made up of many polygonswhereall
vertices have common normals. Failureto properly set these attributes can result in unnatural
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lighting effects or shading techniques such as environment mapping will exaggerate the errors
resulting in unacceptabl e artifacts.

6. Thefina suggestionisto be consistent about the orientation of polygons. That is, ensure that
all polygons on a surface are oriented in the same direction (clockwise or counterclockwise)
when viewed from theoutside. Thereare at | east two reasonsfor maintaining thisconsistency.
First the OpenGL face cullingmethod can be used as an efficient form of hidden surface elimi-
nationfor convex surfacesand, second, several algorithmscan exploit the ability to selectively
draw only the frontfacing or backfacing polygons of a surface.

3.2 Decomposition and Tessdllation

Tessellation refers to the process of decomposing a complex surface such as a sphere into simpler
primitives such as triangles or quadrilaterals. Most OpenGL implementations are tuned to process
triangle strips and triangle fans efficiently. Triangles are desirable because they are planar, easy to
rasterize, and can always beinterpol ated unambiguously. When an implementation is optimized for
processing triangles, more complex primitives such as quad strips, quads, and polygons are decom-
posed into triangles early in the pipeline.

If the underlying implementation is performing this decomposition, there is a performance bene-
fit in performing this decomposition a priori, either when the database is created or at application
initialization time, rather than each time the primitiveisissued. A second advantage of perform-
ing this decomposition under the control of the application is that the decomposition can be done
consistently and independently of the OpenGL implementation. Since OpenGL doesn’t specify its
decomposition algorithm, different implementationsmay decomposeagiven quadrilateral along dif-
ferent diagonals. This can result in an image that is shaded differently and has different silhouette
edges when drawn on two different OpenGL implementations.

Quadrilaterals may be decomposed by finding the diagonal that creates two triangleswith the great-
est difference in orientation. A good way to find thisdiagonal isto compute the angles between the
normals at opposing vertices, compute the dot product, then choose the pair with the largest angle
(smallest dot product) as shown in Figure 2. The normals for a vertex can be computed by taking
the cross products of the the two vectors with origins at that vertex. An aternative decomposition
method isto split the quadrilateral into trianglesthat are closest to equal in size.

Tessellation of simple surfaces such as spheres and cylindersis not difficult. Most implementations
of the GLU library use a simple latitude-longitude tessellation for a sphere. While the algorithmis
simple to implement, it has the disadvantage that the triangles produced from the tessellation have
widely varying sizes. These widely varying sizes can cause noticeable artifacts, particularly if the
object islit and rotating.

A better algorithm generates triangles with sizes that are more consistent. Octahedral and icosa-
hedral tessellationswork well and are not very difficult to implement. An octahedral tessellation
approximates a sphere with an octahedron whose vertices are all on the unit sphere. Since the faces
of the octahedron are triangles they can easily be split into four triangles, as shownin Figure 3.
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B=cxd

Figure 2. Quadrilateral Decomposition

Eachtriangleissplit by creating anew vertex inthe middl e of each edge and adding three new edges.
These vertices are scaled onto the unit sphere by dividing them by their distance from the origin
(normalizing them). Thisprocess can berepeated asdesired, recursively dividingall of thetriangles
generated in each iteration.

The same agorithm can be applied using an icosahedron as the base object, recursively dividing
all 20 sides. In both cases the algorithms can be coded so that triangle strips are generated instead
of independent triangles, maximizing rendering performance. It isnot necessary to split thetriangle
edgesin half, sincetessdllatingthetriangle by other amounts, such asby thirds, or even any arbitrary
number, may produce a more desirablefina uniform triangle size.

3.3 Generating Model Normals

Given an arbitrary polygona model without precomputed normals, it isfairly easy to generate poly-
gon normals for faceted shading, but quite a bit more difficult to create correct vertex normals for
smooth shading. A simple cross product of two edges followed by a normalization of the result to
obtain a unit-length vector generates a facet normal. Computing a correct vertex norma must take
into account all facets that share that normal and whether or not all facets should contribute to the
normal. For best results, compute al normals before converting to triangle strips.

To compute the facet normal of atriangle, select onevertex, computethe vectors from that vertex to
the other two vertices, then compute the cross product of those two vectors. Figure 4 showswhich
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Figure 3. Octahedron with Triangle Subdivision

vectors to use to compute a cross product for atriangle. The following code fragment generates a
facet normal for atriangle, assuming a clockwise polygon winding when viewed from the front:

/* Conpute edge vectors */

x10 = x1 - xO;
yl0 = y1 - y0;
z10 = z1 - zO0;
x12 = x1 - x2
yl2z =yl - y2;
z12 = z1 - z2

/* Conpute the cross product */

9 V2
Vec
M

Figure 4. Computing a Surface Normal from Edges Cross Product
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Figure 5. Computing Quadrilateral Surface Normal from Vertex Cross Product

cpx = (z10 * y12) - (yl0 * z12);
cpy = (x10 * z12) - (z10 * x12);
cpz = (yl0 * x12) - (x10 * y12);

/* Normalize the result to get the unit-1length facet

normal */

r = sqgrt(cpx * cpx + cpy * cpy + cpz * cpz);
nx = cpx / r;

ny =cpy / r;

nz =cpz / r;

Computing the facet normal of a polygon with more than three vertices can be abit more tricky. Of-
ten such polygonsare not perfectly planar, soyou may get adifferent result depending on whichthree
vertices are chosen. If the polygonis aquadrilateral one good method is to take the cross product of
the vectorsbetween opposing vertices as shownin Figure5. Thefollowing code fragment computes
the cross product for a quadrilateral:

/* Conpute vectors */

x20 = x2 - XxO0;
y20 = y2 - y0;
220 = z2 - z0;
x13 = x1 - X3;
yl3 =yl - y3;
z13 = z1 - z3;

/* Conpute the cross product */
cpx = (z20 * y13) - (y20 * z13);
cpy (x20 * z13) - (z20 * x13);
cpz (y20 * x13) - (x20 * y13);

10
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Figure 6. Proper Winding for Shared Edge of Adjoining Facets

For polygons with more than four vertices it can be difficult to choose the best vertices to use for
computing the cross product. It is best to attempt to choose verticesthat are the furthest apart from
each other, if possible, or average the result.

3.3.1 Consistent Vertex Winding

Some models come with polygons that are not all wound in a clockwise or counterclockwise di-
rection, but are a mixture of both. Those polygonsthat are wound inconsistently should have the
vertex order reversed. A good way to accomplish thisisto find all common edges and verify that
nei ghboring polygon edges are drawn in the opposite order (see Figure 6).

To begin rewinding polygons, one polygon must be chosen as “correct”. All neighboring polygons
must then be found and made consistent withthe* correct” polygon. Thisrepeatsrecursively for each
new “correct” polygon until no more neighboring polygons can be found. If the model isasingle
closed object, al polygonswill now be consistent. However, if themodel has multiple unconnected
pieces, another polygon that has not yet been tested must be found and the process must be repested
until al polygons have been tested and made consistent.

Theabove method still |eaves a50-50 chance that the entire object is now wound backwards (assum-
ing an object with half of the facets wound clockwise and half wound counterclockwise). Short of
getting ahuman involved tolook at the model, there are waysto check that the normals are pointing
outwards. One way is to find the geometric center of the object by computing the object bounding
box by finding the maximum and minimum X, Y and Z values, then computing the mid-point of the
bounding box. Next, select a vertex that is the maximum distance from this center point and com-
pute the (normalized) vector from the center point to this vertex. Then take the normal of one of
the facets that shares the distant vertex and compute the dot product of the two vectors. A positive
result indicatesthat the normals are all correct while a negative result indicatesthat the normals are
al backwards. If the normals are backwards, negate them all and reverse the windings of all facets.

Therearestill afew pathological cases that may not come out right, such asamodel of aroom where
it isdesirable to view theinside walls, but the above method works for most cases.

11
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Figure 7. Splitting Normals for Hard Edges

3.3.2 Smooth Shading

To smoothly shade an object, the same normal should be used on agiven vertex for all polygonsthat
share the vertex. The simplest way to do thisisto add all (normalized) normals from the common
facets then renormalize the result [25]. This provides reasonabl e results for surfaces that are fairly
smooth, but does not ook good for surfaces with sharp edges.

An object with a sharp corner, such as a cube, should look like it has a hard edge, rather than a soft
edge. The angle between polygonsthat should produce a hard edge can vary from model to model.
It isfairly clear that a 90 degree edge should always be considered a hard edge, but some models
look better with hard edges at angleslessthan 45 degrees while otherslook better with soft edgesfor
angles greater than 45 degrees. This particular parameter should generally beleft under user control
with agood default probably right around 45 degrees.

To determine the angle between polygons, take the dot product of the facet normals (which must
be unit length). A dot product returns the cosine of the angle between the vectors. So, if the dot
product of thetwo normalsis greater than the cosine of the desired hard edge angl e, the edge should
be considered soft, otherwiseit should be considered hard. To create ahard edge, adifferent normal
is generated for each side. Be sure to keep common normals for any remaining soft edges of the
surface.

Figure 7 shows an example of amesh with two hard edgesinit. The three vertices making up these
hard edges, v2, v3, and v4, need to be split using two separate normals. In the case of vertex v2,
one normal would apply to poly01 and poly02 and a different norma would apply to polyl1 and
poly12. Thismakes sure that the edge between poly01 and poly02 still looks smooth whilethe edge

12
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Figure 8. Triangle Strip Winding

between poly02 and poly12 has a nice crease and looks like a sharp edge. Since vl isnot split, the
edge between poly01 and poly11 will look sharper near v2 and will become smoother asit getscloser
to v1. The edge between v1 and vO would then be completely smooth. Thisisthe desired effect.

For an object such as a cube, three hard edges will share one common vertex. In this case the edge
splitting algorithm needs to be repeated for the third edge to achieve the correct results.

3.4 Triangle-stripping

One of the simplest ways to speed up an OpenGL program while simultaneously saving storage
spaceisto convert independent trianglesor polygonsintotrianglestrips. If themodel isgenerated di-
rectly from NURBS data or from some other regular geometry, it is quite straightforward to connect
the triangles together into longer strips. You must keep in mind whether you want thefirst triangle
to start off with a clockwise or counterclockwise winding, then all subsequent trianglesin the list
will adternate winding (see Figure 8). Triangle fans must also be started with the correct winding,
but al subsequent triangles are wound in the same direction (see Figure 9).

Because OpenGL does not have a way to specify generalized triangle strips, the user must choose
between GL_TRI ANGLE_STRI P and GL_TRI ANGLE_FAN. In general, more triangles can be placed
into astrip than afan. Trianglefans are great when alarge convex polygon needs to be converted to
triangles or for geometry that is cone-shaped. Most other cases are best converted to triangle strips.

For regular meshes, triangle strips should be lined up side by side as shown in Figure 10. The goal
here is to minimize the number of total strips and try to avoid “orphan” triangles (also known as
singleton strips) that can’t be made part of alonger strip. It is possibleto turn acorner in atriangle
strip by using redundant vertices and degenerate triangles as described in [17].

13
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Figure 9. Triangle Fan Winding

Start of first strip

Start of second strip
Start of third strip

Figure 10. A Mesh Made up of Multiple Triangle Strips
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Figure 11. “Greedy” Triangle Strip Generation

34.1 Greedy Tri-stripping

A fairly simple method of converting a model into triangle stripsis sometimes known as greedy tri-
stripping. One of the early greedy agorithmswas developed for IRIS GL which allowed swapping
of vertices to create direction changesto the facet with the |east neighbors. However, with OpenGL
the only way to get the equivalent behavior of swapping vertices is to repeat a vertex and create a
degenerate triangle, which is much more expensive than the original vertex swap operation.

For OpenGL a better algorithm is to choose a polygon, convert it to triangles, then continue onto
the neighboring polygon from the last edge of the previous polygon. For a given starting polygon
beginning at a given edge, there are no choices as to which polygon is the best to choose next since
thereisonly one choice. The strip is continued until thetriangle strip runs off the edge of the model
or runsinto a polygon that is already a part of another strip (see Figure 11). For best results, pick a
polygon and go both directions as far as possible, then start the triangle strip from one end.

A triangle strip should not cross a hard edge, unless the vertices on that edge are repeated redun-
dantly, since you’'ll want different normals for the two triangles on either side of that edge. Once
one strip is compl ete, the best polygon to choose for the next strip is often aneighbor to the polygon
at one end or the other of the previous strip. More advanced triangulation methods don’t try to keep
all triangles of a polygon together. For more information on such a method refer to [17].

3.5 Capping Clipped Solidswith the Stencil Buffer

When dealing with solid objectsit is often useful to clip the object against a plane and observe the
cross section. OpenGL's user-defined clipping planes allow an application to clip the scene by a
plane. The stencil buffer provides an easy method for adding a*“cap” to objectsthat are intersected
by the clipping plane. A capping polygon is embedded in the clipping plane and the stencil buffer
is used to trim the polygon to the interior of the solid.
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For more information on the techniques using the stencil buffer, see Section 14.

If some careistaken when constructingthe object, solidsthat have adepth complexity greater than 2
(concave or shelled objects) and less than the maximum val ue of the stencil buffer can be rendered.
Object surface polygons must have their vertices ordered so that they face away from the interior
for face culling purposes.

The stencil buffer, color buffer, and depth buffer are cleared, and color buffer writes are disabled.
The capping polygon is rendered into the depth buffer, then depth buffer writes are disabled. The
stencil operation is set to increment the stencil value where the depth test passes, and the model is
drawnwithgl Cul | Face( GL_BACK) . Thestencil operationisthen set to decrement the stencil value
where the depth test passes, and the model is drawn with gl Cul | Face( GL_FRONT) .

At this point, the stencil buffer is 1 wherever the clipping plane is enclosed by the frontfacing and
backfacing surfaces of the object. The depth buffer is cleared, color buffer writes are enabled, and
the polygon representing the clipping plane is now drawn using whatever material properties are
desired, with the stencil function set to GL_EQUAL and the reference value set to 1. Thisdraws the
color and depth values of the cap into the framebuffer only where the stencil valuesequal 1.

Finally, stencilingisdisabled, the OpenGL clipping planeis applied, and the clipped object isdrawn
with color and depth enabled.

3.6 Constructive Solid Geometry with the Stencil Buffer

Before continuing, the it may help for the reader to be familiar with the concepts of stencil buffer
usage presented in Section 14.

Constructive solid geometry (CSG) models are constructed through the intersection (N), union (U),
and subtraction (—) of solid objects, some of which may be CSG objects themselves[23]. Thetree
formed by the binary CSG operators and their operandsis known as the CSG tree. Figure 12 shows
an example of a CSG tree and the resulting mode!.

Therepresentation usedin CSG for solid objectsvaries, but wewill consider asolidto beacollection
of polygonsforming a closed volume. “Solid”, “primitive’, and “object” are used here to mean the
same thing.

CSG objects have traditionally been rendered through the use of ray-casting, which is slow, or
through the construction of a boundary representation (B-rep).

B-repsvary in construction, but are generally defined as aset of polygonsthat form the surface of the
result of the CSG tree. One method of generating aB-rep isto take the polygonsforming the surface
of each primitive and trim away the polygons (or portionsthereof) that don’t satisfy the CSG oper-
ations. B-rep models are typically generated once and then manipulated as a static model because
they are slow to generate.

Drawing aCSG model using stencil usually means drawing more polygonsthan a B-rep would con-
tain for the same model. Enabling stencil aso may reduce performance. Nonethel ess, some portions
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Figure 12. An Example Of Constructive Solid Geometry

of aCSG tree may be interactively manipulated using stencil if the remainder of the tree is cached
asaB-rep.

The agorithm presented here is from a paper by Tim F. Wiegand describing a GL-independent
method for using stencil in a CSG modeling system for fast interactive updates. The technigque can
also process concave solids, the complexity of whichislimited by the number of stencil planesavail-
able. A reprint of Wiegand's paper isincluded in the Appendix.

The algorithm presented here assumes that the CSG treeisin “norma” form. A treeisin norma
form when al intersection and subtraction operators have a left subtree which contains no union
operators and a right subtree which is simply a primitive (a set of polygons representing a single
solid object). All union operators are pushed towards the root, and al intersection and subtraction
operators are pushed towardstheleaves. For example, (((ANB) -C)U(((DNE)NG) - F))UH
isin norma form; Figure 13 illustrates the structure of that tree and the characteristics of atreein
normal form.

A CSG tree can be converted to normal form by repeatedly applying thefollowing set of production
rulesto the tree and then its subtrees:

L. X-(YUuZ) - (X-Y)-Z
2 XNYUuZ) - (XNnY)U(XnZ)
3X-(YnZ) - (X -Y)U(X -2)
4. Xni¥YnZzZ) - (XnY)nZz
5 X—(Y-2) - (X-Y)U(XNZ)
6. XN(Y-2) - (XNnY)-Z
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Figure 13. A CSG Treein Normal Form
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(X -Y)NZ - (XnZ)-Y
L(XUY)—Z - (X -2 Uy - Z)
L XuUY)NZ - (Xn2Z)u(Yn2Zz)

X, Y, and Z here match either primitives or subtrees. Here' sthe algorithm used to apply the produc-
tion rules to the CSG tree:

normal i ze(tree *t)

{

}

if (isPrimtive(t))
return;

do {

while (matchesRule(t)) /* Using rules given above */

appl yFi r st Mat chi ngRul e(t);

normal i ze(t->left);
} while (!(isUnionQperation(t) ||

(isPrimtive(t->right) &&

I isUnionQperation(T->left))));

normal i ze(t->right);

Normalization may increasethesize of thetree and add primitiveswhich do not contributeto thefinal
image. The bounding volume of each CSG subtree can be used to prunethetree asit is normalized.
Bounding volumesfor the tree may be cal culated using the following a gorithm:
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fi ndBounds(tree *t)

{
if (isPrimtive(t))
return;

fi ndBounds(t->left);
fi ndBounds(t->right);

switch (t->operation){
case union:
t - >bounds = uni onOf Bounds(t- >l eft->bounds,
t->right->bounds);
case intersection:
t->bounds = intersecti onCOf Bounds(t->l eft->bounds,
t->right->bounds);
case subtraction:
t->bounds = t->l eft->bounds;

CSG subtreesrooted by the intersection or subtraction operators may be pruned at each step in the
normalization process using the following two rules:

1. if Tisanintersectionand noti nt er sect s( T- >l ef t - >bounds, T->ri ght->bounds),
delete T.

2. if Tisasubtractionandnoti nt er sect s( T- >l ef t - >bounds, T->ri ght - >bounds),re-
place Twith T->l ef t.

The normalized CSG treeis a binary tree, but it'simportant to think of the tree rather as a*“sum of
products” to understand the stencil CSG procedure.

Consider al the unions as sums. Next, consider al the intersections and subtractions as products.
(Subtractionis equivalent to i ntersection with the complement of theterm to theright. For example,
A — B = An B.) Imagine all the unions flattened out into a single union with multiple children;
that union isthe “sum”. The resulting subtrees of that union are all composed of subtractions and
intersections, the right branch of those operationsis alwaysasingle primitive, and theleft branch is
another operation or asingleprimitive. You should read each child subtree of theimaginary multiple
union as a single expression containing all the intersection and subtraction operations concatenated
from the bottom up. These expressionsare the “products’. For example, you should think of ((AN
B)-CYu(((GND)—-FE)NF)UH asmeaning (ANB-C)U(GND—-FENF)UH. Figure14
illustratesthis process.

At this time redundant terms can be removed from each product. Where a term subtracts itself
(A — A), the entire product can be deleted. Where a term intersects itself (A N A), that intersec-
tion operation can be replaced with the term itself.
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(((ANB) - C) U ((DNE)NG) - F)) UH) (ANB - C)U (DNENG - F)UH

Figure 14. Thinking of a CSG Tree as a Sum of Products

All unions can be rendered simply by finding the visible surfaces of the left and right subtrees and
letting the depth test determine the visible surface. All products can be rendered by drawing the
visible surfaces of each primitive in the product and trimming those surfaces with the volumes of
the other primitives in the product. For example, to render A — B, the visible surfaces of A are
trimmed by the complement of the volume of B, and the visible surfaces of B are trimmed by the
volume of A.

The visible surfaces of a product are the front facing surfaces of the operands of intersections and
the back facing surfaces of the right operands of subtraction. For example, in (A — B N C'), the
visible surfaces are the front facing surfaces of A and C, and the back facing surfaces of B.

Concave solids are processed as sets of front or back facing surfaces. The “convexity” of a solid
is defined as the maximum number of pairs of front and back surfaces that can be drawn from the
viewing direction. Figure 15 shows some examples of the convexity of objects. The nth front sur-
face of ak-convex primitiveis denoted A4,, ;, and the nth back surfaceis A4,,;,. Because a solid may
vary in convexity when viewed from different directions, accurately representing the convexity of
aprimitive may be difficult and may also involve reevaluating the CSG tree at each new view. In-
stead, the agorithm must be given the maximum possible convexity of a primitive, and draws the
nth visible surface by using a counter in the stencil planes.

The CSG tree must be further reduced to a“ sum of partial products’ by converting each product toa
union of products, each consisting of the product of the visible surfaces of the target primitive with
the remaining termsin the product.
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Figure 15. Examples of n-convex Solids

For example, if A, B, and D are 1-convex and C is 2-convex:
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Because the target term in each product has been reduced to a single front or back facing surface,
the bounding volumes of that term will be a subset of the bounding volume of the original complete
primitive. Oncethetreeis converted to partia products, the pruning process may be applied again
with these subset volumes.

In each resulting child subtree representing a partial product, the leftmost term is called the “target”
surface, and the remaining terms on the right branches are called “trimming” primitives.

The resulting sum of partial products reduces the rendering problem to rendering each partia prod-
uct correctly before drawing the union of the results. Each partia product is rendered by drawing
the target surface of the partial product and then “classifying” the pixels generated by that surface
with the depth values generated by each of the trimming primitivesin the partial product. If pixels
drawn by thetrimming primitives pass the depth test an even number of times, that pixel inthetarget
primitiveis“out”, and discarded. If the count isodd, the target primitive pixel is“in”’, and kept.

Because the a gorithm saves depth buffer contents between each object, we optimizefor depth saves
and restores by drawing as many of target and trimming primitivesfor each pass aswe can fit in the
stencil buffer.
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The algorithm uses one stencil bit (.S,,) as atogglefor trimming primitive depth test passes (parity),
n stencil bits for counting to the nth surface (S...,,¢), Where n isthe smallest number for which 27
is larger than the maximum convexity of a current object, and as many bits are available (5,) to
accumulate whether target pixels have to be discarded. Because S.....,: Will require the GL_I NCR
operation, it must be stored contiguously in the least-significant bits of the stencil buffer. 5, and
Seount @€ Used in two separate steps, and so may share stencil bits.

For example, drawing 2 5-convex primitives would require 1.5, bit, 3 Scoun: bits, and 2 5, bits.
Because S, and S...»: are independent, the total number of stencil bits required would be 5.

Once thetree has been converted to asum of partial products, theindividual products are rendered.
Productsare grouped together so that as many partial productscan be rendered between depth buffer
saves and restores as the stencil buffer has capacity.

For each group, writes to the color buffer are disabled, the contents of the depth buffer are saved,
and the depth buffer is cleared. Then, every target in the group is classified against its trimming
primitives. The depth buffer is then restored, and every target in the group is rendered against the
trimming mask. The depth buffer save/restore can be optimized by saving and restoring only the
region containing the screen-projected bounding volumes of the target surfaces.

for each group
gl ReadPi xel s(...);
<cl assify the group>
gl St enci | Mask(0); /* so DrawPi xel s won’t affect Stencil */
gl DrawPi xel s(...);
<render the group>

Classification consists of drawing each target primitive's depth value and then clearing those depth
values where the target primitive is determined to be outside the trimming primitives.

gl Cl earDept h(far);

gl O ear (GL_DEPTH BUFFER BI T);

a = 0;

for (each target surface in the group)

for (each partial product targeting that surface)
<render the depth values for the surface>
for (each trimming prinmtive in that partial product)
<trimthe depth values against that primtive>

<set Sa to 1 where Sa = 0 and Z < Zfar>
at+,

The depth valuesfor the surface are rendered by drawing the primitive containing the the target sur-
face with color and stencil writesdisabled. (S.....:) iSused to mask out al but thetarget surface. In
practice, most CSG primitives are convex, so the algorithm is optimized for that case.

if (the target surface is front facing)
gl Cul | Face( GL_BACK) ;
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el se
gl Cul | Face( GL_FRONT) ;

if (the surface is 1-convex)

gl Dept hivask(1);

gl Col or Mask(0, 0, 0, 0);

gl Stenci | Mask(0);

<draw the prinitive containing the target surface>
el se

gl Dept hivask(1);

gl Col or Mask(0, 0, 0, 0);

gl Stenci | Mask( Scount);

gl Stenci | Func(G._EQUAL, index of surface, Scount);

gl Stenci | Op(GL_KEEP, G._KEEP, G._INCR);

<draw the prinitive containing the target surface>

gl CearStencil (0);

gl O ear (GL_STENCI L_BUFFER BI T) ;

Then each trimming primitive for that target surface isdrawn in turn. Depth testing is enabled and
writes to the depth buffer are disabled. Stencil operations are masked to S, and the S, bit in the
stencil is cleared to 0. The stencil function and operation are set so that 5, is toggled every time
the depth test for a fragment from the trimming primitive succeeds. After drawing the trimming
primitive, if this bit is O for uncomplemented primitives (or 1 for complemented primitives), the
target pixel is“out”, and must bemarked “discard”, by enablingwritesto thedepth buffer and storing
the far depth value (Z) into the depth buffer everywhere that the S, indicates “discard”.

gl Dept hMask( 0) ;

gl Col or Mask(0, 0, 0, 0);

gl Stenci | Mask(mask for Sp);

gl CearStencil (0);

gl O ear (GL_STENCI L_BUFFER BI T);

gl Stenci | Func(G._ALWAYS, 0, 0);

gl Stenci | Op( GL_KEEP, GL_KEEP, GL_I| NVERT);
<draw the trimring primtive>

gl Dept hivask(1);

Once all the trimming primitives are rendered, the values in the depth buffer are Z; for al target
pixels classified as “out”. The S, bit for that primitive is set to 1 everywhere that the depth value
for apixel isnot equal to Z, and O otherwise.

Each target primitive in the group is finally rendered into the framebuffer with depth testing and
depth writes enabled, the color buffer enabled, and the stencil function and operation set to write
depth and color only where the depth test succeeds and S, is 1. Only the pixelsinside the volumes
of al the trimming primitives are drawn.
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gl Dept hivask(1);

gl Col or Mask(1, 1, 1, 1);

a = 0;

for (each target primtive in the group)
gl Stenci | Mask(0);
gl Stencil Func(G._EQUAL, 1, Sa);
gl Cul | Face( GL_BACK) ;
<draw the target primtive>
gl Stenci | Mask( Sa) ;
gl dearStencil (0);
gl O ear (GL_STENCI L_BUFFER BI T) ;
a++;

Further techniquesare availablefor adding clipping planes (hal f-spaces), including more normaliza-
tion rulesand pruning opportunities[63]. Thisisespecially important in the case of the near clipping
plane in the viewing frustum.

Source code for dynamically loadable Inventor objects implementing this technique is available at
the Martin Center at Cambridge web site [64].
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4 Geometry and Transformations

OpenGL has a simple and powerful transformation model. Since the transformation machinery in
OpenGL is exposed in the form of the modelview and projection matrices, it’s possible to develop
novel uses for the transformation pipeline. This section describes some useful transformation tech-
niques, and provides some additional insight into the OpenGL graphics pipeline.

4.1 Stereo Viewing

Stereo viewingisacommon techniqueto increasevisual realism or enhance user interaction with 3D
scenes. Two viewsof ascene are created, onefor theleft eye, onefor theright. Some sort of viewing
hardwareisused with thedisplay, so each eyeonly seestheview created for it. Theapparent depth of
objectsisafunction of thedifferencein their positionsfrom theleft and right eye views. When done
properly, objectsappear to have actua depth, especially with respect to each other. When animating,
the left and right back buffers are used, and must be updated each frame.

OpenGL supports stereo viewing, with left and right versions of the front and back buffers. In nor-
mal, non-stereo viewing, when not using both buffers, the default buffer istheleft onefor both front
and back buffers. Since OpenGL iswindow system independent, there are no interfacesin OpenGL
for stereo glasses, or other stereo viewing devices. Thisfunctionality ispart of the OpenGL/Window
system interface library; the style of support varies widely.

In order to render aframe in stereo:

The display must be configured to run in stereo mode.

The |left eye view for each frame must be generated in the left back buffer.

Theright eye view for each frame must be generated in the right back buffer.

The back buffers must be displayed properly, according to the needs of the stereo viewing
hardware.

Computing the left and right eye views is fairly straightforward. The distance separating the two
eyes, called theinterocular distance(1OD), must be determined. Choosethisvalueto givethe proper
spacing of the viewer’s eyes relative to the scene being viewed. Whether the scene is microscopic
or galaxy-wideisirrelevant. What mattersisthe size of theimaginary viewer relativeto the objects
in the scene. Thisdistance should be correlated with the degree of perspective distortion present in
the scene to produce aredlistic effect.

41.1 Fusion Distance

The other parameter is the distance from the eyes where the lines of sight for each eye converge.
Thisdistanceis called the fusion distance. At thisdistance objectsin the scenewill appear to be on
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Figure 16. Stereo Viewing Geometry

the front surface of the display (“in the glass”). Objects farther than the fusion distance from the
viewer will appear to be “behind the glass” while objectsin front will appear to float in front of the
display. Thelatter illusionis harder to maintain, since real objectsvisibleto the viewer beyond the
edge of the display tend to destroy theillusion.

Althoughit ispossibleto create good | ooking stereo scenes using dimensionless quantities, the best
behavior occurs when everything is measured carefully. Thisis quiteeasy to do if thegl Frust um
call isused rather thanthe gl uPer spect i ve cal. Pick aunit of measurement, then usethose units
for screen size, distancefrom viewer to screen, interocular distance, and so forth. Itisagoodideato
keep the code that computes the screen parameters separate from therest of the application, to make
it easier to port the program to different screen sizes or arrangements.

Theview direction vector and the vector separating the left and right eye position are perpendicular
to each other. The two view points are located along a line perpendicular to the direction of view
and the “up” direction. The fusion distance is measured aong the view direction. The position of
the viewer can be defined to be at one of the eye points, or hafway between them. In either case,
the left and right eye locations are positioned relative to it.

If theviewer istaken to be halfway between the stereo eye positions, and assuming gl uLookAt has
been called to put the viewer position at the originin eye space, then the fusion distance ismeasured
along the negative = axis (likethe near and far clipping planes), and the two viewpointsare on either
side of the origin along the = axis, at (-10OD/2, 0, 0) and (10D/2, 0, 0).

4.1.2 Computing the Transforms
The transformations needed for correct stereo viewing are simple translations and off-axis projec-
tions[13]. Computationally, the stereo viewing transforms happen last, after the viewing transform

has been applied to put the viewer at the origin. Since the matrix order isthe reverse of the order of
operations, the viewing matrices should be applied to the modelview matrix first.
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The order of matrix operations should be:

1. Transform from viewer position to left eye view.

2. Apply viewing operation to get to viewer position (gl uLookAt or equivalent).
3. Apply modeling operations.

4. Change buffers, repeat for right eye.

Assuming that the identity matrix is on the modelview stack and that we want to ook at the origin
from adistance of EYE_BACK:

gl Mat ri xMode( GL_MODELVI EW ;

gl Loadl dentity(); /* the default matrix */

gl Pushmat ri x()

gl Dr awBuf f er (GL_BACK_LEFT)

gl uLookAt (-1 0 2.0, 0.0, EYE_BACK,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

<vi ewi ng transfornms>

<nodel i ng transforns>

draw()

gl PopMat ri x();

gl Pushmat ri x()

gl Dr awBuf f er ( GL_BACK_RI GHT)

gl uLookAt (10D 2.0, 0.0, EYE BACK,
0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

<vi ewi ng transfornms>

<nodel i ng transforns>

draw()
gl PopMat ri x()

Thismethod of implementing stereo transforms changes the viewing transform directly using a sep-
arate call to gl uLookAt for each eyeview. Movefusion distance along the viewing direction from
the viewer position, and use that point for the center of interest of both eyes. Trandate the eye po-
sition to the appropriate eye, then render the stereo view for the corresponding buffer. This method
is quite simple when real-world measurements are used.

An dternative, but less correct, method of implementing stereo transformsis to translate the views
left and right by half of theinterocul ar distance, thenrotate by theinversetangent of theratio between
the fusion distance and half of theinterocular distance: angle = arctan(l%endistance )y \jith this

method, each viewpoint is rotated towards the centerline halfway between the fWo vi ewpoints.
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4.2 Depth of Field

Normal viewing transforms act like a perfect pinhole camera; everything visibleisin focus, regard-
less of how close or how far the objects are from the viewer. To increase realism, a scene can be
rendered to vary sharpness as a function of viewer distance, more accurately simulating a camera
with afinite depth of field.

Depth-of-field and stereo viewing are similar. In both cases, there is more than one viewpoint, with
all view directionsconverging at afixed distanceal ong the direction of view. When computing depth
of field transforms, however, we only use shear instead of rotation, and sample a number of view-
points, not just two, along an axis perpendicular to the view direction. The resulting images are
blended together.

Thisprocess createsimages where the objectsin front of and behind the fusion distance shift position
as afunction of viewpoint. In the blended image, these objects appear blurry. The closer an object
isto thefusion distance, the less it shifts, and the sharper it appears.

The field of view can be expanded by increasing the ratio between the viewpoint shift and fusion
distance. Thisway objects have to be farther from the fusion distance to shift significantly.

For details on rendering scenes featuring alimited field of view see Section 9.1.

4.3 TheZ Coordinate and Per spective Projection

The z coordinates are treated in the same fashion asthe « and y coordinates. After transformation,
clipping and perspective division, they occupy the range -1.0 through 1.0. The gl Dept hRange
mapping specifies a transformation for the = coordinate similar to the viewport transformation used
to map = and y to window coordinates. The gl Dept hRange mapping is somewhat different from
the viewport mapping in that the hardware resolution of the depth buffer is hidden from the appli-
cation. The parametersto the gl Dept hRange call areintherange[0.0, 1.0]. The z or depth asso-
ciated with a fragment represents the distance to the eye. By default the fragments nearest the eye
(the ones at the near clip plane) are mapped to 0.0 and the fragments farthest from the eye (those at
thefar clip plane) are mapped to 1.0. Fragments can be mapped to asubset of the depth buffer range
by using smaller values in the gl Dept hRange call. The mapping may be reversed so that frag-
ments furthest from the eye are at 0.0 and fragments closest to the eye are at 1.0 simply by calling
gl Dept hRange( 1. 0, 0. 0) . Whilethisreversal ispossible, it may not be practical for the imple-
mentation. Parts of the underlying architecture may have been tuned for the forward mapping and
may not produce results of the same quality when the mapping is reversed.

To understand why there might be thisdisparity in therendering quality, it’simportant to understand
the characteristics of thewindow z coordinate. The z val ue specifies the distance from the fragment
to the plane of the eye. The relationship between distance and = islinear in an orthographic projec-
tion, but not in a perspective projection. In the case of a perspective projection, the amount of the
non-linearity is proportional to theratio of far to near inthegl Fr ust umcall (or zFar to zZNear in the
gl uPer specti ve call). Figure 17 plots the window coordinate = vaue as a function of the eye-
to-pixel distance for severa ratios of far to near. The non-linearity increases the resolution of the
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Figure 17: Window = to Eye =z Relationship for near/far Ratios

z-values when they are close to the near clipping plane, increasing the resolving power of the depth
buffer, but decreasing the precision throughout the rest of the viewing frustum, thus decreasing the
accuracy of the depth buffer in the back part of the viewing volume.

For objects agiven distance from the eye, however, the depth precision is not as bad as it looksin
Figure 17. No matter how far back thefar clip planeis, at least haf of the available depth rangeis
present in the first “unit” of distance. In other words, if the distance from the eye to the near clip
planeis one unit, at least half of the » range is used up in the first “unit” from the near clip plane
towards the far clip plane. Figure 18 plotsthe = range for the first unit distance for various ranges.
With amillion to oneratio, the = valueis approximately 0.5 at one unit of distance. Aslong as the
datais mostly drawn close to the near plane, the = precision isgood. Thefar plane could be set to
infinity without significantly changing the accuracy of the depth buffer near the viewer.

To achieve greatest depth buffer precision, the near plane should be moved as far from the eye as
possible without touching the object, which would cause part or al of it to be clipped away. The
position of the near clipping plane has no effect on the projection of the = and y coordinates and
therefore has minimal effect on theimage.

Putting the near clip plane closer to the eye than to the object resultsinloss of depth buffer precision.

In addition to depth buffering, the = coordinateis a so used for fog computations. Some implemen-
tations may perform the fog computation on a per-vertex basis using eye =z and then interpolate the
resulting col ors whereas other implementationsmay perform the computation for each fragment. In
this case, the implementation may use the window =z to perform the fog computation. Implementa
tions may a so choose to convert the computation into a cheaper table lookup operation which can
also cause difficulties with the non-linear nature of window z under perspective projections. If the
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implementation uses alinearly indexed table, large far to near ratioswill leave few table entries for
the large eye = values. This can cause noticeable Mach bandsin fogged scenes.

4.3.1 Depth Buffering

We have discussed some of the caveats of using depth buffering, but there are several other aspects
of OpenGL rasterization and depth buffering that are worth mentioning [2]. One big problemisthat
therasterization process usesinexact arithmetic so it isexceedingly difficult to handle primitivesthat
are coplanar unlessthey share the same plane equation. This problem is exacerbated by the finite
precision of depth buffer implementations. Many solutions have been proposed to handlethis class
of problems, which involve coplanar primitives:

1. Decaling

2. Hidden line elimination
3. Outlined polygons

4. Shadows

Many of these problems have elegant solutionsinvolving the stencil buffer, but it is still worth de-
scribing aternative methods to get more insight into the uses of the depth buffer.

The problem of decaling one coplanar polygoninto another can be solved rather simply by using the
painter’s algorithm (i.e., drawing from back to front) combined with color buffer and depth buffer
masking, assuming the decal is contained entirely within the underlying polygon. The steps are:

30

Programming with OpenGL: Advanced Rendering



offset with more slope

z

Figure 19. Polygon and Outline Slopes

1. Draw the underlying polygon with depth testing enabled but depth buffer updates disabled.

2. Draw thetop layer polygon (decal) also with depth testing enabled and depth buffer updates
still disabled.

3. Draw the underlying polygon one more time with depth testing and depth buffer updates en-
abled, but color buffer updates disabled.

4. Enable color buffer updates and continue on.

Outlining apolygon and drawing hidden lines are similar problems. If we have an algorithm to out-
line polygons, hidden lines can be removed by outlining polygons with one color and drawing the
filled polygons with the background color. Ideally a polygon could be outlined by simply connect-
ing theverticestogether with line primitives. Thisseemssimilar to thedecaling problem except that
edges of the polygon being outlined may be shared with other polygons and those polygonsmay not
be coplanar with the outlined polygon, so the decaling algorithm can not be used, sinceit relieson
the coplanar decal being fully contained within the base polygon.

The solutionmost frequently suggested for this problemisto draw the outlineas a series of linesand
translate the outline a small amount towards the eye. Alternately, the polygon could be translated
away from the eye instead. Besides not being a particularly elegant solution, thereis a problemin
determining the amount to translate the polygon (or outline). In fact, in the genera casethereisno
constant amount that can be expressed as a simple trandation of the =z object coordinate that will
work for al polygonsin ascene.

Figure 19 shows two polygons (solid) with outlines (dashed) in the screen space y-z plane. One of
the primitive pairs has a45-degree dlopein the -z plane and the other hasavery steep slope. During
the rasterization process the depth value for a given fragment may be derived from a sample point
nearly an entire pixel away from the edge of the polygon. Therefore the translation must be as large
as the maximum absolute change in depth for any single pixel step on the face of the polygon. The
figure shows that the steeper the depth slope, the larger the required translation. If an unduly large
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constant value is used to deal with steep depth slopes, then for polygons which have a shallower
slopethereisan increased likelihood that another neighboring polygon might end up interposed be-
tween the outline and the polygon. So it seems that a translation proportional to the depth slopeis
necessary. However, a trandation proportional to slopeis not sufficient for a polygon that has con-
stant depth (zero slope) sinceit would not betranslated at all. Therefore abiasisalso needed. Many
vendors have implemented the EXT _pol ygon_of f set extension that provides a scaled slope plus
bias capability for solving outline problems such as these and for other applications. A modified
version of this polygon offset extension has been added to the core of OpenGL 1.1 aswell.

44 ImageTiling

When rendering ascenein OpenGL, the resolution of the imageis normally limited to the worksta-
tion screen size. For interactive applicationsthisis usually sufficient, but there may be times when
a higher resolution image is needed. Examples include color printing applications and computer
graphics recorded for film. In these cases, higher resolution images can be divided into tiles that fit
on the workstation’sframebuffer. The imageis rendered tile by tile, with the results saved into off
screen memory, or perhapsafile. Theimage can then be sent to aprinter or film recorder, or undergo
further processing, such has downsampling to produce an antialiased image.

One very straightforward way to tile an image is to manipulate the gl Fr ust umcall’s arguments.
The scene can be rendered repeatedly, onetile at atime, by changing the left, right, bottom and top
arguments arguments of gl Fr ust umfor each tile.

Computing the argument values is straightforward. Divide the origina width and height range by

the number of tiles horizontally and vertically, and use those values to parametrically find the | eft,
right, top, and bottom values for each tile.

tile(t,7);0:0 = nTilesporiz, j 1 0 = nTilesyer
rightorig - leftorig
nTilesyoris
. rightorig - leftorig
leftiijeq(2) = le ftons * 1
f tzled( ) f orig + nT’il@ShoriZ

toporig — bottome, fG 4D

righttiled(i) = leftorig + * (’L + 1)

ton. ) = bottom,; .
ptlled («]) ortg —I_ nT'Llesuert

toporig — bottome,g

bOttOm . 1) = bottam 3 .
tzled(]) orig T nTileSyert

In the equations above, each value of : and j correspondsto atilein the scene. If the original scene
isdivided into nTilesyyri, Dy nTiles, .+ tiles, then iterating through the combinations of ¢ and j
generate the left, right top, and bottom valuesfor gl Fr ust umto create thetile.

Since gl Frust umhas a shearing component in the matrix, the tiles stitch together seamlessly
to form the scene. Unfortunately, this technique would have to be modified for use with
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gl uPer spective or gl Ot ho. Thereis a better approach, however. Instead of modifying the
perspective transform call directly, apply transforms to the results. The area of normalized device
coordinate (NDC) space corresponding to the tile of interest is translated and scaled so it fills the
NDC cube. Working in NDC space instead of eye space makes finding the tiling transforms easier,
and is independent of the type of projective transform.

Even though it's easy to visualize the operations happening in NDC space, conceptually, you can
“push” the transforms back into eye space, and the technique maps into the gl Fr ust umapproach
described above.

For thetransform operationsto happen after the projection transform, the OpenGL calls must happen
before it. Here is the sequence of operations:

gl Mat ri xMode( GL_PROJECTI ON) ;

gl Loadl dentity();

gl Scal ef (xScal e, yScal e);

gl Transl atef (xOf fset, yOffset, 0.f);
set Projection();

The scalefactors xScale and yScale scale thetile of interest tofill the the entire scene:

Seale — sceneWdth
PO T TileWidth
Seale — sceneHeight
yoeate = tileHeight

The offsetsxOf f set and yOf f set are used to offset thetile so it is centered about the ~ axis. In
this example, the tiles are specified by their lower left corner relative to their position in the scene,
but the transl ation needs to move the center of thetileinto the origin of the z-y planein NDC space:

—2xleft 1
= —mM8M— R
2O [ [se sceneWdth + oo nTilesy ;.
—2 % bottom 1
O = —mMm8Mm———— 1o ———
yoffse sceneHeight ( nTileSyert

Asbefore nT'ilesy,,i. iSthe number of tilesthat span the scene horizontally, while nT'ilesy, ., iS
the number of tilesthat span the scene vertically.

Some care should be taken when computing le ft, bottom, tileWidth and tile H eight values. It's
important that each tile is abutted properly with it's neighbors. Ensure this by guarding against
round-off errors. Some code that properly computes these valuesis given below:
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/* tileWdth and til eHeight are G.floats */
GLint bottom top;

Gint left, right;

GLi nt wi dth, height;

for(j = 0; j < numuwvertical _tiles; j++) {
for(i = 0; i < numhorizontal _tiles; i++) {
left =i * tileWdth;
right = (i + 1) * tileWdth;
bottom=j * tileHeight;

top = (j + 1) * tileHeight;

width = right - left;

hei ght = top - bottom

/* conpute xScal e, yScale, xOfset,
yOf fset */

}

Note that the parameter values are computed so that le ft + tileWidth is guaranteed to be equal to
right and equal to le ft of the next tile over, even if tileW idth has afractiona component. If the
frustum techniqueis used, similar precautionsshould betakenwiththele ft, right, bottom, andtop
parametersto gl Frust um

45 Movingthe Current Raster Position

Using the gl Rast er Pos command, the raster position will be invalid if the specified position was
culled. Since gl Dr awPi xel s and gl CopyPi xel s operations applied when the raster positionis
invaid do not draw anything, it may seem that the lower left corner of a pixel rectangle must be
inside the clip rectangle. This problem may be overcome by using the gl Bi t map command. The
gl Bi t map command takesargumentsxof f andyof f which specify anincrement to be addedto the
current raster position. Assuming the raster positionisvalid, it may be moved outside the clipping
rectangleby agl Bi t map command. gl Bi t map isoften used with azero sizerectangle to movethe
raster position.

4.6 Preventing Clippingof WideLinesand Points

It’simportant to note that OpenGL pointsare clipped if their projected positionis beyond the view-
port. If apoint sizeother than 1 isspecified with gl Poi nt Si ze, the object will appear to “ pop” out
of view when the center of the wide point exitsthe viewport. Thisis because the point itself has no
area, and as suchisclipped based solely on itsposition. An example scenario isshownin Figure 20.

Wide lines have the same problem. Thelineis clipped to the viewport, and thus some pixels con-
tributed by the original line are no longer drawn, as shown in Figure 20.

This problem is more significant in a multiple-display setting, such as a three-monitor flight simu-
lator, or in a multiple-viewport setting such as a cylindrical projection.
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Figure 20. Clipped Wide Primitives Can Still be Visible

These missing pixelscan berestored by setting the scissor region to the visible area and then enlarg-
ing theviewport so that pointsand linesare clipped beyond theregion in which they could contribute
pixels. For n-pixel wide pointsand lines, thismarginisn — 1 pixels. Theviewing frustum hasto be
enlarged based on the new viewport so that pointsare rasterized to the same pixelswithin thelarger
viewport and scissor region as they were in the smaller viewport.

4.7 Distortion Correction

A workstation user with asinglemonitor and amonoptic visual will usualy sitinalocationrelative
to his or her screen that closely approximates the single symmetric frustum typically supplied to
OpenGL asthe view model.

Invisual simulation applicationswith curved screens (“domes”), virtua reality “caves’ and thelike,
and any situation where the projection unit, projection surface, and viewing parameters don’t cor-
respond to a symmetric static frustum, some correction will be required to make the visibleimage
seem accurate and visibly consistent.

Visua inaccuracy is caused by the difference between the observer’s view of the surface and the
video projector’s view of the surface, and is exacerbated by a non-planar screen surface, such asa
spherical shell.

If the display surface has no skew component to it, like an ordinary computer monitor or a video
projector which isaligned perpendicular to the screen, but the observer’s view direction is not per-
pendicular to the screen, use an asymmetric frustum. Thiscan be accomplished by providing appro-
priate le ft, right, top, and bottom parametersto gl Fr ust umthat form a near plane which is not
centered on the z axis.
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Figure21. A Complex Display Configuration

If the display surface is askew, asit isif the projector is located above the observer asin amovie
theatre, the perspective distortion in the projection must be corrected. This can be accomplished by
rendering the scene using an asymmetric frustum as above, storing the rendered scene as atexture,
and then drawing a quad textured scene with a projective texture matrix corresponding to the off-
center video projector frustum.

Finally, if the display surfaceitself is non-planar, like the spherical and cylindrical screens used in
some flight simulators, a combination of the above technique and image warping is required to pro-
duce an accurate image.

e Create auniform grid as viewed by the observer.
e Project the vertices of the grid onto the screen surface.

e Project the verticesfrom the screen surface onto a plane perpendicul ar to the display direction
of the video projector.

e Store the projected vertices' normalized viewing coordinates [0, 1) on that plane as texture
coordinates for the original grid.

¢ Render the scene normally from the viewpoint of the observer.
e Transfer theimage into atexture.

e Render the image textured onto the uniform grid with the warped texture vertices.
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Figure22. A Configuration with Off-Center Projector and Viewer
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Figure 23. Distortion Correction Using Texture Mapping
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You may have to render a larger image than will finally be viewed so that the warped image does
not contain any blank areas.

For further information on imagewarping and dewarping, see Section 5.15.
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5 TextureMapping

Texture mapping is one of the main techniques to improve the appearance of objects shaded with
OpenGL'ssimplelightingmodel. Texturingistypically used to providecolor detail for intricate sur-
faces, e.g., woodgrain, by modifying the surface color. Environment mapping is a view-dependent
texture mapping technique that modifies the specular and diffuse reflection, i.e., the environment is
reflected in the object. More generally texturing can be thought of as a method of perturbing (or
providing) parameters to the shading equation such as the surface normal (bump mapping), or even
the coordinates of the point being shaded (displacement mapping) based on a parameterization of
the surface defined by the texture coordinates. OpenGL 1.1 readily supportsthefirst two techniques
(surface color manipulation and environment mapping). Texture mapping, using bump mapping,
can also solve some rendering problemsin less obviousways. This section reviews some of the de-
tails of OpenGL texturing support, outline some considerations when using texturing and suggest
some interesting a gorithms using texturing.

5.1 Review

OpenGL supportstexture imageswhich are 1D or 2D and have dimensionsthat are a power of two.
Some implementations have been extended to support 3D and 4D textures. Texture coordinatesare
assigned to the vertices of all primitives (including the raster position of pixel images). Thetexture
coordinates are part of athree dimensional homogeneous coordinate system (s,t,r,q). Whenaprim-
itiveisrasterized atexture coordinateis computed for each pixel fragment. Thetexturecoordinateis
used to look up atexel valuefrom the currently enabled texture map. The coordinates of thetexture
map range from [0..1]. OpenGL can treat coordinate values outside the range [0,1] in one of two
ways. clamp or repeat. In the case of clamp, the coordinates are simply clamped to [0,1] causing
the edge va ues of the texture to be stretched across the remaining parts of the polygon. In the case
of repeat the integer part of the coordinateis discarded resulting in atexture tile that repeats across
the surface. Thetexel value that results from the lookup can be used to modify the original surface
color value in one of severa ways, the simplest being to replace the surface color with texel color,
either by modulating awhite polygon or simply replacing the color value. Simple replacement was
added as an extension by some vendors to OpenGL 1.0 and is now part of OpenGL 1.1.

511 Filtering

OpenGL also provides anumber of filtering methodsto compute thetexel value. There are separate
filtersfor magnification (many pixel fragment valuesmap to onetexel value) and minification (many
texel values map to one pixel fragment). The simplest of thefiltersis point sampling, in which the
texel value nearest the texture coordinatesis selected. Point sampling seldom gives satisfactory re-
sults, so most applications choose some filter which doesinterpolation. For magnification, OpenGL
1.1 only supportslinear interpol ation between four texel values. Some vendors have a so added sup-
port for alarger filter kernel, Filter4, in which the weighted sum of a4x4 array of texelsisused. For
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minification, OpenGL 1.1 supports various types of mipmapping [65], with the most useful (and
computationally expensive) being trilinear mipmapping (four samples taken from each of the near-
est two mipmap levels and then interpolating the two sets of samples). OpenGL does not provide
any built-in commands for generating mipmaps, but the GLU provides some simple routines for
generating mipmaps using a simple box filter.

5.1.2 Texture Environment

The processby whichthefinal fragment color valueisderivediscalled thetexture environment func-
tion (gl TexEnv) Several methods exist for computing the final color, each capable of producing a
particular effect. One of the most commonly used is the modulate function. For al practical pur-
posesthe modul ate function multipliesor modul ates the original fragment color with thetexel color.
Typically, applications generate white polygons, light them, and then use thislit value to modul ate
the texture image to effectively produce a lit, textured surface. Unfortunately when thelit polygon
includesaspecular highlight, the resulting modul ated texture will not look correct since the specular
highlight simply changes the brightness of the texture at that point rather than the desired effect of
adding in some specular illumination. Some vendors have tried to address this problem with exten-
sionsto perform specular lighting after texturing. Some other techniquesthat can be used to address
this problem will be discussed | ater.

Thedecal environment function performs simple a pha-blending between the fragment color and an
RGBA texture; for RGB textures it simply replaces the fragment color. Decal mode is undefined
for other texture formats (luminance, alpha, etc). The blend environment function uses the texture
value to control the mix of the incoming fragment color and a constant texture environment color.
OpenGL 1.1 adds a replace texture environment which substitutesthe texel color for the incoming
fragment color. Thiseffect can be achieved using the modulate environment, but replace hasalower
computational burden.

Another useful (and sometimes misunderstood) feature of OpenGL is the texture border. OpenGL
supportseither a constant texture border color or a border that is a portion of the edge of the texture
image. The key to understanding texture borders is understanding how textures are sampled when
the texture coordinate values are near the edges of the[0,1] range and the texture wrap modeis set to
GL_CLAMP. For point sampled filters, the computation is quite simple: the border is never sampled.
However, when the texture filter is linear and the texture coordinate reaches the extremes (0.0 or
1.0), however, the resulting texel value is a 50% mix of the border color and the outer texel of the
texture image at that edge (25% and 75% at the corners).

Thisis most useful when attempting to use a single high resolution textureimage which istoo large
for the OpenGL implementation to support as a singletexture map. For this case, the texture can be
broken upinto multipletiles, each with a1 pixel wideborder from the neighboringtiles. Thetexture
tiles can then beloaded and used for rendering in several passes. For example, if alK by 1K texture
is broken up into four 512 by 512 images, the four images would correspond to the texture coordi-
nate ranges (0-0.5,0-0.5), (0.5,1.0,0-0.5), (0-0.5,0.5,1.0) and (.5-1.0,.5-1.0). Aseach tileisloaded,
only the portions of the geometry that correspond to the appropriate texture coordinate ranges for
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Figure 24. Texture Tiling

a given tile should be drawn. If you had a single triangle whose texture coordinates were (.1,.1),
(.1,.7), and (.8,.8), you would clip the triangle against the four tile regions and draw only the portion
of the triangle that intersects with that region as shown in Figure 24. At the same time, the original
texture coordinates need to be adjusted to correspond to the scaled and transl ated texture space rep-
resented by thetile. Thistransformation can be easily performed by loading the appropriate scale
and translation onto the texture matrix stack.

Unfortunately, OpenGL doesn’t provide much assistance for performing the clipping operation. If
theinput primitivesare quadsand they are appropriately alignedin object spacewiththetexture, then
the clipping operation is trivial; otherwise, it make invoke substantially more work. One method
to assist with the clipping would involve using stenciling to control which textured fragments are
kept. Then you are |eft with the problem of setting the stencil bits appropriately. The easiest way
to do thisisto produce alphavalues that are proportional to the texture coordinate values and use
gl Al phaFunc to rgject alpha values that you do not wish to keep. Unfortunately, you can't easily
map amultidimensional texture coordinatevalue (e.g., s,t) to an aphavalue by simply interpolating
the original vertex alphavalues, so it would be best to use a multidimensional texture itself which
has some portion of the texture with zero apha and some portion with it equal to one. Thetexture
coordinates are then scal ed so that the textured polygon map to texel swith an aphaof 1.0 for pixels
to beretained and 0.0 for pixelsto be rejected.

5.2 Mipmap Generation

Having explored the possibility of tiling low resolution texturesto achieve the effect of high resolu-
tion textures, you can now examine methodsfor generating better texturing resultswithout resorting
totiling. Again, OpenGL supportsamodest collection of filtering algorithms, the highest quality of
theminification algorithmsbeing GL_LI NEAR.M PMAP_LI NEAR. OpenGL doesnot specify amethod
for generating the individua mipmap levels (LODs). Each level can beloaded individually, soitis
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possible, but probably not desirable, to use a different filtering agorithm to generate each mipmap
level.

The GLU library providesavery simpleinterface (gl uBui | d2DM pmaps) for generating all of the
2D levesrequired. Thealgorithm currently employed by most implementationsisabox filter. There
areanumber of advantagesto usingthebox filter; itissimple, efficient, and can be repeatedly applied
to the current level to generate the next level without introducing filtering errors. However, the box
filter has a number of limitationsthat can be quite noticeable with certain textures. For example, if
atexture containsvery narrow features (e.g., lines), then aiasing artifacts may be very pronounced.

The best choice of filter functionsfor generating mipmap levelsis somewhat dependent on the man-
ner in which the texture will be used and it is also somewhat subjective. Some possibilitiesinclude
using a linear filter (sum of four pixels with weights [1/8,3/8,3/8,1/8]) or a cubic filter (weighted
sum of eight pixels). Mitchell and Netravali [41] propose afamily of cubicfiltersfor general image
reconstruction which can be used for mipmap generation. The advantage of the cubic filter over the
box isthat it can have negative side |obes (weights) which help maintain sharpness while reducing
theimage. Thiscan help reduce some of the blurring effect of filtering with mipmaps.

When attempting to use afiltering algorithm other than the one supplied by the GLU library, it is
important to keep a couple of thingsin mind. The highest resolution (finest) image of the mipmap
(LOD 0) should always be used as the input image source for each level to be generated. For the
box filter, the correct result is generated when the preceding level is used as the input image for
generating the next level, but thisis not true for other filter functions. Each time a new (coarser)
level isgenerated, thefilter needsto be scaled to twice the width of the previousversion of thefilter.
A second considerationisthat in order to maintain astrict factor of two reduction, filterswith widths
wider than two need to sample outside the boundaries of the image. Thisis commonly handled by
using thevaluefor the nearest edge pixel when sampling outsidetheimage. However, amore correct
algorithm can be selected depending on whether theimageisto be used in atexturein which arepeat
or clamp wrap modeisto be used. In the case of repeat, requestsfor pixelsoutsidethe image should
wrap around to theappropriate pixel counted from the oppositeedge, effectively repeating theimage.

Mipmaps may be generated using the host processor or using the OpenGL pipelineto perform some
of thefiltering operations. For example, the GL_LI NEAR minification filter can be used to draw an
image of exactly half the width and height of an image which has been loaded into texture memory,
by drawing aquadrilateral with the appropriatetransformation (i.e., the quad projectsto arectangle
one fourth the area of the original image). This effectively filters the image with a box filter. The
resulting image can then be read from the color buffer back to host memory for later use as LOD 1.
This process can be repeated using the newly generated mipmap level to produce the next level and
so on until the coarsest level has been generated.

The above scheme seems a little cumbersome since each generated mipmap level needs to be read
back to the host and then loaded into texture memory before it can be used to create the next level.
Thegl CopyTexI| mage capability, added in OpenGL 1.1, allows an image in the color buffer to be
copied directly to texture memory.

Thisprocess can still be slightly difficult in OpenGL 1.0 asit only allows a singletexture of agiven
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dimension (1D, 2D) to exist at any onetime, making it difficult to build up the mipmap texture while
using the non-mipmapped texture for drawing. This problem is solvedin OpenGL 1.1 with texture
objects which alow multiple texture definitions to coexist at the same time. However, it would be
much simpler if you could use the most recent level loaded as part of the mipmap asthe current tex-
ture for drawing. OpenGL 1.1 only allows complete textures to be used for texturing, meaning that
al mipmap levels need to be defined. Some vendors have added yet another extension which can
deal with this problem (though that was not the original intent behind the extension). Thisthird ex-
tension, the texture LOD extension (also availablein OpenGL 1.2), limits the selection of mipmap
image arrays to a subset of the arrays that would normally be considered; that is, it allows an appli-
cation to specify a contiguous subset of the mipmap levels to be used for texturing. If the subsetis
complete then the texture can be used for drawing. Therefore, you can usethisextensionto limit the
mipmap images to the level most recently created and use thisto create the next smaller level. The
other capability of the LOD extensionis the ability to clamp the LOD to a specified floating point
range so that the entirefiltering operation can be restricted. Thisextensionwill be discussedin more
detail later on.

The above method outlines an algorithm for generating mipmap level s using the existing texture fil -
ters. There are other mechanisms within the OpenGL pipelinethat can be combined to do thefilter-
ing. Convolution can be implemented using the accumul ation buffer (thiswill be discussed in more
detail in Section 12.3.3. A textureimage can be drawn using a point sampling filter (GL_NEAREST)
and theresult added to the accumul ati on buffer with the appropriate weighting. Different pixels (tex-
els) from an NxN pattern can be sel ected from thetexture by drawing a quad that projectsto aregion
/N x I/N of the origina texture width and height with a slight offset in the s and ¢ coordinates to
control the nearest sampling. Each time atextured quad isrendered to the color buffer it isaccumu-
lated with the appropriate weight in the accumulation buffer. Combining point-sampled texturing
with the accumulation buffer allows the implementation of nearly arbitrary filter kernels. Sampling
outside the image, however, still remains a difficulty for wide filter kernels. If the outside samples
are generated by wrapping to the opposite edge, then the G._REPEAT wrap mode can be used.

5.3 TextureMap Limits

In addition to issues concerning the maximum texture resolution and the methods used for generat-
ing texture images there are also some pragmatic details with using texturing. Many OpenGL im-
plementations hardware accel erate texture mapping and have finite storage for texture maps being
used. Many implementations will virtualize this resource so that an arbitrarily large set of texture
maps can be supported within an application, but as the resource becomes oversubscribed perfor-
mancewill degrade. In applicationsthat need to use multipletexture maps thereisatension between
the available storage resources and the desire for improved image quality.

Thissimply means that it isunlikely that every texture map can have an arbitrarily high resolution
and still fit withinthe storage constraints; therefore, applicationsneed to anticipate how textureswill
be used in scenesto determine the appropriate resolutionto use. Note that texture maps need not be
square; if atextureistypically used with an object that is projected to a non-square aspect ratio then
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Figure 25. Footprint in Anisotropically Scaled Texture

the aspect ratio of the texture can be scal ed appropriately to make more efficient use of the available
storage.

5.4 Anisotropic Texture Filtering

Currently, OpenGL only provides an isotropic filter for texture minification. This means that the
amount of filtering donealong the s and ¢ axes of the textureisthe same, and is the maximum of the
filtering needed along each of the two axes individually. Thiscan lead to excessive blurring when a
texture is viewed at any angle angle other than straight on. If it isknown that a texture will aways
be viewed at agiven angle or range of angles, it can be created in away that reduces over-filtering.

Suppose atextured square isrendered as shown in the left of Figure 25. Thetextureisshowninthe
right. Consider the fragment that is shaded dark. Itsideal footprint is shown in the diagram of the
texture as the dark inner region. But since the minification filter isisotropic, the actual footprint is
forced to asquarethat enclosesthe dark region. A mipmap level will be chosen in which thissguare
footprint is properly filtered for the fragment; in other words, a mipmap level will be selected in
which the size of thissquare is closest to the size of the fragment. That mipmap is not level zero but
level 1 or higher. Hence, at that fragment morefiltering is needed along ¢ than along s, but the same
amount of filtering is done in both. The result will be that the texture will be blurred more than it
needs to be.

To avoid this problem, do the extrafiltering along ¢ when you create the texture, and make the tex-
ture have the same width but only half the height. See Figure 25. The footprint now has an aspect
ratio that is more square, so the enclosing square is not much larger, and is closer to the size to the
fragment. Level O will be used instead of a higher level. Another way to think about thisis that by
using atexturethat is shorter dong ¢, you reduce the amount of minification that isrequired along .
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Figure 26. Creating a Set of Anisotropically Filtered Images

The closer thefiltered mipmaps aspect ratio matches the projected aspect ratio of the geometry, the
more accurate the sampling will be. An application can minimize excessive blurring at the expense
of texture memory by creating a set of re-sampled mipmaps with different aspect ratios.

The application can choose the mipmap that most closely corresponds to the texture scaling ratio
being applied to the textured terrain. This ratio can be quickly estimated by computing the angle
between the viewers line of sight and a plane representing the terrains average orientation. Using
texture objects, the application can switch to the mipmap will provide the best results.

1. Re-samplethetexture datainto different aspect ratios (gl uScal el mage can be used for this
purpose).

2. Create a set of mipmaps corresponding to each image aspect ratio.

3. Ateach frame, computethe best aspect ratio using the angle between the viewersline of sight
and the terrain.

4. Make the mipmap with the best aspect ratio current for texturing the terrain.

Since texture levels must have power of two dimensions, it would appear that the only aspect ratios
that can beprefilteredare 1:4, 1:2,1:1, 2:1, 4:1, etc. You can actually define smaller aspect ratio step
size by using a combination of incomplete texture images and use of the texture transform matrix.
For example, say you want aratio of 3:4. You cannot define amipmap with lengths of thisratio, but
you can define a 1:1 ratio mipmap and define an image that is scaled into a 3:4 ratio withinit. The
part of the texture that isn’t used should be placed along the top (maximum ¢ coordinates) or right
(maximum s coordinates) edge of the textureimage. The scaled image can be any size, aslong asit
fits within the texture level. You can then create a mipmap in the normal way.

Using this mipmap for some textured geometry with a 3:4 ratio, resultsin an incorrect textured im-
age. Be sure to set the texture transform matrix to rescale the narrower side of the texture (in our
exampleinthet direction) by 3/4:
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Figure 27. Geometry Orientation and Texture Aspect Ratio

Pixel buffer
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3/4 0
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Texture matrix

Texture map

Figure 28. Non Power-of-2 Aspect Ratio Using Texture Matrix
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Thiswill change the apparent size ratio between the pixels and textures in the texture filtering sys-
tem, giving you the proper results. Thistechnique would not work well with awrapped texture; in
our example, there is a discontinuity in the image when you filter outsidetherangeof 0 to 1 int.
However, in our example, wrapping in s would work fine.

5.5 Paging Textures

As applications simulate higher levels of realism, the amount of texture memory they require can
increase dramatically. Texture memory isalimited, expensive resource, so loading high resolution
images as textures isn't aways feasible. Applications are often forced to resample their images at
a lower resolution to make them fit in texture memory, with a corresponding loss of realism and
image quality. If an application must view the entire textured image at high resolution, there may
be no aternative to this approach.

But many applications have texture requirements that can be structured so that only a small area
of large texture has to be shown at full resolution. For example when textures are used to produce
aredigtic flight simulation environment, only the textured terrain close to the viewer has to show
fine detail; terrain far from the viewer is textured using low resolution texture levels, since a pixel

corresponding to theseareas covers many texel sat once. For many applicationsthat uselargetexture
maps, the maximum amount of texture memory in use for any given viewpoint is bounded.

Applications can take advantage of this phenomena through texture paging. Rather than loading
completelevelsof alargeimage, only the portion of theimage closest to the viewer iskept in texture
memory. Therest of the image is stored in system memory, or on disk. As the viewer moves, the
contents of texture memory are updated to keep the closest portion of the image |oaded.

There are two different approaches that could be used to address the problem. Thefirst isto subdi-
vide the texture image into fixed sized tiles and selectively draw the geometry that corresponds to
each imagetile, one at atime, reloading texture memory for each new tile. Thisapproach isdifficult
to implement. Tile boundaries are a problem for GL_LI NEAR filters since the locations where the
geometry crosses tile boundaries need to be resampled properly.

The problem could be addressed by clipping the geometry so that the texture coordinates are kept
within the[0.0, 1.0] range and then use texture borders to handle the edges of each imagetile. Clip-
ping geometry to match each image tile itself can be a difficult problem, especialy if the geome-
try is changing dynamically. For example, terrain close to the viewer might be replaced with more
highly tessellated geometry to increase realism, while geometry far from the viewer is tessellated
more coarsely to improve rendering performance. In general, forcing a correspondence between
texture and geometry beyond what is established by texture coordinatesis something to be avoided,
since it adds additional complication and software quality problemsto the application.

A more sophisticated solution is to take advantage of texture coordinate wrapping to page textures
without having to tile the textured geometry. To make this clear, consider a single level texture.
Define a viewing frustum that limits the amount of visible geometry to a small area, small enough
that the visible geometry can be easily textured. Now imagine that the entire textureimage is stored
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in system memory. As the viewer moves, the image in texture memory can be updated so that it
exactly corresponds to the geometry visiblein the viewing frustum:

1. Given the current view frustum, compute the visible geometry.
2. Set the texture transform matrix to map the visible texture coordinatesintoOto 1in s and ¢.

3. Use gl Texl mage2D to load texture memory with the appropriate texel data, using
GL_SKI P_PI XELS and GL_SKI P_ROWS to index to the proper subregion.

Thistechnique would remap the texture coordinates of the visible geometry to match texture mem-
ory, then load the matching texture image into texture memory using gl Tex! mage2D.

55.1 Texture Subloading

While this technique works, it's a very inefficient user of texture bandwidth. Even if the viewer
moves asmall amount, the entire texture level isreloaded. Performance can be improved by taking
advantage of texture subloading.

If the viewer is smoothly traversing textured terrain, you can take advantage of the fact by incre-
mentally updating the contents of texture memory. Instead of completely reloading the contents of
texture memory, you can reload the section that has gone out of view from the last frame with the
portion of theimagethat hasjust comeintoview thisframe. Thistechniqueworksbecause of texture
coordinate wrapping. When GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T are set to GL_REPEAT
(the default), theinteger part of texture coordinates are discarded when mapping into texture mem-
ory. In effect, texture coordinates the go off the edge of texture memory on one side, “wrap around”
to the opposite side. Using subloading, the updating technique lookslikethis:

1. Given the current and previous view frustum, compute how the range of texture coordinates
have changed.

2. Transform the change of texture coordinatesinto one or more regions of texture memory that
need to be updated.

3. Use gl TexSubl nage to update the appropriate regions of texture memory, use
GL_SKI P_PI XELS and GL_SKI P_ROWS to index into the texture image.

If the subloads are computed properly, this technique does not require transforming texture coordi-
nates using thethetexturetransform matrix. Updating texturememory can takefrom 1 to 4 subloads.

On many systems, texture subloads can be very inefficient when narrow regions are being loaded.
The subloading method can be modified ensure that only subloads above a minimum size are a-
lowed, at the cost of some additiona texture memory. The change is simple. Instead of updating
every timetheview position changes, ignore position changes until the accumul ated change requires
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asubload abovethe minimum size. Normally thiswill result in out of date texture databeing visible
around the edges of the textured geometry. To avoid this, an invalid region is specified around the
periphery of thetexture level, and the view frustum is adjusted so the that geometry textured from
the texels from the invalid region are never visible. This technique alows updates to be cached,
improving performance.

This paging technique depends on only a limited region of the textured geometry being visible. In
this example we' re depending on the limits of the view frustum to only allow properly textured ge-
ometry to bevisible. If theview frustum were expanded, we' d see the textureimage wrapping over
the surrounding geometry. Even with these limitations, this technique can be expanded to include
mi pmapped textures.

Since OpenGL doesn’t understand paged mipmaps, the application can’'t ssimply define avery large
mipmap and not expect the OpenGL implementation to try to allocate the texture memory needed
for all the mipmap levels. Instead the application must use the texture LOD control functional-
ity in OpenGL 1.2 (or the EXT_t ext ur e_| od extension) to define a small number of active lev-
els, using the GL_TEXTURE_BASE LEVEL, GL_TEXTURE_MAX LEVEL, GL_TEXTURE.M N.LOD and
GL_TEXTURE MAX_LODwiththegl TexPar anet er call. Aninvalid region must be established and
aminimum size update must be set so that al levels can be kept in sync with each other when up-
dated. For example, asubload 32 texelswide at the top level must be accompanied by a subload 16
texels wide at the next coarser level, if mipmapping is going to filter properly. Multipleimages at
different resolutionswill haveto bekept in system memory assourceimagesto load texture memory.

If the viewer zooms in or zooms out of the geometry, the texturing system may require levelsthat
aren’t available in the paged mipmap. The application can avoid this problem by computing the
mipmap levelsthat are needed for any given viewer position, and keeping a set of paged mipmaps
available, each representing a different set of LOD levels. The coarsest set could be a normal
mipmap, for when the viewer is very far away from the geometry.

55.2 PagingImagesin System Memory

Up to thispoint, we' ve assumed that the texel dataisavailableasalarge contiguousimagein system
memory. Just as texture memory isalimited resource, it also makes senseto conserve system mem-
ory aswell. For very large texture images, the image data can be divided into tiles, and paged into
system memory. Thispaging can be kept separate from the paging going on from system memory to
texture memory. Theonly differencewill bein the offsetsrequired to index the proper regionin sys-
tem memory to download, and increase the number of subloads required to update texture memory.
A sophisticated system can wrap texture image data in system memory just as texture coordinates
are wrapped in texture memory.

Consider the case of atwo dimensiona image roam, illustrated in Figure 29, in which the view is
moving to theright. Asthe view pansto the right, new texturetiles must be added to the right edge
of the current portion of the texture and old tiles could be discarded from the | eft edge.

Tiles discarded on the right side of the image create holes where new tiles could be |oaded into the
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Figure 29. 2D Image Roam

texture, but there is a problem with the texture coordinates.

The ability to load subregions within a texture has other uses besides these paging applications.
Without this capability textures must be loaded in their entirety and their widthsand heights must be
powers of two. In the case of video data, theimages are typically not powers of two so atexture of
the nearest larger power of two can be created and only the relevant subregion needs to be loaded.
When drawing geometry, the texture coordinates are simply constrained to the fraction of the tex-
turewhich is occupied with valid data. Mipmapping can not easily be used with non-power-of-two
image data since the coarser levelswill contain image data from the invalid region of the texture.

