ARM Architecture
Reference Manual

ARM

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.
ARM DDI 0100l

ARM Architecture Reference Manual

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Change

February 1996 A First edition

July 1997 B Updated and index added

April 1998 C Updated

February 2000 D Updated for ARM architecture v5

June 2000 E Updated for ARM architecture vSTE and corrections to Part B
July 2004 F Updated for ARM architecture v6 (Confidential)

December 2004 G Updated to incorporate corrections to errata

March 2005 H Updated to incorporate corrections to errata

July 2005 I Updated to incorporate corrections to pseudocode and graphics

Proprietary Notice
ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell, ARM7TDMI,
ARMT7TDMI-S, ARM9TDMI, ARMOIE-S, ETM7, ETM9, TDMI, STRONG, are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith.

1. Subject to the provisions set out below, ARM hereby grants to you a perpetual, non-exclusive, nontransferable, royalty
free, worldwide licence to use this ARM Architecture Reference Manual for the purposes of developing; (i) software
applications or operating systems which are targeted to run on microprocessor cores distributed under licence from ARM;
(ii) tools which are designed to develop software programs which are targeted to run on microprocessor cores distributed
under licence from ARM,; (iii) or having developed integrated circuits which incorporate a microprocessor core
manufactured under licence from ARM.

2. Except as expressly licensed in Clause 1 you acquire no right, title or interest in the ARM Architecture Reference

Manual, or any Intellectual Property therein. In no event shall the licences granted in Clause 1, be construed as granting
you expressly or by implication, estoppel or otherwise, licences to any ARM technology other than the ARM Architecture
Reference Manual. The licence grant in Clause 1 expressly excludes any rights for you to use or take into use any ARM
patents. No right is granted to you under the provisions of Clause 1 to; (i) use the ARM Architecture Reference Manual
for the purposes of developing or having developed microprocessor cores or models thereof which are compatible in

whole or part with either or both the instructions or programmer's models described in this ARM Architecture Reference

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Manual; or (ii) develop or have developed models of any microprocessor cores designed by or for ARM; or (iii) distribute
in whole or in part this ARM Architecture Reference Manual to third parties, other than to your subcontractors for the
purposes of having developed products in accordance with the licence grant in Clause 1 without the express written
permission of ARM; or (iv) translate or have translated this ARM Architecture Reference Manual into any other
languages.

3. THE ARM ARCHITECTURE REFERENCE MANUAL IS PROVIDED "AS IS" WITH NO WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

4. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the ARM
tradename, in connection with the use of the ARM Architecture Reference Manual or any products based thereon.
Nothing in Clause 1 shall be construed as authority for you to make any representations on behalf of ARM in respect of
the ARM Architecture Reference Manual or any products based thereon.

Copyright © 1996-1998, 2000, 2004, 2005 ARM limited
110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19

This document is Non-Confidential. The right to use, copy and disclose this document is subject to the licence set out
above.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. iii

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Contents

ARM Architecture Reference Manual

Preface
AbOoUt thiS MAaNUAIccooiiiieecee s Xii
Architecture versions and variantsccccccvvviiiiiie e, Xiii
Using this Manualocceeiiiiiii e Xviii
(076 01VZ=T 01 110] o =TSR XXi
Further readingcoooveeeiieee e xXiii
1o | 7= Vo] R XXiv

Part A CPU Architecture
Chapter A1 Introduction to the ARM Architecture

Al.1 About the ARM architeCtureouevevieeeiiiiiiiiieieeeeeee e A1-2

A1.2 ARM INSrUCHON ST ... A1-6

A1.3 Thumb iINSTrUCON SBtceieeieeeeeeeeeece e A1-11

Chapter A2 Programmers’ Model

A2.1
A2.2
A2.3
A2.4
A2.5

DAt tYPES .oeeeiieie e e A2-2
ProCesSOr MOUEScooiiiiiiiiiiiiee et A2-3
REGISTIErS .. A2-4
General-purpose registerscccoveieeiiieeiie e A2-6
Program status registers ... A2-11

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. v

Contents

A2.6
A2.7
A2.8
A2.9
A2.10
A2.11

EXCEPHIONS ..o A2-16
ENdian SUPPOIoiiiiieeiiieeee e A2-30
Unaligned access SUPPOItccuueereiiiriiieee e e e A2-38
Synchronization primitivesccoceiiieeeiiie e A2-44
The Jazelle EXIENSIONoooiiiiiieiiieee e A2-53
Saturated integer arithmeticcocviiiiiiii A2-69

Chapter A3 The ARM Instruction Set

A3.1
A3.2
A3.3
A3.4
A3.5
A3.6
A3.7
A3.8
A3.9
A3.10
A3.11
A3.12
A3.13
A3.14
A3.15
A3.16

Instruction set eNCoOdiNgcccviiiiiiiii A3-2
The condition fieldccceeiiiieei e A3-3
Branch inStruCtionScooiiiiiiiiii e A3-5
Data-processing iNStruCtionscoooviiieeiiiiieee e A3-7
MUltiply iNSTTUCHIONSeeeiiiiee e A3-10
Parallel addition and subtraction instructionsccccccccevevenneenn. A3-14
Extend iNSTrUCLIONS ... A3-16
Miscellaneous arithmetic instructionscccccoiiiiiiiniinnne A3-17
Other miscellaneous INStrUCtioNScccovceeeeiiie i, A3-18
Status register access instructionscccccccovvivniii e A3-19
Load and store iNStruCtioNSccveviveeeeiieeiiiee e A3-21
Load and Store Multiple instructionsccocoviieeiiiec i, A3-26
Semaphore iNStruCtioNSoccieiiieiie e A3-28
Exception-generating iNStructionscccevveeiviieeinien e A3-29
Coprocessor iNSTIUCHIONSc.eeeueririeriiieieeree et A3-30
Extending the inStruction Setccoieiiiiiiii e A3-32

Chapter A4 ARM Instructions

A4
A4.2

Alphabetical list of ARM inStructionscccccceevvcieiieeeicciiee e, A4-2
ARM instructions and architecture versionsc.c.ccccccceeveiennnns A4-286

Chapter A5 ARM Addressing Modes

A51
A52
A5.3
A5.4
A5.5

Addressing Mode 1 - Data-processing operandsc.ccccevcveeennnee. A5-2
Addressing Mode 2 - Load and Store Word or Unsigned Byte A5-18
Addressing Mode 3 - Miscellaneous Loads and Stores A5-33
Addressing Mode 4 - Load and Store Multiplecccccovcveieennenn. A5-41
Addressing Mode 5 - Load and Store COprocessorccc...... A5-49

Chapter A6 The Thumb Instruction Set

A6.1
A6.2
A6.3
A6.4
AB.5
AB.6
A6.7
A6.8

About the Thumb instruction setccooiiiiiiiii e, AB-2
Instruction set enNCOAINGcooiiiiriiiiiiiiei e AB-4
Branch inStruCtionSceii i AB-6
Data-processing inStructionscccoceiiieiiiiiin i A6-8
Load and Store Register instructionsccoooverienieininneenieee AB-15
Load and Store Multiple inStructionscccccovevienieniiiiiinieeeee AB-18
Exception-generating instructionsccccoocceiiiiiine A6-20
Undefined Instruction Spaceccccoccveeeiiiiiiee e A6-21

vi Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Contents

Chapter A7 Thumb Instructions

A71 Alphabetical list of Thumb instructionsc.ccccoiiiiiiiis A7-2
A7.2 Thumb instructions and architecture versionsccccoecevenen. A7-125
Part B Memory and System Architectures
Chapter B1 Introduction to Memory and System Architectures
B1.1 About the memory SYStemMccceeiiiiiii e B1-2
B1.2 Memory hierarchy ..o B1-4
B1.3 L1 CACNE .o B1-6
B1.4 L2 CACNE ..o B1-7
B1.5 WIrite BUFfErs ...oooviiieiie e B1-8
B1.6 Tightly Coupled MEmMOTYcocviiiiieeiiie e s B1-9
B1.7 ASYNChronous eXCePLiONSccvceiiiiieiiiii e B1-10
B1.8 SEMAPNOTES ...t B1-12

Chapter B2 Memory Order Model

B2.1 About the memory order modelccooceeeeiieiiii e B2-2
B2.2 Read and write definitionscccviiiiiii e B2-4
B2.3 Memory attributes prior to ARMVEoooiiiiiiiiiiii e, B2-7
B2.4 ARMv6 memory attributes - introductioncccccveiiniiiininnen. B2-8
B2.5 Ordering requirements for memory acCessescccccvneeeenineennne B2-16
B2.6 MEMONKY DAITIEIS ..o B2-18
B2.7 Memory coherency and acCess ISSUEScceveveeerieeerireeesieerennnee B2-20

Chapter B3 The System Control Coprocessor

B3.1 About the System Control COProCESSOrcoevverriireeeieeieeeieeneenes B3-2
B3.2 REGISIEIS .o B3-3
B3.3 Register 0: ID COAEScooiiiiiiiiiiiieeie e e B3-7
B3.4 Register 1: Control registerscccoieviviiiiniee e B3-12
B3.5 Registers 210 15 ... B3-18

Chapter B4 Virtual Memory System Architecture

B4.1 ADBOUE the VIMSA ... e e B4-2
B4.2 MemOry aCCESS SEUENCEevirveeeiiiieeiieeiieeeeatee e sree e snree e B4-4
B4.3 Memory access CONTIOloovceiiiiiereeee e B4-8
B4.4 Memory region attributes ... B4-11
B4.5 ADOIS ..ot e B4-14
B4.6 Fault Address and Fault Status registersccccveviviiniiiininnen. B4-19
B4.7 Hardware page table translationcccccooiiieiiiiiineee B4-23
B4.8 Fine page tables and support of tiny pagesccccccevieviiienennnen. B4-35
B4.9 CPA5 reQISIEIS it e B4-39

Chapter B5 Protected Memory System Architecture
B5.1 ADOULthE PMSAoiiiiiiiieiceceee e B5-2

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. vii

Contents

Chapter B6

Chapter B7

Chapter B8

Part C
Chapter C1

Chapter C2

B5.2 Memory acCess SEQUENCEcceeerveeeiiiieeiiie e
B5.3 Memory access CONTIOlcooocviiiiiiiiiiie e
B5.4 Memory access attributes ..o
B5.5 Memory aborts (PMSAVE)c.oiivieieiiieeeiee e
B5.6 Fault Status and Fault Address register Supportccccoccveeerneenne
B5.7 CPA5 rEQISIEIS ittt

Caches and Write Buffers

B6.1 About caches and write buffers ...
B6.2 Cache organizationccceeeoieiieiiee e
B6.3 TYPES Of CACNEeoiiiiiieiie e
B6.4 L1 CACNE i
B6.5 Considerations for additional levels of cachecccccccvvrveneeens
B6.6 CPA5 regiSters ..o

Tightly Coupled Memory

B7.1 ADOUE TCOM L
B7.2 TCM configuration and CONtrolcccoeieeiieniieiieneee e
B7.3 Accesses 10 TCM and Cachecceeeeriieiiienieiiceseese e
B7.4 Level 1 (L1) DMA MOdEloooiiiieiiiieeiee e
B7.5 L1 DMA control using CP15 Register 11cccoviiiiiieeiieceeeee

Fast Context Switch Extension

B8.1 ADOULthe FCSEooiiiii e
B8.2 Modified virtual addreSSEesccvviviiiiiiieeieeee e
B8.3 Enablingthe FCSE ...
B8.4 Debug and TracCeccceiceieiiiiiee e
B8.5 CPA5 rEQISIEIS .uiieiiiitieee sttt

Vector Floating-point Architecture

Introduction to the Vector Floating-point Architecture

C1.1 About the Vector Floating-point architectureccccccooiiiinee
C1.2 Overview of the VFP architectureccoceeviiiiinni e,
C1.3 Compliance with the IEEE 754 standardccccccevieniviiencnnene.
Cl1.4 IEEE 754 implementation choicesccccoviiiiiiiiiiii e

VFP Programmer’s Model

c2.1 Floating-point formatscccceviiiiiiinscee e
c2.2 ROUNAING .ot
c2.3 Floating-point @XCePtioNScueeeiriiirieee e
c24 FIUSh-t0-ZEr0 MOEcoviiiiiiiie e
C2.5 Default NaN modeooooiiiiiieeieee e
C2.6 Floating-point general-purpose registerscccooccevvieernieeenineens
C2.7 System registerscociiveiiiiiieee e

viii

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Chapter C3

Chapter C4

Chapter C5

Part D

Chapter D1

Chapter D2

Chapter D3

Contents

Cc2.8 Reset behavior and initializationccccoeeieiiiiiiiiiiiiiiiiieeeeeeeeeees C2-29

VFP Instruction Set Overview

C3.1 Data-processing iNStruCtionscoooceeerieeeiiiee e C3-2
C3.2 Load and Store inStruCtionsccccveieeiieniiiesiee e C3-14
C3.3 Single register transfer iNStructionsccoueeeriiinniieniiiee e C3-18
C3.4 Two-register transfer inStructionsccccccoiiiiiiiiiiiiece, C3-22

VFP Instructions
C4A1 Alphabetical list of VFP instructionsccccovviiieiiiniieee e, C4-2

VFP Addressing Modes

C5.1 Addressing Mode 1 - Single-precision vectors (non-monadic) C5-2
C5.2 Addressing Mode 2 - Double-precision vectors (non-monadic) C5-8
C5.3 Addressing Mode 3 - Single-precision vectors (monadic) C5-14
C5.4 Addressing Mode 4 - Double-precision vectors (monadic) C5-18
C5.5 Addressing Mode 5 - VFP load/store multipleccccooeevcvercneenen. C5-22

Debug Architecture

Introduction to the Debug Architecture

D11 [[g) oo [UTe] (o] o [N D1-2
D1.2 TTACE .ottt e e e e e e e e e e e e e e e e e re e aaaas D1-4
D1.3 Debug and ARMVBcoociiiiiiiiicce e D1-5

Debug Events and Exceptions

D2.1 INTrOAUCTION ..o e D2-2
D2.2 Monitor debUG-MOTEcoocueiiiiiiiie e D2-5
D2.3 Halting debug-mode ... D2-8
D2.4 External Debug Interface ... D2-13

Coprocessor 14, the Debug Coprocessor

D3.1 Coprocessor 14 debug registerscccoociiciiiiiiniciie e D3-2

D3.2 Coprocessor 14 debug inStruCtionsccceceeiieireene e D3-5

D3.3 Debug register referencCecccooceeiiieeiee e D3-8

D3.4 Reset values of the CP14 debug registersccccevveniiriennieenn D3-24

D3.5 Access to CP14 debug registers from the external debug interface
D3-25

Glossary

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ix

Contents

X Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

This preface describes the versions of the ARM® architecture and the contents of this manual, then lists the
conventions and terminology it uses.

. About this manual on page xii

. Architecture versions and variants on page xiii
. Using this manual on page xviii

. Conventions on page xxi

. Further reading on page xxiii

. Feedback on page xxiv.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. Xi

Preface

About this manual

The purpose of this manual is to describe the ARM instruction set architecture, including its high code
density Thumb® subset, and three of its standard coprocessor extensions:

. The standard System Control coprocessor (coprocessor 15), which is used to control memory system
components such as caches, write buffers, Memory Management Units, and Protection Units.

. The Vector Floating-point (VFP) architecture, which uses coprocessors 10 and 11 to supply a
high-performance floating-point instruction set.

. The debug architecture interface (coprocessor 14), formally added to the architecture in ARM v6 to
provide software access to debug features in ARM cores, (for example, breakpoint and watchpoint
control).

The 32-bit ARM and 16-bit Thumb instruction sets are described separately in Part A. The precise effects
of each instruction are described, including any restrictions on its use. This information is of primary
importance to authors of compilers, assemblers, and other programs that generate ARM machine code.

Assembler syntax is given for most of the instructions described in this manual, allowing instructions to be
specified in textual form.

However, this manual is not intended as tutorial material for ARM assembler language, nor does it describe
ARM assembler language at anything other than a very basic level. To make effective use of ARM assembler
language, consult the documentation supplied with the assembler being used.

The memory and system architecture definition is significantly improved in ARM architecture version 6 (the
latest version). Prior to this, it usually needs to be supplemented by detailed implementation-specific
information from the technical reference manual of the device being used.

Xii Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

Architecture versions and variants

The ARM instruction set architecture has evolved significantly since it was first developed, and will
continue to be developed in the future. Six major versions of the instruction set have been defined to date,
denoted by the version numbers 1 to 6. Of these, the first three versions including the original 26-bit
architecture (the 32-bit architecture was introduced at ARMv3) are now OBSOLETE. All bits and encodings
that were used for 26-bit features become RESERVED for future expansion by ARM Ltd.

Versions can be qualified with variant letters to specify collections of additional instructions that are
included as an architecture extension. Extensions are typically included in the base architecture of the next
version number, ARMVS5T being the notable exception. Provision is also made to exclude variants by
prefixing the variant letter with x, for example the xP variant described below in the summary of version 5
features.

Note

The xM variant which indicates that long multiplies (32 x 32 multiplies with 64-bit results) are not
supported, has been withdrawn.

The valid architecture variants are as follows (variant in brackets for legacy reasons only):
ARMv4, ARMv4T, ARMvS5T, (ARMvS5TExP), ARMVS5TE, ARMvV5TE]J, and ARMv6
The following architecture variants are now OBSOLETE:

ARMv1, ARMv2, ARMv2a, ARMv3, ARMv3G, ARMv3M, ARMv4xM, ARMv4TxM, ARMvVS5,
ARMv5xM, and ARMv5TxM

Details on OBSOLETE versions are available on request from ARM.

The ARM and Thumb instruction sets are summarized by architecture variant in ARM instructions and
architecture versions on page A4-286 and Thumb instructions and architecture versions on page A7-125
respectively. The key differences introduced since ARMv4 are listed below.

Version 4 and the introduction of Thumb (T variant)

The Thumb instruction set is a re-encoded subset of the ARM instruction set. Thumb instructions execute
in their own processor state, with the architecture defining the mechanisms required to transition between
ARM and Thumb states. The key difference is that Thumb instructions are half the size of ARM instructions
(16 bits compared with 32 bits). Greater code density can usually be achieved by using the Thumb
instruction set in preference to the ARM instruction set. However, the Thumb instruction set does have some
limitations:

. Thumb code usually uses more instructions for a given task, making ARM code best for maximizing
performance of time-critical code.

. ARM state and some associated ARM instructions are required for exception handling.

The Thumb instruction set is always used in conjunction with a version of the ARM instruction set.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. Xiii

Preface

New features in Version 5T
This version extended architecture version 4T as follows:
. Improved efficiency of ARM/Thumb interworking

. Count leading zeros (CLZ, ARM only) and software breakpoint (BKPT, ARM and Thumb) instructions
added

. Additional options for coprocessor designers (coprocessor support is ARM only)

. Tighter definition of flag setting on multiplies (ARM and Thumb)

. Introduction of the E variant, adding ARM instructions which enhance performance of an ARM
processor on typical digital signal processing (DSP) algorithms:

— Several multiply and multiply-accumulate instructions that act on 16-bit data items.

— Addition and subtraction instructions that perform saturated signed arithmetic. Saturated
arithmetic produces the maximum positive or negative value instead of wrapping the result if
the calculation overflows the normal integer range.

— Load (LDRD), store (STRD) and coprocessor register transfer (MCRR and MRRC) instructions that act
on two words of data.

— A preload data instruction PLD.

. Introduction of the J variant, adding the BXJ instruction and the other provisions required to support
the Jazelle® architecture extension.

Note

Some early implementations of the E variant omitted the LDRD, STRD, MCRR, MRCC and PLD instructions. These
are designated as conforming to the ExP variant, and the variant is defined for legacy reasons only.

Xiv Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

New features in Version 6

The following ARM instructions are added:

CPS, SRS and RFE instructions for improved exception handling

REV, REV16 and REVSH byte reversal instructions

SETEND for a revised endian (memory) model

LDREX and STREX exclusive access instructions

SXTB, SXTH, UXTB, UXTH byte/halfword extend instructions

A set of Single Instruction Multiple Data (SIMD) media instructions

Additional forms of multiply instructions with accumulation into a 64-bit result.

The following Thumb instructions are added:

CPS, CPY (a form of MOV), REV, REV16, REVSH, SETEND, SXTB, SXTH, UXTB, UXTH

Other changes to ARMv6 are as follows:

The architecture name ARMv6 implies the presence of all preceding features, that is, ARMvSTEJ
compliance.

Revised Virtual and Protected Memory System Architectures.

Provision of a Tightly Coupled Memory model.

New hardware support for word and halfword unaligned accesses.

Formalized adoption of a debug architecture with external and Coprocessor 14 based interfaces.

Prior to ARMv6, the System Control coprocessor (CP15) described in Chapter B3 was a
recommendation only. Support for this coprocessor is now mandated in ARMv6.

For historical reasons, the rules relating to unaligned values written to the PC are somewhat complex
prior to ARMv6. These rules are made simpler and more consistent in ARMv6.

The high vectors extension prior to ARMv6 is an optional (IMPLEMENTATION DEFINED) part of the
architecture. This extension becomes obligatory in ARMvo6.

Prior to ARMV6, a processor may use either of two abort models. ARMv6 requires that the Base
Restored Abort Model (BRAM) is used. The two abort models supported previously were:

— The BRAM, in which the base register of any valid load/store instruction that causes a memory
system abort is always restored to its pre-instruction value.

— The Base Updated Abort Model (BUAM), in which the base register of any valid load/store
instruction that causes a memory system abort will have been modified by the base register
writeback (if any) of that instruction.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XV

Preface

The restriction that multiplication destination registers should be different from their source registers
is removed in ARMV6.

In ARMVS, the LDM(2) and STM(2) ARM instructions have restrictions on the use of banked registers
by the immediately following instruction. These restrictions are removed from ARMv6.

The rules determining which PSR bits are updated by an MSR instruction are clarified and extended to
cover the new PSR bits defined in ARMv6.

In ARMvS5, the Thumb MOV instruction behavior varies according to the registers used (see note). Two
changes are made in ARMvb6.

— The restriction about the use of low register numbers in the MOV (3) instruction encoding is
removed.

— In order to make the new side-effect-free MOV instructions available to the assembler language
programmer without changing the meaning of existing assembler sources, a new assembler
syntax CPY Rd,Rn is introduced. This always assembles to the MOV (3) instruction regardless of
whether Rd and Rn are high or low registers.

Note

In ARMVS, the Thumb MOV Rd,Rn instructions have the following properties:

If both Rd and Rn are low registers, the instruction is the MOV (2) instruction. This instruction sets the
N and Z flags according to the value transferred, and sets the C and V flags to 0.