5.6 Transparency Mappingand Trimming with Alpha

The apha component in textures can be used to solve a number of interesting problems. Intricate
shapes such as an image of a tree can be stored in texture memory with the alpha component act-
ing as amatte (1 where theimage is opague, 0 where it istransparent, and a fractional value along
the edges). When the texture is applied to geometry, blending can be used to composite the image
into the color buffer or the aphatest can be used to discard pixelswith a 0 apha component using
GL_EQUALS test. To maximize performance, set the alphatest to GL_LESS and discard pixels with
asmall alphavalue, for example lessthan .05. Thisway some more pixels are discarded that don’t
contribute significantly to the image.

Theadvantage of usingthea phatest instead of a phablendingisthat blendingtypically degradesthe
performance of fragment processing. With alphatesting fragments with zero alpha are rejected be-
fore they get to the color buffer. A disadvantage of alphatesting isthat the edgeswill not be blended
into the scene so the edges will not be properly antialiased.

The alpha component of atexture can be used in other ways, for example, to cut holes in polygons
or to trim surfaces. Animage of thetrim region is stored in atexture map and when it is applied to
the surface, alphatesting or blending can be used to reject the trimmed region. This method can be
useful for trimming complex surfaces in scientific visualization applications.
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5.7 Billboards

It isoften desirable to replace intricate geometry with simpler texture mapped geometry to increase
realism and performance. Billboarding is a technique in which complex objects such as trees are
drawn with simple planar texture mapped geometry and the geometry is transformed to face the
viewer. The transformation typically consists of a rotation to orient the object towards the viewer
and atrandation to place the object in the correct position. For the case of the tree, an object with
roughly cylindrical symmetry, an axial rotation is used to rotate the geometry for the tree, typically
aquadrilateral, about the axis running parallel to the tree trunk.

For the simple case of the viewer looking down the negative z-axis and the up vector equal to the
positive y-axis, the angle of rotation can be determined by computing the eye vector from the model
view matrix M

0
~ _ 0
Vepe = M| )
0
and therotation # about the y axisis computed as
cosf = Veye : Vfront
sinff = Veye : ‘/M'ght
where
Vfront = (07 07 1)

‘/M'ght = (17070)

Once 6 has been computed a rotation matrix » can be constructed for the rotation about the y-axis
(Vap) @and combined with the model view matrix as M R and used to transform the billboard geom-
etry.

To handle the more general case of an arbitrary billboard rotation axis, an intermediate alignment
rotation A of the billboard axisinto the V,,, axisis computed as

aris = Vup X ‘/billboard
cosf = Vup : ‘/billboard
sinf = |lazis||

and the matrix transformation is replaced with M A R. Note that the preceding cal cul ations assume
that the projection matrix contains no rotational component.

In additionto objectswhich are cylindrically symmetric, it isa so useful to computetransformations
for spherically symmetric objects such as smoke, clouds and bushes. Spherical symmetry alows
billboardsto rotate up and down as well as | eft and right, whereas cylindrical behavior only allows
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Figure 30. Billboard with Cylindrical Symmetry

rotation to the left or right. Cylindrical behavior is suited to objects such as trees which should not
bend backward as the viewer’s dtitude increases.

Objectswhich are spherically symmetric are rotated about a point to face the view and thus provide
more freedom in computing the rotations. An additional alignment constraint can be used to resolve
thisfreedom. For example, an alignment constraint which keeps the object oriented in a consistent
fashion, such asupright. Thisconstraint can be enforced in object coordinateswhen the objectiveis
to maintain scene realism, perhaps to maintain the orientation of plume of smoke consistently with
other objectsin a scene. The constraint can also be enforced in eye coordinates which can be used
to maintain alignment of an object relative to the screen, for example, kegping annotations such as
text aligned horizontally on the screen.

The computationsfor the spherically symmetric case are a minor extension of the computationsfor
the arbitrarily aligned cylindrical case. First an alignment transformation, A, is computed to rotate
the alignment axis onto the up vector followed by a rotation about the up vector to align the face of
the billboard with the eye vector. A is computed as

aris = Vup X Valignment
cosf = Vup : Valignment
sinf = |lazis||
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where Va”gnmem isthe billboard alignment axis with the component in the direction of the eye di-
rection vector removed

— —

Valignment = ‘/billboard - (Veye : ‘/billboard)veye

A rotation about the up vector is then computed as for the cylindrical case.

5.8 Rendering Text

A novel use for texturing is rendering antialiased text [28]. Characters are stored in a 2D texture
map as for the tree image described above. When a character is to be rendered, a polygon of the
desired size is texture mapped with the character image. Since the texture image isfiltered as part
of the texture mapping process, the quality of the rendered character can be quite good. Text strings
can be drawn efficiently by storing an entire character set withinasingletexture. Rendering astring
then becomes rendering a set of quadswith the vertex texture coordinatesdetermined by the position
of each character in the texture image. Another advantage of this method is that strings of charac-
ters may be arbitrarily oriented and positioned in three dimensions by orienting and positioning the
polygons.

The competing methodsfor drawing text in OpenGL include bitmaps, vector fonts, and outlinefonts
rendered as polygons. Thetexture method istypically faster than bitmaps and comparabl e to vector
and outlinefonts. A disadvantage of the texture method is that the texture filtering may make the
text appear somewhat blurry. Thiscan be alleviated by taking more care when generating thetexture
maps (e.g., sharpening them). If mipmaps are constructed with multiplecharacters stored inthe same
texture map, care must betaken to ensurethat map level sare clamped to thelevel where theimage of
acharacter has been reduced to 1 pixel onaside. Characters should &l so be spaced far enough apart
that the color from one character does not contribute to that of another when filtering the images to
produce the levels of detail.

59 Texture Mosaicing

The method described above for grouping severa images together in asingletexture turnsout to be
useful in other applicationsaswell. In some OpenGL implementationsthe cost of binding atexture
object can limit theoverall performance of the application when alarge number of texturesare being
used in each frame. The situation can be mitigated to some extent by packing textures which are
used in the same scene together in asingle object to reduce the number of texture binds. Also, some
images may not need a full power of two for their width or height leaving an opportunity to use
texture memory more efficiently if multipleimages can be packed together.

Geometry which uses an image within a mosai ced texture has its texture coordinates scaled and bi-
ased to index only the texels corresponding to itsimage. Asin the case of character rendering, the
individual images in the mosaic must be separated far enough apart so that they do not interfere dur-
ing filtering. Careful attention should be paid to mipmap generation to ensure that multiple images
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arenot blurred together in alevel. ThetextureLOD clamping capability in OpenGL 1.2 can be used
to restrict the range of coarse LODs which are used or mosai ced textures may be constructed from
similar enough images that an appropriate singleimage can be constructed for each level of detail.
It may also be useful to pack images together which use the same texture environments to reduce
the number of texture environment changes as well.

5.10 Texture Coordinate Generation

Texture coordinatesfor afragment are computed by interpol ating the texture coordinatesfor a set of
vertices. OpenGL providesseveral mechanismsfor specifyingthetexture coordinatesat each vertex.
Texture coordinates may be supplied directly by the application usthe gl TexCoor d commands or
vertex arrays, they may be generated automatically from parametric maps for evaluators, or they
may be generated directly by OpenGL using a generation function.

OpenGL supports two mechanisms for computing a texture coordinate directly: distance from a
plane, or the reflection vector using the vertex position and normal to compute thisvector. Thefirst
formisuseful for making texture coordinates which are proportional to the distance from the object
to some other location and can be computed in either object coordinatesor eye coordinates. Thelat-
ter isuseful for environment mapping with asphere map. Thetexture coordinategeneration function
is specified separately for each texture coordinate.

511 Color Codingand Contouring

One application for object linear coordinate generation is color coding objects by distance. For ex-
ample, aterrain model can be colored by altitudeusing a 1D texture map to hold the col oring scheme
and specifying ageneration function for the s coordinate which measures the distancefrom the plane
y = 0. Suppose that the vertex coordinates are specified in meters and distances less than 50 meters
are colored blue, distances between 50 and 800 meters green, distances between 800 and 1000 me-
ters white. This means that a 1D texture map is created with the first 5% blue, the next 75% green
and the remaining 20% white. A 64 or 128 element texture map provides enough resolution to dis-
tinguish between the levels. Specifying GL_OBJECT_LI NEAR for the texture generation mode and
an GL_OBJECT _PLANE equation of (0, /1000, 0, 0) for the s coordinate will set s to the y value of
the vertex scaled by 1/1000.

The same basic technique can be used to draw contour lines on an object, for example, in topog-
raphy applications to indicate lines of constant elevation. For this example, a 1D texture map is
used whichisall onecolor except at regularly spaced intervals (say, every eighthtexel) where atick
mark isadded inadifferent color. A coordinatewrap mode of GL_REPEAT isused to create repeating
lines across the object being contoured. If a GL_OBJECT_LI NEAR generation function is used then
the contours are anchored to the model. If a GL_EYE_LI NEAR generation function is used then the
coordinates are evaluated in eye space and the contours stay fixed in space rather than moving with
the object.

54

Programming with OpenGL: Advanced Rendering



/

-X

Figure 31. Contour Generation Using TexGen

5.12 AnnotatingMetrics

In [57], Teschner proposes a method for displaying metrics, such as 2D tick marks, on an object
using a2D texture map containing the metrics. Texture coordinatesare generated as a distancefrom
object coordinatesto areference plane. For the 2D case, two reference planesare used. An example
application for thistechniqueisto create a 2D texture marked off with tick marks every kilometer
in both the s and ¢ directions and map this texture on to terrain data using a G._REPEAT texture
coordinate wrap mode. An GL_OBJECT_LI NEAR texture coordinate generation mode is used, with
thereference planesat + = 0 and z = 0 and ascalefactor set such that avertex coordinate whichis
1kmfromthez — y or z — y plane producesatexture coordinate val ue equa to the distance between
two tick marks in texture coordinate space.

5.13 Projective Textures

Projective textures [56] use texture coordinates which are computed as the result of a projection.
The result isthat the texture image can be subjected to a separate independent projection from the
viewing projection. This technique may be used to simulate effects such as slide projector or spot-
light illumination, to generate shadows, and to reproject a photograph of an object back onto the
geometry of the object. Several of these techniques are described in more detail in later sections of
these notes.

OpenGL generaizesthe two component texture coordinate (s,t) to afour-component homogeneous
texture coordinate (s,t,r,q). The ¢ coordinateisana ogousto the w component in the vertex coordi-
nates. Ther coordinateis used for three dimensional texturing in implementationsthat support that
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extension and isiterated in manner similar to sand ¢. OpenGL provides default valuesfor » (0) and
¢ (1). The addition of the ¢ coordinate adds very little extrawork to the usua texture mapping pro-
cess. Rather than iterating (s,t,r) and dividing by 1/w at each pixel, thedivision becomesadivision
by ¢/w. Thus, inimplementationsthat perform perspective correction there is no extrarasterization
burden associated with processing g.

5.13.1 HowtoProject a Texture

Proj ecting a textureimage into your synthetic environment requires many of the same stepsthat are
used to project the rendered scene onto the display. The key to projecting a texture is the contents
of the texture transform matrix. The matrix contains the concatenation of three transformations:

1. A modelview transform to orient the projection in the scene.
2. A projectivetransform (perspective or orthogonal).

3. A scale and bias to map the near clipping plane to texture coordinates.

The modelview and projection parts of the texture transform can be computed in the same way, with
the same tool s that are used for the modelview and projection transform. For example, you can use
gl uLookat toorient the projection, and gl Fr ust umor gl uPer spect i ve to define a perspective
transformation.

The modelview transform is used in the same way asit isin the OpenGL viewing pipeline, to move
theviewer to the origin and the projection centered al ong the negative = axis. Inthiscase, viewer can
bethought of alight source, and the near clipping planeof theprojection asthelocation of thetexture
image, which can bethought of as printed on atransparent film. Alternatively, you can conceptualize
aviewer at the view location, looking through the texture on the near plane, at the surfaces to be
textured.

The projection operation converts eye space into Normalized Device Coordinate (NDC) space. In
this space, the x, y, and = coordinates range from —1 to 1. When used in the texture matrix, the
coordinates are s, ¢, and r instead. The projected texture can be visualized as laying on the surface
of the near plane of the oriented projection defined by the modelview and projection parts to the
transform.

Thefina part of the transform scales and biases thetexture map, which is defined in texture coordi-
natesranging from 0 to 1, so that the entiretextureimage (or the desired portion of theimage) covers
the near plane defined by the projection. Since the near plane is now defined in NDC coordinates,
Mapping the NDC near planeto match the textureimage would require scaling by 1/2, then biasing
by 1/2, in both s and t. The texture image would be centered and cover the entire back plane. The
texture could also be rotated if the orientation of the projected image needed to be changed.

The projections are ordered in the same as the graphics pipeline, the model view transform happens
first, then the projection, then the scale and bias to position the near plane onto the texture image:
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. gl Mat ri xMode( GL_TEXTURE)
. gl Loadl denti ty (start over)
. gl Transl atef (.5f, .5f, 0.f)

1
2
3
4. gl Scal ef (. 5f, .5f, 1.f) (texturecoversentire NDC near plane)
5. Set the perspective transform (e.g., gl Fr ust um).

6

. Set the modelview transform (e.g., gl uLookAt ).

What about the texture coordinatesfor the primitivesthat the texturewill be projected on? Sincethe
projection and modelview parts of the matrix have been defined in terms of eye space (where the
entire scene is assembled), the straightforward method is to create a 1-to-1 mapping between eye
space and texture space. This can be done by enabling texture generation to eye linear and setting
the eye planes to a one-to-one mapping:

e G.fl oat Splane[] {1.f, 0.f, O0.f, O.f};

e G.fl oat Tplane[]

{0.f, 1.f, 0.f, 0.}

e G.fl oat Rplane[]

{0.f, 0.f, 1.f, 0.f}

e G.fl oat Qpl ane[] {0.f, O0.f, O.f, 1.f};

You could a so use object space mapping, but then you’ d haveto take the current modelview trans-
form into account.

So when you've done al this, what happens? As each primitive is rendered, texture coordinates
matching the z, y, and =z values that have been transformed by the model view matrix are generated,
then transformed by the texture transformation matrix. The matrix appliesamodelview and projec-
tion transform; thisorientsand projectsthe primitive' stexture coordinate valuesinto NDC space (-1
to 1 in each dimension). These values are scaled and biased into texture coordinates. Then normal
filtering and texture environment operations are performed using the texture image.

If transformation and texturing is being applied to all the rendered polygons, how do you limit the
projected texture to a single area? There are a number of ways to do this. Oneis to simply only
render the polygons you intend to project the texture on when you have projecting texture active
and the projection in the texture transformation matrix. But this method is crude. Another way is
to use the stencil buffer in a multipass algorithm to control what parts of the scene are updated by a
projected texture. The scene can be rendered without the projected texture, the stencil buffer can be
set to mask off an area, and the scene re-rendered with the projected texture, using the stencil buffer
tomask off al but the desired area. Thiscan allow youto create an arbitrary outlinefor the projected
image, or to project atexture onto a surface that has a surface texture.
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There is a very simple method that works when you want to project a non-repeating texture onto
an untextured surface. Set the GL_MODULATE texture environment, set the texture repeat mode to
GL_CLAMP, and set the texture border color to white. When the texture is projected, the surfaces
outsidethe textureitself will default to the texture border color, and be modulated with white. This
will leave the areas textured with the border color unchanged, since each color component will be
scaled by one.

Filtering considerations are the same as for normal texturing; the size of the projected texturesrel-
ative to screen pixels determines minification or magnification. If the projected image will berela-
tively small, mipmapping may be required to get good quality results. Using good filtering is espe-
cialy important if the projected texture moves from frame to frame.

Please note that like the viewing projections, the texture projectionis not really optical. Unless spe-
cia stepsaretaken, thetexturewill affect al surfaceswithinthe projection, bothin front and in back
of the projection. Since thereis no implicit view volume clipping (like there is with the OpenGL
viewing pipeline), the application needs to be carefully modeled to avoid undesired texture projec-
tions, or user defined clipping planes can be used to control where the projected texture appears.

5.14 Environment Mapping

OpenGL directly supports environment mapping using spherical environment maps. A sphere map
isasingletexture of a perfectly reflecting sphere in the environment where the viewer isinfinitely
far from the sphere. The environment behind the viewer (a hemisphere) is mapped to a circle in
the center of the map. The hemisphere in front of the viewer is mapped to a ring surrounding the
circle. Sphere maps can be generated using acamera with an extremely wide-angle (or fish eye) lens.
Sphere map approximations can also be generated from a six-sided (or cube) environment map by
using texture mapping to project the six cube faces onto a sphere.

OpenGL provides atexture generation function (GL_SPHERE_MAP) which maps avertex normal to a
point on the sphere map. Applicationscan usethiscapability to do simplereflection mapping (shade
totally reflective surfaces) or use theframework to do more el aborate shading such as Phong lighting
[57]. Applications of environment mapping are discussed in Sections 8.3 and 9.3.2.

5.15 Image Warping and Dewar ping

Image warping or dewarping may be implemented using texture mapping by defining a correspon-
dence between a uniform polygonal mesh and a warped mesh. The points of the warped mesh are
assigned the corresponding texture coordinates of the uniform mesh and the mesh istexture mapped
with the original image. Using this technique, simple transformations such as zoom, rotation or
shearing can be efficiently implemented. The technique also easily extends to much higher order
warps such as those needed to correct distortionin satellite imagery.
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5.16 3D Textures

Three dimensiona texturesare alogical extension of 2D textures. 1n 3D textures, texel shecome unit
cubesintexel space. They are packed into arectangular parallel epiped, each dimension constrained
to be a power of two. Thistexture map occupies avolume, rather than arectangular region, and is
accessed using three texture coordinates; s, ¢, and . Aswith 2D textures, texture coordinates range
from 0 to 1 in each dimension. Filtering is controlled in the same fashion as 2D textures, using
texture parameters and texture environment.

5.16.1 Using 3D Textures

In OpenGL, 3D textures have much in common with 2D and 1D textures. Texture parameters
and texture environment calls are the same, using the GL_TEXTURE_3D_EXT target in place of
GL_TEXTURE_2D or GL_TEXTURE_1D.

Internal and external formats and types are the same, although a particular OpenGL implementation
may limit the 3D texture formats.

3D textures need to be accessed with s, ¢, and r texture coordinates instead of just s and t. The
additional texture coordinate complexity, combined with the common uses for 3D textures, means
texture coordinate generation is used more commonly for 3D textures than for 2D and 1D.

3D texturemapstake up alarge amount of texturememory, and are expensiveto changedynamicaly.
This can affect multipass algorithms that require multiple passes with different textures.

The texture matrix operates on 3D texture coordinates in the same way that it does for 2D and 1D
textures. A 3D texture volume can be translated, rotated, scaled, or have other transforms applied
toit. Applying atransformation to the texture matrix is a convenient and high performance way to
manipulate a 3D texture when it istoo expensiveto ater the texel valuesdirectly.

3D Textures vs. Mipmaps A clear distinction should be made between 3D textures and
mipmapped 2D textures. 3D textures can be thought of as a solid block of texture, requiring athird
texture coordinate r, to access any giventexel. A 2D mipmap is a series of 2D texture maps, each
filtered to a different resolution. Texelsfrom the appropriate level(s) are chosen and filtered, based
on the relationship between texel and pixel size on the primitive being textured.

Like 2D textures, 3D texture maps can be mipmapped. Instead of resampling a 2D layer, the entire
texture volume isfiltered down to an eighth of its volume by averaging eight adjacent texels on one
level down to asingletexel on the next. Mipmapping serves the same purposein both 2D and 3D
texturemaps; it providesameansof accurately filtering whentheprojected texel sizeissmall relative
to the pixels being rendered.
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5.16.2 3D Texturesto Render Solid Materials

A direct 3D texture application is rendering solid objects composed of heterogeneous material. An
example is rendering a statue made of marble or wood. The object itself is composed of polygons
or NURBS surfaces bounding the solid. Combined with proper texgen values, rendering the surface
using a 3D texture of the material makes the object appear cut out of the material. With 2D textures
objects often appear to have the material laminated on the surface. The difference can be striking
when there are obvious 3D coherenciesin the material, combined with sharp anglesin the object’s
surface.

Rendering a solid with 3D textureis straightforward:

Createthe 3D texture The texture data for the materia is organized as a three dimensional ar-
ray. Often the materia is generated procedurally. Aswith 2D textures, proper filtering and
sampling of the data must be doneto avoid aliasing. A mipmapped 3D texture will increase
realism of the object. OpenGL doesn't support a gl uBui | d3DM pnaps command, so the
mipmaps need to created by the application. Be sure to check to seeif the size of the texture
you want to createis supported by the system, and there is sufficient texture memory available
by calling gl Tex! mage3DEXT with GL_PROXY_TEXTURE_3D.EXT to find a supported size.
You can alsocall gl Get with GL_MAX_3D_TEXTURE_SI ZE_EXT to find the maximum allowed
size of any dimension in a 3D texture for your implementation of OpenGL, though the result
may be more conservative than the result of aproxy query.

Create Texture Coordinates For asolidsurface, usinggl TexGen to create thetexture coordinates
isthe easiest approach. Define planesfor s, ¢, and r in eye space. Adjustingthe scale hasmore
effect on texture quality than the position and orientation of the planes, since scaling affects
how the texture is sampled.

Enable Texturing Usegl Enabl e( GL_TEXTURE_3D_EXT) to enable 3D texture mapping. Be sure
to set the texture parameters and texture environment appropriately. Check to see what re-
strictionsyour implementation puts on these val ues.

Render the Object Once configured, rendering with 3D textureisno different than other texturing.

5.16.3 3D Textures as Multidimensional Functions

Instead of thinking of a 3D texture asa 3D volume of data, it can be thought of as a2D texture map
that varies as a function of the r coordinatevalue. Sincethe 3D texture filtersin three dimensions,
changing the » value smoothly blends from one 2D texture image to the next.

An obviousapplicationisanimated 2D textures. A 3D texture can animate a sequence of images by
using the » value astime. Since the images are interpolated, temporal aiasing is reduced.

Another applicationis generalized billboards. A normal billboardisa 2D texture applied to a poly-
gon that awaysfacesthe viewer. Billboardsof objects such astrees behave poorly when the viewer
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2D texture varies
as a function of R

Figure 32. 3D Textures as 2D Textures Varying with R

views the object from above. A 3D texture billboard can change the textured image as a function of
viewer elevation angle, blending a sequence of images between side view and top view, depending
on the viewer’s position.

5.17 Linelntegral Convolution (L1C) with Texture

Displaying vector flow fieldsis an important scientific visualization technique. There are a number
waysto doit; two common and useful methods are distributing vector iconsover thefield or drawing
streamlines. Lineintegral convolutionisanother techniquefor visualizing vector fields and has the
advantage of being ableto visualize large and detailed vector fields in a reasonable display area.

Lineintegral convolutioninvolvesselectively blurring areference image as afunction of the vector
field to bedisplayed. Thereference image can be anything, but to make theresultsclearer, isusualy
an spatially uncorrelated image (e.g., a noise image). The resulting image appears stretched and
squished along the directions of the distorting vector field streamlines, visualizing the flow with a
minimum of display resolution. Vortices, sources, sinksand other discontinuitiesare clear shownin
the resulting image, and the viewer can get an immediate grasp of the flow fields “big picture”.

In each case, you start with avector field, sampled asadiscretegrid of normalized vectors. You also
need an image that isnon-uniform and spatially uncorrelated, so correlationsyou apply toit will be
more obvious. Thegoal isto processtheimage with thevector field, using lineintegral convolution,
so you can visualizeit. Note that in thistechnique, you will concentrate on the direction of the flow
field, not its vel ocity; thisis why the vector values at each gridpoint are normalized.

The processed image can be cal culated directly using a specia convolution technique. A represen-
tative set of vector values on the vector grid are chosen. Specia convolution kernels are created
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Figure 33. Line Integral Convolution

shaped like the local streamline at that vector by tracing local field flow forwards and backwards
some user-defined distance. The resulting curve is used as a convolutionkernel to convolvethe un-
derlyingimage. Thisprocessisrepeated over the entireimage using asampling of thevectorsinthe
vector field.

Mathematically, for each location p in theinput vector field, aparametric curve P(p, s) isgenerated
which passes through the location and follows the vector field for some distancein either direction.
To create an output pixel F'(p), aweighted sum of the values of the input image F" along the curve
is computed. The weighting functionis k(z). Thus the continuous form of the equationis:

I P(P(p, s))k(s)ds
15 k(s)ds
To discretize the equation, use values Fy ; aong the curve P(p, s):

2520 hl

F'(p)

F'(p)

5.17.1 Sampling

How accurately the processed image represents the vector field depends on how accurately the line
convolution kernels follow the flow fields streamlines. Since the convolution kernels are only dis-
cretely sampling acontinuousflow field, they areinaccuratein general. Areas of flow that are chang-
ing slowly will be represented well, but rapidly changing regionsof theflow field (such asthe center
of vortices and other singularities) will be incorrectly described or missed altogether.

There are various ways of optimizing the sampling intervals to minimize this this problem, with
different tradeoffs between computation time and resulting accuracy. The numerical analysistopics
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Figure 34. Line Integral Convolutionwith OpenGL

involved are beyond the scope of this document, and are well covered elsewhere [8, 39]. For our
purposes, we' |l use the simplest and |east accurate method — a fixed spatial sampling interval.

5.17.2 Using OpenGL to Create Line Integral Convolution (L1C) I mages

Instead of generating aseries of custom convolutionkernelsand applying them to an image, you can
use atexture mapping approach. Thisvariant has the advantage that it's reasonably easy to imple-
ment and runs quickly, especially on systemswith good texturing and accumul ation buffer support,
sinceit is paraleizing the convol ution operations.

The concept is simple; a surface, tessellated into amesh, istextured with an image to be processed.
Each vertex on the surface has atexture coordinate associated with it. Instead of convolvingtheim-
age with aseries of streamline convolutionkernels, the texture coordinates at each vertex are shifted
parallel to flow field vector local to that vertex. This process, called advection, is done repeatedly
in a series of displacements parallel to the flow vectors, with the resulting series distorted images
combined using the accumul ation buffer.

Thetexture coordinatesat each grid location are displaced parallel to thelocal field vector in afixed
series of steps. The displacement is done both parallel and antiparallel to thefield vector at the ver-
tex. Theamount of displacement for each step and the number of steps determinesthe accuracy and
appearance of thelineintegra convolution. The application generally setsaglobal value describing
the length of the displacement range for all of the texture coordinates on the surface; the number of
displacements along that length is computed per vertex, as afunction of the local field’s curl.
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5.17.3 Linelntegral Convolution Procedure

Next, make some simplifying assumptions to make the procedure simple:

1. Thesupplied flow field vector grid matches the tessell ated textured surface; there's a one-to-
one correspondence between vector and vertex.

2. Set afixed number of displacements (n) at each vertex.

These assumptionsallow you to simply use the vector associated with each vertex on thetessellated
surface when computing texture displacements. You can also simply cal culate the displacements by
parameterizing the vector and computing evenly spaced texture coordinatel ocationsdisplaced along
the vector direction, both forwards and backwards.

Given these assumptions, the procedure looks likethis:

1. Update the texture coordinates at each vertex on the surface.

2. Render the surface using the noise texture and the displaced texture coordinates.
3. Accumulate the resulting image in the accumul ation buffer, scaling by 1/x.

4. Repeat the steps above n times, then return the accumul ated image.

5. Perform histogram equalization or image scaling to maximize contrast.

5174 Details

Since the most of the work goes into updating the texture coordinates, it makes sense to use vertex
arraysto represent the textured surface. Using avertex array providestwo benefits; it simplifiesthe
representation of the texture coordinates (they can be kept in a2D array), and it potentially increases
rendering performance sinceusinggl Dr awEl enment s hasanindex array that can eliminate the need
for sending shared texture and vertex coordinates multipletimes, and reduces function call overhead.

Scaling each accumulation uniformly is not optimal. The displacement of the texture coordinates
is most accurate close to the grid vector; so each image contribution can be scaled as an inverse
function of distance from from the vector. The farther the displacement from the original flow field
vector, the less accurate the advection can potentially be, and the smaller accumulation scale factor
is. Obviously more sophisticated algorithms can be implemented that adjust scal e based on a com-
puted, rather than assumed, accuracy. Any scaling algorithm should takeinto account the maximum
and minimum possible color values after accumulating to avoid pixel color overflow or underflow.

In many implementations, the performance of thisalgorithmwill belimited by the speed of the con-
volution operation. For some applications, ablend operation can be substituted with aloss of resolu-
tion accuracy; the scaling operation can be provided by changing the intensity of the base polygon.
Watch out for overflow and underflow of the blended color values.
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5.17.5 Maximizing Contrast

There are acouple of obvious methods to maximize the effects of the flow field being visualized, in
particular, to contract the blurring tendency from thethe random noi setexel s being blended together.
Onesimplemethod isto scal eand biastheimageto maximizeitscontrast. Theimaging subset makes
thiseasy. Processtheimage by doing apixel copy, turning on sink after the minmax operation. With
the minimum and maximum val ues obtained, you can execute gl CopyPi xel s again, setting scale
and bias in the pixel pipelineto scale and bias the image.

Or you can do a full histogram equalization. Using the histogram feature, copy the image through
the pixel pipeline, then process the resulting histogram to create a lookup table. The lookup table
will balance the intensities into a linear ramp. Again use copypixels to remap the pixel intensity
values. In detail:

gl Enabl e( GL_-M N_LVAX)

gl M nmax( GL_.M NLMAX, GL_LUM NANCE, GL_TRUE)

gl CopyPi xel s of LIC Image.

gl Get M nnmax to get minimum and maximum pixel values.

Compute a scale and bias value to get full 0 to 1 dynamic range.

gl Di sabl e( GL_M N_.VAX)

gl Di sabl e( GL_M N_.VAX)

gl Pi xel Transf er to set scale and biasvalue.

© © N oo o &~ W dhD P

gl CopyPi xel s of LIC Image to rescdeit.

5.17.6 Going Farther

The approach described here to generate lineintegral convolution imagesisvery simplistic. More
sophisticated agorithms will decouple the surface tessellation from the flow field grid, and more
finely subdividethetessell ation surface where thererapidly changing flowsto properly samplethem.
This subdivision algorithm should be backed with a rigorous sampling approach so that the results
can can be trusted within given accuracy bounds. A subdivision algorithm must al so recognize and
handle various types of flow discontinuities.

This technique can easily be extended into three dimensions, using 3D textures. Volume visualiza-
tion techniques, described in Section 13 in these notes, can be used to visualizethe 3D LIC image.
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Detail texture

Figure 35. Detail Textures

5.18 Detail Textures

Texture filtering can become unrealistic when magnifying. When the viewer is close to a texture
surface, and singletexel sstart to cover many pixels. Thelinear magnification filtering of thesetexels
resultsin an unrealistically smoothed image with little surface detail. Not only does the image look
unrealistic, but the lack of high frequency spatial information on the surface makes it more difficult
to get redistic height and and motion cues when moving over the surface.

Idedlly, every texture will have enough fine level sthat any normal view of the textured surface will
always have sufficient high frequency spatia data. But providing extralevels are expensive. With
mipmapping, each fine level requires four times as many texels as the next coarser one. In some
cases, it’'sworth it. Thefiner levels contain much more visual information that’s useful to the appli-
cation.

But sometimes it’'snot. A very high resolution image of an object will contain surface details, but
the detailscan be very similar acrossthe surface. For example, aclose-up photo of aroad may show
alot of asphalt detail that’s pretty similar across the entire road. Providing a mipmap level of this
detail would consume a lot of texture memory, without adding a lot of useful image data. Yet this
detail providesimportant motion and height cues, and keeps the level from looking too blurry.

A detail textureisone solutionto thisproblem. A representative section of ahighresolutionimageis
chosen, and its high frequency information extracted. The extracted informationisstoredin asmall
texture that contains just a fraction of the entireimage.

The main mipmapped textured can then have fewer, lower resolution levels. When the viewer is
close to the textured surface, the detail texture is combined with the filtered base textureto provide
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Texture magnification is easy to compute in this view;
magnification is a function of height above ground.

Figure 36. Special Case Texture Magnification

high frequency information to theresult. Sincethe detail textureissmall, itspattern isrepeated over
the entire visible surface.

It isassumed that the detailed texture contains only high frequency image features. These features
are changing rapidly even across a small detail texture, so there are no low frequency components
to causetiling artifacts when repeating the detail texture across the textured surface.

Detail textures shouldn’t contributeanything to atexturethat isn’t magnifying. When implementing
detail texturing, you must be careful to fadein detail texturing as afunction of the magnification of
the base texture.

One way to do thisisto gradually blend in the detail texture contribution as a function of distance
from the textured surface. In many cases, application specific constraints can simplify the problem.
For example, aflight simulator may have alook down mode that only needs a height above ground
and a precomputed scaling factor to determine magnification level. If the simulator’sview frustum
brings the entire visible textured surface into view at nearly the same magnification, this solution
can work well.

In the general case, however, computing texture magnification can be difficult. You must consider
the visiblevertices of the textured surface, the texture coordinate scaling resulting from the current
modelview and projection transformations, the current texture generations settings, and the values
in the texture transformation matrix. One way around this is to add detail texture support in the
OpenGL implementation. Thisis donein the detail texture extension GL_SA S_det ai | -t ext ur e
supported on SGI hardware. This extension blendsin the detail texture as a function of magnifica-
tion, and allowsthe detail texture either to add to or modul ate the base texture.
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5.18.1 Signed Intensity Detail Textures

One technique that avoids having to compute the base texture magnification is to create a signed
detail texture. The detail texture image created so that it has both positive and negative intensity
values, with an average value over the detail texture of zero; when combined with the base image, it
modifiesit, adding high frequency componentsto thetexturedimage. Thedetail textureiscombined
with the base texture in a separate pass, using a pha blending.

Different blend functions can be used, depending on whether you want to add in the detail tex-
ture or modulate with it. In the first pass the image is drawn with the base texture, in the sec-
ond pass, The detail texture is made current, and since it is higher resolution, the texture coor-
dinate mapping is changed, either by changing the texgen mapping or with the texture transfor-
mation matrix. Blending mode is enabled, and the blend function is set. If the blend function is
gl Bl endFunc( GL_ONE, GL_ONE), thedetail textureisadded tothebasetexture. If theblend func-
tionis gl Bl endFunc( GL_ZERO, GL_SRC.COLOR), the detail texture will modulate the base tex-
ture.

The clever part of thisalgorithmis how the detail texture combines with the base texture as a func-
tion of magnification. The detail texture is applied to the same geometry as the base texture. The
texturing systemis configured so that the detail textureisat an offset magnification valuerelativeto
the base texture; it minifiesif the basetextureisn’'t magnifying. The minification filtering will cause
the signed intensity componentsto blend together.

If the average intensity of the detail textureiszero, it will havelittleor no contributionto theimage.
As both the detail and base texture are zoomed, the filtering of the detail texture beginsto magnify,
and the signed intensity values stop canceling each other out.

Although asigned texture value can’'t be blended directly, it can be simulated by using asubtractive
blend and abiasingterm. Thesigned texelsof thedetail texturearefirst converted to positivevalues.
For example, if the texture values range from -1/4 to 1/2, the texels can be biased by 1/4. Then
the texture images applied and blended normally. After the two textures are combined, athird pass
subtracts out the 1/4 bias term from the textured image.

Create asigned detail texture image ranging from -1/4 to 1/2.

Bias the image to make it non-negative.

Render the surface with the base texture.

Enable blending.

Set blend function to modul ate or add.

Re-render the surface using the detail texture with different texture coordinates.

gl Bl endEquat i on( GL_-FUNC_REVERSE_SUBTRACT)
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Render the image unlit with agray color (equal to the biasterm) to remove the biasing term.
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Figure 37. Subtracting out Low Frequencies

5.18.2 Making Detail Textures

Detail textures contain the high frequency componentsfrom the texture image. The high frequency
informationisextracted, not generated from scratch. So you must start with ahigh resolutionversion
of the desired texture.

Thefirst step isto choose the size of the detail texture, and select aregion of the detailed image that
contains high frequency details representative of the entire image. Now extract the high frequency
components of that region. One technique is to remove the high frequency components from one
copy of theregion by blurring it. Thiscan be done with animage processing application, or you can
usegl uScal el mage to scale the image down, then up again. For more sophisticated filtering, you
can useablurring convolutionkernel, assuming your implementation of OpenGL supportstheimag-
ing subset. Enable convolution, set the appropriate blurring filter kernel and use gl CopyPi xel s to
process the image.

Now subtract the blurred image from the unprocessed one. You can do this using the subtractive
blend mode or with the accumulation buffer. The result will be a signed image that contains the
high frequency components of theimage. You will have to be careful to add abiasing value before
subtracting (or before returning the image from the accumulation buffer) to avoid negative pixel
values, since the frame buffer will clamp them. If you have the imaging subset, you can use the
minmax feature to find therange of pixel valuesin both the sharp and blurry partsof thedetail texture
image before you subtract them. You can then use the results to find the proper biasing term.

5.19 Gradual Cutaway Views

Engineering drawings of complex objects (such as automobiles) may show acutaway view, remov-
ing somelayersof theobject (such astheouter shell) in order to reveal the object’ sinner components
and their respective positions. When the purpose of the drawing is more sal es-oriented, the cutaway
view may be donein amore artistic style, with the cut edge of object’s outer shell is cut gradualy,
the parts of the edge closer to the viewer becoming more and more transparent. Additional stylistic
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touches can be added by showing the seams of the object shell, and have them a so fade to trans-
parency at adlightly different rate than the shell surface itself.

This effect can be donein a straightforward way using OpenGL. This technique uses texture map-
ping and texture coordinate generation to modul ate the a pha component of an object’s shell. The
object must be divided into two parts that can be rendered separately; the object’s shell and the ob-
ject’sinterior. Theinterior isrendered first in a standard fashion, using depth buffering. The object
shell is rendered, but a one-dimensional texture map containing an alpha component ramp is used
to modulate the object color.

If dphablendingisenabled, using gl Bl endMbde( GL_SRC_ ALPHA, GL_ONE.M NUS_SRC ALPHA) ,
the texture map will scale down the apha component of the shell as it gets closer to the viewer,
rendering it more transparent. The edges of the shell can be rendered as a separate pass, using a
dightly different 1D texture map or different texgen plane equation to produce a different rate of
transparency change from that of the shell surface.

Since the shell itsdlf is blended, it must be handled as a transparent object to avoid render order
artifacts. Both depth buffering and al pha blending using source a pha/1 - source a pharequire depth
sorted primitivesin order to work reliably. The shell should be sorted so the surfaces more distant
from the viewer are rendered first. If the shell is convex, and the surface primitives are oriented
consistently, an easy way to do this is with face culling. If the shell primitives are oriented to be
outward facing, rendering the shell twice, first with front face, then back face culling will draw the
surfaces in the proper depth order. For more information, see Section 10 in these course notes.

5.19.1 Stepsto Generating a Cutaway Shell

1. Draw the object internals with depth buffering.
2. Enableand configure a1 dimensional texture ramp; use GL_ALPHA as the format.

3. Enable and configure texture coordinate generation for the s component; use eye linear, and
set the s eye planeto map — = over the range of the object shell cutaway from 0 to 1.

4. Enable blending, and set the blend mode: source is GL_SRCALPHA, destination is
GL_ONE_M NUS_SRC_ALPHA.

5. Render the shell of the object in depth order; most distant objectsfirst. For convex shells, this
could be done using face culling.

6. Load adifferent texture ramp in the 1D texture map.

7. Render the shell edges; you can do this by re-rendering the shell after call gl Pol ygonMbde
with the mode set to GL_LI NE.

If you want to render the shell edges, you'll need to use polygon offset, or some other method,
such as using the stencil buffer, to avoid z fighting. A reasonable setting to try would be
gl Pol ygonOf fset (-1.f, -1.f).
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Figure 38. Gradua Cutaway Using a 1D Texture
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5.19.2 Refinements

There are anumber of parameters you will want to adjust for maximum effect. One is the shape of
the texture ramp for both the shell and the shell edges. A linear ramp produces a somewhat abrupt
cutoff; tapering the beginning and end of the ramp will produce a smoother transition. The texture
ramps can al so be adjusted by changing thetexgen s eye plane. Changing the planeva ues can move
the distance and the range of the cutaway transition zone.

Since both the shell and the interior of the object will be lit, there is some question as to what the
back surface of the shell revealed by the cutaway should look like. As before, aesthetics and the
surrounding scene will determine what’sbest. Some choices would be showing the back of the shell
in adarker version of the shell’scolor, unlit. Another possibility isto use back face lighting on the
shell’sinterior.

5.19.3 Rendering a Surface Textured Shell

The steps above assume an untextured object shell. If the shell itself has a surface texture, things
get more involved. The preference would be to apply both the 2D surface texture and the 1D
transparency texture ramp simultaneously. In order to blend two textures together, use a multi-
pass method. The basic idea is to separate the blend function gl Bl endFunc( GL_SRC ALPHA,
GL_ONE_M NUS_SRC ALPHA) into two separate steps. There are now three objectsto consider; in-
ternal components of the object, the shell of the object textured with a surface texture, and the shell
of the abject textured with the 1D aphatexture. The alphatextured shell isused to adjust the trans-
parency of the other two objects separately.

Two approaches suggest themselves, based on your hardware’ s capabilities. If your system supports
an aphabuffer, the approach is only alittle more complicated. If you don't, you can do it with two
buffers.

5.19.4 AlphaBuffer Approach

You render the internal object as before, then adjust the transparency of the resulting image
by rendering the aphatextured shell with the blend mode set to gl Bl endFunc( GL_ZERQ,
GL_ONE_M NUS_SRC ALPHA) . The apha values from the shell are used to scale the image of the
object internalsthat have been rendered into the framebuffer. The a pha valuesthemselves are also
saved into the alpha buffer.

Now depth buffer updateis disabled, and the surface textured shell isrendered, with the blend mode
set to gl Bl endFunc( GL_.ONE.M NUS_DST_ALPHA, GL_ONE) . In thisway the internal part of the
object, which has already been scaled by 1 — srcalpha is summed with the surface textured shell,
whichisblended by 1 — (1 — srcalpha) = srcalpha, giving the desired result.
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Configure awindow that can store a pha color values.

Draw the object internals with depth buffering.

Mask off depth buffer updates.

Enable blend mode.

gl Bl endFunc( GLZERO, GL_ONE_M NUS_SRC_ALPHA)

Draw alphatextured shell to adjust internal objects’ transparency.
gl Bl endFunc( GL_.ONE_M NUS_DST_ALPHA, GL_ONE)

Disable 1D Texturing Enable 2D texturing.
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Render surface textured shell.

5.19.5 No AlphaBuffer Approach

If you don’t have an alphabuffer to store intermediate alphavalues, then you’ |l have to render two
images, one of theinternal objects, one of the surface textured shell, then combine the two images
using blending.

The first steps are the same as the a pha buffer approach: You render the interna object as before,
then adjust the transparency of the resulting image by rendering the apha textured shell with the
blend modeset togl Bl endFunc( GL ZERO, GL_ONE_M NUS_SRC ALPHA) . Theaphavauesfrom
the shell are used to scale theimage of the object internalsthat have been rendered into the frame-
buffer. Thistimethe aphavauesarelost.

In aseparate buffer (or different area of the window) Render the surface textured shell. Now adjust
the transparency of thisimage by re-rendering the shell using only the alphatexture. Thistime the
blend mode should be gl Bl endFunc( GL_ ZERO, GL_SRCALPHA) . Thisimage now hasit’strans-
parency adjusted.

Now you can combine the two images using gl CopyPi xel s with the blend function set to
gl Bl endFunc( GL_ONE, GL_ONE) . This bringsthe two halves of the blend operation together.

Thereisoneproblem. Thereisno depth testing between the transparent shell and theinternal objects
images. You can aso take care of thisusing a stencil buffer technique described in Section 14. The
technique allowsyou, in effect, copy an image with its depth information.

The stencil buffer is used to save the results of depth comparing the two images’ depth values, and
used as a per-pixel mask to control the merging of thetwo images. See Section 14.4 for details.
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5.20 Procedural Texture Generation

Procedurally generated textures are a diverse topic; we concentrate on those based on filtered noise
functions. They are commonly used to simulate effectsfrom phenomenasuch asfire, smoke, clouds,
and marble formation. These textures are described in detail in [16], which provides the basis for
much of this section.

5.20.1 Filtered Noise Functions

A filtered noisefunctionissimply afunction created by filtering impul ses of random amplitude over
the domain. There are a variety of waysto distribute the impulses spatially and to filter those im-
pulses; these methods determine the character of the function and, in turn, the character of the pro-
cedural texture created from the function. Regardless of the method chosen, afiltered noisefunction
should have certain properties[16], some of which are:

e Itisarepeatable pseudorandom function of itsinputs.
¢ It hasaknown range, typically -1 to 1.

e Itisband-limited, with a maximum frequency of about 1 per domain unit.

Given such afunction, we can build a more interesting function by making dilated versions of the
original such that each one hasafrequency of 2, 4, 8, etc. These are called the octaves of theoriginal
function. The octavesare then composited together withthe original noisefunctionusing some set of
weights. Theresult isaband-limited function which givestheimpression of controlled randomness
in each frequency band.

One way of distributing noise impulses is to space them uniformly along the coordinate axes, as
in alattice. In value noise, the function itself interpolates the values at the lattice points, whilein
gradient noise the gradient of the functioninterpolatesthe values at the | attice points[16]. Gradient
noiseis similar to the noise function implemented in the RenderMan shading language.

L attice noises can exhibit axis-aligned artifacts. Lewis [37] describes sparse convolution, a way
to avoid such artifacts by distributing the impulses using a stochastic process, and van Wijk [59]
describes asimilar technique called spot noise.

Although the noise functions described in [16] are generally 3D, we first discuss how to generate a
2D noise function, because it is more straightforward to construct in a 2D framebuffer and because
some simpleinteresting effects can be created with it.

5.20.2 Generating Noise Functions

Filtered noise functions are typically implemented as continuous functions that can be sampled at
an arbitrary domain value. However, for some applicationsaset of uniformly spaced samples of the
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function may suffice. In these cases, a discrete version of the function can be created in the frame-
buffer using OpenGL. In the following, we do not distinguish between the terms noise function and
discrete noisefunction.

A simple way to create lattice noise is to create a texture with random values for the texels, and
then to draw atextured rectangle with abilinear texturefilter at an appropriate magnification. How-
ever, bilinear interpolation produces poor results, especially when creating thelower octaves, where
values are interpolated across alarge area. Some OpenGL implementations support bicubic texture
filtering, which may produce results of acceptable quality. However, aparticular implementation of
bicubic filtering may have limited subtexel precision, causing noticeable banding at the lower oc-
taves. Both bilinear and bicubic filters also have the limitation that they produce only value noise;
gradient noise is not possible. We suggest another approach.

5.20.3 High Resolution Filtering

The accumul ation buffer can beused to convolveahighresolutionfilter witharelatively small image
under magnification. That is what we need to make the different octaves; the octave representing
the lowest frequency band will be created from avery small input image under large magnification.
Suppose we want to create a 512x512 output image by convolving a 64x64 filter with a 4x4 input
image. Our filter takes a 2x2 array of samples from theinput image at atime, but is discretized into
64x64 valuesin order to generate an output image of the desired size. Theinput imageis shown on
the left in Figure 39 with each texel numbered. The output image is shown on the left in Figure 40.
Note that each texel of the input image will make a contribution to a 64x64 region of the output
image. Consider these regions for texels 5, 7, 13, and 15 of the input image; they are adjacent to
each other and have no overlap, as shown by the dotted lines on the I eft in Figure 40. Hence, these
four texels can be evaluated in the same pass without interfering with each other. Making use of
thisfact, we redistribute the texels of theinput imageinto four 2x2 textures as shown in the right of
Figure 39. We a so create a 64x64 texture that contains the filter function; thistexture will be used
to modulate the contribution of theinput texel over a 64x64 region of the color buffer. The stepsto
evaluate thetexelsin Texture D are:

1. Usingthefilter texture, draw four filter functionsinto the a pha planes with the appropriate =
and y offset, as shown on theright in Figure 40.

2. Enable alpha blending and set the source blend factor to GL_DST_ALPHA and the destination
blend factor to GL_ZERO.

3. Set the texture magnification filter to GL_NEAREST.

4. Draw arectangle to the dotted region with Texture D, noting the offset of 64 pixelsin both x
and y.

5. Accumulate the result into the accumul ation buffer.
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Figure 39. Input Image

Repeat the above procedurefor Textures A, B, and C' withtheappropriatex and y offsets, and return

the contents of the accumulation buffer to the color buffer.

A wider filter requires more passes of the above procedure, and al so requiresthat the original texture
bedividedinto more small textures. For example, if we had chosen afilter that coversa4x4 array of
input samples instead of 2x2, we would have to make 16 passesinstead of 4, and we would have to
distributethe texelsinto 16 1x1 textures. Increasing the size of either the output image or the input

image, however, has no effect on the number of passes.

5.20.4 Spectral Synthesis

Now that we can create a single frequency noise function using the framebuffer, we need to create

the different octaves and to composite them into one texture. For each octave:

1. Scdethetexture matrix by a power of 2 in both s and ¢.

2. Trandate the texture matrix by arandom offset in both s and ¢.
3. Set the texture wrap mode to GL_REPEAT for s and ¢.

4. Draw atextured rectangle.

5. Accumulate the color buffer contents.
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Figure 40. Output Image

The random translation isan attempt to minimize the amount of overlap between each octave' stex-
els; without it, every octave would use texels from the same corner of the input image. The accu-
mulation is typically done with a scale factor that controls the weight we want to give each octave.

5.20.5 Other Noise Functions

Gradient noise can be created using the same method described above, but with a different filter.
The technique described above can a so create noise that isnot aligned on alattice. To create sparse
convolutionnoise[37] or spot noise[59], instead of drawing theentire point-sampled textureat once,
draw one texel and one copy of thefilter at atime for each random location.

5.20.6 Turbulence

To create an illusion of turbulent flow, first-derivative discontinuities are introduced into the noise
function by taking theabsoluteva ueof thefunction. Although OpenGL doesnot includean absolute
value operator for framebuffer contents, the same effect can be achieved by the following:

gl Accun{GL_LOAD, 1. 0) ;
gl Accunm( GL_ADD, - 0. 5) ;
gl Accun{ GL._MULT, 2. 0);

gl Accun{ G._RETURN, 1. 0) ;

o > w D

Save theimage in the color buffer to atexture, main memory, or other color buffer.
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6. gl Accum{ GL_RETURN, - 1. 0) ;

7. Draw the saved image from Step 5 using GL_ONE as both the source blend factor and the des-
tination blend factor.

The callswith GL_ADD and GL_MULT map the valuesin the accumulation buffer from therange[0,1]
to[-1,1]; thisis needed because values retrieved from the color buffer into the accumulation buffer
are positive. Since values from the accumulation buffer are clamped to [0,1] when returned, the
first GL_RETURN clamps all negative values to O and returns the positive values intact. The second
GL_RETURN clamps the positivevalues to 0, and negates and returns the negative values. The color
buffer needs to be saved after the first GL_RETURN because the second GL_RETURN overwrites the
color buffer; OpenGL does not define blending for accumulation buffer operations.

5.20.7 Example: Image Warping

A common useof a2D noisetextureisto distort the texture coordinateswhile drawing a 2D image,
thus warping the image. A noise function is created in the framebuffer as described above, read
back to the host, and used as texture coordinates (or offsets to texture coordinates) to render the
image. Since color values in OpenGL are normalized to the range 0.0 to 1.0, if oneis careful the
image returned to the host may be used without much conversion; assuming that the model view and
texture matrixes are set up to accept valuesin thisrange, the returned data may be used directly for
rendering.

Another similar use of a2D noisetextureisto distort the reflection of an image. In OpenGL, reflec-
tionson aflat surface can be done by reflecting a scene across the surface. Theresults can be copied
from the framebuffer to texture memory, and in turn drawn with distorted texture coordinates. The
shape and form of the distortion can be controlled by modulating the contents of the framebuffer af-
ter the noisetextureisdrawn but before it is copied to texture memory. Thiscan produceinteresting
effects such as water ripples.

5.20.8 Generating 3D Noise

Using the techniques described above for generating a 2D noise function, we can generating a 3D
noisefunction by making 2D slicesand filteringthem. A 2D slicespansthe s and ¢ axesof thelattice,
and correspondsto aslice of the lattice at afixed r.

Suppose we want to make a 64x64x64 noise function with a frequency of 1 per domain unit, using
the samefiltering (but onethat now takes 2x2x2 input samples) asinthe 2D example above. Wefirst
create 2 slices, one for r= 0.0 and one for r =1.0. Then we create the 62 slicesin between 0 and 1
by interpolating the two slices. Thisinterpolation can take place in the color buffer using blending,
or it can take place in the accumulation buffer. Functions with higher frequencies are created in a
similar way. Widening the filter dramatically increases the number of passes; going from a 2x2x2
filter to 4x4x4 requires 16 times as many passes.

78

Programming with OpenGL: Advanced Rendering



To synthesizeafunctionwith different frequencies, we create a3D noisefunction for each frequency,
and compositethe different frequenciesusing aset of weights, justaswedointhe 2D case. Itisclear
that alarge amount of memory isrequired to storethedifferent 3D noisefunctions. Theseoperations
may be reordered so that lesstotal memory isrequired, perhaps at the expense of moreinterpolation
passes.

5.20.9 Generating 2D Noiseto Simulate 3D Noise

We have described a method for creating 2D noise functions. In the case of lattice noise, these 2D
functions correspond to a2D slice of thelattice. There are cases where we want to model a 3D noise
function and where such a 2D function isinadequate. For example, to draw avase that lookslikeit
was carved from a solid block of marble, we cannot use a lattice 2D noise function.

However, we can cresate a 2D noise function that approximates the appearance of atrue 3D noise
function, using spot noise [59]. We take into account the object space coordinates of the geometry,
and generate only spotsthat are close enough to the geometry to make a contributionto the 3D noise
at thosepoints. The difficulty is how to render the spot in such away that at each fragment thevalue
of the spot is determined by the object space distance from the center of the spot to that fragment.
Depending on the compl exity of the geometry, wemay be able to make an acceptable approximation
to the correct spot value by distorting the spot texture. One possible way to improve the approxi-
mation is to compensate for a nonuniform mapping of the noise texture to the geometry. Van Wijk
describes how he does this by nonuniformly scaling a spot. Approximating the correct spot valueis
most important when generating the lower octaves, where the spots are largest and errors are most
noticeable.

5.20.10 Trade-offsBetween 3D and 2D Techniques

A 3D texture can be used with arbitrary geometry without much additional work if your OpenGL im-
plementation supports 3D textures. However, generating a 3D noise texture requires alarge amount
of memory and alarge number of passes, especialy if you use afilter that convolvesalarge number
of input valuesat atime. A 2D texture as we just described doesn’t require nearly as many passesto
create, but it doesrequire knowledgeof thegeometry and additional computationin order to properly
shape the spot.
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6 Blending

OpenGL provides arich set of blending operations which can be used to implement transparency,
compositing, painting, and other effects. Rasterized fragments are linearly combined with pixelsin
the selected color buffers, clamped to 1.0 and then written to the color buffers. The gl Bl endFunc
command selects the source and destination blend factors. The most frequently used factors are
GL_ZERO, GL_ONE, GL_SRC ALPHA and GL_ONE_M NUS_SRC ALPHA. OpenGL 1.1 specifies additive
blending, but vendors have added extensionsto alow other blending equations such as subtraction
and reverse subtraction, and several of these extensions are standard commandsin OpenGL 1.2, or
are part of the "imaging subset” of OpenGL 1.2 (see Section 12.1.4).

Most OpenGL implementations use fixed point representations for color throughout the fragment
processing path. The color component resolution istypicaly 5, 8, or 12 bits. Resolution problems
usually show up when attempting to blend many images into the color buffer, for example, in some
volume rendering techniques or multilayer composites. Some of these problems can be aleviated
using the accumul ation buffer instead, but the accumulation buffer does not provide the same flexi-
bility for building up results.

OpenGL doesnot requirethat implementationssupport an alphabuffer (“ destinationalpha’) for stor-
ing aphavalues like the other color components. For many applicationsthisis not alimitation, but
thereis a class of multipass operations where maintai ning the current computed a phavalueis nec-
essary.

6.1 Compositing

The OpenGL blending operation does not directly implement the compositing operations described
by Porter and Duff [51]. The difference isthat in their compositing operations the colors are pre-
multiplied by the alpha value and the resulting factors used to scale the colors are simplified af-
ter this scaling. It has been proposed that OpenGL be extended to include the ability to premulti-
ply the source color values by aphato better match the Porter and Duff operations. In the mean-
time, its certainly possibleto achieve the same effect by computing the premultiplied valuesin the
color buffer itself. For example, if there is an image in the color buffer, a new image can be gen-
erated which multiplies each color component by its alpha value and leaves the alpha value un-
changed by performing agl CopyPi xel s operation with blending enabled and the blending func-
tion set to (GL_SRC_ALPHA,GL_ZERO). To ensure that the original alpha vaueis left intact, use the
gl Col or Mask command to disable updates to the alpha component during the copy operation.

6.2 Advanced Blending
OpenGL 1.1 only allows simple additive combinations of the source and destination color compo-
nents during blending. Two ways in which the blending operations have been extended by vendors

includethe ability to blend with aconstant color and the ability to use other blending equations. The
blending color extension (EXT_bl end_col or ) addsaconstant RGBA color state variablewhich can
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be used as a blending factor in the blend equation. This capability can be very useful for implement-
ing blends between two images without needing to specify theindividua source and destination al-
pha components on a per pixel basis.

The blend equation extension (EXT_bl end_mi nmax) provides the framework for specifying alter-
nate blending equations. For example, in OpenGL 1.1, the accumulation buffer is the only mecha
nism which alows pixel values to be subtracted, but there is no easy method to include a per-pixel
scaling factor such as apha, so a subtractive blending equation has been implemented as an exten-
sionto 1.1 and is part of the imaging subset in OpenGL 1.2. Min and max functions are useful in
image processing algorithms (e.g., for computing maximum intensity projections) and are also im-
plemented as an extension to 1.1 and as part of the 1.2 imaging subset.

6.3 Painting

Two dimensional painting applications can make interesting use of texturing and blending. An ar-
bitrary image can be used as a paint brush, using blending to accumul ate the contribution over time.
The image source (paint brush) can be geometry or a pixel image. A texture mapped quad under
an orthographic projection can be used in the same way as a pixel image and often more efficiently
(when texture mapping is hardware accel erated).

An interesting way to implement the painting process is to precompute the effect of painting the
entireimage with the brush and then use blending to selectively expose the painted area asthe brush
passes over the area. This can be implemented efficiently with texturing by using the fully painted
image as a texture map, blending the source image mapped on the brush with the current image
stored in the color buffer. Use a geometric shape and trandate the < s,t > texture coordinates
asthe < z,y > coordinates move across the image. The main advantage of this techniqueis that
elaborate paint/brush combinations can be efficiently computed across the entire image all at once
rather than performing localized computations in the area covered by the brush.

6.4 Blending with the Accumulation Buffer

The accumulation buffer is designed for combining multiple images. Instead of simply replacing
pixel vaueswithincoming pixel fragments, the fragments are scaled and then added to the existing
pixel vaue. In order to maintain accuracy over many blending operations, the accumul ation buffer
has a higher number of bits per color component than atypical color buffer.

The accumulation buffer can becleared likeany other buffer. You canusegl C ear Accumto set the
red, green, blue, and al pha components of its clear color. Clear the accumulation buffer by bitwise
or’ing in the GL_ACCUMBUFFER BI T valueto the parameter of thegl C ear command.

You can't render directly into the accumulation buffer. Instead you render into a selected color
buffer, then use gl Accumto accumulate that image into the accumulation buffer. The gl Accum
command reads from the currently selected read buffer. You can set the buffer you want it to read
from using the gl ReadBuf f er command.
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| OpValue | Action |
GL_ACCUM | read from selected buffer, scale by value, then add into ac-
cumulation buffer

GL_LOAD read from selected buffer, scale by value, then use image
to replace contents of accumulation buffer

GL_RETURN | scale image by value, then copy into buffers selected for
writing

GL_ADD add valueto R, G, B, and A components of every pixel in
accumulation buffer

GL_MULT clampvaluetorange-1to1, thenscaeR, G, B, and A com-
ponents of every pixel in accumulation buffer.

Table 1: gl Accumop values

The gl Accumcommand takes two arguments, op and value. The possible settings for op are de-
scribed in Table 1.

Since you must render to another buffer before accumulating, a typical approach to accumulating
images isto render images to the back buffer some number of times, accumulating each image into
the accumulation buffer. When the desired number of images have been accumulated, the contents
of the accumulation buffer are copied into the back buffer, and the buffers are swapped. Thisway,
only thefinal accumulated image is displayed.

Here is an example procedure for accumulating » images:
1. Cdl gl DrawBuf f er (GL_BACK) to render to the back buffer only.

2. Cdl gl ReadBuf f er (GL_BACK) so that the accumulation buffer will read from the back
buffer.

Note that the first two steps are only necessary if the application has changed the sel ected draw and
read buffers. If the visual is double buffered, these settings are the defaullt.

3. Clear the back buffer with gl C ear , then render the first image.

4. Cal gl Accun( GL_LOAD, 1.f/n); thisalowsyou to avoid a separate step to clear the ac-
cumulation buffer.

Alter the parameters of your image, and re-render it.
Call gl Accun{ GL_ACCUM 1. f/ n) to add the second image into the first.

Repeat the previoustwo stepsn - 2 more times...

© N o o

Call gl Accun{ GL_RETURN, 1. f) to copy the completed image into the back buffer.
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The accumulation buffer providesaway to take “multiple exposures’ of ascene, while maintaining
good color resolution. There are a number of image effects that can be implemented with the ac-
cumulation buffer to improve the realism of arendered image [29, 46], including antialiasing, mo-
tion blur, soft shadows, and depth of field. To create these effects, render the image multiple times,
making small, incremental changes to the scene position (or selected abjects within the scene), and
accumul ate the results.

6.5 Blending Transitions

When generating real-time or interactive imagery, often the application may switch between dif-
ferent representations of an object. A different representation may be chosen which provides more
detail or less detail, takes less time to render, or for avariety of other reasons. The two represen-
tations may not be similar enough to generate the same pixels on the screen, so the transition may
generate an abjectionable“pop” on the screen. The apparent discontinuity can be reduced by fading
the old representation in and the new representation over a number of frames using blending. The
new representation is rendered with gl Bl endFunc( GL_SRC ALPHA, GL_ONE) and the old repre-
sentation with gl Bl endFunc( GL_ONE_M NUS_SRC_ALPHA, GL_ONE) , varying aphafromOto 1
over afew frames.
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7 Antialiasing

Aliasing refers to the jagged edges and other rendering artifacts commonly associated with
computer-generated drawings. It is caused by the presence of higher frequency renderings than can
be represented by the pixel samples. Linesare much more susceptibleto aliasing problems because
every pixel drawn is part of an edge while most pixels of polygon models are in the middle where
thereare no high frequences. More detail ed explanationsof why thisisso areavailablein[44], [45],
[38], and [11].

7.1 Lineand Point Antialiasing

Lineand point antialiasing should be considered separately from polygon antialiasing since thetech-
niques are usualy quite different. Mathematically, alineisinfinitely thin. Attemptingto compute
the percentage of apixel covered by an infinitely thin object would be impossible, so generally one
of the following two methodsis used:

1. Thelineis modeled as along, thin, single-pixel-wide quadrilateral. The percentage of pixel
coverage is computed for each pixel touching the line and this coverage percentageisused as
the aphavauefor blending.

2. Thelineismodeled as an infinitely thin transparent glowing object. Thismethod treatsaline
asif drawn on avector stroke display where the display draws aline by deflecting the el ectron
beam as opposed to a raster display that moves the beam in horizontal scans and varies the
beam intensity. This approach requires the implementation to compute the effective shape of
an electron beam as it moves across the CRT phosphors.

To antialias points or lines in OpenGL, you need to enable antialiasing by caling gl Enabl e and
passing in GL_PO NT_SMOOTH or GL_LI NE_SMOOTH, as appropriate. You can aso provide a qual-
ity hint by calling gl Hi nt . The hint parameter can be GL_FASTEST to indicate that the most effi-
cient option should be chosen, GL_NI CEST to indicate the highest quality option should be chosen,
or GL_DONT_CARE to indicate no preference.

When antiaiasing is enabled, OpenGL computes the an a pha value representing either the fraction
of each pixel that is covered by the line or point or the beam intensity for the pixel as a function
of the distance of the pixel center from the line center. The setting of the GL_LI NE_.SMOOTH and the
GL_PO NT_SMOOTH hintsdetermine how accurate the cal culationiswhen rendering linesand points,
respectively. Whenthehintissetto G._NI CEST, alarger filter function may be applied causing more
fragmentsto be generated and rendering to slow down.

No matter which line antialiasing method is used in your particular version of OpenGL, you can
approximate either by choosing the right blend equation. The important point to remember is that
antidiasedlinesand pointsare aform of transparent primitive, soyou need to enabl e blending so that
theincoming pixel fragment will be combined with the value already in the framebuffer, depending
on the aphavaue.
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The best approximation of aone-pixel-widequadrilateral isachieved by setting the blending factors
to GL_SRC_ALPHA (source) and GL_ONE_M NUS_SRC AL PHA (destination). To best approximate the
lines of astroke display, use GL_ONE for the destination factor. Notethat this second blend equation
only workswell on a black background and does not produce good results when drawn over bright
objects.

Aswith al transparent primitives, antialiased lines and points should not be drawn until al opague
objects have been drawn first. Depth buffer testing should remain enabled, but depth buffer updat-
ing should be disabled using gl Dept hvask( GL_FALSE) . Antiaiased lines drawn with full depth
buffering enabled produces incorrect line crossings and can result significantly worse rendering ar-
tifacts than with antialiasing disabled when alot of lines are drawn close together.

If the destination blend modeisset to GL_ONE_M NUS_SRC AL PHA there may bevisibleorder depen-
dent rendering artifacts if the antialiased primitives are not drawn in back to front order. There are
no such order dependent problems with a setting of GL_ONE, however. It is best to pick the method
that best suitsyour particular application.

Incorrect monitor gamma settings are much more likely to become apparent with antiaiased lines
than shaded polygons. Broadcast television uses agamma value of 2.22. The gamma value needed
to correct most color CRTs is usually between 2.0 and 2.6. Some workstation manufacturers use
values as low as 1.6 to enhance the perceived contrast of rendered images even though it produces
a definite intensity nonlinearity in displayed images. Signs of insufficient gamma are “roping” of
lines and moire patterns where many lines come together. Too much gamma produces a “washed
out” appearance.

Antidiasingin color index mode istrickier because you have to load the color map correctly to get
primitive edges to blend with the background color. When antiaiasing is enabled, thelast four bits
of the color index indicate the coverage vaue. Thus, you need to load sixteen contiguous colormap
locations with a color ramp ranging from the background col or to the object’s color. Thistechnique
only works well when drawing wireframe images, where the lines and points typically need to be
blended with a constant background. If the lines and/or points need to be blended with background
polygons or images, RGBA rendering should be used.

7.2 Polygon Antialiasing

Antidiasing the edges of filled polygonsis similar to antialiasing points and lines. However, an-
tialiasing polygonsin color index modeisn’t practical since object intersections are more prevalent
and you really need to use OpenGL blending to get decent results.

To enable polygon antiadiasing cal gl Enabl e with G._POLYGON_SMOOTH. This causes pixels on
the edges of the polygon to be assigned fractional a phavalues based on their coverage. Also, if you
want, you can supply avalue for GL_POLYGON_SMOOTH HI NT.

In order to get the polygons blended correctly when they overlap, you need to sort the polygons
in front to back order in eye space. This method does not work without sorting. Before render-
ing, disabledepthtesting, enabl e blending and set the blending factorsto GL_SRC_ALPHA_SATURATE
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(source) and GL_ONE (destination). The final color will be the sum of the destination color and the
scaled source color; the scale factor isthe smaller of either the incoming source a phavalue or one
minus the destination alphavalue. Thismeans that for a pixel with alarge alphavalue, successive
incoming pixelshavelittleeffect on thefinal color because one minusthe destination a phaisa most
zero.

Since the accumulated coverage is stored in the color buffer, destination alphais required for this
algorithm to work. Thusyou must request avisual or pixel format with destination alpha. OpenGL
does not require implementations to support a destination al pha buffer so visual selection may fail.

7.3 Multisampling

Multisampling is an antialiasing method that provides high quality results. It is available as an
OpenGL extension from at least one vendor. In this technique additional subpixel storageis main-
tained as part of the color, depth and stencil buffers. Instead of using alphafor coverage, coverage
masks are computed to help maintain sub-pixel coverage information for all pixels. Current im-
plementations support four, eight, and sixteen samples per pixel. The method alows for full scene
antiaiasing at amodest performance penalty but amore substantial storage penalty (since sub-pixel
samples of color, depth, and stencil need to be maintained for every pixel). Thistechnique does not
entirely replace the methods described above, but iscomplementary. Antialiasedlinesand pointsus-
ing a phacoverage can be mixed with multisampling aswell as theaccumulation buffer antialiasing
method.

7.4 Antialiasng With Textures

You can aso antialias points and lines using the filtering provided by texturing. For example, to
draw antialiased points, create atexture image containing afilled circle with a smooth (antialiased)
boundary. Then apply the texture to the point making sure that the center of the textureis aligned
with the point’s coordinates and using the texture environment GL_MODULATE. This method hasthe
advantage that any point shape may be accommodated simply by varying the textureimage.

A similar technique can be used to draw antialiased line segments of any width. The textureimage
isafiltered circle as described above. Instead of aline segment, atexture mapped rectangle, whose
widthisthe desired linewidth, is drawn centered on and aligned with the line segment. If line seg-
ments with round ends are desired, these can be added by drawing an additional textured rectangle
on each end of the line segment.

You can also use a phatexturesto accomplish antialiasing. Simply create an image of acirclewhere
the alphavaluesare onein the center and go to zero as you move from the center out to an edge. The
alphatexel valueswould then be used to blend the point or rectangl e fragments with the pixel values
aready in the framebuffer.
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7.5 Antialiasng with Accumulation Buffer

Accumulation buffers can be used to antialias a scene without having to depth sort the primitives
before rendering. A supersampling techniqueis used, where the entire sceneis offset by small, sub-
pixel amounts in screen space, and accumulated. The jittering can be accomplished by maodifying
the transforms used to represent the scene.

One straightforward jittering method is to maodify the projection matrix, adding small translationsin
x and y. Care must be taken to compute the translations so that they shift the scene the appropriate
amount in window coordinate space. Fortunately, computing these offsets is straightforward. To
compute a jitter offset in terms of pixels, divide the jitter amount by the dimension of the aobject
coordinate scene, then multiply by the appropriate viewport dimension. The example code fragment
below shows how to calculate ajitter valuefor an orthographic projection; the results are applied to
atrandate call to modify the modelview matrix:

void ortho_jitter(G.float xoff, G.float yoff)
{

Gint viewport[4];

G.fl oat ortho[ 16];

GLfl oat scal ex, scal ey;

gl Get | nt eger v( GL_VI EMPORT, vi ewport);

/* this assunmes that only a gl Otho() call has been
applied to the projection matrix */

gl Get Fl oat v( G._PROQIECTI ON_MATRI X, ortho);

scal ex (2.f/ortho[0])/viewort[2];
scaley = (2.f/ortho[5])/viewport[3];
gl Transl at ef (xof f * scal ex, yoff * scaley, 0.f);

If the projection matrix wasn’t created by calling gl Ort ho or gl uOr t ho2D, then you will need to
usetheviewingvolumeextents(right, left, top, bottom) to computescal ex andscal ey asfollows:

G.float right, left, top, bottom

scal ex
scal ey

((right-left)/viewort[2];
((top-bottom/viewport][3];

The codeisvery similar for jittering a perspective projection. In thisexample, wejitter the frustum
itsalf:
void frustumjitter(G.double I eft, G.double right,

GLdoubl e bottom G.doubl e top,

GLdoubl e near, G.double far,
GLdoubl e xof f, GLdoubl e yoff)
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GLfl oat scal ex, scal ey;
Gint viewport[4];

gl Get I nt egerv(G._VI EWPORT, vi ewport);
scalex = (right - left)/viewort[2];
scal ey (top - bottom/viewport[3];

gl Frustun(l eft - xoff * scal ex,
right - xoff * scalex,
top - yoff * scaley,
bottom - yoff * scal ey,
near, far);

The jittering values you choose should fall in an irregular pattern. In other words, it is undesirable
to have the sample pointsline up in any direction. This reduces aliasing artifacts by making them
“noisy”. Selected subpixel jitter values, organized by the number of samplesneeded, are taken from
the OpenGL Programming Guide, and are shown in Table 2. (Note that some of these patterns are
alittlemore regular horizontally and vertically than is optimal.)

Using theaccumul ation buffer, you can easily trade off quality and speed. For higher quality images,
simply increase the number of scenes that are accumulated. Although it is simple to antialias the
scene using the accumul ation buffer, it is much more computationally intensiveand probably slower
than the polygon antialiasing method described above.
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Count Vaues

2 {0.25,0.75}, {0.75, 0.25}

3 {0.5033922635, 0.8317967229}, {0.7806016275, 0.2504380877},
{0.2261828938, 0.4131553612}

4 {0.375,0.25}, {0.125, 0.75}, {0.875, 0.25}, {0.625, 0.75}

5 {05,05},{0.3,0.1}, {0.7,0.9}, {0.9, 0.3}, {0.1, 0.7}

6 {0.4646464646, 0.4646464646} , {0.1313131313, 0.7979797979},

{0.5353535353, 0.8686868686}, { 0.8686868686, 0.5353535353},
{0.7979797979, 0.1313131313}, {0.2020202020, 0.2020202020}

8 {0.5625, 0.4375}, {0.0625, 0.9375}, {0.3125, 0.6875}, {0.6875, 0.8125},
{0.8125, 0.1875}, {0.9375, 0.5625}, {0.4375, 0.0625}, {0.1875, 0.3125}
9 {0.5, 0.5}, {0.1666666666, 0.9444444444} {0.5, 0.1666666666}

{0.5, 0.8333333333}, {0.1666666666, 0.2777777777},
{0.8333333333, 0.3888888888}, {0.1666666666, 0.6111111111},
{0.8333333333, 0.7222222222} , {0.8333333333, 0.0555555555}

12 {0.4166666666,0.625), {0.9166666666, 0.875}, {0.25, 0.375},
{0.4166666666, 0.125}, {0.75, 0.125}, {0.0833333333, 0.125}, {0.75, 0.625},
{0.25, 0.875}, {0.5833333333, 0.375}, {0.9166666666, 0.375},
{0.0833333333, 0.625}, {0.583333333, 0.875}

16 {0.375,0.4375}, {0.625, 0.0625}, {0.875, 0.1875}, {0.125, 0.0625},
{0.375, 0.6875}, {0.875, 0.4375}, {0.625, 0.5625}, {0.375, 0.9375},
{0.625, 0.3125}, {0.125, 0.5625}, {0.125, 0.8125}, {0.375, 0.1875},
{0.875,0.9375}, {0.875, 0.6875}, {0.125, 0.3125}, {0.625, 0.8125}

Table 2: Sample Jittering Values
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8 Lighting

This section discusses varies ways of improving and refining the lighting of your scenes using
OpenGL.