If either Rd or Rn is a high register, the instruction is the MOV (3) instruction. This instruction leaves
the condition flags unchanged.

This situation results in behavior that varies according to the registers used. The MOV(2) side-effects also limit
compiler flexibility on use of pseudo-registers in a global register allocator.

Naming of ARM/Thumb architecture versions

To name a precise version and variant of the ARM/Thumb architecture, the following strings are
concatenated:

1.

2.
3.
4

The string ARMv.
The version number of the ARM instruction set.
Variant letters of the included variants.

In addition, the letter P is used after x to denote the exclusion of several instructions in the
ARMVSTEXP variant.

The table Architecture versions on page xvii lists the standard names of the current (not obsolete)
ARM/Thumb architecture versions described in this manual. These names provide a shorthand way of
describing the precise instruction set implemented by an ARM processor. However, this manual normally
uses descriptive phrases such as T variants of architecture version 4 and above to avoid the use of lists of
architecture names.

Xvi

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

All architecture names prior to ARMv4 are now OBSOLETE. The term all is used throughout this manual to
refer to all architecture versions from ARMv4 onwards.

Architecture versions

ARM instruction set

Thumb instruction set

Name . . Notes
version version

ARMv4 4 None -

ARMVAT 4 1 _

ARMvVST 5 2 -

ARMVSTExP 5 2 Enhanced DSP
instructions except
LDRD, MCRR, MRRC, PLD,
and STRD

ARMVSTE 5 2 Enhanced DSP
instructions

ARMVSTE] 5 2 Addition of BX]
instruction and Jazelle
Extension support
over ARMvSTE

ARMvV6 6 3 Additional
instructions as listed in
Table A4-2 on
page A4-286 and
Table A7-1 on
page A7-125.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XVii

Preface

Using this manual

The information in this manual is organized into four parts, as described below.

Part A - CPU Architectures

Part A describes the ARM and Thumb instruction sets, and contains the following chapters:

Chapter A1l

Chapter A2

Chapter A3

Chapter A4

Chapter AS

Chapter A6

Chapter A7

Gives a brief overview of the ARM architecture, and the ARM and Thumb instruction sets.

Describes the types of value that ARM instructions operate on, the general-purpose registers
that contain those values, and the Program Status Registers. This chapter also describes how
ARM processors handle interrupts and other exceptions, endian and unaligned support,
information on + synchronization primitives, and the Jazelle® extension.

Gives a description of the ARM instruction set, organized by type of instruction.

Contains detailed reference material on each ARM instruction, arranged alphabetically by
instruction mnemonic.

Contains detailed reference material on the addressing modes used by ARM instructions.
The term addressing mode is interpreted broadly in this manual, to mean a procedure shared
by many different instructions, for generating values used by the instructions. For four of the
addressing modes described in this chapter, the values generated are memory addresses
(which is the traditional role of an addressing mode). The remaining addressing mode
generates values to be used as operands by data-processing instructions.

Gives a description of the Thumb instruction set, organized by type of instruction. This
chapter also contains information about how to switch between the ARM and Thumb
instruction sets, and how exceptions that arise during Thumb state execution are handled.

Contains detailed reference material on each Thumb instruction, arranged alphabetically by
instruction mnemonic.

xviii

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

Part B - Memory and System Architectures

Part B describes standard memory system features that are normally implemented by the System Control
coprocessor (coprocessor 15) in an ARM-based system. It contains the following chapters:

Chapter B1
Chapter B2
Chapter B3

Chapter B4

Chapter B5

Chapter B6

Chapter B7

Chapter B8

Gives a brief overview of this part of the manual.
The memory order model.
Gives a general description of the System Control coprocessor and its use.

Describes the standard ARM memory and system architecture based on the use of a Virtual
Memory System Architecture (VMSA) based on a Memory Management Unit (MMU).

Gives a description of the simpler Protected Memory System Architecture (PMSA) based on
a Memory Protection Unit (MPU).

Gives a description of the standard ways to control caches and write buffers in ARM
memory systems. This chapter is relevant both to systems based on an MMU and to systems
based on an MPU.

Describes the Tightly Coupled Memory (TCM) architecture option for level 1 memory.

Describes the Fast Context Switch Extension and Context ID support (ARMV6 only).

Part C - Vector Floating-point Architecture

Part C describes the Vector Floating-point (VFP) architecture. This is a coprocessor extension to the ARM
architecture designed for high floating-point performance on typical graphics and DSP algorithms.

Chapter C1

Chapter C2

Chapter C3

Chapter C4

Chapter C5

Gives a brief overview of the VFP architecture and information about its compliance with
the IEEE 754-1985 floating-point arithmetic standard.

Describes the floating-point formats supported by the VFP instruction set, the floating-point
general-purpose registers that hold those values, and the VFP system registers.

Describes the VFP coprocessor instruction set, organized by type of instruction.

Contains detailed reference material on the VFP coprocessor instruction set, organized
alphabetically by instruction mnemonic.

Contains detailed reference material on the addressing modes used by VFP instructions.
One of these is a traditional addressing mode, generating addresses for load/store
instructions. The remainder specify how the floating-point general-purpose registers and
instructions can be used to hold and perform calculations on vectors of floating-point values.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XiX

Preface

Part D - Debug Architecture

Part D describes the debug architecture. This is a coprocessor extension to the ARM architecture designed

to provide configuration, breakpoint and watchpoint support, and a Debug Communications Channel (DCC)
to a debug host.

Chapter D1 Gives a brief introduction to the debug architecture.
Chapter D2 Describes the key features of the debug architecture.

Chapter D3 Describes the Coprocessor Debug Register support (cp14) for the debug architecture.

XX

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

Conventions

This manual employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

typewriter Is used for assembler syntax descriptions, pseudo-code descriptions of instructions,

and source code examples. In the cases of assembler syntax descriptions and
pseudo-code descriptions, see the additional conventions below.

The typewriter font is also used in the main text for instruction mnemonics and for
references to other items appearing in assembler syntax descriptions, pseudo-code
descriptions of instructions and source code examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Is used for emphasis in descriptive lists and elsewhere, where appropriate.

SMALL CAPITALS Are used for a few terms which have specific technical meanings. Their meanings

can be found in the Glossary.

Pseudo-code descriptions of instructions

A form of pseudo-code is used to provide precise descriptions of what instructions do. This pseudo-code is
written in a typewriter font, and uses the following conventions for clarity and brevity:

Indentation is used to indicate structure. For example, the range of statements that a for statement
loops over, goes from the for statement to the next statement at the same or lower indentation level
as the for statement (both ends exclusive).

Comments are bracketed by /x and =/, as in the C language.

English text is occasionally used outside comments to describe functionality that is hard to describe
otherwise.

All keywords and special functions used in the pseudo-code are described in the Glossary.

Assignment and equality tests are distinguished by using = for an assignment and == for an equality
test, as in the C language.

Instruction fields are referred to by the names shown in the encoding diagram for the instruction.
When an instruction field denotes a register, a reference to it means the value in that register, rather
than the register number, unless the context demands otherwise. For example, a Rn == 0 test is
checking whether the value in the specified register is 0, but aRd is R15 test is checking whether the
specified register is register 15.

When an instruction uses an addressing mode, the pseudo-code for that addressing mode generates
one or more values that are used in the pseudo-code for the instruction. For example, the AND
instruction described in AND on page A4-8 uses ARM addressing mode 1 (see Addressing Mode 1 -
Data-processing operands on page A5-2). The pseudo-code for the addressing mode generates two
values shifter_operand and shifter_carry_out, which are used by the pseudo-code for the AND
instruction.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XXi

Preface

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of
assembler instructions. These are shown in a typewriter font, and are as follows:

{1

spaces

+/-

%

Any item bracketed by < and > is a short description of a type of value to be supplied by the
user in that position. A longer description of the item is normally supplied by subsequent
text. Such items often correspond to a similarly named field in an encoding diagram for an
instruction. When the correspondence simply requires the binary encoding of an integer
value or register number to be substituted into the instruction encoding, it is not described
explicitly. For example, if the assembler syntax for an ARM instruction contains an item
<Rn> and the instruction encoding diagram contains a 4-bit field named Rn, the number of
the register specified in the assembler syntax is encoded in binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is
more complex than simple binary encoding of an integer or register number, the item
description indicates how it is encoded.

Any item bracketed by { and } is optional. A description of the item and of how its presence
or absence is encoded in the instruction is normally supplied by subsequent text.

This indicates an alternative character string. For example, LDM|STM is either LDM or STM.

Single spaces are used for clarity, to separate items. When a space is obligatory in the
assembler syntax, two or more consecutive spaces are used.

This indicates an optional + or - sign. If neither is coded, + is assumed.

When used in a combination like <immed_8> = 4, this describes an immediate value which
must be a specified multiple of a value taken from a numeric range. In this instance, the
numeric range is 0 to 255 (the set of values that can be represented as an 8-bit immediate)
and the specified multiple is 4, so the value described must be a multiple of 4 in the range
4*(0 = 0 to 4*255 = 1020.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and },
the special characters described above do not appear in the basic forms of assembler instructions
documented in this manual. The { and } characters need to be encoded in a few places as part of a variable
item. When this happens, the long description of the variable item indicates how they must be used.

This manual only attempts to describe the most basic forms of assembler instruction syntax. In practice,
assemblers normally recognize a much wider range of instruction syntaxes, as well as various directives to
control the assembly process and additional features such as symbolic manipulation and macro expansion.
All of these are beyond the scope of this manual.

xXii

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Preface

Further reading

This section lists publications from both ARM Limited and third parties that provide additional information
on the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See http://www.arm.com for
current errata sheets and addenda, and the ARM Frequently Asked Questions.
ARM publications

ARM External Debug Interface Specification.

External publications
The following books are referred to in this manual, or provide additional information:

. IEEE Standard for Shared-Data Formats Optimized for Scalable Coherent Interface (SCI)
Processors, IEEE Std 1596.5-1993, ISBN 1-55937-354-7, IEEE).

. The Java™ Virtual Machine Specification Second Edition, Tim Lindholm and Frank Yellin,
published by Addison Wesley (ISBN: 0-201-43294-3)

. JTAG Specification IEEE1149.1

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. XXiii

Preface

Feedback

ARM Limited welcomes feedback on its documentation.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm giving:

. the document title

. the document number

. the page number(s) to which your comments apply
. a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

XXiv Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Part A

CPU Architecture

Chapter A1
Introduction to the ARM Architecture

This chapter introduces the ARM® architecture and contains the following sections:
. About the ARM architecture on page A1-2

. ARM instruction set on page Al1-6

. Thumb instruction set on page Al-11.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

Introduction to the ARM Architecture

A1.1 About the ARM architecture

The ARM architecture has evolved to a point where it supports implementations across a wide spectrum of

performance points. Over two billion parts have shipped, establishing it as the dominant architecture across

many market segments. The architectural simplicity of ARM processors has traditionally led to very small

implementations, and small implementations allow devices with very low power consumption.

Implementation size, performance, and very low power consumption remain key attributes in the

development of the ARM architecture.

The ARM is a Reduced Instruction Set Computer (RISC), as it incorporates these typical RISC architecture

features:

. a large uniform register file

. a load/store architecture, where data-processing operations only operate on register contents, not
directly on memory contents

. simple addressing modes, with all load/store addresses being determined from register contents and
instruction fields only

. uniform and fixed-length instruction fields, to simplify instruction decode.

In addition, the ARM architecture provides:

. control over both the Arithmetic Logic Unit (ALU) and shifter in most data-processing instructions
to maximize the use of an ALU and a shifter

. auto-increment and auto-decrement addressing modes to optimize program loops

. Load and Store Multiple instructions to maximize data throughput

. conditional execution of almost all instructions to maximize execution throughput.

These enhancements to a basic RISC architecture allow ARM processors to achieve a good balance of high

performance, small code size, low power consumption, and small silicon area.

A1-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to the ARM Architecture

A1.1.1 ARM registers

ARM has 31 general-purpose 32-bit registers. At any one time, 16 of these registers are visible. The other
registers are used to speed up exception processing. All the register specifiers in ARM instructions can
address any of the 16 visible registers.

The main bank of 16 registers is used by all unprivileged code. These are the User mode registers. User
mode is different from all other modes as it is unprivileged, which means:

. User mode can only switch to another processor mode by generating an exception. The SWI
instruction provides this facility from program control.

. Memory systems and coprocessors might allow User mode less access to memory and coprocessor
functionality than a privileged mode.

Three of the 16 visible registers have special roles:

Stack pointer Software normally uses R13 as a Stack Pointer (SP). R13 is used by the PUSH and POP
instructions in T variants, and by the SRS and RFE instructions from ARMv6.

Link register Register 14 is the Link Register (LR). This register holds the address of the next
instruction after a Branch and Link (BL or BLX) instruction, which is the instruction
used to make a subroutine call. It is also used for return address information on entry
to exception modes. At all other times, R14 can be used as a general-purpose
register.

Program counter Register 15 is the Program Counter (PC). It can be used in most instructions as
a pointer to the instruction which is two instructions after the instruction being
executed. In ARM state, all ARM instructions are four bytes long (one 32-bit word)
and are always aligned on a word boundary. This means that the bottom two bits of
the PC are always zero, and therefore the PC contains only 30 non-constant bits.
Two other processor states are supported by some versions of the architecture.
Thumb® state is supported on T variants, and Jazelle® state on J variants. The PC can
be halfword (16-bit) and byte aligned respectively in these states.

The remaining 13 registers have no special hardware purpose. Their uses are defined purely by software.
For more details on registers, refer to Registers on page A2-4.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-3

Introduction to the ARM Architecture

A1.1.2

Exceptions

ARM supports seven types of exception, and a privileged processing mode for each type. The seven types
of exception are:

. reset

. attempted execution of an Undefined instruction

. software interrupt (SWI) instructions, can be used to make a call to an operating system
o Prefetch Abort, an instruction fetch memory abort

o Data Abort, a data access memory abort

o IRQ, normal interrupt

. FIQ, fast interrupt.

When an exception occurs, some of the standard registers are replaced with registers specific to the
exception mode. All exception modes have replacement banked registers for R13 and R14. The fast
interrupt mode has additional banked registers for fast interrupt processing.

When an exception handler is entered, R14 holds the return address for exception processing. This is used
to return after the exception is processed and to address the instruction that caused the exception.

Register 13 is banked across exception modes to provide each exception handler with a private stack pointer.
The fast interrupt mode also banks registers 8 to 12 so that interrupt processing can begin without the need
to save or restore these registers.

There is a sixth privileged processing mode, System mode, which uses the User mode registers. This is used
to run tasks that require privileged access to memory and/or coprocessors, without limitations on which
exceptions can occur during the task.

In addition to the above, reset shares the same privileged mode as SW1s.

For more details on exceptions, refer to Exceptions on page A2-16.

The exception process

When an exception occurs, the ARM processor halts execution in a defined manner and begins execution at
one of a number of fixed addresses in memory, known as the exception vectors. There is a separate vector
location for each exception, including reset. Behavior is defined for normal running systems (see section
A2.6) and debug events (see Chapter D3 Coprocessor 14, the Debug Coprocessor)

An operating system installs a handler on every exception at initialization. Privileged operating system tasks
are normally run in System mode to allow exceptions to occur within the operating system without state loss.

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to the ARM Architecture

A1.1.3 Status registers

All processor state other than the general-purpose register contents is held in status registers. The current

operating processor status is in the Current Program Status Register (CPSR). The CPSR holds:

. four condition code flags (Negative, Zero, Carry and oVerflow).

. one sticky (Q) flag (ARMv5 and above only). This encodes whether saturation has occurred in
saturated arithmetic instructions, or signed overflow in some specific multiply accumulate
instructions.

. four GE (Greater than or Equal) flags (ARMv6 and above only). These encode the following
conditions separately for each operation in parallel instructions:

— whether the results of signed operations were non-negative
— whether unsigned operations produced a carry or a borrow.

. two interrupt disable bits, one for each type of interrupt (two in ARMvS5 and below).

. one (A) bit imprecise abort mask (from ARMv6)

. five bits that encode the current processor mode.

. two bits that encode whether ARM instructions, Thumb instructions, or Jazelle opcodes are being
executed.

. one bit that controls the endianness of load and store operations (ARMv6 and above only).

Each exception mode also has a Saved Program Status Register (SPSR) which holds the CPSR of the task

immediately before the exception occurred. The CPSR and the SPSRs are accessed with special

instructions.

For more details on status registers, refer to Program status registers on page A2-11.

Table A1-1 Status register summary
Field Description Architecture
NZCV Condition code flags All
J Jazelle state flag 5TEJ and above
GEJ[3:0] SIMD condition flags 6
E Endian Load/Store 6
A Imprecise Abort Mask 6
I IRQ Interrupt Mask All
F FIQ Interrupt Mask All
T Thumb state flag 4T and above
Mode[4:0] Processor mode All
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-5

Introduction to the ARM Architecture

A1.2 ARM instruction set
The ARM instruction set can be divided into six broad classes of instruction:
. Branch instructions
. Data-processing instructions on page Al-7
. Status register transfer instructions on page A1-8
. Load and store instructions on page A1-8
. Coprocessor instructions on page Al1-10
. Exception-generating instructions on page Al-10.
Most data-processing instructions and one type of coprocessor instruction can update the four condition
code flags in the CPSR (Negative, Zero, Carry and oVerflow) according to their result.
Almost all ARM instructions contain a 4-bit condition field. One value of this field specifies that the
instruction is executed unconditionally.
Fourteen other values specify conditional execution of the instruction. If the condition code flags indicate
that the corresponding condition is true when the instruction starts executing, it executes normally.
Otherwise, the instruction does nothing. The 14 available conditions allow:
. tests for equality and non-equality
o tests for <, <=, >, and >= inequalities, in both signed and unsigned arithmetic
. each condition code flag to be tested individually.
The sixteenth value of the condition field encodes alternative instructions. These do not allow conditional
execution. Before ARMvS5 these instructions were UNPREDICTABLE.
A1.2.1 Branch instructions
As well as allowing many data-processing or load instructions to change control flow by writing the PC, a
standard Branch instruction is provided with a 24-bit signed word offset, allowing forward and backward
branches of up to 32MB.
There is a Branch and Link (BL) option that also preserves the address of the instruction after the branch in
R14, the LR. This provides a subroutine call which can be returned from by copying the LR into the PC.
There are also branch instructions which can switch instruction set, so that execution continues at the branch
target using the Thumb instruction set or Jazelle opcodes. Thumb support allows ARM code to call Thumb
subroutines, and ARM subroutines to return to a Thumb caller. Similar instructions in the Thumb instruction
set allow the corresponding Thumb — ARM switches. An overview of the Thumb instruction set is
provided in Chapter A6 The Thumb Instruction Set.
The BXJ instruction introduced with the J variant of ARMvS, and present in ARMv6, provides the
architected mechanism for entry to Jazelle state, and the associated assertion of the J flag in the CPSR.
A1-6 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A1.2.2

Introduction to the ARM Architecture

Data-processing instructions

The data-processing instructions perform calculations on the general-purpose registers. There are five types
of data-processing instructions:

. Arithmetic/logic instructions
. Comparison instructions
. Single Instruction Multiple Data (SIMD) instructions

. Multiply instructions on page A1-8

. Miscellaneous Data Processing instructions on page Al-8.

Arithmetic/logic instructions

The following arithmetic/logic instructions share a common instruction format. These perform an arithmetic
or logical operation on up to two source operands, and write the result to a destination register. They can
also optionally update the condition code flags, based on the result.

Of the two source operands:
. one is always a register
. the other has two basic forms:
— an immediate value
— aregister value, optionally shifted.

If the operand is a shifted register, the shift amount can be either an immediate value or the value of another
register. Five types of shift can be specified. Every arithmetic/logic instruction can therefore perform an
arithmetic/logic operation and a shift operation. As a result, ARM does not have dedicated shift instructions.

The Program Counter (PC) is a general-purpose register, and therefore arithmetic/logic instructions can
write their results directly to the PC. This allows easy implementation of a variety of jump instructions.

Comparison instructions

The comparison instructions use the same instruction format as the arithmetic/logic instructions. These
perform an arithmetic or logical operation on two source operands, but do not write the result to a register.
They always update the condition flags, based on the result.

The source operands of comparison instructions take the same forms as those of arithmetic/logic
instructions, including the ability to incorporate a shift operation.

Single Instruction Multiple Data (SIMD) instructions

The add and subtract instructions treat each operand as two parallel 16-bit numbers, or four parallel 8-bit
numbers. They can be treated as signed or unsigned. The operations can optionally be saturating, wrap
around, or the results can be halved to avoid overflow.

These instructions are available in ARMv6.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-7

Introduction to the ARM Architecture

Multiply instructions
There are several classes of multiply instructions, introduced at different times into the architecture. See
Multiply instructions on page A3-10 for details.
Miscellaneous Data Processing instructions
These include Count Leading Zeros (CLZ) and Unsigned Sum of Absolute Differences with optional
Accumulate (USAD8 and USADAS).

A1.2.3 Status register transfer instructions

The status register transfer instructions transfer the contents of the CPSR or an SPSR to or from a
general-purpose register. Writing to the CPSR can:

. set the values of the condition code flags

. set the values of the interrupt enable bits

. set the processor mode and state

. alter the endianness of Load and Store operations.

A1.2.4 Load and store instructions

The following load and store instructions are available:
. Load and Store Register

. Load and Store Multiple registers on page A1-9
. Load and Store Register Exclusive on page A1-9.

There are also swap and swap byte instructions, but their use is deprecated in ARMv®6. It is recommended
that all software migrates to using the load and store register exclusive instructions.

Load and Store Register

Load Register instructions can load a 64-bit doubleword, a 32-bit word, a 16-bit halfword, or an 8-bit byte
from memory into a register or registers. Byte and halfword loads can be automatically zero-extended or
sign-extended as they are loaded.

Store Register instructions can store a 64-bit doubleword, a 32-bit word, a 16-bit halfword, or an 8-bit byte
from a register or registers to memory.

From ARMv6, unaligned loads and stores of words and halfwords are supported, accessing the specified
byte addresses. Prior to ARMv6, unaligned 32-bit loads rotated data, all 32-bit stores were aligned, and the
other affected instructions UNPREDICTABLE.

A1-8 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to the ARM Architecture

Load and Store Register instructions have three primary addressing modes, all of which use a base register
and an offset specified by the instruction:

. In offset addressing, the memory address is formed by adding or subtracting an offset to or from the
base register value.

. In pre-indexed addressing, the memory address is formed in the same way as for offset addressing.
As a side effect, the memory address is also written back to the base register.

. In post-indexed addressing, the memory address is the base register value. As a side effect, an offset
is added to or subtracted from the base register value and the result is written back to the base register.

In each case, the offset can be either an immediate or the value of an index register. Register-based offsets
can also be scaled with shift operations.

As the PC is a general-purpose register, a 32-bit value can be loaded directly into the PC to perform a jump
to any address in the 4GB memory space.

Load and Store Multiple registers

Load Multiple (LDM) and Store Multiple (STM) instructions perform a block transfer of any number of
the general-purpose registers to or from memory. Four addressing modes are provided:

. pre-increment

. post-increment
. pre-decrement
. post-decrement.

The base address is specified by a register value, which can be optionally updated after the transfer. As the
subroutine return address and PC values are in general-purpose registers, very efficient subroutine entry and
exit sequences can be constructed with LDM and STM:

. A single STM instruction at subroutine entry can push register contents and the return address onto the
stack, updating the stack pointer in the process.

. A single LDM instruction at subroutine exit can restore register contents from the stack, load the PC
with the return address, and update the stack pointer.

LDM and STM instructions also allow very efficient code for block copies and similar data movement
algorithms.

Load and Store Register Exclusive

These instructions support cooperative memory synchronization. They are designed to provide the atomic
behavior required for semaphores without locking all system resources between the load and store phases.
See LDREX on page A4-52 and STREX on page A4-202 for details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-9

Introduction to the ARM Architecture

A1.2.5 Coprocessor instructions
There are three types of coprocessor instructions:
Data-processing instructions
These start a coprocessor-specific internal operation.
Data transfer instructions
These transfer coprocessor data to or from memory. The address of the transfer is calculated
by the ARM processor.
Register transfer instructions
These allow a coprocessor value to be transferred to or from an ARM register, or a pair of
ARM registers.
A1.2.6 Exception-generating instructions
Two types of instruction are designed to cause specific exceptions to occur.
Software interrupt instructions
SWI instructions cause a software interrupt exception to occur. These are normally used to
make calls to an operating system, to request an OS-defined service. The exception entry
caused by a SWI instruction also changes to a privileged processor mode. This allows an
unprivileged task to gain access to privileged functions, but only in ways permitted by the
OS.
Software breakpoint instructions
BKPT instructions cause an abort exception to occur. If suitable debugger software is installed
on the abort vector, an abort exception generated in this fashion is treated as a breakpoint.
If debug hardware is present in the system, it can instead treat a BKPT instruction directly as
a breakpoint, preventing the abort exception from occurring.
In addition to the above, the following types of instruction cause an Undefined Instruction exception to
occur:
. coprocessor instructions which are not recognized by any hardware coprocessor
. most instruction words that have not yet been allocated a meaning as an ARM instruction.
In each case, this exception is normally used either to generate a suitable error or to initiate software
emulation of the instruction.
A1-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to the ARM Architecture

A1.3 Thumb instruction set

The Thumb instruction set is a subset of the ARM instruction set, with each instruction encoded in 16 bits
instead of 32 bits. For details see Chapter A6 The Thumb Instruction Set.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A1-11

Introduction to the ARM Architecture

A1-12 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter A2
Programmers’ Model

This chapter introduces the ARM® Programmers’ Model. It contains the following sections:
. Data types on page A2-2

. Processor modes on page A2-3

. Registers on page A2-4

. General-purpose registers on page A2-6

. Program status registers on page A2-11

. Exceptions on page A2-16

. Endian support on page A2-30

. Unaligned access support on page A2-38

. Synchronization primitives on page A2-44

. The Jazelle Extension on page A2-53

. Saturated integer arithmetic on page A2-69.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-1

Programmers’ Model

A2.1 Data types

ARM processors support the following data types:

Byte 8 bits

Halfword 16 bits

Word 32 bits

Note

. Support for halfwords was introduced in version 4.

. ARMYV6 has introduced unaligned data support for words and halfwords. See Unaligned access
support on page A2-38 for more information.

. When any of these types is described as unsigned, the N-bit data value represents a non-negative
integer in the range O to +2N-1, using normal binary format.

. When any of these types is described as signed, the N-bit data value represents an integer in the range
-2N-1 to +2N-1-1 using two's complement format.

. Most data operations, for example ADD, are performed on word quantities. Long multiplies support
64-bit results with or without accumulation. ARMVSTE introduced some halfword multiply
operations. ARMv6 introduced a variety of Single Instruction Multiple Data (SIMD) instructions
operating on two halfwords or four bytes in parallel.

. Load and store operations can transfer bytes, halfwords, or words to and from memory, automatically
zero-extending or sign-extending bytes or halfwords as they are loaded. Load and store operations
that transfer two or more words to and from memory are also provided.

. ARM instructions are exactly one word and are aligned on a four-byte boundary. Thumb® instructions
are exactly one halfword and are aligned on a two-byte boundary. Jazelle® opcodes are a variable
number of bytes in length and can appear at any byte alignment.

A2-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.2 Processor modes

The ARM architecture supports the seven processor modes shown in Table A2-1.

Table A2-1 ARM processor modes

Processor mode Mode number Description

User usr 0b10000 Normal program execution mode

FIQ fiq 0b10001 Supports a high-speed data transfer or channel process

IRQ irq 0b10010 Used for general-purpose interrupt handling

Supervisor svc 0b10011 A protected mode for the operating system

Abort abt 0b10111 Implements virtual memory and/or memory protection

Undefined und 0b11011 Supports software emulation of hardware coprocessors

System sys 0b11111 Runs privileged operating system tasks (ARMv4 and
above)

Mode changes can be made under software control, or can be caused by external interrupts or exception
processing.

Most application programs execute in User mode. When the processor is in User mode, the program being
executed is unable to access some protected system resources or to change mode, other than by causing an
exception to occur (see Exceptions on page A2-16). This allows a suitably-written operating system to
control the use of system resources.

The modes other than User mode are known as privileged modes. They have full access to system resources
and can change mode freely. Five of them are known as exception modes:

. FIQ

. IRQ

. Supervisor
. Abort

. Undefined.

These are entered when specific exceptions occur. Each of them has some additional registers to avoid
corrupting User mode state when the exception occurs (see Registers on page A2-4 for details).

The remaining mode is System mode, which is not entered by any exception and has exactly the same
registers available as User mode. However, it is a privileged mode and is therefore not subject to the User
mode restrictions. It is intended for use by operating system tasks that need access to system resources, but
wish to avoid using the additional registers associated with the exception modes. Avoiding such use ensures
that the task state is not corrupted by the occurrence of any exception.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-3

Programmers’ Model

A2.3 Registers

The ARM processor has a total of 37 registers:

. Thirty-one general-purpose registers, including a program counter. These registers are 32 bits wide
and are described in General-purpose registers on page A2-6.

. Six status registers. These registers are also 32 bits wide, but only some of the 32 bits are allocated
or need to be implemented. The subset depends on the architecture variant supported. These are
described in Program status registers on page A2-11.

Registers are arranged in partially overlapping banks, with the current processor mode controlling which
bank is available, as shown in Figure A2-1 on page A2-5. At any time, 15 general-purpose registers (R0 to
R14), one or two status registers, and the program counter are visible. Each column of Figure A2-1 on
page A2-5 shows which general-purpose and status registers are visible in the indicated processor mode.

A2-4 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

indicates that the normal register used by User or System mode has
been replaced by an alternative register specific to the exception mode

Modes
Privileged modes
Exception modes
User System Supervisor Abort Undefined Interrupt Fast interrupt
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 RS R5 RS R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
R8 R8 R8 R8 R8 R8 R8_fig
R9 R9 R9 R9 R9 R9 R9_fiq
R10 R10 R10 R10 R10 R10 R10_fig
R11 R11 R11 R11 R11 R11 R11_fiq
R12 R12 R12 R12 R12 R12 R12_fig
R13 R13 R13_svc R13_abt . R13_und R13_irq R13_fig
R14 R14 R14_svc R14_abt KN R14_und R14_irq R14_fiq
PC PC PC PC PC PC PC
‘ CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_sve SPSR_abt [SPSR_und SPSR_irq SPSR_fiq

Figure A2-1 Register organization

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A2-5

Programmers’ Model

A2.4

A2.4.1

A2.4.2

General-purpose registers

The general-purpose registers RO to R15 can be split into three groups. These groups differ in the way they
are banked and in their special-purpose uses:

o The unbanked registers, RO to R7
o The banked registers, RS to R14
. Register 15, the PC, is described in Register 15 and the program counter on page A2-9.

The unbanked registers, RO to R7

Registers RO to R7 are unbanked registers. This means that each of them refers to the same 32-bit physical
register in all processor modes. They are completely general-purpose registers, with no special uses implied
by the architecture, and can be used wherever an instruction allows a general-purpose register to be
specified.

The banked registers, R8 to R14

Registers R8 to R14 are banked registers. The physical register referred to by each of them depends on the
current processor mode. Where a particular physical register is intended, without depending on the current
processor mode, a more specific name (as described below) is used. Almost all instructions allow the banked
registers to be used wherever a general-purpose register is allowed.

Note

There are a few exceptions to this rule for processors pre-ARMv6, and they are noted in the individual
instruction descriptions. Where a restriction exists on the use of banked registers, it always applies to all of
R8 to R14. For example, R8 to R12 are subject to such restrictions even in systems in which FIQ mode is
never used and so only one physical version of the register is ever in use.

Registers R8 to R12 have two banked physical registers each. One is used in all processor modes other than
FIQ mode, and the other is used in FIQ mode. Where it is necessary to be specific about which version is

being referred to, the first group of physical registers are referred to as R8_usr to R12_usr and the second

group as R8_fiq to R12_fiq.

Registers R8 to R12 do not have any dedicated special purposes in the architecture. However, for interrupts
that are simple enough to be processed using registers R8 to R14 only, the existence of separate FIQ mode
versions of these registers allows very fast interrupt processing.

Registers R13 and R14 have six banked physical registers each. One is used in User and System modes, and
each of the remaining five is used in one of the five exception modes. Where it is necessary to be specific
about which version is being referred to, you use names of the form:

R13_<mode>
R14_<mode>

where <mode> is the appropriate one of usr, svc (for Supervisor mode), abt, und, irq and fig.

A2-6

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Register R13 is normally used as a stack pointer and is also known as the SP. The SRS instruction, introduced
in ARMv®6, is the only ARM instruction that uses R13 in a special-case manner. There are other such
instructions in the Thumb instruction set, as described in Chapter A6 The Thumb Instruction Set.

Each exception mode has its own banked version of R13. Suitable uses for these banked versions of R13
depend on the architecture version:

. In architecture versions earlier than ARMv6, each banked version of R13 will normally be initialized
to point to a stack dedicated to that exception mode. On entry, the exception handler typically stores
the values of other registers that it wants to use on this stack. By reloading these values into the
register when it returns, the exception handler can ensure that it does not corrupt the state of the
program that was being executed when the exception occurred.

If fewer exception-handling stacks are desired in a system than this implies, it is possible instead to
initialize the banked version of R13 for an exception mode to point to a small area of memory that is
used for temporary storage while transferring to another exception mode and its stack. For example,
suppose that there is a requirement for an IRQ handler to use the Supervisor mode stack to store
SPSR_irq, RO to R3, R12, R14_irq, and then to execute in Supervisor mode with IRQs enabled. This
can be achieved by initializing R13_irq to point to a four-word temporary storage area, and using the
following code sequence on entry to the handler:

STMIA R13, (RO-R3) ; Put RO-R3 1into temporary storage
MRS RO, SPSR ; Move banked SPSR and R12-R14 into
Mov R1, R12 ; unbanked registers

Mov R2, R13

Mov R3, R14

MRS R12, CPSR Use read/modify/write sequence

BIC R12, R12, #0@x1F ; on CPSR to switch to Supervisor

ORR R12, R12, #0x13 ; mode

MSR CPSR_c, R12

STMFD R13!, (R1,R3) ; Push original {R12, R14_irq}, then

STR RO, [R13,#-20]! ; SPSR_irg with a gap for RO-R3

LDMIA R2, {RO-R3} ; Reload RO-R3 from temporary storage

BIC R12, R12, #0x80 ; Modify and write CPSR again to

MSR CPSR_c, R12 re-enable IRQs

STMIB R13, {RO-R3} ; Store RO-R3 in the gap left on the
; stack for them

. In ARMV6 and above, it is recommended that the OS designer should decide how many
exception-handling stacks are required in the system, and select a suitable processor mode in which
to handle the exceptions that use each stack. For example, one exception-handling stack might be
required to be locked into real memory and be used for aborts and high-priority interrupts, while
another could use virtual memory and be used for SWIs, Undefined instructions and low-priority
interrupts. Suitable processor modes in this example might be Abort mode and Supervisor mode
respectively.

The banked version of R13 for each of the selected modes is then initialized to point to the
corresponding stack, and the other banked versions of R13 are normally not used. Each exception
handler starts with an SRS instruction to store the exception return information to the appropriate
stack, followed (if necessary) by a CPS instruction to switch to the appropriate mode and possibly

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-7

Programmers’ Model

re-enable interrupts, after which other registers can be saved on that stack. So in the above example,
an Undefined Instruction handler that wants to re-enable interrupts immediately would start with the
following two instructions:

SRSFD #svc_mode!
CPSIE 1, #svc_mode

The handler can then operate entirely in Supervisor mode, using the virtual memory stack pointed to
by R13_svc.

Register R14 (also known as the Link Register or LR) has two special functions in the architecture:

o In each mode, the mode's own version of R14 is used to hold subroutine return addresses. When a
subroutine call is performed by a BL or BLX instruction, R14 is set to the subroutine return address. The
subroutine return is performed by copying R14 back to the program counter. This is typically done
in one of the two following ways:

— Execute a BX LR instruction.

Note

AnMOV PC, LR instruction will perform the same function as BX LR if the code to which it returns
uses the current instruction set, but will not return correctly from an ARM subroutine called
by Thumb code, or from a Thumb subroutine called by ARM code. The use of MOV PC,LR
instructions for subroutine return is therefore deprecated.

— On subroutine entry, store R14 to the stack with an instruction of the form:
STMFD SP!,{<registers>,LR}
and use a matching instruction to return:
LDMFD SP!,{<registers>,PC}

. When an exception occurs, the appropriate exception mode's version of R14 is set to the exception
return address (offset by a small constant for some exceptions). The exception return is performed in
a similar way to a subroutine return, but using slightly different instructions to ensure full restoration
of the state of the program that was being executed when the exception occurred. See Exceptions on
page A2-16 for more details.

Register R14 can be treated as a general-purpose register at all other times.

Note

When nested exceptions are possible, the two special-purpose uses might conflict. For example, if an IRQ
interrupt occurs when a program is being executed in User mode, none of the User mode registers are
necessarily corrupted. But if an interrupt handler running in IRQ mode re-enables IRQ interrupts and a
nested IRQ interrupt occurs, any value the outer interrupt handler is holding in R14_irq at the time is
overwritten by the return address of the nested interrupt.

System programmers need to be careful about such interactions. The usual way to deal with them is to
ensure that the appropriate version of R14 does not hold anything significant at times when nested
exceptions can occur. When this is hard to do in a straightforward way, it is usually best to change to another

A2-8

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

processor mode during entry to the exception handler, before re-enabling interrupts or otherwise allowing
nested exceptions to occur. (In ARMv4 and above, System mode is often the best mode to use for this

purpose.)

A2.4.3 Register 15 and the program counter

Register R15 (R15) is often used in place of the other general-purpose registers to produce various
special-case effects. These are instruction-specific and so are described in the individual instruction
descriptions.

There are also many instruction-specific restrictions on the use of R15. these are also noted in the individual
instruction descriptions. Usually, the instruction is UNPREDICTABLE if R15 is used in a manner that breaks
these restrictions.

If an instruction description neither describes a special-case effect when R15 is used nor places restrictions
on its use, R15 is used to read or write the Program Counter (PC), as described in:

. Reading the program counter

. Writing the program counter on page A2-10.

Reading the program counter
When an instruction reads the PC, the value read depends on which instruction set it comes from:

. For an ARM instruction, the value read is the address of the instruction plus 8 bytes. Bits [1:0] of this
value are always zero, because ARM instructions are always word-aligned.

. For a Thumb instruction, the value read is the address of the instruction plus 4 bytes. Bit [0] of this
value is always zero, because Thumb instructions are always halfword-aligned.

This way of reading the PC is primarily used for quick, position-independent addressing of nearby
instructions and data, including position-independent branching within a program.

An exception to the above rule occurs when an ARM STR or STM instruction stores R15. Such instructions
can store either the address of the instruction plus 8 bytes, like other instructions that read R15, or the
address of the instruction plus 12 bytes. Whether the offset of 8 or the offset of 12 is used is
IMPLEMENTATION DEFINED. An implementation must use the same offset for all ARM STR and STM
instructions that store R15. It cannot use 8 for some of them and 12 for others.

Because of this exception, it is usually best to avoid the use of STR and STM instructions that store R15. If this
is difficult, use a suitable instruction sequence in the program to ascertain which offset the implementation
uses. For example, if RO points to an available word of memory, then the following instructions put the offset
of the implementation in RO:

SUB R1, PC, #4 ; R1 = address of following STR instruction
STR PC, [RO] ; Store address of STR instruction + offset,
LDR RO, [RO] ; then reload it

SUB RO, RO, R1 ; Calculate the offset as the difference

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-9

Programmers’ Model

Note

The rules about how R15 is read apply only to reads by instructions. In particular, they do not necessarily
describe the values placed on a hardware address bus during instruction fetches. Like all other details of
hardware interfaces, such values are IMPLEMENTATION DEFINED.

Writing the program counter

When an instruction writes the PC, the normal result is that the value written to the PC is treated as an
instruction address and a branch occurs to that address.

Since ARM instructions are required to be word-aligned, values they write to the PC are normally expected
to have bits[1:0] == 0b00. Similarly, Thumb instructions are required to be halfword-aligned and so values
they write to the PC are normally expected to have bit[0] == 0.

The precise rules depend on the current instruction set state and the architecture version:

. In T variants of ARMv4 and above, including all variants of ARMv6 and above, bit[0] of a value
written to R15 in Thumb state is ignored unless the instruction description says otherwise. If bit[0]
of the PC is implemented (which depends on whether and how the Jazelle Extension is implemented),
then zero must be written to it regardless of the value written to bit[0] of R15.

o In ARMV6 and above, bits[1:0] of a value written to R15 in ARM state are ignored unless the
instruction description says otherwise. Bit[1] of the PC must be written as zero regardless of the value
written to bit[1] of R15. If bit[0] of the PC is implemented (which depends on how the Jazelle
Extension is implemented), then zero must be written to it.

o In all variants of ARMv4 and ARMVS, bits[1:0] of a value written to R15 in ARM state must be 0b00.
If they are not, the results are UNPREDICTABLE.

Several instructions have their own rules for interpreting values written to R15. For example, BX and other
instructions designed to transfer between ARM and Thumb states use bit[0] of the value to select whether
to execute the code at the destination address in ARM state or Thumb state. Special rules of this type are
described on the individual instruction pages, and override the general rules in this section.

A2-10

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.5

A2.5.1

A2.5.2

Programmers’ Model

Program status registers

The Current Program Status Register (CPSR) is accessible in all processor modes. It contains condition
code flags, interrupt disable bits, the current processor mode, and other status and control information. Each
exception mode also has a Saved Program Status Register (SPSR), that is used to preserve the value of the
CPSR when the associated exception occurs.

Note

User mode and System mode do not have an SPSR, because they are not exception modes. All instructions
that read or write the SPSR are UNPREDICTABLE when executed in User mode or System mode.

The format of the CPSR and the SPSRs is shown below.

31 30 29 28 27 26 25 24 23 20 19 16 15 109 8 7 6 5 4 0

N|Z|C|{V|Q]| Res |J | RESERVED | GE[3:0] RESERVED E|(A|I|F|T M[4:0]

Types of PSR bits
PSR bits fall into four categories, depending on the way in which they can be updated:

Reserved bits Reserved for future expansion. Implementations must read these bits as 0 and ignore
writes to them. For maximum compatibility with future extensions to the
architecture, they must be written with values read from the same bits.

User-writable bits Can be written from any mode. The N, Z, C, V, Q, GE[3:0], and E bits are
user-writable.

Privileged bits Can be written from any privileged mode. Writes to privileged bits in User mode are
ignored. The A, I, F, and M[4:0] bits are privileged.

Execution state bits Can be written from any privileged mode. Writes to execution state bits in User
mode are ignored. The J and T bits are execution state bits, and are always zero in
ARM state.

Privileged MSR instructions that write to the CPSR execution state bits must write
zeros to them, in order to avoid changing them. If ones are written to either or both
of them, the resulting behavior is UNPREDICTABLE. This restriction applies only to
the CPSR execution state bits, not the SPSR execution state bits.

The condition code flags

The N, Z, C, and V (Negative, Zero, Carry and oVerflow) bits are collectively known as the condition code
flags, often referred to as flags. The condition code flags in the CPSR can be tested by most instructions to
determine whether the instruction is to be executed.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-11

Programmers’ Model

The condition code flags are usually modified by:

Execution of a comparison instruction (CMN, CMP, TEQ or TST).

Execution of some other arithmetic, logical or move instruction, where the destination register of the
instruction is not R15. Most of these instructions have both a flag-preserving and a flag-setting
variant, with the latter being selected by adding an S qualifier to the instruction mnemonic. Some of
these instructions only have a flag-preserving version. This is noted in the individual instruction
descriptions.

In either case, the new condition code flags (after the instruction has been executed) usually mean:

N

Is set to bit 31 of the result of the instruction. If this result is regarded as a two's complement
signed integer, then N = 1 if the result is negative and N = 0 if it is positive or zero.

Is set to 1 if the result of the instruction is zero (this often indicates an equal result from a
comparison), and to 0 otherwise.
Is set in one of four ways:

. For an addition, including the comparison instruction CMN, C is set to 1 if the addition
produced a carry (that is, an unsigned overflow), and to O otherwise.

o For a subtraction, including the comparison instruction CMP, C is set to O if the
subtraction produced a borrow (that is, an unsigned underflow), and to 1 otherwise.

. For non-addition/subtractions that incorporate a shift operation, C is set to the last bit
shifted out of the value by the shifter.

. For other non-addition/subtractions, C is normally left unchanged (but see the
individual instruction descriptions for any special cases).
Is set in one of two ways:

. For an addition or subtraction, V is set to 1 if signed overflow occurred, regarding the
operands and result as two's complement signed integers.

. For non-addition/subtractions, V is normally left unchanged (but see the individual
instruction descriptions for any special cases).