8.1 Phong Shading
8.1.1 Phong Highlightswith Texture

One of the problems with the OpenGL lighting model is that specular radiance is computed before
texturesare applied in the normal pipeline sequence. To achieve more realisticlooking results, spec-
ular highlightsshould be computed and added to image after the texture has been applied. Thiscan
be accomplished by breaking the shading processintotwo passes. In thefirst passdiffuseradianceis
computed for each surface and then modulated by the texture colorsto be applied to the surface and
the result written to the color buffer. In the second pass the specular highlight is computed for each
polygon and added to the image in the framebuffer using a blending function which sums 100% of
the source fragment and 100% of the destination pixels. For this particular example we will use an
infinitelight and alocal viewer. The stepsto produce the image are as follows:

1. Definethe material with appropriate diffuse and ambient reflectance and zero for the specular
reflectance coefficients.

Define and enable lights.

Define and enable texture to be combined with diffuse lighting.

Define modul ate texture environment.

Draw lit, textured object into the color buffer with the vertex colors set to 1.0.

o o A W N

Define new materia with appropriate specular and shininessand zero for diffuse and ambient
reflectance.

N

Disabletexturing, enable blending, set the blend function to GL_ONE, GL_ONE.
8. Draw the specular-lit, non-textured geometry.

9. Disable blending.

8.1.2 Improved Highlight Shape

This implements the basic algorithm, but the Gouraud shaded specular highlight still leaves some-
thing to be desired. We can improve on the specular highlight by using environment mapping to
generate a higher quality highlight. We generate a sphere map consisting only of a Phong highlight
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[50] and then use the GL_SPHERE_MAP texture coordinate generation mode to generate texture co-
ordinates which index this map. For each polygon in the object, the reflection vector is computed
at each vertex. Since the coordinates of the vector are interpol ated across the polygon and used to
lookup the highlight, a much more accurate sampling of the highlight is achieved compared to in-
terpolation of the highlight value itself. The sphere map image for the texture map of the highlight
can be computed by rendering a highly tessellated sphere lit with only a specular highlight using
the regular OpenGL pipeline. Since the light position is effectively encoded in the texture map, the
texture map needs to be recomputed whenever the light position is changed.

The nine step method outlined above needs minor modifications to incorporate the new lighting
method:

6. Disablelighting.

7. Load the sphere map texture, enable the sphere map texgen function.
8. Enable blending, set the blend function to GL_ONE, GL_ONE.

9. Draw the unlit, textured geometry with vertex colors set to 1.0.

10. Disabletexgen, disable blending.

With alittlework the technique can be extended to handle multiple light sources. OpenGL 1.2 in-
cludes new functionality which enables the per-vertex lighting computation to compute a specul ar
contribution separate from the ambient, diffuse, and emissive contributions and adds this specul ar
contributionin after the application of the texture environment. Since thiscontributionis cal culated
per-vertex and interpolated it solves the specular-after-texture problem, but it does provide any ad-
ditional improvement in the shape or quality of the highlight, so the above technique remains useful
for improving the highlight quality.

8.1.3 Spotlight Effects using Projective Textures

The projectivetexture technique described earlier can be used to generate anumber of interestingil-
[umination effects. One of the possibleeffectsisspotlightillumination. The OpenGL lighting model
aready includes a spotlight illumination model, providing control over the cutoff angle (spread of
the cone), the exponent (concentration across the cone), direction of the spotlight, and attenuation
as afunction of distance. The OpenGL model typicaly suffers from undersampling of the light.
Since the lighting model is only evaluated at the vertices and the results are linearly interpolated,
if the geometry being illuminated is not sufficiently tessellated incorrect illumination contributions
are computed. Thistypically manifestsitself by adull appearance across the illuminated area or ir-
regular or poorly defined edges at the perimeter of theilluminated area. Since the projective method
samplestheillumination at each pixel the undersampling problem is eliminated.

Similar to the Phong highlight method, a suitable texture map must be generated. Thetextureisan
intensity map of a cross-section of the spotlight’sbeam. The same type of exponent parameter used
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in the OpenGL model can beincorporated or a different model entirely can be used. If 3D textures
are available the attenuation due to distance can be approximated using a 3D texture in which the
intensity of the cross-sectionis attenuated along the r-dimension. When geometry is rendered with
the spotlight projection, ther coordinate of the fragment is proportional to the distancefrom thelight
source.

In order to determine the transformation needed for the texture coordinates, it is easiest to think
about the case of the eye and the light source being at the same point. In this instance the tex-
ture coordinates should correspond to the eye coordinates of the geometry being drawn. The sim-
plest method to compute the coordinates (other than explicitly computing them and sending them to
the pipeline from the application) is to use an GL_EYE_LI NEAR texture generation function with an
GL_EYE_PLANE equation. The planes simply correspond to the vertex coordinate planes (e.g., the s
coordinate is the distance of the vertex coordinate from the y-z plane, etc.). Since eye coordinates
areintherange[-1.0, 1.0] and the texture coordinates need to be in the range [0.0, 1.0], ascale and
translateof 0.5 isappliedto s and ¢ using thetexturematrix. A perspective spotlight projectiontrans-
formation can be computed using gl uPer spect i ve and combined into the texture transformation
matrix. The transformation for the general case when the eye and light source are not in the same
position can be computed by incorporating into the texture matrix the inverse of the transformations
used to move the light source away from the eye position.

With the texture map available, the method for rendering the scene with the spotlight illumination
isasfollows:

Initialize the depth buffer.

Clear the color buffer to a constant val ue which represents the scene ambient illumination.
Draw the scene with depth buffering enabled and color buffer writes disabled.

Load and enable the spotlight texture, set the texture environment to GL_MODULATE.
Enable the texgen functions, |oad the texture matrix.

Enable blending and set the blend function to GL_ONE, GL_ONE.

Disable depth buffer updates and set the depth function to GL_EQUAL.

Draw the scene with the vertex colors set to 1.0.

© © N o g & w dhd P

Disable the spotlight texture, texgen and texture transformation.

=
©

Set the blend function to GL_DST_COLOR.

11. Draw the scene with normal illumination.

Thereare three passesintheagorithm. At the end of thefirst passthe ambient illumination has been
established in the color buffer and the depth buffer containsthe resolved depth values for the scene.
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In the second pass the illumination from the spotlight is accumulated in the color buffer. By using
the GL_EQUAL depth function, only visible surfaces contribute to the accumulated illumination. In
the final pass the scene is drawn with the colors modul ated by the illumination accumulated in the
first two passesto arrive at thefinal illumination values.

Thealgorithm does not restrict the use of texture on objects, sincethe spotlighttextureisonly usedin
the second pass and only the scene geometry isneeded in thispass. The second pass can be repeated
multiple times with different spotlight textures and projections to accumulate the contributions of
multiplelight sources.

There are a couple of considerations that also should be mentioned. Texture projection along the
negative line-of-sight of the texture (back projection) can contribute undesired illumination. This
can be eliminated by positioning a clip plane at the near plane of the line-of-site. Also, OpenGL
does not guarantee pixel exactness when various modes are enabled or disabled. This can manifest
itself in undesirable ways during multipass algorithms. For example, enabling texture coordinate
generation may cause fragments with different depth values to be generated compared to the case
when texture coordinategenerationisnot enabled. Thisproblem can be overcome by re-establishing
the depth buffer val ues between the second and third pass. Thisisdone by redrawing the scene with
color buffer updates disabled and the depth buffering configured the same as for the first pass.

It is also possibleto render the entire scene in asingle pass. If none of the objectsin the scene are
textured, the complete image could be rendered once, if the ambient illumination can be summed
with spotlight illumination while the objects are rendered. Some vendors have added an additive
texture environment function as an extension which makes this operationfeasible. A cruder method
that worksin OpenGL 1.1 involvesilluminating the scene using normal OpenGL lighting, using the
spotlight texture modulate the scene brightness.

8.1.4 Phong Shading by Adaptive Tessdllation

Phong highlightscan al'so be approached with a modeling technique. The surface can be adaptively

—

tessellated until the difference between (H - N)” terms on triangle vertices drops below a prede-
termined value. The advantage of thistechniqueisthat it can be done as a separate pre-processing
step. The disadvantageisthat it increases the complexity of the modeled object. This can be costly
if:

e The mode will haveto be clipped by alarge number of user-defined clipping planes.
e Themodel will havetiled textures applied to it.
e The performance of the application/systemis aready triangle limited.

8.2 Light Maps

A light map is atexture map applied to amaterial to simulate the effect of alocal light source. Like
specular highlights, it can be used to improve the appearance of local light sources without resorting
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to excessive tessellation of the objects in the scene. A excellent example of an application using
lightmaps is the interactive PC game Quake’ ™. This game uses light maps to simulate the effects
of local light sources, both stationary and moving, to great effect.

Using lightmaps usually requires a multipass a gorithm, unless the objects being mapped are untex-
tured. A texture simulating the light's effect on the object is created, then applied to one or more
objectsinthe scene. Appropriate texture coordinatesare generated, and texture transformations can
be used to positionthe light, and create moving or changing light effects. Multiplelight sources can
be generated with acombination of more complex texture maps and/or more passesto the a gorithm.

Light maps are often luminance textures, which are applied to the object using G._MODULATE asthe
value for G._TEXTURE_ENV_MODE. Colored lights can aso be simulated by using an RGB texture.

Light maps can often produce satisfactory lighting effects at |ower resol utionsthan normal textures.
It is often not necessary to produce mipmaps; choosing GL_LI NEAR for the minification and magni-
fication filtersis sufficient. Of course, the minimum quality of thelighting effect isafunction of the
intended application.

8.2.1 2D TextureLight Maps

A 2D light map is a texture map applied to the surfaces of a scene, modul ating the intensity of the
surfaces to simulate the effects of alocal light. If the surface is aready textured, then applying the
light map becomes a multipass operation, modulating the intensity of a surface detail texture.

A 2D light map can be generated analytically, creating a bright spot in luminance or color values
that drops off appropriately with increasing distance from the light center. As with other lighting
equations, a quadratic drop off, modified with linear and constant terms can be used to simulate a
variety of lights, depending on the area of the emitting source.

Since generating new textures takes time and consumes val uabl e texture memory, it isagood strat-
egy to create afew canonical light maps, based onintensity drop-off characteristics and color, then
use them for anumber of different lights by transforming the texture coordinates. If thelight source
isisotropic, then simpletranslationsand scales can be used to positionthelight appropriately on the
surface, while scales can be used to adjust the size of the lighting effect, simulating different sizes
of lights and distance from the lighted surface.

In order to apply alight map to asurface properly, the position of the light in the scene must be pro-
jected onto each surface of interest. This position showswhere the bright spot will be. The perpen-
dicular distance of thelight from the surface can be used to adjust the bright spot size and brightness.
One approach is to generate texture coordinates, orienting the generating planes with each surface
of interest, then translating and scaling the texture matrix to position the light on the surface. This
processis repeated for every surface affected by the light.

In order to repesat this process for multiple lights (without resorting to a multilight lightmap) or to
light textured surfaces, the lighting must be done as a series of passes. This can be done two ways.
The more straightforward way is to blend the entire scene. The other way is to blend together the
surface texture and light maps to create a texture for each surface. This texture will represent the
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contributions of the surface texture and all lightmaps affecting its surface. The merged textureis
then applied to the surface. Although more involved, the second method produces a higher quality
result.

For each surface:

1. Transform the surface so that it is perpendicular to the direction of view (maximizeitsvisible
surface). Scaletheimage sothat itsareain pixelsmatches the desired size of the fina texture.

2. Render the transformed surface into the frame buffer (this can be donein the back buffer). If
it istextured, render it with the surface texture.

3. Re-render the surface, using the appropriate light map. Adjust the GL_EYE_PLANE eguations
and the texture transform to position the light correctly on the surface. Use the appropriate
blend function.

4. Repeat the previous step with each light visible to the surface.
5. Copy theimage into atexture using gl CopyTex| mage2D.

6. When you’ve created texturesfor all lit surfaces, render the scene using the new textures.

Since switching between textures must be done quickly, and lightmap textures tend to be small, use
texture objectsto switch between different light maps and surface texturesto improve performance.

With either approach, the blending is a modulation of the colors of the existing texture. This can be
done by rendering with the blend function (GL_ZERO, GL_SRC_COLCR). If thelight map is composed
of luminance values than theindividua destination color components will be scaled equally, if the
light map represents a colored light, then the color components of the destination will be scaled by
the red, green, and blue components of the light map texel vaues.

Note that each modulation pass attenuates the surface color. The results will become increasingly
dim. If surfacesrequire alarge number of lights, the dynamic range of light maps can be compressed
toavoid excessivedarkening. Instead of ranging from 1.0 (full light) to 0.0 (no light), They can range
from 1.0 (full light) to 0.5 or 0.75 (no light). The no light value can be adjusted as a function of the
number of lightsin the scene.

Here are the stepsfor using 2D Light Maps:

1. Create the 2D light data. “Canonical lights” can be defined at the center of the texture, with
theintensity dropping off in arealistic fashion towards the edges. In order to avoid artifacts,
make sure the intensity of the light field isthe same at all the edges of the texture volume.

2. Define a 2D texture, using GL_REPEAT for the wrap valuesin s, ¢, and ». Minification and
magnification should be GL_LI NEAR to make the changes in intensity smoother. For perfor-
mance reasons, make thistexture a texture object.
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3. Render the scene without the lightmap, using surface textures as appropriate.
4. For each light in the scene:

(&) For each surface in the scene:

i. Cull surfaces that cannot “see” the current light.
ii. Find the plane of the surface.
iii. Alignthe GL_EYE_PLANE for GL_s and GL_t with the surface plane.

iv. Scale and trandate the texture coordinates to position and size the light on the sur-
face.

v. Render the surface using the appropriate blend function and lightmap texture.

Andternativeto simplelight mapsisto use projectivetexturesto draw light sources. Thisisagood
approach when doing spotlight effects. 1t’snot as useful for isotropiclight sources, sinceyou’ll have
totileyour projectionsto makethelight shinein al directions. Seethe projectivetexture description
in Section 8.1.2 and in Section 5.13 for more details.

8.2.2 3D TextureLight Maps

3D Textures can also be used as light maps. One or more light sources are represented in 3D data,
then the 3D textureis applied to the entire scene. The main advantage of using 3D texturesfor light
maps is that it's easy to calculate the proper texture coordinates. The textured light source can be
positioned globally with the appropriate texture transformations then the scene is rendered, using
gl TexGen to generate the proper s, ¢, and r coordinates.

The light source can be moved by changing the texture matrix. The resolution of thelight field is
dependent on the texture resol ution.

A useful approach isto defineacanonical light field in 3D texture data, then useit to represent mul-
tiple lights at different positions and sizes by applying texture tranglations and scales to shift and
resizethelight. Multiplelightscan be simulated by accumulating the results of each light source on
the scene.

To ensurethat thelight source can be shifted easily, set GL_TEXTURE WRAP_S, GL_TEXTURE WRAP_T,
and GL_TEXTURE_WRAP_R EXT to GL_REPEAT. Then the light can be shifted to any location in the
scene. Be sure that the texel values in the light map are the same at al boundaries of the texture;
otherwise you'll be able to see the edges of the texture as vertical and horizonta “shadows’ in the
scene.

Althoughit isuncommon, some types of light fields would be very hard to do without 3D textures.
A complex light source, whose brightness and range varies as a function of distance from the light
source could be best done with a 3D texture. An example might be a “disco ball” effect where a
light source has beams emanating out from the center, with some beams shining farther than oth-
ers. A complex light source could be made more impressive by combining light maps with volume
visualization techniques. For example the light beams could be made visiblein fog.
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Thelight source itself can be a simple piece of geometry textured with the rest of the scene. Since
it isat the source of the textured light, it will be textured brightly.

For better realism, good lighting effects should be combined with the shadowing techniques de-
scribed in Section 9.4.

Procedure:

1. Create the 3D light data. A “canonical light” can be defined at the center of the texture vol-
ume, with the intensity dropping off in arealistic fashion towardsthe edges. In order to avoid
artifacts, make sure the intensity of the light field is the same at al the edges of the texture
volume.

2. Define a 3D texture, using GL_REPEAT for the wrap valuesin S, ¢, and R. Minification and
magnification should be GL_LI NEAR to make the changes in intensity smoother.

3. Render the scene without the lightmap, using surface textures as appropriate.
4. Define planesin eye space so that gl TexGen will cause the texture to span the visible scene.

5. If you have textured surfaces, adding a lightmap becomes a multipass technique. Use the ap-
propriate blending function to modulate the surface color.

6. Render theimage with the light map, and texgen enabled. Use the appropriate texture trans-
form to position and scale the light source correctly.

7. Repeat steps 1-2 and 4-6 for each light source.
There are disadvantages to using 3D light maps:
e 3D texturesare not widely supported yet, so your application will not be as portable.

¢ 3D texturesuse alot of texture memory. 2D textures are more efficient for light maps.

8.3 Other Lighting Models

Up to thispoint we have largely discussed the Phong lightingmodel. The diffuse and specular terms
for asinglelight are given by the following equation:

—

dpdymax(N - L, 0) + 5,5 max(H - N,0)"

Section 8.1.1 discussesthe use of sphere mapping to replace the OpenGL per-vertex specular illumi-
nation computation with one performed at each pixel. The specular contribution in the texture map
is computed using the Phong formulation above. However, the Phong model can be substitutedwith
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other bi-directional reflectance functionsto achieve other lighting effects. Since the texture coordi-
nates are computed with a sphere mapping function, the resulting texture mapping operation accu-
rately approximates view-dependent specular reflectance distributions.

Oneimprovement that can be made isto add aFresnel reflection term, F,,[31] to the specular equa-
tion:
ddy max(]\_f . E, 0) + Faspmsi max(ﬁ . 1\7, 0)"

The Fresnel term specifies the ratio the amount of reflected light to the amount of transmitted (re-
fracted) light. Itisafunction of the angle of incidence, #;, theangle of refraction 6, and the material
properties of the object (dielectric, metal, etc. as described in Section 8.6). The effect of the Fresnel
termisto attenuatelight asafunction of itsincident and reflected directionsaswell asitswavelength.
Light is hardly reflected from dielectrics such as glass at normal incidence, for example, while be-
ing amost totally reflected at glancing angles. This attenuation is independent of wavelength. The
absorption of metals, on the other hand, can be afunction of the wavelengthin, for instance, copper
and gold. At glancing angles, the light color is unaltered in reflection, but at normal incidence the
light is modulated by the color of the metal.

Since the sphere map serves as a table which is indexed by the the reflection vector, the Fresnel
effects can be included in the environment map by simply computing the specular equation with the
Fresnel term to modulate and shift the color. This can be performed as a post-processing step on an
exi sting environment map by computing the Fresnel reflection coefficient at each angle of incidence
and modulating the sphere map. Reflection, refraction and sphere mapping are discussed in more
detail in Section 9.3. Other bi-directional reflectance functionscan be encoded in aspheremapina
similar fashion.

8.4 Global Illumination

The lighting models described thus far have been relatively simple. The subtleties of real lighting
are often captured using a global illumination model. Global illumination models using radiosity
or ray tracing are generally too computationally complex to perform in real-time. However, if the
objects and light sources comprising the environment are static it is possible to perform the global
illumination calculations as a preprocessing step and then display the resultsinteractively. Such an
approach is both practical and useful for applications such as architectural walkthroughs. The tech-
niqueistypically employed for diffuseillumination sol utionssince view-independent (ideal ) diffuse
illumination can be represented as asingle value (color) at each object vertex.

In [61] Walter, et. a. describe amethod for rendering globa illumination solutionswhich contain
view-independent directionally variant lighting effects using the specular term in the OpenGL light-
ing model to approximate the directionally varying lighting information and the emissive term to
approximate the directionally invariant illumination (i.e., diffuseillumination). In thismethod, aset
of OpenGL lightsaretreated as a set of basis functionswhich are summed together while the object
isrendered to yield a more general directiona distribution. The OpenGL light parameters such as
position or intensity coefficients have no relationship to the light sources in the original model, but
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instead serve as acompact representation for thedirectional illuminationof an object. Each rendered
object hasits own set of lightswhich are called virtual lights.

The method works on a global illumination solution which stores anumber of samples of the direc-
tionally varying illumination at each object vertex. The parameters for the virtual lights of a partic-
ular object are determined using a fitting procedure consisting of a number of heuristics. The main
ideais to produce a set of solutionsfor a number of specular exponent values and then choose the
exponent value which minimizes the mean-squared error using aleast squares method. A solution
at a given exponent value is determined as follows:

Choose a specular exponent value.

Find the vertex on the object with the largest directional radiance.

Choose alight direction to align the specular 1obe with this brightest direction.

Choose an intensity coefficient to match the radiance at the point on the object.

Computethe specular contribution at other pointson the object and subtract from theradiance.

Repeat steps 2-5 using updated object radiance until al lights have been used.

N o g & w NP

At each vertex compute the specular and emission coefficients using aleast squares fit.

Once the lighting parameters have been determined the model is rendered using the gl Li ght and
gl Mat eri al commandsto set the directional light parameters and specul ar exponent for each ob-
jectandthegl Mat eri al command to set the specul ar reflectance and and emitted intensity at each
vertex. The rendering speed for the model islimited by the geometric complexity of the model and
the ability of the OpenGL implementation to deal with multiplelight sources and material changes
at each vertex. Rendering performance may be improved by rendering in multiple passes to limit
the number of active lightsor the number of material parameter changesin each pass. For example,
usinggl Col or Mat eri al and gl Col or tochangeonly theemitted intensity or specular reflectance
in each pass and framebuffer blending to sum the resultstogether.

8.5 Bump Mapping with Textures

Bump mapping [6], like texture mapping, is a technique to add more realism to synthetic images
without adding alot of geometry. Texture mapping adds realism by attaching images to geometric
surfaces. Bump mapping adds per-pixel surface relief shading, increasing the apparent complexity
of the surface.

Surfaces that should have a patterned roughness are good candidates for bump mapping. Examples
include oranges, strawberries, stucco, wood, etc.

A bump map is an array of values that represent an object’s height variations on a small scale. A
custom renderer is used to map these height valuesinto changesin the local surface normal. These

99

Programming with OpenGL: Advanced Rendering



Figure41. Bump Mapping: Shift and Subtract Image

perturbed normals are combined with the surface normal, and the results are used to evauate the
lighting equation at each pixel.

The technique described here uses texture maps to generate bump mapping effects without requir-
ing a custom renderer [1] [49]. This multipass algorithm is an extension and refinement of texture
embossing [54].

Thefirst derivative of the height values of the bump map can found by the following process:

1. Render theimage as atexture.
2. Shift the texture coordinates at the vertices.

3. Re-render the image as a texture, subtracting from the first image.

Consider a one dimensional bump map for simplicity. The map only varies as afunction of s. As-
suming that the height val ues of the bump map can be represented asa height function f(s), thenthe
three step process above would be like doing the following: f(s) — f(s + shi ft). If the shift was
by onetexel in s, you would have f(s) — f(s 4+ 1), where w isthe width of the texture in texels.

Thisis a different form of w which isjust the basic derivative formula. So shifting and

subtracting resultsin the first derivative of f(s), f/(s).

In the two dimensiond case, the height function is f(s, ¢), and shifting and subtracting creates a
directional derivativeof f(s,t). Thistechniqueis used to create embossed images.

With more precise shifting of the texture coordinates, we can get general bump mapping from this
technique.

8.5.1 Tangent Space

In order to accurately shift, the Ilght source d| rectlon L must be rotated into tangent space. Tangent
space has 3 perpendicular axes, T,BandN. T, the tangent vector, is paralld to the direction of
increasing s or ¢ on aparametric surface. IV, the normal vector, is perpendicular to thelocal surface.
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Figure 42. Tangent Space Defined at Polygon Vertices

B, thebinormal, is perpendicular to both N’ and 7', and like 7', also lies on the surface. They can be
thought of as forming a coordinate system that is attached to surface, keeping the T and B vectors
pointing along the tangent of the surface, and N pointing away. If the surfaceis curved, the tangent
space orientation changes at every point on the surface.

In order to create a tangent space for a surface, it must be mapped parametrically. But since this
technique requires applying a 2D texture map to the surface, the object must already be parametri-
cally mapped in s and ¢. If the surface is aready mapped with a surface detail texture, the s and ¢
coordinates of that mapping can be reused. If it isaNURBS surface, the s and ¢ values of that map-
ping can be used. The only requirement for bump mapping to work is that the parametric mapping
be consistent on the polygon. Of course, to avoid “ cracking” between polygons, the mapping should
be consistent across the entire surface.

Thelight source must be rotated into tangent space at each vertex of thepolygon. To find the tangent
space vectors at a vertex, use the vertex normal for IV, find the tangent axis by finding the vector
direction of increasing s in the object’s coordinate system (the direction of the texture's s axisin the
object’sspace). You could usethetexture'st axisasthetangent axisinsteadif it ismore convenient.
Find B by computing the cross product of N and 7. The normalized values of these vectors can be
used to create a rotation matrix:

Te Ty Tz 0
Bx By Bz 0
Nz Ny Nz 0

0 0 0 1

Thismatrix rotatesthe’ vector, defined in object space, into the z axisof tangent space, the B vector
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Figure 43. Shifting Bump Mapping to Create Norma Components

intothey axis, and thenormal vector intothe z axis. It rotatesavector from object spaceinto tangent
space. If theT', B, and N vectorsare definedin eye space, then it convertsfrom eye spaceto tangent
space. For al non-planar surfaces, this matrix will differ at each vertex of the polygon.

Now you can apply this matrix to the light direction vector L, transforming it into tangent space at
each vertex. Usethe transformed » and y components of the light vector to shift the texture coordi-
nates at the vertex.

The resulting image, after shifting and subtracting is part of N - I computed in tangent space at
every texel. In order to get the complete dot product, you need to add in the rotated = component
of thelight vector. Thisisdone as a separate pass, blending the results with the previousimage, but
adding, not subtracting thistime. It turns out that thisthird component is the same as adding in the
Gouraud shaded version of the polygon to the textured one.

So the steps for diffuse bump mapping are:

1. Render the polygonwiththe bump map textured onit. Sincethe bump map modifiesthe poly-
gon color, you can get the diffuse color you want by coloring the polygonwith k.
Find N, T and B at each vertex.

Use the vectorsto create a rotation matrix.

Use the matrix to rotate the light vector  into tangent space.

a ~ w Db

Usetherotated = and ;y componentsof £ to shiftthe s and ¢ texture coordinatesat each polygon
vertex.
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6. Re-render the bump map textured polygon using the shifted texture coordinates.

7. Subtract the second image from thefirst.

8. Render the polygon Gouraud shaded with no bump map texture.

9. Addthisimage to result.

In order to improve accuracy, this process can be done using the accumulation buffer. The bump
mapped objects in the scene are rendered with the bump map, re-rendered with the shifted bump

map

and accumul ated with a negative weight, then re-rendered again using Gouraud shading and no

bump map texture, accumulated normally.

The

process can be extended to find bump mapped specular highlights. The processisrepeated, this

time using the halfway vector (i) instead of the light vector. The halfway vector is computed by
averaging thelight and viewer vectors LY. Here are the steps for finding specular bump mapping:

1
2
3.
4
5

o

. Render the polygon with the bump map textured onit.

. Find N, T and B at each vertex.

Use the vectorsto create a rotation matrix.

. Use the matrix to rotate the halfway vector I into tangent space.

. Usetherotated 2 and y components of A to shift the s and ¢ texture coordinates at each poly-
gon vertex.

Re-render the bump map textured polygon using the shifted texture coordinates.
Subtract the second image from thefirst.

Render the polygon Gouraud shaded with no bump map texture, thistime use 7 instead of L.
Use a polygon whose color is equal to the specular color you want, k.

Now you have (H - N) , but you want (f-N)" To raise the result to a
power, you can load power function values into the texture color table, using
gl Col or Tabl eSG@ with GL_.TEXTURE.COLORTABLE.SG as its target, then enabling
GL_TEXTURE COLOR TABLE_SG . With the color lookup table loaded and enabled, when
you texture and blend the specular contribution to the result, the texture filtering will raise
the specular dot product to the proper power. If you don't have this extension, then you
can process the texel vaues on the host, or limit yourself to non-bump mapped specular
highlights.

10. Addthisimageto result.

Combine the two images together to get both contributionsin the image.
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8.5.2 Going for Higher Quality

The previous technique renders the entire scene multiple times. If very high quality isimportant,
the textureitself can be processed separately, then applied to the scene as afina step. The previous
technique yields lower quality results where the texture is less perpendicular to theline of sight in
the image, dueto the object geometry. If thetextureis processed before being applied to theimage,
we avoid this problem.

To process the texture separately, the vertices of the object must be mapped to a square grid. The
rest of the steps are the same, because the rel ationship between light source and the vertex normal's
hasn’t changed. When the new texture map has been created, copy it back into texture memory, and
use it to render the object.

8.5.3 Blending

If you choose not to use the accumulation buffer, acceptable results can be obtained by blending.
Because of the subtraction step, you' [l haveto remap the col or valuesto avoid negativeresults. Since
theimage valuesrange from O to 1, the range of values after subtractioncanbe-1 (0- 1)to 1 (1 - 0).

Scale and bias the bump map valuesto remap the resultsto the 0 to 1 range. Once you've made all
three passes, it issafeto remap the valuesback totheir original 0to 1 range. Thisscalingand biasing,
combined with less bits of color precision, makes this method inferior to using the accumulation
buffer.

8.5.4 Why Does ThisWork?

By shifting and subtracting the bump map, you're finding the directional derivative of the bump
map’s height function.

By rotating thelight vector intotangent space, then usingthe = and y componentsfor theshift values,
you' refinding the component of the perturbed normal vector alignedwiththelight. Intangent space,
the unperturbed normal isaunit vector along the =z axis. When the shifted val ues are non-zero, they
represent the magnitude of the component of the perturbed normal inthe direction of thelight source.
Since the perturbed normal component is parallel to the light source vector (in tangent space), the
dot product of this component with the light reduces to a scae operation, which is what atexture
map with the texture environment set to modul ate does.

Since the perturbed normal is relative to the smooth surface normal, we take the smoothed normal
contribution into account when we add in the Gouraud shaded polygon.

There is an assumption that the perturbed normal is not much different from the smoothed surface
unit normal, so that the length of the perturbed normal is not much different from one. If this as-
sumption wasn't true, we' d have to create and modulate in an extra texture that would renormalize
the perturbed normal. This can be done, at the cost of an extratexturing pass, if more accuracy is
needed.
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85.5 Limitations

Although this technique does correctly bump map the surface efficiently, there are limitationsto its
accuracy.

Bump Map Sampling The bump map height function is not continuous, but is sampled into the
texture. The resolution of the texture affects how faithfully the bump map is represented. In-
creasing the size of the bump map texture can improve the sampling of the high frequency
height components.

Texture Resolution The shifting and subtraction steps produce the directiona derivative. Since
thisis aforward differencing technique, the highest frequency component of the bump map
increases as the shift is made smaller. Asthe shift is made smaller, more demands are made
of the texture coordinate precision. The shift can become smaller than the texture filtering
implementation can handle, leading to noise and aliases effects. A good starting point is to
size the shift components so their vector magnitudeisa single texel.

Surface Curvature The tangent coordinate axes are different at each point on a curved surface.
Thistechnique approximatesthisby finding the tangent space transforms at each vertex. Tex-
ture mapping interpol ates the different shift values from each vertex across the polygon. For
polygonswith very different vertex normals, this approximation can break down. A solution
would beto subdividethepolygonsuntil their vertex normals are parallel to within someerror
limit.

Maximum Bump Map Slope The bump map normals used in this technique are good approxima-
tionsif the bump map slopeissmall. If there are steep tangentsin the bump map, the assump-
tion that the perturbed normal islength one becomesinaccurate, and the highlightsappear too
bright. This can be corrected by creating a fourth pass, using a modulating texture derived
from the original bump map. Each value of the texel is one over the length of the perturbed

normal: 1/y/ 247 4 207 4

8.6 Choosing Material Properties
OpenGL provides a full lighting model to help produce redlistic objects. The library provides no
guidance, however, on finding the proper lighting material parameters to simulate specific materi-

als. Thissection categorizescommon materials, providessome guidancefor choosing representative
material properties, and provides atable of material propertiesfor common materials.

8.6.1 ModelingMaterial Type

Material properties are model ed with the following OpenGL parameters:
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GL_AMBI ENT How ambient light reflects from the material surface. Thisisan RGBA color vector.
The magnitude of each component indicates how much the light of that component is being
reflected.

GL_DI FFUSE How diffuse reflection from light sourcesreflect from the material surface. Thisisan
RGBA color vector. The magnitude of each component indicates how much the light of that
component is being reflected.

GL_SPECULAR How specular reflection from a light source reflects from the material. Thisis an
RGBA color vector. The magnitude of each component indicates how much the light of that
component is being reflected.

GL_EM SSI ON How much of what color is being emitted from this object. Thisisan RGBA color
vector. The magnitude of each component indicates how much light of that component is
glowing from the material. Since this parameter isonly useful for glowing objects, we'll ig-
noreit in this section.

GL_SHI NI NESS How miirror-like the specular reflection is from thismaterial. Thisisasingleinte-
ger. Thelarger the number, the more rapidly the specular reflection drops off as the viewing
angle diverges from the reflection vector.

For lighting purposes, materials can be described by the type of material, and the smoothness
of its surface. Materia type is simulated by the relationship between color components of the
GL_AMBI ENT, GL_DI FFUSE and GL_SPECULAR parameters. Surface smoothnessis simulated by the
overall magnitude of the GL_AMBI ENT, GL_DI FFUSE and GL_SPECULAR parameters, and the value
of GL_SHI NI NESS. Asthe magnitudeof these componentsget closer to one, and the GL_SHI NI NESS
valueincreases, the material appearsto have a smoother surface.

For lighting purposes, material type can be divided into four categories: dielectrics, metals, com-
posites, and other materials.

Dielectrics These are the most common category. These are non-conductive materials, such as
plastic or wood, which don't have free electrons. The result is that dielectrics have relatively low
reflectivity, and have areflectivity that isindependent of light color. Becausethey don’t interact with
the light much, many dielectrics are transparent. The ambient, diffuse and specular colors tend to
be the same.

Powdered dielectrics tend to look white because of the high surface area between the dielectric and
the surrounding air. Because of this high surface area, they also tend to reflect diffusely.

Metals Metals are conductive and have free electrons. As aresult, metals are opague and tend to
be very reflective, and their ambient, diffuse, and specular colorstend to be the same. How thefree
electrons are excited by light at different wavel engths determines the color of the metal. Materials
likesteel and nickel have nearly the same responseover al visiblewavelengths, resultinginagrayish
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reflection. Copper and gold, on the other hand, reflect 1ong wavelengths more strongly than short
ones, giving them their reddish and yellowish colors.

Thecolor of light reflected from metal sisal so afunction of incident and exitinglight directions. This
can’'t be modeled accurately with the OpenGL lighting model, compromising the metallic look of
objects. However, amodified form of environment mapping (such as the OpenGL sphere mapping)
can be used to approximate the proper visua effect.

Composite Materials Common composites, like plastic and paint, are composed of a dielectric
binder with metal pigments suspended in them. As aresult, they combine the reflective properties
of metals and dielectrics. Their specular reflection is dielectric, their diffuse reflection islike metal.

Other Materials Other materialsthat don’t fit into the above categories are materials such asthin
films, and other exotics.

8.6.2 Modeling Material Smoothness

As mentioned before, the apparent smoothness of a material is a function of how strongly it re-
flects and the size of the specular highlight. This is affected by the overall magnitude of the
GL_AMBI ENT, GL_DI FFUSE and GL_SPECULAR parameters, and the value of GL_SHI NI NESS. Here
are some heuristics that describe useful relationships between the magnitudes of these parameters:

1. The spectral color of the GL_AMBI ENT and GL_DI FFUSE parameters should be the same.

2. Themagnitudes of GL_DI FFUSE and GL_SPECULAR should sum to avalue closeto one. This
helps prevent color value overflow.

3. Thevaueof GL_SHI NI NESS should increase as the magnitude of GL_SPECULAR approaches

one.

No promiseismade that these relationships, or the valuesin Table 3 will provide a perfect imitation
of agiven material. The empirical model used by OpenGL emphasizes performance, not physical
exactness.

For an excellent description of material properties, see[31].
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Material | GL_AMBI ENT | GL_DI FFUSE | GL_SPECULAR | GL_SHI NI NESS
Brass 0.329412 0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
1.0 1.0 1.0
Bronze | 0.2125 0.714 0.393548 25.6
0.1275 0.4284 0.271906
0.054 0.18144 0.166721
1.0 1.0 1.0
Polished | 0.25 04 0.774597 76.8
Bronze | 0.148 0.2368 0.458561
0.06475 0.1036 0.200621
1.0 1.0 1.0
Chrome | 0.25 0.4 0.774597 76.8
0.25 04 0.774597
0.25 04 0.774597
1.0 1.0 1.0
Copper | 0.19125 0.7038 0.256777 12.8
0.0735 0.27048 0.137622
0.0225 0.0828 0.086014
1.0 1.0 1.0
Polished | 0.2295 0.5508 0.580594 51.2
Copper | 0.08825 0.2118 0.223257
0.0275 0.066 0.0695701
1.0 1.0 1.0
Gold 0.24725 0.75164 0.628281 51.2
0.1995 0.60648 0.555802
0.0745 0.22648 0.366065
1.0 1.0 1.0
Polished | 0.24725 0.34615 0.797357 83.2
Gold 0.2245 0.3143 0.723991
0.0645 0.0903 0.208006
1.0 1.0 1.0
Pewter 0.105882 0.427451 0.333333 9.84615
0.058824 0.470588 0.333333
0.113725 0.541176 0.521569
1.0 1.0 1.0

Table 3: Parameters for Common Materials
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Material | GL_AMBI ENT | GL_DI FFUSE | GL_SPECULAR | GL_SHI NI NESS
Silver 0.19225 0.50754 0.508273 51.2
0.19225 0.50754 0.508273
0.19225 0.50754 0.508273

1.0 1.0 1.0
Polished | 0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911
0.23125 0.2775 0.773911
1.0 1.0 1.0
Emerald | 0.0215 0.07568 0.633 76.8
0.1745 0.61424 0.727811
0.0215 0.07568 0.633
0.55 0.55 0.55
Jade 0.135 0.54 0.316228 12.8
0.2225 0.89 0.316228
0.1575 0.63 0.316228
0.95 0.95 0.95
Obsidian | 0.05375 0.18275 0.332741 384
0.05 0.17 0.328634
0.06625 0.22525 0.346435
0.82 0.82 0.82
Pearl 0.25 1.0 0.296648 11.264
0.20725 0.829 0.296648
0.20725 0.829 0.296648
0.922 0.922 0.922
Ruby 0.1745 0.61424 0.727811 76.8
0.01175 0.04136 0.626959
0.01175 0.04136 0.626959
0.55 0.55 0.55
Turquoise | 0.1 0.396 0.297254 12.8
0.18725 0.74151 0.30829
0.1745 0.69102 0.306678
0.8 0.8 0.8
Black 0.0 0.01 0.50 32
Plastic 0.0 0.01 0.50
0.0 0.01 0.50
1.0 1.0 1.0
Black 0.02 0.01 0.4 10
Rubber 0.02 0.01 04
0.02 0.01 0.4
1.0 1.0 1.0
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9 SceneRealism

9.1 Motion Blur

Thisisprobably one of the easiest effectstoimplement. Simply re-render ascene multipletimes, in-
crementing the position and/or orientation of an object in the scene. The object will appear blurred,
suggesting motion. This effect can be incorporated in the frames of an animation sequenceto im-
proveitsrealism, especially when simulating high-speed motion.

The apparent speed of the object can beincreased by dimming itsblurred path. Thiscan be done by
accumul ating the scene without the moving object, setting the value parameter to be larger than 1/n.
Then re-render the scene with the moving object, setting the value parameter to something smaller
than 1/n. For example, to make a blurred object appear 1/2 as bright, accumulated over 10 scenes,
do thefollowing:

1. Render the scene without the moving object, using gl Accun( GL_LQOAD, . 5f) .

2. Accumulate the scene 10 more times, with the moving object, using
gl Accum( GL_ACCUM . 05f) .

Choosethevaluesto ensure that thenon-moving partsof thesceneretain the same overal brightness.

It's dso possibleto use different values for each accumulation step. This technique could be used
to make an object appear to be accelerating or decelerating. As before, ensure that the overall scene
brightness remains constant.

If you are using motion blur as part of a real-time animated sequence, and your vaue is constant,
you can improve the latency of each frame after the first n dramaticaly. Instead of accumulating
n scenes, then discarding the image and starting again, you can subtract out the first scene of the
sequence, add in the new one, and display the result. In effect, you're keeping a*“running total” of
the accumulated images.

Thefirst image of the sequence can be “ subtracted out” by rendering that image, then accumulating
itwithgl Accun{ GL.ACCUM - 1. f/ n) . Asaresult, each frame only incursthelatency of drawing
two scenes; adding in the newest one, and subtracting out the ol dest.

9.2 Depth of Field

OpenGL's perspective projections simulate a pinhole camera; everything in the sceneisin perfect
focus. Redl lenses have afinite area, which causes only objects within alimited range of distances
to bein focus. Objects closer or farther from the camera are progressively more blurred.

The accumulation buffer can be used to create depth of field effects by jittering the eye point and the
direction of view. Thesetwo parameters changein concert, so that one planein the frustum doesn’t
change. Thisdistancefrom the eye point isthusin focus, while distances nearer and farther become
more and more blurred.

110

Programming with OpenGL: Advanced Rendering



Jittered to point A

Normal (non-jittered) view

View from eye

Jittered to point B

:

View from eye

Figure 44. Jittered Eye Points
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To create depth of field blurring, the perspectivetransform changes described for antialiasingin Sec-
tion 7.5 are expanded somewhat. Thiscode modifiesthe frustum as before, but addsin an additional
offset. Thisoffset is also used to change the modelview matrix; the two acting together change the
eye point and the direction of view:

voi d frustum dept hoffiel d(G.double | eft, G.double right,
GLdoubl e bottom G.doubl e top,
GLdoubl e near, GLdoubl e far,
GLdoubl e xof f, GLdoubl e yoff,
GLdoubl e focus)

{
gl Frustum(l eft - xoff * near/focus,
right - xoff * near/focus,
top - yoff * near/focus,
bottom - yoff * near/focus,
near, far);
gl Mat ri xMode( GL_MODELVI EW ;
gl Loadl dentity();
gl Transl atef (-xoff, -yoff);
}

The variablesxof f and yof f now jitter the eye point, not the entire scene. The focus variable de-
scribes the distance from the eye where objectswill be in perfect focus. Think of the eye paint jit-
tering as sampling the surface of alens. The larger the lens, the greater the range of jitter values,
and the more pronounced the blurring. The more samples taken, the more accurate a sampling of
thelens. You can use thejitter values given in Section 7.5.

This function assumes that the current matrix is the projection matrix. It sets the frustum, then sets
the modelview matrix to the identity, and loadsit with atranslation. The usual modelview transfor-
mations could then be applied to the modified model view matrix stack. Thetranslatewould become
the last logical transform to be applied.

9.3 Reflectionsand Refractions

In both rendering and interactive computer graphics, substantia effort has been devoted to the mod-
eling of reflected and refracted light. Thisis not surprising — almost al the light perceived in the
world isreflected. This section describes severa waysto create the effects of reflection and refrac-
tion using OpenGL beginning with a very brief review of the relevant physics. Pointers to more
detailed descriptions are provided.

From elementary physics, the angle of reflection of aray is equal to the angle of incidence of the
ray (Figure 45). Thisproperty isknown asthe Law of Reflection [12]. The reflected ray liesin the
plane defined by the incident ray and the surface normal.

Refraction is defined as the “change in the direction of travel as light passes from one medium to
another” [12]. This changein direction is caused by the difference in the speed of light traveling
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Figure 45. Reflection and Refraction: Lower has Higher Index of Refraction

through the two mediums. The refractivity of amateria is characterized by the index of refraction
of thematerial, or theratio of the speed of light inthe material to the speed of lightin avacuum [12].

Thedirection of alight ray after it passesfrom one medium to another iscomputed from the direction
of theincident ray, the normal of the surface at the intersection of theincident ray, and theindices of
refraction of thetwo materials. ThebehaviorisshowninFigure 45. Thefirst medium throughwhich
the ray passes has an index of refraction »; and the second has an index of refraction n,. Theangle
of incidence, 04, is the angle between the incident ray and the surface normal. The refracted ray
forms the angle ©, with the normal. Theincident and refracted rays are coplanar. The relationship
between the angle of incidence and the angle of refraction is stated as Shell’'s Law[12]:

n1cos @1 = ngcos Oy D

If ny > ny (light is passing from amore refractive material to aless refractive material), past some
critical angletheincident ray will be bent sofar that it will not crossthe boundary. Thisphenomenon
isknown astotal internal reflection and isillustrated in Figure 46 [12].

When aray hitsasurface, somelightisreflected off the surface and someistransmitted. Theweight-
ing of the transmitted and reflected light is determined by the Fresnel equations.

More details about reflection and refraction can be gleaned from most college physics books. For
more detailson thereflection and transmission of light from acomputer graphicsperspective, consult
one of several general computer graphics books or books on radiosity or ray tracing [9], [22], [31].

9.3.1 Planar Reflectors

This section discusses the modeling of planar reflective surfaces. Two techniques are discussed: a
technique which uses the stencil buffer to draw the reflected geometry in the proper location and
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Figure 46. Tota Interna Reflection

a technique which uses texture mapping to make an image of the reflected geometry which is then
texture mapped onto the reflective polygon. Both techniques construct the scene in two (or more)
passes.

Planar Reflections and Refractions Using the Stencil Buffer  The effects of specular reflection
can be approximated by atwo-passtechnique using the stencil buffer. During thefirst pass, you will
render the reflected image of the scene. During the second pass, you will render the non-reflected
view of the scene, using the stencil buffer to prevent the reflected image from being drawn over.

Asan example, consider amodel of aroom withamirror ononewall. Computethe plane containing
the mirror and define an eye point from which you wish to render the scene. During the first pass,
place the eye point at the desired location (using a gl uLookAt command or something similar).
Next, draw the scene asit looks reflected through the plane containing the mirror. This can be envi-
sioned in two ways, shown in Figures 47 and 48. In the first illustration, you reflect the viewpoint.
In thesecond illustration, you reflect the scene. Thewaysof considering the problem are equival ent.
Both are presented here sincereflecting the viewpoint will tieinto the next section, but many people
seem to find reflecting the scene moreintuitive. The sequence of stepsfor thefirst passisasfollows:

Initialize the modelview and projection matrices to the identity (gl Loadl dent i ty).
Set up a projection matrix using the gl Fr ust umcommand.
Set upthe“rea” eyepoint at thedesired positionusingagl uLookAt command (or something
similar).
4. Reflect the viewing frustum (or the scene) through the plane containing the reflector by com-

puting areflection matrix and combining it with the current modelview or projection matrices
using thegl Mul t Mat ri x command.
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Figure 48. Mirror Reflection of the Scene
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5. Draw the scene.
6. Movethe eye point back toits“rea” position.

Objectsdrawn in thefirst pass|ook as they would when seen in the mirror, except that you ignore
the fact that the mirror may not fill the entire field of view. That is to say, imagine that the entire
plane containing the mirror is reflective, but in reality the mirror does not cover the entire plane.
Parts of the scene may be drawn which will not be visible. For example, the lowest box in the scene
in Figure 48 is drawn, but its reflection is not visiblein the mirror. You will fix thisin the second
pass.

When rendering from the reflected eye point, points on the plane through which you reflect maintain
the same positionin eye space as when you render from the original eye point. For example, corners
of the reflective polygon are in the same location when viewed from the reflected eye point asfrom
the original viewpoint. This may seem more believable if one imagines that you are reflecting the
scene, instead of the eye point.

One implementation problem during the first pass is that you should not draw the mirror or it will
obscure your reflected image. This problem may be solved by backface culling, or by having the
graphics application recognize the mirror (and objects in the same plane as the mirror).

You may wish to produce amagnified or minified reflection by moving the reflected viewpoint back-
wards or forwards aong itsline of sight. If the position is the same distance as the eye point from
the mirror then an image of the same scale will result.

Start the second pass by setting the eye point up at the “real” location. Next, draw the mirror poly-
gon. Mask out portionsof thereflected scene which you drew in thefirst pass, but which should not
be visible. Thisis accomplished using the stencil buffer. First, clear the stencil and depth buffers.
Next, draw the mirror polygon into the stencil buffer and depth buffers, setting the stencil value to
1. You may or may not wish to render the mirror polygon to the color buffers at this point. If you
do, the mirror must not be opague or it will completely obscure our reflected scene. You can give
the appearance of adirty, not purely reflective, mirror by drawing it using one of the transparency
techniquesdiscussedin Section 10. After drawing themirror, configure the stencil test to passwhere
ever the stencil buffer valueis not equal to 1. Then clear the color buffers, which erases all parts of
the reflected scene except those in the mirror polygon. After the clear, disable the stencil test and
draw the scene. Thelist of stepsfor the second passis:

1. Cler the sencil and depth buffers (gl O ear (GL_.COLORBUFFERBI T |
GL_DEPTHBUFFERBI T)).

2. Configure the stencil buffer such that a1 will be stored at each pixel touched by a polygon:

gl Stencil Op(G._REPLACE, G._REPLACE, G._REPLACE);
gl Stenci | Func( GL_ALWAYS, 1, 1);
gl Enabl e( GL_STENCI L_TEST) ;

3. Disabledrawing into the color buffers (gl Col or Mask(0, 0, 0, 0)).
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Draw the mirror polygon.
Reconfigure the stencil test:

gl Stenci | Op( GL_KEEP, G._KEEP, G._KEEP);
gl Stenci | Func( GL_NOTEQUAL) ;

Draw the scene.

Disable the stencil test (gl Di sabl e( GL_STENCI L_TEST) ).

The frame isnow complete.
See Section 3 for more information on modeling.

Planar Reflections using Texture Mapping A technique similar to the stencil buffer tech-
nique uses texture mapping. The first pass is identica to the first pass of the previous tech-
nique: draw the reflected scene. After drawing the scene, copy the image into a texture (using the
gl CopyTex| mage2Dcommand). During the second pass, thistextureis mapped onto the reflective
polygon. The sequence of stepsfor the second passisas follows:

Position the viewer at the “read” eye point.
Draw the non-reflective abjectsin the scene.
Bind the texture containing the reflected image.

A W DN P

Draw the reflective object with the appropriate texture coordinates.

The texture coordinates at the vertices of the reflective object must be in the same location as the
vertices of the reflective object in the texture. These coordinates may be computed by figuring the
projection of the corners of the object into the viewing plane used to compute the reflection map (the
command gl uPr oj ect may prove helpful). Alternately, the texture matrix can be loaded with the
composite model view and proj ection matrices and postmultipliedby ascale of 1 divided by the size
in pixelsof theregion used to compute thetexture. Thetexture coordinateswould then be the model
coordinates of the vertices.

The texture mapping technique may be more efficient on some systems. Also,you may be able to
use a reflection texture during several frames (see below).

Interreflections Either the stencil technique or the texture mapping technique may be used to
model scenes with interreflections. Each agorithm uses additional passes for each “bounce” that
the light takes, stopping when the reflected image added by the passis too small to be significant.

Using the stencil technique, draw the reflected image with the most “bounces” from the viewpoint
first. Compute the viewpoint for this pass by repeatedly reflecting the viewpoint through the reflec-
tive polygons. On each pass, draw the scene, move the viewpoint to the next position, and draw the
scene using the stencil buffer to mask the reflective polygons from the previous passes.
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Using thetexturetechnique, first createtexturesfor each of thereflective objects. Theninitializethe
textures to some known value (choice of thisvalue will be discussed below). Next, iterate over the
primitives, drawing the scene for each one and copying the results to the primitive'sreflection map
as described above. Repeat this process until you have determined that the additional passes are not
having a significant effect.

The choice of theinitial reflection map values can have an effect on the number of passes required.
Theinitia reflection valuewill generally appear asasmaller part of the picture oneach of the passes.
Stop the iteration when the initial reflection is small enough that the viewer will not notice that it
is not correct. By setting the initia reflection to something reasonable, you can achieve this state
earlier. A good initial guess is to set the map to the average color of the scene. In a multiframe
application with moving objects or amoving viewpoint, you could | eave the reflection map with the
contentsfrom the previousframe. Thisuse of previousresultsisone of the advantages of thetexture
mapping technique.

9.3.2 Sphere Mapping

Sohere mapping is an implementation of environment mapping. Environment mapping is a com-
puter graphics technique which uses a two-dimensiona image (or images) containing the incident
illumination from every direction at a given point. When rendering, the light from the point is com-
puted as a function of the outgoing direction and the environment map. The outgoing direction is
used to choose one or more incoming directions, or pointsin the environment map, which are used
to compute the outgoing color [48]. In general, only one environment map point is used for each
outgoing ray, resulting in a perfect specular reflection.

In rendering, you often use asingleenvironment map for an entire object by assuming that thesingle
environment map is areasonabl e approximation of the environment map which would be computed
at each point on the object. This approximation is correct if the object is a sphere and the viewer
and other objects in the scene are infinitely far away. The approximation becomes less correct if
the object has interreflections (i.e., it's not convex) and if the viewer and other objects are not at
infinity. Ininteractive polygonal rendering, make the additional assumption that theindicesinto the
environment map may be computed at each vertex and linearly interpolated over each polygon. In
spite of these simplifying assumptions, resultsin practice are generally quite good.

While rendering, compute the outgoing direction as afunction of the eye point and thenormal at the
surface. You can use environment maps to represent any effect that depends only upon the viewing
direction and the surface normal. These effects include specular and directional diffuse reflection,
refraction, and Phong lighting. Several of these effects are discussed in the context of OpenGL's
sphere mapping capability.

Sphere mapping is atype of environment mapping in which the irradiance image is equivalent to
that which would be seen in a perfectly reflective hemisphere when viewed using an orthographic
projection[48]. Thisconceptisillustratedin Figure 49. The spheremap iscomputedin theviewing
plane. Thewidth and height of the plane are equal to the diameter of the sphere. Raysfired usingthe
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Viewing plane

Figure 49. Creating a Sphere Map

orthographic projection are shown in blue (dark gray). In the center of the sphere, the ray reflects
back to the viewer. Along the edges of the sphere, the rays are tangent and go behind the sphere.

Notethat sincethe sphere map computestheirradianceat asinglepoint, the sphereisinfinitely small.
Sincethe projectionisorthographic, thisimpliesthat each texel intheimageisalsoinfinitely small.
In effect, you take the limit as the size of the sphere (and the size of each texel) approaches 0. All
of therays aong the outside of the sphere will map to the same point directly behind the spherein
the environment.

Using a Sphere Map OpenGL provides a mechanism to generate s and ¢ texture coordinates at
vertices based on the current normal and the direction to the eye point. The generated coordinates
are then used to index a sphere map image which has been bound as atexture.

The vector from theeye point to the vertex isdenoted as U/, normalized to U/’. Sincethe computation
is performed in eye coordinates, the eyeislocated at the origin and U is equal to the location of the
vertex. Thecurrent normal N istransformed to eye coordinates, becoming N’. Thereflected vector
R can be computed as:

R=2(N'-U)N'-U"' )
We define:
m=2\/R2+ R+ (R. + 1)2 3)
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Figure 50. Sphere Map Coordinate Generation

Then the texture coordinates are cal cul ated as:

N — N =

_I_
_I_

3\33\5@

This computation happens internally to OpenGL in the texture coordinate generation step.
To use sphere mapping in OpenGL, the following steps are performed:

Bind the texture contai ning the sphere map.

Set sphere mapping  texture  coordinate  generation (gl TexGen(GL.S,
GL_TEXTURE_GEN.MODE, GL_SPHERE_MAP) ) and gl TexGen( GL_T,
GL_TEXTURE_GEN.MODE, GL_SPHERE_MAP) ).

3. Enable texture coordinate  generation (gl Enabl e( TEXTURE GEN.S) and
gl Enabl e( TEXTURE_.GENL.T) ).

4. Draw the object, providing correct normals on a per-face or per-vertex basis.

Generating a Sphere Map for Specular Reflection  Several techniques exist to generate a spec-
ular sphere map. Two physical approaches are worth mentioning. In the first approach, the user
literally takes a picture of a reflective sphere. Figure 51 was generated in this fashion. This tech-
niqueis problematic in that the camera is visible in the reflection map. In the second approach, a
fisheye lens approximates the sphere mapping. The problem with this technique is that no fisheye
lens can provide the 360° field of view required for a correct resuilt.
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Figure51. Reflection Map Created Using a Reflective Sphere

A sphere map can a so be generated programmatically. Consider the circle of the environment map
within the square textureto be a unit circle. For each point (s, ¢) in the unit circle, you can compute
apoint P on the sphere:

P.=s
P, =t

P.= /10— P2 - P?

Since you are dealing with a unit sphere, the normal at P is equal to P. Given the vector £ toward
the eye point, you can compute the reflected vector R:
é:ﬁ*(ﬁﬁ)*Q—E (4)
In OpenGL, it is assumed that the eye point is |ooking down the negative =z axis, so £ = (0,0,1).
Equation 4 reduces to:
R, =N,*xN,x2
Ry=Ny+ N, +2
R, =N,*xN,x2-1
The assumption that the £ = (0,0, 1) means that OpenGL'’s sphere mapping is actually not view-

independent. Theimplicationsof thisassumptionwill be discussed below with the other limitations
of the sphere mapping technique.

Theraysare intersected with the environment to determinetheirradiance. A simpleimplementation
of the agorithmis shown in the following pseudocode:
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voi d gen_sphere_map(GLsi zei wi dth, G.sizei height, G.float pos[3],
Gfloat (*tex)[3])
{
G.float ray[3], color[3], p[3];
G.float s,t;
int i, j;
for (j =0; j < height; j++) {
t =2.0* ((float)j / (float)(height-1) - .5);
for (i =0; i <wdth; i++) {
s =2.0* ((float)i / (float)(width - 1) - .5);
if (s*s + t*t > 1.0) continue;

/* compute the point on the sphere (aka the normal) */

p[O] = s;
p[1] = t;
p[2] = sqrt(1.0 - s*s - t*t);

/* compute reflected ray */

ray[O] = p[O] * p[2] * 2
ray[2] = p[1] * p[2] * 2
ray[3] = p[2] * p[2] * 2 - 1;

fire_ray(pos, ray, tex[j*width + i]);
}
}
}

Notethat you could easily optimizetheroutinesuch that theboundsoni intheinner f or loopwere
intelligently set based onj .

The most interesting part of the computation has been encapsulated insidethe f i r e_r ay routine.
fire_ray performs the ray/environment intersection given the starting point and the direction of
the ray. Using the ray, it computes the color and puts the resultsinto its third parameter (which is
the appropriate location in the texture map).

A naiveimplementation such astheone abovewill lead to sampling artifacts. Inredlity, atexel inthe
image projects to a volume which should be intersected with the environment. To filter, you should
choose several raysin thisvolume and combine the results.

The intersection and color computation can be done in several ways. You may use a model of the
scene and aray tracing package. Alternately, you can represent the scene as six images which form
thefaces of a cube centered around the point for which the sphere map isbeing created. Theimages
represent what a camerawith a90° field of view and afocal point at the center of the square would
seein the given direction. The six images may be generated with OpenGL or a rendering package,
or can be captured with acamera. Figure 52 shows six images which were acquired using acamera.
Once the six images have been acquired, the rays from the point are intersected with the cube to
provide the sphere map texel values. Figure 53 shows the map generated from the cube faces in
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Figure 53. Sphere Map Generated from Image Cube Faces in Figure 52

Figure 52.

An dternate implementation uses OpenGL's texture mapping capabilitiesto create the sphere map.
The algorithm takes as input the six cube faces. It then draws a tessellated hemisphere six times,
mapping oneof thefacesintoitscorrect location during each pass. Theimage of the sphere becomes
thespheremap. Texturecoordinatesand thetexturematrix combineto map the proper texelsontothe
sphere. At the vertices on the tessellated sphere, the values are correct. The interpolation between
the verticesisnot correct, but is generally a good approximation.

The texture mapping accelerated technique to generate sphere maps and the CPU technique de-
scribed above are implemented in an example program found on the course web site.

Multipass Techniquesand I nterreflections  Scenes contai ning two reflective objects may beren-
dered using sphere maps created viaa multipass algorithm. Begin by creating an initial sphere map
for each of thereflective objectsin the scene. Choiceof initial valueswas discussed in detail in Sec-
tion 48. Then iterate over the objects, recreating the sphere maps with the current sphere maps of
the other objects applied. The following pseudocode illustrates how this algorithm might be imple-
mented:

do {
for (each reflective object obj with center c) {
initialize the viewoint to | ook along the axis (0, 0, -1)
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translate the viewoint to c

render the view of the scene (except for obj)
save rendered i nage as cubel

rotate the viewer to | ook along (0, 0, 1)
render the view of the scene

save rendered i nage as cube?2

rotate the viewer to look along (0, -1, 0)
render the view of the scene

save rendered i nage as cube3

rotate the viewer to look along (0, 1, 0)
render the view of the scene

save rendered i nage as cubed

rotate the viewer to look along (-1, 0, 0)
render the view of the scene

save rendered i nage as cubeb

rotate the viewer to look along (1, 0, 0)
render the view of the scene

save rendered i nage as cube6

using the cube i mages, update the sphere nmap of obj

} while (sphere map has not converged)

Note that during the rendering of the scene, other reflective objects must have their most recent
sphere maps applied. Detection of convergence can betricky. The simplest techniqueisto iterate
a certain number of times and assume the results will be good. More sophisticated approaches can
look at the change in the sphere maps for a given pass, or compute the maximum possible change
given the projected area of the reflective objects. Once the sphere maps have been created, you can
draw the scene from any viewpoint. If none of the objects are moving, the sphere maps for each
object can be created at program startup.

Other Sphere Mapping Techniques Sphere mapping may be used to approximate effects other
the specular reflection. Any effect which is dependent only on the surface normal can be approx-
imated, including Phong shading and refractive effects. You can use your sphere map to store the
outgoing color and intensity asafunction of thenormal. When computing your specular sphere map,
this color was determined by firing a ray which had been reflected about the normal. To compute a
different type of sphere map, determine the color using a different method. For example, to create
a Phong lighting map, you can take the dot product of the normal direction and the direction to the
light source.

Limitationsof Sphere Mapping Although sphere mapping isgenerally convincing, it is not gen-
erdly correct. Most of the artifacts come from the fact that the sphere map is generated at asingle
point and then applied over alarge number of points. Objectswithinterreflections cannot be handled
correctly. If reflected objects are closeto the reflective object, their reflections should appear differ-
ently when viewed from different points on the reflector. Using sphere maps, thiswill not happen.

125

Programming with OpenGL: Advanced Rendering



Sphere mapping resultsare only correct if you assumethat al thereflective objectsareinfinitely far
from the reflective object.

Fixing the eye point along the vector (0, 0, 1) aso leads to incorrect results. The same normal in
eyespace will always map to the same location in the sphere map. A normal which pointsdirectly at
the eye point maps to the center of the sphere map. A normal which points directly away from the
user maps to the circle around the sphere map. Two important advantages of this simplification are
that it significantly reducesthe cost of computing r and that it ensuresthat the parts of the spheremap
which havethe best filtering are mapped to the primitiveswhich face the user. In general, primitives
which face the user will cover large areasin screen space and will be thefocusof the user’ sattention.

Interpolation of the texture coordinates also |eads to artifacts. Texture coordinates are computed at
the vertices and linearly interpolated across the polygon. Unfortunately, the sphere map isnotina
linear space, so thisinterpolation is not correct. Additionally, the linear interpolation will not take
into account thefact that the pointsat the edge of thecircleall map to the same location. Coordinates
may beinterpolated withinthe circle of the sphere map when they should be interpolated across the
boundary.

9.4 Creating Shadows

Shadows are an important way to add realism to ascene. There are a number of trade-offs possible
when rendering a scene with shadows. Just as with lighting, there are increasing levels of realism
possible, paid for with decreasing levels of rendering performance.

Shadows are composed of two parts, the umbra and the penumbra. The umbraisthe area of a shad-
owed object that isn’t visible from any part of thelight source. The penumbrais the area of a shad-
owed object that can receive some, but not all of thelight. A point sourcelight would have no penum-
bra, since no part of a shadowed object can receive part of the light.

Penumbras form atransition region between the umbra and the lighted parts of the object; they vary
asfunction of thegeometry of thelight source and the shadowing object. Since shadowstend to have
high contrast edges, They are more unforgivingwith respect to aiasing artifactsand other rendering
errors.

Although OpenGL doesn’t support shadowsdirectly, there are anumber of waysto implement them
with the library. They vary in difficulty to implement, and quality of results. The quality varies as
afunction of two parameters. The complexity of the shadowing object, and the complexity of the
scenethat is being shadowed.

9.4.1 Projection Shadows
An easy-to-implement type of shadow can be created using projection transforms [58]. Anobjectis
simply projected onto aplane, then rendered as aseparate primitive. Computing the shadow involves

applyingaorthographicor perspective projection matrix to the model view transform, then rendering
the projected object in the desired shadow color.
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Here is the sequence needed to render an abject that has a shadow cast from a directional light on
the z axisdown onto the z, y plane:

Render the scene, including the shadowing object in the usua way.
Set the modelview matrix to identity, then call gl Scal ef (1. f, 0.f, 1.f).
Maketherest of thetransformation callsnecessary to positionand orient the shadowing obj ect.

Set the OpenGL state necessary to create the correct shadow color.

o 0 w NP

Render the shadowing object.

In the last step, the second time the object is rendered, the transform flattens it into the object’s
shadow. This simple example can be expanded by applying additiona transforms before the
gl Scal ef call to positionthe shadow onto the appropriateflat object. Applyingthisshadow issim-
ilar to decaling a polygon with another coplanar one. Depth buffering aliasing must be taken into
account. To avoid depth aliasing problems, the shadow can be slightly offset from the base polygon
using polygon offset, the depth test can be disabled, or the stencil buffer can be used to ensure cor-
rect shadow decaling. The best approach is probably depth buffering with polygon offset. Thisway
the depth buffering will minimize the amount of clipping you will have to do to the shadow.

The direction of the light source can be atered by applying a shear transform after the gl Scal ef
call. Thistechniqueis not limited to directional light sources. A point source can be represented by
adding a perspective transform to the sequence.

Althoughyou can construct an arbitrary shadow from a sequence of transforms, it might be easier to
just construct a projection matrix directly. The function bel ow takes an arbitrary plane, defined asa
planeeguationin Az + By+C'z+ D = 0 form, and alight positionin homogeneous coordinates. If
thelight isdirectiona, the w value should be 0. The function concatenates the shadow matrix with
the current matrix.

static void
nmyShadowivat ri x(fl oat ground[ 4], float |ight[4])
{

float dot;

float shadowwvat[4]][4];

dot = ground[O] * light[O] +

ground[ 1] * light[1] +

ground[2] * light[2] +

ground[ 3] * light[3];
shadowivat [0][0] = dot - light[0O] * ground[O];
shadowivat [ 1][0] = 0.0 - [ight[0] * ground[1];
shadowivat[2][0] = 0.0 - [ight[0] * ground[2];
shadowivat [3][0] = 0.0 - light[0O] * ground[3];
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shadowivat [0][1] = 0.0 - light[1] * ground[O];
shadowivat [ 1][1] = dot - light[1] * ground[1];
shadowivat[2][1] = 0.0 - light[1] * ground[2];
shadowivat[3][1] = 0.0 - light[1] * ground[3];
shadowivat[0][2] = 0.0 - light[2] * ground[O];
shadowivat[1][2] = 0.0 - light[2] * ground[1];
shadowivat[2][2] = dot - light[2] * ground[2];
shadowivat[3][2] = 0.0 - light[2] * ground[3];
shadowivat [0][3] = 0.0 - light[3] * ground[O];
shadowivat[1][3] = 0.0 - light[3] * ground[1];
shadowivat[2][3] = 0.0 - light[3] * ground[2];
shadowivat [ 3][3] = dot - light[3] * ground[3];

gl Mul t Mat ri xf ((const GL.fl oat *) shadowivat ) ;

Projection Shadow Trade-offs This method of shadow volumeis limited in a number of ways.
First, it isvery difficult to useto shadow onto anything other than flat surfaces. Althoughyou could
project onto a polygonal surface, by carefully casting the shadow onto the plane of each polygon
face, you would then have to clip the result to the polygon’'s boundaries. Sometimes depth buffer-
ing can do the clipping for you; casting a shadow to the corner of a room composed of just a few
perpendicular polygonsis feasible with this method.

The other problem with projection shadowsis controlling the shadow’ s color. Sincethe shadow isa
squashed version of the shadowing object, not the polygon being shadowed, there are limitsto how
well you can control the shadow’scolor. Sincethe normals have been squashed by the projection op-
eration, trying to properly light the shadow isimpossible. A shadowed polygon with an interpolated
color won't shadow correctly either, since the shadow is a copy of the shadowing object.

9.4.2 Shadow Volumes

This technique treats the shadows cast by objects as polygona volumes. The stencil buffer is used
to find the intersection between the polygonsin the scene and the shadow volume [34].

The shadow volume is constructed from rays cast from the light source, intersecting the vertices
of the shadowing object, then continuing outside the scene. Defined in this way, the shadow vol-
umes are semi-infinite pyramids, but the same results can be obtained by truncating the base of the
shadow volume beyond any object that might be shadowed by it. This givesyou a polygonal sur-
face, whoseinterior volume contai ns shadowed objects or parts of shadowed objects. The polygons
of the shadow volume are defined so that their front faces point out from the shadow volumeitself.

The stencil buffer is used to compute which parts of the objectsin the scene are in the shadow vol-
ume. It uses a non-zero winding rule technique. For every pixel in the scene, the stencil valueis
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incremented as it crosses a shadow boundary going into the shadow volume, and decrements as it
crosses a boundary going out. The stencil operations are set so this increment and decrement only
happens when the depth test passes. As aresult, pixelsin the scene with non-zero stencil values
identify the parts of an object in shadow.

Since the shadow volume shape is determined by the vertices of the shadowing object, it's possible
to construct a complex shadow volume shape. Since the stencil operationswill not wrap past zero,
it'simportant to structure the algorithm so that the stencil values are never decremented past zero,
or information will be lost. This problem can be avoided by rendering all the polygons that will
increment the stencil count first (i.e., the front facing ones), then rendering the back facing ones.

Another issue with counting is the position of the eye with respect to the shadow volume. If theeye
is inside a shadow volume, the count of objects outside the shadow volume will be —1, not zero.
This problem is discussed in more detail in Section 9.4. The agorithm takes this case into account
by initializing the stencil buffer to 1 if the eyeisinside the shadow volume.

Here's the algorithm for a single shadow and light source:

1. The color buffer and depth buffer are enabled for writing, and depth testing is enabled.
2. Set attributes for drawing in shadow. Turn off the light source.
3. Render the entire scene.

4. Compute the polygons enclosing the shadow volume.
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Disable the color and depth buffer for writing, but leave the depth test enabled.
Clear the stencil buffer to 0 if the eye is outside the shadow volume, or 1 if inside.
Set the stencil function to aways pass.

Set the stencil operationsto increment if the depth test passes.

© © N o O

Turn on back face culling.

10. Render the shadow volume polygons.

11. Set the stencil operations to decrement if the depth test passes.
12. Turn on front face culling.

13. Render the shadow volume polygons.

14. Set the stencil function to test for equality to O.

15. Set the stencil operationsto do nothing.

16. Turn on thelight source.

17. Render the entire scene.

When the entire scene is rendered the second time, only pixels that have a stencil value equd to
zero are updated. Since the stencil values were only changed when the depth test passes, thisvaue
represents how many times the pixel’s projection passed into the shadow volume minus the number
of timesit passed out of the shadow volume before striking the closest object in the scene (after that
the depth test will fail). If the shadow boundary was crossed an even number of times, the pixel
projection hit an object that was outside the shadow volume. The pixels outsidethe shadow volume
can therefore “see” thelight, which iswhy it isturned on for the second rendering pass.

For acomplicated shadowing abject, it make sense to find its silhouette vertices, and use only these
for ca culating the shadow volume. These vertices can be found by looking for any polygon edges
that either (1) surround a shadowing object composed of a single polygon, or (2) is shared by two
polygons, onewhichisfacing towardsthelight source, onewhichisfacing away. You can determine
which direction the polygons are facing by taking a dot product of the polygon’sfacet normal with
the direction of the light source, or by a combination of selection and front/back face culling

Multiple Light Sources The algorithm can be easily extended to handle multiple light sources.
For each light source, repeat the second pass of the algorithm, clearing the stencil buffer to “zero”,
computing the shadow volume polygons, and rendering them to update the stencil buffer. Instead of
replacing the pixel values of the unshadowed scenes, choose the appropriate blending function and
add that light’s contribution to the scene for each light. If more color accuracy is desired, use the
accumulation buffer.
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The accumulation buffer can a so be used with thisagorithm to create soft shadows. Jitter the light
source position and repeat the steps described above for multiple light sources.

Shadow VolumeTrade-offs  Shadow volumescan be very efficient if the shadowing objectissim-
ple. Difficulties occur when the shadowing object isacomplex shape, making it difficult to compute
a shadow volume. Idedlly, the shadow volume should be generated from the vertices along the sil-
houette of the object, as seen from the light. Thisisn’t atrivia problem for complex shadowing
objects.