The flags can be modified in these additional ways:

Execution of an MSR instruction, as part of its function of writing a new value to the CPSR or SPSR.

Execution of MRC instructions with destination register R15. The purpose of such instructions is to
transfer coprocessor-generated condition code flag values to the ARM processor.

Execution of some variants of the LDM instruction. These variants copy the SPSR to the CPSR, and
their main intended use is for returning from exceptions.

Execution of an RFE instruction in a privileged mode that loads a new value into the CPSR from
memory.

Execution of flag-setting variants of arithmetic and logical instructions whose destination register is
R15. These also copy the SPSR to the CPSR, and are intended for returning from exceptions.

A2-12

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.5.3

A2.5.4

A2.5.5

Programmers’ Model

The Q flag

In E variants of ARMvS5 and above, bit[27] of the CPSR is known as the Q flag and is used to indicate
whether overflow and/or saturation has occurred in some DSP-oriented instructions. Similarly, bit[27] of
each SPSR is a Q flag, and is used to preserve and restore the CPSR Q flag if an exception occurs. See
Saturated integer arithmetic on page A2-69 for more information.

In architecture versions prior to ARMvS, and in non-E variants of ARMvS, bit[27] of the CPSR and SPSRs
must be treated as a reserved bit, as described in Types of PSR bits on page A2-11.

The GE[3:0] bits

In ARMvV6, the SIMD instructions use bits[19:16] as Greater than or Equal (GE) flags for individual bytes
or halfwords of the result. You can use these flags to control a later SEL instruction, see SEL on page A4-127
for more details.

Instructions that operate on halfwords:
. set or clear GE[3:2] together, based on the result of the top halfword calculation

o set or clear GE[1:0] together, based on the result of the bottom halfword calculation.

Instructions that operate on bytes:

. set or clear GE[3] according to the result of the top byte calculation

. set or clear GE[2] according to the result of the second byte calculation
. set or clear GE[1] according to the result of the third byte calculation

. set or clear GE[0] according to the result of the bottom byte calculation.

Each bit is set (otherwise cleared) if the results of the corresponding calculation are as follows:

. for unsigned byte addition, if the result is greater than or equal to 28

. for unsigned halfword addition, if the result is greater than or equal to 216
. for unsigned subtraction, if the result is greater than or equal to zero

. for signed arithmetic, if the result is greater than or equal to zero.

In architecture versions prior to ARMV6, bits[19:16] of the CPSR and SPSRs must be treated as a reserved
bit, as described in Types of PSR bits on page A2-11.

The E bit

From ARMV6, bit[9] controls load and store endianness for data handling. See Instructions to change CPSR
E bit on page A2-36. This bit is ignored by instruction fetches.

In architecture versions prior to ARMv6, bit[9] of the CPSR and SPSRs must be treated as a reserved bit,
as described in Types of PSR bits on page A2-11.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-13

Programmers’ Model

A2.5.6 The interrupt disable bits

A, 1, and F are the interrupt disable bits:

A bit

I bit

F bit

Disables imprecise data aborts when it is set. This is available only in ARMv6 and above.
In earlier versions, bit[8] of CPSR and SPSRs must be treated as a reserved bit, as described
in Types of PSR bits on page A2-11.

Disables IRQ interrupts when it is set.

Disables FIQ interrupts when it is set.

A2.5.7 The mode bits

M[4:0] are the mode bits. These determine the mode in which the processor operates. Their interpretation
is shown in Table A2-2.

Table A2-2 The mode bits

M[4:0] Mode Accessible registers

0b10000 User PC, R14 to RO, CPSR

0b10001 FIQ PC, R14_fiq to R8_fiq, R7 to RO, CPSR, SPSR_fiq
0b10010 1IRQ PC, R14_irq, R13_irq, R12 to RO, CPSR, SPSR_irq
0b10011 Supervisor PC, R14_svc, R13_svc, R12 to RO, CPSR, SPSR_svc
0b10111 Abort PC, R14_abt, R13_abt, R12 to RO, CPSR, SPSR_abt
0b11011 Undefined PC, R14_und, R13_und, R12 to RO, CPSR, SPSR_und
Obl1111 System PC, R14 to RO, CPSR (ARMv4 and above)

Not all combinations of the mode bits define a valid processor mode. Only those combinations explicitly
described can be used. If any other value is programmed into the mode bits M[4:0], the result is
UNPREDICTABLE.

A2-14

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.5.8

A2.5.9

Programmers’ Model

The T and J bits

The T and J bits select the current instruction set, as shown in Table A2-3.

Table A2-3 The T and J bits

J T Instruction set

0 0 ARM

0 1 Thumb

1 0 Jazelle

1 1 RESERVED

The T bit exists on t variants of ARMv4, and on all variants of ARMvS5 and above. on non-T variants of
ARMv4, the T bit must be treated as a reserved bit, as described in Types of PSR bits on page A2-11.

The Thumb instruction set is implemented on T variants of ARMv4 and ARMVS, and on all variants of
ARMUV6 and above. instructions that switch between ARM and Thumb state execution can be used freely
on implementation of these architectures.

The Thumb instruction set is not implemented on non-T variants of ARMyvS. If the Thumb instruction set is
selected by setting T ==1 on these architecture variants, the next instruction executed will cause an
Undefined Instruction exception (see Undefined Instruction exception on page A2-19). Instructions that
switch between ARM and Thumb state execution can be used on implementation of these architecture
variants, but only function correctly as long as the program remains in ARM state. If the program attempts
to switch to Thumb state, the first instruction executed after that switch causes an Undefined Instruction
exception. Entry into that exception then switches back to ARM state. The exception handler can detect that
this was the cause of the exception from the fact that the T bit of SPSR_und is set.

The J bit exists on ARMVSTE]J and on all variants of ARMv6 and above. On variants of ARMv4 and
ARMYVS, other than ARMVSTEJ, the J bit must be treated as a reserved bit, as described in Types of PSR bits
on page A2-11.

Hardware acceleration for Jazelle opcode execution can be implemented on ARMvS5TEJ and on ARMv6
and above. On these architecture variants, the BXJ instruction is used to switch from ARM state into Jazelle
state when the hardware accelerator is present and enabled. If the hardware accelerator is disabled, or not
present, the BXJ instruction behaves as a BX instruction, and the J bit remains clear. For more details, see The
Jazelle Extension on page A2-53.

Other bits

Other bits in the program status registers are reserved for future expansion. In general, programmers must
take care to write code in such a way that these bits are never modified. Failure to do this might result in
code that has unexpected side effects on future versions of the architecture. See Types of PSR bits on
page A2-11, and the usage notes for the MSR instruction on page A4-76 for more details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-15

Programmers’ Model

A2.6 Exceptions
Exceptions are generated by internal and external sources to cause the processor to handle an event, such as
an externally generated interrupt or an attempt to execute an Undefined instruction. The processor state just
before handling the exception is normally preserved so that the original program can be resumed when the
exception routine has completed. More than one exception can arise at the same time.
The ARM architecture supports seven types of exception. Table A2-4 lists the types of exception and the
processor mode that is used to process each type. When an exception occurs, execution is forced from a fixed
memory address corresponding to the type of exception. These fixed addresses are called the exception
vectors.
Note
The normal vector at address 0x00000014 and the high vector at address 0xFFFF0014 are reserved for future
expansion.
Table A2-4 Exception processing modes
. Normal High vector
a
Exception type Mode VE address address
Reset Supervisor 0x00000000 OxFFFF0000
Undefined instructions Undefined 0x00000004 0xFFFF0004
Software interrupt (SWI) Supervisor 0x00000008 0xFFFF0008
Prefetch Abort (instruction fetch memory abort) ~ Abort 0x0000000C OxFFFFo0QC
Data Abort (data access memory abort) Abort 0x00000010 OxFFFF0010
IRQ (interrupt) IRQ 0 0x00000018 OXFFFF0018
1 IMPLEMENTATION DEFINED
FIQ (fast interrupt) FIQ 0 0x0000001C OxFFFFOO1C
1 IMPLEMENTATION DEFINED
a. VE = vectored interrupt enable (CP15 control); RAZ when not implemented.
A2-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

When an exception occurs, the banked versions of R14 and the SPSR for the exception mode are used to
save state as follows:

R14_<exception_mode> = return 1link
SPSR_<exception_mode> = CPSR
CPSR[4:0] = exception mode number

CPSR[5] = @ /% Execute in ARM state =/
if <exception_mode> == Reset or FIQ then
CPSR[6] =1 /% Disable fast interrupts =/
/+ else CPSR[6] is unchanged =/
CPSR[7] =1 /% Disable normal interrupts =/
if <exception_mode> != UNDEF or SWI then
CPSR[8] =1 /% Disable imprecise aborts (v6 only) =/
/+ else CPSR[8] is unchanged =/
CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry =/

PC = exception vector address

To return after handling the exception, the SPSR is moved into the CPSR, and R14 is moved to the PC. This
can be done atomically in two ways:

. using a data-processing instruction with the S bit set, and the PC as the destination
. using the Load Multiple with Restore CPSR instruction, as described in LDM (3) on page A4-40.

In addition, in ARMVG, the RFE instruction (see RFE on page A4-113) can be used to load the CPSR and PC
from memory, so atomically returning from an exception to a PC and CPSR that was previously saved in
memory.

Collectively these mechanisms define all of the mechanisms which perform a return from exception.

The following sections show what happens automatically when the exception occurs, and also show the
recommended data-processing instruction to use to return from each exception. This instruction is always a
MOVS or SUBS instruction with the PC as its destination.

Note

When the recommended data-processing instruction is a SUBS and a Load Multiple with Restore CPSR
instruction is used to return from the exception handler, the subtraction must still be performed. This is
usually done at the start of the exception handler, before the return link is stored to memory.

For example, an interrupt handler that wishes to store its return link on the stack might use instructions of
the following form at its entry point:

SUB R14, R14, #4
STMFD SP!, {<other_registers>, R14}

and return using the instruction:

LDMFD SP!, {<other_registers>, PC}A

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-17

Programmers’ Model

A2.6.1 ARMv6 extensions to the exception model

In ARMv6 and above, the exception model is extended as follows:

. An imprecise data abort mechanism that allows some types of data abort to be treated
asynchronously. The resulting exceptions behave like interrupts, except that they use Abort mode and
its banked registers. This mechanism includes a mask bit (the A bit) in the PSRs, in order to ensure
that imprecise data aborts do not occur while another abort is being handled. The mechanism is
described in Imprecise data aborts on page A2-23.

. Support for vectored interrupts controlled by the VE bit in the system control coprocessor (see
Vectored interrupt support on page A2-26). It is IMPLEMENTATION DEFINED whether support for this
mechanism is included in earlier versions of the architecture.

. Support for a low interrupt latency configuration controlled by the FI bit in the system control
coprocessor (see Low interrupt latency configuration on page A2-27). It is IMPLEMENTATION
DEFINED whether support for this mechanism is included in earlier versions of the architecture.

. Three new instructions (CPS, SRS, RFE) to improve nested stack handling of different exceptions in a
common mode. CPS can also be used to efficiently enable or disable the interrupt and imprecise abort
masks, either within a mode, or while transitioning from a privileged mode to any other mode. See
New instructions to improve exception handling on page A2-28 for a brief description.

A2.6.2 Reset

When the Reset input is asserted on the processor, the ARM processor immediately stops execution of the

current instruction. When Reset is de-asserted, the following actions are performed:

R14_svc = UNPREDICTABLE value

SPSR_svc = UNPREDICTABLE value

CPSR[4:0] = 0b10011 /+ Enter Supervisor mode =/

CPSR[5] =10 /* Execute in ARM state x/

CPSR[6] =1 /+ Disable fast interrupts =/

CPSR[7] =1 /+ Disable normal interrupts =/

CPSR[8] =1 /« Disable Imprecise Aborts (v6 only) =/

CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry =/

if high vectors configured then

PC = OxFFFF0000
else
PC = 0x00000000
After Reset, the ARM processor begins execution at address 0x00000000 or 0xFFFF0000 in Supervisor mode
with interrupts disabled.
Note

There is no architecturally defined way of returning from a Reset.

A2-18 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.6.3 Undefined Instruction exception

If the ARM processor executes a coprocessor instruction, it waits for any external coprocessor
to acknowledge that it can execute the instruction. If no coprocessor responds, an Undefined Instruction
exception occurs.

If an attempt is made to execute an instruction that is UNDEFINED, an Undefined Instruction exception occurs
(see Extending the instruction set on page A3-32).

The Undefined Instruction exception can be used for software emulation of a coprocessor in a system that
does not have the physical coprocessor (hardware), or for general-purpose instruction set extension by
software emulation.

When an Undefined Instruction exception occurs, the following actions are performed:

R14_und = address of next instruction after the Undefined instruction
SPSR_und = CPSR
CPSR[4:0] = 0bl11011 /% Enter Undefined Instruction mode =/
CPSR[5] =10 /+ Execute in ARM state x/
/+ CPSR[6] 1is unchanged =/
CPSR[7] =1 /+ Disable normal interrupts =/
/% CPSR[8] 1is unchanged =/
CPSR[9] = CP15_regl_EEbit /# Endianness on exception entry =/
if high vectors configured then
PC = OxFFFFo004
else

PC = 0x00000004
To return after emulating the Undefined instruction use:
MOVS PC,R14

This restores the PC (from R14_und) and CPSR (from SPSR_und) and returns to the instruction following
the Undefined instruction.

In some coprocessor designs, an internal exceptional condition caused by one coprocessor instruction is
signaled imprecisely by refusing to respond to a later coprocessor instruction. In these circumstances, the
Undefined Instruction handler takes whatever action is necessary to clear the exceptional condition, then
returns to the second coprocessor instruction. To do this use:

SUBS PC,R14,#4

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-19

Programmers’ Model

A2.6.4 Software Interrupt exception

The Software Interrupt instruction (SWI) enters Supervisor mode to request a particular supervisor (operating
system) function. When a SWI is executed, the following actions are performed:

R14_svc = address of next instruction after the SWI instruction
SPSR_svc = CPSR
CPSR[4:0] = 0b10011 /+ Enter Supervisor mode x/
CPSR[5] =10 /% Execute in ARM state =/
/% CPSR[6] is unchanged =/
CPSR[7] =1 /+ Disable normal interrupts =/
/+ CPSR[8] is unchanged =/
CPSR[9] = CP15_regl_EEbit /% Endianness on exception entry s/

if high vectors configured then
PC = OxFFFF0008

else
PC = 0x00000008

To return after performing the SWI operation, use the following instruction to restore the PC
(from R14_svc) and CPSR (from SPSR_svc) and return to the instruction following the SWI:

MOVS PC,R14

A2.6.5 Prefetch Abort (instruction fetch memory abort)

A memory abort is signaled by the memory system. Activating an abort in response to an instruction fetch
marks the fetched instruction as invalid. A Prefetch Abort exception is generated if the processor tries to
execute the invalid instruction. If the instruction is not executed (for example, as a result of a branch being
taken while it is in the pipeline), no Prefetch Abort occurs.

In ARMVS5 and above, a Prefetch Abort exception can also be generated as the result of executing a BKPT
instruction. For details, see BKPT on page A4-14 (ARM instruction) and BKPT on page A7-24 (Thumb
instruction).

When an attempt is made to execute an aborted instruction, the following actions are performed:

R14_abt = address of the aborted instruction + 4
SPSR_abt = CPSR

CPSR[4:0] = 0b10111 /% Enter Abort mode «/
CPSR[5] =10 /% Execute in ARM state =/
/% CPSR[6] is unchanged =/

CPSR[7] =1 /+ Disable normal interrupts =/
CPSR[8] =1 /+ Disable Imprecise Data Aborts (v6 only) =/
CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry «/
if high vectors configured then

PC = OxFFFF000C
else

PC = 0x0000000C

A2-20 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

To return after fixing the reason for the abort, use:
SUBS PC,R14,#4

This restores both the PC (from R14_abt) and CPSR (from SPSR_abt), and returns to the aborted
instruction.

A2.6.6 Data Abort (data access memory abort)

A memory abort is signaled by the memory system. Activating an abort in response to a data access (load
or store) marks the data as invalid. A Data Abort exception occurs before any following instructions or
exceptions have altered the state of the CPU. The following actions are performed:

R14_abt = address of the aborted instruction + 8
SPSR_abt = CPSR
CPSR[4:0] = 0b10111 /* Enter Abort mode =/
CPSR[5] =10 /+ Execute in ARM state #/
/% CPSR[6] 1is unchanged =/
CPSR[7] =1 /% Disable normal interrupts =/
CPSR[8] =1 /+ Disable Imprecise Data Aborts (v6 only) =/
CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry x/

if high vectors configured then
PC = OxFFFF0010

else
PC = 0x00000010

To return after fixing the reason for the abort use:
SUBS PC,R14,#8

This restores both the PC (from R14_abt) and CPSR (from SPSR_abt), and returns to re-execute the aborted
instruction.

If the aborted instruction does not need to be re-executed use:

SUBS PC,R14,#4

Effects of data-aborted instructions

Instructions that access data memory can modify memory by storing one or more values. If a Data Abort
occurs in such an instruction, the value of each memory location that the instruction stores to is:

. unchanged if the memory system does not permit write access to the memory location
. UNPREDICTABLE otherwise.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-21

Programmers’ Model

Instructions that access data memory can modify registers in the following ways:

By loading values into one or more of the general-purpose registers, that can include the PC.

By specitying base register write-back, in which the base register used in the address calculation has
a modified value written to it. All instructions that allow this to be specified have UNPREDICTABLE
results if base register write-back is specified and the base register is the PC, so only general-purpose
registers other than the PC can legitimately be modified in this way.

By loading values into coprocessor registers.

By modifying the CPSR.

If a Data Abort occurs, the values left in these registers are determined by the following rules:

1.

The PC value on entry to the Data Abort handler is 0x00000010 or 0xFFFF0010, and the R14_abt value
is determined from the address of the aborted instruction. Neither is affected in any way by the results
of any PC load specified by the instruction.

If base register write-back is not specified, the base register value is unchanged. This applies even if
the instruction loaded its own base register and the memory access to load the base register occurred
earlier than the aborting access.
For example, suppose the instruction is:

LDMIA RO, {RO,R1,R2}
and the implementation loads the new RO value, then the new R1 value and finally the new R2 value.

If a Data Abort occurs on any of the accesses, the value in the base register RO of the instruction is
unchanged. This applies even if it was the load of R1 or R2 that aborted, rather than the load of RO.

If base register write-back is specified, the value left in the base register is determined by the abort
model of the implementation, as described in Abort models on page A2-23.

If the instruction only loads one general-purpose register, the value in that register is unchanged.

If the instruction loads more than one general-purpose register, UNPREDICTABLE values are left in
destination registers that are neither the PC nor the base register of the instruction.

If the instruction loads coprocessor registers, UNPREDICTABLE values are left in the destination
coprocessor registers, unless otherwise specified in the instruction set description of the specific
COProcessor.

CPSR bits not defined as updated on exception entry maintain their current value.

A2-22

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.6.7

Programmers’ Model

Abort models

The abort model used by an ARM implementation is IMPLEMENTATION DEFINED, and is one of the
following:

Base Restored Abort Model

If a precise Data Abort occurs in an instruction that specifies base register write-back, the
value in the base register is unchanged. This is the only abort model permitted in ARMv6
and above.

Base Updated Abort Model

If a precise Data Abort occurs in an instruction that specifies base register write-back, the
base register write-back still occurs. This model is prohibited in ARMv6 and above.

In either case, the abort model applies uniformly across all instructions. An implementation does not use the
Base Restored Abort Model for some instructions and the Base Updated Abort Model for others.

Imprecise data aborts

An imprecise data abort, caused, for example, by an external error on a write that has been held in a Write
Buffer, is asynchronous to the execution of the causing instruction and might in reality occur many cycles
after the instruction that caused the memory access has retired. For this reason, the imprecise data abort
might occur at a time that the processor is in abort mode because of a precise abort, or might have live state
in abort mode, but be handling an interrupt.

To avoid the loss of the Abort mode state (R14 and SPSR_abt) in these cases, that would lead to the
processor entering an unrecoverable state, the existence of a pending imprecise data abort must be held by
the system until such time as the abort mode can safely be entered.

From ARMvV6, a mask is added into the CPSR (CPSR[8]) to control when an imprecise abort cannot be
accepted. This bit is referred to as the A bit. The imprecise data abort causes a Data Abort to be taken when
imprecise data aborts are not masked. When imprecise data aborts are masked, the implementation is
responsible for holding the presence of a pending imprecise abort until the mask is cleared and the abort is
taken. It is IMPLEMENTATION DEFINED whether more than one imprecise abort can be pended.

The A bit is set automatically on taking a Prefetch Abort, a Data Abort, an IRQ or FIQ interrupt, and on
reset.

The A bit can only be changed from a privileged mode.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-23

Programmers’ Model

A2.6.8

A2.6.9

Interrupt request (IRQ) exception

The IRQ exception is generated externally by asserting the IRQ input on the processor. It has a lower priority
than FIQ (see Table A2-1 on page A2-25), and is masked out when an FIQ sequence is entered.

Interrupts are disabled when the I bit in the CPSR is set. If the I bit is clear, ARM checks for an IRQ at
instruction boundaries.

Note

The I bit can only be changed from a privileged mode.

When an IRQ is detected, the following actions are performed:

address of next instruction to be executed + 4
CPSR
0b10010 /+ Enter IRQ mode =/
0 /+ Execute in ARM state =/
/% CPSR[6] is unchanged =/
CPSR[7] 1 /+ Disable normal interrupts =/
CPSR[8] =1 /+ Disable Imprecise Data Aborts (v6 only) %/
CPSR[9] CP15_regl_EEbit /+ Endianness on exception entry =/
if VE==0 then
if high vectors configured then
PC = OxFFFF0Q18

R14_irq
SPSR_irq
CPSR[4:0]
CPSR[5]

else
PC = 0x00000018
else
PC = IMPLEMENTATION DEFINED /% see page A2-26 =/

To return after servicing the interrupt, use:
SUBS PC,R14,#4

This restores both the PC (from R14_irq) and CPSR (from SPSR_irq), and resumes execution of the
interrupted code.

Fast interrupt request (FIQ) exception

The FIQ exception is generated externally by asserting the FIQ input on the processor. FIQ is designed to
support a data transfer or channel process, and has sufficient private registers to remove the need for register
saving in such applications, therefore minimizing the overhead of context switching.

Fast interrupts are disabled when the F bit in the CPSR is set. If the F bit is clear, ARM checks for an FIQ
at instruction boundaries.