Since the stencil count for objects in shadow depends on whether the eye point isin the shadow or
not, making the algorithm independent of eye position is more difficult. One solutionisto intersect
the shadow volume with the view frustum, and use the result as the shadow volume. This can bea
non-trivial CSG operation.

In certain pathological cases, the shape of the shadow volume may cause a stencil value underflow
even if you render the front facing shadow polygonsfirst. To avoid this problem, you can choose a
“zero” valueinthe middle of the stencil values representable range. For an 8 bit stencil buffer, you
could choose 128 asthe“ zero” value. The agorithm would be modified toinitializeand test for this
valueinstead of zero. The“zero” should beinitiaized to “zero” + 1if the eye isinside the shadow
volume.

Shadow volumes will test your polygon renderer’s handling of adjacent polygons. If there are any
rendering problems, such as “double hits’, the stencil count can get messed up, leading to grossly
incorrect shadows.

9.4.3 Shadow Maps

Shadow maps use the depth buffer and projective texture mapping to create a screen space method
for shadowing objects [52, 56]. Its performance is not directly dependent on the complexity of the
shadowing object.

The scene is transformed so that the eye point is at the light source. The abjectsin the scene are
rendered, updating the depth buffer. The depth buffer is read back, then written into a texture map.
Thistextureis mapped onto the primitivesin the original scene, asviewed from the eye point, using
the texture transformation matrix, and eye space texture coordinate generation. The vaue of the
texture'stexd value, the texture's“intensity”, is compared against the texture coordinate’s r value
at each pixel. This comparison is used to determine whether the pixel is shadowed from the light
source. If ther value of the texture coordinateis greater than texel value, the object wasin shadow.

If not, it was it by thelight in question.

This procedure works because the depth buffer records the distances from the light to every object
in the scene, creating a shadow map. The smaller the value, the closer the object isto thelight. The
transform and texture coordinate generation is chosen so that z, y, and z locations of objectsin the
scene map to the s and ¢ coordinates of the proper texelsin the shadow texture map, and to r values
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corresponding to the distance from the light source. Note that the » valuesand texel values must be
scaled so that comparisons between them are meaningful.

Both values measure the distancefrom an object to the light. Thetexel valueisthe distance between
the light and the first object encountered along that texel’s path. If the » distanceis greater than the
texel value, this means that there is an object closer to the light than this one. Otherwise, thereis
nothing closer to the light than this object, so it isilluminated by the light source. Think of it asa
depth test done from the light’s point of view.

Shadow maps can amost be done with the OpenGL 1.1 implementation. However, the ability to
compare the texture's r component against the corresponding texel value is missing. There is an
OpenGL extension, SA X shadow, that performs the comparison. As each texd is compared, the
results set the fragment’s alphavaueto 0 or 1. The extension can be described as using the shadow
texture r value test to mask out shadowed areas using a pha values.

Shadow Map Trade-offs Shadow maps have an advantage, being an image space technique, that
they can be used to shadow any object that can be rendered. You don’t have to find the silhouette
edge of the shadowing object, or clip the object being shadowed. Thisis similar to the argument
made for depth buffering vs. an object-based hidden surface removal technique, such as depth sort.

The sameimage spacedrawbacksare alsotrue. Sincetheshadow map ispoint sampled, then mapped
onto objectsfrom an entirely different point of view, aliasing artifacts are aproblem. When the tex-
ture is mapped, the shape of the original shadow texel doesn’'t necessarily map cleanly to the pixel.
Two major types of artifacts result from these problems; aliased shadow edges, and self-shadowing
“shadow acne” effects.

These effects can't be fixed by simply averaging shadow map texel values. These values encode
distances. They must be compared against r values, and generate a Boolean result. Averaging the
texel values resultsin distance values that are simply incorrect. What needs to be blended are the
Boolean resultsof ther and texel comparison. The SG X_shadowextension doesthis, blending four
adjacent comparison results to produce an apha value. Other techniques can be used to suppress
diasing artifacts:

1. Increase shadow map/texture spatial resolution. Silicon Graphics supports off-screen buffers
on some systems, called a p-buffer, whose resolutionis not tied to the window size. It can be
used to create a higher resol ution shadow map.

2. Jitter theshadow texture by modifying the projectionin thetexturetransformation matrix. The
r/texel comparisons can then be averaged to smooth out shadow edges.

3. Modify thetextureprojection matrix so that ther valuesare biased by asmall amount. Making
ther valuesalittle smaller is equivalent to moving the objects alittle closer to thelight. This
prevents sampling errors from causing a curved surface to shadow itself. Thisr biasing can
also be done with polygon offset.
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One more problem with shadow maps should be noted. It is difficult to use the shadow map tech-
niqueto cast shadowsfrom alight surrounded by objects. Thisisbecause the shadow map iscreated
by rendering the entire scene from thelight’spoint of view. It's not always possibleto come up with
atransform to do this, depending on the geometric relationship between the light and the objectsin
the scene.

9.4.4 Soft Shadows by Jittering Lights

Most shadow techniques create avery “hard” shadow edge; surfacesin shadow, and surfaces being
lit are separated by a sharp, distinct boundary, with alarge change in surface brightness. Thisisan
accurate representation for distant point light sources, but isunrealistic for many real-world lighting
environments.

An accumul ation buffer can let you render softer shadows, with amore gradual transitionfrom lit to
unlit areas. These soft shadowsare amore realistic representation of arealight sources, which create
shadows consisting of an umbra (where none of thelight isvisible) and penumbra (where part of the
lightisvisible).

Soft shadows are created by rendering the shadowed scene multiple times, and accumulating into
the accumulation buffer. Each scene differsin that the position of the light source has been moved
dlightly. Thelight sourceis moved around withinthevolumewhere thephysical light being modeled
would be emitting energy. To reduce diasing artifacts, it's best to move the light in an irregular
pattern.

Shadows from multiple, separate light sources can also be accumulated. This allows the creation
of scenes containing shadows with non-trivial patterns of light and dark, resulting from the light
contributionsof al the lightsin the scene.

9.4.5 Soft Shadows Using Textures

Heckbert and Herf describe an aternative technique for rendering soft shadows by creating a tex-
ture for each partially shadowed polygon in the scene [32]. Thistexture representsthe effect of the
scene's lights on the polygon.

For each shadowed polygon, an image is rendered which represents the contribution of each light
source for each shadowed polygon, and that image is used as atexturein the final scene containing
the shadowed polygon. Shadowing polygons are projected onto the shadowed polygon from the
direction of the sample point on the light source. The accumulation buffer is used to average the
resultsof that projectionfor several points(typically 16) onthe polygonrepresentingthelight source.

The agorithm finds a single quadrilateral that tightly bounds the shadowed polygon in the plane
of that polygon. The quad and the sample point on the light source are used to create a viewing
frustum that projects intervening polygons onto the shadowed polygon. Multiple shadow textures
per polygon are avoided because each “lighting” frustum shares the base quadrilateral, and so the
shadowing results can al be accumulated into the same texture.
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A passis made for each sample point on each light source. The color buffer is cleared to the color
of the light, and then the projected polygons are drawn with the ambient color of the scene. The
resulting image is then added into the accumulation buffer. The final accumulation buffer result is
copied into texture memory and is applied during the final scene as the polygon’stexture.

Care must be taken to choose an image resolution for the shadow texture that |ooks acceptable on
the final polygon. Depth testing and texturing can be disabled to improve performance during the
projection pass. It may be necessary to save the accumulation buffer at intervals and average the
resultsif the contribution of a shadow pass exceeds the resol ution of the accumul ation buffer.

A paper describing this techniquein detail and other information on shadow generation algorithms
isavailable at Heckbert and Herf’s web site[33].
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10 Transparency

Transparent objectsare common in everyday life and using them can add significant realismto gen-
erated scenes. In this section, we describe severa techniques used to render transparent objectsin
OpenGL.

10.1 Screen-Door Transparency

One of the simpler transparency techniques is known as screen-door transparency. Screen-door
transparency uses a bit mask to cause certain pixels not to be rasterized. The percentage of bitsin
the bitmask which are set to 1 is equivalent to the transparency of the object [18].

In OpenGL, screen-door transparency is implemented using polygon stippling. The command
gl Pol ygonSt i ppl e defines a 32x32 polygon stipple pattern. When stippling is enabled (using
gl Enabl e( GL_.POLYGON.STI PPLE) ) the low-order = and y bits of the screen coordinates of each
fragment are used to index into the stipple pattern. If the corresponding bit of the stipple patternis
0, the fragment is rejected. If the bit is 1, rasterization continues.

Since the lookup into the stipple pattern takes place in screen space, a different pattern should be
used for abjectswhich overlap, evenif thetransparency of the objectsisthe same. If thesamestipple
patternisused, the same pixelsin theframebuffer would bedrawn for each object. Of the transparent
objects, only the last (or the closest, if depth buffering is enabled) would be visible.

The biggest advantage of screen-door transparency isthat the objects do not need to be sorted. Also,
rasterization may be faster on some systems using the screen-door technique than using other tech-
niquessuch as a phablending. Sincethe screen-door technique operates on a per-fragment basis, the
resultswill not look as smooth asif another technique had been used. However, patternsthat repeat
on a 2x2 grid are the smoothest and a 50% transparent “ checkerboard” pattern looks quite smooth
on most systems.

10.2 AlphaBlending

To draw semi-transparent geometry, the most common technique is to use alpha blending. In this
technique, the a pha value for each fragment drawn reflects the transparency of that object. (To be
totally correct, the alphavalue actually representsthe opacity, since an alphavaue of 1.0 represents
a 100% opague surface). Each fragment is combined with the values in the framebuffer using the
blending equation:

Cout = Csrc * Asrc + (1 - Asrc) * Cdst (5)

Here, C,.: isthe output color which will be written to the frame buffer. C,. and A,,.. are the
source color and alpha, which come from the fragment. C,; is the destination color, which
is the color value currently in the framebuffer at the location. This equation is specified using
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the OpenGL command gl Bl endFunc( GL_SRC ALPHA, GL_ONE .M NUS_SRC ALPHA) . Blending
isthen enabled with gl Enabl e( GL_BLEND) .

Transparent primitives drawn using a pha blending should always be drawn after all opaque primi-
tivesare drawn. Unlessthetransparent objectsare sorted in back to front order, depth buffer updates
must be disabled using gl Dept hMask ( GL_FALSE) , although depth buffer compares should remain
enabl ed.

If the objects are not sorted and drawn in back to front order, the above blending equation produces
order-dependent rendering artifacts that can be quite objectionable. If sorting of the scene is unde-
sirable, order dependencies can be eliminated by using G._ONE for the destination factor rather than
GL_ONE_M NUS_SRC AL PHA. This method does not look as natural, especially when transparent ob-
jects are drawn over light objects, but it requires no sorting.

A common mistake when implementing a pha blended transparency isto assume that it requires a
framebuffer with an alpha channel. The aphavalue used for blended transparency comes down the
graphics pipeline with each fragment; the alpha values in the framebuffer (GL_DST_ALPHA) are not
actually used, so no alphabuffer is required.

The aphavalue of the fragment can be set in several ways. If lighting is not being used, the alpha
value can be set using a 4- component color command such as gl Col or 4f . If lighting is enabled,
the fourth color component of the diffuse reflectance coefficient of the material correspondsto the
transparency of the object.

If texturing is enabled, the source of the apha channd is controlled by the texture internal format,
the texture environment function, and the texture environment constant color. The interaction is
described in more detail in the gl TexEnv man page. Many intricate effects can be implemented
using aphavalues from textures.

10.3 Sorting

The sorting step can becomplicated. The sorting should be donein eyecoordinates, soit isnecessary
to transform the geometry to eye coordinatesin some fashion. If transparent objects interpenetrate,
the individual triangles should be sorted and drawn from back to front. Ideally, polygons which
interpenetrate should be tessellated along their intersections, sorted, and drawn independently, but
thisistypically not required to get good results. Frequently only crude or perhaps no sorting at al
gives acceptable results.

If thereisasingletransparent object, or multiple transparent objects which do not overlap in screen
space (i.e., each screen pixel istouched by at most one of the transparent objects), a shortcut may
be taken under certain conditions. If the objects are closed, convex, and viewed from the outside,
culling may be used to draw the backfacing polygons prior to the front facing polygons. The steps
are asfollows:

1. Enableculling: gl Enabl e( G._CULL_FACE) .
2. Configureface culling to eliminate front facing polygons: gl Cul | Face( FRONT) .
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Draw the object.

Configure face culling to eliminate back facing polygons:. gl Cul | Face( BACK) .
Draw the object again.

Disableculling: gl Di sabl e( GL_CULL _FACE) .

o 0~ w

We assume that the vertices of the polygonsof the object are arranged in a counter-clockwise direc-
tion when the object isviewed from the outside. If necessary, we can specify that polygons oriented
clockwise should be considered front-facing with the gl Fr ont Face command.

Drawing depth buffered opagque objects mixed with transparent objects takes somewhat more care.
Theusudl trick isto draw the background and opaque objectsfirst in any order with depth testing en-
abled, depth buffer updates enabled, and blending disabled. Next, the transparent objectsare drawn
from back to front with blending enabled, depth testing enabled but depth buffer updates disabled
so that transparent objects do not occlude each other.

10.4 UsingtheAlpha Function

The alpha function is used to discard fragments based upon a comparison of the fragment’s alpha
value with a reference value. The comparison function and the reference value are specified with
the command gl Al phaFunc. The aphatest isenabled with gl Enabl e( GL_ALPHA TEST) .

The adphatest is frequently used to draw complicated geometry using texture maps on polygons.
For example, atree can be drawn as a picture of atree on asinglerectangle. The parts of thetexture
which are part of the tree have an alphavalue of 1; parts of the texture which are not part of the tree
have an aphavaueof 0. Thistechniqueisoften combined with billboarding (Section 5.7), inwhich
arectangleisturned to perpetually face the eye point.

Like polygon stippling, the apha function discards fragments instead of drawing them into the
framebuffer. Therefore sorting of the primitivesis not necessary (unless some other mode like al-
phablending is enabled). The disadvantageisthat pixels must be completely opague or completely
transparent.

10.5 Using Multisampling

On systemswhich support the multisampleextension (SA S_nmul t i sanpl e), the per-fragment sam-
ple mask may be used to change the transparency of an object. Thismethod isbasically identical to
screen-door transparency described in Section 10.1, but at a sub-pixel (fragment) level.

Onetechniqueinvolves GL_SAMPLE ALPHA TOMASK SG S. If transparent objectsin ascene do not
overlap, GL_SAMPLE_ALPHA TO.MASK_SA Smay beused. Thisparameter causesthealphaof afrag-
ment to be mapped to a sample mask which will be bitwise ANDed with the fragment’s mask. The
value of the generated sample mask is implementation-dependent and is a function of the pixel lo-
cation and thefragment’salphavalue. If two objectswere drawn at the same location with the same
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transparency, the sample mask would be the same and the same samples would be touched. If two
objects were drawn at the same location with different transparencies, results may or may not be
acceptable.

The simplest technique is to use the gl Sanpl eMaskSGE S command to set the value of the
GL_SAMPLE MASK SG S. Thisvalueisused to generate atemporary mask which isbitwise ANDed
with the fragment’s mask. Again, results may not be correct if transparent objects overlap.

Currently, SG S_ul t i sanpl e is supported by Silicon Graphics and Hewlett Packard.
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Figure 55. Dilating, Fading Smoke

11 Natural Phenomena

The are alarge number of naturally occurring phenomena such as smoke, fire and cloudswhich are
challenging to render at interactiverateswith any semblance of realism. A common solutionistore-
duce the requirement for complex geometry by using textures. Many of the techniquesuse acombi-
nation of geometry and texture which vary asafunction of time or other parameters such as distance
from the viewer.

11.1 Smoke

Modeling smoke potentially requires some sophisticated physics, but surprisingly redistic images
can be generated using fairly simple techniques. One such technique involves capturing a 2D cross
section or image of a puff of smoke with both luminance and alpha channels for the image. The
image can then be texture mapped onto a quadrilateral and blended into the scene. The billboard
techniques outlined in Section 5.7 can be used to ensure that the image is transformed to face the
user. Using aGL_MODULATE texture environment, the color and alphavalue of the quadrilateral can
be used to control the color and transparency of the smoke in order to simulate different types of
smoke. For example, smoke from an oil fire would be dark and opague, whereas steam from aflare
stack would be much lighter in color.

The size, position, orientation, and opacity of the quadrilateral can be varied as afunction of timeto
simulate the puff of smoke enlarging, drifting and dissipating over time.

Morereslistic effects can be achieved using volumetric techniques. Instead of a2D image, a3D vol-
umetric image of smokeis rendered using the algorithmsdescribed in Section 13. Again, dynamics
can be simulated by varying the position, size and transparency of the volume. More complex dy-
namics can be simulated by applying local distortions or deformationsto the texture coordinates of
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the volume lattice rather than simply applying uniform transformations. The volumetric shading
technique described in Section 13.11 can be used to illuminate the smoke.

There are many procedural techniques which can be used to synthesize both 2D and 3D textures
[16].

11.2 Vapor Trails

Vapor trails emanating from ajet or amissile can be rendered using methods similar to the painting
technique described in Section 6.3. A circular, wispy 2D image such as that used in the preceding
section is used to generate the vapor pattern over some unit interval by rendering it as a billboard.
A texture image consisting only of alphavauesisused to modulate the al phavalues of awhite bill-
board polygon. The trgjectory of the airborne object is painted using multiple overlapping copies
of the billboard as shown in Figure 56. Over time the individua billboards gradually enlarge and
fade. The program for rendering atrail islargely an exercise in maintaining an active list of the po-
sition, orientation and time since creation for each billboard used to paint thetrail. Aseach billboard
polygon exceeds athreshold transparency value it can be discarded from the list.

11.3 Fire

Thesimplest techniquesfor rendering fireinvol veapplying staticimages and movieloopsastextures
to billboards.

A staticimage of fire can be constructed from a noise texture; Section 5.19.5 describes how to make
a noise texture using OpenGL. The weights for different frequency components should be chosen
to reflect the spectral structure of fire, and turbulence can aso be incorporated effectively into the
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texture. The textureis mapped to a billboard polygon. Severa such textures, composited together,
can create the appearance of multiplelayers of intermingling flames. Finaly, thetexture coordinates
may be distorted vertically to simul ate the effect of flames rising and horizontally to mimic the effect
of winds.

A sequence of fire textures can be played as an animation. The abrupt manner in which fire moves
and changes intensity can be modeled using the same turbulence techniques used to create the fire
texture itself. The speed of the animation playback, as well as the distortion applied to the texture
coordinates of the billboard, might be controlled using aturbulent noise function. To create the ani-
mation a series of texture objectsis created, each one containing oneimage from the fire sequence.
During playback the set of texture objectsissequenced through, one each frame, mapping the current
texture to a quadrilateral using a modulate texture environment.

11.4 Explosions

Explosion effects can be rendered by combining the techniques for smoke, vapor, and fire. A static
image of afireball isdrawn centered in the middle of the explosion and dilated and faded over some
time period. At the same time, the vapor and smoke rendering techniques are combined to cause a
smoketrail to rise from the center of the explosion.

115 Clouds

Clouds, like smoke, have an amorphous structure without well defined surfaces and boundaries. In
recent times, computationally intensive physical modeling techniques have given way to simplified
mathematical models which are both computationally tractable and aesthetically pleasing [21, 16].

The main idea behind these techniguesinvolves generating a realistic 2D or 3D texture functiont
using a fractal or spectral based function. Gardner suggests a Fourier-like sum of sine waves with
phase shifts

n n

t(z,y) _kZ (cisin(fz;x 4 pxi) + to) Z (cisin(fywy + pyi) + to)
=1

with the relationships

fripm = 2fx;
Fyipr = 2fy
i1 = .T07¢

s .
pr; = §sin(fyi_1y),z>1
pyi = gsin(fxi_lx)7i>1

Care must be taken using this technique to choose values to avoid a regular pattern in the texture.
Alternatively, texture generation techniques described in Section 5.19.5 can be used.
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A stochastic method, based on work by Fournier and Miller [19, 40], uses a midpoint displacement
technique called Diamond-Square for generating a set of random values on a uniform grid. These
generated values are interpreted as opacity values and correspond to the cloud density at a given
point. The agorithmisiterative and during each iteration two steps are executed. The first, the di-
amond step takes four corners of a square and produces a new value at the center of the square by
averaging the values at the four corners and adding a random number intherange [—1, 1]. The sec-
ond step, the square step, consists of taking the corners of the four diamondsthat were generated in
the diamond step (they sharethe center point of the diamond step) and generating anew center value
for each diamond by averaging its four corners and adding a random number in the range [—1, 1].
During the square step, attention must be paid to diamonds at the edges of the grid as they will wrap
around to the opposite side of the grid. During each iteration the number of squares processed is
increased by afactor of four. To produce smooth variationsin the generated values, the range of
the random value added during the generation of center pointsis reduced by some fraction for each
iteration.

Seed values for the first few iterations of the agorithm may be used to control the overall shape of
the cloud.

Any of these techniques can be used to produce a 2D texture which can be used to render acloud
layer. A cloud layer is simulated by drawing a large textured polygon in the sky at afixed altitude.
A luminance cloud texture is used to blend a white constant texture environment color into a blue
sky polygon.

Some of the dynamic aspects of clouds can be simulated by vary parameters over time. Cloud de-
velopment can be simulated by scaling and biasing the luminance valuesin thetexture. Drifting can
be simulated by moving the texture pattern acrossthe sky, i.e., transforming the texture coordinates.
Ground fog can be simulated by drawing the thin cloud layer between the viewer and ground rather
than the viewer and the sky.

Gardner a so suggestsusing ellipsoidsto simulate 3D cloud structures. Thetexturedataisgenerated
using a 3-dimensional extension of the Fourier synthesismethod outlined above and thetexturesare
applied with increasing transparency near the boundary of the ellipsoid. These 3D textures can also
be combined with the volume rendering techniques described in Section 13 to produce 3D cloud
images. In order to improve the performance of the rendering, the full volume rendering algorithm
need not be used. In particular, the cloud may be assumed to be elliptical and opague at the center.
Therefore, theinterior of the cloud can be drawn as apolygonal shell and the outer edges of the cloud
using the volume rendering techniques.

11.6 Water
A large body of research has been done into modeling, shading, and reproducing optical effects of
water [62, 47, 20], yet most methods still present a large computation burden to achieve aredlis-

ticimage. Nevertheless, it is possible to borrow from these approaches and achieve modest results
while retaining interactive performance [36, 16].
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Figure 57. Water Modeled as aHeight Field

The dynamics of wind and waves can be simulated using procedural models and rendered using
meshes or height fields. The geometry is textured using simple procedural texture images. Multi-
pass rendering techniques can be used to layer additional effects such as surf. Environment mapping
can be used to simul ate reflections from the surface. Specular illumination using environment map-
ping can be combined with the Fresnel reflection model from Section 8.3 to create amore physically
accurate lighting model. The bump mapping technique from Section 8.5 can be used to create the
illusion of rippleswithout modeling themin the geometry. The bump map can be animated as part of
the simulation to animate the ripples. The combination of reflection mapping and a dynamic model
for ripples provides a visually compelling image. Alternatively, synthetic perturbationsto the tex-
ture coordinates as outlined in Section 5.20.7 can & so be used.

Small swells can be modeled using a texture mapped height field. The height of the vertices can be
modul ated with a sinusoid to simulate simplewave patterns as showing in Figure 57. Thefrequency
and amplitude of the waves can be varied to achieve different effects. The phase of the sinusoid can
be varied over time to create wave motion.

Optical effects such as caustics can be approximated using parts of the OpenGL pipelineas described
by Nishitaand Nakamae [46] but interactive frame rates are not likely to be achieved. Instead such
effects can be faked using texturesto modulate the intensity of any geometry that lies below the sur-
face. Other bel ow-surface effects can a so be simulated. Movements of thewater (surge) can besim-
ulated by perturbing the vertex coordinates of submerged objects, again using sinusoids. Blueish-
green fog can be used to simulate light attenuation in water.
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11.7 Light Points

OpenGL hasdirect support for rendering both aliased and antiaiased points, but these simplefacili-
tiesare usually insufficient for simulating small light sources, such as stars, beacons, runway lights,
etc. In particular, the size of OpenGL pointsis not affected by perspective projections. To render
more realisticlooking small light sourcesit isnecessary to change some combination of the sizeand
brightness of the source as afunction of distance from the eye.

The brightness attenuation « as a function of distance, d, can be approximated by using the same
equation used in the OpenGL lighting equation

1
ke + kid + kq,d?

Attenuation can be achieved by modulating the point size by the square root of the attenuation

S12€cf fective = S1Z€ X Va

As the point size approaches the size of a single pixd the resolution of the raster display system
will cause artifacts. To avoid this problem the point can be made semi-transparent once it crosses
aparticular size threshold. The aphavalueis proportional to the ratio of the point area determined
from the size attenuation computation to the area of the point being rendered

: 2
alpha _ (S’L.Zeeffective)
S1Z€¢threshold

More complex behavior such as defocusing, perspectivedistortionand directionality of light sources
can be achieved by using an image of the light lobe as a texture map combined with billboarding
to keep the light lobe oriented towards the viewer. An advantage of using texture mapping is that
the quadrilateral or other geometry that the textureis applied to is automatically scaled by the per-
spective projection so rendering the correct sizeisless of anissue. To effectively simulate distance
attenuation it may, however be necessary to select different texture patterns according to distance
from the eye.

11.8 Other Atmospheric Effects

OpenGL providesaprimitivecapability for rendering atmospheric effects such asfog, mist and haze.
It isuseful to simulate the affects of atmospheric effects on visibility to increase realism, and it al-
lows the database designer to cover up a multitude of sinssuch as “dropping” polygonsnear thefar
clipping planein order to sustain afixed frame rate.

OpenGL implements fogging by blending the fog color with the incoming fragments using a fog
blending factor, f,
C:fczn+(1_f)cfog
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Thisblending factor is computed using one of three equations: exponentia (GL_EXP), exponential-
squared (GL_EXP2), and linear (GL_LI NEAR)

f — e—(density~z)
f — 6—(density~z)2
;o= end — z

end — start
where = is the eye-coordinate distance between the viewpoint and the fragment center.

Linear fog is frequently used to implement intensity depth-cuing in which objects closer to the
viewer aredrawn at higher intensity [18]. Theeffect of intensity as afunction of distanceisachieved
by blending the incoming fragments with ablack fog color.

Theexponential fog equation has some physical basis. It istheresult of integrating auniform attenu-
ation between the object and the viewer. The exponential-squared function includesthe attentuation
for reflected light which has passed through the attenuation layer twice, once for the incident path
and again for the reflected path. The exponential and exponential-squared functions can be used to
represent a number of atmospheric effects using different combinations of fog colors and density
values. Since OpenGL does not fog the pixel values during a clear operation, the value of f at the
far plane, far,

ffar — e—(density~fa7’)

can be used to determine the color to which to clear the background

Cog = frarCin + (1= far)Crog
where C;,, isthe color to which the background would be cleared without fog enabled.

As mentioned earlier, the obscured visibility of objects near the far plane can be exploited to over-
come various problems such as drawing time overruns, level -of-detail transitions, and database pag-
ing. However, in practice it has been found that the exponential function doesn’t attenuate distant
fragments rapidly enough, so exponential-squared fog can be used to achieve a sharper fall-off in
visibility. Some vendors have gone a step further and provided more control over the fog function
by allowing applicationsto control the fog value through a spline curve.

There are other problemsthat OpenGL's primitive fog model does not address. For example, emis-
sive geometry such as the light points described above should be attenuated | ess severely than non-
emissive geometry. Thiseffect can be approximated by precompensating the color valuesfor emis-
sive geometry, or reducing the fog density when emissive geometry is drawn. Neither of these so-
lutions is completely satisfactory since colors values are clamped to 1.0 in OpenGL, limiting the
amount of precompensation that can be done. Many OpenGL implementations use lookup table
methods to efficiently compute the fog function, so changes to the fog density may result in expen-
sive table recomputations. To overcome this problem some vendors have provided a mechanism to
bias the eye-coordinate distance, avoiding the need to recompute the fog lookup table.

If OpenGL fog processing is bypassed it is possible to do more sophisticated atmospheric effects
using multipasstechniques. The OpenGL fog computation can be thought of as simpletablelookup
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using the eye-coordinatedistance. Theresult isused asablend factor for blending between thefrag-
ment color and fog color. A similar operation can be implemented using gl TexGen to generate the
eye-coordinate distance for each fragment and a 1D texture for the fog function. Using a specialy
constructed 2D or 3D texture and a more sophisticated, texture coordinate generation function, it
is possible to compute more complex fog functions incorporating parameters such as atitude and
eye-coordinate distance.

11.9 Particle Systems

Some abjects are difficult to represent as a set of surface primitives, even taking advantage of trans-
parency and texture mapping techniques. These include objects that have poorly defined or dy-
namic topol ogies, or have no solid surface. Natural phenomenathat meet thiscriteriainclude smoke,
clouds, fire, water, etc.

Particle systems can be used to represent these objects. A particle system is a large set of simple
primitive objects which are processed as a group to represent an object. The characteristics of these
objects, such as size, position, color, and the lifetime of the particleitself, can be changed dynam-
icaly. If these parameters of the particles are coordinated, the collection of particles can represent
an object.

11.9.1 Representing Particles

Sinceyou’'d liketo use alot of particlesto create more realistic objects, you' d liketo render them as
cheaply as possible. One good candidate primitiveis an OpenGL point. Unaliased single points of
default size are rendered as single fragments. They can be thought of as very small screen aigned
rectangular billboards, sincethey are aways oriented towards the viewer.

It's important to pass points to the graphics hardware as efficiently as possible. Display lists are
very efficient, but since the characteristics of the points are usually changing from frame to frame,
vertex arrays would be a better choice. Vertex arrays avoid the overhead of multiple function cals
per vertex, and have an additional advantage; the primitive datais organized in array form. This
isuseful since some or al of the point characteristics must be updated by the program each frame.
It's important that this be done efficiently, or the updating can become the bottleneck, starving the
graphics hardware.

A particle system program has these basic components:

Particlesin particle systems can be organized in tables, indexed by the particle, containing particle
characteristicsto be updated each frame. Thisrepresentationworkswell with vertex array represen-
tation, since the tables can be used directly to render the updated particles.

Interleaved or non-interleaved vertex arrays can be used, depending on the complexity of the parti-
cle system parameters. Parameters directly used for rendering, such as z, y, z position can beinter-
mixed in the table with non-rendering parameters, such as current velocity. Vertex array stridescan
be adjusted to intermix these two types of information, or they can be kept separated. Since particle
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Figure 58. Particle System Block Diagram
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update performance is important, particle tables may have many non-rendering values to support
incremental update a gorithms.

When choosing a vertex array representation, keep in mind that OpenGL implementations often
have higher performance using interleaved arrays that are densely packed. We recommend using
gl I nt erl eavedAr r ays when possible. Of course, the data structure may have be adjusted to op-
timize for either rendering speed or particle update performance, depending on which part of the
system is the performance bottleneck.

11.9.2 ParticleSizes

If particles are very small, or the particles are clustered tightly together some distance from the
viewer, good effects are possible with particles of asinglesize. If the particles are moving a large
distancetowardsor away from the viewer, aconstant sized particle may appear unrealistic. Particles
of changing sizes can lead to performance penalties. Changing point size can be a costly operation
in OpenGL. Whenever possible, sort and group the particles by size when rendering to minimize
the number of gl Poi nt Si ze calls. Sorting overhead can be minimized in many cases by using
an incrementa sorting agorithm, since points generaly move only a small distance from frame to
frame.

If the GL_EXT _poi nt _par anet er s extensionisavailable, you can usegl Poi nt Par anet er f EXT
and gl Poi nt Par anet er f vEXT to set parameters that control point size as a function of distance
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from the viewer. Thisextension should be carefully benchmarked to seeif your implementation can
handle a set points with unsorted distance values efficiently. If not, then the points should still be
sorted (or perhaps just partially sorted) to increase rendering efficiency.

Often sorting can be minimized by quantizing point sizesto afew distinct values. Groups of points
within a given bounding volumes can be all set to an average size appropriate for that volume. As
before, the effectiveness of quantizing particle sizewill depend on the behavior of particlesin apar-
ticular system.

11.9.3 Largeand Small Points

If the particle size is increased from the default, the rectangular nature of the point representation
may become too apparent. Point antialiasing can be used to render the points as circles rather than
squares. Benchmark the performance of antialiased points of various sizes on your systemto deter-
mine the overhead of using thisfeature. Be sureto also take into account the fact that you'll haveto
use a pha blending to make point antialiasing work.

If aparticle must appear smaller than asingle pixel, its alphavalue can be reduced to make it more
transparent (remember to enable blending), simulating the brightness of a smaller particle. Another
technique that is faster but may not look as good is to reduce the intensity of the particle’s color
instead of it'sapha. See Section 11.7 for more information.

1194 Antialiasing

Antialiasing particles, both spatially and temporally, can be animportant consideration, especialy if
particles are moving slowly. Antialiasing pointswill cause the particles to move more smoothly as
they crosspixel boundaries, sincefragmentswith fractiona alphavalueswill be generated. Another
techniqueisto use the particle positions between two adjacent frames to orient aline centered at the
particle's current position, and draw an antialiased line instead of a point. If the line's length and
alphaare varied as afunction of current velocity, you can create amotion blur effect.

If high quality is important and performance isn't, or you have very good hardware support, the
accumulation buffer can be used to generate excellent antialiasing and motion blur. The particles
for agiven frame can berendered repeatedly and accumulated. The particle positionscan bejittered
for spatial antialiasing, and the particlere-rendered al ong itsdirection of motion can produce motion
blur effects. For moreinformation, see Section 7.5 in these notes, and the accumul ation buffer paper
in the 1990 SIGGRAPH Proceedings[29] reprinted in these course notes.

11.95 “Fat” Particles

Up until thispoint, we' ve dealt with very simplerepresentationsof particles. We don’'t haveto limit
ourselves to simple points, however. In OpenGL, points can be texture mapped and lit, providing
waysto achieve more particleeffects. 1t may also make senseto consider using small textured quads
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instead of pointsto represent particles for some systems. The quads can be textured with a texture
map containing a phaval uesto describeits shape, transparency and color. Using more complex par-
ticlesmay allow you to use less particles to achieve the same visual effect, enhancing performance.

One problem with using quads or other surface primitivesis that, unless you want to expose their
planar nature, you will haveto billboard them. Billboarding is rotating each quad so that it always
faces the viewer. Since you control the orientation of the particles, this only becomes a problem
when the viewing transformation changes. See Section 5.7 in these notes.

Some implementationshave a billboarding extension, called GL spri t e, whichwill orient surfaces
automatically. Implementation performance may vary, and since surfaces can all be oriented to-
gether, it may still be faster to billboard the surfaces yourself. Benchmark to be sure.

11.9.6 Particle Systemsin a Scene

Particle systems can be difficult to integrate seamlessly into a complex scene. They are often not
depth buffered, relying on the the accumulated light contributionsof all the particlesto create apar-
ticular effect. Therest of the scenewill probably require depth buffering, however, so both the depth
test and depth buffer update state needs to be managed within the scene. Although particles can be
lit, it is extremely expensiveto try to cause each particle to act as an OpenGL light source, espe-
cialy since the number of simultaneous available OpenGL lights are limited. Instead a few light
sources can be placed in the system to represent an overal lighting effect. Blending state must also
be managed, since antialiased particles require apha blending to work.

11.10 Precipitation

Preci pitation effects such asrain and snow can be model ed and rendered using the parti cletechniques
described above. The task can be broken down into several tasks:

1. Redlistic particle rendering.
2. Computing particle dynamics.

3. Managing particle lifetime.

The basic particle rendering techniques are described in the preceding section. Using snowflakes as
an example; individual flakes can berendered aswhite col ored points. |deally the particlesizeshould
berendered correctly under perspective projection asdiscussed for light pointsin Section 11.7. Since
thered-life particles are subject to the effects of gravity, wind, thermal convection, etc, the model ed
dynamics should include these effects. However, much of the complexity liesin the management
of the particlelifetime. Again, considering the snow example, a running simulation must be main-
tained for the entireworld, not just the portionthat is currently visible. Particle dynamics may cause
particles to move from a portion of the world which is not currently visibleto the visible portion or
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viceversa. In the snow example, particles may shrink and disappear to mimic the melting effects of
the sun.

One of the more difficult problems with managing the lifetime of particlesis the end of life of the
particle. Usually snowflakes accumulate to form alayer of snow over the objects upon which they
fal. Oneway to model thisisto terminate the particle dynamics when the particle strikes a surface
(using a collision detection algorithm), but continueto draw it initsfinal position. A difficulty with
this solution is that the number of particles which need to be drawn each frame will grow without
bound. Another way to solvethisproblemisto draw the surfaces uponwhichtheparticlesarefalling
as textured surfaces and when a particle strikes the surface, remove the particle from the dynamic
system and incorporateit into the texture map used to render the surface. This solution allows the
number of particlesin the system to reach a steady state, but creates a new problem of efficiently
managing the texture maps for the collision surfaces.

Oneway to maintain these texture maps is to use the rendering pipelineto update the maps. At the
beginning of a simulation the texture map for a surfaceis clean. At the end of each frame, the par-
ticleswhich are to be retired thisframe are drawn with an orthographic projection onto the textured
surface (the viewpoint is perpendicular to the surface) using the current version of the texture and
the resulting image replaces the current texturemap. In order to avoid rendering artifacts when tran-
sitioninga particlefrom itslive state to the texture map, it may be necessary to fade the live particle
away over afew frames introducing a new limbo state for particles during thistransition period.

Using atexture map for collided snow particles provides an efficient mechanism for maintaining a
constant number of particlesinthesystemand it workswell for simulatingtheinitial accumulation of
precipitation on an uncovered surface. However, it doesnot serve asarealistic model for continued
accumulation sinceit only simulates a one dimensional layer. To simulate continued accumul ation,
the model must be enhanced.

Changing our example from snow to rain, some of the properties of the precipitation change. Rain
particlestypically contain more mass than snow particles and are thus affected differently by grav-
ity and wind. Heavy rain may be better simulated using short antialiased line segments rather than
points to simulate motion blurring.

The initial accumulation of rain is a more complex problem than snow. In the case of snow, an
opague accumulation is built up over time. For rain, the rain drops are semi-transparent and they
affect the surface characteristics and thus the surface shading of the collision surface in amore sub-
tle manner. Oneway to model this effect isto create a texture map similar to the one created for the
snow model. However, this map is used in conjunction with a multipass shading technique for the
rest of the scene, partitioningthe sceneinto two collectionsof pixels: those which are wet and those
which are dry. The sceneisdrawn twice using two different shading models, one which renders ob-
jects which appear wet and another which renders objects with a dry appearance. The texture map
is used to choose which computation to storein the framebuffer on a pixel by pixel basis.

Another method to reduce the rendering workload and increase the performance of the simulationis
to reduce the number of particles using a“hollywood” technique. In thisscheme rather than render-
ing particlesthroughout the entire volume a“ curtain” of particlesis rendered in front of the viewer.
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The use of motion blurring and fog along with lighting to simulate an overcast sky can make the
illusion more convincing. It is still possible to simulate simple accumulation of precipitation by
choosing pointson collision surfaces at random (within the parameterization of the simulation) and
blending them into texture maps as described above.
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12 Image Processing

12.1 Introduction

One of the strengths of OpenGL isthat it providestoolsfor both image processing and 3D render-
ing. OpenGL is designed with the understanding that many image processing tools are useful for
3D graphicsand vice versa. For example, convolution may be used to implement depth-of-field ef-
fects. Conversely, many operationstypically thought of asimage processing operations may be cast
as geometric rendering and texture mapping operations. Electronic light tables (ELTs), used in de-
fense imaging, require image transformations which can be implemented using OpenGL's textured
drawing capabilities. This section demonstrates how to apply the pixel transfer pipeline, texturing,
and fragment operationsto the image processing problems of color manipulation, convolution, and
image warping.

12.1.1 ThePixel Transfer Pipeline

The pixel transfer pipelineisthe part of OpenGL most typically thought of in image processing ap-
plications. The pipelineisaconfigurable series of operationswhich are applied to each pixel during
any command that moves pixels between the framebuffer, host memory, and texture memory, in-
cluding:

e gl Drawki xel s

e gl ReadPi xel s

e gl Texl mage*D

e gl TexSubl mage* D
e gl Get Texl mage*D
e gl CopyPi xel s

e gl CopyTexl mage*D

e gl CopyTexSubl nage* D
These operations move image data which fallsinto one of the following categories:

Color index values

Color values (RGBA, luminance, luminance/alpha, red, green, ...)

e Stencil buffer values

Depth values
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The “pixel transfer pipeling” processes each of these categories of data differently. For image pro-
cessing, operations on color data are generaly the most interesting. Before any operations are
applied, source data in any color format (for example, GL_LUM NANCE) and type (for example,
GL_UNSI GNED_BYTE) is converted into floating-point RGBA components. All color pixel transfer
operations operate on images of thistype and format. After the pixel transfer operations have been
applied, theimage is converted to its destination type and format.

Base OpenGL defines only a few pixel transfer operations, which are controlled using the
gl Pi xel Tr ansf er command. The operations are:

e GL_| NDEX_SHI FT and GL_| NDEX_OFFSET, which are applied only to color index images.
e Scale and bias values which are applied to each channel of RGBA images.

e Scale and bias values which are applied to depth val ues.

e Pixe maps, discussed in detail in Section 12.2.3.

The pixel transfer pipelineisthe part of OpenGL that has grown the most through OpenGL exten-
sions. Some of the more interesting extensionswill be discussed in this section, including the ven-
dorswho support each extensionin OpenGL 1.1 asof April 1998. Where possible, wewill mention
techniquesto achieve equivalent results on systems that do not support the extension.

12.1.2 Geometric Drawing and Texturing

OpenGL'stexturing capabilities are discussed in detail in Section 5. These capabilities can be put
to work to solve image processing problems. By texturing an input image onto a grid represented
as geometry, we can apply arbitrary deformations to the image. Given the textured draw rates of
OpenGL implementations that accel erate texturing in hardware, very impressive performance can
often be achieved though the use of textured geometry. Image processing applicationsusing textur-
ing are discussed in Section 12.4.

12.1.3 TheFramebuffer and Per-Fragment Operations
Per-fragment and framebuffer operations can be used to operate on pixels of an image in paralel.
Additionally, multipleimagesmay becombinedinavariety of ways. Blending and the accumulation

buffer aretwo areas of interest. Thesefeaturesare discussedin detail in Section 6. Theaccumulation
buffer is particularly important since it provides severa fundamental operations:
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e Scaling of an image by a constant:

— gl Accun{ GL_.MULT, <scal e>)
— gl Accun{ GL_LOAD, <scal e>)
— gl Accum{ GL_RETURN, <scal e>)

e Biasing of an image by a constant:

— gl Accun{ GL_ADD, <scal e>)
— Clear of framebuffer with color <scal e>, followed by gl Accun( GL_LOAD, 1)

e Linear combination of two images on a pixel-by-pixel basis: gl Accun{ GL_LQAD,
<scal el>) followed by gl Accun{ GL_ACCUM <scal e2>)

The accumulation buffer and blending are discussed in subsequent sectionsin terms of the image
processing operations that use them.

12.1.4 Thelmaging Subset in OpenGL 1.2

Severd extensionsto OpenGL 1.1 are incorporated as standard commands in OpenGL 1.2 as part
of the optional imaging subset:

e Color tables(SA _t ext ure_col or _t abl e in1.1)
e Convolution during pixe transfer (EXT_convol uti on)

e Thecolor matrix (SG _col or _mat ri x)

Histogram and minmax functions (EXT_hi st ogr am) during pixel transfer

The blending equation and the enumerants for constant color/alpha blending, sub-
tractive blending (EXT bl end_subtract), and blending with min and max operators
(EXT_bl end_mi nnax).

This group of extensionsto the pixel transfer pipeline are useful to a class of applicationsthat per-
form image processing.

The imaging subset provides color table support (gl Col or Tabl e) in the pixel transfer pipeline
before the convolution operation (GL_COLORTABLE), after convolution and before applica
tion of the color matrix (GL_POST_-CONVOLUTI ON.COLORTABLE), and after the color matrix
(GL_POST_COLOR TABLE). Scale and bhias are availablefor each color table.

The subset provides 1D, 2D and separable convolutions (gl Convol utionFilter*D and
gl Separ abl eFi | t er 2D) in the pixel transfer pipeline, including scale and bias parameters.

Histogram and min and max functions are provided through gl H st ogr amand gl M nMax.
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The imaging subset aso provides support for gl Bl endEquat i on and gl Bl endCol or and the
blending modes GL_CONSTANT_COLOR, GL_ONE_M NUS_CONSTANT_COLOR, GL_CONSTANT _ALPHA,
and GL_ONE_M NUS_CONSTANT _ALPHA,

If an implementation supports the imaging subset, all of the above features are supported. If the
implementation doesn’t support it, using these features will result in GL_I NVALI D.OPERATI ON or
GL_I NVALI D.ENUM

You can determine if an OpenGL 1.2 implementation implements the imaging subset by checking
the result of gl Get St ri ng( GL_EXTENSI ONS) for the substring “ ARB_i magi ng”.

The imaging subset of OpenGL 1.2 is supported by the following vendors as of April, 1998:

e Silicon Graphics
e Hewlett Packard
e Sun Microsystems, Inc.

¢ Intergraph Computer Systems

12.2 Colorsand Color Spaces

This section considers ways to modify the pixels of an image on alocal basis. That is, each output
pixel will be afunction of a single corresponding input pixel. Convolution, a non-local operation,
will be considered in the next section.

12.2.1 TheAccumulation Buffer: Interpolation and Extrapolation

Haeberli and Voorhies [27] have suggested severa interesting image processing techniques using
linear interpolation and extrapolation. Each techniqueis stated in terms of the formula:

out = (1 — &) % ing + @ * iny (6)
Thisequation is evaluated on a per-pixel basis. ing and in; are the inputimages, out isthe output

image, and x isthe blending factor. If « isbetween 0 and 1, the equations describe alinear interpo-
lation. If = isalowed to range outside [0..1], theresult is extrapolation [27].
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In the limited case where 0 < z < 1, these equations may be implemented using the accumulation
buffer viathe following steps:

Draw ing into the color buffer.

Load ing, scaling by (1 — ) (gl Accunm( GL_LOAD, (1-x))).
Draw iny into the color buffer.

Accumulate iny, scaling by = (gl Accun{ GL_ACCUM x) ).
Return the results (gl Accunm( GL_RETURN, 1)).

o w D PP

It is assumed that ing and ¢ny are between 0 and 1. Since the accumulation buffer can only store
valuesintherange [—1..1], forthecase z < 0 or z > 1, the equation must be implemented in
a different way. Given the value z, you can modify equation 6 and derive a list of accumulation
buffer operationsto perform the operation. Define a scale factor s such that:

s =maz(z,1 — z)

Equation 6 becomes:

out = s(

(1-2)

. T,

ing + —iny)
S

and thelist of steps becomes:

Compute s.

Draw ing into the color buffer.

Load ing, scaling by ﬁl_Txl (gl Accum( GL_LOAD, (1-x)/s)).
Draw in into the color buffer.

Accumulate iny, scaling by £ (gl Accun{ GL_ACCUM  x/s) ).
Return the results, scaling by s (gl Accun{ GL_RETURN, s)).

o o~ 0w DN

Thetechniquessuggested by Haeberli and Voorhiesuse adegenerateimage as :nq and an appropriate
value of = to move toward or away from that image. To increase brightness, inq is set to a black
image and = > 1. To change contrast, in, is set to a gray image of the average luminance value
of iny. Decreasing = (toward the gray image) decreases contrast; increasing = increases contrast.
Saturation may be varied using a luminance version of :n; asing. (For information on converting
RGB images to luminance, see Section 12.2.4.) Sharpening may be accomplished by setting :nq to
ablurred version of in; [27].
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12.2.2 Pixe Scale and Bias Operations

Scal e and bias operations can be used to adjust the colors of images. Also, they can be used to select
and expand a small range of valuesin theinput image. Scales and biases are applied at severa lo-
cationsin the pixel transfer pipeline. In general, scales and biases are controlled with eight floating
point values (a scale and a bias for each channel).

Thefirst scale and bias in the pixel transfer pipelineis part of base OpenGL and is specified with
gl Pi xel Transf er (<pname>, <val ue>) where <pnane> specifies one of GL_RED SCALE,
GL_REDBI AS, GL.GREEN.SCALE, GL_GREENBIAS, G..BLUESCALE, G._BLUEBI AS,
GL_ALPHA SCALE, or GL_ALPHA BI AS. Other sets of scale and bias values are associated with the
color matrix extension (SA _col or _mat r i x) and the convolution extension (EXT_convol ut i on),
both of which are part of the imaging subset of OpenGL 1.2.

12.2.3 Look-Up Tables

One useful tool for color modification isthelook-uptable. Generally speaking, alook-up table maps
aninputvalueto alocationin atable, and replacesthat valuewith thetableentry. Two look-uptables
in OpenGL, pixel maps and col or tables, map componentsindependently in one-dimensional tables.
These mechani sms provide efficient mapping for applicationsrequiring no correspondence between
the channelsof theimage. A third mechanism, pixel texturing, usesthe OpenGL texturing capability
to perform multi-dimensional |ook-ups.

Pixel Maps Pixel maps are afeature of base OpenGL which alow certain look-up operations to
be performed. OpenGL maintains tables which map:

e Thered channel to the red channel (GL_PI XEL_.MAP_R TOR)

e The green channel to the green channel (GL_PI XEL_MAP_G.TO.G)
e The blue channel to the blue channel (GL_PI XEL_MAP_B_TO B)

e Theaphachannel to the alphachannel (GL_PI XEL_MAP_A TO.A)
e Color indicesto color indices (GL_PI XEL_.MAP_I _TQO.I )

e Stencil indicesto stencil indices (GL_PI XEL_MAP_S_TQO.S)

e Color indices to RGBA vaues (G._PIXEL_MAPI TOR, GL_PIXEL MAP.I _TOG,
GL_PI XEL_MAP_I -TOB, and GL_PI XEL_MAP_I _TOA)

Tables that map color indices to RGBA values are used automatically whenever an image with
a color index format is transferred to a destination which requires an RGBA image. For exam-
ple, performing a gl Dr awPi xel s of a color index image to an RGBA framebuffer would re-
sult in application of the | to RGBA pixel maps. Other tables are enabled with the commands
gl Pi xel Transfer (GL.MAP.COLOR, 1) andgl Pi xel Transfer (GL_.MAP_.STENCI L, 1).
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Pixel maps are defined using the gl Pi xel Map command and queried using the gl Get Pi xel Map
command. Detailson the use of these commands may be foundin [7]. The sizes of the pixel maps
are not tied together in any way. For example, the R to R pixel map does not need to be the same
size asthe G to G pixel map.

Each system provides a constant, GL_MAX_PI XEL_MAP_TABLE, which gives the maximum size of a
pixel map which may be defined.

The Color Table Extension The color table extension, S@ col or _t abl e, provides additional
look-up tables in the OpenGL pixel transfer pipeline. Although the capabilities of color tables and
pixel maps are similar, the semantics are different.

The color table extension defines the following look-up tables:

e “First” color table (GL_COLOR.TABLE_SQ )
e Post convolution color table (G._POST_CONVOLUTI ON.COLOR TABLE SA )

¢ Post color matrix color table (GL_POST_COLOR.MATRI X COLOR.TABLE SG )

Each tableisindependently enabled and disabled using thegl Enabl e and gl Di sabl e commands.
One, two, or all three of the tables may be applied during the same operation. Color index images
have to be converted to RGBA images using the | to RGBA pixel maps described in the previous
section before they can be passed through the RGBA portion of the pixel transfer pipeline.

Color tables are specified using the gl Col or Tabl eEXT and gl CopyCol or Tabl eEXT commands
and are queried using the gl Get Col or Tabl eEXT command. The man pages for these commands
providedetailsontheir use. Notethat unlikethe RGBA to RGBA pixel maps, all channelsof acolor
table are specified at the same time.

When a color table is specified, an internal format parameter (for example, GL_RGB or
GL_LUM NANCE_EXT) gives the channels present in the table. When the color table is applied
to an image (which is by definition RGBA), channels of the image which are not present in the
color table are left unmodified. In thisway, color tables are more flexible than pixel maps, which
replace all channels of the input image.

Although color tables provide similar functionality to pixel maps and may prove more useful in cer-
tain circumstances, they do not replace pixel maps in the OpenGL pipeline and the tables managed
by pixel maps and color tables are independent. It is possibleto apply both a pixel map and a color
table (or color tables) during the same pixel operation (although the utility of thisis questionable).
The maximum sizes and relative efficiencies of pixel maps and color tables vary from platform to
platform.

The color table extensionin OpenGL 1.1 is supported by the following vendors:

¢ Silicon Graphics
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o Hewlett Packard

e Sun Microsystems, Inc.

The Texture Color Table Extension The texture color table extension
(SA _t exture_col or _t abl e) providesacolor table (GL_TEXTURE_.COLOR TABLE SA ) whichis
applied to texels after filtering and prior to combination with the fragment color with the texture
environment operation. The procedures to define, enable, and disablethe texture color table are the
same as those of thetablesin SG _col or _t abl e.

The texture color table extension is currently supported by the following vendors:
e Silicon Graphics
e Evans& Sutherland
e Hewlett Packard

e Sun Microsystems, Inc.

The texture color tableis not part of the imaging subset of OpenGL 1.2.

ThePixel TextureExtension Thepixe textureextension (SG X pi xel _t ext ur e) alowsmulti-
dimensional lookups through OpenGL'stexturing capability. Remember that OpenGL defines ras-
terization of apixel imageduring agl Dr awPi xel s or gl CopyPi xel s command as the generation
of afragment for each pixel in theimage. Per-fragment operations are applied, including texturing
(if enabled). If theinput image contained color data, each fragment’s color comes from the color of
the pixel that generated it. The texture coordinate of the fragment is taken from the current raster
position, which isgenerally not useful because the texture coordinatewill be constant over the pixel
rectangle. The pixel texture extension allowsthetexture coordinatesss, ¢, ¢, and r of thefragment to
be copied from the color coordinates R, G, B, and A of the pixel. With three and four dimensional
textures (EXT_t ext ur e3Dand SG S_t ext ur e4D), arbitrary effects can be implemented (although
the texture storage requirements to do so can be staggering).

The pixel texture extension is supported by the following vendors:
e Silicon Graphics

Pixel texture isnot part of the imaging subset of OpenGL 1.2.

Equivalent Functionality Without SG X pi xel texture Thereisnoway to apply atrue mul-
tidimensional lookup to a pixel image without SA X pi xel _t ext ur e. In some cases, pixel maps
and color tablesmay be used as a substitute. Blending, accumulation buffer operations, or scale/bias
operations may be used when the function to be applied is linear and each channel isindependent.
In other cases, the application will have to perform the lookup on the host or draw atextured point
for each pixel in theimage.
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12.2.4 TheColor Matrix Extension

The color matrix extension (SG _col or _mat ri x) defines a4x4 color matrix which is managed us-
ing the same commands as the projection, modelview, or texture matrix. The color matrix premul-
tiplies RGBA colorsin the pixel transfer pipeline and as such can be used to perform linear color
space conversions.

Sincethecolor matrix istreated likeany other matrix, itisalwaysenabled and defaultsto theidentity
meatrix. To change the contentsof the color matrix, the current matrix mode must be set to GL_COLOR
using gl Mat ri xMode. After that, the color matrix may be manipulated using the same commands
as any other matrix; for example, gl LoadMat ri x, gl PushMat ri x, and gl PopMat ri x.

The color matrix extension is currently supported on the following platforms:

e Silicon Graphics

Equivalent Functionality Without SA _col or _matrix Unfortunately, the functionality of
SGA _col or _mat ri x isdifficult to efficiently duplicate on systems which do not support the exten-
sion. Inthecase wheretheimageisgoing from the host totheframebuffer (agl Dr awPi xel s opera
tion), thebest way to handlethesituationisthe split theimage up intored, green, blue, and aphaim-
ages (viaapplication processing or adraw followed by readswith f or mat setto GL_RED, GL_GREEN,
GL_BLUE, or GL_ALPHA). Thered, green, blue, and a phaimages can be drawn as GL_LUM NANCE
images. RGBA scale operations are applied, with the four values equal to the row of the matrix
corresponding to source channel. The images are composited in the framebuffer using blending
(gl Bl endFunc( GL_ONE, GL_ONE)).

Scaleand Bias Scale and bias operations may be performed using the color matrix. A scale factor
can be applied using the gl Scal e command. A biasis equivalent to a translation and may be ap-
pliedusingthegl Tr ansl at e command. Usinggl Scal e andgl Tr ansl at e, theR scaleor biasis
put in the » parameter, the G scale or biasin they parameter, and the B scale or biasin the = param-
eter. Modificationsto the A channel must be specified using gl LoadMat ri x or gl Mul t Mat ri x.
In general, using the color matrix to implement scale and bias will be slower than using a transfer
operation which implements scale and bias directly, but management of state may be easier using
color matrices. Also, the scale and bias could be rolled into another color matrix operation.

Conversion to Luminance Converting a color image into a luminance image may be accom-
plished by scaling each component by itsweight in the luminance equation.

0 0 0

O~ b~
= Q=

0
0
0
0
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Therecommended weight valuesfor R, G,,, and B,, are0.3086,0.6094, and 0.0820. Some authors
haveused thevaluesfromthe Y 1Q color conversion equation (0.299, 0.587, and 0.114), but Haeberli
notes that these values are incorrect in alinear RGB color space.[26]

Modifying Saturation The saturation of a color isthe distance of that color from agray of equal
intensity.[18] Haeberli has suggested modifying saturation using the equation:

R a d g 0 R
G| _|b e h O G
BT |lefioll|lB
A 0 0 0 1 A

where;

a=(1—-s)xRy+s

b= (1—-s)* R,

c=(1—-s)*x Ry,

d=(1—-5)xGy

e=(1-95)«Gy+s

f=(1-s)xGy,

g=(1—-35)% By

h=(1-3s)%By

i=(1—-s)xBy+s
with R,,, G, and B,, asdescribed in the above section. Since the saturation of a color isthediffer-
ence between the color and agray value of equal intensity, it is comforting to note that setting s to 0

gives the luminance equation. Setting s to 1 leaves the saturation unchanged; settingit to — 1 takes
the complement of the colors[26].

Hue Rotation Changing the hue of a color may be accomplished by loading a rotation about the
gray vector (1, 1, 1). Thisoperation may be performed in one step using the gl Rot at e command.
The matrix may also be constructed viathe following steps [26]:

Load theidentity matrix (gl Loadl denti ty).
Rotate such that the gray vector maps onto the =z axis using the gl Rot at e command.

Rotate about the =z axisto adjust the hue (gl Rot at e( <degrees>, 0, 0, 1)).
Rotate the gray vector back into position.

A w0 D PE

Unfortunately, a naive application of gl Rot at e will not preserve the luminance of theimage. To
avoid this problem, you must make sure that areas of constant luminance map to planes perpen-
dicular to the =z axis when you perform the hue rotation. Recalling that the luminance of a vector
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(R, B) isequd to:
(R7 G7 B) . (R’LLM Gun Bw)

you readlize the plane of constant luminance k is defined by:
(R7 G7 B) . (R’LLM Gun Bw) =k

Therefore, thevector (R, Gy, B,,) isperpendicular to planesof constant luminance. Thealgorithm
for matrix construction becomes the following [26]:

Load the identity matrix.
2. Apply arotation matrix M such that the gray vector (1, 1, 1) maps onto the positive z axis.

Compute (R!,,G',,B.,) = M(R,,Gy, By). Apply a skew transform which maps
(R, G, B.,)t0(0,0,B.,). Thismatrix is:

10 5= 0
-G

0 1 BT 0

0 0 1 0

0 0 0 1

Rotate about the = axisto adjust the hue.
5. Apply theinverse of the shear matrix.
6. Apply theinverse of the rotation matrix.

It is possible to compute a single matrix as afunction of R,,, G.,, B,,, and the degrees of rotation
which performs this operation.

CMY Conversion The CMY color space describes colorsin terms of the subtractive primaries:
cyan, magenta, and yellow. CMY isused mainly for hardcopy devices such as color printers. Gen-
erally, the conversion from RGB to CMY follows the equation [18]:

C 1 R
Ml=|l1|-|G
Y 1 B

CMY conversion may be performed using the color matrix or a scale and bias operation. The con-
version isequivaentto ascale by —1 and abiasby +1. Using the 4x4 color matrix, the equation
may be restated as:

C -1 0 0 1][R

M| [0 -1 0 1]||G

Y || o 0o -1 1]||B

1 0 0 0 1|1
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Here, the incoming alpha channel must be equal to 1. If the source is RGB, the 1 will be added
automatically in the format conversion stage of the pipeline.

A related color space, CMYK, uses a fourth channel (K) to represent black. Since conversion to
CMYK requiresamin() operation, it cannot be performed using the color matrix.

The extension EXT_CMYKA al so supports conversion to and from CMYK and CMY KA. This exten-
sionis currently supported by Evans & Sutherland.

Y1Q Conversion TheYIQ color spaceisusedin U.S. color television broadcasting. Conversion
from RGBA to YIQA may be accomplished using the color matrix:

Y 0.299 0.587 0.114 0 R
I | 059 -0.275 -0.321 0 G
Q| | 0212 —-0523 0311 0 B
A 0 0 0 1 A

(Generdly, Y1Q isnot used with an apha channel so the fourth component is eliminated.) Thein-
verse matrix isused to map Y1Q to RGBA [18].

12.3 Convolutions
12.3.1 Introduction

Convolutions are used to perform many common image processing operations including sharpen-
ing, blurring, noise reduction, embossing, and edge enhancement. This section begins with a very
brief overview of the mathematics of the convolution operation. More detailed explanations of the
mathematics and uses of the convolution operation can be found in many bookson computer graph-
ics and image processing such as [18]. After this brief mathematical introduction, this section will
describe two ways to perform convolutions using OpenGL : viathe accumulation buffer and viathe
convolution extension.

12.3.2 The Convolution Operation

The convolution operation is a mathematical operation which takes two functions f(z) and g(z)
and produces athird function 2 (z). Mathematically, convolutionis defined as:
+oo
he) = f@) gy = [ f@)gle - rydr )

— 0

g(z) isreferred to asthefilter. Theintegral only needsto be evaluated over therangewhere g (z —7)
is nonzero (called the support of the filter).[18]
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In spatial domain image processing, you discretize the operation. f(z) becomes an array of pixels
Flz]. Thekernd ¢g(z) isan array of values G[0...(width — 1)] (assume finite support). Equation 7

becomes:
width—1

Hil= Y Fle+iG[] ®)

=0

Two-Dimensional Convolutions Since you generally operate on two-dimensional imagesinim-
age processing, extend Equation8 to:

height—1 width—1

Hz]ly] = Z Z Flz 4 [y + j1G[][] (9)

1=

During convolution, the valuefor apixel in the outputimageis ca culated by aigning thefilter array
(kernel) with the pixel at the same location in the input image and summing the values of the pixels
in the input array multiplied by the corresponding valuesin thefilter array.

The agorithm can be visualized as aloop over the width and height of the input image. In theloop,
the filter is typically centered over each input pixel. Another loop over the width and height of the
filter multipliesthe valuesin thefilter array with the values under thefilter in the input image. The
results of the multiplication are added together and stored in the output imageinthe same< =, y >
location as the pixel in theinput image. The output and input images are kept logically separate so
that the results of one step in the loop don’t affect later stepsin the loop.

The convolutionfilter may have asingleelement per-pixel, where the RGBA componentsare scaled
by the same value, or thefilter may have separatered, green, blue, and alphavaluesfor each element.

Separable Filters In the genera case, the two-dimensional convolution operation requires
(width x height) multiplicationsfor each output pixel. Separablefiltersareaspecia case of genera
convolutionin which thefilter

G0..(width — 1)]]0..(height — 1)]
can be expressed in terms of two vectors
Growl0..(width — 1)]Gci[0..(height — 1)]
such that for each (i, j)e([0..(width — 1)], [0..(height — 1)])
G[i][j] = Growli] * Geal]

If thefilter is separable, the convolution operation may be performed using only (width + height)
multiplicationsfor each output pixel. Applying the separablefilter to Equation9 becomes:

heitght—1 width—1

Hlz]ly] = Z Z [ + [y + J1Grow[t]GeotlJ]

1=
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Which can be simplified to:

height—1 width—1
Hiallyl= > Gealil 3o Flo+ily + 1G]

To apply the separable convolution, first apply G, asthough it were a width by 1 filter. Then
apply G..; asthoughitwereal by height filter.

12.3.3 ConvolutionsUsing the Accumulation Buffer

The convolution operation may be implemented by building the output image in the accumulation
buffer. For each kernel entry G[¢][/], translatetheinputimageby (—1, —j) fromitsoriginal position
and then accumulate the translated image using the command gl Accun{ GL. ACCUM Ji][j]) -
Thistranslation can be performed by gl CopyPi xel s but an application may be able to more effi-
ciently redraw theimageshiftedusinggl Vi ewpor t . widthxheight translationsand accumul ations
must be performed. Skip clearing the accumulation buffer by using GL_LOAD instead of G._ACCUM
for thefirst accumulation.

Hereisan example of using the accumul ation buffer to convolveusing a Sobel filter, commonly used
to do edge detection. Thisfilter is used to find horizontal edges:

-1 -2 -1
0 0 0
1 2 1

Since the accumul ation buffer can only storevaluesin therange (-1..1), first modify the kernel such
that at any point in the computation the values do not exceed thisrange:

-1 -2 =1
-1 -2 -1 T 1 4
0 0 0 |=4«| 0 0 0
1 2 1
12 1 Lozl

The operations needed to apply the filter are:

Draw the input image.

gl Accum( GL_LOAD, 1/4)

Translate the input image |eft by one pixel.
gl Accum( GL_ACCUM 2/ 4)

Translate the input image |eft by one pixel.

©o o &~ w bh P

gl Accum{ GL_ACCUM 1/ 4)
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7. Trandate theinput image right by two pixels and down by two pixels.
8. gl Accun{ GL . ACCUM -1/ 4)
9. Trandate the input image left by one pixel.

10. gl Accun{ GL_.ACCUM - 2/ 4)

11. Tranglate the input image left by one pixel.

12. gl Accun{ GL_.ACCUM - 1/ 4)

13. Return theresultsto the framebuffer (gl Accun{ GL_RETURN, 4)).

In thisexample, each pixel inthe output image isthe combination of pixelsinthe 3 by 3 pixel square
whoselower | ft corner isat the output pixel. At each step, theimageis shifted so that the pixel that
would have been under the kernel element with the value used is under the lower left corner. Asan
optimization, ignorelocations where the kernel is equal to zero.

A genera algorithm for the 2D convolution operation is:

Draw t he i nput inage
for (j =0; j < height; j++) {
for (i =0; i <wdth; i++) {
gl Accum(GL_ACCUM ({i][j]*scale);
Move or redraw the input image to the left by 1 pixel
}
Move or redraw the input image to the right by w dth pixels
Move or redraw the input image down by 1 pixel

}
gl Accum({ GL_RETURN, 1/scale);

scal e isavaue chosen to ensure that the intermediate results cannot go outside a certain range.
In the Sobel filter example, scal e = 4. Assuming the input values are in (0..1), scal e can be
naively computed using the following a gorithm:

float m nPossi ble = 0, naxPossible = 1;
for (j =0; j < height; j++) {
for (i =0; i <wdth; i++) {
it (gillj] <0) {
m nPossible += Gil[j];
} else {
maxPossible += Ji][j];
}

}
}

scale = 1.0 / ((-m nPossi bl e > maxPossible) ?
-m nPossi bl e : maxPossi bl e);
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Since the accumulation buffer haslimited precision, more accurate results can be obtained by chang-
ing the order of the computation and computing scal e accordingly. Additionally, if valuesin the
input image can be constrained to asmaller range, scal e can be made larger, which may aso give
more accurate results.

For separable kernels, convolution can be implemented using width + height image translations
and accumulations. A genera algorithmis:

Draw t he i nput inage
for (i =0; i <wdth; i++) {
gl Accum(GL_ACCUM Gowi] * rowScale);
Move or redraw the input inage to the left 1 pixel

}
gl Accum{ GL_RETURN, 1 / rowScal e);
for (j =0; j < height; j++) {
gl Accum{ GL_ACCUM Ccol [j] * col Scal e);
Move or redraw the franebuffer image down by 1 pixel

}
gl Accum{ GL_RETURN, 1 / col Scal e);

In thisexample, it is assumed that scales for the row and column filters have been determined in a
similar fashion to the general two-dimensiond filter, such that the accumulation buffer values will
never go out of range.

12.3.4 The Convolution Extension

The convolution extension, EXT_convol uti on, defines a stage in the OpenGL pixel transfer
pipeline which applies a 1D, separable 2D, or general 2D convolution. The 1D convolution
is applied only to 1D texture downloads and is infrequently used. 2D kernels are specified
using the commands gl Convol uti onFilter 2DEXT, gl CopyConvol uti onFilter 2DEXT,
and gl Separabl eFi | ter 2DEXT. The convolution stage is enabled using the enu-
merant GL_CONVOLUTI ON2D.EXT or GL_SEPARABLE 2D EXT. Filters are queried using
gl Get Convol uti onFi | t er EXT and gl Get Separ abl eFi | t er EXT.

The maximum permitted convolution size is machine-dependent and may be queried using
gl Get Convol uti onPar anet er f vEXT with the parameters GL_MAX_CONVOLUTI ON\W DTH_EXT
and GL_MAX_CONVOLUTI ONHEI GHT_EXT.

The relative performance of separable and general filters varies from platform to platform, but it is
best to specify a separable filter whenever possible.

EXT_convol uti on iscurrently supported by the following vendors:
¢ Silicon Graphics
e Hewlett Packard

e Sun Microsystems, Inc.
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12.3.5 Useful Convolution Filters

This section briefly describes severa useful convolutionfilters. Thefiltersmay be applied to anim-
age using either the convolution extension or the accumulation buffer technique. Unless otherwise
noted, the kernels presented are normalized (that is, the kernel weights sumto 0).

You should keep in mind that thissection isintended only asavery basic reference. Numeroustexts
on image processing provide more details and other filtersincluding [42].

Linedetection Detection of one pixel wide lines can accomplished with the following filters:

Horizontal Edges

-1 -1 -1

2 2 2

-1 -1 -1
Vertical Edges

-1 2 -1

-1 2 -1

-1 2 -1
L eft Diagonal Edges

2 -1 -1

-1 2 -1

-1 -1 2
Right Diagonal Edges

-1 -1 2

-1 2 -1

2 -1 -1

Gradient Detection (Embossing) Changes in value over 3 pixels can be detected using kernels
called Gradient Masks or Prewitt Masks. The direction of the change from darker to lighter is de-
scribed by one of the points of the compass. The 3x3 kernels are as follows:

North
-1 -2 -1
0 0 0
1 2 1
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West

East

[\

0 -2

South

-1 -2 -1

Northeast

0 -1 -2
1 0 -1
2 1 0

Smoothing and Blurring Smoothing and blurring operations are low-pass spatial filters. They
reduce or eliminate high-frequency aspects of an image.

Arithmetic Mean The arithmetic mean simply takes an average of the pixelsin the kernel. Each
element in thefilter isequal to 1 divided by the total number of elementsin thefilter. Thusthe 3x3
arithmetic mean filter is:

el Lol Lol g
el Lol Lol g
el Lol Lol g

Basic Smooth: 3x3 (not normalized)

e
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Basic Smooth: 5x5 (not normalized)

e
— o e e
(-
= e
— o e e
e

High-pass Filters A high-passfilter enhances the high-frequency parts of an image. Thistype of
filter is used to sharpen images.

Basic High-Pass Filter: 3x3

-1 -1 -1
-1 9 -1
-1 -1 -1

Basic High-Pass Filter: 5x5

0 -1 -1 -1 0
-1 2 -4 2 -1
-1 -4 13 -4 -1
-1 2 -4 2 -1
0 -1 -1 -1 0

Laplacian Filter The Laplacian is used to enhance discontinuities. The 3x3 kernel is:

0 -1 0
-1 4 -1
0 -1 0
and the5x5is:
1 1 1 11
1 1 1 11
1 1 24 1 1
1 1 1 11
1 1 1 11

Sobd Filter The Sobel filter consists of two kernels which detect horizontal and vertical changes
in an image. If both are applied to an image, the results can by used to compute the mag-
nitude and direction of the edges in the image. If the application of the Sobel kernels re-
sults in two images which are stored in the arrays Gh[ 0. . (hei ght-1][0. . (wi dth-1)] and
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GQv[O0.. (height-1)][0..(w dth-1)],themagnitude of the edge passing through the pixel x,
y isgiven by:

Mioper[][y] = \/Gh[ﬂf][y]2 + Gofz][y]? = [Ghlz][y]] + |Gol]ly]]

(you are justified in using the magnitude representation since the val ues represent the magnitude of
orthogonal vectors). The direction can also be derived from Gh and Gv:

_1,Golz][y]
sobe =t !
The 3x3 Sobel kerndsare;
Horizontal
-1 -2 -1
0 0 0
1 2 1
Vertical
-1 0 1
-2 0 2
-1 0 1

12.3.6 Correation and Feature Detection
The correlation operation is defined mathematically as:

+ oo

h(z) = f(z) o g(x) :/ F()g(a+7)dr (10)

— 00

The f*(r) isthecomplex conjugateof f(7), but sincethissectionwill discusscorrelation for signals
which only contain real values, substitute f(7).

Correlation is useful for feature detection; applying correlation to an image that possibly containsa
target feature and an image of that feature formslocal maxima or pixel value” spikes’ in candidate
positions. Thisisuseful in detecting letters on apage, or the position of armaments on abattlefield.
Correlation can also be used to detect motion, such asthe velocity of hurricanesin a satelliteimage
or thejittering of an unsteady camera.

For two-dimensional discreteimages, you may use Equation 9 to eva uate correlation.

The convolutionextension (EXT_convol ut i on) in OpenGL may be used to apply correlationto an
image, but only for features no larger than the maximum convolution kernel size. For larger images
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or platforms which do not supply the convol ution extension, use the accumulation buffer technique
for convolution. (It isworth the effort to consider an alternative method, such as applying a multi-
plication in the frequence domain [24], if your feature and candidate images are very large.)

Once you have applied convolution, your application will need to find the " spikes’ to determine
where features have been detected. To aid this process, it may be useful to apply thresholding with
acolor table (SGA _col or _t abl e) to convert candidates pixels to one va ue and non-candidatesto
another.

One method used for finding features uses the following steps:
e Draw asmall image containing just the feature to detect.
¢ Create aconvolution filter containing that image.
e Transfer theimage to the convolutionfilter using gl CopyConvol uti onFi | t er 2DEXT.
e Draw your candidate image into the color buffers.
e Optionally configure athreshold for candidate pixels:

— Create acolor tableusing gl Col or Tabl eSA .
— gl Enabl e( GL._.POST_CONVOLUTI ONCOLOR TABLE SG ) .

e gl Enabl e( GL_CONVOLUTI ON.2D.EXT)
e Apply pixel transfer to your candidate image using gl CopyPi xel s.
¢ Read back the frame buffer using gl ReadPi xel s.

e Measure candidate pixel locations.

If your candidate image comes from a source other than the OpenGL color buffer, use
gl Dr awPi xel s to apply the pixel transfer pipelineto your image.

If features in the candidate image are not pixel-exact, for example if they are rotated slightly or
blurred, it may be necessary to create the feature image using jittering and blending, and then lower
the acceptance threshold in the color table.

12.4 Image Warping
12.4.1 ThePixel Zoom Operation

OpenGL providescontrol over the generation of fragmentsfrom pixelsviathe pixel zoom operation.
Zoom factors are specified using gl Pi xel Zoom Negative zooms are used to specify reflections.

Pixel zooming may prove faster than the texture mapping techni ques described below on some sys-
tems, but do not provide as fine a control over filtering.
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12.4.2 WarpsUsing Texture Mapping

Image warping or dewarping may be implemented using texture mapping by defining a correspon-
dence between a uniform polygonal mesh and a warped mesh. The points of the warped mesh are
assigned the corresponding texture coordinates of the uniform mesh and the meshisrendered texture
mapped with the original image. Using this technique, simple transformations such as zoom, rota-
tion, or shearing can be efficiently implemented. The technique aso easily extendsto much higher-
order warps such as those needed to correct distortion in satellite imagery.
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13 VolumeVisualization with Texture

Volume rendering is a useful technique for visualizing three dimensional arrays of sampled data.
Examples of sampled 3D datacan rangefrom computational fluid dynamics, medical datafrom CAT
or MRI scanners, seismicdata, or any volumetric information where geometric surfaces are difficult
to generate or unavailable. Volume visualization provides a way to see through the data, revealing
complex 3D relationships.

There are a number of approaches for visualization of volume data. Many of them use data anal-
ysis techniquesto find the contour surfaces inside the volume of interest, then render the resulting
geometry with transparency.

The 3D texture approach isadirect datavisualizationtechnique, using 2D or 3D textured dataslices,
combined using a blending operator [14]. The approach described here is equivalent to ray casting
[30] and produces the same results. Unlike ray casting, where each image pixel is built up ray by
ray, this approach takes advantage of spatial coherence. The 3D texture is used as a voxel cache,
processing all rays simultaneously, one 2D layer at atime. Since an entire 2D slice of thevoxelsare
“cast” at onetime, the resulting algorithm is much faster with hardware-accel erated texture than ray
casting.

This section is divided into two approaches, one using 2D textures, the other using a 3D texture.
Although the 3D texture approach issimpler and yields superior resultsoverall, 3D texturesare cur-
rently still an EXT extensionin OpenGL and are not universally available like 2D textures. 3D tex-
turing will be available as part of OpenGL 1.2, so both methods [14] are described here.

13.1 Overview of the Technique

Thetechniquefor visualizing volumedatais composed of two parts. First thetexturedataissampled
with planes parallel to the viewport and stacked along the direction of view. These planes are ren-
dered as polygons, clipped to the limits of the texture volume. These clipped polygonsare textured
with thevolume data, and the resulting images are blended together, from back to front, towardsthe
viewing position. As each polygon isrendered, its pixel values are blended into the framebuffer to
provide the appropriate transparency effect. See Figure 59.

If the OpenGL implementation doesn’t support 3D textures, amore limited version of the technique
can be used, where 3 sets of 2D texturesare created, one set for each major plane of the volume data.

The process then proceeds as with the 3D case, except that the slices are constrained to be parallel

to one of the three 2D texture sets.

Close-up views of the volume cause sampling errors to occur at texels that are far from the line of
sight into the data. To correct this problem, use a series of concentric tessellated spheres centered
around the eye point, rather than a singleflat polygon, to generate each textured “slice” of the data.
Aswithflat dlices, the spherical shells should be clipped to the data volume, and each textured shell
blended from back to front. See Figure 60.
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Figure59. Slicing a 3D Texture to Render Volume

13.2 3D Texture Volume Rendering

Using 3D textures for volume rendering is the most desirable method. The slices can be oriented
perpendicular to the viewer’s line of sight, and creating spherical slicesfor close-up views doesn’t
lead to sampling errors.

Here are the steps for rendering avolume using 3D textures:

1. Load thevolume datainto a 3D texture. Thisisdone once for aparticular data volume.

2. Choose the number of slices, based on the criteriain Section 13.5. Usually this matches the
texel dimensions of the volume data cube.

3. Find the desired viewpoint and view direction.

4. Compute aseries of polygonsthat cut through the data perpendicular to the direction of view.
Use texture coordinate generation to texture the slice properly with respect to the 3D texture
data

5. Use the texture transform matrix to set the desired orientation of the textured images on the
slices.

6. Render each sliceasatextured polygon, from back tofront. A blend operationis performed at
each dice; thetypeof blend dependson thedesired effect. Seetheblend equation descriptions
in Section 13.4 for details.
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Eye

Figure 60. Slicing a 3D Texture with Spherical Shells

7. Astheviewpointand direction of view changes, recompute the dataslice positionsand update
the texture transformation matrix as necessary.

13.3 2D Texture Volume Rendering

Volume rendering with 2D textures is more complex and does not provide as good results as 3D
textures, but can be used on any OpenGL implementation.

The problem with 2D texturesis that the data slice polygons can’t always be perpendicular to the
view direction. Three setsof 2D texture maps are created, each set perpendicular to one of the major
axes of the data volume. These texture sets are created from adjacent 2D slices of the original 3D
volume dataaong amgjor axis. The data dlice polygons must be aligned with whichever set of 2D
texture maps is most pardle toit. Intheworst case, the data slices are canted 45 degrees from the
view direction.

The more edge-on the slices are to the eye, the worse the data sampling is. In the extreme case of
an edge-on slice, thetextured valueson theslicesaren’t blended at all. At each edge pixel, only one
sampleisvisible, from the line of texel values crossing the polygon slice. All the other values are
obscured.

For the same reason, sampling the texel data as spherical shellsto avoid aliasing when doing close-
ups of the volume data, isn't practical with 2D textures.
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Here are the steps for rendering avolume using 2D textures:

1. Generatethethreesetsof 2D texturesfromthevolumedata. Each set of 2D texturesisoriented
perpendicular to oneof volume smajor axes. Thisprocessing isdoneoncefor aparticular data
volume.

2. Choose the number of glices, based on the criteriain Section 13.5. Usually this matches the
texel dimensions of the volume data cube.

3. Find the desired viewpoint and view direction.

4. Find the set of 2D textures most perpendicular to the direction of view. Generate data slice
polygons parallel to the 2D texture set chosen. Use texture coordinate generation to texture
each slice properly with respect to its corresponding 2D texture in the texture set.

5. Use the texture transform matrix to set the desired orientation of the textured images on the
slices.

6. Render each sliceasatextured polygon, from back tofront. A blend operationis performed at
each dice; thetypeof blend dependson the desired effect. Seetheblend equation descriptions
in Section 13.4 for details.

7. Astheviewpoint and direction of view changes, recompute the data slice positionsand update
the texture transformation matrix as necessary. Alwaysorient the dataslicesto the 2D texture
set that is most closely aligned withit.

13.4 Blending Operators

There a number of common blending functions used in volume visuaization. They are described
below.

13.4.1 Over

Theover operator [51] isthe most common way to blend for volume visualization. Volumes blended
with the over operator approximate the flow of light through a colored, transparent material. The
transparency of each point in the materia is determined by the value of the texel’s apha channel.
Texels with higher apha values tend to obscure texels behind them, and stand out through the ob-
scuring texelsin front of them.

The over operator can be implemented in OpenGL by setting the blend function to perform the over
operation:

gl Bl endFunc(GL_SRC_ALPHA, G_L_ONE_M NUS_SRC _ALPHA)
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13.4.2 Attenuate

The attenuate operator simulates an X-ray of the material. With attenuate, the texel’s a pha appears
to attenuate light shiningthrough the material aong theview direction towardstheviewer. Thetexel
alpha channel models material density. The final brightnessat each pixel is attenuated by the total
texel density along the direction of view.

Attenuation can beimplemented with OpenGL by scaling each el ement by the number of slices, then
summing the results. This can be done by combination of the appropriate blend function and blend
color:

gl Bl endFunc( GL_CONSTANT_ALPHA EXT, G._ONE)
gl Bl endCol or EXT(1.f, 1.f, 1.f, 1.f/nunber_of _slices)

13.4.3 Maximum Intensity Projection

Maximum Intensity Projection, or MIP, is used in medical imaging to visualize blood flow. MIP
finds the brightest texel aphafrom al the texture slices at each pixel location. MIP is a contrast
enhancing operator; structures with higher apha values tend to stand out against the surrounding
data

MIP can beimplemented with OpenGL using the blend minmax extension:

gl Bl endEquat i onEXT( G._MAX_EXT)

13.4.4 Under

Volumeslicesrendered front to back with the under operator givethe sameresult astheover operator
blending slices from back to front. Unfortunately, OpenGL doesn’t have an exact equivalent for the
under operator, athough using gl Bl endFunc( GL_ONE.M NUS_DST, GL_DST) isagood approxi-
mation. Use the over operator and back to front rendering for best results. See Section 6.1 for more
details.

13.5 Sampling Frequency

There are anumber of factorsto consider when choosing the number of slices (datapolygons) to use
when rendering your volume:

Performance It’s often convenient to have separate “interactive” and “detail” modes for viewing
volumes. The interactive mode can render the volume with a smaller number of slices, im-
proving theinteractivity at the expense of image quality. Detail mode — rendering with more
slices— can be invoked when the volume being manipul ated slows or stops.

178

Programming with OpenGL: Advanced Rendering



Cubical Voxels Thedataslice spacing should be chosen so that the texture sampling rate from slice
to sliceis equal to the texture sampling rate within each slice. Uniform sampling rate treats
3D texturetexels as cubical voxels, which minimizes resampling artifacts.

For acubical datavolume, the number of slicesthrough the volume should roughly match the
resolution in texels of the slices. When the viewing direction is not along a mgjor axis, the
number of sample texels changes from plane to plane. Choosing the number of texels along
each sideis usually a good approximation.

Non-linear blending The over operator is not linear, so adding more slices doesn’t just make the
image more detailed. It also increasesthe overall attenuation, making it harder to see density
detailsat the “back” of thevolume. Strictly speaking, if you change the number of slicesused
torender thevolume, the alphaval ues of the datashould berescaled. Thereisonly onecorrect
sample spacing for agiven data set’s alphavalues. Generally, it doesn’t buy you anything to
have more dlicesthan you have voxelsin your 3D data

Per spective When viewing avolumein perspective, the density of slices shouldincrease with dis-
tance from the viewer. The datain the back of the volume should appear denser as a result of
perspectivedistortion. If thevolumeisn’t being viewed in perspective, then uniformly spaced
data slices are usually the best approach.

Flat vs. Spherical Slices If youareusing spherica slicesto get good close-ups of the data, thenthe
slice spacing should be handled in the same way asfor flat slices. The spheres making up the
slices should betessellated finely enough to avoid concentric shellsfrom touching each other.

2D vs. 3D Textures 3D textures can samplethedatainthe s, T', or r directionsfreely. 2D textures
are constrained to s and ¢. 2D texture slices correspond exactly to texel dices of the volume
data. To create adlice at an arbitrary point would require resampling the volume data.

Theoretically, the minimum data slice spacing is computed by finding the longest ray cast through
thevolumein theview direction, transforming thetexel valuesfound a ong that ray usingthetransfer
function (if there is one), then finding the highest frequency component of the transformed texels,
and using double that number for the minimum number of dataslicesfor that view direction.

Thiscan lead to alarge number of slices. For adata cube 512 texels on a side, the worst case would
be at least 1024+/3 dlices, or about 1774 slices. In practice, however, the volume data tends to be
bandwidth limited; and in many cases choosing the number of data slices to be equal to the vol-
ume'sdimensions, measured in texels, workswell. Inthisexample, you may get satisfactory results
with 512 dlices, rather than 1774. If the datais very blurry, or image quality is not paramount (for
example, in “interactive mode”), this value could be reduced by afactor of two or four.

13.6 Shrinkingthe Volume Image

For best visual quality, render the volume image so that the size of a texel is about the size of a
pixel. Besides making it easier to see density detailsin theimage, larger images avoid the problems
associated with under-sampling a minified volume.
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Reducing the volume size will cause the texel datato be sampled to asmaller area. Since the over
operator is non-linear, the shrunken datawill interact with it to yield an image that is different, not
just smaller. The minified image will have density artifacts that are not in the original volume data.

If asmaller imageis desired, first render the image full size in the desired orientation, then shrink
the resulting 2D image.

13.7 Virtualizing Texture Memory

Volume data doesn’t have to be limited to the maximum size of 3D texture memory. The visualiza-
tion technique can be virtuaized by dividing the data volume into a set of smaller “bricks’. Each
brick isloaded into texture memory, then dataslicesare textured and blended from thebrick asusual.
The processing of bricksthemselvesisordered from back to front relativeto theviewer. The process
is repeated with each brick in the volume until the entire volume has been processed.

To avoid sampling errors at the edges, data sli ce texture coordinates shoul d be adjusted so they don't
use the surface texels of any brick. The bricks themselves are oriented so that they overlap by one
volumetexel withtheir immediate neighbors. Thisallowstheresultsof rendering each brick to com-
bine seamlessly. For more information on paging textures, see Section 5.5.

13.8 Mixing Volumetric and Geometric Objects

In many applicationsit isuseful to display both geometric primitives and volumetric data setsin the
same scene. For example, medical datacan be rendered volumetrically, with apolygonal prosthesis
placed insideit. The embedded geometry may be opague or transparent.

The Opague geometric objects are rendered first using depth buffering. The volumetric data slice
polygons are then drawn, with depth testing still enabled. Depth buffer updating should be masked
off if the slice polygons are being rendered from front to back (for most volumetric operators, data
slices are rendered back to front). With depth testing enabled, the pixels of volume planes behind
the object aren’t rendered, while the planesin front of the object blend it in. The blending of the
planesin front of the object gradually obscureit, making it appear embedded in the volume data

If the object itself should be transparent, it must be rendered along with the data slice polygons a
sliceat atime. Theobject ischopped into slabsusing user defined clipping planes. The slab thickness
corresponds to the spacing between volume data slices. Each slab of object corresponds to one of
the data dlices. Each slice of the object is rendered and blended with its corresponding data slice
polygon, as the polygons are rendered back to front.

13.9 Transfer Functions

Different a phava uesin volumetric data often correspond to different material sin thevolume being
rendered. To help analyzethevolumedata, anon-linear transfer function can be appliedto thetexels,
highlighting particular classes of volume data. Thistransformation function can be applied through
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one of OpenGL’'slookuptables. The SG _t ext ur e_col or _t abl e extension appliesalookuptable
to texels values during texturing, after the texel value isfiltered.

Since filtering adjusts the texel component values, a more accurate method is to apply the lookup
tableto the texel values before the textures are filtered. If the EXT col or _t abl e tableextensionis
available, then acolortablein the pixel path can be used to processthe texel valueswhilethetexture
isloaded. If lookup tables aren’t available, the processing can be done to the volume data by the
application, before loading the texture.

If the paletted texture extension (EXT _pal et t ed_t ext ur e) isavailable and the 3D texture can be
stored simply as color table indices, it is possible to rapidly change the resulting texel component
values by changing the color table.

13.10 Volume Cutting Planes

Additional surfaces can be created on thevolumewith user defined clipping planes. A clipping plane
can be used to cut through the volume, exposing anew surface. Thistechnique can help expose the
volume'sinterna structure. The rendering technique is the same, with the addition of one or more
clipping planes defined while rendering and blending the data slice polygons.

13.11 ShadingtheVolume

In addition to visualizing the voxel data, the data can be lit and shaded. Since there are no explicit
surfacesin the data, lightingis computed per volume texel.

The direct approach to shading isto do it on the host. The volumetric data can be processed to find
the gradient at each voxel. Then the dot product between the gradient vector, now used asanormal,
and the light is computed, and the results saved as 3D data. The volumetric data now contains the
intensity at each point in the data, instead of data density. Specular intensity can be computed the
same way, and combined so that each texel containsthetotal light intensity at every samplepointin
the volume. This processed data can then be visualized in the manner described previously.

The problemwith thistechniqueisthat achange of light source (or viewer position, if specular light-
ing is desired) requires that the data volume be reprocessed. A more flexible approach isto save the
components of the gradient vectors as color componentsin the 3D texture. Then thelighting can be
done whilethe datais being visualized. One way to do thisisto transform the texel data using the
color matrix extension. The light direction can be processed to form amatrix that when multiplied
by the texture color components (now containing the components of the normal at that point), will
produce the dot product of thetwo. The color matrix is part of the pixel path, so this processing can
be donewhen thetextureisbeingloaded. Now the 3D texture containslighting intensitiesas before,
but the dot product calculations are donein the pixel pipeline, not in the host.

The data's gradient vectors could also be computed interactively, as an extension of the texture
bump-mapping technique described in Section 8.5. Each data slice polygon is treated as a surface
polygon to be bump-mapped. Since the texture data must be shifted and subtracted, then blended
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with the shaded polygon to generate thelit slice before blending, the process of generating lit slices
must be processed separately from the blending of slicesto create the volume image.

13.12 Warped Volumes
Thedatavolume can bewarped by non-linearly shiftingthetexturecoordinatesof the dataslices. For
more warping control, tessell ate the vertices to provide more vertex locationsto perturb the texture

coordinate values. Among other things, very high quality atmospheric effects, such as smoke, can
be produced with this technique.
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Comparison \ Description of comparison test between reference and stencil value \

GL_NEVER awaysfails

GL_ALWAYS always passes

GL_LESS passes if reference value is less than stencil buffer
GL_LEQUAL passes if reference value isless than or equal to stencil buffer
GL_EQUAL passes if reference value is equal to stencil buffer

GL_GEQUAL passesif reference valueis greater than or equal to stencil buffer
GL_GREATER | passesif reference valueis greater than stencil buffer
GL_NOTEQUAL | passesif reference valueis not equal to stencil buffer

Table 4: Stencil Buffer Comparisons

14 Using the Stencil Buffer

The stencil buffer islike the depth and color buffers, except stencil pixelsdon’t represent colors or
depths, but have appli cation-specific meanings. The stencil buffer isn’t directly visiblelikethe color
buffer, but the bitsin the stencil planesform an unsignedinteger that affects and is updated by draw-
ing commands, through the stencil function and the stencil operations. The stencil function controls
whether afragment isdiscarded or not by the stencil test, and the stencil operation determines how
the stencil planes are updated as a result of that test [43].

Stencil buffer actions are part of OpenGL’sfragment operations. Stencil testing occursimmediately
after the apha test, and immediately before the depth test. If GL_STENCI L_TEST is enabled, and
stencil planesare avail abl e, the application can control what happensunder three different scenarios:

1. Thestencil test fails.
2. The stencil test passes, but the depth test fails.
3. Boththestencil and the depth test pass.

Whether a stencil operation for a given fragment passes or fails has nothing to do with the color
or depth value of the fragment. The stencil operation is a comparison between the value in the
stencil buffer for the fragment’s destination pixel and the stencil reference value. A mask is bit-
wise AND-ed with the value in the stencil planes and with the reference value before the compari-
sonis applied. The reference vaue, the comparison function, and the comparison mask are set by
gl St enci | Func. The comparison functionsavailable are listed in Table 4.

Sencil function and stencil test are often used interchangeably in these notes, but the “stencil test”
specifically means the application of the stencil function in conjunction with the stencil mask.

If the stencil test fails, the fragment is discarded (the color and depth values for that pixel remain
unchanged) and the stencil operation associated with the stencil test failing is applied to that stencil
value. If the stencil test passes, then the depth test is applied. If the depth test passes (or if depth
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Stencil Operation | Results of Operation on Stencil Values \

GL_KEEP stencil value unchanged

GL_ZERO stencil value set to zero

GL_REPLACE stencil value replaced by stencil reference vaue
GL_I NCR stencil valueincremented

GL_DECR stencil value decremented

GL_I NVERT stencil value bitwise inverted

Table 5: Stencil Buffer Operations

testing is disabled or if the visual does not have a depth buffer), the fragment continues on through
the pixel pipeline, and thestencil operation corresponding to both stencil and depth passingisapplied
to the stencil value for that pixel. If the depth test fails, the stencil operation set for stencil passing
but depth failing is applied to the pixel’sstencil value.

Thus, the stencil test controls which fragments continue towards the framebuffer, and the stencil
operation controls how the stencil buffer is updated by the results of both the stencil test and the
depth test.

The stencil operations available are described in Table 5.

Thegl St enci | Op call setsthestencil operationsfor al three stencil test results: stencil fail, stencil
pass/depth buffer fail, and stencil pass/depth buffer pass.

Writes to the stencil buffer can be disabled and enabled per bit by gl St enci | Mask. Thisalows
an application to apply stencil tests without the results affecting the stencil values. Keep in mind,
however, that the GL_I NCR and GL_DECR operations operate on each stencil value as awhole, and
may not operate as expected when the stencil mask isnot al ones. Stencil writescan also bedisabled
by callinggl St enci | Op( GL_.KEEP, GL_KEEP, GL_KEEP) .

There are three other important ways of controlling and accessing the stencil buffer. Every
stencil value in the buffer can be set to a desired value by calling gl Cl ear Stenci |l and
gl d ear (GL_STENCI L BUFFER BI T) . The contents of the stencil buffer can be read into system
memory using gl ReadPi xel s withthe format parameter set to GL_STENCI L_I NDEX. The contents
of the stencil buffer can also be set using gl Dr awPi xel s.

Different machines support different numbers of stencil bits per pixel. Use
gl GetIntegerv(G STENCILBITS, ...) to see how many bits are available. If multi-
ple stencil bits are available, gl St enci | Mask(a) nd the mask argument to gl St enci | Func
can be used to divide up the stencil buffer into a number of different sections. This alows the
application to store separate stencil values per pixel within the same stencil buffer.

The following sections describe how to use the stencil buffer in a number of useful multipass ren-
dering techniques.
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Figure 61. Using Stencil to Dissolve Between Images

14.1 Dissolveswith Stencil

Stencil buffers can be used to mask selected pixels on the screen. This allows for pixel by pixel
compositing of images. You can draw geometry or arrays of stencil values to control, per pixel,
what isdrawn into the color buffer. Oneway to use this capability isto composite multipleimages.

A common film techniqueisthe“dissolve’, where oneimage or animated sequenceisreplaced with
another, in a smooth sequence. The stencil buffer can be used to implement arbitrary dissolve pat-
terns. Thea phaplanes of the color buffer and the a phafunction can also be used to implement this
kind of dissolve, but using the stencil buffer frees up the al pha planesfor motion blur, transparency,
smoothing, and other effects.

The basic approach to a stencil buffer dissolveisto render two different images, using the stencil
buffer to control where each image can draw to the framebuffer. This can be donevery simply by
defining astencil test and associating a different reference value with each image. The stencil buffer
isinitialized to a value such that the stencil test will pass with one of theimages' reference values,
andfail with the other. An example of adissolvepartway between two imagesisshownin Figure61.

At the start of the dissolve (the first frame of the sequence), the stencil buffer is all cleared to one
value, alowing only one of the images to be drawn to the framebuffer. Frame by frame, the stencil
buffer isprogressively changed (in an application defined pattern) to adifferent val ue, onethat passes
only when compared against the second image's reference value. As aresult, more and more of the
first image is replaced by the second.

Over a series of frames, the first image “dissolves’ into the second, under control of the evolving
pattern in the stencil buffer.
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Here is a step-by-step description of a dissolve.

Clear the stencil buffer with gl C ear ( G._STENCI L_BUFFERBI T) .

Disable writing to the color buffer, using gl Col or Mask( GL_FALSE, G._FALSE,
GL_FALSE, G._FALSE).

3. If thevauesin the depth buffer should not change, use gl Dept hMask( GL_FALSE) .

For this example, we'll have the stencil test dways fail, and set the stencil operation to write the
reference valueto the stencil buffer. Your applicationwill aso need to turn on stenciling before you
begin drawing the dissolve pattern.

Turn on stenciling; gl Enabl e( GL_STENCI L_TEST) .
Set stencil function to awaysfail; gl St enci | Func( GL_NEVER, 1, 1).

Set stencil op to write 1 on stencil test failure; gl St enci | OQp( GL_REPLACE, GL_KEEP,
GL_KEEP) .

Writethe dissolvepattern to the stencil buffer by drawing geometry or usinggl Dr awPi xel s.
Disable writing to the stencil buffer with gl St enci | Mask( GL_FALSE) .
Set stencil function to passon O; gl St enci | Func( GL_LEQUAL, 0, 1).

Enable color buffer for writing with gl Col or Mask( GL_.TRUE, GL_TRUE, GL_TRUE,
GL_TRUE) .

If you' re depth testing, turn depth buffer writes back on with gl Dept hMask.

N o g &

Draw thefirst image. It will only be written where the stencil buffer values are O.
10. Changethestencil test so only valuesthat are 1 pass; gl St enci | Func( GL_EQUAL, 1, 1).
11. Draw the second image. Only pixelswith stencil value of 1 will change.

12. Repeat the process, updating the stencil buffer, so that more and more stencil values are 1,
using your dissolve pattern, and redrawing image 1 and 2, until the entire stencil buffer has
I'sinit, and only image 2 isvisible.

If each new frame's dissolve pattern is a superset of the previous frame's pattern, image 1 doesn’t
have to be re-rendered. Thisis because once a pixel of image 1 is replaced with image 2, image

1 will never be redrawn there. Designing the dissolve pattern with this restriction can improve the
performance of thistechnique.

14.2 Decaling with Stencil

In the dissolve example, the stencil buffer controls where pixels were drawn from an entire scene.
Using stencil to control pixels drawn from a particular primitive can help solve a number of impor-
tant problems:
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Rendered Directly Decaled Using Stencil

Figure 62. Using Stencil to Render Co-planar Polygons

1. Drawing depth-buffered, co-planar polygonswithout z-buffering artifacts.

2. Decaling multiple textures on a primitive.

Theideais similar to a dissolve: write values to the stencil buffer that mask the area you want to
decal. Then use the stencil mask to control two separate draw steps; one for the decaled region, one
for therest of the polygon.

A useful example that illustrates the technique is rendering co-planar polygons. If one polygonis
to be rendered directly on top of another (runway markings, for example), the depth buffer can't
be relied upon to produce a clean separation between the two. Thisis due to the quantization of
the depth buffer. Since the polygons have different vertices, the rendering a gorithms can produce
z valuesthat are rounded to the wrong depth buffer value, so some pixels of the back polygon may
show through thefront polygon. Inan applicationwith ahigh framerate, thisresultsin ashimmering
mixture of pixelsfrom both polygons(commonly called “Z fighting” or “flimmering”). An example
isshowninin Figure 62.

To solvethis problem, the closer polygonsare drawn with the depth test disabled, on the same pixels
covered by the farthest polygons. It appears that the closer polygons are “decaled” on the farther
polygons.

Decaled polygons can be drawn with the following steps:

1. Turnon stenciling; gl Enabl e( GL_STENCI L_TEST) .

2. Set stencil function to dwayspass; gl St enci | Func( GL_ALWAYS, 1, 1).
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3. Set stencil op to set 1 if depth passes, O if it fails; gl St enci | OQp( GL_KEEP, G._ZEROQ,

GL_REPLACE) .
4. Draw the base polygon.
5. Set stencil function to pass when stencil is 1; gl St enci | Func( GL_LEQUAL, 1, 1).
6. Disablewritesto stencil buffer; gl St enci | Mask( GL_FALSE) .
7. Turn off depth buffering; gl Di sabl e( GL_DEPTH.TEST) .
8. Render the decal polygon.

The stencil buffer doesn’t have to be cleared to an initial value; the stencil values are initialized as
a side effect of writing the base polygon. Stencil values will be one where the base polygon was
successfully written into the framebuffer, and zero where the base polygon generated fragmentsthat
failed the depth test. The stencil buffer becomes a mask, ensuring that the decal polygon can only
affect the pixel sthat were touched by the base polygon. Thisisimportant if there are other primitives
partialy obscuring the base polygon and decal polygons.

There are afew limitationsto thistechnique. First, it assumesthat the decal polygon doesn’'t extend
beyond the edge of the base polygon. If it does, you'll have to clear the entire stencil buffer before
drawing the base polygon, which is expensive on some machines. If you are careful to redraw the
base polygonwiththe stencil operationsset to zero the stencil after you' vedrawn each decaled poly-
gon, you will only have to clear the entire stencil buffer once, for any number of decaled polygons.

Second, if the screen extents of the base polygons you' re decaling overlap, you’'ll have to perform
the decal processfor one base polygon and its decal s before you move onto another base and decals.
Thisisan important consideration if your application collects and then sorts geometry based on its
graphics state, where the rendering order of geometry may be changed by the sort.

Thisprocesscan be extended to allow anumber of overlapping decal polygons, the number of decals
limited by thenumber of stencil bitsavailablefor thevisual. The decalsdon’t haveto be sorted. The
procedureis the similar to the previous algorithm, with the following extensions.

Assignastencil bit for each decal and the basepolygon. Thelower thenumber, the higher thepriority
of the polygon. Render the base polygon as before, except instead of setting its stencil valueto one,
set it to the largest priority number. For example, if there were three decal |ayers, the base polygon
would have avaue of 8.

When you render a decal polygon, only draw it if the decal’s priority number is lower than the
pixelsit'strying to change. For example, if the decal’s priority number was 1, it would be able
to draw over every other decal and the base polygon; gl St enci | Func(GL LESS, 1, 0) and
gl Stenci | Op( GL_.KEEP, GL_REPLACE, GL_REPLACE).

Decal s with the lower priority numberswill be drawn on top of decals with higher ones. Since the
region not covered by the base polygon is zero, no decals can write to it. You can draw multiple
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decals at the same priority level. If you overlap them, however, the last one drawn will overlap the
previous ones at the same priority level.

Multiple textures can be drawn onto a polygon with a similar technique. Instead of writing decal
polygons, the same polygon is drawn with each subsequent texture and an a phavalue to blend the
old pixel color and the new pixel color together.

14.3 Finding Depth Complexity with the Stencil Buffer

Finding depth complexity, or how many fragments were generated for each pixel in adepth buffered
scene, is important for analyzing graphics performance. It indicates how well polygons are dis-
tributed across the framebuffer and how many fragments were generated and discarded, clues for
application tuning.

One way to show depth complexity is to use the color values of the pixelsin the scene to indicate
the number of times a pixel was written. It isrelatively easy to draw an image representing depth
complexity with the stencil buffer. The basic approach is simple. Increment a pixel’s stencil value
every timethe pixel iswritten. When the scene isfinished, read back the stencil buffer and display
it in the color buffer, color coding the different stencil values.

This technique generates a count of the number of fragments generated for each pixel, whether the
depth test failed or not. By changing the stencil operations, a similar technique could be used to
count the number of fragments discarded after failing the depth test or to count the number of times
apixel was covered by fragments passing the depth test.

Here's the procedure in more detail:

1. Clear the depth and stencil buffer;
gl O ear ( GL_STENCI L_BUFFERBI T| GL_DEPTH.BUFFERBI T) .

2. Enablestenciling; gl Enabl e( GL_STENCI L_TEST) .

3. Set up the proper stencil parameters; gl Stencil Func(GLALWAYS, 0, 0),
gl Stencil Op(GLKEEP, GL_I NCR, G._I NCR).

4. Draw the scene.

5. Read back the stencil buffer with gl ReadPi xel s, using GL_STENCI L_| NDEX as the format
argument.

6. Draw the stencil buffer to the screen using gl Dr awPi xel s with GL_COLOR | NDEX asthefor-
mat argument.

You can control the mapping of stencil vaues to colors by gl Pi xel Map. You can map the
stencil values to either RGBA or color index vaues, depending on the type of color buffer
to which you're writing. In color index mode, you must turn on the color mapping with
gl Pi xel Transferi (GL.MAP_.COLOR, GL_TRUE).
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14.4 Compositing Images with Depth

Compositing separate images together is a useful technique for increasing the complexity of ascene
[15]. Animage can be saved to memory, then drawn to the screen using gl Dr awPi xel s. Both the
color and depth buffer contents can be copied into the framebuffer. Thisis sufficient for 2D style
composites, where objects are drawn on top of each other to create the final scene. To do true 3D
compositing, it is necessary to use the color and depth values simultaneously, so that depth testing
can be used to determine which surfaces are obscured by others.

The stencil buffer can be used for true 3D compositing in a two pass operation. The color buffer
is disabled for writing, the stencil buffer is cleared, and the saved depth values are copied into the
framebuffer. Depth testing is enabled, insuring that only depth valuesthat are closer to the origina
can updatethe depth buffer. gl St enci | Op iscalled to set astencil buffer bitif the depth test passes.

The stencil buffer now contains a mask of pixels that were closer to the view than the pixels of
the original image. The stencil function is changed to accomplish this masking operation, the col or
buffer is enabled for writing, and the color values of the saved image are drawn to the frame buffer.

Thistechniqueworksbecause thefragment operations, in particul ar thedepth test and the stencil test,
are part of boththe geometry and imaging pipelinesin OpenGL. Hereisthetechniquein more detail .
It assumesthat both the depth and color val ues of an image have been saved to system memory, and
are to be composited using depth testing to an image in the framebuffer:

1. Clear the stencil buffer using gl C ear, or'ingin GL_STENCI L BUFFERBI T.

2. Disablethe color buffer for writing with gl Col or Mask.

3. Set stencil valuesto 1 when the depth test passes by calling gl St enci | Func( GL_ALWAYS,
1, 1),andgl Stencil Op( G._.KEEP, G.L_KEEP, GL_REPLACE).

4. Ensuredepth testingis set; gl Enabl e( GL_DEPTH.TEST) , gl Dept hFunc( GL_LESS).

5. Draw thedepthvaluestotheframebuffer withgl Dr awPi xel s, using GL_DEPTH.COVPONENT
for the format argument.

6. Set the stencil buffer to test for stencil values of 1 with gl St enci | Func( GL_EQUAL, 1,
1) andgl St enci | Op( GL_KEEP, GL_KEEP, GL_KEEP).

7. Disablethe depth testing with gl Di sabl e( GL_DEPTH.TEST) .

8. Draw the color valuesto the framebuffer with gl Dr awPi xel s, using GL_RGBA as the format
argument.

At this point, both the depth and color values will have been merged, using the depth test to control
which pixels from the saved image would update the framebuffer. Compositing can still be prob-
lematic when merging images with coplanar polygons.
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This process can be repeated to merge multiple images. The depth values of the saved im-
age can be manipulated by changing the values of GL_DEPTH SCALE and GL_DEPTHBI AS with

gl Pi xel Tr ansf er. Thistechnique could allow you to squeeze the incoming image into alimited
range of depth values within the scene.
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15 LineRendering Techniques

15.1 Wireframe Modds

If your goa isto draw atrue wireframe model, as opposed to drawing a hidden line rendering of a
model or highlighting edges of a model, there are several methods available (listed here in order of
least efficient to most efficient):

1. Draw the model as polygons in line mode using gl Begi n( G._POLYGON) and
gl Pol ygonMbde( GL_FRONT_AND_.BACK, G._LI NE).

Thismethodishby far theeasiest if you' realready displayingthe model asashaded solid, since
itinvolvesasingle mode change. However, itislikely to be significantly slower than the other
methods both because more processing usually occursfor polygonsthan for linesand because
every edge that is common to two polygonswill be drawn twice. This method is undesirable
when using antialiased lines as well, because each line that is drawn twice will be brighter
than any lines drawn just once.

2. Draw the polygonsaslineloopsusing gl Begi n( GL_LI NE_LLOOP) .

This method is almost as simple as the first, requiring only a change to the gl Begi n cdl.
However, except for possibly eliminating the extra processing required for polygonsit has all
of the other undesirable features as well.

3. Extract the edgesfrom the model and draw asindependent linesusing gl Begi n( GL_LI NES) .

Thismethod is more work than the previous two because each edge must beidentified and all
duplicatesremoved. However, the extrawork only needs to be done once and every time the
model isdrawn it will be drawn much faster.

4. Extract the edges from the model and connect as many as possibleinto long line strips using
gl Begi n(GL_LI NE_STRI P) .

For just alittle bit more effort than the GL_LI NES method, lines sharing common end-points
can be connected into larger line strips. This has the advantage of requiring less storage, less
data transfer bandwidth, and makes most efficient use of any line drawing hardware.

15.2 Hidden Lines

Thissection describesatechniqueto draw wireframe objectswith thehidden linesremoved or drawn
in astyle different from the ones that are visible. Thistechnique can clarify complex line drawings
of objects, and improve their appearance [35] [4].

The agorithm assumes that the object is composed of polygons. The algorithm first renders the
polygons of the abjects, then the edges themselves, which make up the line drawing. During the
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first

pass, only the depth buffer is updated. During the second pass, the depth buffer only allows

edges that are not obscured by the objects polygonsto be rendered.

Here' sthe algorithm in detail:

1
2
3
4
5

. Disablewriting to the color buffer with gl Col or Mask.

. Enable depth testing with gl Enabl e( GL_DEPTH.TEST) .
. Render the abject as polygons.

. Enablewriting to the color buffer.

. Render the object as edges using one of the methods described in Section 15.1.

In order to improve the appearance of the edges (which are likely to show depth buffer aliasing arti-
facts), use polygon offset or stencil decaling techniquesto draw the polygon edges. The following
technique workswell, although its not completely general. Usethe stencil buffer to mask where all

thel

ines, both hidden and visible, are. Then use the stencil function to prevent the polygon render-

ing from updating the depth buffer where the stencil values have been set. When the visible lines

arer

endered, there is no depth value conflict, since the polygons never touched those pixels.

Here's the modified algorithm:

. Disablewriting to the color buffer with gl Col or Mask.

. Disabledepth testing; gl Di sabl e( GL_DEPTH.TEST) .

. Clear the stencil buffer.

1
2
3. Enablestenciling; gl Enabl e( GL_STENCI L_TEST) .
4
5

. Set the stencil buffer to set the stencil values to 1 where pixels are drawn;
gl Stenci | Func( GL.AALWAYS, 1, 1); gl Stenci | Op( GL_KEEP, GL_KEEP,
GL_REPLACE) .

6. Render the object as edges.

7. Use the sencil buffer to mask out pixels where the stencil vaue is 1,

gl Stenci |l Func(GL.EQUAL, 1, 1) and gl Stenci | Op( GL_KEEP, GL_KEEP,
GL_KEEP) .

8. Render the object as polygons.

9. Turn off stenciling gl Di sabl e( GL_STENCI L_TEST).

10. Enablewriting to the color buffer.
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11. Render the object as edges using one of the methods described in Section 15.1.

Thisagorithmworksreasonably well unlessall of the hiddenand visiblelinesare not thesame color,
or if colors are interpolated between end-points. In thiscase, it's possible for a hidden and visible
line to overlap, in which case the most recent line will be the one that is drawn.

Instead of removing hidden lines, sometimesit’s desirable to render them with a different color or
pattern. This can be done with amodification of the algorithm:

L eave the color depth buffer enabled for writing.

Set the color and/or pattern you want for the hidden lines.
Render the abject as edges.

Disablewriting to the color buffer.

Render the abject as polygons.

Set the color and/or pattern you want for the visiblelines.

N oo o &~ w Ddh P

Render the object as edges using one of the methods described in Section 15.1.

Inthistechnique, all theedgesaredrawn twice; first withthe hiddenline pattern, thenwith thevisible
one. Rendering the object as polygons updates the depth buffer, preventing the second pass of line
drawing from effecting the hidden lines.

15.2.1 glPolygonOffset

In addition to the above methods which enable and disable various modes during the two
passes of rendering, the gl Pol ygonOf f set command may be used to move the lines
and polygons relative to each other. If the edges are drawn as lines in polygon mode,
gl Enabl e( GL_.POLYGON.OFFSET_LI NE) can be used to move the lines a little bit in front of
the polygons. If a faster version of drawing the lines is used (as described in Section 15.1),
gl Enabl e( GL_.POLYGON.OFFSET_FI LL) will move the polygon surfaces a little bit behind the
lines.

Keep in mind, however, that gl Pol ygonOf f set is designed to provide greater offsets for poly-
gons viewed more edge-on than for polygonsthat are flatter relative to the screen. This means that
additional work is done for each polygon which could slow down rendering. An advantage, how-
ever, isthat oncethe parameters have been tuned for aparticular OpenGL implementation, the same
unmodified code should work well on other implementations.
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15.2.2 glDepthRange

Similar effects are available using gl Dept hRange but both the polygons and the edges are drawn
at the maximum speed for each type of primitive. Thisisdone by movingthezNear valueout alittle
bit from 0.0 while setting the zFar to 1.0 for al normal drawing. Then when the edges are drawn
move the zNear valueto 0.0 and reduce the zFar value by the same amount. The offset should be at
least 0.00001, depending on the depth buffer accuracy and amount perspectiveusedin the projection
matrix, and may need to be significantly greater in many cases.

The genera agorithm for an offset of EDGE_OFFSET is:

gl Dept hRange( EDGE_OFFSET, 1.0);
<draw al |l non-edge geonetry>

gl Dept hRange(0.0, 1.0 - EDGE OFFSET);
<draw all edges>

Aswithal algorithmsdescribed in thismanual, it isup to the user to select the hidden line (or edge
highlighting) method that best meets his needs after considering ease of implementation, speed, and
image quality.

15.3 Haloed Lines

Haloing lines can make it easier to understand a wireframe drawing. Lines that pass behind other
lines stop short alittle before passing behind. It makesit clearer which lineisin front of the other.

Hal oed lines can bedrawn using thedepth buffer. Thetechniquehastwo passes. First disablewriting
to the color buffer; the first pass only updates the depth buffer. Set the line width to be greater than
the normal line width you're using. The width you choose will determine the extent of the halos.
Render the lines. Now set the line width back to normal, and enable writing to the color buffer.
Render the lines again. Each linewill be bordered on both sides by a wider “invisibleline” in the
depth buffer. Thiswider linewill mask out other lines as they pass beneath it.

. Disablewriting to the color buffer.

. Enablethe depth buffer for writing.

. Increase line width.

. Restore line width.

1
2
3
4. Render lines.
5
6. Enablewriting to the color buffer.
7

. Ensurethat depth testing is on, passing on GL_LEQUAL.
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Depth buffer

This line drawn first changed

Depth buffer

This line drawn second values

Figure 63. Haloed Line

8. Render lines.

This method will not work where multiple lines with the same depth meet. Instead of connecting,
all of thelineswill be “blocked” by the last wide line drawn. There can aso be depth buffer alias-
ing problems when the wide line z vaues are changed by another wideline crossing it. This effect
becomes more pronounced if the narrow lines are widened to improve image clarity.

To avoid this problem, use polygon offset to move narrower visiblelinesin front of the obscuring
lineswhenthelinesare being drawn as polygonsinlinemode. The minimum offset should beusedto
avoidlinesfrom one surface of the object “ popping through” the lines of aanother surface separated
by only asmall depth value.

If the vertices of the objects faces are oriented to allow face culling, Then face culling can be used
to sort the object surfaces and alow a more robust technique: The lines of the objects back faces
are drawn, then obscuring wide lines of the front face are drawn, then finally the narrow lines of the
front face are drawn. No special depth buffer techniques are needed.

Cull the front faces of the object.
Draw the object as lines.
Cull the back faces of the object.

Draw the object as widelines in the background color.

a A w NP

Draw the object as lines.

Sincethe depth buffer isn’t needed, there are no depth aliasing problems. The backface culling tech-
niqueisfast and workswell, but isnot general. 1t won’t work for multiple obscuring or intersecting
objects.
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154 Silhouette Edges

Sometimes it can be useful for highlighting purposes to draw a silhouette edge around a complex
object. A silhouette edge defines the outer boundaries of the object with respect to the viewer.

The stencil buffer can be used to render a silhouette edge around an object. With thistechnique, you
can render the object, then draw a silhouette around it, or just draw the silhouetteitself [53].

The object is drawn 4 times; each time displaced by one pixel in the = or y direction. This offset
must be donein window coordinates. An easy way to do thisisto change the viewport coordinates
each time, changing the viewport transform. The color and depth values are turned off, so only the
stencil buffer is affected.

Every time the object covers a pixel, it increments the pixel’s stencil value. When the four passes
havebeen completed, the perimeter pixelsof the object will have stencil valuesof 2 or 3. Theinterior
will have values of 4, and dl pixels surrounding the object exterior will have valuesof 0 or 1.

Here isthe agorithm in detail:

If you want to see the object itself, render it in the usua way.

Clear the stencil buffer to zero.

Disablewriting to the color and depth buffers.

Set the stencil function to always pass, set the stencil operation to increment.
Tranglate the object by +1 pixd in y, using gl Vi ewport .

Render the object.

Tranglate the object by -2 pixelsin y, using gl Vi ewport .

Render the object.

© © N oo g &~ w DdD P

Translate by +1 pixel « and +1 pixel iny.

=
©

Render.

=
=

. Trandate by -2 pixel in z.

[EnY
N

. Render.

[EnY
w

. Trandate by +1 pixel in 2. You should be back to the original position.

=
N

. Turn on the color and depth buffer.

=
[6)]

. Set the stencil function to passif the stencil valueis 2 or 3. Since the possible values range
from 0 to 4, the stencil function can passif stencil bit 1 is set (counting from 0).

=
(o)

. Rendering any primitivethat coversthe object will draw only the pixelsof the silhouette. For
asolid color silhouette, render a polygon of the color desired over the object.
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155 Preventing Smooth WideLine Overlap

When drawing a series of wide smoothed lines that overlap, such as an outline composed of a
GL_LI NE_LOOP, more than one fragment may be produced for a given pixel. Since smooth lines
require enabling GL_BLEND, thismay cause the pixel to appear brighter or darker than expected, as
the fragments add more color to that pixel than in other locations.

An application may use a combination of the stencil test and alphatest to pass only the fragments
that have the highest alpha, and therefore contribute the most color to a pixel. Thistechnique uses
repeated application of the alphatest to pass fragments with decreasing al pha, and uses the stencil
test and buffer to mark where fragments previously passed. This hasthe effect of sorting fragments
by aphavalue.

gl O ear (GL_STENCI L_BUFFER BI T);
gl Enabl e( GL_STENCI L_TEST) ;
gl Enabl e( GL_ALPHA TEST) ;
gl Enabl e( GL_LI NE_SMOOTH) ;
gl Enabl e( GL_BLEND) ;
gl Stenci |l Func(GL_NOTEQUAL, 1, Oxff);
gl Stenci | Op( GL_KEEP, GL_KEEP, G._REPLACE):
for(a = .98f; a >=0.0f; a -=.02f) {
gl Al phaFunc( GL_GREATER, a);
/* draw lines here */

Because thisdraws the line set repeatedly (50 timesin thisexample), you should consider the alpha
valueslikely to be used by your application and alter the loop appropriately.

For example, to improve performance by reducing the number of iterations, your application may
favor higher apha values by increasing the step size as the value in the loop decreases, or simply
end the loop early.

On the other hand, if your application requires more accuracy, it is possibleto iterate through every
possible apha value and pass only the fragments in each iteration that match each specific apha
value.

15.6 End CapsOn WideLines

If widelinesform aloop, likeasilhouetteedge or the outlineof apolygon, it may be necessary tofill
regionswhere onelineends and another begins, to givethe appearance of arounded joint. Smoothed
wide pointsmay be applied at the ends of the line segmentsto form an end cap.

Use an adgorithm like the one presented in Section15.5 to avoid saturating pixels with the line and
point color.
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16 Tuning Your OpenGL Application

Tuning your software allows it to use hardware capabilities more effectively. Writing high-
performance codeis usually more complex than just following aset of rules. More often, it involves
making trade-offs between special functionality, quality, and performance.

Since different hardware accel erators achieve optimal performance in different ways, not al rules
apply in all cases. Some performance rules of thumb are applicable to most every OpenGL imple-
mentation— software or hardware—and others can be hardware-specific. Thissection providesmany
hintsthat may be used to tune your OpenGL application for optimal performance.

16.1 What IsPipeline Tuning?

Traditional software tuning focuses on finding and tuning hot spots, the 10% of the code in which
a program spends 90% of itstime. Most graphics hardware accel erators are arranged in a pipeline,
where one stage may perform vertex transformation and lighting whileanother draws the actual pix-
elsinto the framebuffer. Because these stages operatein paralld, it is appropriate to use a different
approach: look for bottlenecks— overloaded stages that are holding up other processes.

At any time, one stage of the pipelineisthe bottleneck. Reducing thetime spent in that bottleneck is
the best way to improve performance. Conversely, doing work that further narrows the bottleneck,
or that creates a new bottleneck somewhere else, can further degrade performance.

If different partsof the hardware are responsiblefor different partsof the pipeline, the workload may
instead be increased at one part of the pipeline without degrading performance, as long as that part
does not become anew bottleneck. In thisway, an application can sometimes be altered to draw, for
example, ahigher-quality image with no performance degradation.

Different programs (or portions of programs) stress different parts of the pipeline, so it'simportant
to understand which elements in the graphics pipeline are the bottlenecksfor your program.

Notethat in asoftwareimplementation, the CPU doesall thework. Asaresult, it doesn’t make sense
to increase the work for any stage if another is using more CPU time; you'd be increasing the total
amount of work for the CPU and decreasing performance.

16.1.1 Three-Stage Model of the Graphics Pipeline
The graphics pipeline consists of three conceptual stages. All three parts may be implemented in
software or parts of the pipelinemay be performed by a hardware graphics accelerator. The concep-

tual model isuseful in either case: it helpsyou to know where your application spendsitstime. The
stages are:

e Theapplication program running on the CPU, feeding commands to the graphics subsystem
(always on the CPU)
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e Thegeometry subsystem, which performs per-vertex operations such as coordinate transfor-
mations, lighting, texture coordinate generation, and clipping (may be hardware-accel erated)

e Theraster subsystem, which performs per-pixel operations such as the simple operation of
writing color values into the framebuffer, or more complex operations like depth buffering,
alphablending, and texture mapping (may be hardware accel erated)

The amount of work required from the different pipeline stages varies depending on the application.
For example, consider a program that draws a small number of large polygons. Because there are
only afew polygons, the pipeline stagethat performs geometry operationsislightly loaded. Because
those few polygons cover many pixels on the screen, the pipeline stage that does rasterization is
heavily loaded.

In this example, you must speed up the rasterization stage, either by drawing fewer pixels, or by
drawing pixelsin away that takeslesstime by turning off modes like texturing, blending, or depth-
buffering. In addition, because spare capacity is available in the per-polygon stage, you may be
abletoincrease theworkload at that stage without degrading performance. For example, useamore
complex lighting model, or define geometries such that they remain the same size but look more
detailed because they are composed of alarger number of polygons.

16.1.2 Finding Bottlenecksin Your Application

The basic strategy for isolating bottlenecks is to measure the time it takes to execute part or all of
program and then change the code in ways that add or subtract work at asinglepoint in the graphics
pipeline. If changing the amount of work at a given stage does not alter performance appreciably,
that stage is not the bottleneck. If there is a noticeable difference in performance, you've found a
bottleneck.

Application bottlenecks. To seeif your application is the bottleneck, remove as much graphics
work as possible, while preserving the behavior of the applicationin terms of the number of instruc-
tions executed and the way memory is accessed. Often, changing just afew OpenGL calsisa suf-
ficient test. For example, replacing the vertex and normal calls gl Ver t ex3f v and gl Nor nal 3f v
with color subroutinecalls (gl Col or 3f v) preservesthe CPU behavior while eliminating all draw-
ing and lighting work in the graphics pipeline. If making these changes does not significantly im-
prove performance, then your application is the bottleneck.

Geometry bottlenecks. Programs that create bottlenecks in the geometry (per-vertex) stage are
termed transformlimited. Totest for bottlenecksin geometry operations, change the program so that
the application code runs at the same speed and the same number of pixels arefilled, but the geom-
etry work isreduced. For example, if you are using lighting, call gl Di sabl e withaGL_LI GHTI NG
argument to temporarily turn off lighting. If performanceimproves, your application hasageometry
bottleneck. For more information, see “ Tuning the Geometry Subsystem”.
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| Performance Parameter | Pipeline Stage

Amount of data per polygon All stages

Application overhead Application

Transform rate and geometry mode setting | Geometry subsystem

Total number of polygonsin aframe Geometry and raster subsystem
Number of pixelsfilled Raster subsystem

Fill rate for the current mode settings Raster subsystem

Duration of screen and/or depth buffer clear | Raster subsystem

Table 6: Factors Influencing Performance

On someof thefaster hardware accel erators the bus between the CPU and the graphics hardware can
[imit the number of polygonssent from the application to the geometry subsystems. If removing the
gl Col or 3f v or gl Nor mal 3f v calls showsaspeed improvement on such asystem, the bus may be
the bottleneck.

Rasterization bottlenecks. Programs that cause bottlenecks at the rasterization (per-pixel) stage
in the pipeline are fill limited. To test for bottlenecks in rasterization operations, shrink objects or
make the window smaller to reduce the number of active pixels. Thistechniquewon’'t work if your
program alters its behavior based on the sizes of objects or the size of the window. You can aso
reducethework done per pixel by turning off per-pixel operationssuch as depth-buffering, texturing,
or aphablending. If any of these experiments speed up theprogram, it hasafill bottleneck. For more
information, see “ Tuning the Raster Subsystem”.

Many programs draw a variety of things, each of which stress different parts of the system. De-
compose such aprogram into pieces and time each piece. You can then focus on tuning the slowest
pieces.

Since correct double buffering waits for the vertical retrace of the monitor before switching the
buffer, you will only be able to time your application in units of the monitor refresh rate (e.g. 1/60
of a second), unless you run your tests in single-buffered mode. Single buffered behavior can be

achieved with adoublebuffered visua by drawing to the front buffer. Screen clearsand all the other
normal operations can remain the same.

Table 6 provides an overview of factors that may limit rendering performance and the part of the
pipelineto which they belong.

16.2 Optimizing Your Application Code
16.2.1 Optimize Cacheand Memory Usage

On most systems, memory is structured in a hierarchy that contains a small amount of faster, more
expensive memory at thetop (e.g., CPU registers) and alarge amount of slower memory at the base
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(e.g., hard disks). Asmemory isreferenced, it isautomatically copied into higher levels of the hier-
archy, so datathat is referenced most often migrates to the fastest memory locations.

The goal of machine designers and programmers is to maximize the chance of finding data as high
up in this memory hierarchy as possible. To achieve this goal, algorithms for maintaining the hi-
erarchy, embodied in the hardware and the operating system, assume that programs have locality
of reference in both time and space; that is, programs are much more likely to access alocation re-
cently accessed or those nearby it, than elsewhere. Performance increases if you respect the degree
of locality required by each level in the memory hierarchy.

Minimizing Cache Misses. Most CPUs have first-level instruction and data caches on chip and
many have second-level caches that are bigger but somewhat slower. Memory accesses are much
faster if the datais already loaded into the first-level cache. When your program accesses data that
isn’'tinoneof the caches, acache missoccurs. Thiscausesablock of consecutively addressed words,
including the data that your program just accessed, to be loaded into the cache. Since cache misses
are costly, you should try to minimize them, using thesetips:

o Keep frequently accessed datatogether. Store and access frequently used datain flat, sequen-
tial datastructuresand avoid pointer indirection. Thisway, the most frequently accessed data
remainsin thefirst-level cache as much as possible.

e Accessdatasequentially. Each cache missbringsinablock of consecutively addressed words
of needed data. If you are accessing data sequentially then each cache miss will bringin »
words (where n is system dependent); if you are accessing only every nthword, then you will
constantly be bringing in unneeded data, degrading performance.

e Avoid simultaneously traversing severa large buffers of data, such as an array of vertex co-
ordinates and an array of colorswithin aloop since there can be cache conflicts between the
buffers. Instead, pack the contentsinto one buffer whenever possible. If you are using vertex
arrays, try to useinterleaved arrays. (For more information on vertex arrays see “Rendering
Geometry Efficiently”.)

Some framebuffers have cache-like behaviors aswell. It is a good ideato group geometry so that
the drawing is done to one part of the screen at atime. Using triangle strips and polylinestends to
do thiswhile simultaneously offering other performance advantages as well.

16.2.2 StoreDatain aFormat That isEfficient for Rendering
Putting some extra effort into generating a simpler database makes a significant difference when
traversing that datafor display. A common tendency isto leave the datain aformat that is good for

loading or generating the object, but non-optimal for actualy displayingit. For peak performance,
do asmuch of thework as possiblebefore rendering. Thispreprocessingistypically performed when
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an application can temporarily be non-interactive, such as at initialization time or when changing
from amodeling to a fast-rendering mode.

See “Rendering Geometry Efficiently” and “ Rendering Images Efficiently” for tipson how to store
your geometric data and image data to make it more efficient for rendering.

Minimizing State Changes. Your program will amost always benefit if you reduce the number
of state changes. A good way to do thisisto rearrange your scene data according to what stateis
set and render primitives with the same state settings together. Mode changes should be ordered so
that the most expensive state changes occur least often. Typically it is expensiveto change texture
binding, material parameters, fog parameters, texturefilter modes, and thelightingmodel. However,
some experimentation will be required to determine which state settingsare most expensive on your
target systems. For example, on systems that accel erate rasterization, it may not be that expensive
to change rasterization controls such as the depth test function and whether or not depth testing is
enabled. However, if you are running on a system with software rasterization, thismay cause cached
graphics state, such as function pointers or automatically generated code, to be flushed and regen-
erated.

Your target OpenGL implementation may not optimize state changes that are redundant, so it'salso
important for your application to avoid setting the same state val ues twice, such as enabling lighting
when it isaready enabled.

16.2.3 Per-Platform Tuning

Many of the performance tuning techniques discussed here (e.g., minimizing the number of state
changes and disabling features that aren’t required) are a good idea no matter what system you are
targeting. Other tuning techniques are specific to particular system. OpenGL implementationsvary
widely, so inexpensive commands on one platform may be expensive on another. For example, be-
fore you sort your database based on state changes, you need to determine which state changes are
the most expensive for each system on which you are interested in running.

In addition, you may want to modify the behavior of your program depending on which modes are
fast. Thisisespecially important for programs that must run faster than a particular frame rate. Fea-
tures may need to be disabled in order to maintain interactivity. For example, if a particular texture
mapping environment is slow on one of your target systems, you may need to disabl e texture map-
ping or change the texture environment whenever your program is running on that platform.

Before you can tune your program for each of the target platforms, you need to characterize those
platforms performance. Thisisn't dways straightforward. Often a particular deviceisableto ac-
celerate certain features, but not all at the same time. Thusit isimportant to test the performance
for combinations of featuresthat you will be using. For example, a graphics adapter may accelerate
texture mapping but only for certain texture parameters and texture environment settings. Even if
all texture modes are accelerated, experimentation will be required to see how many textures you
can use at once without causing the adapter to page textures in and out of the local memory.
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An even more complicated situation arisesif the graphics adapter has a shared pool of memory that
is allocated to several tasks. For example, the adapter may not have a framebuffer deep enough to
contain a depth buffer and a stencil buffer. In this case, the adapter would be able to accel erate both
depth buffering and stenciling but not at the same time. Or perhaps, depth buffering and stenciling
can both be accelerated but only for certain stencil buffer depths.

Typically, per-platform testing isdone at initialization time. You should do sometrial runsthrough
your data with different combinations of state settings and cal culate the time it takes to render in
each case. You may want to save the resultsin afile so your program doesn’t have to do this each
timeit startsup. You can find an exampl e of how to measure the performance of particular OpenGL
operations and save theresultsusing thei sf ast program on the web site.

16.3 Tuning the Geometry Subsystem
16.3.1 UseExpensive Modes Efficiently

OpenGL offers many features that create sophisticated effects with excellent performance. How-
ever, thesefeatures have some performance cost, compared to drawing the same scene without them.
Use these features only where their effects, performance, and quality are justified.

e Turn off features when they are not required. Once a feature has been turned on, it can slow
the transform rate even when it has no visible effect.

For example, the use of fog can slow the transform rate of polygons. When the polygons
are too close to show fog, or when the fog density is set to zero, turn off fog explicitly with
gl D sabl e( GL_FOQ) .

e Minimize mode changes. Be especially careful about expensive mode changes such as chang-
ing gl Dept hRange parameters and changing fog parameters when fog is enabled.

e For optimum performance of most software renderers and many hardware renderers as well,
useflat shading. Thisreducesthe number of lighting computationsfrom one per-vertex to one
per-primitive, and a so reduces the amount of datathat must be processed for each primitive.
Keep in mind that long triangl e strips approach one vertex per primitive and may show little
benefit from flat shading.

16.3.2 Optimizing Transformations

OpenGL implementations are often able to optimize transform operations if the matrix type is
known. Follow these guidelines to achieve optimal transform rates:

e Usegl Loadl dent i t y toinitializeamatrix, rather than|oading your own copy of theidentity
matrix.

204

Programming with OpenGL: Advanced Rendering



e Use specific matrix callssuch as gl Rot at e, gl Tr ansl at e, and gl Scal e rather than com-
posing your own rotation, translation, or scale matrices and calling gl LoadMat ri x and/ or
gl Mul t Matri x.

16.3.3 Optimizing Lighting Performance

OpenGL offers alarge selection of lighting features. The penalties some features carry may vary
depending on the hardware you’ re running on. Be prepared to experiment with the lighting config-
uration.

As a general rule, use the smplest possible lighting model: a singleinfinite light with an infinite
viewer. For someloca effects, try replacinglocal lightswithinfinitelightsand alocal viewer. Keep
in mind, however, that not al ruleslisted hereincrease performance for all architectures.

Use the following settings for peak performance lighting:

e Singleinfinitelight.

e Nonloca viewing. Set GL_LI GHT_MODEL _LOCAL VI EVER to GL_FALSE in gl Li ght Model
(the default).

e Single-sidedlighting. Set GL_LI GHT_MODEL_TWO.SI DEtoGL_FALSEingl Li ght Model (the
default).

o If two-sidedlightingisused, usethe same materia propertiesfor front and back by specifying
GL_FRONT_AND_BACK.

e Don't use per-vertex color.

e Disable GL_NORMALI ZE. Since it is usually only necessary to renormalize when the model -
view matrix includes a scaling transformation, consider preprocessing the scene to eliminate
scaling.

In addition, follow these guidelinesto achieve peak lighting performance:

e Avoid using multiplelights.
There may be a sharp drop in lighting performance when adding lights.

e Avoidusingloca lights.
Local lightsare noticeably more expensive than infinitelights.

e Usepositional light sources rather than spot lights.
If local lights must be used, apositional light isless expensive than a spot light.
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e Don't change material parameters frequently.

Changing materia parameters can be expensive. If you need to change the material parame-
tersmany times per frame, consider rearranging the scene to minimize material changes. Also
consider using gl Col or Mat eri al if you need to change some material parameters often,
rather than using gl Mat eri al to change parameters explicitly. Changing materia parame-
tersinsideagl Begi n/gl End sequence can be more expensive than changing them outside.

Thefollowing code fragment illustrates how to change ambient and diffuse material parame-
ters at every polygon or at every vertex:

gl Col or Mat eri al (GL_FRONT_AND BACK, GL_AMBI ENT_AND DI FFUSE) ;
gl Enabl e( GL_COLOR_MATERI AL) ;

/* Draw triangles: */

gl Begi n( G__TRI ANGLES) ;

/* Set anmbient and diffuse material paraneters: */

gl Col or4f (red, green, blue, alpha);

gl Vertex3fv(...);glVertex3fv(...);glVertex3fv(...);

gl Col or4f (red, green, blue, alpha);

gl Vertex3fv(...);glVertex3fv(...);glVertex3fv(...);

gl End() ;
e Avoidloca viewer.

Local viewing: Setting GL_LI GHT_MODEL _LOCAL _VI EWERt0 GL_TRUE withgl Li ght Mbdel ,
while using infinite lights only, reduces performance by a small amount. However, each ad-
ditional local light noticeably degrades the transform rate.

¢ Disabletwo-sided lighting.
Two-sided lightingilluminatesboth sidesof apolygon. Thisismuch faster thantheaternative

of drawing polygons twice. However, using two-sided lighting can be significantly slower
than one-sided lighting for asingle rendering of an object.

e Disable GL_NORMALI ZE.

If possible, provide unit-length normals and don't call gl Scal e to avoid the overhead of
GL_NORMALI ZE. On some OpenGL implementationsit may befaster to simply rescalethe nor-
mal, instead of renormalizing it, when the model view matrix containsauniform scale matrix.
The normal rescaling functionality in OpenGL 1.2, or the EXT_r escal e_nor mal extension
for older OpenGL versions, can be used to improve the performance of this case. If it issup-
ported, you can enable GL_RESCALE_NORNMAL _EXT and the normal will be rescaled making re-
normalization unnecessary.

¢ Avoid changing the GL_SHI NI NESS material parameter if possible.

Some portionsof thelighting cal culation may be approximated with atable, and changing the
GL_SHI NI NESS value may force those tables to be regenerated.
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16.3.4 Advanced Geometry-Limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited drawing. Follow these
guidelinesto draw objectswith complex surface characteristics:

e Usetextureto replace complex geometry.

Texture mapping can be used instead of extra polygonsto add detail to a geometric object.
Thiscan greatly simplify geometry, resultingin anet speed increase and an improved picture,
aslongasit doesnot causetheprogramto becomefill-limited. However, since many hardware
implementations are slower to fill textured pixels than non-textured pixels, large areas to be
covered with a simple texture can often be drawn faster if drawn as geometry.

e Usetextured polygons as single-polygon billboards.

Billboards are polygonsthat are fixed at a point and rotated about an axis, or about a point, so
that the polygon always faces the viewer. Billboards can be used for distant objects to save
geometry.

e Usegl Al phaFunc in conjunctionwith one or more texturesto givethe effect of rather com-
plex geometry on a single polygon.
Consider drawing an image of a complex object by texturing it onto a single polygon. Set
alphavaues to zero in the texture outside the image of the object. (The edges of the object
can be antialiased by using a phaval ues between zero and one.) Orient thepolygontofacethe
viewer. To prevent pixelswith zero aphavauesin the textured polygon from being drawn,
call gl Al phaFunc( GL_NOTEQUAL, 0.0).

This effect is often used to create objects like trees that have complex edges or many holes
through which the background should be visible (or both).

¢ Eliminate objects or polygonsthat will be out of sight or too small to see.

16.4 Tuningthe Raster Subsystem

An explosionof both dataand operationsisrequired to rasterizeapolygonasindividual pixels. Typi-
cally, the operationsinclude depth comparison, Gouraud shading, color blending, logical operations,
texture mapping, and possibly antialiasing. The following technigques can improve performance for
afill-limited applications.

16.4.1 Using Backface/Frontface Removal

To reducefill-limited drawing, use backface and frontface removal. For example, if you are drawing
a sphere, haf of its polygons are backfacing at any given time. Backface and frontface removal is
doneafter transformation cal cul ati ons but before per-fragment operations. Thismeansthat backface
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removal may make transform-limited polygons somewhat slower, but make fill-limited polygons
significantly faster. You can turn on backface removal when you are drawing an object with many
backfacing polygons, then turn it off again when drawing is completed. Back face removal has the
added advantage of eliminating x-fighting problems on objects with sharp edges.

16.4.2 Minimizing Per-Pixel Calculations

Another way to improve fill-limited drawing is to reduce the work required to render fragments.

Avoid Unnecessary Per-Fragment Operations.  Turn off per-fragment operationsfor objectsthat
do not requirethem, and structure the drawing process to minimize their use without causing exces-
sive toggling of modes. For example, if you are using alphablending to draw some partialy trans-
parent objects, make sure that you disable blending when drawing the opaque abjects. Also, if you
enabl e al phatest to render textures with hol es through which the background can be seen, be sureto
disable al phatesting when rendering textures or objectswith no holes. It also helpsto sort primitives
so that primitivesthat require a phablending or alphatest to be enabled, are drawn at the same time
(and hopefully after all non-transparent primitives).

Use Simple Fill Algorithmsfor Large Polygons. If you are drawing very large polygons such
as “backgrounds’, your performance will be improved if you use simple fill algorithms. For ex-
ample, you should set gl ShadeMbdel to GL_FLAT if smooth shadingisn’t required. Also, disable
per-fragment operations such as depth buffering, if possible. If you need to texture the background
polygons, consider using GL_REPLACE for the texture environment. Keep in mind that on many ar-
chitectures, aclear operation can be significantly faster than drawing large polygons.

Usethe Depth Buffer Efficiently.  Any rendering operation can becomefill-limited for large poly-
gons. Clever structuring of drawing can e iminate or minimize per-pixel depth buffering operations.
For example, if large backgrounds are drawn first, they do not need to be depth buffered. It is better
to disable depth buffering for the backgroundsand then enabl eit for other abjectswhereit isneeded.

Games and flight simulators often use this technique. The sky and ground are drawn with depth
buffering disabled, then the polygonslying flat on the ground (runway and grid) are drawn without
suffering a performance penalty. Finally, depth buffering is enabled for drawing the mountains and
airplanes.

There are many other special cases in which depth buffering might not be required. For example,
terrain, ocean waves, and 3D function plots are often represented as height fields (X -Y grids with
one height value at each lattice point). It’s straightforward to draw height fieldsin back-to-front or-
der by determining which edge of the field is furthest away from the viewer, then drawing strips of
triangles or quadrilaterals parallel to that starting edge and working forward. The entire height field
can be drawn without depth testing provided it doesn’t intersect any piece of previously-drawn ge-
ometry. Depthvauesneed not bewritten at all, unless subsequently-drawn depth buffered geometry
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might intersect the height field; in that case, depth valuesfor the height field should be written, but
the depth test can be avoided by calling gl Dept hFunc( GL_ALWAYS) .

16.4.3 Optimizing Texture Mapping

Follow these guidelines when rendering textured objects:

e Avoid frequent switching between texture maps. If you have many small textures, consider
combining them into asinglelarger, mosaiced texture. Rather than switching to anew texture
before drawing atextured polygon choosetexture coordinatesthat select the appropriate small
texturetile within the large texture.

e Use texture aobjects to encapsulate texture data. Place al the gl Tex! mage calls (including
mipmaps) required to completely specify atextureand theassociated gl TexPar anet er cals
(which set texture properties) into atexture object and bind thistexture object to therendering
context. This allows the implementation to compile the texture into aformat that is optimal
for rendering and, if the system accel erates texturing, to efficiently manage textures on the
graphics adapter.

e Try to keep texture references localized between polygons. Some implementations use
caching to optimize texture mapped rendering. Keeping thetexture referenceslocalized when
sending a batch of polygonsto OpenGL can reduce the cache misses.

o If possible, use gl TexSubl mage* Dto replace all or part of an existing texture image rather
than the more costly operations of deleting and creating an entire new image.

e Call gl AreText ur esResi dent to make surethat all your textures are resident during ren-
dering. (On systemswheretexturingisdoneonthehost, gl Ar eText ur esResi dent always
returns GL_TRUE.) If necessary, reduce the size or internal format resolution of your textures
until they al fit into memory. If such a reduction creates intolerably fuzzy textured objects,
you may use higher resolutions and specify which textures are important to keep in texture
memory by using gl Pri oriti zeTextures.

e Usesmaler texel sizes. Thereis often atradeoff between texel size and the speed of texture
filtering, with smaller texel sizestypically performing better. Applicationsshouldtry to mini-
mize thewidth of atexel internal format to something like GL_RGBA4 or GL_RGB5 _Al for color
textures and 8 bit components for luminance or luminance alpha textures unless the applica-
tion reguires the extra color resolution.

e Avoid expensive texture filter modes. On some systems, trilinear filtering is much more ex-
pensive than point sampling or bilinear filtering.
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16.4.4 Clearingthe Color and Depth Buffers Simultaneously

The most basic per-frame operations are clearing the color and depth buffers. On some systems,
there are optimizationsfor common special cases of these operations.

Whenever you need to clear both the color and depth buffers, don’t clear each buffer independently.
Instead use gl Cl ear (GL_.COLORBUFFERBI T | GL_DEPTHBUFFERBI T) .

Also, be sure to disable dithering before clearing.

16.5 Rendering Geometry Efficiently
16.5.1 Using Peak-Performance Primitives

This section describes how to draw geometry with optimal primitives. Consider these guidelinesto
optimize drawing:

e Use connected primitives (line strips, triangle strips, triangle fans, and quad strips).

Connected primitives are desirable because they reduce the amount of data both stored and
transferred, and the amount of per-polygon or per-line work done by the OpenGL. Be sure
to put as many vertices as possiblein agl Begi n/ gl End sequence to amortize the cost of a
gl Begi n and gl End.

e Avoidusing gl Begi n( GL._POLYGON) .

When rendering independent triangles, use gl Begi n( G._TRI ANGLES) instead of
gl Begi n(GL_POLYGON). Also, when rendering independent quadrilaterals, use
gl Begi n( GL_QUADS) .

e Batch primitives between gl Begi n and gl End.

Use a single call to gl Begi n( G._TRI ANGLES) to draw multiple independent triangles
rather than calling gl Begi n( GL_TRI ANGLES) multiple times. Also, use a single call to
gl Begi n( GL_QUADS) to draw multiple independent quadrilaterals, and a single cal to
gl Begi n( GL_LI NES) to draw multipleindependent line segments.

e Use“well-behaved” polygons—convex and planar, with only three or four vertices.

Concave and sdlf-intersecting polygons must be tessellated by the GLU library before they
can be drawn, and are therefore prohibitively expensive. Nonplanar polygons and polygons
with large numbers of vertices are more likely to exhibit shading artifacts.