Note

The F bit can only be changed from a privileged mode.

When an FIQ is detected, the following actions are performed:

A2-24

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.6.10

Programmers’ Model

R14_fig = address of next instruction to be executed + 4
SPSR_fig = CPSR
CPSR[4:0] = 0b10001 /+ Enter FIQ mode =/
CPSR[5] =10 /% Execute in ARM state =/
CPSR[6] =1 /% Disable fast interrupts =/
CPSR[7] =1 /% Disable normal interrupts =/
CPSR[8] =1 /+ Disable Imprecise Data Aborts (v6 only) =/
CPSR[9] = CP15_regl_EEbit /+ Endianness on exception entry =/
if VE==0 then
if high vectors configured then
PC = OxFFFF001C
else
PC = 0x0000001C
else

PC = IMPLEMENTATION DEFINED /% see page A2-26 =/
To return after servicing the interrupt, use:
SUBS PC, R14,#4

This restores both the PC (from R14_fiq) and CPSR (from SPSR_fiq), and resumes execution of the
interrupted code.

The FIQ vector is deliberately the last vector to allow the FIQ exception-handler software to be placed
directly at address 0x0000001C or OxFFFFOQ1C, without requiring a branch instruction from the vector.

Exception priorities
Table A2-1 shows the exception priorities:

Table A2-1 Exception priorities

Priority Exception
Highest 1 Reset

2 Data Abort (including data TLB miss)

3 FIQ

4 IRQ

5 Imprecise Abort (external abort) - ARMv6

6 Prefetch Abort (including prefetch TLB miss)
Lowest 7 Undefined instruction

SWI

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-25

Programmers’ Model

Undefined instruction and software interrupt cannot occur at the same time, because they each correspond
to particular (non-overlapping) decodings of the current instruction. Both must be lower priority than
Prefetch Abort, because a Prefetch Abort indicates that no valid instruction was fetched.

The priority of a Data Abort exception is higher than FIQ, which ensures that the Data Abort handler is
entered before the FIQ handler is entered (so that the Data Abort is resolved after the FIQ handler has
completed).

A2.6.11 High vectors

High vectors were introduced into some implementations of ARMv4 and are required in ARMv6
implementations. High vectors allow the exception vector locations to be moved from their normal address
range 0x00000000-0x0000001C at the bottom of the 32-bit address space, to an alternative address range
0xFFFF0000-0xFFFFO01C near the top of the address space. These alternative locations are known as the high
vectors.

Prior to ARMVG6, it is IMPLEMENTATION DEFINED whether the high vectors are supported. When they are, a
hardware configuration input selects whether the normal vectors or the high vectors are to be used from
reset.

The ARM instruction set does not contain any instructions that can directly change whether normal or high
vectors are configured. However, if the standard System Control coprocessor is attached to an ARM
processor that supports the high vectors, bit[13] of coprocessor 15 register 1 can be used to switch between
using the normal vectors and the high vectors (see Register 1: Control registers on page B3-12).

A2.6.12 Vectored interrupt support

Historically, the IRQ and FIQ exception vectors are affected by whether high vectors are enabled, and are
otherwise fixed. The result is that interrupt handlers typically have to start with an instruction sequence to
determine the cause of the interrupt and branch to a routine to handle it. Support of vectored interrupts
allows an interrupt controller to prioritize interrupts, and provide the required interrupt handler address
directly to the core. The vectored interrupt behavior is explicitly enabled by the setting of a bit, the VE bit,
in the system coprocessor CP15 register 1. See Register 1: Control registers on page B3-12. For backwards
compatibility, the vectored interrupt mechanism is disabled on reset. The details of the hardware to support
vectored interrupts is IMPLEMENTATION DEFINED.

A vectored interrupt controller (VIC) can reduce effective interrupt latency considerably, by eliminating the
need for an interrupt handler to identify the source of an interrupt and acknowledge it before re-enabling the
interrupts. Furthermore, if the VIC and core implement an appropriate handshake as the interrupt handler
routine is entered, the VIC can automatically mask out the interrupt source associated with that handler and
any lower priority sources. This allows the interrupts concerned to be re-enabled by the processor core as
soon as their return information (that is, R14 and SPSR values) have been saved, reducing the period during
which higher priority interrupts are disabled.

A2-26 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.6.13 Low interrupt latency configuration

The FI bit (bit[21]) in the system control register (CP15 register 1) enables the interrupt latency
configuration logic in an implementation. See Register 1: Control registers on page B3-12. The purpose of
this configuration is to reduce the interrupt latency of the processor. The exact mechanisms that are used to
perform this are IMPLEMENTATION DEFINED.

In order to ensure that a change between normal and low interrupt latency configurations is synchronized
correctly, the FI bit must only be changed in IMPLEMENTATION DEFINED circumstances. It is recommended
that software systems should only change the FI bit shortly after reset, while interrupts are disabled.

When interrupt latency is reduced, this may result in reduced performance overall. Examples of the
mechanisms which may be used are disabling Hit-Under-Miss functionality within a core, and the
abandoning of restartable external accesses, allowing the core to react to a pending interrupt faster than
would otherwise be the case. Low interrupt latency configuration may have IMPLEMENTATION DEFINED
effects in the memory system or elsewhere outside the processor core. It is legal for the interrupt to be seen
as being taken before a store to a restartable memory location, but for the memory to have been updated
when in low interrupt latency configuration.

In low interrupt latency configuration, software must only use multi-word load/store instructions in ways
that are fully restartable. This allows (but does not require) implementations to make multi-word
instructions interruptible when in low interrupt latency configuration. The multi-access instructions to
which this rule currently applies are:

ARM LDC, all forms of LDM, LDRD, STC, all forms of STM, STRD

Thumb LDMIA, PUSH, POP, STMIA

Note
If the instruction is interrupted before it is complete, the result may be that one or more of the words are
accessed twice. I[dempotent memory (multiple reads or writes of the same information exhibit identical
system results) is a requirement of system correctness.

In ARMv6, memory with the normal attribute is guaranteed to behave this way, however, memory marked
as Device or Strongly Ordered is not (for example, a FIFO). It is IMPLEMENTATION DEFINED whether
multi-word accesses are supported for Device and Strongly Ordered memory types in the low interrupt
latency configuration.

A similar situation exists with regard to multi-word load/store instructions that access memory locations that
can abort in a recoverable way, since an abort on one of the words accessed may cause a previously-accessed
word to be accessed twice — once before the abort, and a second time after the abort handler has returned.
The requirement in this case is either that all side-effects are idempotent, or that the abort must either occur
on the first word accessed or not at all.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-27

Programmers’ Model

A2.6.14 New instructions to improve exception handling

ARMV6 adds an instruction to simplify changes of processor mode and the disabling and enabling of
interrupts. New instructions are also added to reduce the processing cost of handling exceptions in a
different mode to the exception entry mode, by removing any need to use the original mode’s stack. Two
examples are:

. IRQ routines may wish to execute in System or Supervisor mode, so that they can both re-enable
IRQs and use BL instructions. This is not possible in IRQ mode, because a nested IRQ could corrupt
the BL’ s return link at any time. Using the new instructions, the system can store the return state (R14
link register and SPSR_irq) to the System/User or Supervisor mode stack, switch to System or
Supervisor mode and re-enable IRQs efficiently, without making any use of R13_irq or the IRQ stack.

. FIQ mode is designed for efficient use by a single owner, using R8_fiq — R13_fiq as global variables.
In addition, unlike IRQs, FIQs are not disabled by other exceptions (apart from reset), making them
the preferred type for real time interrupts, when other exceptions are being used routinely, such as
virtual memory or instruction emulation. IRQs may be disabled for unacceptably long periods of time
while these needs are being serviced.

However, if more than one real-time interrupt source is required, there is a conflict of interest. The

new mechanism allows multiple FIQ sources and minimizes the period with FIQs disabled, greatly
reducing the interrupt latency penalty. The FIQ mode registers can be allocated to the highest priority
FIQ as a single owner.

SRS - Store Return State

This instruction stores R14_<current_mode> and SPSR_<current_mode> to sequential addresses, using the
banked version of R13 for a specified mode to supply the base address (and to be written back to if base
register writeback is specified). This allows an exception handler to store its return state on a stack other
than the one automatically selected by its exception entry sequence.

The addressing mode used is a version of ARM addressing mode 4 (see Addressing Mode 4 - Load and Store
Multiple on page A5-41), modified so as to assume a {R14,SPSR} register list rather than using a list
specified by a bit mask in the instruction. This allows the SRS instruction to access stacks in a manner
compatible with the normal use of STM instructions for stack accesses. See SRS on page A4-174 for the
instruction details.

RFE — Return From Exception

This instruction loads the PC and CPSR from sequential addresses. This is used to return from an exception
which has had its return state saved using the SRS instruction, and again uses a version of ARM addressing
mode 4, modified this time to assume a {PC,CPSR} register list. See RFE on page A4-113 for the
instruction details.

A2-28 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

CPS - Change Processor State

This instruction provides new values for the CPSR interrupt masks, mode bits, or both, and is designed to
shorten and speed up the read/modify/write instruction sequence used in earlier architecture variants to
perform such tasks. Together with the SRS instruction, it allows an exception handler to save its return
information on the stack of another mode and then switch to that other mode, without modifying the stack
belonging to the original mode or any registers other than the stack pointer of the new mode.

The instruction also streamlines interrupt mask handling and mode switches in other code, and in particular
allows short, efficient, atomic code sequences in a uniprocessor system by disabling interrupts at their start
and re-enabling interrupts at their end. See CPS on page A4-29 for the instruction details.

A CPS Thumb instruction that allows mask updates within the current mode is also provided, see section CPS
on page A7-39.

Note

The Thumb instruction cannot change the mode due to instruction space usage constraints.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-29

Programmers’ Model

A2.7

A2.7.1

Endian support

This section discusses memory and memory-mapped I/O, with regard to the assumptions ARM processor
implementations make about endianness.

ARMV6 introduces several architectural extensions to support mixed-endian access in hardware:

. Byte reverse instructions that operate on general-purpose register contents to support word, and
signed and unsigned halfword data quantities.

. Separate instruction and data endianness, with instructions fixed as little-endian format, naturally
aligned, but with legacy support for 32-bit word-invariant binary images/ROM.

. A PSR Endian control flag, the E bit, which dictates the byte order used for the entire load and store
instruction space when data is loaded into, and stored back out of the register file. In previous
architectures this PSR bit was specified as 0 and is never set in legacy code written to conform to
architectures prior to ARMvo6.

. ARM and Thumb instructions to set and clear the E bit explicitly.

. A byte-invariant addressing scheme to support fine-grain big-endian and little-endian shared data
structures, to conform to the IEEE Standard for Shared-Data Formats Optimized for Scalable
Coherent Interface (SCI) Processors, IEEE Std 1596.5-1993 (ISBN 1-55937-354-7, IEEE).

. Bus interface endianness is IMPLEMENTATION DEFINED. However, it must support byte lane controls
for unaligned word and halfword data access.

Address space

The ARM architecture uses a single, flat address space of 232 8-bit bytes. Byte addresses are treated as
unsigned numbers, running from 0 to 232 - 1.

This address space is regarded as consisting of 230 32-bit words, each of whose addresses is word-aligned,
which means that the address is divisible by 4. The word whose word-aligned address is A consists of the
four bytes with addresses A, A+1, A+2 and A+3.

In ARMv4 and above, the address space is also regarded as consisting of 23! 16-bit halfwords, each of whose
addresses is halfword-aligned (divisible by 2). The halfword whose halfword-aligned address is A consists
of the two bytes with addresses A and A+1.

In ARMVSE and above, the address space supports 64-bit doubleword operations. Doubleword operations
can be considered as two-word load/store operations, each word addressed as follows:

. A, A+1, A+2, and A+3 for the first word
o A+4, A+5, A+6, and A+7 for the second word.

Prior to ARMv6, word-aligned doubleword operations are UNPREDICTABLE with doubleword-aligned
addresses always supported. ARMv6 mandates support of both modulo4 and modulo8 alignment of
doublewords, and introduces support for unaligned word and halfword data accesses, all controlled through
the standard System Control coprocessor.

A2-30

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.7.2

Programmers’ Model

Jazelle state (see The T and J bits on page A2-15) introduced with ARM architecture variant v5J supports
byte addressing.

Address calculations are normally performed using ordinary integer instructions. This means that they
normally wrap around if they overflow or underflow the address space. This means that the result of the
calculation is reduced modulo 232,

Normal sequential execution of instructions effectively calculates:
(address_of_current_instruction) + 4

after each instruction to determine which instruction to execute next. If this calculation overflows the top of
the address space, the result is UNPREDICTABLE. In other words, programs should not rely on sequential
execution of the instruction at address 0x00000000 after the instruction at address OxFFFFFFFC.

The above only applies to instructions that are executed, including those which fail their condition code
check. Most ARM implementations prefetch instructions ahead of the currently-executing instruction. If
this prefetching overflows the top of the address space, it does not cause the implementation's behavior to
become UNPREDICTABLE until and unless the prefetched instructions are actually executed.

LDC, LDM, LDRD, POP, PUSH, STC, STRD, and STM instructions access a sequence of words at increasing memory
addresses, effectively incrementing a memory address by 4 for each load or store. If this calculation
overflows the top of the address space, the result is UNPREDICTABLE. In other words, programs should not
use these instructions in such a way that they access the word at address 0x00000000 sequentially after the
word at address 0xFFFFFFFC.

Any unaligned load or store whose calculated address is such that it would access the byte at OxFFFFFFFF and
the byte at address 0x00000000 as part of the instruction is UNPREDICTABLE.
Endianness - an overview

The rules in Address space on page A2-30 require that for a word-aligned address A:

. the word at address A consists of the bytes at addresses A, A+1, A+2 and A+3

. the halfword at address A consists of the bytes at addresses A and A+1

. the halfword at address A+2 consists of the bytes at addresses A+2 and A+3.

. the word at address A therefore consists of the halfwords at addresses A and A+2.

However, this does not totally specify the mappings between words, halfwords, and bytes.

A memory system uses one of the two following mapping schemes. This choice is known as the endianness
of the memory system.

In a little-endian memory system:

. a byte or halfword at a word-aligned address is the least significant byte or halfword within the word
at that address

. a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-31

Programmers’ Model

In a big-endian memory system:

. a byte or halfword at a word-aligned address is the most significant byte or halfword within the word
at that address

. a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

For a word-aligned address A, Table A2-2 and Table A2-3 show how the word at address A, the halfwords
at addresses A and A+2, and the bytes at addresses A, A+1, A+2 and A+3 map on to each other for each

endianness.

Table A2-2 Big-endian memory system

31 24 23 16 15 8 7 0
Word at Address A

Halfword at Address A Halfword at Address A+2
Byte at Address A Byte at Address A+1 Byte at Address A+2 Byte at Address A+3

Table A2-3 Little-endian memory system

31 24 23 16 15 8 7 0
Word at Address A

Halfword at Address A+2 Halfword at Address A
Byte at Address A+3 Byte at Address A+2 Byte at Address A+1 Byte at Address A

On memory systems wider than 32 bits, the ARM architecture has traditionally supported a word-invariant
memory model, meaning that a word aligned address will fetch the same data in both big endian and little
endian systems. This is illustrated for a 64-bit data path in Table A2-4 and Table A2-5 on page A2-33.

Table A2-4 Big-endian word invariant case

63 32 31 0
Word at Address A+4 Word at Address A
Halfword at Halfword at Halfword at Halfword at
Address A+4 Address A+6 Address A Address A+2
A2-32 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Table A2-5 Little-endian word invariant case

63 32 31 0
Word at Address A+4 Word at Address A
Halfword at Halfword at Halfword at Halfword at
Address A+6 Address A+4 Address A+2 Address A

New provisions in ARMv6

ARMV6 has introduced new configurations known as mixed endian support. These use a byte-invariant
address model, affecting the order that bytes are transferred to and from ARM registers. Byte invariance
means that the address of a byte in memory is the same irrespective of whether that byte is being accessed
in a big endian or little endian manner.

Byte, halfword, and word accesses access the same one, two or four bytes in memory for both big and little
endian configuration. Double word and multiple word accesses in the ARM architecture are treated as a
series of word accesses from incrementing word addresses, and hence each word also returns the same bytes
of information in these cases too.

Note

When an implementation is configured in mixed endian mode, this only affects data accesses and how they
are loaded/stored to/from the register file. Instruction fetches always assume a little endian byte order model.

. When configured for big endian load/store, the lowest address provides the most significant byte of
the requested word or halfword. For LDRD/STRD this is the most significant byte of the first word
accessed.

. When configured for little endian load/store, the lowest address provides the least significant byte of
the requested word or halfword. For LDRD/STRD this is the least significant byte of the first word
accessed.

The convention adopted in this book is to identify the different endian models as follows:

. the word invariant big endian model is known as BE-32
. the byte invariant big endian model is referred to as BE-8
. little endian data is identical in both models and referred to as LE.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-33

Programmers’ Model

A2.7.3 Endian configuration and control

Prior to ARMv6, a single bit (B bit) provides endian control. It is IMPLEMENTATION DEFINED whether
implementations of ARMvS5 and below support little-endian memory systems, big-endian memory systems,
or both. If a standard System Control coprocessor is attached to an ARM implementation supporting the B
bit, this configuration input can be changed by writing to bit[7] of register 1 of the System Control
coprocessor (see Register 1: Control registers on page B3-12). An implementation may preset the B bit on
reset. If an ARM processor configures for little-endian operation on reset, and it is attached to a big-endian
memory system, one of the first things the reset handler must do is switch the configured endianness to
big-endian, using an instruction sequence like:

MRC pl5, 0, r@, cl, co ; r@ := CP15 register 1
ORR ro, ro, #0x80 ; Set bit[7] in r@
MCR pl5, 0, r@, cl, c0 ; CP15 register 1 := r@

This must be done before there is any possibility of a byte or halfword data access occurring, or instruction
execution in Thumb or Jazelle state.

ARMVv6 supports big-endian, little-endian, and byte-invariant hybrid systems. LE and BE-8 formats must
be supported. Support of BE-32 is IMPLEMENTATION DEFINED.

Features are provided in the System Control coprocessor and CPSR/SPSR to support hybrid operation. The
System Control Coprocessor register (CP15 register 1) and CPSR bits used are:

. Bit[1] - A bit - used to enable alignment checking. Always reset to zero (alignment checking OFF).
. Bit[7] - B bit - OPTIONAL, retained for backwards compatibility

. Bit[22] - the U bit - enables ARMv6 unaligned data support, and used with Bit[1] - the A bit - to
determine alignment checking behavior.

. Bit [25] - the EE bit - Exception Endian bit.
o CPSR/SPSR][9] - the E bit - load/store endian control.

The behavior of the memory system with respect to the U and A bits is summarized in Table A2-6.

Table A2-6
U A Description
0 0 Legacy (32-bit word invariant only)
0 1 Modulo 8 alignment checking: LDRD/STRD (8 and 32-bit invariant
memory models)
1 0 Unaligned access support (8-bit byte invariant data accesses only)
1 1 Modulo 4 alignment checking: LDRD/STRD (8-bit and 32-bit invariant

memory models)

A2-34 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

The EE-bit value is used to overwrite the CPSR_E bit on exception entry and for page table lookups. These
are asynchronous events with respect to normal control of the CPSR E bit.

A 2-bit configuration (CFGENDI1:0]) replaces the BigEndinit configuration pin to provide hardware
system configuration on reset. CFGEND][1] maps to the U bit, while CFGENDI0] sets either the B bit or EE
bit and CPSR_E on reset.

Table A2-7 defines the CFGEND[1:0] encoding and associated configurations.

Table A2-7

CFGENDI[1:0] Coprocessor 15 System Control Register (register 1) CPSR/SPSR

EE bit[25] U bit[22] A bit[1] B bit[7] E bit
00 0 0 0 0 0
012 0 0 0 1 0
10 0 1 0 0 0
11 1 1 0 0 1

a. This configuration is RESERVED in implementations which do not support BE-32. In this case, the B bit
must read as zero (RAZ).

Where an implementation does not include configuration pins, the U bit and A bit shall clear on reset.

The usage model for the U bit and A bit with respect to the B bit and E bit is summarized in Table A2-8.
Where BE-32 is not supported, the B bit must read as zero, and all entries indicated by B==1 are RESERVED.
Interaction of these control bits with data alignment is discussed in Unaligned access support on

page A2-38.
Table A2-8 Endian and Alignment Control Bit Usage Summary
U A B E fines Endianness Behavier Description
o 0 0 O LE LE Rotated LDR Legacy LE / programmed BE
configuration
0O 0 0 1 - - - RESERVED (no E bit in legacy code)
o 0 1 0 BE-32 BE-32 Rotated LDR Legacy BE (32-bit word-invariant)
0O 0 1 1 - - - RESERVED (no E bit in legacy code)
o 1 0 O LE LE Data Abort modulo 8 LDRD/STRD doubleword

alignment checking. LE Data

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-35

Programmers’ Model

Table A2-8 Endian and Alignment Control Bit Usage Summary (continued)

Instruction Data Unaligned A
u A B E Endianness Endianness Behavior Description
0 0 1 LE BE-8 Data Abort modulo 8 LDRD/STRD doubleword
alignment checking. BE Data
0 1 0 BE-32 BE-32 Data Abort modulo 8 LDRD/STRD doubleword
alignment checking, legacy BE
0 1 1 - - - RESERVED
1 0 0 O LE LE Unaligned LE instructions, LE mixed-endian data,
unaligned access permitted
1 0o 0 1 LE BE-8 Unaligned LE instructions, BE mixed-endian data,
unaligned access permitted
1 0 1 x - - - RESERVED
1 0 0 LE LE Data Abort modulo 4 alignment checking, LE Data
1 0 1 LE BE-8 Data Abort modulo 4 alignment checking, BE data
1 1 0 BE-32 BE-32 Data Abort modulo 4 alignment checking, legacy BE
1 1 1 - - - RESERVED
BE-32 and BE-8 are as defined in Endianness - an overview on page A2-31. Data aborts cause an alignment
error to be reported in the Fault Status Register in the system coprocessor.
Note
The U, A and B bits are System Control Coprocessor bits, while the E bit is a CPSR/SPSR flag.
The behavior of SETEND instructions (or any other instruction that modifies the CPSR) is UNPREDICTABLE
when setting the E bit would result in a RESERVED state.
A2.7.4 Instructions to change CPSR E bit
ARM and Thumb instructions are provided to set and clear the E bit efficiently:
SETEND BE Set the CPSR E bit.
SETEND LE Reset the CPSR E bit.
These are unconditional instructions. See ARM SETEND on page A4-129 and Thumb SETEND on
page A7-95.
A2-36 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.7.5 Instructions to reverse bytes in a general-purpose register

When an application or device driver has to interface to memory-mapped peripheral registers or
shared-memory DMA structures that are not the same endianness as that of the internal data structures, or
the endianness of the Operating System, an efficient way of being able to explicitly transform the endianness
of the data is required.