If your database has polygonsthat are not well-behaved, perform aninitia one-time passover
the database to transform the troublemakers into well- behaved polygons and use the new
database for rendering. You can store the resultsin OpenGL display lists. Using connected
primitives resultsin additional gains.
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e Minimize the data sent per vertex.

Polygon rates can be affected directly by the number of normals or colors sent per polygon.
Setting a color or normal per vertex, regardless of the gl ShadeMbdel used, may be slower
than setting only a color per polygon, because of the time spent sending the extra data and
resetting the current color. The number of normalsand colors per polygon also directly affects
the size of adisplay list containing the object.

e Group like primitives and minimize state changes to reduce pipeline revalidation.

e Keep primitive data consistent.

Try to send the same type of data for each vertex of a primitive. In other words, if the first
vertex has an associated color or normal, the primitive can often be more efficiently processed
if al the following vertices also have a color or normal.

e Forwireframeobjects, GL_LI NES, GL_LI NE.STRI Pand GL_LI NE_LOOP arelikely to besignif-
icantly faster than drawing polygonsaslinesusinggl Pol ygonMode ( GL_FRONT_AND_BACK,
GL_LI NE) . First, thelines only are drawn once rather than twice. Second, lines representing
the polygon edges of a closed object can easily be turned into long polylines which take up
less space and are drawn more efficiently than individual lines.

16.5.2 Using Vertex Arrays

Vertex arrays are availablein OpenGL 1.1. They offer the following benefits:

e The OpenGL implementation can take advantage of uniform data formats.

e Thegl I nterl eavedArrays cal letsyou specify packed vertex data easily. Packed vertex
formats are typically faster for OpenGL to process.

e Thegl Dr awAr r ays call reduces subroutine call overhead.

e Thegl Dr awnEl ermrent s cal reduces subroutinecall overhead and al so reduces per-vertex cal -
culationsbecause verticesmay bereused. Be awarethat usingindexed vertices may introduce
other problems with cache missesif the access pattern corresponding to the indexesisirreg-
ular enough. Indexed arrays are often most useful with implementations which perform the
vertex processing on the CPU and may tend to degrade the performance of systems which
have fast geometry processing in the acclerator if they become bottlenecked by the memory
subsystem.

e Usethe EXT_conpi | ed_vertex_array extension if it is available. This extension allows
you to lock down the portions of the arrays that you are using. This way the OpenGL im-
plementation can DMA the arrays to the graphics adapter or reuse per-vertex cal culationsfor
vertices that are shared by adjacent primitives.
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If you usegl Begi n andgl End instead of gl Dr awAr r ays or gl Dr awEl enent s cals, put as many
vertices as possible between the gl Begi n and the gl End calls.

16.5.3 Using Display Lists

You can often improve performance by storing frequently used commandsin a display list. If you
plan to redraw the same geometry multipletimes, or if you have a set of state changes that need to
be applied multiple times, consider using display lists. Display listsalow you to define the geome-
try and/or state changes once and execute them multiple times. Some graphics hardware may store
display listsin dedicated memory or may store the datain an optimized form for rendering.

The biggest drawback of using display listsis data expansion. The display list contains an entire
copy of all your data plus additional data for each command and for each list. As aresult, tuning
for display listsfocuses mainly on reducing storage requirements. Performance improvesif the data
that is being traversed fitsin the cache. Follow these rules to optimize display lists:

e Call gl Del et eLi st s to delete display lists that are no longer needed. This frees storage
space used by the deleted display listsand expedites the creation of new display lists.

¢ Avoid duplication of display lists. For example, if you have a scene with 100 spheres of dif-
ferent sizes and materials, generate one display list that is a unit sphere centered about the
origin. Then reference the sphere many times, setting the appropriate material properties and
transforms each time.

o Makethedisplay listsasflat as possible, but be sure not to exceed the cache size. Avoid using
an excessive hierarchy with many invocationsto gl Cal | Li st . Each gl Cal | Li st invoca
tion requires the OpenGL implementation to do some work (e.g., a table lookup) to find the
designated display list. A flat display list requires less memory and yields simpler and faster
traversal. It also improves cache coherency.

On the other hand, excessive flattening increases the size. For example, if you're drawing
a car with four wheels, having a hierarchy with four pointers from the body to one wheel is
preferableto aflat structure with one body and four wheels.

e Avoid creating very small display lists. Very small lists may not perform well sincethereis
some overhead when executing alist. Also, it isoften inefficient to split primitive definitions
across display lists.

o If appropriate, store state settings with geometry; it may improve performance.

For exampl e, suppose you want to apply a transformation to some geometric objectsand then
draw the result. If the geometric objects are to be transformed in the same way each time, it
is better to store the matrix in the display list.
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16.5.4 Balancing Polygon Size and Pixel Operations

The optimum size of polygons depends on the other operations going on in the pipeline:

16.6

If the polygons are too large for the fill-rate to keep up with the rest of the pipeline, the ap-
plicationisfill-rate limited. Smaller polygons balance the pipeline and increase the polygon
rate, allowing finer looking details and better lighting without changing the overall time to
draw the object.

If the polygonsare too small for the rest of the pipelineto keep up with filling, then the appli-
cationistransformlimited. Larger and fewer polygons, or fewer vertices, balance the pipeline
and increase thefill rate allowing the abject to be drawn faster.

Rendering I mages Efficiently

To improve performance when drawing pixel rectangles, follow these guidelines:

16.7

Disableal per-fragment operations.
Disable texturing and fog.
Defineimagesin the native hardware format so type conversion is not hecessary.

Know where the bottleneck is.

Similar to polygon drawing, there can be a pixel-drawing bottleneck due to overload in host
bandwidth, processing, or rasterizing. When al modes are off, the path ismost likely limited
by host bandwidth, and awise choice of host pixel format and type pays off tremendously. For
thisreason, using type GL_UNSI GNED_BYTE, for the image components is sometimes faster.

Zooming up pixels may create araster bottleneck.

A big pixel rectanglehasahigher throughput (that is, pixelsper second) thanasmall rectangle.
Because the imaging pipelineis tuned to trade off a relatively large setup time with a high
throughput, a large rectangle amortizes the setup cost over many pixels.

Tuning Animation

Tuning animation requires attention to some factors not relevant in other types of applications. This
section discusses those factors.
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16.7.1 Factors Contributing to Animation Speed

The smoothness of an animation depends on its frame rate. The more frames rendered per second,
the smoother the motion appears.

Smooth animation also requires double buffering. In double buffering, one framebuffer holds the
current frame, which isscanned out to the monitor by video hardware, whilethe rendering hardware
isdrawinginto asecond buffer that isnot visible. Whenthe new framebuffer isready to be displayed,
the system swaps the buffers. The system must wait until the next vertical retrace period between
raster scans to swap the buffers, so that each raster scan displaysan entire stable frame, rather than
parts of two or more frames.

Frame rates must be integral multiples of the screen refresh time, which is 16.7 msec (milliseconds)
for a60-Hz monitor. If the draw time for aframe is slightly longer than the time for n raster scans,
the system waits until the n+ 1st vertical retrace before swapping buffers and allowing drawing to
continue, sothetotal frametimeis(n+1)* 16.7 msec. It may bevery hard to make thefinal transition
from one haf of the display subsystem’srefresh time to full speed, because you will need to speed
up your program by afactor of at least two.

To summarize: A change in the time spent rendering a frame when doubl e buffering has no visible
effect unlessit changes the total time to a different integer multiple of the screen refresh time.

If you want an observable performance increase, you must reduce the rendering time enough to take
a smaller number of 16.7 msec raster scans. Alternatively, if performance is acceptable, you can
add work without reducing performance, as long as the rendering time does not exceed the current
multiple of the raster scan time.

To help monitor timing improvements, turn off double buffering by always drawing to the front
buffer. If you don't, it’s difficult to know if you're near a16.7 msec boundary.

16.7.2 Optimizing Frame Rate Performance

The most important aid for optimizing frame rate performance is taking timing measurements in
single-buffer mode only. For more detailed information, see “Taking Timing Measurements”.

In addition, follow these guidelinesto optimize frame rate performance:

¢ Reduce drawing timeto alower multiple of the screen refresh time.
Thisisthe only way to produce an observable performance increase.

¢ Perform non-graphics computation after swapping buffers.

If an implementation allows control to return to a program while waiting to swap the color
buffers, the program is free to do non-graphics computation. Therefore, the procedure for
rendering aframe could be: call swapbuffersimmediately after sending the last graphics call
for the current frame, perform computation needed for the next frame, then execute OpenGL
calsfor the next frame.
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¢ Do non-drawing work after a screen clear.

Clearing afull screen can taketime. If you make additional drawing callsimmediately after a
screen clear, you may fill up the graphics pipeline and force the program to stall. Instead, do
some non-drawing work after the clear.

If youarerotating or otherwise moving an object at afixed speed, itiswiseto basethetransformation
on the amount of time spent rendering the frame rather than a fixed amount per frame, so that the
motion doesn’t speed up or slow down as scene complexity or viewing angle changes.

16.8 Taking Timing M easurements

Timing, or benchmarking, parts of your program is an important part of tuning. It helpsyou deter-
mine which changes to your code have a noticeabl e effect on the speed of your application.

To achieve performance that is demonstrably close to the best the hardware can achieve, you can
first follow the more general tuning tips provided here, but you then need to apply a rigorous and
systematic anaysis.

16.8.1 Benchmarking Basics

A detailed analysisinvolves examining what your program is asking the system to do and then cal-
culating how long that should take, based on the known performance characteristics of the hardware.
Compare thiscalculation of expected performance with the performance actually observed and con-
tinue to apply the tuning techniques until the two match more closely. At this point, you have a de-
tailed accounting of how your program spendsitstime, and you are in a strong position both to tune
further and to make appropriate decisions considering the speed-versus-quality trade-off.

The following parameters determine the performance of most applications:

e Total number of polygonsin aframe

e Transform rate for the given polygon type and mode settings
e Number of pixelsfilled

e Fill rate for the given mode settings

e Duration of color and depth buffer clear

e Duration of buffer swap

e Length of time spent in application overhead

e Number of attribute changes and time per change
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16.8.2 Achieving Accurate Timing M easurements

Consider these guidelinesto get accurate timing measurements:

e Take measurements on aquiet system. Verify that no unusua activity istaking place on your
system while you take timing measurements. Terminate other applications. For example,
don’t have a clock or anetwork application like sendmail running while you are benchmark-

ing.
e Choosetiming trialsthat are not limited by the clock resolution.

Use a high-resolution clock and make measurements over a period of time that’s at least one
hundred times the clock resolution. A good rule of thumb is to benchmark something that
takes at | east two seconds so that the uncertainty contributed by the clock reading islessthan
one percent of thetotal error. To measure something that’s faster, write aloop to execute the
test code repeatedly.

e Benchmark static frames.

Verify that the code you are timing behavesidentically for each frame of agiventimingtrial.
If the scene changes, the current bottleneck in the graphics pipeline may change, making your
timing measurements meaningless. For example, if you are benchmarking the drawing of a
rotating airplane, choose asingleframe and draw it repeatedly, instead of letting the airplane
rotate, or make sure the rotation covers the same angles every time. Once asingleframe has
been analyzed and tuned, look at frames that stress the graphics pipeline in different ways,
then analyze and tune them individually.

e Compare multipletrials.

Run your program multiple times and try to understand variance in the trials. Variance may
be dueto other programs running, system activity, prior memory placement, or other factors.

e Call gl Fi ni sh before reading the clock at the start and at the end of the time trial.

Thisisimportant if you are using a machine with hardware accel eration because the graphics
commands are put into a hardware queue in the graphics subsystem, to be processed as soon
asthe graphicspipelineisready. The CPU can immediately do other work, including issuing
more graphics commands until the queue fills up.

When benchmarking a piece of graphics code, you must include in your measurements the
timeit takesto processall thework | eft in the queue after thelast graphicscall. Call gl Fi ni sh
at the end of your timing trial, just before sampling the clock. Also cal gl Fi ni sh before
sampling the clock and starting the trial, to ensure no graphics cals remain in the graphics
queue ahead of the process you are timing.
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16.8.3 Achieving Accurate Benchmarking Results

To benchmark performance for a particular code fragment, follow these steps:

e Determine how many polygons are being drawn and estimate how many pixels they cover
on the screen. Have your program count the polygons when you read in the database. To
determine the number of pixelsfilled, start by making a visual estimate. Be sure to include
surfacesthat are hidden behind other surfaces, and noticewhether or not backface elimination
isenabled. For greater accuracy, use feedback mode and cal cul ate the actual number of pixels
filled or use the stencil buffer technique described in Section 14.3.

e Determinethetransform andfill rates on thetarget system for the mode settingsyou are using.
Refer to the product literaturefor the target system to determine some transform and fill rates.
Determine others by writing and running small benchmarks.

e Divide the number of polygons drawn by the transform rate to get the time spent on per-
polygon operations.

o Dividethe number of pixelsfilled by thefill rate to get thetime spent on per-pixel operations.

e Measure the time spent in the application. To determine time spent executing instructionsin
the application, stub out the OpenGL calls and benchmark your application.

This process takes some effort to complete. In practice, it's best to make a quick start by making
some assumptions, then refineyour understanding as you tune and experiment. Ultimately, you need
to experiment with different rendering techniques and do repeated benchmarks, especialy when the
unexpected happens.
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17 Portability Considerations

Think about portability from the beginning of the development cycle. Although thisis a standard
mantra for software development, it's important that OpenGL application developers in particular
be aware of the flexibility of OpenGL and provide a way for their program to gracefully fall back
onto an aternative agorithm or exit when arequired implementation characteristic is not avail able.

17.1 General Concerns

Your OpenGL application should be at least a little flexible about the features it has available. A
common god is an application which can run well on amost all OpenGL platforms, and can also
use the exceptional features on some platforms for high-speed and/or high-quality rendering.

It isunrealistic to expect an application developer to provide code that determines the best possible
combination of modes and techniques for a given piece of hardware given both available features
and thosefeatures' performance. However, areasonable amount of time spent checking implemen-
tation characteristics at runtime can allow an application to better leverage an implementation with
acceleration.

For example, one extreme is to develop an application that does not use the stencil buffer because
the devel oper does not know if it will be available. The other extreme isto provide afully genera
algorithm that uses 0, 1, or however many bits are availablein the stencil buffer. A middle ground
that maximizes portability, development time, and utilization of accelerated hardware might be to
providean agorithmthat usesno stencil and an algorithmthat uses 1 stencil bit and chooses between
them at runtime based on querying the implementation.

17.1.1 Handle Runtime Feature Availability Carefully

OpenGL implementations vary widely in their support of buffer sizes and the availability of some
buffers, such as stencil and the alpha channel, especialy among PC hardware. Be prepared to pro-
ceed with alimited number of bits per component, and be prepared to drop back on an aternative
algorithm if you need but cannot get, for example, the accumulation buffer and the stencil buffer.

Implementations may choose to provide some extensions but not others. Check at runtime for the
extensions available to you and then choose whether the implementation has the capability for a
more interesting algorithm, such as 3D texturing for volume rendering (Section 13). You can check
for an extension by checking the result of gl Get St ri ng( GL_EXTENSI ONS) for the substring cor-
responding to the extension.

When writing programs which automatically configure to the avail able extensionsthe program may
use the dynamic linking capabilities of the underlying operating system to acquire addresses of the
functions implementing the new commands. On most UNIX systems the dl open, dl sym and
dl cl ose commands may be used to manipulate dynamic libraries and query functions. On Win-
dows systems the commands LoadLi br ary, Get Pr ocAddr ess, and Fr eeLi br ary providesim-
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ilar functionality. Portable programs should use dynamic binding rather than relying on linking ex-
plicitly with extension function symbols.

Other capabilitiesto check include:

e Thesizeavailablefor textures, convolution kernels, color tables, and histograms.
e The precision of the accumulation buffer.

e Theavailability of specific resolutions of texture-internal formats.

e Whether hintsare honored (gl Hi nt ).

e The maximum recursion depth allowed during display list traversal.

e The maximum stack depth availablefor different OpenGL transforms.

e The maximum number of lightsavailable.

Textures and other state elements that provide PROXY targets can test for the success of a state el-
ement binding without changing the actual values for that piece of state. You can identify the size
available for one object by attempting to bind a very large object, then steadily reduce the size re-
guested until the proxy parameters are accepted. A proxy binding that fails sets the state values for
the proxy target to O, while onethat succeeds setsthe proxy valuesto the parameters providedinthe
proxy call.

Note that the convolution extension doesn't provide a PROXY target but you can
directly query the maximum width and height of the convolution kerne through
gl Get Convol uti onParaneter*EXT  using GL_MAX_CONVOLUTI ONL\W DTH_EXT and
GL_MAX_CONVOLUTI ONLHEI GHT_EXT.

17.1.2 Extensionsand OpenGL Versioning

Some current OpenGL featureswereintroduced first as extensionsand eventually incorporated into
the OpenGL core in a later version. For example, the gl Pol ygonOf f set command is both an
extension and a part of OpenGL 1.1. Usualy when an extension is incorporated into an OpenGL
version, the extension suffixes from the commands and enumerants are removed and functionality
is unchanged from the extension specification. In rare cases, the behavior diverges from the orig-
ina extension when implementation experience suggests useful improvements. For example, the
EXT_pol ygon _of f set, EXT_vert ex_array and EXT_bl end_| ogi cop extensions changed a lit-
tle when they were added to OpenGL 1.1, whereas the EXT_t ext ur e3D, EXT_t ext ur e_| od, ex-
tensionsremained essentially the same when their functionality was incorporated into OpenGL 1.2.

Some implementations of new versions of OpenGL may continueto support both the extension as
well as the new version of the functionality. For cases where the core functionality behavior has
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diverged from the extension specification, the implemented extension behavior should still be com-
patible with the original extension specification.

Whileit is best to try to write applicationsto the latest version of OpenGL, sometimesit is desir-
ableto support new and older versionsof OpenGL aswell as extensionswithin the same application
in order to maximize the number of platforms the application will run on. To achieve this, the ap-
plication must provide both compile-time and run-time guards to test for the existence of needed
functionality for both the OpenGL version numbers and extension availability. At compile-timethe
OpenGL version can betested with#i f def GL_VERSI ON.1 1 and #i f def GL_VERSI ON.1 2 and
the run-time version can be tested with gl Get St ri ng( GL_VERSI ON) . Thefirst few characters of
the version string will contain the current version number: 1.0, 1.1, or 1.2.

17.1.3 Source Compatibility Across OpenGL SDKs

Whether an implementation of OpenGL provides an extension or subset is determinable at runtime.
However, the software development kit, including the link library and the headers, may not define
some of the symbols or tokens used by an extension. If your application must be portablein source
code form, it’simportant to place #i f def /#endi f guards around code that uses extensions.

For example, the preprocessor token GL_EXT_t ext ur e3Dis defined in compile environments that
export the 3D texture extension command and enumerants. Even if theimplementation supports 3D
texturing, you will not be able to compile or link your program if you use the symbols.

Keep this difference between compile-time and run-time availability in mind when designing both
your source distribution and your application binary.

17.1.4 Characterize Platform Performance

Section 16 briefly discusses characterizing the performance of your application.

One of OpenGL’'s goalsisto alow a program using the base API to “just work,” no matter where
it runs or is compiled. An implementation cannot be called OpenGL if it does not pass an exhaus-
tive set of conformance tests that guarantee al the base features of OpenGL are available and are
mathematically correct. However, that guarantee says nothing about the performance an application
can expect. It will probably be necessary to check at run time some of the combinations of modes
and states your application could use, and decide at that time which combination provides enough
performance to be desirable.

Some typical features to check for performance availability include:

¢ Blending
e GL_LI NEARand GL_* .M PMAP_* filtersfor texturing

o RGBA texture modes as opposed to color index textures
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Display listsif application dataislargely static

Vertex arrays and interleaved vertex arrays, if appropriate

Convolution and other imaging extensions

3D textures

Example libraries pdb and i sf ast implement this notion of characterizing mode combinations.
Theselibrariescan befound by searching the OpenGL web sitewww. opengl . or g and can bedown-
loaded at the time of writingfromhttp: //reality. sgi.conl gol d/ OpenG./i sfast. htnl.

17.2 Windowsversus UNI X

When writing samples and prototype code and even production applications, keep in mind that dif-
ferent UNIX implementations and Windows 95/NT have different APIs, provide different system
services, and can even provide substantially different devel opment environments (such as contents
of i ncl ude files, location of libraries, etc.). Here are afew things to look out for when writing a
program under UNIX with theintent to port to Windows:

e Avoidtheidentifiersnear and f ar , which are reserved words in most Windows compilers.
Common replacements are nnear andf f ar .

e Themath constant MPI isn't provided by at |east one Win32 devel opment environment. You
may find adding the following code after #i ncl ude <mat h. h> to be helpful:

#i f ndef M_PI
#define M Pl 3.14159265358979323846
#endi f

e Donot#i ncl ude <uni st d. h>, asit contains UNIX-specific definitions. At the very least,
check with your Windows environment before using functions or constants from uni st d.

e The constants EXI T_SUCCESS and EXI T_FAI LURE may not be available. You could include
code to define these constants similar to the above code for M.PI .

e Single-precision versions of trigonometric functions such assi nf and cosf whiledesirable
for performance may not be available on al platforms.

A more in-depth list of portability considerationsis availablein thefile Port abi lity. txt inthe
GLUT 3.6 distribution. GLUT isdescribed in more detail in Section 19.
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17.3 3D Texture Portability

3D Textures aren’t currently a core feature in OpenGL, but can be accessed as an extension. Itis
an EXT extension, indicating more than one vendor supports it. Even when 3D texture maps are
supported, the application writer must be careful to consider the level of support present in the ap-
plication. Texture map size may be limited, and 3D mipmapping is often not supported. Available
internal and external formats and types may be restricted. All of these restrictionscan be queried at
run time, and with care, portable code can be produced.

Consider writing your 3D texture applications so that they revert to a 2D texturing modeif 3D tex-
turesaren’t supported. See Section 13 for an example of a3D texture algorithmthat will work, with
lower quality, using 2D textures.
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18 List of Demo Programs

Thislist showsthe demonstration programs avail abl e on the Programming with OpenGL : Advanced
Rendering web site at:

http://ww. sgi.com Technol ogy/ OpenG./ advanced_si g97. ht m

The programs are grouped by the sectionsin which they’re discussed. Each line gives a short de-
scription of the program.

Modeling

tvertex.c - show problems caused by t-vertices

guad_decomp.c - shows example of quadrilateral decomposition

e tess.c - shows examples of sphere tessellation

cap.c - shows how to cap the region exposed by a clipping plane

csg.c - shows how to render CSG solids with the stencil buffer

gen_normals.c - shows how to generate correct normals
Geometry and Transformations

e depth.c - compare screen and eye space z

e decal.c - shows how to decal coplanar polygonswith the stencil buffer
e hiddenline.c - shows how to render wireframe objectswith hidden lines
e stereo.c - shows how to generate stereo image pairs

e tile.c - showshow totileimages

e raster.c - shows how to move the current raster position off-screen

e frustum_z.c - shows an object and its place in view frustum

e inaccuracies.c - provides examples of precision inaccuracy problems
¢ hidden.c - shows how polygon offset works with depth range

e stereoview.c - shows how to do stereo viewing right

e clipwide.c - showshow to avoid clipping wide lines and points

e distort.c - shows how to correct projection distortion using texture
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Texture Mapping

e mipmap_lines.c - shows different mipmap generation filters

e genmipmap.c - shows how to use the OpenGL pipelineto generate mipmaps
e textile.c- showshow to tile textures

e texpage.c - shows how to page textures

e Mippage.c - shows how to page a mipmapped texture

e textrim.c - shows how to trim textures

e textext.c - showshow draw characters with texture maps

e terrain.c - shows how to do elevation color coding and metrics
e contour.c = shows hot to do contouring

e projtex.c - shows how to use projective textures

e cyl_billboard.c - shows how to do cylindrical billboards

e sph_billboard.c - shows how to do spherical billboards

e warp.c - shows how to warp images with textures

e noise.c - shows how to make afiltered noise function

e gpectral.c - shows how to make a spectral function from filtered noise
e spotnoise.c - shows how to use spot noise

e tex3dsolid.c - renders a solid image with a 3d texture

e tex3dfunc.c - creates a 2d texturethat varieswith r value

e makedetail.c - shows how to create a detail texture

e detail.c - showshow to use adetail texture

e aniso.c - shows how to create and use anisotropic textures

e cutaway.c - shows how to create agradual cutaway
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Blending

e comp.c - shows Porter/Duff compositing

e transp.c - shows how to draw transparent objects

e imgproc.c - showsimage processing operations

e transparent.c - shows transparency, ordering, culling interactions
Antialiasing

¢ lineaa.c - showshow to draw antialiased lines

e texaac - showshow to antialiaswith texture

e accumaa.c - shows how to antialias a scene with the accumulation buffer

e aalines.c - more on antialiased lines

e aasolid.c - shows how to antialias solids

Lighting

envphong.c - shows how to draw phong highlightswith environment mapping

lightmap2d.c - shows how to do 2D texture lightmaps

lightmap3d.c - shows how to do 3D texture lightmaps

bumpmap.c - shows how to bumpmap with texture

o fresnel.c - showsan example of how to render Fresnel reflections
Scene Realism

e motionblur.c - shows how to do motion blur with the accumul ation buffer

o field.c - shows how to achieve depth of field effects with the accumulation buffer

genspheremap.c - shows how to generate sphere maps

mirror.c - shows how to do planar mirror reflections

projshadow.c - shows how to render projection shadows

shadowvol.c - shows how to render shadows with shadow volumes

shadowmap.c - shows how to render shadows with shadow maps
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¢ softshadow.c - shows how to do soft shadows with the accumulation buffer by jittering light
sources

o softshadow?.c - showshow to do soft shadows by creating lighting textures with the accumu-
lation buffer

Transparency

e screendoor.c - shows how to do screen-door transparency

¢ aphablend.c - shows how to do transparency with a phablending
Natural Phenomena

e smoke.c - shows how to render smoke

e smoke3d.c - shows how to render 3D smoke using volumetric techniques
e vapor.c - shows how render a vapor trail

e texmovie.c - shows how to create atexture movie

e fire.c - showshow to animate fire

¢ explode.c - shows how to create an explosion

e dscloud.c - create a cloud image using diamond-square technique

e cloud.c - shows how to render a cloud layer

¢ cloudlayer.c - shows how to create ground fog

e cloud3d.c - shows how to render a 3D cloud using volumetric techniques
o fire.c - showshow to render fire using movie loops

e water.c - shows an example water rendering technique

e bubble.c - shows an example of how to render abubble

e underwater.c - shows an exmple of rendering an underwater scene

¢ lightpoint.c - shows how to render point light sources

e particle.c - shows how to create particle systems

e snow.c - shows an example of rendering falling snow

e rain.c - showsan example of rendering falling rain
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I mage Processing

e convolve.c - shows how to convolve with the accumulation buffer

e cmatrix - shows how to modify colorswith a color matrix
Volume Visualization with Texture

e Vvol2dtex.c - volume visualization with 2D textures

e Vvol3dtex.c - volume visuaization with 3D textures
Using the Stencil Buffer

e dissolve.c - shows how to do dissolveswith the stencil buffer

e zcomposite.c - shows how to composite depth-buffered images with the stencil buffer
Line Rendering Techniques

¢ haloed.c - shows how to draw haloed lines using the depth buffer
e silhouette.c - shows how to draw the silhouette edge of an object with the stencil buffer
¢ solid_to_line.c - shows how to draw solid objects as lines

e overlap.c - shows how to draw wide, smoothed line loops with rounded edges
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19 GLUT, the OpenGL Utility Toolkit

The example programs for these notes use ”GLUT”, a utility toolkit created by Mark Kilgard and
contributed to widely by the graphics community.

GLUT iseasy to use and simple, so it may appeal to beginning OpenGL users. OpenGL users of
all experiencelevels can use GLUT to rapidly prototypean algorithm using OpenGL and not spend
time writing the code to configure an X Window, setting up a Win32 color map, etc.

The GLUT library provides a number of convenience functions for handling window systems and
input devices. Applications can request an OpenGL visua using a set of attributes and manipulate
the window that providesthat visual through a window-system-independent API.

GLUT provides pop-up menu support and device handling support for a variety of devices such as
keyboard, mouse, and trackball, and invokes user-supplied callbacks to handle window events such
as exposure and resizing.

GLUT aso offers utility routinesfor drawing several geometric shapes as solids or wireframe mod-
els, including spheres, tori, and teapots.

Text rendering is also simplified by GLUT. Severa bitmap and stroke fonts are provided with the
GLUT distribution.

GLUT is avalable on most UNIX platforms, MacOS, and Windows
NT/95, and other operating systems. It can be downloaded from
http://ww. opengl . or g/ Devel oper s/ Docunment ati on/ gl ut. htm .
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20 Equations
This section describes some important formula and matrices referred to in the text.
20.1 Projection Matrices

20.1.1 Perspective Projection

Thecdl gl Frustun(l, r, b, t, n, f) generates R, where:

2n r4l r— r
20 T,—J_ré 0 =l g 0 ril
0 Z db 0 0 =0 oo
— t—b t—b ad R~ = 2n 2n
f 0 0 - 2 o 0 0 -1
0 0 -1 0 0 0 S5t i
Risdefinedaslongas! # r,t # b,andn # f.
20.1.2 Orthographic Projection
Thecdl gl Otho(l, r, b, t, u, f) generates R, where:
2 r+l r— r
T2 . & T a0 &
2 t i— t
re| 0 = 0 mE g | 0 T 0 T
00 0 0 Lo
0 0 0 1 0 0 0 1

Risdefinedaslongas! # r,t # b,andn # f.

20.1.3 Perspective z-Coordinate Transformations

The z valuein eyecoordinates, z.,. , can be computed from thewindow coordinate z value, z,;ndow,
using thenear and far planevalues, near and far, fromthegl Fr ust umcommand and the viewport
near and far values, far,, and near,,, fromthe gl Dept hRange command using the equation:

far near(faryp—nearyp)
5 o far—near
eye — ) (far+near)(faryp—nearyp) _ fareptnearyp
Fwindow 2(far—near) 2

The =z window coordinateis computed from the eye coordinate = using the equation:

far + near 2 far near fary, — near,, fary, + neary,
Rwindow =

far —near  zeye(far — near) 2 2
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20.2 Lighting Equations
20.2.1 Attenuation Factor

The attenuation factor is defined to be;

1

attenuationfactor = ————
ke + kid + kyd?

where

d = distance between the light’s position and the vertex
k. = GL_CONSTANT _ATTENUATI ON
k; = GL_LI NEAR ATTENUATI ON

k, = GL_QUADRATI CATTENUATI ON

If thelightis directional, the attenuation factor is 1.

20.2.2 Spotlight Effect

The spotlight effect eval uates to one of three possiblevalues, depending on whether thelight is ac-
tually a spotlight and whether the vertex liesinside or outside the cone of illumination produced by

the spotlight:

e 1if thelightisn't aspotlight (GL_SPOT_CUTOFF is 180.0).

e Oif thelight isaspotlight but the vertex lies outside the cone of illumination produced by the

spotlight.

e (max{v-d,0})0LSPOT-EXPONENT where: v = (v, vy, v,) iSthe unit vector that points

from the spotlight (GL_PCSI Tl ON) to the vertex.

d = (dy,d,, d.) isthe spotlight’s direction (GL_SPOT_DI RECTI ON), assuming the light is a
spotlight and the vertex liesinside the cone of illumination produced by the spotlight.

The dot product of the two vectors v and d varies as the cosine of the angle between them;
hence, objects directly in line get maximum illumination, and objects off the axis have their

illumination drop as the cosine of the angle.

To determine whether a particular vertex lies within the cone of illumination, OpenGL evaluates
(max{?0 -d,0}) where v and d are as defined above. If thisvalueislessthan the cosine of the spot-
light’s cutoff angle (GL_SPOT_CUTOFF), then the vertex lies outside the cone; otherwise, it'sinside

the cone.
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20.2.3 Ambient Term

The ambient term is simply the ambient color of the light scaled by the ambient material property:

ambient;;,p; * ambient,, qscrial

20.2.4 DiffuseTerm

Thediffuseterm needsto takeinto account whether light fallsdirectly on thevertex, thediffuse col or
of thelight, and the diffuse materia property:

(max{l ‘N, 0}) * diffuse”ght * diffuse,,qrerial

where;

I = (I, 1,,1.) istheunit vector that points from the vertex to the light position (GL_PCSI TI ON).

n = (ny, ny, n;) istheunit normal vector at the vertex.

20.25 Specular Term

The specular term aso depends on whether light falls directly on the vertex. If [- i islessthan or
equal to zero, there isno specular component at the vertex. (If it'slessthan zero, thelight ison the
wrong side of the surface.) If there's a specular component, it depends on the following:

The unit normal vector at the vertex (n,, ny, n,).

The sum of thetwo unit vectorsthat point between (1) the vertex and thelight positionand (2)
the vertex and the viewpoint (assuming that GL_LI GHT_MODEL _LOCAL VI EVERistrug; if it's
not true, the vector (0, 0, 1) is used as the second vector in the sum). Thisvector sumisnor-
malized (by dividing each component by themagnitudeof thevector) toyield s = (s, sy, s.).

The specular exponent (GL_SHI NI NESS).
The specular color of the light (GL_SPECULAR;4.¢).

The specular property of the material (GL_SPECULAR,qzeriai)-

Using these definitions, here’'s how OpenGL cal culates the specular term:

(max{s ", 0})shininess * SpeCUIarlight * SpeCUIarmaterial

However, if [ - 7 = 0, the specular term is 0.
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20.2.6 Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following represents the
entire lighting calculation in RGBA mode.

vertex color = emission,q¢erial +

arnbientlightmodel * arnbientmaterial +

n—1

; (m) (spotlight effect);
(ambient;;;p; * ambient, areriar +
(max{l - n,0}) * diffuse;yns * diffuse,aseriar +
(max{s - n, 0})shininess 4 specular,,;,, * specular

material)i
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Abstract

Generating images of texture mapped geometry requires
projecting surfaces onto a two-dimensional screen. If
this projection involves perspective, then a division
must be performed at each pixel of the projected surface
in order to correctly calculate texture map coordinates.
We show how a simple extension to perspective-
correct texture mapping can be used to create vari-
ous lighting effects. These include arbitrary projec-
tion of two-dimensional images onto geometry, realis-
tic spotlights, and generation of shadows using shadow
maps[10]. These effects are obtained in real time using
hardware that performs correct texture mapping.

CR Categories and Subject Descriptors: 1.3.3
[Computer Graphics]: Picture/Tmage Generation;
1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - color, shading, shadowing, and
texture

Additional Key Words and Phrases: lighting,
texture mapping

1 Introduction

Producing an image of a three-dimensional scene re-
quires finding the projection of that scene onto a two-
dimensional screen. In the case of a scene consisting of
texture mapped surfaces, this involves not only deter-
mining where the projected points of the surfaces should
appear on the screen, but also which portions of the
texture image should be associated with the projected
points.
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If the image of the three-dimensional scene is to ap-
pear realistic, then the projection from three to two di-
mensions must be a perspective projection. Typically,
a complex scene is converted to polygons before projec-
tion. The projected vertices of these polygons determine
boundary edges of projected polygons.

Scan conversion uses iteration to enumerate pixels on
the screen that are covered by each polygon. This itera-
tion in the plane of projection introduces a homogeneous
variation into the parameters that index the texture of
a projected polygon. We call these parameters texture
coordinates. If the homogeneous variation is ignored in
favor of a simpler linear iteration, incorrect images are
produced that can lead to objectionable effects such as
texture “swimming” during scene animation[5]. Correct
interpolation of texture coordinates requires each to be
divided by a common denominator for each pixel of a
projected texture mapped polygon[6].

We examine the general situation in which a tex-
ture is mapped onto a surface via a projection, after
which the surface is projected onto a two dimensional
viewing screen. This 1s like projecting a slide of some
scene onto an arbitrarily oriented surface, which is then
viewed from some viewpoint (see Figure 1). Tt turns out
that handling this situation during texture coordinate
iteration is essentially no different from the more usual
case in which a texture is mapped linearly onto a poly-
gon. We use projective textures to simulate spotlights
and generate shadows using a method that is well-suited
to graphics hardware that performs divisions to obtain
correct texture coordinates.

2 Mathematical Preliminaries

To aid in describing the iteration process, we introduce
four coordinate systems. The clip coordinate system
is a homogeneous representation of three-dimensional
space, with z, y, z, and w coordinates. The origin of
this coordinate system is the viewpoint. We use the
term clip coordinate system because it is this system
in which clipping is often carried out. The screen co-
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Figure 2. Object geometry in the light and clip coordi-
nate systems.

ordinate system represents the two-dimensional screen
with two coordinates. These are obtained from clip co-
ordinates by dividing  and y by w, so that screen co-
ordinates are given by #° = z/w and y* = y/w (the
s superscript indicates screen coordinates). The light
coordinate system is a second homogeneous coordinate
system with coordinates z', i, 2, and w'; the origin of
this system is at the light source. Finally, the texture
coordinate system corresponds to a texture, which may
represent a slide through which the light shines. Tex-
ture coordinates are given by #' = z!/w' and y' = y' /u!
(we shall also find a use for 2! = 2! /w'). Given (z*,y*),
a point on a scan-converted polygon, our goal is to find
its corresponding texture coordinates, (z*, y').

Figure 2 shows a line segment in the clip coordi-
nate system and its projection onto the two-dimensional
screen. This line segment represents a span between two
edges of a polygon. In clip coordinates, the endpoints

of the line segment are given by

Q, = (x1,y1, 21, w1) and Q3 = (x2, Y2, 22, wa).

A point Q along the line segment can be written in clip
coordinates as

Q=(1-4)Q1 +1Q (1)

for some ¢ € [0,1]. In screen coordinates, we write the
corresponding projected point as

Q =(1-1)Q]+°Q3 (2)

where Qf = Q1/w1 and Q3 = Q2 /ws.

To find the light coordinates of Q given Q°, we must
find the value of t corresponding to ¢* (in general ¢t # ¢°).
This is accomplished by noting that

(1-1)Q1+1Q>

Q= (0= Qufur Qo = (1 —t)wy + tws

(3)
and solving for ¢. This is most easily achieved by choos-
ing a and b such that 1—¢* = a/(a+b) and t* = b/(a+b);
we also choose A and B such that (1 —¢) = A/(A+ B)
and t = B/(A+ B). Equation 3 becomes

Q= aQi/wi +0Qa/ws  AQ1 + BQy 4)
- (a+1D) " Awy + Bws

It is easily verified that A = aws and B = bw; satisfy
this equation, allowing us to obtain ¢ and thus Q.
Because the relationship between light coordinates
and clip coordinates is affine (linear plus translation),
there 1s a homogeneous matrix M that relates them:

A B
Q = MQ Q! l
fu— fu— 5
A+B ! + A+ B Az 5)
where Q% = (xll, yll, zll, wll) and le = (xlz, ylz, zlz, wlz) are

the light coordinates of the points given by Qi and Q-
in clip coordinates.
We finally obtain

Q = Q/u
AQl + BQ)
Awl + Bu,

aQj /w1 +bQj /ws

= () + blub ) ©)

Equation 6 gives the texture coordinates correspond-
ing to a linearly interpolated point along a line segment
in screen coordinates. To obtain these coordinates at
a pixel, we must linearly interpolate z'/w, 3 /w, and
w'/w, and divide at each pixel to obtain

yl/wl — le//l: . (7)

ut = and



(For an alternate derivation of this result, see [6].)
If w' is constant across a polygon, then Equation 7
becomes

_ s/

_tjw
5= 1w t= 11— (8)

and = 1w
where we have set s = 2! /w! and t = y' /uw!. Equation 8
governs the iteration of texture coordinates that have
simply been assigned to polygon vertices. It still implies
a division for each pixel contained in a polygon. The
more general situation of a projected texture implied
by Equation 7 requires only that the divisor be w!/w
instead of 1/w.

3 Applications

To make the various coordinates in the following exam-
ples concrete, we introduce one more coordinate system:
the world coordinate system. This is the coordinate sys-
tem in which the three-dimensional model of the scene
is described. There are thus two transformation ma-
trices of interest: M, transforms world coordinates to
clip coordinates, and M; transforms world coordinates
to light coordinates. Iteration proceeds across projected
polygon line segments according to equation 6 to obtain
texture coordinates (z',y") for each pixel on the screen.

3.1 Slide Projector

One application of projective texture mapping consists
of viewing the projection of a slide or movie on an arbi-
trary surface[9][2]. In this case, the texture represents
the slide or movie. We describe a multi-pass drawing
algorithm to simulate film projection.

Each pass entails scan-converting every polygon in the
scene. Scan-conversion yields a series of screen points
and corresponding texture points for each polygon. As-
sociated with each screen point is a color and z-value,
denoted ¢ and z, respectively. Associated with each cor-
responding texture point is a color and z-value, denoted
¢y and z;. These values are used to modify correspond-
ing values in a framebuffer of pixels. Each pixel, denoted
p, also has an associated color and z-value, denoted ¢,
and zp.

A color consists of several indepenedent components
(e.g. red, green, and blue). Addition or multiplication
of two colors indicates addition or multiplication of each
corresponding pair of components (each component may
be taken to lie in the range [0, 1]).

Assume that z, is initialized to some large value for all
p, and that ¢, is initialized to some fixed ambient scene
color for all p. The slide projection algorithm consists
of three passes; for each scan-converted point in each
pass, these actions are performed:

Pass 1 If z < zp, then z, « z  (hidden surface

removal)
Pass 2 If z = zp, then ¢, < ¢, + ¢;
(final rendering)

(illumination)

Pass 3 Set ¢, =c-¢p

Pass 1 is a z-buffering step that sets z, for each pixel.
Pass 2 increases the brightness of each pixel accord-
ing to the projected spotlight shape; the test ensures
that portions of the scene visible from the eye point are
brightened by the texture image only once (occlusions
are not considered). The effects of multiple film projec-
tions may be incorporated by repeating Pass 2 several
times, modifying M; and the light coordinates appropri-
ately on each pass. Pass 3 draws the scene, modulating
the color of each pixel by the corresponding color of the
projected texture image. Effects of standard (i.e. non-
projective) texture mapping may be incorporated in this
pass. Current Silicon Graphics hardware is capable of
performing each pass at approximately 10° polygons per
second.

Figure 3 shows a slide projected onto a scene. The
left image shows the texture map; the right image shows
the scene illuminated by both ambient light and the pro-
jected slide. The projected image may also be made to
have a particular focal plane by rendering the scene sev-
eral times and using an accumulation buffer as described
in [4].

The same configuration can transform an image cast
on one projection plane into a distinct projection plane.
Consider, for instance, a photograph of a building’s fa-
cade taken from some position. The effect of viewing
the facade from arbitrary positions can be achieved by
projecting the photograph back onto the building’s fa-
cade and then viewing the scene from a different vantage
point. This effect is useful in walk-throughs or fly-bys;
texture mapping can be used to simulate buildings and
distant scenery viewed from any viewpoint[1][7].

3.2 Spotlights

A similar technique can be used to simulate the effects
of spotlight illumination on a scene. In this case the
texture represents an intensity map of a cross-section of
the spotlight’s beam. That is, it is as if an opaque screen
were placed in front of a spotlight and the intensity at
each point on the screen recorded. Any conceivable spot
shape may be accommodated. In addition, distortion
effects, such as those attributed to a shield or a lens,
may be incorporated into the texture map image.

Angular attenuation of illumination is incorporated
into the intensity texture map of the spot source. At-
tenuation due to distance may be approximated by ap-
plying a function of the depth values 2* = 2! /w!' iterated
along with the texture coordinates (z', y") at each pixel
in the image.

This method of illuminating a scene with a spotlight is
useful for many real-time simulation applications, such



Figure 3. Simulating a slide projector.

as aircraft landing lights, directable aircraft taxi lights,
and automotive headlights.

3.3 Fast, Accurate Shadows

Another application of this technique is to produce
shadows cast from any number of point light sources.
We follow the method described by Williams[10], but in
a way that exploits available texture mapping hardware.

First, an image of the scene is rendered from the view-
point of the light source. The purpose of this render-
ing 18 to obtain depth values in light coordinates for
the scene with hidden surfaces removed. The depth
values are the values of z!/w! at each pixel in the im-
age. The array of 2! values corresponding to the hidden
surface-removed image are then placed into a texture
map, which will be used as a shadow map[10][8]. We
refer to a value in this texture map as z,.

The generated texture map is used in a three-pass ren-
dering process. This process uses an additional frame-
buffer value o, in the range [0, 1]. The initial conditions
are the same as those for the slide projector algorithm.

Pass 1 If z < zp, then z, < 2z, ¢, < ¢ (hidden
surface removal)

Pass 2 If z; = z%, then o, « 1;else ap < 0 (shadow
testing)

Pass 3 ¢, < ¢p + (c modulated by «,)
dering)

(final ren-

Pass 1 produces a hidden surface-removed image of the
scene using only ambient illumination. If the two values
in the comparison in Pass 2 are equal, then the point
represented by p is visible from the light and so is not
in shadow; otherwise, it is in shadow. Pass 3, drawn
with full illumination, brightens portions of the scene
that are not in shadow.

In practice, the comparison in Pass 2 is replaced with
zr > z'4€, where € is a bias. See [8] for factors governing
the selection of e.

This technique requires that the mechanism for set-
ting «, be based on the result of a comparison between
a value stored in the texture map and the iterated z°.
For accuracy, it also requires that the texture map be
capable of representing large z,. Our latest hardware
posseses these capabilites, and can perform each of the
above passes at the rate of at least 10° polygons per
second.

Correct illumination from multiple colored lights may
be produced by performing multiple passes. The
shadow effect may also be combined with the spotlight
effect described above, as shown in Figure 4. The left
image in this figure is the shadow map. The center
image is the spotlight intensity map. The right image
shows the effects of incorporating both spotlight and
shadow effects into a scene.

This technique differs from the hardware implemen-
tation described in [3]. Tt uses existing texture map-
ping hardware to create shadows, instead of drawing
extruded shadow volumes for each polygon in the scene.
In addition, percentage closer filtering [8] is easily sup-
ported.

4 Conclusions

Projecting a texture image onto a scene from some light
source is no more expensive to compute than simple tex-
ture mapping in which texture coordinates are assinged
to polygon vertices. Both require a single division per-
pixel for each texture coordinate; accounting for the tex-
ture projection simply modifies the divisor.

Viewing a texture projected onto a three-dimensional
scene is a useful technique for simulating a number of
effects, including projecting images, spotlight illumina-
tion, and shadows. If hardware is available to perform
texture mapping and the per-pixel division it requires,
then these effects can be obtained with no performance
penalty.



Figure 4. Generating shadows using a shadow map.
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Executive Summary

As of today, texture mapping is used in visual simulation and computer animation to reduce geometric
complexity while enhancing realism. In this report, this common usage of the technology is extended by
presenting application models of real-time texture mapping that solve a variety of visualization problems in
the general technical and scientific world, opening new ways to represent and analyze large amounts o
experimental or simulated data.

The topics covered in this report are:

Abstract definition of the texture mapping concept
Visualization of properties on surfaces by color coding
Information filtering on surfaces

Real-time volume rendering concepts
Quality—enhanced surface rendering

In the following sections, each of these aspects will be described in detail. Implementation techniques are
outlined using pseudo code that emphasizes the key aspects. A basic knowledge in GL programming i
assumed. Application examples are taken from the chemical market. However, for the scope of this repor
no particular chemical background is required, since the data being analyzed can in fact be replaced by an
other source of technical, scientific or engineering information processing.

Note, that this report discusses the potential of released advanced graphics technology in a very detaile
fashion. The presented topics are based on recent and ongoing research and therefore subjected to change

The methods described are the result of a team-work involving scientists from different research areas an
institutions, and is called thEexture Teangonsisting of the following members:

Prof. Juergen Brickmann, Technische Hochschule, Darmstadt, Germany
Dr. Peter Fluekiger, Swiss Scientific Computing Center, Manno, Switzerland
Christian Henn, M.E. Mueller-Institute for Microscopy, Basel, Switzerland
Dr. Michael Teschner, Silicon Graphics Marketing, Basel, Switzerland

Further support came from SGI's Advanced Graphics Division engineering group.

Colored pictures and sample code are available from sgigate.sgi.com via anonymous ftp. The files will be
there starting November 1st 1993 and will be located in the directory pub/SciTex.

For more information, please contact:

Michael Teschner (41)61 670903 (phone)
SGI Marketing, Basel (41)61 671201 (fax)
Erlenstraesschen 65

CH-4125 Riehen, Switzerland micha@basel.sgi.com (email)
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4 Arbitrary surface clipping
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Real-time volume rendering techniques
1 Volume rendering using 2-D textures
2 Volume rendering using 3-D textures
High quality surface rendering
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1 Introduction

Texture mapping [1,2] has traditionally been used to add realism in computer generated images. In recel
years, this technique has been transferred from the domain of software based rendering systems to
hardware supported feature of advanced graphics workstations. This was largely motivated by visue
simulation and computer animation applications that use texture mapping to map pictures of surface textur
to polygons of 3—-D objects [3].

Thus, texture mapping is a very powerful approach to add a dramatic amount of realism to a compute
generated image without blowing up the geometric complexity of the rendered scenario, which is essentie
in visual simulators that need to maintain a constant frame rate. E.g., a realistically looking house can b
displayed using only a few polygons with photographic pictures of a wall showing doors and windows
being mapped to. Similarly, the visual richness and accuracy of natural materials such as a block of woo
can be improved by wrapping a wood grain pattern around a rectangular solid.

Up to now, texture mapping has not been used in technical or scientific visualization, because the abov
mentioned visual simulation methods as well as non-interactive rendering applications like computel
animation have created a severe bias towards what texture mapping can be used for, i.e. wooden [4]
marble surfaces for the display of solid materials, or fuzzy, stochastic patterns mapped on quadrics t
visualize clouds [5,6].

It will be demonstrated that hardware—supported texture mapping can be applied in a much broader range
application areas. Upon reverting to a strict and formal definition of texture mapping that generalizes the
texture to be a general repository for pixel-based color information being mapped on arbitrary 3-D
geometry, a powerful and elegant framework for the display and analysis of technical and scientific
information is obtained.

2 Abstract definition of the texture mapping concept

In the current hardware implementation of SGI [7], texture mapping is an additional capability to modify

pixel information during the rendering procedure, after the shading operations have been completec
Although it modifies pixels, its application programmers interface is vertex—based. Therefore texture
mapping results in only a modest or small increase in program complexity. Its effect on the image
generation time depends on the particular hardware being used: entry level and interactive systems show
significant performance reduction, whereas on third generation graphics subsystems texture mapping m:
be used without any performance penalty.

Three basic components are needed for the texture mapping procedure: (1) the texture, which is defined

the texture space, (2) the 3—-D geometry, defined on a per vertex basis and (3) a mapping function that link
the texture to the vertex description of the 3—-D object.

The texture space [8,9] is a parametric coordinate space which can be 1,2 or 3 dimensional. Analogous 1
the pixel (picture element) in screen space, each element in texture space is called texel (texture elemen
Current hardware implementations offer flexibility with respect to how the information stored with each
texel is interpreted. Multi-channel colors, intensity, transparency or even lookup indices corresponding to ¢
color lookup table are supported.

In an abstract definition of texture mapping, the texture space is far more than just a picture within a
parametric coordinate system: the texture space may be seen as a special memory segment, where a var
of information can be deposited which is then linked to object representations in 3—-D space. Thus this
information can efficiently be used to represent any parametric property that needs to be visualized.

Although the vertex—based nature of 3—D geometry in general allows primitives such as points or lines tc
be texture—mapped as well, the real value of texture mapping emerges upon drawing filled triangles o
higher order polygons.

The mapping procedure assigns a coordinate in texture space to each vertex of the 3-D object. It |
important to note that the dimensionality of the texture space is independent from the dimensionality of the
displayed object. E.g., coding a simple property into a 1-D texture can be used to generate isocontour line
on arbitrary 3—-D surfaces.
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3  Color-coding based application solutions

Color—coding is a popular means of displaying scalar information on a surface [10]. E.g., this can be use
to display stress on mechanical parts or interaction potentials on molecular surfaces.

The problem with traditional, Gouraud shading—based implementations occurs when there is a higt
contrast color code variation on sparsely tesselated geometry: since the color coding is done by assignir
RGB color triplets to the vertices of the 3-D geometry, pixel colors will be generated by linear
interpolation in RGB color space.

As a consequence, all entries in the defined color ramp laying outside the linear color ramp joining two
RGB triplets are never taken into account and information will be lost. In Figure 1, a symmetric grey scale
covering the property range is used to define the color ramp. On the left hand side, the interpolation in the
RGB color space does not reflect the color ramp. There is a substantial loss of information during the
rendering step.

With a highly tessellated surface, this problem can be reduced. An alignment of the surface vertices witl
the expected color code change or multi-pass rendering may remove such artifacts completely. Howeve
these methods demand large numbers of polygons or extreme algorithmic complexity, and are therefor
not suited for interactive applications.

—

Figure 1: Color coding with RGB interpolation (left) and texture mapping (right).

This problem can be solved by storing the color ramp as a 1-D texture. In contrast to the above describe
procedure, the scalar property information is used as the texture coordinates for the surface vertices. T}
color interpolation is then performed in the texture space, i.e. the coloring is evaluated at every pixel
(Figure 1 right). High contrast variation in the color code is now possible, even on sparsely tessellatec
surfaces.

It is important to note that, although the texture is one—dimensional, itis possible to tackle a 3—D problem.
The dimensionality of texture space and object space is independent, thus they do not affect each othe
This feature of the texture mapping method, as well as the difference between texture interpolation an
color interpolation is crucial for an understanding of the applications presented in this report.
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Figure 2: Electrostatic potential coded on the solvent accessible surface of ethanol.

Figure 2 shows the difference between the two procedures with a concrete example: the solvent accessit
surface of the ethanol molecule is colored by the electrostatic surface potential, using traditional RGB colo
interpolation (left) and texture mapping (right).

The independence of texture and object coordinate space has further advantages and is well suited
accommodate immediate changes to the meaning of the color ramp. E.g., by applying a simple 3-L
transformation like a translation in texture space the zero line of the color code may be shifted. Applying a
scaling transformation to the texture adjusts the range of the mapping. Such modifications may be
performed in real-time.

With texture mapping, the resulting sharp transitions from one color-value to the next significantly
improves the rendering accuracy. Additionally, these sharp transitions help to visually understand the
object’s 3-D shape.

3.1 Isocontouring on surfaces

Similar to the color bands in general color-coding, discrete contour lines drawn on an object provide
valuable information about the object’'s geometry as well as its properties, and are widely used in visua
analysis applications. E.g., in a topographic map they might represent height above some plane that is eith
fixed in world coordinates or moves with the object [11]. Alternatively, the curves may indicate intrinsic
surface properties, such as an interaction potential or stress distributions.

With texture mapping, discrete contouring may be achieved using the same setup as for general colc
coding. Again, the texture is 1-D, filled with a base color that represents the objects surface appearance. /
each location of a contour threshold, a pixel is set to the color of the particular threshold. Figure 3 shows al
application of this texture to display the hydrophobic potential of Gramicidine A, a channel forming
molecule as a set of isocontour lines on the surface of the molecular surface.

Scaling of the texture space is used to control the spacing of contour thresholds. In a similar fashion
translation of the texture space will result in a shift of all threshold values. Note that neither the underlying
geometry nor the texture itself was modified during this procedure. Adjustment of the threshold spacing is
performed in real-time, and thus fully interactive.
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Figure 3: Isocontour on a molecular surface with different scaling in texture space.

3.2 Displaying metrics on arbitrary surfaces

An extension of the concept presented in the previous section can be used to display metrics on an arbitra
surface, based on a set of reference planes. Figure 4 demonstrates the application of a 2—-D texture to atta
tick marks on the solvent accessible surface of a zeolithe.

In contrast to the property—based, per vertex binding of texture coordinates, the texture coordinates for th
metric texture are generated automatically: the distance of an object vertex to a reference plane i
calculated by the harware and on-the—fly translated to texture coordinates. In this particular case twc
orthogonal planes are fixed to the orientation of the object’'s geometry. This type of representation allows
for exact measurement of sizes and distance units on a surface.

PR

Tyt g s b

Figure 4: Display of metrics on a Zeolithe’s molecular surface with a 2-D texture.
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3.3 Information filtering

The concept of using a 1-D texture for color—coding of surface properties may be extended to 2-D or evel
3-D. Thus a maximum of three independent properties can simultaneously be visualized. However
appropriate multidimensional color lookup tables must be designed based on a particular application
because a generalization is either non-trivial or eventually impossible. Special care must be taken not t
overload the surface with too much information.

One possible, rather general solution can be obtained by combining a 1-D color ramp with a 1-D threshol
pattern as presented in the isocontouring example, i.e. color bands are used for one property, where
orthogonal, discrete isocontour lines code for the second property. In this way it is possible to display twc
properties simultaneously on the same surface, while still being capable of distinguishing them clearly.

Another approach uses one property to filter the other and display the result on the objects surface
generating additional insight in two different ways: (1) the filter allows the scientist to distinguish between
important and irrelevant information, e.g. to display the hot spots on an electrostatic surface potential, or (2
the filter puts an otherwise qualitative property into a quantitative context, e.g., to use the standard deviatio
from a mean value to provide a hint as to how accurate a represented property actually is at a given locatic
on the object surface.

A good role model for this is the combined display of the electrostatic potential (ESP) and the molecular
lipophilic potential (MLP) on the solvent accessible surface of Gramicidine A. The electrostatic potential

gives some information on how specific parts of the molecule may interact with other molecules, the
molecular lipophilic potential gives a good estimate where the molecule has either contact with water
(lipophobic regions) or with the membrane (lipophilic regions). The molecule itself is a channel forming

protein, and is loacted in the membrane of bioorganisms, regulating the transport of water molecules an
ions. Figure 5 shows the color—coding of the solvent accessible surface of Gramicidine A against the ESI
filtered with the MLP. The texture used for this example is shown in Figure 8.

Figure 5: Solvent accessible surface of Gramicidine A, showing the ESP filtered with the MLP.

The surface is color-coded, or grey—scale as in the printed example, only at those loactions, where th
surface has a certain lipophobicity. The surface parts with lipophilic behavior are clamped to white. In this
example the information is filtered using a delta type function, suppressing all information not exceeding a
specified threshold. In other cases, a continouos filter may be more appropriate, to allow a more fine
grained quantification.
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Another useful application is to filter the electrostatic potential with the electric fileld. Taking the absolute
value of the electric field, the filter easily pinpoints the areas of the highest local field gradient, which helps
in identifying the binding site of an inhibitor without further interaction of the scientist. With translation in
the texture space, one can interactively modify the filter threshold or change the appearance of the colc
ramp.

3.4 Arbitrary surface clipping

Color—coding in the sense of information filtering affects purely the color information of the texture map.
By adding transparency as an additional information channel, a lot of flexibility is gained for the
comparison of multiple property channels. In a number of cases, transparency even helps in geometricall
understanding of a particular property. E.g., the local flexibility of a molecule structure according to the
crystallographically determined B—factors can be visually represented: the more rigid the structure is, the
more opaque the surface will be displayed. Increasing transparency indicates higher floppyness of th
domains. Such a transparency map may well be combined with any other color coded property, as it is c
interest to study the dynamic properties of a molecule in many different contexts.

An extension to the continuous variation of surface transparency as in the example of molecular flexibility
mentioned above is the use of transparency to clip parts of the surface away completely, depending on
property coded into the texture. This can be achieved by setting the alpha values at the appropriate vertic
directly to zero. Applied to the information filtering example of Gramicidine A, one can just clip the surface
using a texture where all alpha values in the previously white region a set to 0, as is demonstrated in Figur
6.

Figure 6: Clipping of the solvent accessible surface of Gramicidine A according to the MLP.

There is a distinct advantage in using alpha texture as a component for information filtering: irrelevant
information can be completely eliminated, while geometric information otherways hidden within the
surface is revealed directly in the context of the surface. And again, it is worthwhile to mention, that by a
translation in texture space, the clipping range can be changed interactively!

Version 1.0 - 8- 0 SGI, August 4, 1995



3.5 Color-coding pseudo code example

All above described methods for property visualization on object surfaces are based upon the same textu
mapping requirements. Neither are they very demanding in terms of features nor concerning the amount ¢
texture memory needed.

Two options are available to treat texture coordinates that fall outside the range of the parametric uni
square. Either the texture can be clamped to constant behaviour, or the entire texture image can &
periodically repeated. In the particular examples of 2-D information filtering or property clipping, the
parametric s coordinate is used to modify the threshold (clamped), and the t coordinate is used to change tl
appearance of the color code (repeated). Figure 7 shows different effects of transforming this texture maj
while the following pseudo code example expresses the presented texture setup. GL specific calls ar
constants are highlighted boldface

texParams = {
TX_MINIFILTER , TX_ POINT,
TX_MAGFILTER  TX_ POINT,

TX_WRAP_S TX_CLAMPR
TX_WRAP_T TX_REPEAT
TX_NULL

3

texdef2d (
texindex,numTexComponents,
texWidth,texHeight,teximage,
numTexParams,texParams

)i

texbind (texIndex);

The texture image is an array of unsigned integers, where the packing of the data depends on the number
components being used for each texel.

Figure 7: Example of a 2—-D texture used for information filtering, with different transformations applied:
original texture (left), translation in s coordinates to adjust filter threshold (middle) and scaling along in t
coordinates to change meaning of the texture colors (right).

The texture environment defines how the texure modifies incoming pixel values. In this case we want to
keep the information from the lighting calculation and modulate this with the color coming from the
texture image:
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texEnvParams = {
TV_MODULATE TV_NULL
J§

tevdef (texEnvindex,numTexEnvParams,texEnvParams);
tevbind (texEnvindex);

Matrix transformations in texture space must be targeted to a matrix stack that is reserved for texture
modifications

mmodd MTEXTURE
translate  (texTransX,0.0,0.0);
scale (1.0,texScaleY,1.0);
mmodd MVIEWING;

The drawing of the object surface requires the binding of a neutral material to get a basic lighting effect.
For each vertex, the coordinates, the surface normal and the texture coordinates are traversed in form
calls tov3f , n3f andt2f .

The afunction() call is only needed in the case of surface clipping. It will prevent the drawing of any
part of the polygon that has a texel color with alpha = 0:

pushmatrix ();
loadmatrix  (modelViewMatrix);
if(clippingEnabled) {
afunction (0, AF_NOTEQUA)

drawTexturedSurface();
popmatrix  ();
v3f(coo)

n3f (norm)
t2f(quality)

for (all vertices) { n3f(), t2f(), v3f() }

Figure 8: Schematic representation of theawTexturedSurface() routine.
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4  Real-time volume rendering techniques

Volume rendering is a visualization technique used to display 3-D data without an intermediate step o
deriving a geometric representation like a solid surface or a chicken wire. The graphical primitives being
characteristic for this technique are called voxels, derived from volume element and analog to the pixel
However, voxels describe more than just color, and in fact can represent opacity or shading parameters
well.

A variety of experimental and computational methods produce such volumetric data sets: compute
tomography (CT), magnetic resonance imaging (MRI), ultrasonic imaging (Ul), confocal light scanning
microscopy (CLSM), electron microscopy (EM), X-ray crystallography, just to name a few. Characteristic
for these data sets are a low signal to noise ratio and a large number of samples, which makes it difficult t
use surface based rendering technique, both from a performance and a quality standpoint.

The data structures employed to manipulate volumetric data come in two flavours: (1) the data may b
stored as a 3-D grid, or (2) it may be handled as a stack of 2-D images. The former data structure is ofte
used for data that is sampled more or less equally in all the three dimensions, wheras the image stack
preferred with data sets that are high resolution in two dimensions and sparse in the third.

Historically, a wide variety of algorithms has been invented to render volumetric data and range from ray
tracing to image compositing [12]. The methods cover an even wider range of performance, where the
advantage of image compositing clearly emerges, where several images are created by slicing the volun
perpendicular to the viewing axis and then combined back to front, thus summing voxel opacities and color
at each pixel.

In the majority of the cases, the volumetric information is stored using one color channel only. This allows
to use lookup tables (LUTS) for alternative color interpretation. l.e., before a particular entry in the color
channel is rendered to the frame buffer, the color value is interpreted as a lookup into a table that aliases tt
original color. By rapidly changing the color and/or opacity transfer function, various structures in the

volume are interactively revealed.

By using texture mapping to render the images in the stack, a performance level is reached that is fe
superior to any other technique used today and allows the real-time manipulation of volumetric data. Ir
addition, a considerable degree of flexibility is gained in performing spatial transformations to the volume,
since the transformations are applied in the texture domain and cause no performance overhead.

4.1 Volume rendering using 2—-D textures

As a linear extension to the original image compositing algotrithm, the 2-D textures can directly replace the
images in the stack. A set of mostly quadrilateral polygons is rendered back to front, with each polygon
binding its own texture if the depth of the polygon corresponds to the location of the sampled image.
Alternatively, polygons inbetween may be textured in a two—pass procedure, i.e. the polygon is rendere:
twice, each time binding one of the two closest images as a texture and filtering it with an appropriate linea
weighting factor. In this way, inbetween frames may be obtained even if the graphics subsystem doesn
support texture interpolation in the third dimension.

The resulting volume looks correct as long as the polygons of the image stack are alligned parallel to th
screen. However, it is important to be able to look at the volume from arbitrary directions. Because the
polygon stack will result in a set of lines when being oriented perpendicular to the screen, a correc
perception of the volume is no longer possible.

This problem can easily be soved. By preprocessing the volumetric data into three independent image stac
that are oriented perpendicular to each other, the most appropriate image stack can be selected for render
based on the orientation of the volume object. l.e., as soon as one stack of textured polygons is rotate
towards a critical viewing angle, the rendering function switches to one of the two additional sets of
textured polygons, depending on the current orientation of the object.
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4.2 Volume rendering using 3-D textures

As described in the previous section, it is not only possible, but almost trivial to implement real-time
volume rendering using 2-D texture mapping. In addition, the graphics subsystems will operate at pea
performance, because they are optimized for fast 2-D texture mapping. However, there are certai
limitations to the 2-D texture approach: (1) the memory required by the triple image stack is a factor of
three larger than the original data set, which can be critical for large data sets as they are common in medic
imaging or microscopy, and (2) the geometry sampling of the volume must be aligned with the 2-D textures
concerning the depth, i.e. arbitrary surfaces constructed from a triangle mesh can not easily be colore
depending on the properties of a surrounding volume.

For this reason, advanced rendering architectures support hardware implementations of 3-D textures. Tl
correspondence between the volume to be rendered and the 3-D texture is obvious. Any 3-D surface c:
serve as a sampling device to monitor the coloring of a volumetric property. l.e., the final coloring of the
geometry reflects the result of the intersection with the texture. Following this principle, 3-D texture
mapping is a fast, accurate and flexible technique for looking at the volume.

The simplest application of 3-D textures is that of a slice plane, which cuts in arbitrary orientations through
the volume, which is now represented directly by the texture. The planar polygon being used as geometry |
this case will then reflect the contents of the volume as if it were exposed by cutting the object with a knife,
as shown in Figure 9: since the transformation of the sampling polygon and that of the 3-D texture is
independent, it may be freely oriented within the volume. The property visualized in Figure 9 is the
probability of water beeing distributed around a sugar molecule. The orientation of the volume, that mean
the transformation in the texture space is the same as the molecular structure. Either the molecule, togett
with the volumetric texture, or the slicing polygon may be reoriented in real-time.

An extension of the slice plane approach leads to complete visualization of the entire volume. A stack o
slice planes, oriented in parallel to the computer screen, samples the entire 3-D texture. The planes a
drawn back to front and in sufficiently small intervals. Geometric transformations of the volume are
performed by manipulating the orientation of the texture, keeping the planes in screen—parallel orientatior
as can be seen in Figure 10, which shows a volume rendered example of a medical application.

This type of volume visualization is greatly enhanced by interactive updates of the color lookup table use
to define the texture. In fact a general purpose color ramp editor may be used to vary the lookup colors c
the transparency based on the scalar information at a given point in the 3—D volume.

. 4

Figure 9: Slice plane through the water density surrounding a sugar molecule.
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The slice plane concept can be extended to arbitrarily shaped objects. The idea is to probe a volumetric
property and to display it wherever the geometric primitives of the probing object cut the volume. The
probing geometry can be of any shape, e.g. a sphere, collecting information about the property at a certair
distance from a specified point, or it may be extended to describe the surface of an arbitrary object.

The independence of the object’s transformation from that of the 3-D texture, offers complete freedom in
orienting the surface with respect to the volume. As a further example of a molecular modeling
application, this provides an opportunity to look at a molecular surface and have the information about a
surrounding volumetric property updated in real-time, based on the current orientation of the surface.

Figure 10: Volume rendering of MRI data using a stack of screen—parallel sectioning planes,
which is cut in half to reveal detail in the inner part of the object.

5 High quality surface rendering

The visualization of solid surfaces with a high degree of local curvature is a major challenge for accurate
shading, and where the simple Gouraud shading [13] approach always fails. Here, the lighting calculation is
performed for each vertex, depending on the orientation of the surface normal with respect to the light
sources. The output of the lighting calculations is an RGB value for the surface vertex. During rasterization
of the surface polygon the color value of each pixel is computed by linear interpolation between the vertex
colors. Aliasing of the surface highlight is then a consequence of undersampled surface geometry, resulting
in moving Gouraud banding patterns on a surface rotating in real—-time, which is very disturbing. Moreover,
the missing accuracy in shading the curved surfaces often leads to a severe loss of information on the
object’s shape, which is not only critical for the evaluation and analysis of scientific data, but also for the
visualization of CAD models, where the visual perception of shape governs the overall design process.

Figure 11 demonstrates this problem using a simple example: on the left, the sphere exhibits typical
Gouraud artifacts, on the right the same sphere is shown with a superimposed mesh that reveals the
tessellation of the sphere surface. Looking at these images, it is obvious how the shape of the highlight of
the sphere was generated from linear interpolation. When rotating the sphere, the highlight begins to
oscillate, depending on how near the surface normal at the brightest vertex is with respect to the precise
highlight position.
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Figure 11: Gouroud shading artifacts on a moderately tessellated sphere.

Correct perception of the curvature and constant, non oscillating highlights can only be achieved with

computationally much more demanding rendering techniques such as Phong shading [14]. In contrast tc
linear interpolation of vertex colors, the Phong shading approach interpolates the normal vectors for each
pixel of a given geometric primitive, computing the lighting equation in the subsequent step for each pixel.

Attempts have been made to overcome some of the computationally intensive steps of the procedure [15]
but their performance is insufficient to be a reasonable alternative to Gouraud shading in real-time
applications.

5.1 Real-time Phong shading

With 2-D texture mapping it is now possible to achieve both, high performance drawing speed and highly
accurate shading. The resulting picture compares exactly to the surface computed with the complete Phon
model with infinite light sources.

The basic idea is to use the image of a high quality rendered sphere as texture. The object’s unit length
surface normal is interpreted as texture coordinate. Looking at an individual triangle of the polygonal
surface, the texture mapping process may be understood as if the image of the perfectly rendered spher
would be wrapped piecewise on the surface polygons. In other words, the surface normal serves as a looku,
vector into the texture, acting as a 2—-D lookup table that stores precalculated shading information.

The advantage of such a shading procedure is clear: the interpolation is done in texture space and not it
RGB, therefore the position of the highlight will never be missed. Note that the tessellation of the texture
mapped sphere is exactly the same as for the Gouraud shaded reference sphere in Figure 11.

N
\\~

L >

Figure 12: Phong shaded sphere using surface normals as a lookup for the texture coordinate.

Version 1.0 -14- 0 SGI, August 4, 1995



As previously mentioned, this method of rendering solid surfaces with highest accuracy can be applied to
arbitrarily shaped objects. Figure 13 shows the 3-D reconstruction of an electron microscopic experiment,
visualizing a large biomolecular complex, the asymmetric unit membrane of the urinary bladder. The
difference between Gouraud shading and the texture mapping implementation of Phong shading is obvious
and for the sake of printing quality, can be seen best when looking at the closeups. Although this trick is so

far only applicable for infinitely distant light sources, it is a tremendous aid for the visualization of highly
complex surfaces.

Figure 13: Application of the texture mapped Phong shading to a complex surface representing a
biomolecular structure. The closeups demonstrate the difference between Gouraud shading (above right) ar
Phong shading (below right) when implemented using texture mapping

5.2 Phong shading pseudo code example

The setup for the texture mapping as used for Phong shading is shown in the following code fragment:

texParams = {
TX_MINIFILTER , TX_POINT,
TX_MAGFILTER TX_ BILINEAR,

TX_NULL

¥

texdef2d (
texindex,numTexComponents,
texWidth,texHeight, teximage,
numTexParams,texParams

);
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texbind (texIndex);
texenvParams = { TV_MODULATE TV_NULL };

tevdef (texEnvindex,numTexEnvParams,texEnvParams);
tevbind (texEnvindex);

As texture, we can use any image of a high quality rendered sphere either with RGB or one intensity
component only. The RGB version allows the simulation of light sources with different colors.

The most important change for the vertex calls in this model is that we do not pass the surface normal data
with then3f command as we normally do when using Gouraud shading. The normal is passed as texture
coordinate and therefore processed withtBfe command.

Surface normals are transformed with the current model view matrix, although only rotational components

are considered. For this reason the texture must be aligned with the current orientation of the object. Also,
the texture space must be scaled and shifted to cover a circle centered at the origin of the s/t coordinate
system, with a unit length radius to map the surface normals:

mmodé¢ MTEXTURE
loadmatrix  (identityMatrix);
translate  (0.5,0.5,0.0);
scale (0.5,0.5,1.0);
multmatrix  (rotationMatrix);
mmod€ MVIEWING;

t3f (norm)

drawTexPhongSurface(); v3f(coo)

for (all vertices) { t3f(), v3f() }

Figure 15: Schematic representation of tdeawTexPhongSurface() routine.

6 Conclusions

Silicon Graphics has recently introduced a new generation of graphics subsystems, which support a variety
of texture mapping techniques in hardware without performance penalty. The potential of using this
technique in technical, scientific and engineering visualization applications has been demonstrated.

Hardware supported texture mapping offers solutions to important visualization problems that have either
not been solved yet or did not perform well enough to enter the world of interactive graphics applications.
Although most of the examples presented here could be implemented using techniques other than textur
mapping, the tradeoff would either be complete loss of performance or an unmaintainable level of
algorithmic complexity.

Most of the examples were taken from the molecular modelling market, where one has learned over the
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years to handle complex 3—-D scenarios interactively and in an analytic manner. What has been shown h
can also be applied in other areas of scientific, technical or engineering visualization. With the example
shown in this report, it should be possible for software engineers developing application software in othe
markets to use the power and flexibility of texture mapping and to adapt the shown solutions to the
specific case.

One important, general conclusion may be drawn from this work: one has to leave the traditional mind s
about texture mapping and go back to the basics in order to identify the participating components and
understand their generic role in the procedure. Once this step is done it is very simple to use this technio
in a variety of visualization problems.

All examples were implemented on a Silicon Graphics Crimson Reality Engine [7] equipped with two raste
managers. The programs were written in C, either in mixed mode GLX or pure GL.
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Texture Mapping
asa
Fundamental Drawing Primitive

Paul Haeberli
Mark Segal
Silicon Graphics Computer Systems*

Abstract

Texture mapping has traditionally been used to add
realism to computer graphics images. In recent years,
this technique has moved from the domain of software
rendering systems to that of high performance graphics
hardware.

But texture mapping hardware can be used for many
more applications than simply applying diffuse pat-
terns to polygons.

We survey applications of texture mapping including
simple texture mapping, projective textures, and image
warping. We then describe texture mapping techniques
for drawing anti-aliased lines, air-brushes, and anti-
aliased text. Next we show how texture mapping may
be used as a fundamental graphics primitive for volume
rendering, environment mapping, color interpolation,
contouring, and many other applications.

CR Categories and Subject Descriptors: 1.3.3 [Com-
puter Graphics]: Picture/Image Generation; 1.3.7
[Computer Graphics]: Three-Dimensional Graphics
and Realism - color, shading, shadowing, texture-mapping,
line drawing, and anti-aliasing

1 Introduction

Texture mapping[Cat74][Hec86] is a powerful tech-
nique for adding realism to a computer-generated
scene. In its basic form, texture mapping lays an image
(the texture) onto an object in a scene. More general
forms of texture mapping generalize the image to other
information; an “image” of altitudes, for instance, can
be used to control shading across a surface to achieve
such effects as bump-mapping.

Because texture mapping is so useful, it is being
provided as a standard rendering technique both in
graphics software interfaces and in computer graph-
ics hardware[HL90][DWS*88]. Texture mapping can

*2011 N. Shoreline Blvd., Mountain View, CA 94043 USA

therefore be used in a scene with only a modest in-
crease in the complexity of the program that generates
that scene, sometimes with little effect on scene genera-
tion time. The wide availability and high-performance
of texture mapping makes it a desirable rendering tech-
nique for achieving a number of effects that are nor-
mally obtained with special purpose drawing hard-
ware.

After a brief review of the mechanics of texture map-
ping, we describe a few of its standard applications.
We go on to describe some novel applications of tex-
ture mapping.

2 Texture Mapping

When mapping an image onto an object, the color of the
objectat each pixel is modified by a corresponding color
from the image. In general, obtaining this color from
the image conceptually requires several steps[Hec89].
The image is normally stored as a sampled array, so a
continuous image must first be reconstructed from the
samples. Next, the image must be warped to match
any distortion (caused, perhaps, by perspective) in the
projected object being displayed. Then this warped
image is filtered to remove high-frequency components
that would lead to aliasing in the final step: resampling
to obtain the desired color to apply to the pixel being
textured.

In practice, the required filtering is approximated by
one of several methods. One of the most popular is
mipmapping[Wil83]. Other filtering techniques may also
be used[Cro84].

There are a number of generalizations to this basic
texture mapping scheme. The image to be mapped
need not be two-dimensional; the sampling and fil-
tering techniques may be applied for both one- and
three-dimensional images[Pea85]. In the case of a three-
dimensional image, a two-dimensional slice must be
selected to be mapped onto an object’s boundary, since
the result of rendering must be two-dimensional. The



image may not be stored as an array but may be pro-
cedurally generated[Pea85][Per85]. Finally, the image
may not represent color at all, but may instead describe
transparency or other surface properties to be used in
lighting or shading calculations[CG85].

3 Previous Uses of Texture Map-
ping

In basic texture mapping, an image is applied to a poly-
gon (or some other surface facet) by assigning texture
coordinates to the polygon’s vertices. These coordi-
nates index a texture image, and are interpolated across
the polygon to determine, at each of the polygon’s pix-
els, a texture image value. The result is that some por-
tion of the texture image is mapped onto the polygon
when the polygon is viewed on the screen. Typical
two-dimensional images in this application are images
of bricks or aroad surface (in this case the texture image
is often repeated across a polygon); a three-dimensional
image might represent a block of marble from which
objects could be “sculpted.”

3.1 Projective Textures

A generalization of this technique projects a texture
onto surfaces as if the texture were a projected slide or
movie[SKvW192]. In this case the texture coordinates
at a vertex are computed as the result of the projection
rather than being assigned fixed values. This technique
may be used to simulate spotlights as well as the re-
projection of a photograph of an object back onto that
object’s geometry.

Projective textures are also useful for simulating
shadows. In this case, an image is constructed that rep-
resents distances from a light source to surface points
nearest the light source. Thisimage can be computed by
performing z-buffering from the light’s point of view
and then obtaining the resulting z-buffer. When the
scene is viewed from the eyepoint, the distance from
the light source to each point on a surface is computed
and compared to the corresponding value stored in the
texture image. If the values are (nearly) equal, then
the point is not in shadow; otherwise, it is in shadow.
This technique should not use mipmapping, because
filtering must be applied after the shadow comparison
is performed[RSC87].

3.2 Image Warping

Image warping may be implemented with texture map-
ping by defining a correspondence between a uni-
form polygonal mesh (representing the original im-
age) and a warped mesh (representing the warped

image)[OTOK87]. The warp may be affine (to gen-
erate rotations, translations, shearings, and zooms) or
higher-order. The points of the warped mesh are as-
signed the corresponding texture coordinates of the
uniform mesh, and the mesh is texture mapped with
the original image. This technique allows for easily-
controlled interactive image warping. The technique
can also be used for panning across a large texture im-
age by using a mesh that indexes only a portion of the
entire image.

3.3 Transparency Mapping

Texture mapping may be used to lay transparent or
semi-transparent objects over a scene by representing
transparency values in the texture image as well as
color values. This technique is useful for simulating
clouds[Gar85] and trees for example, by drawing ap-
propriately textured polygons over a background. The
effect is that the background shows through around
the edges of the clouds or branches of the trees. Texture
map filtering applied to the transparency and color val-
ues automatically leads to soft boundaries between the
clouds or trees and the background.

3.4 Surface Trimming

Finally, a similar technique may be used to cut holes
out of polygons or perform domain space trimming on
curved surfaces[Bur92]. Animage of the domain space
trim regions is generated. As the surface is rendered, its
domain space coordinates are used to reference this im-
age. The value stored in the image determines whether
the corresponding point on the surface is trimmed or
not.

4  Additional Texture Mapping Ap-
plications

Texture mapping may be used to render objects that are
usually rendered by other, specialized means. Since itis
becoming widely available, texture mapping may be a
good choice to implement these techniques even when
these graphics primitives can be drawn using special
purpose methods.

4.1 Anti-aliased Points and Line Segments

One simple use of texture mapping is to draw anti-
aliased points of any width. In this case the texture
image is of a filled circle with a smooth (anti-aliased)
boundary. When a point is specified, it’s coordinates
indicate the center of a square whose width is deter-
mined by the point size. The texture coordinates at the
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Figure 1. Anti-aliased line segments.

square’s corners are those corresponding to the corners
of the texture image. This method has the advantage
that any point shape may be accommodated simply by
varying the texture image.

A similar technique can be used to draw anti-aliased,
line segments of any width[Gro90]. The texture image
is a filtered circle as used above. Instead of a line seg-
ment, a texture mapped rectangle, whose width is the
desired line width, is drawn centered on and aligned
with the line segment. If line segments with round
ends are desired, these can be added by drawing an
additional textured rectangle on each end of the line
segment (Figure 1).

4.2 Air-brushes

Repeatedly drawing a translucent image on a back-
ground can give the effect of spraying paint onto a
canvas. Drawing an image can be accomplished by
drawing a texture mapped polygon. Any conceivable
brush “footprint”, even a multi-colored one, may be
drawn using an appropriate texture image with red,
green, blue, and alpha. The brush image may also eas-
ily be scaled and rotated (Figure 2).

4.3 Anti-aliased Text

If the texture image is an image of a character, then a
polygon textured with that image will show that char-
acter on its face. If the texture image is partitioned
into an array of rectangles, each of which contains the
image of a different character, then any character may
be displayed by drawing a polygon with appropriate
texture coordinates assigned to its vertices. An advan-
tage of this method is that strings of characters may

be arbitrarily positioned and oriented in three dimen-
sions by appropriately positioning and orienting the
textured polygons. Character kerning is accomplished
simply by positioning the polygons relative to one an-
other (Figure 3).

Antialiased characters of any size may be obtained
with a single texture map simply by drawing a polygon
of the desired size, but care must be taken if mipmap-
ping is used. Normally, the smallest mipmap is 1 pixel
square, so if all the characters are stored in a single tex-
ture map, the smaller mipmaps will contain a number
of characters filtered together. This will generate unde-
sirable effects when displayed characters are too small.
Thus, if a single texture image is used for all characters,
then each must be carefully placed in the image, and
mipmaps must stop at the point where the image of a
single character is reduced to 1 pixel on aside. Alterna-
tively, each character could be placed in its own (small)
texture map.

4.4 Volume Rendering

There are three ways in which texture mapping may be
used to obtain an image of a solid, translucent object.
The first is to draw slices of the object from back to
front[DCH88]. Each slice is drawn by first generating
a texture image of the slice by sampling the data rep-
resenting the volume along the plane of the slice, and
then drawing a texture mapped polygon to produce the
slice. Each slice is blended with the previously drawn
slices using transparency.

The second method uses 3D texture mapping[Dre92].
In this method, the volumetric data is copied into the
3D texture image. Then, slices perpendicular to the
viewer are drawn. Each slice is again a texture mapped
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Figure 3. Anti-aliased text.

polygon, but this time the texture coordinates at the
polygon’s vertices determine aslice through the 3D tex-
ture image. This method requires a 3D texture mapping
capability, but has the advantage that texture memory
need be loaded only once no matter what the view-
point. If the data are too numerous to fit in a single
3D image, the full volume may be rendered in multiple
passes, placing only a portion of the volume data into
the texture image on each pass.

A third way is to use texture mapping to implement
“splatting” as described by[Wes90][LH91].

45 Movie Display

Three-dimensional texture images may also be used to
display animated sequences[Ake92]. Each frame forms
one two-dimensional slice of a three-dimensional tex-
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ture. A frame is displayed by drawing a polygon with
texture coordinates that select the desired slice. This
can be used to smoothly interpolate between frames of
the stored animation. Alpha values may also be asso-
ciated with each pixel to make animated “sprites”.

4.6 Contouring

Contour curves drawn on an object can provide valu-
able information about the object’s geometry. Such
curves may represent height above some plane (as in a
topographic map) that is either fixed or moves with the
object[Sab88]. Alternatively, the curves may indicate
intrinsic surface properties, such as geodesics or loci of
constant curvature.

Contouring is achieved with texture mapping by first
defining a one-dimensional texture image that is of con-



Figure 4. Contouring showing distance from a plane.

stant color except at some spot along its length. Then,
texture coordinates are computed for vertices of each
polygon in the object to be contoured using a texture co-
ordinate generation function. This function may calculate
the distance of the vertex above some plane (Figure 4),
or may depend on certain surface properties to produce,
for instance, a curvature value. Modular arithmetic is
used in texture coordinate interpolation to effectively
cause the single linear texture image to repeat over and
over. The result is lines across the polygons that com-
prise an object, leading to contour curves.

A two-dimensional (or even three-dimensional) tex-
ture image may be used with two (or three) texture
coordinate generation functions to produce multiple
curves, each representing a different surface character-
istic.

4.7 Generalized Projections

Texture mapping may be used to produce a non-
standard projection of a three-dimensional scene, such
asacylindrical or spherical projection[Gre86]. The tech-
nique is similar to image warping. First, the scene is
rendered six times from a single viewpoint, but with
six distinct viewing directions: forward, backward, up,
down, left, and right. These six views form a cube en-
closing the viewpoint. The desired projection is formed
by projecting the cube of images onto an array of poly-
gons (Figure 5).

4.8 Color Interpolation in non-RGB Spaces

The texture image may not represent an image at all,
but may instead be thought of as a lookup table. In-
termediate values not represented in the table are ob-
tained through linear interpolation, a feature normally
provided to handle image filtering.

One way to use a three-dimensional lookup tableis to
fill it with RGB values that correspond to, for instance,
HSV (Hue, Saturation, Value) values. The H, S, and V
values index the three dimensional tables. By assigning
HSV values to the vertices of a polygon linear color in-
terpolation may be carried out in HSV space rather than
RGB space. Other color spaces are easily supported.

4.9 Phong Shading

Phong shading with an infinite light and a local viewer
may be simulated using a 3D texture image as follows.
First, consider the function of z, y, and =z that assigns
a brightness value to coordinates that represent a (not
necessarily unit length) vector. The vector is the reflec-
tion off of the surface of the vector from the eye to a
point on the surface, and is thus a function of the nor-
mal at that point. The brightness function depends on
the location of the light source. The 3D texture image
is a lookup table for the brightness function given a re-
flection vector. Then, for each polygon in the scene, the
reflection vector is computed at each of the polygon’s
vertices. The coordinates of this vector are interpolated
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Figure 5. 360 Degree fisheye projection.

across the polygon and index the brightness function
stored in the texture image. The brightness value so
obtained modulates the color of the polygon. Multi-
ple lights may be obtained by incorporating multiple
brightness functions into the texture image.

4.10 Environment Mapping

Environment mapping[Gre86] may be achieved
through texture mapping in one of two ways. The first
way requires six texture images, each corresponding to
aface of acube, that represent the surrounding environ-
ment. At each vertex of a polygon to be environment
mapped, a reflection vector from the eye off of the sur-
face is computed. This reflection vector indexes one of
the six texture images. As long as all the vertices of the
polygon generate reflections into the same image, the
image is mapped onto the polygon using projective tex-
turing. If a polygon has reflections into more than one
face of the cube, then the polygon is subdivided into
pieces, each of which generates reflections into only
one face. Because a reflection vector is not computed at
each pixel, this method is not exact, but the results are
quite convincing when the polygons are small.

The second method is to generate a single texture
image of a perfectly reflecting sphere in the environ-
ment. This image consists of a circle representing the
hemisphere of the environment behind the viewer, sur-
rounded by an annulus representing the hemisphere in
front of the viewer. The image is that of a perfectly
reflecting sphere located in the environment when the
viewer is infinitely far from the sphere. Ateach polygon
vertex, a texture coordinate generation function gen-
erates coordinates that index this texture image, and
these are interpolated across the polygon. If the (nor-
malized) reflection vector ata vertexisr = (z y z),
and m = /2(z + 1), then the generated coordinates
are z/m and y/m when the texture image is indexed
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Figure 6. Spherical reflection geometry.

by coordinates ranging from -1 to 1. (The calculation
is diagrammed in Figure 6). This method has the dis-
advantage that the texture image must be recomputed
whenever the view direction changes, but requires only
a single texture image with no special polygon subdi-
vision (Figure 7).

411 3D Halftoning

Normal halftoned images are created by thresholding
a source image with a halftone screen. Usually this
halftone pattern of lines or dots bears no direct rela-
tionship to the geometry of the scene. Texture map-
ping allows halftone patterns to be generated using a
3D spatial function or parametric lines of a surface (Fig-
ure 8). This permits us to make halftone patterns that
are bound to the surface geometry[ST90].



Figure 8. 3D halftoning.

5 Conclusion

Many graphics systems now provide hardware that
supports texture mapping. As a result, generating a
texture mapped scene need not take longer than gener-
ating a scene without texture mapping.

We have shown that, in addition to its standard uses,
texture mapping can be used for a large humber of
interesting applications, and that texture mapping is a
powerful and flexible low level graphics drawing prim-
itive.
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Abstract

This paper describes an algorithm for simulating soft shadows at interactive rates using graphics hardware. On current graphics
workstations, the technique can calculate the soft shadows cast by moving, complex objects onto multiple planar surfacesin
about asecond. Inastatic, diffuse scene, these high quality shadows can then be displayed at 30 Hz, independent of the number
and size of the light sources.

For a diffuse scene, the method precomputes a radiance texture that captures the shadows and other brightness variations on
each polygon. Thetexture for each polygon is computed by creating registered projections of the scene onto the polygon from
multiple sample points on each light source, and averaging the resulting hard shadow images to compute a soft shadow image.
After this precomputation, soft shadows in a static scene can be displayed in rea-time with simple texture mapping of the
radiance textures. All pixel operations employed by the algorithm are supported in hardware by existing graphics workstations.
The technique can be generalized for the simulation of shadows on specular surfaces.
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1 Introduction

Shadows are both an important visual cue for the perception of
spatial relationships and an essential component of realistic images.
Shadows differ according to the type of light source causing them:
point light sources yield hard shadows, while linear and area (also
known as extended) light sources generally yield soft shadows with
an umbra (fully shadowed region) and penumbra (partially shad-
owed region).

Thereal world contains mostly soft shadows dueto thefinitesize
of sky light, the sun, and light bulbs, yet most computer graphics
rendering software simulates only hard shadows, if it simulates
shadows at all. Excessive sharpness of shadow edges is often a
telltale sign that a picture is computer generated.

Shadows are even less commonly simulated with hardware ren-
dering. Current graphics workstations, such as Silicon Graphics
(SGI) and Hewlett Packard (HP) machines, provide z-buffer hard-
ware that supports real-time rendering of fairly complex scenes.
Such machines are wonderful tools for computer aided design and
visudization. Shadows are seldom simulated on such machines,
however, because existing algorithms are not general enough, or
they require too much time or memory. The shadow algorithms
most suitable for interaction on graphics workstations have a cost
per frame proportional to the number of point light sources. While
such algorithms are practical for one or two light sources, they are
impractical for a large number of sources or the approximation of
extended sources.

We present here a new algorithm that computes the soft shad-
ows due to extended light sources. The algorithm exploits graphics
hardware for fast projective (perspective) transformation, clipping,
scan conversion, texture mapping, visibility testing, and image av-
eraging. The hardware is used both to compute the shading on
the surfaces and to display it, using texture mapping. For diffuse
scenes, the shading is computed in a preprocessing step whose cost
is proportiona to the number of light source samples, but while the
sceneisstatic, it can be redisplayed in timeindependent of the num-
ber of light sources. The method is also useful for simulating the
hard shadows due to alarge number of point sources. The memory
requirements of the algorithm are aso independent of the number
of light source samples.

1.1 Theldea

For diffuse scenes, our method works by precomputing, for each
polygon in the scene, a radiance texture [12,14] that records the
color (outgoing radiance) at each point in the polygon. In adiffuse
scene, the radiance at each surface point is view independent, so it
can be precomputed and re-used until the scene geometry changes.
This radiance texture is analogous to the mesh of radiosity values
computed in a radiosity agorithm. Unlike a radiosity algorithm,
however, our agorithm can compute this texture almost entirely in
hardware.

The key ideais to use graphics hardware to determine visibility
and calculate shading, that is, to determine which portions of a
surface are occluded with respect to a given extended light source,
and how brightly they are lit. In order to simulate extended light
sources, we approximate them with anumber of light sample points,
and we do visibility tests between a given surface point and each
light sample. To keep as many operations in hardware as possible,
however, we do not use a hemicube [7] to determine visibility.
Instead, to compute the shadows for a single polygon, we render
the scene into a scratch buffer, with all polygons except the one
being shaded appropriately blackened, using a specia projective
projection from the point of view of each light sample. Theseviews
areregistered sothat corresponding pixelsmap toidentical pointson

the polygon. When the resulting hard shadow images are averaged,
a soft shadow image results (figure 1). This image is then used
directly as a texture on the polygon in order to simulate shadows
correctly. The textures so computed are used for real-time display
until the scene geometry changes.

In the remainder of the paper, we summarize previous shadow
algorithms, we present our method for diffuse scenesin more detail,
we discuss generalizations to scenes with specular and general re-
flectance, we present our implementation and results, and we offer
some concluding remarks.

2 PreviousWork

2.1 Shadow Algorithms

Woo et al. surveyed a number of shadow algorithms [19]. Here
we summarize soft shadows methods and methods that run at inter-
activerates. Shadow algorithmscan bedividedinto threecategories:
those that compute everything on the fly, those that precompute just
visibility, and those that precompute shading.

Computation ontheFly. Simpleray tracing computes everything
on the fly. Shadows are computed on a point-by-point basis by
tracing rays between the surface point and a point on each light
source to check for occluders. Soft shadows can be smulated by
tracing rays to anumber of points distributed across the light source
[8].
The shadow volume approach is another method for computing
shadows on the fly. With this method, one constructs imaginary
surfaces that bound the shadowed volume of space with respect
to each point light source. Determining if a point is in shadow
then reduces to point-in-volume testing. Brotman and Badler used
an extended z-buffer algorithm with linked lists at each pixel to
support soft shadows using this approach [4].

The shadow volume method has also been used in two hardware
implementations. Fuchs et al. used the pixel processors of the
Pixel Planes machine to simulate hard shadows in real-time [10].
Heidmann used the stencil buffer in advanced SGI machines [13].
With Heidmann's algorithm, the scene must be rendered through
the stencil created from each light source, so the cost per frame
is proportional to the number of light sources times the number
of polygons. On 1991 hardware, soft shadows in a fairly simple
scene required several seconds with his agorithm. His method
appears to be one of the agorithms best suited to interactive use on
widely available graphics hardware. We would prefer, however, an
algorithm whose cost is sublinear in the number of light sources.

A simple, brute force approach, good for casting shadows of
objects onto a plane, is to find the projective transformation that
projects objects from a point light onto a plane, and to use it to
draw each squashed, blackened object on top of the plane [3], [15,
p. 401]. Thisalgorithm effectively multipliesthe number of objects
in the scene by the number of light sources times the number of
receiver polygons onto which shadows are being cast, however,
so it is typicaly practical only for very smal numbers of light
sources and receivers. Another problem with this method is that
occluders behind the receiver will cast erroneous shadows, unless
extraclipping is done.

Precomputation of Visibility. Instead of computing visibility on
the fly, one can precompute visibility from the point of view of each
light source.

The z-buffer shadow agorithm uses two (or more) passes of z-
buffer rendering, first from the light sources, and then from the
eye [18]. The z-buffers from the light views are used in the final



Figure 1: Hard shadow images from 2 x 2 grid of sample points on light source.
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Figure 2: Left: scenewith squarelight source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows
on receiver. Center: Approximate soft shadows resulting from 2 x 2 grid of sample points; the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16 x 16 sampling). Thisimage is used as the texture on the receiver at |&ft.

passto determine if agiven 3-D point isilluminated with respect to
each light source. Thetransformation of pointsfrom one coordinate
system to another can be accelerated using texture mapping hard-
ware [17]. This latter method, by Segal et al., achieves red-time
rates, and is the other leading method for interactive shadows. Soft
shadows can begenerated on agraphi csworkstation by rendering the
scene multiple times, using different points on the extended light
source, averaging the resulting images using accumulation buffer
hardware [11].

A variation of the shadow volume approach is to intersect these
volumes with surfaces in the scene to precompute the umbra and
penumbra regions on each surface [16]. During the final rendering
pass, illumination integrals are evaluated at a sparse sampling of
pixels.

Precomputation of Shading. Precomputation can be taken fur-
ther, computing not just visibility but also shading. This is most
relevant to diffuse scenes, since their shading is view-independent.
Some of these methods compute visibility continuously, while oth-
ers compute it discretely.

Several researchers have explored continuous visibility methods
for soft shadow computation and radiosity mesh generation. With
this approach, surfaces are subdivided into fully lit, penumbra, and
umbra regions by splitting along lines or curves where visibility
changes. In Chin and Feiner’'s soft shadow method, polygons are
split using BSP trees, and these sub-polygons are then pre-shaded
[6]. They achieved rendering times of under a minute for smple
scenes. Drettakisand Fiume used more sophi sticated computational
geometry techniques to precompute their subdivision, and reported
rendering times of several seconds [9].

Most radiosity methods discretize each surface into a mesh of
elements and then use discrete methods such as ray tracing or
hemicubes to compute visibility. The hemicube method computes
visibility from alight source point to an entire hemisphere by pro-
jecting the scene onto a half-cube [7]. Much of this computation
can be donein hardware. Radiosity meshestypically do not resolve
shadows well, however. Typical artifacts are Mach bands aong the
mesh element boundaries and excessively blurry shadows. Most
radiosity methods are not fast enough to support interactive changes
to the geometry, however. Chen's incremental radiosity method is
an exception [5].

Our own method can be categorized next to hemicube radiosity
methods, since it also precomputes visibility discretely. Its tech-
nique for computing visibility also has parallels to the method of
flattening objectsto a plane.

2.2 GraphicsHardware

Current graphics hardware, such asthe Silicon Graphics Reality
Engine [1], can projective-transform, clip, shade, scan convert, and
texture tens of thousands of polygons in real-time (in 1/30 sec.).
Wewould like to exploit the speed of this hardware to simulate soft
shadows.

Typicaly, such hardware supports arbitrary 4 x 4 homogeneous
transformations of planar polygons, clipping to any truncated pyra-
midal frustum (right or oblique), and scan conversion with z-
buffering or overwriting. On SGI machines, Phong shading (once
per pixel) isnot possible, but faceted shading (once per polygon) and
Gouraud shading (once per vertex) are supported. Phong shading



can be simulated by splitting polygonsinto small piecesoninput. A
common, genera form for hardware-supported illumination is dif-
fuse reflection from multiple point spotlight sources, with a texture
mapped reflectance function and attenuation:

L(z,y) = T.(u,0) »
l

cosd; cosb;° L.
o+ Br; + 'yrlz

where ¢ is color channel index (=, g, or b), I.(z,y) is the pixel
value at screen space (z,y), T.(u,v) is a texture parameterized
by texture coordinates (u, v), which are a projective transform of
(z,y), 6 is the polar angle for the ray to light source [, ; is the
angle away from the directiona axis of the light source, e is the
spotlight exponent, L,. is the radiance of light I, r; is distance to
light source!, and «, 3, and + are constants controlling attenuation.
Texture mapping, lights, and attenuation can be turned on and off
independently on a per-polygon basis. Most systems aso support
Phong illumination, which has an additional specular term that we
have not shown. The most advanced, expensive machines support
all of these functions in hardware, while the cheaper machines do
some of these calculations in software. Since the graphics subrou-
tine interface, such as OpenGL [15], is typicaly identical on any
machine, these differences are transparent to the user, except for
the dramatic differences in running speed. So when we speak of a
computation being done “in hardware”, that istrue only on high end
machines.

The accumulation buffer [11], another feature of some graphics
workstations, ishardwarethat allowsalinear combination of images
to be easily computed. It is capable of computing expressions of

the general form:
y) =) ailic(z,y)

where I;. is a channel of image i, and A. is a channd of the
accumulator array.

3 Diffuse Scenes

Our shadow generation method for diffuse scenestakes advantage
of these hardware capabilities.

Direct illumination in a scene of opague surfaces that emit or
reflect light diffusely is given by the following formula:

cos.6 cos.f’
L) = i) (1 [ 50t
ligts T

where, as shown in Figure 3,
e X = (z,y,z) isa3-D point on areflective surface, and x’ is
apoint on alight source,
6 ispolar angle (angle from normal) at x, §’ istheangle at x’,
r isthe distance between x and x,
9, 6, and r are functions of x and x’,
L.(x) isoutgoing radiance at point x for color channel ¢, due
to either emission or reflection, L. isambient radiance,
pe(x) isreflectance,
e v(x,x’) isaBoolean visibility function that equals 1 if point
x isvisible from point x’, else 0,
e C0s.f# = max(cos#, 0), for backface testing, and
o theintegra isover all points on all light sources, with respect
to dx’, which is an infinitesimal area on alight source.
The inputs to the problem are the geometry, the reflectance p. (x),
and emitted radiance L.(x") on all light sources, the ambient radi-
ance Lg., and the output is the reflected radiance function L. (x).

v(x,x')Lc(x')dx'> ,

Figure 3: Geometry for direct illumination. The radiance at point
x on the receiver is being calculated by summing the contributions
from a set of point light sources at x;; on light I.

3.1 Approximating Extended Light Sources

Although such integrals can be solved in closed form for planar
surfaces with no occlusion (v = 1), the complexity of the visibility
function makes these integrals intractable in the general case. We
can compute approximations to the integral, however, by replacing
each extended light source [ by a set of n; point light sources:

B9 o

where §(x) isa3-D Dirac delta function, x;; is sample point ¢ on
light source I, and a,; isthe area associated with this sample point.
Typically, each sample on alight source hasequd area: a;; =ai/n,
where a; isthe area of light sourcel.

With this approximation, the radiance of areflective surface point
can be computed by summing the contributions over al sample
points on all light sources:

Le(x) = pe(x )Lac
+Pc ZZ

The formulas above can be generalized to linear and point light
sources, aswell as arealight sources.

The most difficult and expensive part of the above calculation
is evaluation of the visibility function v, since it requires global
knowledge of the scene, whereas the remaining factors require only
local knowledge. But computing v isnecessary in order to simulate
shadows. The above formula could be evaluated using ray tracing,
but the resulting algorithm would be slow due to the large number
of light source samples.

X - Xlz)

coseh coseh Q)

v(x, X;z) LC(X;i)'

3.2 Soft Shadowsin Hardware

Equation (1) can be rewritten in a form suitable to hardware
computation:

Le(x) = pe(X) La

ny . ’
303 (o) (S22
I i=1 b

LC“‘“) o(x, X%).
)

Each term in the inner summation can be regarded as a hard
shadow image resulting from a point light source at x;;, where x is
afunction of screen (z,y).

That summand consists of the product of three factors. The first
one, which isan areatimesthereflectance of the receiving polygon,
can be calculated in software. The second factor is the cosine of
the angle on the receiver, times the cosine of the angle on the light
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Figure 4: Pyramid with parallelogram base. Faces of pyramid are
marked with their plane equations.

source, times the radiance of the light source, divided by r2. This
can be computed in hardware by rendering the receiver polygon
with asingle spotlight at x;; turned on, using a spotlight exponent
of e = 1 and quadratic attenuation. On machinesthat do not support
Phong shading, we will have to finely subdivide the polygon. The
third factor is visibility between a point on alight source and each
point on the receiver. Visibility can be computed by projecting al
polygons between light source point xj, and the receiver onto the
receiver.

Wewant to simulate soft shadows as quickly as possible. Totake
full advantage of the hardware, we can precompute the shading for
each polygon using the formula above, and then display views of
the scene from moving viewpoints using real-time texture mapping
and z-buffering.

To compute soft shadow textures, we need to generate a number
of hard shadow images and then average them. If these hard shadow
images are not registered (they would not be, using hemi-cubes),
then it would be necessary to resample them so that corresponding
pixelsin each hard shadow image map to the same surface point in
3-D. Thiswould be very slow. A faster alternative isto choose the
transformation for each projection so that the hard shadow images
are perfectly registered with each other.

For planar receiver surfaces, this is easily accomplished by ex-
ploiting the capabilities of projective transformations. If we fit a
parallelogram around the receiver surface of interest, and then con-
struct a pyramid with this as its base and the light point asits apex,
there is a 4 x 4 homogeneous transformation that will map such a
pyramid into an axis-aligned box, as described shortly.

The hard shadow image due to sample point i on light [ is created
by loading this special transformation matrix and rendering the
receiver polygon. The polygon isilluminated by the ambient light
plus a single point light source at x};, using Phong shading or a
good approximation to it. The visibility function is then computed
by rendering the remainder of the scene with all surfaces shaded as
if they were the receiver illuminated by ambient light: (r, g,b) =
(prLar, pgLag, poLap). Thisis most quickly done with z-buffering
off, and clipping to apyramid with the receiver polygon asits base.
Drawing each polygon with an unsorted painter’s algorithm suffices
here because al polygons are the same color, and after clipping,
the only polygon fragments remaining will lie between the light
source and the receiver, so they all cast shadows on the receiver.
To compute the weighted average of the hard shadow images so
created, we use the accumulation buffer.

3.3 Projective Transformation of a Pyramid to a Box

We want a projective (perspective) transformation that maps a
pyramid with parallelogram base into a rectangular parallelepiped.
The pyramid lies in object space, with coordinates (o, yo, 20). It

has apex a and its parallelogram base has one vertex at b and edge
vectors ex and ey (bold lower case denotes a 3-D point or vector).
The parallelepiped liesin what we will call unit screen space, with
coordinates (xu, yu, zu). Viewed from the apex, the left and right
sides of the pyramid map to the parallel planes z, =0 and zy =1,
the bottom and top map to y, =0 and y, = 1, and the base plane and
aplane parallel to it through the apex map to z, = 1 and z, = oo,
respectively. Seefigure 4.

A 4x 4 homogeneous matrix effecting this transformation can be
derived from these conditions. It will have the form:

Meo ™Mol 1Moz 03
mio M M m
M = 10 11 12 =
0 0 0 1
mz M3 M3z M3

and the homogeneous transformation and homogeneous division to
transform object space to unit screen space are:

L Lo Ty x/w
=M% and [yu]=[y/w]-
" f Zu 1w

Thethird row of matrix IM takesthis simpleform because aconstant
zu value is desired on the base plane. The homogeneous screen
coordinates x, y, and w are each affine functions of x,, yo, and zo
(that is, linear plus trandation). The constraints above specify the
value of each of the three coordinates at four points in space — just
enough to uniquely determine the twelve unknowns in IM.

The w coordinate, for example, has value 1 at the points b,
b+ey, and b+ey, and value O at a. Therefore, the vector ny, =
ey x ey isnormal to any plane of constant w, thus fixing the first
three elements of the last row of the matrix within a scale factor:
(mao, ma1, ma2)T = awny. Settingw toOata and 1at b constrains
ma3= —awly-a and aw =1/ny-ew, wheree, =b — a. Thefirst
two rows of M can be derived similarly (see figure 4). The result
is:

QxNixx  QxNxy  QxNixz —axny-b

M= | o ayny  ayny  —ayny b
0 0 0 1 ’

awNwx  CwNwy  QwNwz —awy-a

where

Ny = eyXxey
ny = exxey and
ny = ey X e

ax = 1/nyx-ex
Qy = 1/ny'ey .
aw =1/ny-ey

Blinn [3] uses arelated projective transformation for the genera-
tion of shadows on a plane, but hisis a projection (it collapses 3-D
to 2-D), while ours is 3-D to 3-D. We use the third dimension for
clipping.

3.4 Usingthe Transformation

To use this transformation in our shadow algorithm, we first fit
a parallelogram around the receiver polygon. If the receiver is a
rectangle or other parallelogram, the fit is exact; if the receiver is
atriangle, then we fit the triangle into the lower |eft triangle of the
parallelogram; and for more general polygons with four or more
sides, a simple 2-D bounding box in the plane of the polygon can
be used. Itispossible to go further with projective transformations,
mapping arbitrary planar quadrilaterals into squares (using the ho-
mogeneous texture transformation matrix of OpenGL , for example).
Weassume for simplicity, however, that the transformation between
texture space (the screen spacein theselight source projections) and
object spaceisaffine, and so we restrict ourselves to parallel ograms.



3.5 Soft Shadow Algorithm for Diffuse Scenes
To precompute soft shadow radiance textures:

turn off z-buffering
for each receiver polygon R
choose resolution for receiver’s texture (sx X sy pixels)
clear accumulator image of sx x sy pixelsto black
create temporary image of sx X sy pixels
for each light source
first backface test: if [ isentirely behind R
or Risentirely behind [, then skip to next [
for each sample point ¢ on light source
second backface test: if ], isbehind R then skip to next 4
compute transformation matrix M, wherea=x;,
and the base parallelogram fits tightly around R
set current transformation matrix to scale(sx, sy, 1)-M
set clipping planes to zu,near =1 — € and zy o =big
draw R with illumination from xl’i only, as described in
equation (2), into temp image
for each other object in scene
draw object with ambient color into temp image
add temp image into accumulator image with weight a; /n;
save accumulator image as texture for polygon R

A hard shadow image is computed in each iteration of the i loop.
These are averaged together to compute a soft shadow image, which
isused asaradiance texture. Notethat objects casting shadows need
not be polygonal; any object that can be quickly scan converted will
work well.

To display a static scene from moving viewpoints, simply:

turn on z-buffering

for each object in scene
if object receives shadows, draw it textured but without illumination
else draw object with illumination

3.6 BackfaceTesting

Thecaseswherecos,f cos.§’ = 0 can be optimized using backface
testing.

To test if polygon p is behind polygon ¢, compute the signed
distances from the plane of polygon ¢ to each of the vertices of
p (Signed positive on the front of ¢ and negative on the back). If
they are al positive, then p is entirely in front of ¢, if they are all
nonpositive, p is entirely in back, otherwise, part of p isin front of
q and part isin back.

To test if the apex a of the pyramid is behind the receiver R that
defines the base plane, simply test if ny-ew <0.

The above checks will ensure that cosé > O at every point on the
receiver, but there is till the possibility that cosé’ < 0 on portions
of thereceiver (i.e. that the receiver isonly partially illuminated by
the light source). Thisfina case should be handled at the polygon
level or pixel level when shading thereceiver in the algorithm above.
Phong shading, or a good approximation to it, is needed here.

3.7 Sampling Extended Light Sources

The set of samplesused on eachlight sourcegresatly influencesthe
speed and quality of theresults. Toofew samples, or apoorly chosen
sample distribution, result in penumbras that appear stepped, not
continuous. If too many samples are used, however, the simulation
runs too slowly.

If auniform grid of sample points is used, the stepping is much
more pronounced in some cases. For example, if a uniform grid of
mxm samplesisused on aparallelogram light source, an occluder
edge coplanar with one of the light source edges will cause m big

steps, while an occluder edge in genera position will cause m?
small steps.

Stochastic sampling [8] with the same number of samplesyields
smoother penumbrathan auniform grid, because the steps no longer
coincide. Weuseajittered uniformgrid becauseit givesgood results
and is very easy to compute.

Using a fixed number of samples on each light source is ineffi-
cient. Fine sampling of alight source is most important when the
light source subtends a large solid angle from the point of view of
thereceiver, since that iswhen the penumbrais widest and stepping
artifacts would be most visible. A good approach is to choose the
light source sample resolution such that the solid angle subtended
by the light source area associated with each sample is below a
user-specified threshold.

The agorithm can easily handle diffuse (non-directiona) light
sources whose outgoing radiance varies with position, such as
stained glass windows. For such light sources, importance sam-
pling might be preferable: concentration of samplesin the regions
of the light source with highest radiance.

3.8 Texture Resolution

The resolution of the shadow texture should be roughly equal to
the resolution at which it will be viewed (one texture pixel mapping
to one screen pixel); lower resolution resultsin visible artifacts such
as blocky shadows, and higher resolution is wasteful of time and
memory. In the absence of information about probable views, a
reasonable technique is to set the number of pixels on a polygon's
texture, in each dimension, proportiona toitssizeinworld space us-
ing a“desired pixel size’ parameter. With this scheme, the required
texture memory, in pixels, will be the total world space surface area
of all polygons in the scene divided by the square of the desired
pixel size.

Texturememory for triangles can befurther optimized by packing
the textures for two triangles into one rectangular texture block.

If there are too many polygons in the scene, or the desired pixel
size is too small, the texture memory could be exceeded, causing
paging of texture memory and slow performance.

Radiance textures can be antialiased by supersampling: gener-
ating the hard and initial soft shadow images at several times the
desired resolution, and then filtering and downsampling the images
before creating textures. Textured surfaces should be rendered with
good texture filtering.

Some polygons will contain penumbral regions with respect to
a light source, and will require high texture resolution, but others
will be either totally shadowed (umbral) or totally illuminated by
each light source, and will have very smooth radiance functions.
Sometimes these functions will be so smooth that they can be ad-
equately approximated by a single Gouraud shaded polygon. This
optimization saves significant texture memory and speeds display.

This idea can be carried further, replacing the textured planar
polygon with a mesh of coplanar Gouraud shaded triangles. For
complex shadow patterns and radiance functions, however, textures
may render faster than the corresponding Gouraud approximation,
depending on the relative speed of texture mapping and Gouraud-
shaded triangle drawing, and the number of triangles required to
achieve agood approximation.

3.9 Complexity

We now analyze the expected complexity of our a gorithm (worst
case costs are not likely to be observed in practice, so we do not
discuss them here). Although more sophisticated schemes are pos-
sible, we will assume for the purposes of analysis that the same set
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Figure5: Shadows are computed on plane R and projected onto the
receiving object at right.

of light samples are used for shadowing all polygons. Suppose we
have a scene with s surfaces (polygons), atotal of n="7 ;T light
source samples, atota of ¢ radiance texture pixels, and the output
images arerendered with p pixels. We assume the depth complexity
of the scene (the average number of surfaces intersecting aray) is
bounded, and that ¢ and p are roughly linearly related. The average
number of texture pixels per polygon ist/s.

With our technique, preprocessing renders the scene ns times.
A painter’s algorithm rendering of s polygonsinto animage of ¢/s
pixelstakes O(s+t/ s) timefor scenes of bounded depth complexity.
The total preprocessing time is thus O(ns?+nt), and the required
texture memory is O(t). Display requires only z-buffered texture
mapping of s polygons to an image of p pixels, for a time cost
of O(s+p). The memory for the z-buffer and output image is
O(p)=0(t).

Our display algorithm isvery fast for complex scenes. Itscost is
independent of the number of light source samples used, and aso
independent of the number of texture pixels (assuming no texture
paging).

For scenes of low or moderate complexity, our preprocessing
algorithm is fast because al of its pixel operations can be done in
hardware. For very complex scenes, our preprocessing algorithm
becomes impractical because it is quadratic in s, however. In such
cases, performance can beimproved by cal cul ating shadows only on
asmall number of surfacesin the scene (e.g. floor, walls, and other
large, important surfaces), thereby reducing the cost to O (nsscnt),
where s; isthe number of textured polygons.

In an interactive setting, a progressive refinement of images can
be used, in which hard shadows on a small number of polygons
(precomputation with n =1, s; small) are rendered while the user
is moving objects with the mouse, a full solution (precomputation
withn large, s; large) iscomputed when they compl ete amovement,
and then top speed rendering (display with texture mapping) is used
as the viewer moves through the scene.

More fundamentally, the quadratic cost can be reduced using
more intelligent data structures. Because the angle of view of most
of the shadow projection pyramids is narrow, only a small fraction
of the polygons in a scene shadow a given polygon, on average.
Using spatia data structures, entire objects can be culled with afew
quick tests [2], obviating transformation and clipping of most of
the scene, speeding the rendering of each hard shadow image from
O(s+t/s)t0 O(s*+t/s), wherea &~ .3 or 0.

An aternative optimization, which would make the algorithm
more practical for the generation of shadows on complex curved or
many-faceted objects, is to approximate a receiving object with a
plane, compute shadows on this plane, and then project the shadows
onto the object (figure 5). This has the advantage of replacing
many renderings with asingle rendering, but its disadvantage isthat
self-shadowing of concave objectsis not simulated.

3.10 Comparisonto Other Algorithms

We can compare the complexity of our algorithm to other algo-
rithms capable of simulating soft shadows at near-interactive rates.
The main aternatives are the stencil buffer technique by Heidmann,
the z-buffer method by Segal et al., and hardware hemi cube-based
radiosity algorithms.

The stencil buffer technique renders the scene once for each light
source, so its cost per frame is O(ns + np), making it difficult
to support soft shadows in real-time. With the z-buffer shadow
algorithm, the preprocessing time is acceptable, but the memory
cost and display time cost are O(np). This makes the agorithm
awkward for many point light sources or extended light sources
with many samples (large n). When soft shadows are desired, our
approach appears to yield faster walkthroughs than either of these
two methods, because our display processis so fast.

Among current radiosity algorithms, progressive radiosity using
hardware hemicubes is probably the fastest method for complex
scenes. With progressive radiosity, very high resolution hemicubes
and many elementsare needed to get good shadows, however. While
progressive radiosity may be a better approach for shadow genera-
tion in very complex scenes (very large s), it appears slower than
our technique for scenes of moderate complexity because every
pixel-level operation in our agorithm can be done in hardware, but
thisis not the case with hemicubes, since the process of summing
differential form factors while reading out of the hemicube must be
done in software [7].

4 Sceneswith General Reflectance

Shadows on specular surfaces, or surfaces with more general
reflectance, can be simulated with a generalization of the diffuse
algorithm, but not without added time and memory costs.

Shadows from a single point light source are easily simulated
by placing just the visibility function v(x, x") in texture memory,
creating a Boolean shadow texture, and computing the remaining
local illuminationfactorsat verticesonly. Thismethod costs O (sst+
t) for precomputation, and O(s+p) for display.

Shadows from multiple point light sources can also be simulated.
After precomputing a shadow texture for each polygon when illu-
minated with each light source, the total illumination due to » light
sources can be calculated by rendering the scene n times with each
of these sets of shadow textures, compositing the final image using
blending or with the accumulation buffer. The cost of this method
isnt one-bit texture pixelsand O(ns+np) display time.

Generalizing this method to extended light sources in the case of
general reflectance ismore difficult, asthe computation involves the
integration of light from polygonal light sources weighted by the
bidirectional reflectance distribution functions (BRDFs). Specular
BRDF sare spiky, so careful integrationisrequired or thehighlights
will betray the point sampling of the light sources. We believe,
however, that with careful light sampling and numerical integration
of the BRDF's, soft shadows on surfaces with genera reflectance
could be displayed with O(nt) memory and O(ns+np) time.

5 Implementation

We implemented our diffuse algorithm using the OpenGL sub-
routine library, running with the IRIX 5.3 operating system on an
SGI Crimson with 100 MHz MIPS R4000 processor and Reality
Engine graphics. This machine has hardware for texture mapping
and an accumulation buffer with 24 bits per channel.

The implementation is fairly simple, since OpenGL supports
loading of arbitrary 4 x 4 matrices, and we intentionally cast our



shading formulasin aform that maps cleanly into OpenGL's model .
The source code is about 2,000 lines of C++. Our implementation
renders at about 900 x 900 resolution, and uses 24-bit textures at
sizes of 2" x 2% pixels, for 2 < kx, ky < 8. Phong shading is
simulated by subdividing each receiver polygon into agrid of 8 x 8-
pixel parallelograms during preprocessing.

Our software allows interactive movement of objects and the
camera. When the scene geometry is changed, textures are recom-
puted. On a scene with s = 749 polygons, s = 3 of them textured,
with two area light sources sampled with n = 8 points total, gen-
erating textures with about ¢ = 200, 000 pixels total, and a fina
picture of about p =810, 000 pixels, preprocessing has a redisplay
rate of 2 Hz. For simple scenes, the slowest part of preprocessing
is the transfer of radiance textures from system memory to texture
memory.

When only the view is changed, we simply redisplay the scene
with texture mapping. The use of OpenGL display lists helps us
achieve 30 Hz ratesin most cases. When we allocate more radiance
texture memory than the hardware can hold, however, paging slows
redisplay.

Since we know the size and perceptual importance of each object
at modeling time, we have found it convenient to have each receiver
object control the number of light source samples that are used to
illuminateit. Thefloor and walls, for example, might specify many
light source samples, while table and chairs might specify asingle
light sourcesample. Tofacilitatefurther testing of shadow sampling,
adlider that acts asamultiplier on the requested number of samples
per light source is provided. More automatic and intelligent light
sampling schemes are certainly possible.

6 Results

Thecolor figuresillustrate high quality resultsachievableinafew
seconds with fine light source sampling. Figure 6 shows a scene
with 6,142 polygons, 3 of them shadowed, which was computed in
5.5 seconds using n = 32 light samples total on two light sources.
Figure 7 illustrates the caculation of shadows on more complex
objects, with atotal of s;=25 shadowed polygons. For thisimage,
7x 7 light sampling was used when shadowing the walls and floor,
while 3x 3 sampling was used to compute shadows on the table top,
and 2 x 2 sampling was used for the table legs. The textures for
the table polygons are smaller than those for the walls and floor, in
proportion to their world space size. Thisimage was calculated in
13 seconds.

7 Conclusions

Wehavedescribed asimplealgorithm for generating soft shadows
at interactive rates by exploiting graphics workstation hardware.
Previous shadow generation methods have not supported both the
computation and display of soft shadows at these speeds.

To achieve real time rates with our method, one probably needs
hardware support for transformation, clipping, scan conversion, tex-
ture mapping, and accumulation buffer operations. In coming years,
such hardware will only become more affordable, however. Soft-
ware implementations will also work, of course, but at reduced
speeds.

For most scenes, realistic images can be generated by computing
soft shadows only for a small set of polygons. Thiswill run quite
fast. If it is necessary to compute shadows for every polygon, our
preprocessing method has quadratic growth with respect to scene
complexity s, but we believe this can be reduced to about O(s*3),
using spatial data structures to cull off-screen objects.

Once preprocessing is done, the display cost is independent of
the number and size of light sources. This cost is little more than
the display cost without shadows.

The method also has potential as a form factor calculation tech-
nique for progressive radiosity.
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Figure 6: Shadows on walls and floor, computed in 5.5 seconds.

Figure 7: Shadows on walls, floor, and table, computed in 13 seconds.
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Interactive Rendering of CSG Models
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Abstract

We describe a CSG rendering algorithm that requires no evaluation of the CSG tree beyond normal-
ization and pruning. It renders directly from the normalized CSG tree and primitives described (to
the graphics system) by their facetted boundaries. It behaves correctly in the presence of user defined,
“near” and “far” clipping planes. It has been implemented on standard graphics workstations using
Iris GL 7 and OpenGL * graphics libraries. Modestly sized models can be evaluated and rendered at

interactive (less than a second per frame) speeds. We have combined the algorithm with an ezisting

B-rep based modeller to provide interactive rendering of incremental updates to large models.

1. Introduction

Constructive Solid Geometry (CSG) within an inter-
active modelling environment provides a simple and
intuitive approach to solid modelling. In conventional
modelling systems primitives are first positioned, a
boolean operation is performed and the results then
rendered. Often the correct position cannot be gauged
easily from display of the primitives alone. A sequence
of trial and error may be initiated or perhaps a break
from the normal modelling process to calculate the
correct position numerically. Conceptual modelling is
inhibited — usually a design is fully fledged before
modelling commences. Interactive rendering offers the
promise of a modelling system where designers can
easily explore possibilities within the CSG paradigm.
For instance, a designer could drag a hole defined by a
complex solid through a workpiece, observing the new
forms that emerge.

Interactive rendering of CSG models has previ-
ously been implemented with special purpose hard-
ware 7 7 7. We believe that such systems should be
based on an existing, commonly available graphics li-
brary. Use of an existing graphics library simplifies de-
velopment, protects investment in proprietary graph-
ics hardware, and leverages off future improvements

i Supported by Informatix, Inc. Tokyo.
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in the hardware supported by the library. Conversion
of the CSG tree for a model into a boundary repre-
sentation (B-rep) meets this goal but is typically too
slow for interactive modification.

The surfaces in the B-rep of a model are a subset
of the surfaces of the primitives in the CSG tree for
the model. Conversion to a B-rep is then the clas-
sification of the surfaces of each primitive into por-
tions that are “inside”, “outside”, or “on” the surface
of the fully evaluated model. Display of the model
only requires classification of the points on the sur-
faces which project to each pixel. Point classification
is much simpler than surface classification. Geomet-
rically, point classification requires intersection of the
primitives with rays through each pixel, while surface
classification requires intersection of the primitive sur-
faces with each other.

Thibault and Naylor 7 describe a surface classifica-
tion based approach. They build BSP trees for each
primitive and perform the classification by merging
the trees together. The resulting tree is equivalent to
a BSP tree built from the B-rep of the model. The
complete evaluation process is too slow for interac-
tive rendering. They describe an incremental version
of their algorithm which provides interactive rendering
speeds within a modelling environment.

There are variations of most rendering algorithms
which use point classification. These include ray trac-
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ing 7, scan line methods ?, and depth-buffer methods
%% 7 Much attention has been focused on optimis-
ing point classification for this purpose °. These al-
gorithms all add point classification within the lowest
levels of the standard algorithms. We require an al-
gorithm which can be implemented using an existing
graphics library.

Goldfeather, Molnar, Turk and Fuchs *
an algorithm that first normalizes a CSG tree be-
fore rendering the normalized form. It operates in a
SIMD pixel parallel way on an augmented frame buffer
(Pixel-planes 4) which has two depth (Z) buffers, two
color buffers and flag bits per pixel. We have devel-
oped a new version of this algorithm capable of being
implemented using an existing graphics library on a
conventional graphics workstation. Our algorithm re-
quires a single depth buffer, single color buffer, stencil
(fag bits) buffer and the ability to save and restore
the contents of the depth buffer.

describe

In section 77 we review the algorithm described by
Goldfeather et. al. . We have restructured the presen-
tation of the ideas to make them more amenable to im-
plementation on a conventional graphics workstation.
Our implementation is described in section ?7. In sec-
tion 77 we describe the integration of user defined,
“near” and “far” clipping planes into the algorithm.
In section 77 we describe use of the algorithm within
an interactive modelling system. The system main-
tains fully evaluated B-rep versions of models and uses
the rendering algorithm for interactive changes to the
models. Section 7?7 presents performance statistics for
our current implementation using the Silicon Graphics

GL library °.

2. Rendering a CSG tree using pixel parallel
operations

We would advise interested readers to refer to Gold-
feather et. al. 7 for a fuller description of the algorithm
which we summarize in this section.

A CSG tree is either a primitive or a boolean combi-
nation of sub-trees with intersection(n), subtraction(—)
or union(U) operators. A CSG tree is in normal (sum
of products) form when all intersection or subtraction
operators have a left subtree which contains no union
operators and a right subtree that is simply a primi-
tive. For example (((ANB)—C)U(DN(E—(FNG))))UH,
where A-H represent primitives, is in normal form.
We shall assume left association of operators so the
previous expression can be written as (ANB—C)U (DN
E—FNG)UH. This expression has three products. The
primitives A, B, D, E, G, H are uncomplemented, C
and F' are complemented.

The normalization process recursively applies a set

of production rules to a CSG tree which use the as-
sociative and distributive properties of boolean opera-
tions. Determining an appropriate rule and applying it
uses only local information (type of current node and
child node types). The production rules and algorithm

used are :
LX-(YUZ) = (X-Y)-Z
2.XNYUuZ) - (XnY)u(XnZ)
3. X—(YNnZ) - (X=-Y)u(X-2)
4. Xn(YNZ) = (XnY)nZ
5 X—(Y-2) = (X=-Y)u(XnZ)
6. XN(Y-2) - (XnY)-Z
T(X-Y)NZ - (XnZ)-Y
8 (XUY)-Z 5 (X-2)u(Y—-Z2)
9. (XUY)NZ - (XnZ)u(YnZ)

proc normalize(T : tree)
{
if T is a primitive {
return
}
repeat {
while T matches a rule from 1-9 {
apply first matching rule
}

normalize(Tleft)

} until (T.op is a union) or
((T'.right is a primitive) and
(T'.left is not a union))

normalize(T .right)

Goldfeather et. al. * show that the algorithm ter-
minates, generates a tree in normal form and does
not add redundant product terms or repeat primitives
within a product.

Normalization can add many primitive leaf nodes to
a tree with a possibly exponential increase in tree size.
In most cases, a large number of the products gener-
ated by normalization play no part in the final image,
because their primitives do not intersect. A limited
amount of geometric information (bounding boxes of
primitives) is used to prune CSG trees as they are
normalized. Bounding boxes are computed for each
operator node using the rules :

1. Bound(A U B) = Bound(Bound(A) U Bound(B))
2. Bound(ANB) = Bound(Bound(A) NBound(B))
3. Bound(A—B) = Bound(A)

Here A and B are arbitrary child nodes. After each
step of the normalization algorithm the tree is pruned
by applying the following rules to the current node :

© The Eurographics Association 1997
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1. ANB — 0, if Bound(A) does not
intersect Bound(B).

2. A—B — A, if Bound(A) does not
intersect Bound(B).

Normalization of the tree allows simplification of the
rendering problem. The union of two or more solids
can be rendered using the standard depth (Z) buffer
hidden surface removal algorithm used by most graph-
ics workstations. The rendering algorithm needs only
to render the correct depth and color for each product
in the normalized CSG tree and then allow the depth
buffer to combine the results for each product.

Each product can be rendered by rendering each vis-
ible surface of a primitive and trimming (intersecting
or subtracting) the surface with the remaining primi-
tives in the product. The visible surfaces are the front
facing surfaces of uncomplemented primitives and the
back facing surfaces of complemented primitives. This
observation allows a further rewriting of the CSG tree
where each product is split into a sum of partial prod-
ucts. A convex primitive has one pair of front and back
surfaces per pixel. A non-convex primitive may have
any number of pairs of front and back surfaces per
pixel. A k-convex primitive is defined as one that has
at most k pairs of front and back surfaces per pixel
from any view point. We shall use the notation Ax to
represent a k-convex primitive and Ay, to represent
the nth front surface (numbered 0 to k — 1) of primi-
tive Ax and Apy to represent the nth back surface of
Ag. In the common case of convex primitives, we shall
drop the numerical subscripts. Thus, A—B expands to
(As—B)U(B#A) in sum of partial products form; while
Az—B expands to (Ago—B)U(A;1—B)U(ByNAz). We
call the primitive whose surface is being rendered the
target primitive of the partial product. The remaining
primitives are called trimming primitives.

The sum of partial products form again simpli-
fies the rendering problem. It is now reduced to cor-
rectly rendering partial products before combining the
results with the depth buffer. Additional difference
pruning may also be carried out when products have
been expanded to partial products :

3 AyNB — 0, if Bound(A) does not
intersect Bound(B).

A partial product is rendered by first rendering the
target surface of the partial product. Each pixel in
the surface i1s then classified in parallel against each
of the trimming primitives. To be part of the partial
product surface, each pixel must be in with respect to
any uncomplemented primitives and out with respect
to any complemented ones. Those pixels which do not
meet these criteria are trimmed away (colour set to
background, depth set to initial value).

© The Eurographics Association 1997
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Figure 1: Classifying per pizel depth values against a
primative

Viewing Direction

Figure 2: A simple CSG expression

vwaf

Classify Classify

0

Trim Odd Trim Even

Af-B U BpNA = A-B

Figure 3: Rendering figure 77 as two partial products
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Primitives must be formed from closed (possibly
nested) facetted shells. Pixels can then be classified
against a trimming primitive by counting the number
of times a primitive fragment is closer during scan con-
version of the primitive’s faces. If the result is odd the
pixel is in with respect to the primitive (figure ?7).
Pixels can be classified in parallel by using a 1 bit flag
per pixel whose value is toggled whenever scan conver-
sion of a trimming primitive fragment is closer than
the pixel’s depth value.

Figure 77 illustrates the process for A— B looking
along the view direction shown in figure ?7. First, Ay
is rendered, classified against B and trimmed (A;—B).
Then By is rendered, classified against A and trimmed
(ByNA). Finally, the two renders are composited to-
gether.

Rendering the appropriate surface of a convex prim-
itive is simple as there is only one pair of front and
back surfaces per pixel. Most graphics libraries sup-
port front and back face culling modes. To render all
possible surfaces of an arbitrary k-convex primitive
separately requires a log, k bit count per pixel. To ren-
der the jth front (or back) facing surface of a primitive,
the front (or back) facing surfaces are rendered incre-
menting the count for each pixel and only enabling
writes to the colour and depth buffers for which the
count is equal to 7.

3. Implementation on a conventional graphics
workstation

The algorithm described in section 7?7 maps naturally
onto a hardware architecture which can support two
depth buffers, two colour buffers and a stencil buffer.
One pair of depth and colour buffers, together with the
stencil buffer, are used to render each partial product.
The results are then composited into the other pair
of buffers. Unfortunately, conventional graphics work-
station hardware typically supports only one depth
buffer. One approach is to use the hardware provided
depth, colour and stencil buffers to render partial
products; retrieving the results from the hardware and
compositing in local workstation memory. The final re-
sult can then be returned direct to the frame buffer.
This approach does not make the best use of the work-
station hardware. Modern hardware tends to be highly
pipelined. Interrupting the pipeline to retrieve results
for each partial product will have a considerable per-
formance penalty. In addition, the hardware is typi-
cally optimized for flow of data from local memory,
through the pipeline and into the frame buffer. Data
paths from the frame buffer back to local memory are
likely to be slow, especially given the volume of data
to be retrieved compared to the compact instructions
given to the hardware to draw the primitives. Finally,

the compositing operation in local memory will receive
no help from the hardware.

Our approach attempts to extract the maximum
benefit from any graphics hardware by minimizing the
traffic between local memory and the hardware and
by making sure that the hardware can be used for all
rendering and compositing operations. The idea is to
divide the rendering process into two phases — clas-
sification and final rendering. Before rendering begins
the current depth buffer contents are saved into local
memory. We then classify each partial product surface
in turn. An extra stencil buffer bit (accumulator) per
surface stores the results of the classification. During
this process updates to the colour buffer are disabled.
Once classification i1s complete, we restore the depth
buffer to the saved state and enable updates to the
colour buffer. Finally, each partial product surface is
rendered again using the stored classification results
as a mask (or stencil) to control update of the frame
buffer. At the same time the depth buffer acts to com-
posite the pixels which pass the stencil test with those
already rendered.

The number of surfaces for which we can perform
classification is limited by the depth of the stencil
buffer. If the capacity of the stencil buffer is exceeded
the surfaces must be processed in multiple passes with
the depth buffer saved and restored during each pass.
We can reduce the amount of data that needs to be
copied by only saving the parts of the depth buffer that
will be modified by classification during each pass. The
first pass of each frame does not need to save the depth
buffer at all as the values are known to be those pro-
duced by the initial clear. Instead of restoring, the
depth buffer is cleared again. Thus, for simple models
rendered at the start of a frame, no depth buffer save
and restore is needed at all.

A surface may appear in more than one partial prod-
uct in the normalized CSG tree. We exploit this by us-
ing the same accumulator bit for all partial products
with the same surface. Classification results for each
partial product are ORed with the current contents of
the accumulator.

The stencil bits are partitioned into count bits
(Scount ), a parity bit (Sp) and an accumulator bit (Sq)
per surface. log, k count bits are required where & is
the maximum convexity of any primitive with a sur-
face being classified in the current pass. The count and
parity bits are used independently and may be over-
lapped. Table 77 shows the number of stencil buffer
bits required to classify and render a single surface
for primitives of varying convexity. The algorithm re-
quires an absolute minimum of 2 bits for 1-convex and
2-convex primitives, classifying and rendering a single
surface in a pass. In practice nearly all primitives used

© The Eurographics Association 1997
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Convexity 1 2 34 58 916 17-32 33-64 65-128
Sp 1 1 1 1 1 1 1 1
Scount 0 1 2 3 4 5 6 7
Sp and Scount 1 1 2 3 4 5 6 7
With 1 accumulator (Sp) 2 2 3 4 5 6 7 8
With 3 accumulators (Sp.2) 4 4 5 6 7 8 9 10
With 7 accumulators (Sp.6) 8 8 9 10 11 12 13 14

Table 1: Stencel buffer usage with primitive convexity

in pure CSG trees are 1-convex. With 8 stencil bits the
algorithm can render from 7 1-convex primitives, to 1
surface of a 128-convex primitive, in a single pass.

Partial products are gathered into groups such that
all the partial products in a group can be classified
and rendered in one pass. The capacity of a group
is defined as the number of different target surfaces
that partial products in the group may contain. Ca-
pacity is dependent on the stencil buffer depth and
the greatest convexity of any of the target primitives
in the group (table ?7). Groups are formed by adding
partial products in ascending order of target primitive
convexity. Once one partial product with a particular
target surface is added, all others with the same target
surface can be added without using any extra capac-
ity. Adding a partial product with a higher convexity
than any already in the group will reduce the group
capacity. If there is insufficient capacity to add the
minimum convexity remaining partial product, a new
group must be started.

FEach group is processed in a separate pass in which
all target surface primitives are classified and then
rendered. Frame buffer wide operations are limited to
areas defined by the projection of the bounding box
of the current group or partial product. We present
pseudo-code for the complete rendering process be-
low. The procedures “glPrim(prim, tests, buffers, ops,
pops)” and “glSet(value, tests, buffer, ops, pops)”
should be provided by the graphics library. The first
renders (scan converts) a primitive where “tests” are
the tests performed at each pixel to determine if it
can be updated, “buffers” specifies the set of buffers
enabled for writing if the “tests” pass (where C is
colour, Z is depth and S is stencil), “ops” are opera-
tions performed on the stencil bits at each pixel in the
primitive, and “pops” are operations to be performed
on the stencil bits at each pixel only if “tests” pass.
The second procedure is similar but attempts to glob-
ally set values for all pixels. Iris GL * and OpenGL
7 are two graphics libraries which provide equivalents
to the glPrim and glSet procedures described here.
We use the symbol Zp to denote the depth value at
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a pixel due to the scan conversion of a primitive, P.
Hence, “Zp < Z” is the familiar 7 buffer hidden sur-
face removal test. We use Z; to represent the furthest
possible depth value.

glSet(0, ALWAYS, S, 0, 0)
glSet(“far”, ALWAYS, Z, 0, 0)
for first group G {

classify(G)

glSet(Z;, ALWAYS, Z, 0, 0)

renderGroup(G)

} for each subsequent group G {
save depth buffer
glSet(Z;, ALWAYS, Z, 0, 0)
classify(G)
restore depth buffer
renderGroup(G)

}

proc classify(G : group)
{
a=20
for each target surface B in G {
for each partial product R {
renderSurface(B)
for each trimming primitive P in R {

trim(P)
}

glSet(1, So =0 & Z # Z, Sa, 0, 0)
glSet(Z;, ALWAYS, Z, 0, 0)
}
a

a—+1

}

proc renderGroup(G : group)
{
a=20
for each target primitive P in G {
glPrim(P, So=1& Zp < Z,C & Z,0, 0)
glSet(0, ALWAYS, S,, 0, 0)
a=a-+1
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Maximum Target Primitive Convexity

Capacity
1 2 34 58 9-16 17-32 33-64 65-128
2 1 1 - - - - - -
3 2 2 1 - - - - -
4 3 3 2 1 - - - -
Stencil Buffer Depth 5 4 4 3 2 1 - - -
6 5 5 4 3 2 1 - -
7 6 6 5 4 3 2 1 -
8 7 7 6 5 4 3 2 1

Table 2: Group Capacity

Figure 4: (a) Primitives, (b) Rendering (ANB U A—
CYN(ANDUA—E)

proc renderSurface(B : surface)

{

}

P = target primitive containing B
n = surface number of B
k = convexity of P
if P is uncomplemented {
enable back face culling

} else {

enable front face culling
}
itk=1¢{
glPrim(P, ALWAYS, Z, 0, )
} else {
glPrim(P, Scount = n, Z, inc Scount, 0)
glSet(0, ALWAYS, Scount, 0, 0)
}

proc trim(P : primitive)

{

glPrim(P, Zp < Z, 0, 0, toggle Sy)
if P is uncomplemented {
glSet(Zy, S, =0, Z, 0, 0)
} else {
glSet(Zy, S, =1, 7,0, 0)

}
glSet (0, ALWAYS, S,, 0, 0)

) ) \

Group 1 Group 2

.

N\ ~

Group 3 Group 4

Figure 5: Rendering each product group separately

Figure 77 shows five primitives and a rendered CSG
tree of the primitives. The expression ((ANB) U (A—
ONN((AND) U (A—E)) normalizes to (ANBND) U
(AND—-C)U(ANB—FE)U (A—C—E). Expanding to

partial products and grouping gives :

0: (ANBND)U(AND—-C)U(AMNB—E)U(A;—C—E)
1: (ByNAND)U (BfNA—E)
2: (ChNAND)U (CrNA—E)
3: (DyNANB)U(DsNA-C)
4: (EsNANB)U (EyNA-C)

Figure 77 shows the result of rendering each prod-
uct group separately. Product groups 2 and 4 are not

© The Eurographics Association 1997
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visible in the combined image as they are behind the
surfaces from groups 1 and 3.

4. Clipping planes and half spaces

Interactive inspection of solid models is aided by
means of clipping planes which can help reveal inter-
nal structure. After a clipping plane has been defined
and activated all subsequently rendered geometry is
clipped against the plane and the parts on the out
side discarded. The rendering of solids as closed shells
means that clipping will erroneously reveal the interior
of a shell when a portion of the shell is clipped away.
Rossignac, Megahed and Schneider ? describe a stencil
buffer based technique for “capping” shells where they
intersect a clipping plane. Their algorithm will also
highlight interferences (intersections) between solids
on the clipping plane.

Clipping a solid and then capping is equivalent to
intersection with a half space. We can trivially render
an intersection between a solid S and a halfspace H
by constructing a convex polygonal primitive P where
one face lies on the plane defining H and has edges
which do not intersect the bounding box of S. The
other faces of P should not intersect S at all. Render-
ing SN P is equivalent to rendering the solid defined
by SNH.

o

Rossignac, Megahed and Schneider’s 7 capping al-
gorithm can be easily integrated with our algorithm
to make use of auxiliary clipping planes in rendering
CSG trees involving halfspaces. As a halfspace is infi-
nite we assume that it will always be intersected with
a finite primitive in any CSG expression. Note that
S—H is equivalent to SNH where H is simply H with
the normal of the halfspace defining plane reversed.

A halfspace acts as a trimming primitive by acti-
vating a clipping plane for the halfspace during the
rendering of the target primitive. The stencil buffer
is unused. The set of halfspaces in a product can be
considered as a 1-convex target primitive. Its surface
can be rendered by rendering the defining plane (or
rather a sufficiently large polygon lying on the plane)
of each halfspace while clipping planes are active for
each of the other halfspaces. Each clipping plane is de-
activated while it is being rendered to prevent it from
clipping itself.

proc render(H : halfspace set)

{
for each defining plane P of H {

Activate clipping plane defined by P

}

for each front facing defining plane P of H {
Deactivate clipping plane defined by P
renderPlane(P)
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Activate clipping plane defined by P
}
for each defining plane P of H {
Deactivate clipping plane defined by P
}

This approach has three advantages over rendering
halfspaces as normal primitives. Firstly, the halfspace
set only has to be rendered as a target primitive, all
trimming by halfspaces uses the clipping planes. Sec-
ondly, each target primitive is clipped, reducing the
amount of data written to the frame buffer at the
cost of the extra geometry processing required by clip-
ping. Thirdly, a solid/halfspace intersection can be
correctly rendered using the algorithm for 1-convex
solids (k = 1), independent of actual primitive con-
vexity.

Rendering a k-convex target primitive using the al-
gorithm for 1-convex solids results in the nearest sur-
face being drawn (with depth buffering active). The
nearest surface (after clipping) of a concave primitive
will be visible in the intersection with a half space.
Rendering an arbitrary CSG tree using the 1-convex
algorithm will render the result of evaluating the CSG
description on the “nearest spans” (nearest front to
nearest back facing surface for each pixel) of each
primitive. For interactive use the nearest spans are of-
ten all we are interested in. If not, then clipping planes
may be used to delimit regions of interest within which
the nearest spans will be correctly rendered. Thus, a
lower cost, reduced quality mode of rendering is also
available.

In addition to user defined clipping planes, all ge-
ometry is usually clipped to “near” and “far” planes.
These planes are perpendicular to the viewing direc-
tion. All geometry must be further from the eye posi-
tion than the near plane and nearer than the far plane.
The near and far planes also define the mapping of dis-
tances from the eye point to values stored in the depth
buffer. Points on the near plane map to the minimum
depth buffer value and points on the far plane map to
the maximum depth buffer value. The algorithm de-
scribed in section 77 will fail if any primitive is clipped
by either the near or far clipping plane.

In practice the far clipping plane can always be
safely positioned beyond the primitives. The near
plane is more troublesome. Firstly, it cannot be posi-
tioned behind the eye point. Secondly, the resolution
of the depth buffer is critically dependent on the posi-
tion of the near clip plane. It should be positioned as
far from the eye point as possible. Consider rendering
A—B and positioning the eye in the hole in A formed
by subtracting B. Near plane clipping is unavoidable.
We can extend our algorithm to cap trimming prim-
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Figure 6: (a) Primitives, (b) Rendering (ANB U A—
OYN(ANDUA-E)NF

itives if they will be subject to near plane clipping.
Clipping of target primitives is not a problem unless
the eye point is positioned inside the evaluated CSG
model.

The trimming primitive is rendered twice while tog-
gling Sp; firstly, with the depth buffer test disabled;
secondly, with the depth buffer test enabled. The first
render sets the parity bit where capping is required.
The second completes the classification as above.

proc trim(P : primitive)
{
glPrim(P, ALWAYS, 0, 0, toggle Sy)
glPrim(P, Zp < Z, 0, 0, toggle Sy)
if P is uncomplemented {
glSet(Zy, S, =0, Z, 0, 0)
} else {
glSet(Zy, S, =1, 7,0, 0)
}
glSet(0, ALWAYS, S;, 0, 0)
}

Figure 77 shows our earlier example intersected
with a single clipping plane / half space. The nor-
malized CSG description is (ANBNDNF)U (ANDN
F-C)U(ANBNF—-E)U(ANF—-C—E).