ARMv6 ARM and Thumb instruction sets provide this functionality:

. Reverse word (four bytes) register, for transforming big and little-endian 32-bit representations. See
ARM REV on page A4-109 and Thumb REV on page A7-88.

. Reverse halfword and sign-extend, for transforming signed 16-bit representations. See ARM REVSH
on page A4-111 and Thumb REVSH on page A7-90.

. Reverse packed halfwords in a register for transforming big- and little-endian 16-bit representations.
See ARM REV16 on page A4-110 and Thumb REV16 on page A7-89.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-37

Programmers’ Model

A2.8

A2.8.1

Unaligned access support

The ARM architecture traditionally expects all memory accesses to be suitably aligned. In particular, the
address used for a halfword access should normally be halfword-aligned, the address used for a word access
should normally be word-aligned.

Prior to ARMv6, doubleword (LDRD/STRD) accesses to memory, where the address is not doubleword-aligned,
are UNPREDICTABLE. Also, data accesses to non-aligned word and halfword data are treated as aligned from
the memory interface perspective. That is:

o the address is treated as truncated, with address bits[1:0] treated as zero for word accesses, and
address bit[0] treated as zero for halfword accesses.

. load single word ARM instructions are architecturally defined to rotate right the word-aligned data
transferred by a non word-aligned address one, two or three bytes depending on the value of the two
least significant address bits.

. alignment checking is defined for implementations supporting a System Control coprocessor using
the A bitin CP15 register 1. When this bit is set, a Data Abort indicating an alignment fault is reported
for unaligned accesses.

ARMV6 introduces unaligned word and halfword load and store data access support. When this is enabled,
the processor uses one or more memory accesses to generate the required transfer of adjacent bytes
transparently to the programmer, apart from a potential access time penalty where the transaction crosses an
IMPLEMENTATION DEFINED cache-line, bus-width or page boundary condition. Doubleword accesses must
be word-aligned in this configuration.

Unaligned instruction fetches

All instruction fetches must be aligned. Specifically they must be:
. word aligned in ARM state
. halfword aligned in Thumb state.

Writing an unaligned address to R15 is UNPREDICTABLE, except in the specific cases where the instructions
are associated with a Thumb to ARM state transition, bit[1] providing a valid address bit on transition to
Thumb state, and bit[0] indicating whether a transition needs to occur. The BX instruction in ARM state (see
BX on page A4-20) and POP instruction in Thumb state (see POP on page A7-82) are examples of
instructions providing state transition support.

The general rules for reading and writing the program counter are defined in Register 15 and the program
counter on page A2-9.

A2-38

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.8.2 Unaligned data access in ARMv6 systems

ARMV6 uses the U bit (CP15 register 1 bit[22]) and A bit (CP15 register 1 bit[1]), to provide a configuration
supporting the following unaligned memory accesses:

. Unaligned halfword accesses for LDRH, LDRSH and STRH.
. Unaligned word accesses for LDR, LDRT, STR and STRT.

The U bit and A bit are also used to configure endian support as described in Endian configuration and
control on page A2-34. All other multi-byte load and store accesses shall be word aligned.

Instructions must always be aligned (and in little endian format):
. ARM instructions must be word-aligned
. Thumb instructions must be halfword-aligned.

In addition, an ARMv6 system shall reset to the CFGEND[1:0] condition as described in Table A2-7 on
page A2-35.

For ARMv6, Table A2-10 on page A2-40 defines when an alignment fault must occur for an access, and
when the behavior of an access is architecturally UNPREDICTABLE. It also gives details of precisely which
memory locations are returned for valid accesses.

The access type descriptions used in this section are determined from the load/store instructions as described
in Table A2-9:

Table A2-9
¢;,:::ss ARM instructions Thumb instructions
Byte LDRB LDRBT LDRSB STRB STRBT SWPB (either access) LDRB LDRSB STRB
Halfword LDRH LDRSH STRH LDRH LDRSH STRH
WLoad LDR LDRT SWP (load access, if U == 0) LDR
WStore STR STRT SWP (store access, if U == 0) STR
WSync LDREX STREX SWP (either access, if U == 1) -
Two-word LDRD STRD -
Multi-word LDC LDM RFE SRS STC STM LDMIA POP PUSH STMIA
The following terminology is used to describe the memory locations accessed:
Byte[X] Means the byte whose address is X in the current endianness model. The correspondence

between the endianness models is that Byte[A] in the LE endianness model, Byte[A] in the
BE-8 endianness model, and Byte[A EOR 3] in the BE-32 endianness model are the same
actual byte of memory.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-39

Programmers’ Model

Halfword[X] Means the halfword consisting of the bytes whose addresses are X and X+1 in the current

Word[X]

Align[X]

endianness model, combined to form a halfword in little-endian order in the LE endianness
model or in big-endian order in the BE-8 or BE-32 endianness model.

Means the word consisting of the bytes whose addresses are X, X+1, X+2, and X+3 in the
current endianness model, combined to form a word in little-endian order in the LE
endianness model or in big-endian order in the BE-8 or BE-32 endianness model.

Note

It is a consequence of these definitions that if X is word-aligned, Word[X] consists of the
same four bytes of actual memory in the same order in the LE and BE-32 endianness
models.

Means (X AND OxFFFFFFFC) - that is, X with its least significant two bits forced to zero to make
it word-aligned.

Note

There is no difference between Addr and Align(Addr) on lines for which Addr[1:0] == 0b00
anyway. This can be exploited by implementations to simplify the control of when the least
significant bits are forced to zero.

For the Two-word and Multi-word access types, the Memory accessed column only specifies the lowest
word accessed. Subsequent words have addresses constructed by successively incrementing the address of
the lowest word by 4, and are constructed using the same endianness model as the lowest word.

Table A2-10 Data Access Behavior in ARMv6 Systems

U Addr[2:0] 2€®SS popavior Memory Notes
Types accessed

0 LEGACY, NO
ALIGNMENT FAULTING

0 XXX Byte Normal Byte[Addr] -

0 xx0 Halfword Normal Halfword[Addr] -

0 xx1 Halfword UNPREDICTABLE - -

0 XXX WLoad Normal Word[Align(Addr)] Loaded data rotated right by
8 * Addr[1:0] bits

0 XXX WStore Normal Word[Align(Addr)] Operation unaffected by
Addr[1:0]

0 x00 WSync Normal Word[Addr] -

A2-40 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Table A2-10 Data Access Behavior in ARMv6 Systems (continued)

U A Addr2:0] ACCeSS Benavior Memory Notes
Types accessed
0 0 =xxl,xIx WSync UNPREDICTABLE - -
0 0 XXX Multi-word Normal Word[Align(Addr)] Operation unaffected by
Addr[1:0]
0 0 000 Two-word Normal Word[Addr] -
0 0 xxl,xIx, Two-word UNPREDICTABLE - -
1xx
1 0 NEW ARMv6
UNALIGNED SUPPORT
1 0 xxx Byte Normal Byte[Addr] -
1 0 XXX Halfword Normal Halfword[Addr] -
1 0 xxx WLoad Normal Word[Addr] -
WStore
1 0 x00 WSync Normal Word[Addr] -
Multi-word
Two-word
1 0 =xxI,xlIx WSync Alignment Fault - -
Multi-word
Two-word
x 1 FULL ALIGNMENT
FAULTING
x 1 xxx Byte Normal Byte[Addr] -
X 1 xx0 Halfword Normal Halfword[Addr] -
x 1 xx1 Halfword Alignment Fault - -
X 1 x00 WLoad Normal Word[Addr] -
WStore
WSync
Multi-word
X 1 xx1, x1x WLoad Alignment Fault - -
WStore
WSync
Multi-word
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-41

Programmers’ Model

Table A2-10 Data Access Behavior in ARMv6 Systems (continued)

Access Memory

U A Addr[2:0] Behavior Notes
Types accessed

X 000 Two-word Normal Word[Addr] -

0 100 Two-word Alignment Fault - -

1 100 Two-word Normal Word[Addr] -

X xx1, x1x Two-word Alignment Fault - -

Other reasons for unalighed accesses to be UNPREDICTABLE

The following exceptions to the behavior described in Table A2-10 on page A2-40 apply, causing the

resultant unaligned accesses to be UNPREDICTABLE:

o An LDR instruction that loads the PC, has Addr[1:0] !=0b00, and is specified in the table as having
Normal behavior instead has UNPREDICTABLE behavior.

Note
The reason this applies only to LDR is that most other load instructions are UNPREDICTABLE regardless
of alignment if the PC is specified as their destination register. The exceptions are LDM, RFE and Thumb
POP. If Addr[1:0] !=0b0O0 for these instructions, the effective address of the transfer has its two least
significant bits forced to 0 if A == 0 and U ==0, and otherwise the behavior specified in the table is
either UNPREDICTABLE or Alignment Fault regardless of the destination register.

o Any WLoad, WStore, WSync, Two-word or Multi-word instruction that accesses memory with the
Strongly Ordered or Device memory attribute, has Addr[1:0] != 0b00, and is specified in the table
as having Normal behavior instead has UNPREDICTABLE behavior.

. Any Halfword instruction that accesses memory with the Strongly Ordered or Device memory
attribute, has Addr[0] !=0, and is specified in the table as having Normal behavior instead has
UNPREDICTABLE behavior.

If any of these reasons applies, it overrides the behavior specified in the table.

Note

These reasons never cause Alignment Fault behavior to be overridden.

ARM implementations are not required to ensure that the low-order address bits that make an access

unaligned are cleared from the address they send to memory. They can instead send the address as calculated

by the load/store instruction unchanged to memory, and require the memory system to ignore address[0] for

a halfword access and address[1:0] for a word access.

A2-42 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

When an instruction ignores the low-order address bits that make an access unaligned, the pseudo-code in
the instruction description does not mask them out explicitly. Instead, the Memory[<address>,<size>]
function used in the pseudo-code masks them out implicitly.

ARMv6 unaligned data access restrictions
ARMYV6 has the following restrictions on unaligned data accesses:

. Accesses are not guaranteed atomic. They can be synthesized out of a series of aligned operations in
a shared memory system without guaranteeing locked transaction cycles.

. Accesses typically take a number of cycles to complete compared to a naturally aligned transfer. The
real-time implications must be carefully analyzed and key data structures might need to have their
alignment adjusted for optimum performance.

. Accesses can abort on either or both halves of an access where this occurs over a page boundary. The
Data Abort handler must handle restartable aborts carefully after an Alignment Fault Status Code is
signaled.

Therefore shared memory schemes should not rely on seeing monotonic updates of non-aligned data of
loads, stores, and swaps for data items greater than byte width.

Unaligned access operations should not be used for accessing Device memory-mapped registers. They must
also be used with care in shared memory structures that are protected by aligned semaphores or
synchronization variables.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-43

Programmers’ Model

A2.9

Synchronization primitives

Historically, support for shared memory synchronization has been with the read-locked-write operations
that swap register contents with memory; the SWP and SWPB instructions described in SWP on page A4-212
and SWPB on page A4-214. These support basic busy/free semaphore mechanisms, but not mechanisms that
require calculation to be performed on the semaphore between the read and write phases. ARMv6 provides
anew mechanism to support more comprehensive non-blocking shared-memory synchronization primitives
that scale for multiple-processor system designs.

Note

The swap and swap byte instructions are deprecated in ARMv®6. It is recommended that all software
migrates to using the new synchronization primitives.

Two instructions are introduced to the ARM instruction set:
. Load-Exclusive described in LDREX on page A4-52
. Store-Exclusive described in STREX on page A4-202.

The instructions operate in concert with an address monitor, which provides the state machine and
associated system control for memory accesses. Two different monitor models exist, depending on whether
the memory has the sharable or non-sharable memory attribute. See Shared attribute on page B2-12.
Uniprocessor systems are only required to support the non-shared memory model, allowing them to support
synchronization primitives with the minimum amount of hardware overhead. An example minimal system
is illustrated in Figure A2-2.

L2 RAM L2 Cache Bridge to L3

| I I

Routing matrix

I

Monitor

CPU 1

Figure A2-2 Example uniprocessor (non-shared) monitor

Multi-processor systems are required to implement an address monitor for each processor. It is
IMPLEMENTATION DEFINED where the monitors reside in the memory system hierarchy, whether they are
implemented as a single entity for each processor visible to all shared accesses, or as a distributed entity.
Figure A2-3 on page A2-45 illustrates a single entity approach in which the monitor supports state machines
for both the shared and non-shared cases. Only the shared attribute case needs to snoop.

A2-44

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

L2 RAM L2 Cache Bridge to L3

| ! I

Routing matrix

Monitor : : Monitor

CPU 1 CPU 2

Figure A2-3 Write snoop monitor approach

Figure A2-4 illustrates a distributed model with local monitors residing in the processor blocks, and global
monitors distributed across the targets of interest.

Shared Non- L2 Cache Bridge to L3
L2 RAM shared
L2 RAM
Mon 2 Mon 2 Mon 2
Mon 1 Mon 1 Mon 1

b I I

Routing matrix

I |

Local Local
Monitor Monitor
CPU 1 CPU 2

Figure A2-4 Monitor-at-target approach

A2.9.1 Exclusive access instructions: non-shared memory

For memory regions that do not have the Shared TLB attribute, the exclusive-access instructions rely on the
ability to tag the fact that an exclusive load has been executed. Any non-aborted attempt by the processor
that executed the exclusive load to modify any address using an exclusive store is guaranteed to clear this

tag.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-45

Programmers’ Model

Note

In non-shared memory, it is UNPREDICTABLE whether a store to a tagged physical address will cause a tag
to be cleared when that store is by a processor other than the one that caused the physical address to be
tagged.

Load-Exclusive performs a load from memory, and causes the executing processor to tag the fact that it has
an outstanding tagged physical address to non-sharable memory; the monitor transitions state to Exclusive
Access.

Store-Exclusive performs a conditional store to memory, the store only taking place if the local monitor of
the executing processor is in the Exclusive Access state. A status value of Ob0 is returned to a register, and
the executing processor's monitor transitions to the Open Access state. If the store is prevented, a value of
Obl1 is returned in the instruction defined register.

A write to a physical address not covered by the local monitor by that processor using any instruction other
than a Store-Exclusive will not affect the state of the local monitor. It is IMPLEMENTATION DEFINED whether
a write (other than with a Store-Exclusive) to the physical address which is covered by the monitor will
affect the state of the local monitor.

If a processor performs a Store-Exclusive to any address in non-shared memory other than the last one from
which it has performed a Load-Exclusive, and the monitor is in the exclusive state, it is IMPLEMENTATION
DEFINED whether the store will succeed in this case. This mechanism is used on a context switch (see section
Context switch support on page A2-48). It should be treated as a software programming error in all other
cases.

The state machine for the associated data monitor is illustrated in Figure A2-5.

Tagged_address <= x[31:a] Tagged_address <= x[31:a]
STREX(x),
/ STR(x) LDREX(x) LDREX(x)
Rm <= 1'b1; L | | l
Do not update memory Open Access Exclusive [+—
Access [

Rm <= 1'b0; update memory <— STREX(Tagged_address) S TR(!Tagged_address)
(Rm <= 10 AND update memory}/ STREX(!Tagged_address) STR(Tagged_address)
OR

STR(Tagged_address)
(Rm <= 1’b1 AND do not update memory)

The arcs in italics show allowable alternative (IMPLEMENTATION DEFINED) options.
The Tagged_address value of ‘a’ is IMPLEMENTATION DEFINED to a value between 2 and 7 inclusive.

Figure A2-5 State diagram - local monitor

A2-46 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.9.2

Programmers’ Model

Note
The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed in a manner that it does not hold any physical address, but instead treats all accesses as matching
the address of the previous LDREX.

The behavior illustrated is for the local address monitor associated with the processor issuing the LDREX,
STREX and STR instructions. The transition from Exclusive Access to Open Access is UNPREDICTABLE when
the STR or STREX is from a different processor. Transactions from other processors need not be visible to this
monitor.

Exclusive access instructions: shared memory

For memory regions that have the Shared TLB attribute, the exclusive-access instructions rely on the ability
of a global monitor to tag a physical address as exclusive-access for a particular processor. This tag will later
be used to determine whether an exclusive store to that address should occur. Any non-aborted attempt to
modify that address by any processor is guaranteed to clear this tag.

A global monitor can reside in a processor block as illustrated in Figure A2-3 on page A2-45, or as a
secondary monitor at the memory interface, as shown in Figure A2-4 on page A2-45. The functionality of
the global and local monitors can be combined into a single monitor in implementations.

Load-Exclusive from shared memory performs a load from memory, and causes the physical address of the
access to be tagged as exclusive-access for the requesting processor. This also causes any other physical
address that has been tagged by the requesting processor to no longer be tagged as exclusive access; only a
single outstanding exclusive access to sharable memory per processor is supported.

Store-Exclusive performs a conditional store to memory. The store is only guaranteed to take place if the
physical address is tagged as exclusive-access for the requesting processor. If no address is tagged as
exclusive-access, the store will not succeed. If a different physical address is tagged as exclusive-access for
the requesting processor, it is IMPLEMENTATION DEFINED whether the store will succeed or not. A status
value of 0b0 is returned to a register to acknowledge a successful store, otherwise a value of Ob1 is returned.
In the case where the physical address is tagged as exclusive-access for the requesting processor, the state
of the exclusive monitor transitions to the Open Access state, and if the monitor was originally in the Open
Access state, it remains in this state. Otherwise, it is IMPLEMENTATION DEFINED whether the monitor
remains in the Exclusive Access state or transitions to the Open Access state.

Every processor (or independent DMA agent) in a shared memory system requires its own address monitor.
The state machine for the global address monitor associated with a processor (n) in a multiprocessing
environment interacts with all the memory accesses visible to it:

. transactions generated by the associated processor (n)

. transactions associated with other processors in the shared memory system (!n).

The behavior is illustrated in Figure A2-6 on page A2-48.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-47

Programmers’ Model

Rm <= 1'b1; _ . _ .
Do not upda{g memory - §¥§Fxxr8(n) Tagged_address <= x[31:a] Tagged_address <= x[31:a]

LDREX(x,!n), / /

STREX(x,!n),

STR(x,!n) LDREX(x,n) LDREX(x,n) (RmA7V=D1 b1
| l do not update memory)

Open Access Exglcuessl,\ée o (Rm <= 1'b0
AND

T | update memory)

(Rm <= 1°b0 AND update memory) STR(!Tagged_address,n),

STREX(Tagged_address,!n)*, STR(Tagged address.n
STR(Tagged_address,!n) STRl(Exgg'agﬁed_addreés,n),
) STREX(Tagged_address,n), STREX(Tagged_address,n),
(Rm <= 1'b1 AND do not update memory) . STREX(!Tagged_address,n), STR(!Tagged_address,!n),
OR STR(Tagged_address,n) STREX(ITagged_address,!n)

(Rm <= 1'b0 AND update memory) (Rm <= 1'b0
AND

* STREX(Tagged_Address,!n) only clears monitor if the STREX updates memory update memory)
The arcs in italics show allowable alternative (IMPLEMENTATION DEFINED) options.
The Tagged_address value of ‘a‘ is IMPLEMENTATION DEFINED to a value between 2 and 7 inclusive.

Figure A2-6 State diagram - global monitor

Note

Whether a STREX successfully updates memory or not is dependent on a tag address match with its associated
global monitor, hence the (!n) entries are only shown with respect to how they influence state transitions of
the state machine. Similarly, an LDREX can only update the tag of its associated global monitor.

A2.9.3 Context switch support

On a context switch, it is necessary to ensure that the local monitor is in the Open Access state after a context
switch. This requires execution of a dummy STREX to an address in memory allocated for this purpose.

For reasons of performance, it is recommended that the store-exclusive instruction be within a few
instructions of the load-exclusive instruction. This minimizes the opportunity for context switch overhead
or multiprocessor access conflicts causing an exclusive store to fail, and requiring the load/store sequence
to be replayed.

A2-48 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.9.4 Summary of operation

The following pseudo-functions can be used to describe the exclusive access operations:

TLB(<Rm>)

Shared(<Rm>)

ExecutingProcessor()
MarkExclusiveGlobal(<physical_address>,<processor_id>,<size>)
MarkExclusiveLocal(<physical address>,<processor_id>,size>)
IsExclusiveGlobal(<physical_address>,<processor_id>,<size>)
IsExclusiveLocal(<physical_address>,<processor_id>,<size>)
ClearExclusiveByAddress(<physical_address>,<processor_id>,<size>)
ClearExclusiveLocal(<processor_id>).

If CP15 register 1 bit[0] (Mbit) is set, TLB(<Rm>) returns the physical address corresponding to the
virtual address in Rm for the executing processor's current process ID and TLB entries. If Mbit is not
set, or the system does not implement a virtual to physical translation, it returns the value in Rm.

If CP15 register 1 bit[0] (Mbit) is set, Shared(<Rm>) returns the value of the shared memory region
attribute corresponding to the virtual address in Rm for the executing processor's current process ID
and TLB entries for the VMSA, or the PMSA region descriptors. If Mbit is not set, the value returned
is a function of the memory system behavior (see Chapter B4 Virtual Memory System Architecture
and Chapter BS Protected Memory System Architecture).

ExecutingProcessor() returns a value distinct amongst all processors in a given system,
corresponding to the processor executing the operation.

MarkExclusiveGlobal(<physical_address>,<processor_id>,<size>) records the fact that processor
<processor_id> has requested exclusive access covering at least <size> bytes from address
<physical_address>. The size of region marked as exclusive is IMPLEMENTATION DEFINED, up to a
limit of 128 bytes, and no smaller than <size>, and aligned in the address space to the size of the
region. It is UNPREDICTABLE whether this causes any previous request for exclusive access to any
other address by the same processor to be cleared.

MarkExclusiveLocal(<physical_address>,<processor_id>,<size>) records in a local record the fact
that processor <processor_id> has requested exclusive access to an address covering at least <size>
bytes from address <physical_address>. The size of the region marked as exclusive is
IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory, but is no smaller than
<size>, and is aligned in the address space to the size of the region. It is IMPLEMENTATION DEFINED
whether this also performs a MarkExclusiveGlobal(<physical_address>,<processor_id>,<size>).

IsExclusiveGlobal(<physical_address>,<processor_id>,<size>) returns TRUE if the processor
<processor_id> has marked in a global record an address range as exclusive access requested which
covers at least the <size> bytes from address <physical_address>. It is IMPLEMENTATION DEFINED
whether it returns TRUE or FALSE if a global record has marked a different address as exclusive
access requested. If no address is marked in a global record as exclusive access,
IsExclusiveGlobal(<physical_address>,<processor_id>,<size>) will return FALSE.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-49

Programmers’ Model

7. IsExclusiveLocal(<physical_address>,<processor_id>,<size>) returns TRUE if the processor
<processor_id> has marked an address range as exclusive access requested which covers at least the
<size> bytes from address <physical_address>. It is IMPLEMENTATION DEFINED whether this function
returns TRUE or FALSE if the address marked as exclusive access requested does not cover all of the
<size> bytes from address <physical_address>. If no address is marked as exclusive access requested,
then this function returns FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with
the result of an IsExclusiveGlobal(<physical_address>,<processor_id>,<size>).

8. ClearExclusiveByAddress(<physical_address>,<processor_id>,<size>) clears the global records of
all processors, other than <processor_id>, that an address region including any of the bytes between
<physical_address> and (<physical_address>+<size>-1) has had a request for an exclusive access.

It is IMPLEMENTATION DEFINED whether the equivalent global record of the processor <processor_id>
is also cleared if any of the bytes between <physical_address> and (<physical_address>+<size>-1)
have had a request for an exclusive access, or if any other address has had a request for an exclusive
access.

9. ClearExclusiveLocal(<processor_id>) clears the local record of processor <processor_id> that an
address has had a request for an exclusive access. It is IMPLEMENTATION DEFINED whether this
operation also clears the global record of processor <processor_id> that an address has had a request
for an exclusive access.

For the purpose of this definition, a processor is defined as a system component, including virtual system
components, which is capable of generating memory transactions. The processor_id is defined as a unique
identifier for a processor.

Effects on other store operations
All executed store operations gain the following functional behavior to their pseudo-code operation:
processor_id = ExecutingProcessor()
if Shared(address) then /« from ARMv6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,size)
Load and store operation

The exclusive accesses can be described in terms of their register file usage:

o Rd: the destination register, for data on loads, status on stores
. Rm: the source data register for stores
. Rn: the memory address register for loads and stores.

A2-50 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A pseudo-code representation is as follows.
LDREX operation:

if ConditionPassed (cond) then
processor_id = ExecutingProcessor()
Rd = Memory[Rn,4]
physical_address = TLB(Rn)
if Shared(Rn) == 1 then
MarkExcTusiveGlobal(physical_address,processor_id,4)
MarkExcTusivelLocal(physical_address,processor_id,4)

STREX operation:

if ConditionPassed(cond) then
processor_id = ExecutingProcessor()
physical_address = TLB(Rn)
if IsExclusivelocal(physical_address,processor_id,4) then
if Shared(Rn) == 1 then
if IsExclusiveGlobal(physical_address,processor_id,4) then
Memory[Rn,4] = Rm

Rd =0
ClearExclusiveByAddress(physical_address,processor_id,4)
else
Rd =1
else
Memory[Rn,4] =Rm
Rd =0
else
Rd =1

ClearExclusivelocal(processor_id)

Note

The behavior of STREX in regions of shared memory that do not support exclusives (for example, have no
exclusives monitor implemented) is UNPREDICTABLE.

For a complete definition of the instruction behavior see LDREX on page A4-52 and STREX on
page A4-202.

Usage restrictions

The LDREX and STREX instructions are designed to work in tandem. In order to support a number of different
implementations of these functions, the following notes and restrictions must be followed:

1. The exclusives are designed to support a single outstanding exclusive access for each processor
thread that is executed. The architecture makes use of this by not mandating an address or size check
as part of the IsExclusiveLocal() function. If the target address of an STREX is different from the
preceding LDREX within the same execution thread, it can lead to UNPREDICTABLE behavior. As a
result, an LDREX/STREX pair can only be relied upon to eventually succeed if they are executed with the
same address. Where a context switch or exception might result in a change of execution thread, a

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-51

Programmers’ Model

dummy STREX instruction, as described in Context switch support on page A2-48 should be executed
to avoid unwanted effects. This is the only occasion where an STREX is expected to be programmed
with a different address from the previously executed LDREX.

2. An explicit store to memory can cause the clearing of exclusive monitors associated with other
processors, therefore, performing a store between the LDREX and the STREX can result in livelock
situations. As a result, code should avoid placing an explicit store between an LDREX and an STREX
within a single code sequence.

3. Two STREX instructions executed without an intervening LDREX will also result in the second STREX
returning FALSE. As a result, it is expected that each STREX should have a preceding LDREX associated
with it within a given thread of execution, but it is not necessary that each LDREX must have a
subsequent STREX.

4. Implementations can cause apparently spurious clearing of the exclusive monitor between the LDREX
and the STREX, as a result of, for example, cache evictions. Code designed to run on such
implementations should avoid having any explicit memory transactions or cache maintenance
operations between the LDREX and STREX instructions.

5. Implementations can benefit from keeping the LDREX and STREX operations close together in a single
code sequence. This reduces the likelihood of spurious clearing of the exclusive monitor state
occurring, and as a result, a limit of 128 bytes between LDREX and STREX instructions in a single code
sequence is strongly recommended for best performance.

6. Implementations which implement coherent protocols, or have only a single master, may combine
the local and global monitors for a given processor. The IMPLEMENTATION DEFINED and
UNPREDICTABLE parts of the definitions in Summary of operation on page A2-49. are designed to
cover this behavior.

7. The architecture sets an upper limit of 128 bytes on the regions that may be marked as exclusive.
Therefore, for performance reasons, software is recommended to separate objects that will be
accessed by exclusive accesses by at least 128 bytes. This is a performance guideline rather than a
functional requirement

8. LDREX and STREX operations shall only be performed on memory supporting the Normal memory
attribute.
9. The effect of data aborts are UNPREDICTABLE on the state of monitors. It is recommended that abort

handling code performs a dummy STREX instruction to clear down the monitor state.

A2-52 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.10

A2.10.1

Programmers’ Model

The Jazelle Extension

The Jazelle Extension was first introduced in ARMvVSTEJ, a variant of ARMVS, and is a mandated feature
in ARMv6. The Jazelle Extension enables architectural support for hardware acceleration of opcode
execution by Java Virtual Machines (JVMs). It is designed in such a way that JVMs can be written to
automatically take advantage of any accelerated opcode execution supplied by the processor, without
relying upon it being present. In the simplest implementations, the processor does not accelerate the
execution of any opcodes, and all opcodes are executed by software routines. This is known as a trivial
implementation of the Jazelle Extension, and has minimal costs compared with not implementing the Jazelle
Extension at all. Non-trivial implementations of the Jazelle Extension will typically implement a subset of
the opcodes in hardware, choosing opcodes that can have simple hardware implementations and that
account for a large percentage of Jazelle execution time.

The required features of a non-trivial implementation are:
o provision of an additional state bit (the J bit) in the CPSR and each SPSR

o a new instruction to enter Jazelle state (BXJ)

. extension of the PC to support full 32-bit byte addressing

. changes to the exception model

. mechanisms to allow a JVM to configure the Jazelle Extension hardware to its specific needs
. mechanisms to allow OSes to regulate use of the Jazelle Extension hardware.

The required features of a trivial implementation are:

. Only ARM and Thumb execution states shall exist. The J bit may always read and write as zero.
Should the J bit update to one, execution of the following instruction is UNDEFINED.

o The BXJ instruction shall behave as a BX instruction.
. Configuration support that maintains the interface as permanently disabled.

A JVM that has been written to automatically take advantage of hardware-accelerated opcode execution is
known as an Enabled JVM (EJVM).

Subarchitectures

ARM implementations that include the Jazelle Extension expect the ARM processor’s general-purpose
registers and other resources to obey a calling convention when Jazelle state execution is entered and exited.
For example, a specific general-purpose register may be reserved for use as the pointer to the current opcode.
In order for an EJVM or associated debug support to function correctly, it must be written to comply with
the calling convention expected by the acceleration hardware at Jazelle state execution entry and exit points.

The calling convention is relied upon by an EJVM, but not in general by other system software. This limits
the cost of changing the convention to the point that it can be considered worthwhile to change it if a
sufficient technical advantage is obtained by doing so, such as a significant performance improvement in
opcode execution.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-53

Programmers’ Model

A2.10.2

Multiple conventions are known collectively as the subarchitecture of the implementation. They are not
described in this document, and must only be relied upon by EJVM implementations and debug/similar
software as described above. All other software must only rely upon the general architectural definition of
the Jazelle Extension described in this section. A particular subarchitecture is identified by reading the
Jazelle ID register described in Jazelle ID register on page A2-62.

Jazelle state

The Jazelle Extension makes use of an extra state bit (J) in the processor status registers (the CPSR and the
banked SPSRs). This is bit[24] of the registers concerned:

31 30 29 28 27 26 25 24 23 20 19 16 15 109 8 7 6 5 4 0

N|[Z|C|V|Q|Rsrvd| J | RESERVED | GEJ[3:0] RESERVED E|A|I|F|T Mode

The other bit fields are described in Program status registers on page A2-11.

Note

The placement of the J bit in the flags byte was to avoid any usage of the status or extension bytes in code
run on ARMVSTE or earlier processors. This ensures that OS code written using the deprecated CPSR,
SPSR, CPSR_all or, SPSR_all syntax for the destination of an MSR instruction only ceases to work when
features introduced in ARMv6 are used, namely the E, A and GE bit fields.

In addition, J is always O at times that an MSR instruction is executed. This ensures there are no unexpected
side-effects of existing instructions such as MSR CPSR_f, #0xF0000000, that are used to put the flags into a
known state.

The J bit is used in conjunction with the T bit to determine the execution state of the processor, as shown in
Table A2-11.

Table A2-11
J T Execution state
0 0 ARM state, executing 32-bit ARM instructions
0 1 Thumb state, executing 16-bit Thumb instructions
1 0 Jazelle state, executing variable-length Jazelle opcodes
1 1 UNDEFINED, and reserved for future expansion
The J bit is treated similarly to the T bit in the following respects:
. On exception entry, both bits are copied from the CPSR to the exception mode’s SPSR, and then

cleared in the CPSR to put the processor into the ARM state.

A2-54

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

. Data processing instructions with Rd = R15 and the S bit set cause these bits to be copied from the
SPSR to the CPSR and execution to resume in the resulting state. This ensures that these instructions
have their normal exception return functionality.

Such exception returns are expected to use the SPSR and R14 values generated by a processor
exception entry and to use the appropriate return instruction for the exception concerned, as described
in Exceptions on page A2-16. If return values are used with J == 1 and T == 0 in the SPSR value,
then the results are SUBARCHITECTURE DEFINED.

. Similarly, LDM instructions with the PC in the register list and ” specified (that is, LDM (3) instructions,
as described in LDM (3) on page A4-40) cause both bits to be copied from the SPSR to the CPSR and
execution to resume in the resulting state. These instructions are also used for exception returns, and
the considerations in the previous bullet point also apply to them.

. In privileged modes, execution of an MSR instruction that attempts to set the J or T bit of the CPSR to
1 has UNPREDICTABLE results.

. In unprivileged (User) mode, execution of an MSR instruction that attempts to set the J or T bit of the
CPSR to 1 will not modify the bit.

. Setting J == 1 and T == 1 causes similar effects to setting T == 1 on a non Thumb-aware processor.
That is, the next instruction executed will cause entry to the Undefined Instruction exception. Entry
to the exception handler will cause the processor to re-enter ARM state, and the handler can detect
that this was the cause of the exception because J and T are both set in SPSR_und.

While in Jazelle state, the processor executes opcode programs. An opcode program is defined to be an
executable object comprising one or more class files, as defined in Lindholm and Yellin, The Java Virtual
Machine Specification 2nd Edition, or derived from and functionally equivalent to one or more class files.
While in Jazelle state, the PC acts as a program counter which identifies the next JVM opcode to be
executed, where JVM opcodes are the opcodes defined in Lindholm and Yellin, or a functionally equivalent
transformed version of them.

Native methods, as described in Lindholm and Yellin, for the Jazelle Extension must use only the ARM
and/or Thumb instruction sets to specify their functionality.

An implementation of the Jazelle Extension must not be documented or promoted as performing any task
while it is in Jazelle state other than the acceleration of opcode programs in accordance with this section and
Lindholm and Yellin.

Extension of the PC to 32 bits

In order to allow the PC to point to an arbitrary opcode, all 32 bits of the PC are defined in non-trivial
implementations. Bit[0] of the PC always reads as zero when in ARM or Thumb state. Bit[1] reflects the
word-alignment, or halfword-alignment of ARM and Thumb instructions respectively. The existence of
bit[0] in the PC is only visible in ARM or Thumb state due to an exception occurring in Jazelle state, and
the exception return address is odd-byte aligned.

The main architectural implication of this is that exception handlers must ensure that they restore all 32 bits
of R15. The recommended ways to handle exception returns behave correctly.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-55

Programmers’ Model

A2.10.3 New Jazelle state entry instruction (BXJ)

An ARM instruction similar to BX is added. The BXJ instruction has a single register operand that specifies
a target execution state (ARM or Thumb) and branch target address for use if entry to Jazelle state is not
available. See BXJ on page A4-21 for more details.

Compliant Java execution involves the EJVM using the BXJ instruction, the usage model of the standard
ARM registers, and the Jazelle Extension Control and Configuration registers described in Configuration
and control on page A2-62.

Executing BXJ with Jazelle Extension enabled

Executing a BXJ instruction when the JE bit is 1 gives the Jazelle Extension hardware an opportunity to enter
Jazelle state and start executing opcodes directly. The circumstances in which Jazelle state execution is
entered are IMPLEMENTATION DEFINED. If Jazelle state execution is not entered, the instruction is executed
in the same way as a BX instruction to a SUBARCHITECTURE DEFINED register usage model. This is required
to ensure the Jazelle Extension hardware and the EJVM software communicate effectively with each other.
Similarly, various registers will contain SUBARCHITECTURE DEFINED values when Jazelle state execution is
terminated and ARM or Thumb state execution is resumed. The precise set of registers affected by these
requirements is a SUBARCHITECTURE DEFINED subset of the process registers, which are defined to be:

. the ARM general-purpose registers RO-R14

. the PC

. the CPSR

. the VFP general-purpose registers SO-S31 and D0-D15, subject to the VFP architecture’s restrictions
on their use and subject to the VFP architecture being present

. the FPSCR, subject to the VFP architecture being present.

All processor state that can be modified by Jazelle state execution must be kept in process registers, in order
to ensure that it is preserved and restored correctly when processor exceptions and process swaps occur.
Configuration state (that is, state that affects Jazelle state execution but is not modified by it) can be kept
either in process registers or in configuration registers.

EJVM implementations should only set JE == 1 after determining that the processor’s Jazelle Extension
subarchitecture is compatible with their usage of the process registers. Otherwise, they should leave JE ==
0 and execute without hardware acceleration.

Executing BXJ with Jazelle Extension disabled

If a BXJ instruction is executed when the JE bit is 0, it is executed identically to a BX instruction with the same
register operand.

BXJ instructions can therefore be freely executed when the JE bit is 0. In particular, if an EJVM determines
that it is executing on a processor whose Jazelle Extension implementation is trivial or uses an incompatible
subarchitecture, it can set JE == 0 and execute correctly, without the benefit of any Jazelle hardware
acceleration that may be present.

A2-56

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Jazelle state exit

The processor exits Jazelle state in IMPLEMENTATION DEFINED circumstances. This is typically due to
attempted execution of an opcode that the implementation cannot handle in hardware, or that generates a
Jazelle exception (such as a Null-Pointer exception). When this occurs, various processor registers will
contain SUBARCHITECTURE DEFINED values, allowing the EJTVM to resume software execution of the opcode
program correctly.

The processor also exits Jazelle state when a processor exception occurs. The CPSR is copied to the
exception mode’s banked SPSR as normal, so the banked SPSR contains J == 1 and T == 0, and Jazelle state
is restored on return from the exception when the SPSR is copied back into the CPSR. Coupled with the
restriction that only process registers can be modified by Jazelle state execution, this ensures that all
registers are correctly preserved and restored by processor exception handlers. Configuration and control
registers may be modified in the exception handler itself as described in Configuration and control on
page A2-62.

Considerations specific to execution of opcodes apply to processor exceptions. For details of these, see
Jazelle Extension exception handling on page A2-58.

It is IMPLEMENTATION DEFINED whether Jazelle Extension hardware contains state that is modified during
Jazelle state execution, and is held outside the process registers during Jazelle state execution. If such state
exists, the implementation shall:

. Initialize the state from one or more of the process registers whenever Jazelle state is entered, either
as a result of execution of a BXJ instruction or of returning from a processor exception.

. Write the state into one or more of the process registers whenever Jazelle state is exited, either as a
result of taking a processor exception or of IMPLEMENTATION DEFINED circumstances.

. Ensure that the ways in which it is written into process registers on taking a processor exception, and
initialized from process registers on returning from that exception, result in it being correctly
preserved and restored over the exception.

Additional Jazelle state restrictions

The Jazelle Extension hardware shall obey the following restrictions:

. It must not change processor mode other than by taking one of the standard ARM processor
exceptions.
. It must not access banked versions of registers other than the ones belonging to the processor mode

in which it is entered.

. It must not do anything that is illegal for an UNPREDICTABLE instruction. That is, it must not generate
a security loophole, nor halt or hang the processor or any other part of the system.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-57

Programmers’ Model

A2.10.4

As aresult of these requirements, Jazelle state can be entered from User mode without risking a breach of
OS security. In addition:

. Entering Jazelle state from FIQ mode has UNPREDICTABLE results.

. Jazelle Extension subarchitectures and implementations must not make use of otherwise-unallocated
CPSR and SPSR bits. All such bits are reserved for future expansion of the ARM and Thumb
architectures.

Jazelle Extension exception handling

All exceptions copy the J bit from the CPSR to the SPSR, and all instructions that have the side-effect of
copying the SPSR to the CPSR must copy the J bit along with all the other bits.

When an exception occurs in Jazelle state, the R14 register for the exception mode is calculated as follows:
IRQ/FIQ Address of opcode to be executed on return from interrupt + 4.

Prefetch Abort Address of the opcode causing the abort + 4.

Data Abort Address of the opcode causing the abort + 8.

Undefined instruction

Must not occur. See Undefined Instruction exceptions on page A2-60.

SWI Must not occur. See SWI exceptions on page A2-60.

Interrupts (IRQ and FIQ)

In order for the standard mechanism for handling interrupts to work correctly, Jazelle Exception hardware
implementations must take care that whenever an interrupt is allowed to occur during Jazelle state execution,
one of the following occurs:

. Execution has reached an opcode instruction boundary. That is, all operations required to implement
one opcode have completed, and none of the operations required to implement the next opcode have
completed. The R14 value on entry to the interrupt handler must be the address of the next opcode,
plus 4.

. The sequence of operations performed from the start of the current opcode’s execution up to any point
where an interrupt can occur is idempotent: that is, it can be repeated from its start without changing
the overall result of executing the opcode. The R14 value on entry to the interrupt handler must be
the address of the current opcode, plus 4.

. If an interrupt does occur during an opcode’s execution, corrective action is taken either directly by
the Jazelle Extension hardware or indirectly by it calling a SUBARCHITECTURE DEFINED handler in the
EJVM, and that corrective action re-creates a situation in which the opcode can be re-executed from
its start. The R14 value on entry to the interrupt handler must be the address of the opcode, plus 4.

A2-58

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

Data aborts

The value saved in R14_abt on a data abort shall ensure that a virtual memory data abort handler can read
the system coprocessor (CP15) Fault Status and Fault Address registers, fix the reason for the abort and
return using SUBS PC,R14,#8 or its equivalent, without looking at the instruction that caused the abort or
which state it was executed in.

Note

This assumes that the intention is to return to and retry the opcode that caused the data abort. If the intention
is instead to return to the opcode after the one that caused the abort, then the return address will need to be
modified by the length of the opcode that caused the abort.

In order for the standard mechanism for handling data aborts to work correctly, Jazelle Exception hardware
implementations must ensure that one of the following applies where an opcode might generate a data abort:

. The sequence of operations performed from the start of the opcode’s execution up to the point where
the data abort occurs is idempotent. That is, it can be repeated from its start without changing the
overall result of executing the opcode.

. If the data abort occurs during opcode execution, corrective action is taken either directly by the
Jazelle Extension hardware or indirectly by it calling a SUBARCHITECTURE DEFINED handler in the
EJVM, and that corrective action re-creates a situation in which the opcode can be re-executed from
its start.

Note

In ARMV6, the Base Updated Abort Model is no longer allowed (see Abort models on page A2-23). This
removes one potential obstacle to the first of these solutions.

Prefetch aborts

The value saved in R14_abt on a prefetch abort shall ensure that a virtual memory prefetch abort handler
can locate the start of the instruction that caused the abort simply and without looking at the state in which
its execution was attempted. It is always at address (R14_abt — 4).

However, a multi-byte opcode may cross a page boundary, in which case the ARM processor’s prefetch
abort handler cannot determine directly which of the two pages caused the abort. It is SUBARCHITECTURE
DEFINED how this situation is handled, subject to the requirement that if it is handled by calling the ARM
processor’s prefetch abort handler, (R14_abt — 4) must point to the first byte of the opcode concerned.

In order to ensure subarchitecture-independence, OS designers should write prefetch abort handlers in such
a way that they can handle a prefetch abort generated in either of the two pages spanned by such a opcode.
A suggested simple technique is:

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-59

Programmers’ Model

IF the page pointed to by (Rl14_abt - 4) is not mapped

THEN map the page

ELSE map the page following the page including (R14_abt - 4)
ENDIF
retry the instruction

SWI exceptions
SWI exceptions must not occur during Jazelle state execution, for the following reasons:

. ARM and Thumb state SW1Is are supported in the ARM architecture. Opcode SWIs are not
supported, due to the additional complexity they would introduce in the SWI usage model.

. Jazelle Extension subarchitectures and implementations need to have a mechanism to return to ARM
or Thumb state handlers in order to execute the more complex opcode. If a opcode needs to make an
OS call, it can make use of this mechanism to cause an ARM or Thumb SWI instruction to be executed,
with a small overhead in percentage terms compared with the cost of the OS call itself.

. SWI calling conventions are highly OS-dependent, and would potentially require the subarchitecture
to be OS aware.

Undefined Instruction exceptions
Undefined Instruction exceptions must not occur during Jazelle state execution.