The normalization and pruning algorithm described
in section 77 needs to be extended to cope with half-
space primitives. The extensions required are in the
form of additional rules for bounding box generation,
normalization and pruning (H is a halfspace) :

Bounding Box Generation

4. Bound(ANH) = Bound(A)

Normalization

0. X—H = XnH

Pruning

4. AnNH — 0, if Bound(A) is outside H.
. ANH — A, if Bound(A) is inside H.

. ANH—-B — AnH, if Bound(B) is outside H.
CANH — Ap, if Bound(A) is inside H.
CHj—A = Hy, if Bound(A

0 1 O w

Our earlier example (figure ?7) contains many prun-
ing possibilities. The normalized CSG tree is (ANBN
DNFYU(ANDNF-C)U (ANBNF-E)U(ANF-C-E).
Using rule 1 removes the product ANBNDNF as B
and D don’t intersect. Rule 2 will reduce the products
ANDNF—C and ANBNF—FE to ANDNF and ANBNF
as the complemented primitives do not intersect the
product. Rule 4 removes the product ANBNF', rule 5 re-
duces ANDNE to AND and rule 6 reduces ANF—C—F
to ANF—FE. The normalized and geometric pruned
CSG tree is then (ANDNF) U (ANF—FE). Expanding
to partial products gives (A;NDNF)U (DfNANF)U
(FrnANDYU(AfNF—E)U (FyNA—E)U(EysNANF).
Finally, difference pruning will reduce EFrNANF to
EyNA (rule 7) and FyNA—FE to FyNA (rule 8).

We also prune products against the viewing volume
for the current frame and classify trimming primitive
bounding boxes against the near clipping plane to de-
termine whether the extra capping step is necessary.

5. Interactive Rendering

We have incorporated our rendering algorithm in a
simple, interactive solid modelling system built with
standard components. The main framework is pro-
vided by the Inventor object-oriented 3D toolkit ~.
A model 1s represented by a directed acyclic graph
of nodes. Operations on models, such as rendering
or picking, are performed by means of actions. The
toolkit may be extended by providing user written
nodes and actions. Conventional solid modelling oper-
ations are provided by the ACIS geometric modeller 7.
ACIS is an object-oriented, boundary representation,
solid modelling kernel.

Our modelling system adds new node types to In-
ventor which support ACIS modelled solids and CSG
trees of solids. We also add a new rendering action
which uses our stencil buffer CSG display algorithm to
render CSG trees described by Inventor node graphs.
A CSG evaluate action uses ACIS to fully evaluate
a CSG tree allowing the tree to be replaced with a
single evaluated solid node. All the standard Inventor
interactive tools are available for editing models.

The system supports large CSG trees while main-
taining interactive rendering speeds. During display
and editing of a large CSG tree, only a small part of
the model will be changing at any time. We “cache”
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) does not intersect H.
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)

Move

Figure 7: Direct rendering of a CSG tree with cached
geometry : (a) all caches valid, (b) limited direct ren-
dering when a primitive is moved

fully evaluated geometry obtained from the solid mod-
eller at each internal node in the CSG tree. As caches
become invalidated through editing of the model, por-
tions of the tree are rendered directly (see figure ?7),
while the cached geometry is re-evaluated in the back-
ground (possibly on other workstations in a common
network).

Current use of the system follows a common pat-
tern. A user will quickly position and combine prim-
itives using the solid modelling capabilities. During
this stage the model is simple enough for the user
to envisage the CSG operations required and to posi-
tion primitives correctly. Figure 77 shows an example
model of two intersecting corridors. Firstly, the space
occupied by the corridors is modelled using 5 cubes
and two cylinders which are unioned together. The
corridors are then subtracted from a block. At this
point the user wanted to position a skylight through
the intersection of the corridors. Unsure of the exact
positioning required, or the sort of results possible, the
user roughly positioned a cylinder (the hole) and sub-
tracted it from the model. A transparent instance of
the primitive is also displayed by the system for ref-
erence. A manipulator was then used to drag the hole
through the model revealing an unexpected new form.
When satisfied with the positioning the hole is “fixed”
in position. The fixing process doesn’t change the in-
ternal representation of the model (it’s still a complete
CSG tree). It merely hides the apparatus used for in-
teractive manipulation of the hole. The hole can be
unfixed at any time and repositioned. This process of
rough positioning, boolean combination and precise
editing is then repeated.

6. Performance

The time complexity of our algorithm is proportional
to the number of rendering operations carried out. We
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shall consider the rendering of one surface as a single
rendering operation. Each pixel oriented “bookkeep-
ing” operation is considered as an equivalent single
unit. These operations have a lower geometry over-
head than surface rendering but access more pixels.
Equivalent functionality could be achieved by per-
forming the bookkeeping operations with a repeated
surface render. As in “, we ignore the negligible nor-
malization and pruning cost. We present the results
for our current implementation of the algorithm. For
reasons of clarity, some operations are described sep-
arately in section 7?7, whilst being implemented as a
single operation.

Table 7?7 shows the number of rendering opera-
tions required for simple steps within the algorithm.
The rendering algorithm is O((kj)?) for each product
where 7 is the number of primitives in the product
and k is the convexity of the primitives. The number
of products generated by tree normalization is depen-
dent on the structure of the tree and the geometry
of the primitives with a worst case exponential rela-
tionship between number of primitives and products.
In practice, both we, and Goldfeather et. al. 7, have
found that the number of products after pruning is
between O(n)and O(n?)in the total number of prim-
itives. The average product length, j, tends to be small
and independent of the total number of primitives.
Where long products arise they tend to be of the form
A—B—-C—-D—FE... and are susceptible to difference
pruning.

Table 7?7 provides performance statistics for the
eight sample models in figure 77. The images are 500
by 500 pixels and were rendered on a Silicon Graphics
5 span 310/VGXT with a single 33Mhz R3000 proces-
sor. The VGXT has an 8 bit stencil buffer. The first
part of the table provides statistics on normalization
and pruning. We include the number of primitives in
the CSG expression, total triangles used to represent
the primitives and the number of passes required. The
number and average length of partial products pro-
duced by normalization with and without pruning are
given. The second part of the table provides a break-
down of rendering operations into target rendering,
classification & trimming and bookkeeping operations.
The third part of the table provides a breakdown of
rendering time in seconds; both for rendering opera-
tions and depth buffer save/restore time. The depth
buffer save/restore time is given for the general case
algorithm and for the optimization possible when the
model is the first thing rendered in the current frame.

Table 77 shows rendering times together with num-
ber of passes required for different stencil buffer sizes.
The increases in time are modest because the imple-
mentation only saves and restores the areas of the
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Convexity 1-convex (k =1) k-convex
Clipping None Near None Near
Classify Target Surface k k kE+1 k41
Trimming Primitive 2k+1 4k + 1 2k4+1 4k +1
Render Target Surface k k kE+1 k41
Table 3: Rendering Operations per Step
Model a b c d e f g h(part) h(full)
Primitives 2 4 7 31 4 8 2 12 72
Triangles 96 256 408 1532 176 496 1928 8888 5536
Partial Products 2 6 32 34 5 14 3 13 72
Average Length 2 3 4 20.4 2.6 7 2 1.2 2.6
Partial Products (pruned) 2 6 32 34 5 14 3 13 72
Average Length (pruned) 2 3 4 2.7 2.6 3 2 1.2 2.3
Passes 1 1 1 5 1 2 1 1 11
Target Render Ops 2 4 7 30 4 8 5 25 72
Classification & Trimming Ops 4 18 128 92 13 42 8 8 164
Bookkeeping Render Ops 4 18 128 92 13 42 10 10 164
Total Render Ops 10 40 263 214 30 92 23 43 400
Target Time 0.005 0.003 0.038 0.039 0.008 0.017 0.031 0.009 0.118
Classification & Trimming Time  0.026 0.049 0.405 0.268 0.052 0.104 0.033 0.011 0.178
Bookkeeping Time 0.023 0.056 0.180 0.197 0.024 0.108 0.016 0.078 0.098
Save and Restore Time (general) 0.103 0.100 0.114 0.239 0.088 0.217 0.039 0.009 0.236
Save and Restore Time (first) 0.004 0.004 0.001 0.136 0.001 0.111 0.002 0.000 0.214
Total Time (general) 0.165 0.215 0.668 0.772 0.182 0.434 0.126 0.075 0.673
Total Time (first) 0.066 0.119 0.555 0.669 0.095 0.328 0.089 0.067 0.650
Table 4: Rendering times (seconds) and statistics
Stencil Bits 8 7 6 5 4 3 2
Model (c)  0.668(1) 0.670(2) 0.701(2) 0.735(2)  0.763(3)  0.782(4)  0.801(7)
Model (d)  0.772(5) 0.779(5) 0.804(6) 0.818(8) 0.837(10) 0.866(15) 0.884(30)
Model (f)  0.434(2) 0.435(2) 0.442(2) 0.426(2)  0.449(3)  0.475(4)  0.504(8)

Table 5: Rendering time and number of passes with varying stencil size
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depth buffer that are changed during the classification
stage. If less work is done in each pass the changed
depth buffer areas typically become smaller. There is
scope for further optimization of save and restore as
the variations in times for the same number of passes
shows. The different stencil buffer size causes a change
in the composition of product groups. Placing partial
products whose projected bounding boxes overlap into
the same product groups will reduce the total area to
be saved and restored.

Our algorithm performs particularly well in the sort
of situations encountered within our interactive mod-
elling system. Typically there is only ever one “dynam-
ically” rendered CSG expression, usually involving a
simple 1l-convex “tool” and a more complex “work-
piece” (figure ??(g)). Often we can achieve better per-
formance by ignoring the top most caches of complex
workpieces in order to expose more of the CSG tree
to pruning. For example, in figure ??(h) an expres-
sion like (AU BUC U D U..)—X can be pruned to
A-XUBUCUDU... This can vastly reduce both the
number of polygons to be rendered (about 3-5 times as
many polygons have to be rendered for A—B compared
to AU B) and the size of the screen area involved in
bookkeeping and depth buffer save and restore opera-
tions. We provide rendering times for both cached (ta-
ble ?? h(full)) and uncached cases (table 7?7 h(part))
of figure ?7(h). The coloured primitives are those that
are being “moved”, the other geometry can be ren-
dered from caches. The version that makes use of the
caches is about 9 times faster than the fully rendered
version. However, the triangle count is higher because
the cached geometry has a more complex boundary
than the original primitives.

Our implementation’s performance compares well
with that obtained by specialized hardware and pure
software solutions. Figure ??(d) is our version of a
model rendered by Goldfeather et. al.
Planes 4. They report a total rendering time of 4.02
seconds compared with our time of 0.67 seconds. The
VGX architecture machine used for our tests was in-

on Pixel-

troduced in 1990 when Pixel-Planes 4 was nearing the
end of its lifetime. Pixel-Planes 5 (the most recent
machine in the Pixel-Planes series ?) has performance
some 50 times better than Pixel-Planes 4 on a full
system with 32 geometry processors and 16 renderers.
Such a system would have performance 10 times that
of our implementation — at a far greater cost.

Figure ?7(f) is our version of a model rendered by
Thibault and Naylor’s BSP tree based algorithm *
Their total rendering time is 7.2 seconds for a model
with 158 polygons on a VAX 8650. Our time is 0.3
seconds for a model with 496 triangles. Our algorithm
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also scales better with increasing numbers of polygons

(O(kn) compared with O(nlogn)).

6.1. Other implementations

We have also implemented the algorithm using
OpenGL * and tested it on our VGXT, a Silicon
Graphics R3000 Indigo with starter graphics, and an
Indigo® Extreme. The algorithm should run under any
OpenGL implementation. On the systems we tested
performance was comparable to the GL version in all
areas except depth buffer save and restore. This oper-
ation was about 100 times slower than the GL equiv-
alent. The problem appears to be a combination of
poor performance tuning and a specification which re-
quires conversion of the depth buffer values to and
from normalized floating point. This problem should
be resolved with the release of more mature OpenGL
implementations. Single pass renders with the frame
start optimization (the common case for our interac-
tive modeller) run at full speed.

7. Conclusion

We have presented an algorithm which directly ren-
ders an arbitrary CSG tree and is suitable for use
in interactive modelling applications. Unlike Gold-
feather et. al. 7, our algorithm requires only a sin-
gle color buffer, a single depth buffer, a stencil buffer
and the ability to save and restore the contents of
the depth buffer. It can be implemented on many
graphics workstations using existing graphics libraries.
Like Rossignac, Megahed and Schneider 7, the algo-
rithm can display cross-sections of solids using clip-
ping planes but is far more flexible. For instance, the
algorithm could be used to directly display interfer-
ences between solids by rendering the intersection of
the solids.

The algorithm has been implemented on an SGI
310/VGXT using the GL graphics library and has
been integrated into an experimental modelling sys-
tem. Performance compares well with specialized
hardware and pure software algorithms for complete
evaluation and rendering. The algorithm performs
particularly well for incremental updates in an inter-
active modelling environment.
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Figure 8: Dragging a hole though the model reveals an unexpected new form

(a) AnB (b) (AuB)—(CuD) (c) ((WNB)U(A-C))  (d) (AnB)U(ANC)u
N((AND)U(A-E)) (AND)U(ANE)U
n((ANF)U(A-G)) (A-F-G-H-...)

(e) (AnD-B)U(CND)  (f) (AUB)—C-...- (g) A,-B (h) A,~XUBUCU...

Figure 9: Images generated by the stencil buffer CSG algorithm
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Abstract

We present a bump mapping method that requires minimal hard-
ware beyond that necessary for Phong shading. We eliminate the
costly per-pixel steps of reconstructing atangent space and perturb-
ing the interpolated normal vector by a) interpolating vectors that
have been transformed into tangent space at polygon vertices and b)
storing a precomputed, perturbed normal map asatexture. The sav-
ings represents up to afactor of two in hardware or time compared
to a straightforward implementation of bump mapping.

CR categories and subject descriptors: 1.3.3 [Computer
Graphics]: Picture/lmage generation; |.3.7 [Image Processing]: En-
hancement

Keywords: hardware, shading, bump mapping, texture map-
ping.

1 INTRODUCTION

Shading calculations in commercially available graphics systems
have been limited to lighting at the vertices of a set of polygons,
with the resultant colorsinterpolated and composited with atexture.
The drawbacks of Gouraudinterpolation [9] arewell knownand in-
clude diffused, crawling highlights and mach banding. The use of
this method is motivated primarily by therelatively large cost of the
lighting computation. When done at the vertices, this cost is amor-
tized over the interiors of polygons.

Thedivision of acomputation into per-vertex and per-pixel com-
ponentsis a general strategy in hardware graphics acceleration [1].
Commonly, the vertex computations are performed in a general
floating point processor or cpu, while the per-pixel computations
are in special purpose, fixed point hardware. The division is a
function of cost versus the general applicability, in terms of qual-
ity and speed, of afeature. Naturally, the advance of processor and
application-specific integrated circuit technology has an impact on
the choice.

Because the per-vertex computations are done in a general pro-
cessor, the cost of anew feature tendsto be dominated by additional
per-pixel hardware. If this feature has a very specific application,
the extra hardware is hard to justify becauseit laysidle in applica-
tionsthat donot leverageit. Andinlow-end or game systems, where
every transistor counts, additional rasterization hardware is partic-
ularly expensive. An alternative to extra hardware is the reuse of
existing hardware, but this option necessarily runs much slower.

* { peercy,airey,cabral } @sgi.com
2011 N. Shoreline Boulevard
Mountain View, California 94043-1389

Shading quality can be increased dramatically with Phong shad-
ing [13], which interpolates and normalizes vertex normal vectors
at each pixel. Light and halfangle vectors are computed directly in
world space or interpolated, either of which requires their normal-
ization for a local viewer and light. Figure 1 shows rasterization

L interp normalize
interp normalize

Figure 1. One implementation of Phong shading hardware.

illumination

hardware for one implementation of Phong shading, upon which
we base this discussion.! This adds significant cost to rasterization
hardware. However higher quality lighting is almost universally
desired in three-dimensional graphics applications, and advancing
semiconductor technology is making Phong shading hardware more
practical. We take Phong shading and texture mapping hardware as
aprerequisite for bump mapping, assuming they will be standardin
graphics hardware in the future.

Bump mapping [3] isatechniqueused in advanced shading appli-
cationsfor simulating the effect of light reflecting from small pertur-
bations across a surface. A single component texture map, f(u, v),
isinterpreted asaheight field that perturbsthe surface along its nor-
mal vector, N = (P, x P,)/|(P, x P,)|, a each point. Rather
than actually changing the surface geometry, however, only the nor-
mal vector is modified. From the partial derivatives of the surface
position in the « and v parametric directions (P, and P, ), and the
partial derivatives of the image height field in v and v (f, and f,),
aperturbed normal vector N’ is given by [3]:

N' = ((P.xP,)+D)/|(P,xP,)+D| ()

D = —-fP,xN)-f,(NxP,) 2

In these equations, P, and P, are not normalized. As Blinn
points out [3], this causes the bump heights to be a function of the
surfacescalebecauseP, x P, changesat adifferent ratethan D. If
the surface scale is doubled, the bump heights are halved. This de-
pendence on the surface often is an undesirable feature, and Blinn
suggestsone way to enforce a constant bump height.

A full implementation of these equationsin arasterizer isimprac-
tical, so the computationisdivided among apreprocessing step, per-
vertex, and per-pixel calculations. A natural method to implement
bump mapping in hardware, and one that is planned for a high-end
graphics workstation [6], is to compute P, x P,, P, x N, and
N x P, at polygon vertices and interpolate them to polygon interi-
ors. The perturbed normal vector is computed and normalized asin
Equation 1, with £, and f, read from atexture map. The resulting
normal vector is usedin anillumination model.

The hardware for this method is shownin Figure 2. Because P,

where

!Severa different implementations of Phong shading have been suggested
[11][10][4][5][7][2] with their own costs and benefits. Our bump mapping algorithm
can leverage many variations, and we use this form aswell as Blinn’s introduction of
the halfangle vector for clarity.
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Figure 2. A suggested implementation of bump mapping hard-
ware.
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and P, are unbounded, the three interpolators, the vector addition,
vector scaling, and normalization must have much greater rangeand
precision than those needed for bounded vectors. These require-
ments are noted in the figure. One approximation to this implemen-
tation has been been proposed [8], whereP, x N and N x P, are
held constant across a polygon. While avoiding their interpolation,
this approximation is known to have artifacts [8].

We present an implementation of bump mapping that leverages
Phong shading hardware at full speed, eliminating either alarge in-
vestment in specia purpose hardware or a slowdown during bump
mapping. The principal idea is to transform the bump mapping
computation into a different reference frame. Becauseillumination
modelsare afunction of vector operations (such asthe dot product)
between the perturbed normal vector and other vectors (such asthe
light and halfangle), they canbe computed relativeto any frame. We
are able to push portions of the bump mapping computation into a
preprocess or the per-vertex processor and out of the rasterizer. As
aresult, minimal hardware is added to a Phong shading circuit.

2 OUR BUMP-MAPPING ALGORITHM

We proceed by recognizing that the original bump mapping approx-
imation [3] assumesa surfaceis locally flat at each point. The per-
turbation is, therefore, a function only of the local tangent space.
We define this space by the normal vector, N, a tangent vector,
T =P,/|P,|, ard abinorma vector, B = (N x T). T, B, and
N form an orthonormal coordinate systemin which we perform the
bump mapping. In this space, the perturbed normal vector is (see
appendix):

NITS = (a7 b7 C)/ Vv a? + b? + c? (3)

a = —f,(B-P,) 4
b = —(folPu|l = fu(T-P,)) ®)
c = |P,xP,| (6)

The coefficients a, b, and ¢ are a function of the surface itself (via
P, and P,) and the height field (via f,, and f,). Provided that the
bump map isfixedto asurface, the coefficients can be precomputed
for that surfaceat each point of theheight field and stored asatexture
map (we discuss approximations that relax the surface dependence
below). Thetexel componentslie intherange-1to 1.

Thetexture map containing the perturbed normal vector isfiltered
as a simple texture using, for instance, tri-linear mipmap filtering.
Thetexelsin the coarser levels of detail can be computed by filter-
ing finer levels of detail and renormalizing or by filtering the height
field and computing thetexelsdirectly from Equations3-6. Itiswell
known that thisfiltering step tendsto average out the bumpsat large

minifications, leading to artifacts at silhouette edges. Proper filter-
ing of bump maps requires computing the reflected radiance over all
bumps contributing to a single pixel, an option that is not practical
for hardware systems. It should also be noted that, after mipmap in-
terpolation, the texture will not be normalized, so we must normal-
izeit prior to lighting.

For the illumination calculation to proceed properly, we trans-
form the light and halfangle vectorsinto tangent spaceviaa3 x 3
matrix whosecolumnsare T, B, and N. For instance, the light vec-
tor, L, istransformed by

LTszL(f ]f lf) )

Now the diffuse term in the illumination model can be computed
fromthe perturbed normal vector from the texture map and thetrans-
formed light: N7.. - L. The same consideration holds for the
other termsin the illumination model.

The transformations of the light and halfangle vectors should be
performed at every pixel; however, if the change of the local tan-
gent space across a polygon is small, agood approximation can be
obtained by transforming the vectors only at the polygon vertices.
They are then interpolated and normalized in the polygon interiors.
Thisisfrequently agood assumption becausetangent spacechanges
rapidly in areas of high surface curvature, and an application will
need to tessellate the surfacesmore finely in thoseregionsto reduce
geometric faceting.

This transformation is, in spirit, the same as one proposed by
Kuijk and Blaketo reduce the hardware required for Phong shading
[11]. Rather than specifying atangent and binormal explicitly, they
rotate the reference frames at polygon vertices to orient all normal
vectorsin the same direction (such as (0,0, 1)). In this space, they
no longer interpolate the normal vector (an approximation akin to
ours that tangent space changes slowly). If the bump map is iden-
tically zero, we too can avoid an interpolation and normalization,
and we will have aresult similar to their approximation. It should
be noted that the highlight in this caseis slightly different than that
obtained by the Phong circuit of Figure 1, yet it is still phenomeno-
logically reasonable.

The rasterization hardware required for our bump mapping algo-
rithm is shown in Figure 3; by adding a multiplexer to the Phong
shading hardware of Figure 1, both the original Phong shading and
bump mapping can be supported. Absent in the implementation
of Figure 2, this algorithm requires transforming the light and hal-
fangle vectors into tangent space at each vertex, storing a three-
component texture map instead of a two-component map, and hav-
ing aseparatemap for each surface. However, it requiresonly amul-
tiplexer beyond Phong shading, avoidstheinterpolation of (P, xIN)
and (N x P, ), the perturbation of the normal vector at each pixel,
and the extended range and precision needed for arithmetic on un-
bounded vectors. Effectively, we havetraded per-pixel calculations
cast in hardware for per-vertex calculations donein the general ge-
ometry processor. If the applicationislimited by therasterization, it
will run at the same speed with bump mapping aswith Phong shad-

ing.
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Figure 3. One implementation of our bump mapping algorithm.
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Figure 4.The pinwheel height field is used as a bump map for the
tesselated, bicubic surface.

2.1 Object-Space Normal Map

If the texture map is a function of the surface parameterization, an-
other implementation is possible: the lighting model can be com-
puted in object space rather than tangent space. Then, the texture
storesthe perturbed normal vectorsin object space, and thelight and
halfangle vectors are transformed into object space at the polygon
vertices and interpolated. Thus, the matrix transformation applied
tothelight and halfanglevectorsis shared by all vertices, rather than
one transformation for each vertex. Thisimplementation keepsthe
rasterization hardware of Figure 3, significantly reduces the over-
head in the geometry processor, and can coexist with the first for-
mulation.

2.2 Removing the surface dependence

The primary drawback of our method is the surface dependence of
the texture map. The dependence of the bumps on surface scale is
shared with the traditional formulation of bump mapping. Yetin ad-
dition, our texture map isafunction of the surface, sotheheight field
can not be shared among surfaces with different parameterizations.
Thisis particularly problematic when texture memory is restricted,
asin a game system, or during design when a bump map is placed
on anew surfaceinteractively.

All of the surface dependenciescan be eliminated under the as-
sumption that, locally, the parameterization is the same as a square
patch (similar to, yet more restrictive than, the assumption Blinn
makes in removing the scale dependence[3]). Then, P, and P,
are orthogonal (P, - P, = T - P, = 0) and equal in magnitude
(P.| = |P,]). To remove the bump dependence on surface scale,

Figure 4. Bump mapping using the hardware implementation
shown in Figure 2.

Figure 6.Bump mapping with the hardware in Figure 3, and the
texture map from Eqns 3-6.

we simply choose |P, | = |P,| = %, where k is a constant giving
arelative height of the bumps. This, along with the orthogonality
condition, reduce Equations 3-6 to

NITS = (a7 b7 C)/ a2 + b2 + C2 (8)
a = —kf, (9)
b = —kf, (10)
c = k° (11)

Thetexture map becomesafunction only of the height field and not
of the surface geometry, so it can be precomputed and used on any
surface.

The square patch assumption holds for several important sur-
faces, such as spheres, tori, surfaces of revolution, and flat rectan-
gles. In addition, the property is highly desirable for general sur-
facesbecausethe further P, and P, are from orthogonal and equal
in magnitude, the greater the warp in the texture map when applied
to asurface. Thiswarping istypically undesirable, and its elimina-
tion has been the subject of research [12]. If the surface is already
reasonably parameterized or can be reparameterized, the approxi-
mation in Equations 8-11 is good.

3 EXAMPLES

Figures5-7 compare software simul ations of the variousbump map-
ping implementations. All of theimages, including the height field,
havearesolution of 512x512 pixels. The height field, Figure 4, was

Figure 7.Bump mapping with the hardware in Figure 3, and the
texture map from Eqns 8-11.



chosen as a pinwheel to highlight filtering and implementation ar-
tifacts, and the surface, Figure 4, was chosen as a highly stretched
bicubic patch subdivided into 8x8x2 triangles to ensurethat P, and
P, deviate appreciably from orthogonal. Thetexture mapswerefil-
tered with trilinear mipmapping.

Figure 5 showsthe image computed from the implementation of
bump mapping from Figure 2. The partia derivatives, f, and f,,in
this texture map and the others were computed with the derivative
of a Gaussian covering seven by seven samples.

Figures 6 and 7 show our implementation based on the hardware
of Figure 3; they differ only in the texture map that is employed.
Figure 6 uses a texture map based on Equations 3-6. Each texel
was computed from the analytic values of P, and P, for the bicu-
bic patch. Thedifference betweenthisimageand Figure5isamost
imperceptible, even under animation, as can be seenin the enlarged
insets. The texture map used in Figure 7 is based on Equations 8-
11, where the surface dependence has been removed. Minor differ-
ences can be seenin the rendered image compared to Figures 5 and
6; somearevisibleintheinset. All threeimplementationshavesim-
ilar filtering qualities and appearance during animation.

4 DISCUSSION

We have presented an implementation of bump mapping that, by
transforming the lighting problem into tangent space, avoids any
significant new rasterization hardware beyond Phong shading. To
summarize our algorithm, we

precompute a texture of the perturbed normal in tangent space
transform all shading vectorsinto tangent space per vertex
interpolate and renormalize the shading vectors

fetch and normalize the perturbed normal from the texture

e compute the illumination model with these vectors

Efficiency is gained by moving a portion of the problem to the ver-
tices and away from special purpose bump mapping hardwarein the
rasterizer; the incremental cost of the per-vertex transformations is
amortized over the polygons.

It isimportant to notethat the method of transforming into tangent
space for bump mapping isindependent of the illumination model,
provided the model is a function only of vector operations on the
normal. For instance, the original Phong lighting model, with the
reflection vector and the view vector for the highlight, can be used
instead of the halfangle vector. In this case, the view vector istrans-
formed into tangent space and interpolated rather than the halfan-
gle. Aslong as all necessary shading vectors for the illumination
model are transformed into tangent spaceand interpolated, lighting
is proper.

Our approach is relatively independent of the particular imple-
mentation of Phong shading, however it does require the per-pixel
illumination model to accept vectorsrather than partial illumination
results. We have presented a Phong shading circuit where almost no
new hardwareisrequired, but other implementationsmay need extra
hardware. For example, if the light and halfangle vectors are com-
puted directly in eye space, interpolators must be added to support
our algorithm. The additional cost still will be very small compared
to a straightforward implementation.

Phong shading likely will becomeastandard addition to hardware
graphics system because of its general applicability. Our algorithm
extends Phong shading in such an effective manner that it is natural
to support bump mapping even on the lowest cost Phong shading
systems.
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APPENDIX

Here we derive the perturbed normal vector in tangent space, aref-
erence frame given by tangent, T = P,/|P,|; binorma, B =
(N x T); andnormal, N, vectors. P, isin the plane of the tangent
and binormal, and it can be written:

P, = (T-P,)T+(B-P,)B (12)
Therefore
P,xN = (B.P,)T—(T-P,)B (13)
The normal perturbation (Equation 2) is:
D = —f.(P,xN)-f[P,B (14)

—fu(B-P,)T = (fu|Py| = fu(T -P,))B  (15)

Substituting the expressionfor D andP, x P, = |P, x P,|N
into Equation 1, normalizing, and taking Trs = (1,0,0), Bys =
(0,1,0),and Npg = (0,0, 1) leads directly to Equations 3-6.
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Fast Volume Rendering Using a Shear-War p Factorization
of the Viewing Transfor mation
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Abstract

Severa existing volume rendering algorithms operate by factoring
theviewing transformation into a3D shear parallel tothedatadlices,
aprojection to form an intermediate but distorted image, and a 2D
warp to form an undistorted final image. We extend this class of
algorithms in three ways. First, we describe a new object-order
rendering algorithm based on the factorization that is significantly
faster than published algorithms with minimal loss of image qual-
ity. Shear-warp factorizations have the property that rows of vox-
elsinthevolume are aligned with rows of pixelsin theintermediate
image. We use thisfact to construct a scanline-based a gorithm that
traverses the volume and the intermediate image in synchrony, tak-
ing advantage of the spatial coherence present in both. We use spa-
tial data structures based on run-length encoding for both the vol-
ume and the intermediate image. Our implementation running on
an SGI Indigo workstation renders a 256° voxel medical data set
in one second. Our second extension is a shear-warp factorization
for perspective viewing transformations, and we show how our ren-
dering algorithm can support this extension. Third, we introduce
a data structure for encoding spatial coherence in unclassified vol-
umes (i.e. scalar fields with no precomputed opacity). When com-
bined with our shear-warp rendering algorithm thisdata structure al -
lows usto classify and render a256° voxel volumein three seconds.
The method extends to support mixed volumes and geometry and is
paralelizable.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensiona
Graphics and Realism; 1.3.3 [Computer Graphics]: Picture/lmage
Generation—Display Algorithms.

Additional Keywords: Volume rendering, Coherence, Scientific
visualization, Medical imaging.

1 Introduction

Volume rendering isaflexibletechnique for visualizing scalar fields
with widespread applicability in medical imaging and scientific vi-
sualization, but its use has been limited because it is computation-
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ally expensive. Interactive rendering rates have been reported using
largeparallel processors[17] [19] and using a gorithmsthat trade of f
image quality for speed [10] [8], but high-quality imagestaketens of
seconds or minutes to generate on current workstations. In this pa-
per we present anew algorithm which achieves near-interactive ren-
dering rates on aworkstation without significantly sacrificing qual-
ity.

Many researchers have proposed methods that reduce rendering
cost without affecting image quality by exploiting coherence in the
data set. These methods rely on spatial data structures that encode
the presence or absence of high-opacity voxels so that computa
tion can be omitted in transparent regions of the volume. These
datastructuresare built during apreprocessing step from aclassified
volume: a volume to which an opacity transfer function has been
applied. Such spatial data structures include octrees and pyramids
[13] [12] [8] [3], k-d trees [18] and distance transforms [23]. Al-
though thistype of optimization isdata-dependent, researchers have
reported that in typical classified volumes 70-95% of the voxels are
transparent [12] [18].

Algorithmsthat use spatial data structures can be divided into two
categories according to the order in which the datastructures aretra-
versed: image-order or object-order. Image-order algorithms oper-
ate by casting rays from each image pixel and processing the voxels
along each ray [9]. This processing order has the disadvantage that
thespatial datastructure must betraversed oncefor every ray, result-
ing in redundant computation (e.g. multiple descents of an octree).
In contrast, object-order algorithms operate by splatting voxelsinto
theimage while streaming through the volume datain storage order
[20] [8]. However, this processing order makesit difficult to imple-
ment early ray termination, an effective optimization in ray-casting
algorithms[12].

Inthis paper we describe anew algorithm which combinesthe ad-
vantages of image-order and object-order agorithms. The method
is based on a factorization of the viewing matrix into a 3D shear
parallel to the slices of the volume data, a projection to form adis-
torted intermediate image, and a 2D warp to produce the final im-
age. Shear-warp factorizations are not new. They have been used
to smplify data communication patterns in volume rendering a go-
rithmsfor SIMD parallel processors[1] [17] and to simplify thegen-
eration of paths through avolumein a serial image-order algorithm
[22]. The advantage of shear-warp factorizations is that scanlines
of the volume data and scanlines of the intermediate image are al-
ways aligned. In previous efforts this property has been used to de-
velop SIMD volume rendering algorithms. We exploit the property
for adifferent reason: it allowsefficient, synchronized accessto data
structures that separately encode coherence in the volume and the
image.

The factorization also makes efficient, high-quality resampling
possible in an object-order algorithm. In our algorithm the resam-
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Figure1: A volumeistransformed to sheared object space for apar-
allel projection by translating each dlice. The projection in sheared
object space is simple and efficient.

pling filter footprint is not view dependent, so the resampling com-
plications of splatting algorithms [20] are avoided. Severa other
algorithms also use multipass resampling [4] [7] [19], but these
methods require three or more resampling steps. Our algorithm re-
quires only two resampling steps for an arbitrary perspective view-
ing transformation, and the second resampling isan inexpensive 2D
warp. The 3D volume istraversed only once.

Our implementation running on an SGI Indigo workstation can
render a 2562 voxel medica data set in one second, afactor of at
least five faster than previous algorithms running on comparable
hardware. Other than a slight loss due to the two-pass resampling,
our algorithm does not trade off quality for speed. Thisisin con-
trast to algorithmsthat subsampl e the data set and can therefore miss
small features[10] [3].

Section 2 of this paper describes the shear-warp factorization and
its important mathematical properties. We also describe a new ex-
tension of the factorization for perspective projections. Section 3
describes three variants of our volume rendering agorithm. The
first algorithm renders classified volumes with a parallel projection
using our new coherence optimizations. The second algorithm sup-
ports perspective projections. The third algorithm is a fast classifi-
cation algorithm for rendering unclassified volumes. Previous al-
gorithms that employ spatial data structures require an expensive
preprocessing step when the opacity transfer function changes. Our
third agorithm uses a classification-independent min-max octree
datastructureto avoid thisstep. Section 4 contains our performance
results and a discussion of image quality. Finaly we conclude and
discuss some extensions to the algorithm in Section 5.

2 The Shear-Warp Factorization

The arbitrary nature of the transformation from object space to im-
age space complicates efficient, high-quality filtering and projection
in object-order volume rendering algorithms. This problem can be
solved by transforming the volume to an intermediate coordinate
system for which thereisavery simple mapping from the object co-
ordinate system and which allows efficient projection.

We cdl the intermediate coordinate system “sheared object
space’ and defineit asfollows:

Definition 1: By construction, in sheared object spaceall
viewing rays are parallel to the third coordinate axis.

Figure 1 illustrates the transformation from object space to sheared
object spacefor aparallel projection. Weassumethevolumeissam-
pled onarectilinear grid. Thehorizontal linesin thefigure represent
slicesof thevolume dataviewed in cross-section. After transforma-
tion the volume data has been sheared parall €l to the set of dicesthat
ismost perpendicular to the viewing direction and the viewing rays
are perpendicular to the slices. For a perspective transformation the
definition implies that each slice must be scaled as well as sheared
as shown schematically in Figure 2.

shear and scale
Stieal aild Stals
S

viewing rays

o

volume

slices project

 warp

image

plane center of

projection

Figure2: A volumeistransformed to sheared object space for aper-
spective projection by trandating and scaling each slice. The pro-
jection in sheared object space is again simple and efficient.

Definition 1 can beformalized asaset of equationsthat transform
obj ect coordinates into sheared object coordinates. These equations
can be written as a factorization of the view transformation matrix
Miew asfollows:

Myiew = P - S - Mwarp

P isapermutation matrix which transposes the coordinate systemin
order to makethe z-axistheprincipa viewingaxis. S transformsthe
volume into sheared object space, and My.rp transforms sheared
object coordinatesinto image coordinates. Cameron and Undrill [1]
and Schrdder and Stoll [17] describe this factorization for the case
of rotation matrices. For ageneral parallel projection S hastheform
of ashear perpendicular to the z-axis:

1 0 0 O
0 1 0 0
Spar = Se Sy 1 0
0 0 0 1

where s, and s,, can be computed from the elements of Myiey . For
perspective projections the transformation to sheared object space
isof the form:

1 0 0 O

0 1 0 O
Spersp = Sy Sy 1 sy

0 0 0 1

This matrix specifies that to transform a particular slice zo of
voxel data from object space to sheared object space the dlice
must be translated by (zo0s’, 20s;,) and then scaled uniformly by
1/(1 + z08,). Thefinal term of the factorization isamatrix which
warps sheared object space into image space:

Mwarp = 571 . P71 - Myiew

A simple volume rendering algorithm based on the shear-warp
factorization operates as follows (see Figure 3):

1. Transform the volume datato sheared object space by trandlat-
ing and resampling each slice according to S. For perspective
transformations, also scaleeach dlice. P specifieswhich of the
three possible slicing directions to use.

2. Compositetheresampled dicestogether in front-to-back order
using the “over” operator [15]. This step projects the volume
into a2D intermediate image in sheared object space.

3. Transform the intermediate image to image space by warping
it according to Marp. This second resampling step produces
the correct final image.
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Figure 3: The shear-warp algorithm includes three conceptual steps:
shear and resampl e the volume dlices, project resampled voxel scan-
lines onto intermediate image scanlines, and warp the intermediate
image into the final image.

The parallel-projection version of thisalgorithm wasfirst described
by Cameron and Undrill [1]. Our new optimizations are described
in the next section.

The projection in sheared object space has several geometric
properties that simplify the compositing step of the algorithm:

Property 1: Scanlines of pixels in the intermediate
image are parallel to scanlines of voxelsin the volume
data.

Property 2: All voxels in a given voxel dice are
scaled by the same factor.

Property 3 (pardlel projections only): Every voxel
dlice hasthe same scal e factor, and thisfactor can be cho-
sen arbitrarily. In particular, we can choose a unity scae
factor so that for a given voxel scanline there is a one-
to-one mapping between voxels and intermediate-image
pixels.

In the next section we make use of these properties.

3 Shear-Warp Algorithms

We have devel oped three volume rendering a gorithms based on the
shear-warp factorization. Thefirst algorithm is optimized for paral-
lel projections and assumes that the opacity transfer function does
not change between renderings, but the viewing and shading param-
eters can be modified. The second agorithm supports perspective
projections. The third algorithm alows the opacity transfer func-
tion to be modified as well as the viewing and shading parameters,
with amoderate performance penalty.

3.1 Paralle Projection Rendering Algorithm

Property 1 of the previous section states that voxel scanlinesin the
sheared volume are aligned with pixel scanlines in the intermedi-
ate image, which means that the volume and image data structures
can both be traversed in scanline order. Scanline-based coherence
datastructures arethereforeanatural choice. Thefirst datastructure
we useisarun-length encoding of the voxel scanlines which allows
us to take advantage of coherence in the volume by skipping runs
of transparent voxels. The encoded scanlines consist of two types

opaque
pixel

non-opaque
pixel

Figure 4: Offsets stored with opague pixelsin the intermediate im-
age allow occluded voxels to be skipped efficiently.

of runs, transparent and non-transparent, defined by a user-specified
opacity threshold. Next, to take advantage of coherence in the im-
age, we store with each opague intermediate image pixel an offset to
the next non-opague pixel in the same scanline (Figure 4). Anim-
age pixel is defined to be opague when its opacity exceeds a user-
specified threshold, in which case the corresponding voxels in yet-
to-be-processed dices are occluded. The offsets associated with the
image pixels are used to skip runs of opague pixels without exam-
ining every pixel. The pixel array and the offsets form a run-length
encoding of the intermediate image which is computed on-the-fly
during rendering.

These two data structures and Property 1 lead to afast scanline-
based rendering a gorithm (Figure 5). By marching through thevol-
ume and the image simultaneously in scanline order we reduce ad-
dressing arithmetic. By using the run-length encoding of the voxel
datato skip voxels which are transparent and the run-length encod-
ing of the image to skip voxels which are occluded, we perform
work only for voxels which are both non-transparent and visible.

For voxel runs that are not skipped we use a tightly-coded loop
that performs shading, resampling and compositing. Properties 2
and 3 alow usto simplify the resampling step in thisloop. Sincethe
transformation applied to each dlice of volume data before projec-
tion consistsonly of atranslation (no scaling or rotation), the resam-
pling weights are the same for every voxel in adice (Figure 6). Al-
gorithmswhich do not use the shear-warp factorization must recom-
pute new weightsfor every voxel. Weuse abilinear interpolation fil-
ter and a gather-type convolution (backward projection): two voxel
scanlines are traversed simultaneously to compute asingle interme-
diate image scanline at atime. Scatter-type convolution (forward
projection) isalso possible. We use alookup-table based system for
shading [6]. We also use alookup table to correct voxel opacity for
the current viewing angle since the apparent thickness of a dice of
voxels depends on the viewing angle with respect to the orientation
of the dlice.

The opaque pixel links achieve the same effect as early ray ter-
mination in ray-casting algorithms [12]. However, the effectiveness
of this optimization depends on coherence of the opaque regions of
theimage. Therunsof opague pixelsaretypically largeso that many
pixels can be skipped at once, minimizing the number of pixelsthat
are examined. The cost of computing the pixel offsets is low be-
cause a pixel’s offset is updated only when the pixel first becomes

voxel scanline: | \
* resample and

composite
intermediate
image
scanline:

- BN
skip work skip work | skip

[ ] transparent voxel run Il opaque image pixel run

D non-transparent voxel run D non-opaque image pixel run
Figure5: Resampling and compositing are performed by streaming
through both the voxels and the intermediate image in scanline or-
der, skipping over voxelswhich aretransparent and pixelswhich are
opague.
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Figure 6: Since each dlice of the volume is only trandated, every
voxel in the dlice has the same resampling weights.

opague.

After the volume has been composited the intermediate image
must be warped into the final image. Since the 2D image is small
compared to the size of the volume this part of the computation
is relatively inexpensive. We use a general-purpose affine image
warper with abilinear filter.

The rendering algorithm described in this section requires arun-
length encoded volume which must be constructed in a preprocess-
ing step, but the data structure is view-independent so the cost to
compute it can be amortized over many renderings. Three encod-
ings are computed, one for each possible principal viewing direc-
tion, so that transposing the volume is never necessary. During ren-
dering one of the three encodings is chosen depending upon the
value of the permutation matrix P in the shear-warp factorization.
Transparent voxels are not stored, so even with three-fold redun-
dancy the encoded volume is typically much smaller than the orig-
inal volume (see Section 4.1). Fast computation of the run-length
encoded data structureis discussed further at the end of Section 3.3.

In this section we have shown how the shear-warp factorization
allows us to combine optimizations based on object coherence and
image coherence with very low overhead and simple, high-quality
resampling. Inthe next section we extend these advantages to a per-
spective volume rendering al gorithm.

3.2 Perspective Projection Rendering Algorithm

Most of the work in volume rendering has focused on paralel pro-
jections. However, perspective projections provide additional cues
for resolving depth ambiguities [14] and are essential to correctly
compute occlusionsin such applicationsasabeam’seyeview for ra-
diation treatment planning. Perspective projections present a prob-
lem because the viewing rays diverge so it is difficult to sample
the volume uniformly. Two types of solutions have been proposed
for perspective volume rendering using ray-casters: as the distance
along aray increases the ray can be split into multiple rays [14], or
each sample point can sample alarger portion of the volume using
amip-map [11] [16]. The object-order splatting algorithm can also
handle perspective, but the resampling filter footprint must be re-
computed for every voxel [20].

The shear-warp factorization provides asimple and efficient solu-
tion to the sampling problem for perspective projections. Each slice
of the volume is transformed to sheared object space by a tranda-
tion and auniform scale, and the dlices are then resampled and com-
posited together. These steps are equivalent to a ray-casting algo-
rithm in which rays are cast to uniformly sample the first slice of
volume data, and as each ray hits subsequent (more distant) slices
alarger portion of the diceis sampled (Figure 2). The key point is
that within each dlice the sampling rateisuniform (Property 2 of the
factorization), so there is no need to implement a complicated mul-
tiratefilter.

The perspective algorithm is nearly identical to the parallel pro-
jection algorithm. The only difference is that each voxel must be
scaled as well as translated during resampling, so more than two
voxel scanlines may be traversed simultaneously to produce agiven
intermediate image scanline and the voxel scanlines may not be tra-
versed at the same rate as the image scanlines. We always choose a
factorization of the viewing transformation in which the slice clos-

est to the viewer is scaled by afactor of one so that no sliceis ever
enlarged. To resample we use a box reconstruction filter and a box
low-passfilter, an appropriate combination for both decimation and
unity scaling. In the case of unity scaling the two filter widths are
identical and their convolution reduces to the bilinear interpolation
filter used in the parallel projection agorithm.

The perspective agorithm is more expensive than the parallel
projection algorithm because extra time is required to compute re-
sampling weights and because the many-to-one mapping from vox-
elsto pixels complicatesthe flow of control. Nevertheless, the algo-
rithm is efficient because of the properties of the shear-warp factor-
ization: the volume and the intermediate image are both traversed
scanline by scanline, and resampling is accomplished viatwo sim-
ple resampling steps despite the diverging ray problem.

3.3 Fast Classification Algorithm

The previous two algorithms require a preprocessing step to run-
length encode the volume based on the opacity transfer function.
Thepreprocessing timeisinsignificant if the user wishesto generate
many images from asingle classified volume, but if the user wishes
to experiment interactively with the transfer function then the pre-
processing step is unacceptably slow. In this section we present a
third variation of the shear-warp a gorithm that evaluates the opac-
ity transfer function during rendering and is only moderately slower
than the previous agorithms.

A run-length encoding of the volume based upon opacity isnot an
appropriate data structure when the opacity transfer function is not
fixed. Instead we apply the algorithms described in Sections 3.1—
3.2 to unencoded voxd scanlines, but with a new method to deter-
minewhich portions of each scanline are non-transparent. Weallow
the opacity transfer function to be any scalar function of a multi-
dimensional scalar domain:

a=f(pgq,..)

For example, the opacity might be a function of the scalar field and
its gradient magnitude [9]:

a = f(d,|Vd])

The function f essentidly partitions a multi-dimensional feature
space into transparent and non-transparent regions, and our goal is
to decide quickly which portions of a given scanline contain voxels
in the non-transparent regions of the feature space.

We solve this problem with the following recursive algorithm
which takes advantage of coherence in both the opacity transfer
function and the volume data:

Step 1: For some block of the volume that contains the current
scanline, find the extrema of the parameters of the opac-
ity transfer function (min(p), max(p), min(q), max(q),...).
These extremabound arectangular region of the feature space.

Step 2: Determine if the region is transparent, i.e. f evaluated for
all parameter pointsin theregionyieldsonly transparent opac-
ities. If so, then discard the scanline since it must be transpar-
ent.

Step 3: Subdivide the scanline and repeat this agorithm recur-
sively. If the size of the current scanline portion is below a
threshold then render it instead of subdividing.

This algorithm relies on two data structures for efficiency (Fig-
ure 7). First, Step 1 uses a precomputed min-max octree [21]. Each
octree node contains the extrema of the parameter values for a sub-
cube of the volume. Second, to implement Step 2 of the agorithm
we need to integrate the function f over the region of the feature
space found in Step 1. If the integral is zero then al voxels must
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Figure 7: A min-max octree (a) isused to determine the range of the
parameters p, q of the opacity transfer function f(p, ¢) in asubcube
of the volume. A summed area table (b) is used to integrate f over
that rangeof p, q. If theintegral iszero (c) then the subcube contains
only transparent voxels.

be transparent.” Thisintegration can be performed in constant time
using a multi-dimensional summed-area table [2] [5]. The voxels
themselves are stored in a third data structure, asimple 3D array.

The overal agorithm for rendering unclassified data sets pro-
ceeds as follows. The min-max octree is computed at the time the
volume is first loaded since the octree is independent of the opac-
ity transfer function and the viewing parameters. Next, just before
rendering begins the opacity transfer function is used to compute
the summed area table. This computation is inexpensive provided
that the domain of the opacity transfer function is not too large.
We then use either the parallel projection or the perspective projec-
tion rendering algorithm to render voxels from an unencoded 3D
voxel array. The array is traversed scanline by scanline. For each
scanline we use the octree and the summed area table to determine
which portions of the scanline are non-transparent. Voxels in the
non-transparent portions are individually classified using a lookup
table and rendered as in the previous algorithms. Opaqgue regions
of theimage are skipped just as before. Note that voxelsthat are el -
ther transparent or occluded are never classified, which reduces the
amount of computation.

The octree traversal and summed area table lookups add over-
head to the algorithm which were not present in the previous algo-
rithms. In order to reduce this overhead we save as much computed
data as possible for later reuse: an octree node is tested for trans-
parency using the summed areatable only thefirst timeit isvisited
and theresult is saved for subsequent traversals, and if two adjacent
scanlines intersect the same set of octree nodes then we record this
fact and reuse information instead of making multiple traversals.

This rendering algorithm places two restrictions on the opacity
transfer function: the parameters of the function must be precom-
putable for each voxel so that the octree may be precomputed, and
the total number of possible argument tuples to the function (the
cardinality of the domain) must not be too large since the summed
area table must contain one entry for each possible tuple. Context-
sensitive segmentation (classification based upon the position and
surroundings of avoxel) does not meet these criteriaunless the seg-
mentation is entirely precomputed.

The fast-classification a gorithm presented here al so suffersfrom
a problem common to many object-order algorithms: if the major
viewing axis changes then the volume datamust be accessed against
the stride and performance degrades. Alternatively the 3D array
of voxels can be transposed, resulting in a delay during interactive
viewing. Unlike the algorithms based on arun-length encoded vol-
ume, itistypically not practical to maintain three copies of the unen-
coded volume since it ismuch larger than arun-length encoding. It
isbetter to useasmall range of viewpointswhile modifying theclas-
sification function, and then to switch to one of the previoustworen-
dering methods for rendering animation sequences. In fact, the oc-

*The user may choose a hon-zero opacity threshold for transparent vox-
€ls, in which case athresholded version of f must beintegrated: let f' = f
whenever f exceeds the threshold, and f’ = 0 otherwise.
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Figure 11: Rendering time for aparallel projection of the head data
set as the viewing angle changes.

tree and the summed-area table can be used to convert the 3D voxel
array into arun-length encoded volume without accessing transpar-
ent voxels, leading to a significant time savings (see the “Switch
Modes’ arrow in Figure 12). Thus the three algorithms fit together
well toyield aninteractivetool for classifying and viewing volumes.

4 Resaults

4.1 Speed and Memory

Our performance results for the three algorithms are summarized
in Table 1. The “Fast Classification” timings are for the algorithm
in Section 3.3 with a parallel projection. The timings were mea-
sured on an SGI Indigo R4000 without hardware graphics accel-
erators. Rendering times include all steps required to render from
a new viewpoint, including computation of the shading lookup ta-
ble, compositing and warping, but the preprocessing step is not in-
cluded. The“Avg.” field in the table is the average time in sec-
onds for rendering 360 frames at one degree angle increments, and
the “Min/Max” times are for the best and worst case angles. The
“Mem.” field gives the sizein megabytes of al data structures. For
thefirst two algorithmsthe size includes the three run-length encod-
ings of the volume, the image data structures and all lookup tables.
For the third algorithm the size includes the unencoded volume, the
octree, the summed-area table, the image data structures, and the
lookup tables. The“brain” datasetisan MRI scan of ahuman head
(Figure8) and the“head” datasetisaCT scan of ahuman head (Fig-
ure 9). The “brainsmall” and “headsmall” data sets are decimated
versions of the larger volumes.

The timings are nearly independent of image size because this
factor affects only the final warp which is relatively insignificant.
Rendering time is dependent on viewing angle (Figure 11) because
the effectiveness of the coherence optimizations varies with view-
point and because the size of the intermediate image increases as
the rotation angle approaches 45 degrees, so more compositing op-
erations must be performed. For the agorithms described in Sec-
tions 3.1-3.2 there is no jump in rendering time when the major
viewing axis changes, provided the three run-length encoded copies
of the volumefit into real memory simultaneously. Each copy con-
tainsfour bytes per non-transparent voxel and one byte per run. For
the 256x256x226 voxel head data set the three run-length encodings
total only 9.8 Mbytes. All of the images were rendered on awork-
station with 64 Mbytes of memory. To test the fast classification al-
gorithm (Section 3.3) on the 256° data sets we used a workstation
with 96 Mbytes of memory.

Figure 12 gives a breakdown of the time required to render the
brain data set with a parallel projection using the fast classification
algorithm (left branch) and the parallel projection agorithm (right
branch). The time required to warp the intermediate image into the
final image is typically 10-20% of the total rendering time for the



Figure 8: Volume rendering with a par-
allel projection of an MRI scan of a hu-
man brain using the shear-warp ago-
rithm (1.1 sec.).

Figure 9: Volume rendering with a par-
allel projection of aCT scan of a human
head oriented at 45 degrees relative to
the axes of the volume (1.2 sec.).

Figure 13: Volume rendering with a par-
ale projection of the human head data
set classified with semitransparent skin
(3.0sec).

Figure 16: Volume rendering with a perspective projection of the

engine data set (3.8 sec.).

Figure 14: Volume rendering with a
paralel projection of an engine block
with semitransparent and opague sur-
faces (2.3 sec.).

@

Figure 10: Volumerendering of thesame
data set asin Figure 9 using aray-caster
[12] for quality comparison (13.8 sec.).

Figure 15: Volume rendering with a par-
allel projection of aCT scan of ahuman
abdomen (2.2 sec.). The blood vessels
contain aradio-opague dye.

(b) ©

Figure 17: Comparison of image quality with bilinear and trilinear
filters for a portion of the engine data set. The images have been

enlarged. () Bilinear filter with binary classification. (b) Trilinear

sification.

filter with binary classification. (c) Bilinear filter with smooth clas-



Data set Size (voxels) Parallel projection (§3.1) Perspective projection (§3.2) Fast classification (§3.3)
Avg. Min/Max Mem. | Avg. Min/Max Mem. | Avg. Min/Max Mem.
brainsmall | 128x128x109 | 0.4s. | 0.37-0.48s. | 4Mb. | 1.0s. | 0.84-1.13s. | 4Mb. | 0.7s. | 0.61-0.84s. | 8Mbh.
headsmall | 128x128x113 | 0.4 0.35-0.43 2 0.9 0.82-1.00 2 0.8 0.72-0.87 8
brain 256x256x167 | 1.1 0.91-1.39 19 3.0 244298 19 24 1.91-2.91 46
head 256x256x225 | 1.2 1.04-1.33 13 33 2.99-3.68 13 2.8 2.43-3.23 61

Table 1: Rendering time and memory usage on an SGI Indigo workstation. Times are in seconds and include shading, resampling, projection
and warping. Thefast classification timesinclude rendering with aparallel projection. The“Mem.” field isthetotal size of the data structures

used by each algorithm.
volume
Preprocess Dataset
77 sec.
Switch
volume + Modes run-length
octree 8.5 sec. encoding
2280 msec. 980 msec.
intermediate intermediate
image image
120 msec. 120 msec.
final final
image image

New Classification (83.3) New Viewpoint (83.1)
Figure 12: Performance resultsfor each stage of rendering the brain
data set with aparallel projection. Theleft side uses the fast classi-
fication algorithm and the right side uses the parallel projection al-
gorithm.

parallel projection agorithm. The“ Switch Modes’ arrow showsthe
timerequired for all three copies of the run-length encoded volume
to be computed from the unencoded volume and the min-max octree
once the user has settled on an opacity transfer function.

Thetimingsabove arefor grayscale renderings. Color renderings
take roughly twice as long for parallel projections and 1.3x longer
for perspective because of the additional resampling required for the
two extracolor channels. Figure 13 isacolor rendering of the head
data set classified with semitransparent skin which took 3.0 sec. to
render. Figure 14 is a rendering of a 256x256x110 voxel engine
block, classified with semi-transparent and opague surfaces; it took
2.3 sec. to render. Figure 15 is arendering of a 256x256x159 CT
scan of a human abdomen, rendered in 2.2 sec. The blood vessels
of the subject contain aradio-opaque dye, and the data set was clas-
sified to reveal both the dye and bone surfaces. Figure 16 is a per-
spective color rendering of the engine data set which took 3.8 sec.
to compute.

For comparison purposes we rendered the head data set with a
ray-caster that uses early ray termination and a pyramid to exploit
object coherence [12]. Because of itslower computational overhead
the shear-warp algorithm is more than five times faster for the 128°
data sets and more than ten times faster for the 256° data sets. Our
algorithm running on a workstation is competitive with algorithms
for massively parallel processors ([17], [19] and others), although
the parallel implementations do not rely on coherence optimizations
and therefore their performance results are not data dependent as
oursare.

Our experiments show that the running time of the algorithmsin
Sections 3.1-3.2 is proportiona to the number of voxels which are
resampled and composited. This number issmall either if asignif-
icant fraction of the voxels are transparent or if the average voxel

opacity ishigh. Inthelatter case theimage quickly becomes opaque
and the remaining voxels are skipped. For the data sets and clas-
sification functions we have tried roughly n? voxels are both non-
transparent and visible, sowe observe O(n?) performance as shown
in Table 1: an eight-fold increase in the number of voxels leads to
only afour-fold increase in time for the compositing stage and just
under afour-fold increasein overall rendering time. For our render-
ing of the head data set 5% of the voxels are non-transparent, and for
the brain data set 11% of the voxels are non-transparent. Degraded
performance can be expected if a substantial fraction of the classi-
fied volume has low but non-transparent opacity, but in our experi-
ence such classification functions are less useful.

4.2 Image Quality

Figure 10 isavolume rendering of the same data set asin Figure 9,
but produced by aray-caster using trilinear interpolation [12]. The
two images are virtually identical.

Nevertheless, there are two potential quality problems associated
with the shear-warp algorithm. First, the agorithm involves two
resampling steps: each dlice is resampled during compositing, and
theintermediateimage is resampled during the final warp. Multiple
resampling steps can potentially cause blurring and loss of detail.
However even in the high-detail regions of Figure 9 this effect is
not noticeable.

The second potential problem is that the shear-warp algorithm
uses a 2D rather than a 3D reconstruction filter to resample the vol-
umedata. Thebilinear filter used for resampling isafirst-order filter
inthe plane of avoxd dlice, but itisazero-order (nearest-neighbor)
filter in the direction orthogonal to the slice. Artifacts are likely to
appear if the opacity or color attributes of the volume contain very
high frequencies (athough if the frequencies exceed the Nyquist
rate then perfect reconstruction isimpossible).

Figure 17 shows a case where atrilinear interpolation filter out-
performs abilinear filter. The left-most image is arendering by the
shear-warp algorithm of a portion of the engine data set which has
been classified with extremely sharp rampsto produce high frequen-
ciesin the volume's opacity. The viewing angleis set to 45 degrees
relativeto the slices of the data set—the worst case—and aliasing is
apparent. For comparison, themiddleimageisarendering produced
witharay-caster using trilinear interpol ation and otherwiseidentical
rendering parameters; here there is virtually no aliasing. However,
by using a smoother opacity transfer function these reconstruction
artifacts can be reduced. The right-most image is arendering using
the shear-warp agorithm and a less-extreme opacity transfer func-
tion. Herethealiasing isbarely noticeabl e because the high frequen-
ciesinthe scalar field have effectively been low-pass filtered by the
transfer function. In practice, aslong asthe opacity transfer function
isnot abinary classification the bilinear filter produces good resuilts.

5 Conclusion

The shear-warp factorization allows us to implement coherence op-
timi zationsfor both the volume dataand theimage with low compu-
tational overhead because both data structures can be traversed si-
multaneoudly in scanline order. The algorithm isflexible enough to



accommodate awide range of user-defined shading models and can
handle perspective projections. We have also presented avariant of
the algorithm that does not assume afixed opacity transfer function.
The result is an agorithm which produces high-quality renderings
of a256° volume in roughly one second on a workstation with no
specialized hardware.

We are currently extending our rendering algorithm to support
data sets containing both geometry and volume data. We have
also found that the shear-warp agorithms parallelize naturally for
MIMD shared-memory multiprocessors. We parallelized theresam-
pling and compositing steps by distributing scanlines of the inter-
mediate image to the processors. On a 16 processor SGI Challenge
multiprocessor the 256x256x223 voxel head data set can be ren-
dered at a sustained rate of 10 frames/sec.
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Fitting Virtual Lights For Non-Diffuse Walkthroughs
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Abstract

This paper describes a technique for using a simple shad-
ing method, such as the Phong lighting model, to approxi-
mate the appearance calculated by a more accurate method.
The results are then suitable for rapid display using exist-
ing graphics hardware and portable via standard graphics
APT’s. Interactive walkthroughs of view-independent non-
diffuse global illumination solutions are explored as the mo-
tivating application.

CR Categories: 1.3.7 [Computer Graphics|: Three Di-
mensional Graphics and Realism—Shading

Keywords: interactive walkthroughs, non-diffuse appear-
ance, global illumination, Phong shading

1 INTRODUCTION

This paper describes a method to take a view-independent
non-diffuse global illumination solution and approximate it
in a form that is suitable for rapid display and interac-
tive walkthroughs. The method fits “virtual lights” to each
object that, when displayed using a simple Phong lighting
model, will closely reproduce its correct appearance.

One goal of realistic computer graphics is to let a viewer
experience a virtual space as if they were physically present
in a real space. There are many possible aspects to this
mimicry, but here we will emphasize two facets. We want
the viewer to be able to move about and explore the space
in a natural and unrestricted way, and we want to match the
appearance of the real space as closely as possible.

Real lighting is complex and subtle. Global illumination
calculations are necessary if we hope to duplicate its appear-
ance. These calculations are expensive, but if we are willing
to restrict ourselves to a static environment, this part of the
simulation can done as a pre-process. However, we still need
to display the results rapidly if we want interactive walk-
throughs. To accomplish this, we would like to leverage the
existing 3D graphics hardware/software infrastructure.

Unfortunately, there is no standard format for storing
non-diffuse lighting information; previously this has meant
displaying a diffuse-only approximation to the actual appear-
ance. While the results can be impressive, the absence of
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Figure 1: Approximation process.

directionally dependent lighting effects, such as glossy high-
lights, means that important perceptual cues are missing.

The continuing popularity of the Phong [10] lighting
model' is a testament to the importance of including such
highlights. Most current graphics APD’s include a Phong-
style lighting model for fast shading. These lighting models
are much too simplistic to accurately compute global illu-
mination, but we can still make use of them. Instead of
viewing Phong as a lighting model, we can think of it as
a set of “appearance basis functions” which can be used
to approximately reproduce the results of a more accurate
method.

The basic process is outlined in Figure 1. We start from
a view-independent non-diffuse global illumination solution.
For each non-diffuse object, we fit a set of “virtual lights”
that, under the Phong lighting model, will reproduce its
computed appearance as closely as possible. By utilizing
directionally varying parts of the Phong model, the results
will contain non-diffuse aspects of the original solution, al-
though there will also be some loss of directional information
due to the limitations of the Phong “basis functions”. The
results can then be displayed using a standard Phong light-
ing model.

The translated model can easily be displayed using stan-
dard graphics APD’s (e.g. OpenGL, VRML, or Direct3D)
and can even be embedded in display lists. This makes
the model portable and suitable for the existing highly op-
timized 3D graphics display systems. The results are also
much more compact than the original global illumination
solutions. Most importantly, we apply the lesson of the pop-
ular but physically impossible Phong lighting model: even
fairly approximate highlights are better than none.

1.1 Related Work

Several researchers have proposed methods for generating
and displaying view-independent non-diffuse global illumi-
nation solutions (e.g. [6, 11]). Practical application of such
methods has so far been hampered by their high compu-
tational cost, large storage requirements, and slow display

n this paper we use the term Phong somewhat loosely to
mean the Phong model, the Blinn-Phong model [3] or any similar
simple direct lighting model.
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speeds. We hope the methods presented here may help push
them toward greater use.

Image-based techniques represent a very different route to
non-diffuse walkthroughs. They store the illumination in a
set of images instead of on surfaces. Image rendering algo-
rithms such as [4, 7, 8] are then used to quickly interpolate
new viewpoints from the precomputed images for a walk-
through. These methods offer some potential advantages,
but it is not yet known how well they will scale to walk-
throughs of larger environments. We consider them to be
promising, but take a different approach here.

Environment or reflection maps [1, 5, 12] have long been
used for the rapid display of directionally dependent effects.
Their main difference from our work lies in their application.
They are usually used as a small extension to a simplistic
direct lighting model, whereas we are fitting our directional
effects in order to reproduce the appearance computed by a
physically-based method. In the future, environment maps
may be used in a manner similar to our virtual lights.

Multi-pass rendering techniques are another way to per-
form walkthroughs with non-diffuse effects. They can imple-
ment a variety of extensions to the standard Phong lighting
model such as shadows, mirror reflections, refraction, and
translucency [2]. The results can be striking and they can
handle dynamic environments, which is a major advantage.
The problem is that the number of passes required per image
increases rapidly with the number of lights and the number
of lighting effects simulated. To keep the frame rate inter-
active, one is forced to limit the environment and choose a
somewhat ad hoc lighting model.

2 OVERVIEW

Before our technique is used, we assume that a view-
independent non-diffuse global illumination solution has
been computed for the environment of interest. For each ob-
ject, this solution will specify its appearance as the amount
of light leaving (by emission and/or reflection) every point
on the object and in each direction. For simplicity we will
assume that this information is specified at a number of se-
lected points which we will refer to as vertices.

An example of a directional light pattern leaving a vertex
is shown in 2D at the left in Figure 2. Our goal is to repro-
duce this pattern using parts of the Phong lighting model.
The Phong model allows us two kinds of basis functions: a
diffuse or directionally invariant type and the “Phong lobes”,
or directionally dependent parts, which are caused by spe-
cific lights. The diffuse basis is commonly used to encode
diffuse global illumination solutions. The new idea of this
paper is to also use the “Phong lobes” to approximate non-
diffuse appearance as illustrated in Figure 2.

Light
Light :

y

Figure 2: Directional light pattern leaving a vertex. Left:
exact or computed pattern, Middle: diffuse basis and two
“Phong lobe” basis functions, Right: approximated pattern
using the basis functions.

46

We need to be aware of the many limitations in the Phong
model. Some of these make perfect sense (e.g. limit on the
number of active lights). Others are somewhat arbitrary and
due to the fact that the designers were thinking of Phong as a
lighting model rather than as “appearance basis functions”.
For instance, there is a specular exponent parameter which
controls the width of the Phong lobes. We would like to
use different exponents for different lights, and thus fit using
lobes of several different sizes. We cannot because in the
usual Phong lighting model, the exponent is a property of
the surface and not a property of the lights.

Given these various restrictions, we must decide which
parts and parameters will be the most useful. For each ob-
ject, we have chosen to use a single set of directional light
sources and a single specular exponent. Additionally, at each
vertex we set a diffuse coefficient and a specular coefficient.
Together, the exponent, light positions, and light intensities
determine the shape of the specular basis function at each
vertex as shown in Figure 3. The vertex coefficients then
specify the mixture of the diffuse and specular basis func-
tions which will serve as our approximation.

N /
(\/ﬂ D }é&\y
\

Lwa %

Exact Diffuse Specular

Figure 3: Directional light patterns at selected vertices on an
object. Left: exact or computed patterns, Middle: diffuse
basis function, Right: specular basis functions induced by
three directional lights shown as arrows. Previous methods
approximated the exact pattern using only the diffuse basis,
while we use both the diffuse and specular.

Setting these parameters is a non-linear optimization
problem. At first we tried using a general purpose non-linear
optimization procedure, but found that this took a long time
and often did not converge. Instead, we have developed a
simple set of heuristics for choosing reasonable values. Fur-
ther optimization could then be done using these values as
the initial guess, although we do not currently do this. We it-
eratively perform a simple three stage fitting process, where
a subset of the parameters are set in each stage.

For each object we start by assuming some value for the
specular exponent which fixes the shape of the specular
lobes, and iteratively fitting a set of lights. We find the
brightest value among all vertices and directions on the ob-
ject, and select the light direction that will create a Phong
lobe centered in that direction for that vertex and the light
intensity that will reproduce this maximum value (assuming
the specular coefficient is 1.0 for now). The effect of this
new light is subtracted from each vertex and the process is
repeated until some maximum number of lights have been
fit.

Once the exponent and lights are chosen, the shape of
the specular basis functions is determined. The problem is
now a linear optimization, and we set the two coefficients
for each vertex using simple least squares fitting. Finally,
we repeat this process with different values of the exponent
and choose the exponent which gives the best fit in the least
squares step.
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Figure 4: An environment containing a teapot shown using
virtual lights.

We cannot expect to achieve an exact fit, but this proce-
dure guarantees there will be highlights in the places where
the object has its brightest highlights. Note that each ob-
ject gets its own set of “virtual lights” which do not affect
other objects. These lights do not cast shadows and need
not correspond to real lights in the environment. For exam-
ple, several lights may be used to better simulate a highlight
whose shape is different than that of a Phong lobe, or lights
may correspond to an indirect light source such as the ceiling
above a halogen light.

3 IMPLEMENTATION

For our implementation we have worked with OpenGL’s ver-
sion of the Phong shading model [9].

3.1 OpenGL’s Lighting Model

OpenGL uses a simple lighting model to approximate the di-
rect illumination of surfaces by light sources. This lighting
model consists of four components: emitted, ambient, dif-
fuse, and specular. These are intended to simulate, respec-
tively: light emitted by a surface (glow), multiply reflected
indirect lighting, diffusely reflected direct lighting, and spec-
ularly reflected glossy highlights from lights. Lights can be
ambient, directional, positional, or spotlights and have am-
bient, diffuse and specular coefficients. OpenGL guarantees
that at least eight lights are available. Surfaces have emitted,
ambient, diffuse, and specular coefficients, and a shininess
parameter that controls the size of the highlights.

In our implementation, we only use the emitted and spec-
ular components, along with directional light sources. The
emitted, ambient, and diffuse components all produce direc-
tionally invariant lighting at a vertex and are thus redundant
for our purposes. We use the emitted component to encode
the diffuse part of our solution. The specular component is
directionally varying and depends on the shininess of the ma-
terial, the light direction relative to the surface, the surface
normal, and the viewing direction relative to the surface.

Using only the emitted and specular components, the
OpenGL lighting equation for determining vertex colors be-
comes:

. hini
emitted + E max(s - n,0)*""""% & speculariigns * specularyertex

lights

where n is the vertex normal, and s is the vector obtained
by adding the light direction and the view direction and
normalizing.
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Figure 5: Comparison of original data for the teapot (left)
and our approximation using 8 lights (right) shown from
three viewpoints.

3.2 The Fitting Process

We compute the initial data by computing a radiosity solu-
tion via density estimation [13] and then performing a gather
at each vertex and storing the results for a discrete set of out-
going directions. The details are not important and many
other methods are possible. For each object, we then need
to find the emitted and specular values for each vertex, the
directions and intensity values for its lights, and its shininess
value. Our algorithm for a single object is:

Repeat
Choose a shininess value
Repeat
Subtract effects of existing lights from input light data
Find the maximum difference
Add directional light to cause a highlight at this maximum
Set light intensities to match input data at their maxima
until all lights have been fit
For each vertex
Set emitted and specular values by least squares fitting
until shininess search is done

We search for the shininess (i.e. exponent) which mini-
mizes the least squares error. We currently use a golden sec-
tion search method which eliminates a portion of the search
interval on each iteration.

4 RESULTS

We computed a global illumination solution for the environ-
ment shown in Figure 4 displayed using eight “virtual lights”
per specular object. This scene contains the familiar Utah
teapot which we use as a an example object to demonstrate
our results. A comparison between the computed teapot and
our fitted approximation with eight “virtual lights” is shown
in Figure 5. The results are perceptually convincing over-
all although small differences can easily be seen. We also
compare results when using fewer fitted lights in Figure 6.
The real test of our techniques is in walkthroughs of non-
diffuse environments. We can only show images here, but
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Figure 6: Comparison of original data for the teapot (left)
and our approximation using 2 (middle) and 8 (right) virtual
lights.

Figure 7: Our environment shown with virtual lights and
diffuse only (virtual lights turned off).

we have included a live walkthrough of our environment in
the video proceedings. Figure 7 shows images of this envi-
ronment both with and without the virtual lights to demon-
strate how much they contribute perceptually.

4.1 Limitations and Open Issues

While our results match the computed solutions surprisingly
well, there are many limitations to how well we can cur-
rently mimic real appearance. Some of these are fundamen-
tal to the technique (e.g. mirrors simply require too much
directional information), but others could be alleviated with
changes in both our implementation and in the graphics dis-
play interfaces.

Some improvements, such as using positional instead of
directional lights or finding a perceptually better fitting pro-
cess, are possible now. But many others would require ex-
tensions or additions to the current graphics API’'s. Some
potentially useful extensions would be the ability to vary the
specular exponent per light and having a separate specular
coefficient for each light at each vertex.

Gouraud interpolation is a major source of artifacts and
requires that the curved surfaces be finely tessellated. True
Phong shading would reduce these problems, but is rarely
available because it is more computationally demanding.

While we use standard graphics API’s, we use them in a
hitherto unusual way. Many systems are not properly opti-
mized for the sequence of operations we use. For instance
on many OpenGL systems there is a very large (> 4x) per-
formance penalty for varying more than one property per
vertex (in our case emitted and specular coefficients). We
have achieved good performance using a two pass technique,
one pass for the diffuse component and a second for the
specular. Another possibility is to leave the specular coeffi-
cient fixed at the cost of some additional loss of quality. But
this problem should largely disappear if our method gains
acceptance and is considered during system optimization.
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5 CONCLUSIONS

We have presented a technique for using a simple shading
model, such as Phong, to approximate the non-diffuse ap-
pearance calculated by some more accurate method. This
technique can translate view-independent non-diffuse global
illumination solutions into a form that is more compact,
portable, and suitable for fast display. This allows for non-
diffuse walkthroughs which are perceptually better than tra-
ditional diffuse-only walkthroughs.

Moreover, by targeting our results toward standard graph-
ics APD’s such as OpenGL, we can utilize the existing 3D
graphics display infrastructure and allow designers to easily
optimize their systems for our type of solutions. Finally, we
have suggested a few ways in which future graphics API’s
could be enhanced to better enable the reproduction of non-
diffuse appearance.
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