When the Jazelle Extension hardware synthesizes a coprocessor instruction and passes it to a hardware
coprocessor (most likely, a VFP coprocessor), and the coprocessor rejects the instruction, there are
considerable complications involved if this was allowed to result in the ARM processor’s Undefined
Instruction trap. These include:

. The coprocessor instruction is not available to be loaded from memory (something that is relied upon
by most Undefined Instruction handlers).

. The coprocessor instruction cannot typically be determined from the opcode that is loadable from
memory without considerable knowledge of implementation and subarchitecture details of the
Jazelle Extension hardware.

. The coprocessor-generated Undefined Instruction exceptions (and VFP-generated ones in particular)
can typically be either precise (that is, caused by the instruction at (R14_und —4)) or imprecise (that
is, caused by a pending exceptional condition generated by some earlier instruction and nothing to do
with the instruction at (R14_und — 4)).

Precise Undefined Instruction exceptions typically must be handled by emulating the instruction at
(R14_und - 4), followed by returning to the instruction that follows it. Imprecise Undefined
Instruction exceptions typically need to be handled by getting details of the exceptional condition
and/or the earlier instruction from the coprocessor, fixing things up in some way, and then returning
to the instruction at (R14_und — 4).

This means that there are two different possible return addresses, not necessarily at a fixed offset from
each other as they are when dealing with coprocessor instructions in memory, making it difficult to
define the value R14_und should have on entry to the Undefined Instruction handler.

A2-60 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

. The return address for the Undefined Instruction handler places idempotency requirements and/or
completion requirements (that is, that once the coprocessor operation has been completed, everything
necessary for execution of the opcode has been done) on the sequences of operations performed by
the Jazelle Extension hardware.

The restrictions require cooperation and limit the design freedom for both the Jazelle acceleration and
coprocessor designers.

To avoid the need for undefined exceptions, the following coprocessor interworking model for Jazelle
Extension hardware applies.

Coprocessor Interworking

If while executing in Jazelle state, the Jazelle Extension hardware synthesizes a coprocessor instruction and
passes it to a hardware coprocessor for execution, then it must be prepared for the coprocessor to reject the
instruction. If a coprocessor rejects an instruction issued by Jazelle Extension hardware, the Jazelle
Extension hardware and coprocessor must cooperate to:

. Prevent the Undefined Instruction exception that would occur if the coprocessor had rejected a
coprocessor instruction in ARM state from occurring.

. Take suitable SUBARCHITECTURE DEFINED corrective action, probably involving exiting Jazelle state,
and executing a suitable ARM code handler that contains further coprocessor instructions.

To ensure that this is a practical technique and does not result in inadequate or excessive handling of
coprocessor instruction rejections, coprocessors designed for use with the Jazelle Extension must:

. When there is an exceptional condition generated by an earlier instruction, the coprocessor shall keep
track of that exceptional condition and keep trying to cause an imprecise Undefined Instruction
exception whenever an attempt is made to execute one of its coprocessor instructions until the
exceptional condition is cleared by its Undefined Instruction handler.

. When it tries to cause a precise Undefined Instruction exception, for reasons to do with the
coprocessor instruction it is currently being asked to execute, the coprocessor shall act in a
memoryless way. That is, if it is subsequently asked to execute a different coprocessor instruction, it
must ignore the instruction it first tried to reject precisely and instead determine whether the new
instruction needs to be rejected precisely.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-61

Programmers’ Model

A2.10.5 Configuration and control

All registers associated with the Jazelle Extension are implemented in coprocessor space as part of
coprocessor fourteen (CP14). The registers are accessed using the MCR (MCR on page A4-62) and MRC (MRC
on page A4-70) instructions.

The general instruction formats for Jazelle Extension control and configuration are as follows:

MCR{<cond>} pl4, 7, <Rd>, CRn, CRm{, opcode_2}=
MRC{<cond>} pl4, 7, <Rd>, CRn, CRm{, opcode_2}=

*opcode_2 can be omitted if opcode_2 ==
The following rules apply to the Jazelle Extension control and configuration registers:

. All SUBARCHITECTURE DEFINED configuration registers are accessed by coprocessor 14 MRC and MCR
instructions with <opcode_1> set to 7.

. The values contained by configuration registers are only changed by the execution of MCR instructions,
and in particular are not changed by Jazelle state execution of opcodes.

. The access policy for the required registers is fully defined in their descriptions. All MCR accesses to
the Jazelle ID register, and MRC or MCR accesses which are restricted to privileged modes only are
UNDEFINED if executed in User mode.

The access policy of other configuration registers is SUBARCHITECTURE DEFINED.

. When a configuration register is readable, the result of reading it will be the last value written to it,
with no side-effects. When a configuration register is not readable, the result of attempting to read it
is UNPREDICTABLE.

. When a configuration register can be written, the effect must be idempotent. That is, the overall effect
of writing the value more than once must not differ from the effect of writing it once.

A minimum of three registers are required in a non-trivial implementation. Additional registers may be
provided and are SUBARCHITECTURE DEFINED.

Jazelle ID register

The Jazelle Identity register allows EJVMs to determine the architecture and subarchitecture under which
they are running. This is a coprocessor 14 read-only register, accessed by the MRC instruction:

MRC{<cond>} pl4, 7, <Rd>, c@, c@ {, 0} ;<Rd>:= Jazelle Identity register

The Jazelle ID register is normally accessible from both privileged and User modes. See Operating System
(OS) control register on page A2-64 for User mode access restrictions.

A2-62 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

The format of the Jazelle Identity register is:

31 28 27 20 19 12 11 0

Architecture Implementor Subarchitecture SUBARCHITECTURE DEFINED

Bits[31:28] Contain an architecture code. This uses the same architecture code that appears in the Main
ID register in coprocessor 15

Bits[27:20] Contain the implementor code of the designer of the subarchitecture. This uses the same
implementor code that appears in the Main ID register in coprocessor 15, as documented in
Main ID register on page B3-7.

As a special case, if the trivial implementation of the Jazelle Extension is used, this
implementor code is 0x00.

Bits[19:12] Contain the subarchitecture code. The following subarchitecture code is defined:

0x00 = Jazelle V1 subarchitecture, or trivial implementation of Jazelle Extension if
implementor code is 0x00.

Bits[11:0] Contain further SUBARCHITECTURE DEFINED information.

Main configuration register

A Main Configuration register is added to control the Jazelle Extension. This is a coprocessor 14 register,
accessed by MRC and MCR instructions as follows:

MRC{<cond>} pl4, 7, <Rd>, c2, c@ {, 0} ; <Rd> := Main Configuration
; register
MCR{<cond>} pl4, 7, <Rd>, c2, c0 {, 0} ; Main Configuration

register := <Rd>

This register is normally write-only from User mode. See Operating System (OS) control register on
page A2-64 for additional User mode access restrictions.

The format of the Main Configuration register is:

31 10
SUBARCHITECTURE DEFINED JE

Bit[31:1] SUBARCHITECTURE DEFINED information.

Bit[0] The Jazelle Enable (JE) bit, which is cleared to O on reset.

‘When the JE bit is 0, the Jazelle Extension is disabled and the BX] instruction does not cause
Jazelle state execution — instead, BXJ behaves exactly as a BX instruction. See BXJ on
page A4-21.

When the JE bit is 1, the Jazelle Extension is enabled.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-63

Programmers’ Model

Operating System (OS) control register

The Jazelle OS Control register provides the operating system with process usage control of the Jazelle
Extension. This is a coprocessor 14 register, accessed by MRC and MCR instructions as follows:

MRC{<cond>} pl4, 7, <Rd>, c1, c@ {, 0} ; <Rd> := Jazelle 0S
; Control register
MCR{<cond>} pl4, 7, <Rd>, c1, c0 {, 0} ; Jazelle 0S Control

; register := <Rd>

This register can only be accessed from privileged modes; these instructions are UNDEFINED when executed
in User mode. EJVMs will normally never access the Jazelle OS Control register, and EJVMs that are
intended to run in User mode cannot do so.

The purpose of the Jazelle OS Control register is primarily to allow operating systems to control access to
the Jazelle Extension hardware in a subarchitecture-independent fashion. It is expected to be used in
conjunction with the JE bit of the Main Configuration register.

The format of the Jazelle OS Control register is:

31 2 1 0
c|C

RESERVED (RAZ) vID
Bits[31:2] Reserved for future expansion. Prior to such expansion, they must read as zero. To maximize

future compatibility, software should preserve their contents, using a read modify write
method to update the other control bits.

CV Bit[1] The Configuration Valid bit, which can be used by an operating system to signal to an EJVM
that it needs to re-write its configuration to the configuration registers. When CV == 0,
re-writing of the configuration registers is required before an opcode is next executed. When
CV == 1, no re-writing of the configuration registers is required, other than re-writing that
is certain to occur before an opcode is next executed.

CD Bit[0] The Configuration Disabled bit, which can be used by an operating system to monitor and/or
control User mode access to the configuration registers and the Jazelle Identity register.
When CD == 0, MCR instructions that write to configuration registers and MRC instructions that
read the Jazelle Identity register execute normally. When CD == 1, all of these instructions
only behave normally when executed in a privileged mode, and are UNDEFINED when
executed in User mode.

When the JE bit of the Main Configuration register is 0, the Jazelle OS Control register has no effect on how
BXJ instructions are executed. They always execute as a BX instruction.

When the JE bit of the Main Configuration register is 1, the CV bit affects BXJ instructions as follows:

o If CV == 1, the Jazelle Extension hardware configuration is considered enabled and valid, allowing
the processor to enter Jazelle state and execute opcodes as described in Executing BXJ with Jazelle
Extension enabled on page A2-56.

A2-64

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

. If CV ==0, then in all of the IMPLEMENTATION DEFINED circumstances in which the Jazelle Extension
hardware would have entered Jazelle state if CV had been 1, it instead enters a configuration invalid
handler and sets CV to 1. A configuration invalid handler is a sequence of ARM instructions that
includes MCR instructions to write the configuration required by the EJVM, ending with a BXJ
instruction to re-attempt execution of the opcode concerned. The method by which the configuration
invalid handler’s address is determined and its entry and exit conditions are all SUBARCHITECTURE
DEFINED.

In circumstances in which the Jazelle Extension hardware would not have entered Jazelle state if CV
had been 1, it is IMPLEMENTATION DEFINED whether the configuration invalid handler is entered as
described in the last paragraph, or the BXJ instruction is treated as a BX instruction with possible
SUBARCHITECTURE DEFINED restrictions.

The intended use of the CV bit is that when a process swap occurs, the operating system sets CV to 0. The
result is that before the new process can execute an opcode in the Jazelle Extension hardware, it must
execute its configuration invalid handler. This ensures that the Jazelle Extension hardware’s configuration
registers are correctly for the ETVM concerned. The CV bit is set to 1 on entry to the configuration invalid
handler, allowing the opcode to be executed in hardware when the invalid configuration handler re-attempts
its execution.

Note

It may seem counterintuitive that the CV bit is set to 1 on entry to the configuration invalid handler, rather
than after it has completed writing the configuration registers. This is correct, otherwise, the configuration
invalid handler may partially configure the hardware before a process swap occurs, causing another
EJVM-using process to write its configuration to the hardware.

When the original process is resumed, CV will have been cleared (CV == 0) by the operating system. If the
handler writes its configuration to the hardware and then sets CV to 1 in this example, the opcode will be
executed with the hardware configured for a hybrid of the two configurations.

By setting CV to 1 on entry to the configuration invalid handler, this means that CV is 0 when execution of
the opcode is re-attempted, and the configuration invalid handler will execute again (and if necessary,
recursively) until it finally completes execution without a process swap occurring.

The CD bit has multiple possible uses for monitoring and controlling User mode access to the Jazelle
Extension hardware. Among them are:

. By setting CD == 1 and JE == 0, an OS can prevent all User mode access to the Jazelle Extension
hardware: any attempt to use the BXJ instruction will produce the same result as a BX instruction, and
any attempt to configure the hardware (including setting the JE bit) will result in an Undefined
Instruction exception.

. To provide User mode access to the Jazelle Extension hardware in a simple manner, while protecting
EJVMs from conflicting use of the hardware by other processes, the OS should set CD == 0 and
should preserve and restore the Main Configuration register on process swaps, initializing its value
to 0 for new processes. In addition, it should set the CV bit to 0 on every process swap, to ensure that
EJVMs reconfigure the Jazelle Extension hardware to match their requirements when necessary.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-65

Programmers’ Model

. The technique described in the previous bullet point may result in large numbers of unnecessary
reconfigurations of the Jazelle Extension hardware if only a few processes are using the hardware.
This can be improved by the OS keeping track of which User mode processes are known to be using
an EJVM.

The OS should set CD == 1 and JE == 0 for any new processes or on a context switch to an existing
process that is not using an EJVM. Any User mode instruction that attempts to access a configuration
register will take an UNDEFINED exception. The Undefined Instruction handler can then identify the
EJVM need, mark the process as using an EJVM, then return to retry the instruction with CD == 0.

A further refinement is to clear the CV bit to O only if the context switch is to an EJVM-using process
that is different from the last EVJM-using process which ran. This avoids redundant reconfiguration
of the hardware. That is, the operating system maintains a “process currently owning the Jazelle
Extension hardware” variable, that gets updated with a process_ID when swapping to an
EJVM-using process. The context switch software sets CV to 0 if the process_ID update results in a
change to the saved variable.

Context switch software implementing the CV-bit scheme should also save and restore the Main
Configuration register (in its entirety) on a process swap where the EJVM-using process changes.
This ensures that the restored EJVM can use the JE bit reliably for its own purpose.

Note

This technique will not identify privileged EJVM-using processes. However, it is assumed that
operating systems are aware of the needs of their privileged processes.

. The OS can impose a single Jazelle Extension configuration on all User mode code by writing that
configuration to the hardware, then setting CD == 1 and JE == 1.

The CV and CD bits are both set to 0 on reset. This ensures that subject to some conditions, an EJVM can
operate correctly under an OS that does not support the Jazelle Extension. The main such condition is that
a process swap never swaps between two EJVM-using processes that require different settings of the
configuration registers. This would occur in either of the following two cases, for example:

. if there is only ever one EJVM-using process in the system.
. if all of the EJVM-using processes in the system use the same static settings of the configuration
registers.

A2-66 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Programmers’ Model

A2.10.6 EJVM operation

This section summarizes how EJVMs should operate in order to meet the architecture requirements.

Initialization

During initialization, the EJVM should first check which subarchitecture is present, using the implementor
and subarchitecture codes in the value read from the Jazelle Identity register.

If the EJVM is incompatible with the subarchitecture, it should either write a value with JE == 0 to the Main
Configuration register, or (if unaccelerated opcode execution is unacceptable) generate an error.

If the EJVM is compatible with the subarchitecture, it should write its desired configuration to the Main
Configuration register and any other configuration registers. The EJVM should not skip this step on the
assumption that the CV bit of the Jazelle OS Control register will be 0; an assumption that CV ==
triggering the configuration invalid handler before any opcode is executed by the Jazelle Extension hardware
should not be relied on.

Opcode execution

The EJVM should contain a handler for each opcode and for each exception condition specified by the
subarchitecture it is designed for (the exception conditions always include configuration invalid). It should
initiate opcode execution by executing a BXJ instruction with the register operand specifying the target
address of the opcode handler for the first opcode of the program, and the process registers set up in
accordance with the SUBARCHITECTURE DEFINED register usage model.

The opcode handler performs the data-processing operations required by the opcode concerned, determines
the address of the next opcode to be executed, determines the address of the handler for that opcode, and
performs a BXJ to that handler address with the registers again set up to the SUBARCHITECTURE DEFINED
register usage model.

The register usage model on entry to exception condition handlers are SUBARCHITECTURE DEFINED, and may
differ from the register usage model defined for BXJ instruction execution. The handlers then resolve the
exception condition. For example, in the case of the configuration invalid handler, the handler rewrites the
desired configuration to the Main Configuration register and any other configuration registers).

Further considerations

To ensure application execution and correct interaction with an operating system, EJVMs should only
perform operations that are allowed in User mode. In particular, they should only ever read the Jazelle ID
register, write to the configuration registers, and should not attempt to access the Jazelle OS Control register.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-67

Programmers’ Model

A2.10.7 Trivial implementations

This section summarizes what needs to be implemented in trivial implementations of the Jazelle Extension.

Implement the Jazelle Identity register with the implementor and subarchitecture fields set to zero;
the whole register may RAZ (read as zero).

Implement the Main Configuration register to read as zero and ignore writes.

Implement the Jazelle OS control register such that it can be read and written, but its effects are
ignored. The register may be implemented as RAZ/DNM - read as zero, do not modify on writes. This
allows operating systems supporting an EJVM to execute correctly.

Implement the BXJ instruction to behave identically to the BX instruction in all circumstances, as
implied by the fact that the JE bit is always zero. In particular, this means that Jazelle state will never
be entered normally on a trivial implementation.

In ARMV®6, a trivial implementation can implement the J bit in the CPSR/SPSRs as RAZ/DNM; read
as zero, do not modify on writes. This is allowed because there is no legitimate way to set the J bit
and enter Jazelle state, hence any return routine that tries to do so is issuing an UNPREDICTABLE
instruction.

Otherwise, implement J bits in the CPSR and each SPSR, and ensure that they are read, written and
copied correctly when exceptions are entered and when MSR, MRS and exception return instructions are
executed.

In all cases when J == 1 in the CPSR it is IMPLEMENTATION DEFINED whether the next instruction is
fetched and, could result in a prefetch abort, or it is assumed to be UNDEFINED.

Note

The PC does not need to be extended to 32 bits in the trivial implementation, since the only way that bit[0]
of the PC is visible in ARM or Thumb state is as a result of a processor exception occurring during Jazelle
state execution, and Jazelle state execution does not occur on a trivial implementation.

A2-68

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A2.11

A2.111

Programmers’ Model

Saturated integer arithmetic

When viewed as a signed number, the value of a general-purpose register lies in the range from -231 (or
0x80000000) to +231 —1 (or 0x7FFFFFFF). If an addition or subtraction is performed on such numbers
and the correct mathematical result lies outside this range, it would require more than 32 bits to represent.
In these circumstances, the surplus bits are normally discarded, which has the effect that the result obtained
is equal to the correct mathematical result reduced modulo 232.

For example, 0x60000000 could be used to represent +3 x 229 as a signed integer. If you add this number
to itself, you get +3 x 230, which lies outside the representable range, but could be represented as the 33-bit
signed number 0x0C0000000. The actual result obtained will be the right-most 32 bits of this, which are
0xC0000000. This represents 230, which is smaller than the correct mathematical result by 232, and does
not even have the same sign as the correct result.

This kind of inaccuracy is unacceptable in many DSP applications. For example, if it occurred while
processing an audio signal, the abrupt change of sign would be likely to result in a loud click. To avoid this
sort of effect, many DSP algorithms use saturated signed arithmetic. This modifies the way normal integer
arithmetic behaves as follows:

. If the correct mathematical result lies within the available range from —23! to +231 — 1, the result of
the operation is equal to the correct mathematical result.

. If the correct mathematical result is greater than +23! — 1 and so overflows the upper end of the
representable range, the result of the operation is equal to +23! — 1.

. If the correct mathematical result is less than —231 and so overflows the lower end of the representable
range, the result of the operation is equal to —231.

Put another way, the result of a saturated arithmetic operation is the closest representable number to the
correct mathematical result of the operation.

Instructions that support saturated signed 32-bit integer additions and subtractions (Q prefix), use the QADD
and QSUB instructions. Variants of these instructions (QDADD and QDSUB) perform a saturated doubling of
one of the operands before the saturated addition or subtraction.

Saturated integer multiplications are not supported, because the product of two values of widths A and B
bits never overflows an (A+B)-bit destination.

Saturated Q15 and Q31 arithmetic

A 32-bit signed value can be treated as having a binary point immediately after its sign bit. This is equivalent
to dividing its signed integer value by 231, so that it can now represent numbers from —1 to +1 — 2-31, When
a 32-bit value is used to represent a fractional number in this fashion, it is known as a Q31 number.

Saturated additions, subtractions, and doublings can be performed on Q31 numbers using the same
instructions as are used for saturated integer arithmetic, since everything is simply scaled down by a factor
of 2-31,

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A2-69

Programmers’ Model

Similarly, a 16-bit value can be treated as having a binary point immediately after its sign bit, which
effectively divides its signed integer value by 215. When a 16-bit value is used in this fashion, it can represent
numbers from —1 to +1 — 2-15 and is known as a Q15 number.

If two Q15 numbers are multiplied together as integers, the resulting integer needs to be scaled down by a
factor of 2-15 x 2-15 == 2-30, For example, multiplying the Q15 number 0x8000 (representing —1) by itself
using an integer multiplication instruction yields the value 040000000, which is 230 times the desired
result of +1.

This means that the result of the integer multiplication instruction is not quite in Q31 form. To get it into
Q31 form, it must be doubled, so that the required scaling factor becomes 2-31. Furthermore, it is possible
that the doubling will cause integer overflow, so the result should in fact be doubled with saturation. In
particular, the result 0x40000000 from the multiplication of 0x8000 by itself should be doubled with
saturation to produce 0x7FFFFFFF (the closest possible Q31 number to the correct mathematical result of
—1 x -1 ==+1). If it were doubled without saturation, it would instead produce 0x80000000, which is the
Q31 representation of —1.

To implement a saturated Q15 x Q15 — Q31 multiplication, therefore, an integer multiply instruction
should be followed by a saturated integer doubling. The latter can be performed by a QADD instruction
adding the multiply result to itself.

Similarly, a saturated Q15 x Q15 + Q31 — Q31 multiply-accumulate can be performed using an integer
multiply instruction followed by the use of a QDADD instruction.

Some other examples of arithmetic on Q15 and Q31 numbers are described in the Usage sections for the
individual instructions.

A2-70

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter A3
The ARM Instruction Set

This chapter describes the ARM® instruction set and contains the following sections:

.

Instruction set encoding on page A3-2

The condition field on page A3-3

Branch instructions on page A3-5

Data-processing instructions on page A3-7

Multiply instructions on page A3-10

Parallel addition and subtraction instructions on page A3-14
Extend instructions on page A3-16

Miscellaneous arithmetic instructions on page A3-17
Other miscellaneous instructions on page A3-18
Status register access instructions on page A3-19
Load and store instructions on page A3-21

Load and Store Multiple instructions on page A3-26
Semaphore instructions on page A3-28
Exception-generating instructions on page A3-29
Coprocessor instructions on page A3-30

Extending the instruction set on page A3-32.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A3-1

The ARM Instruction Set

A3.1 Instruction set encoding
Figure A3-1 shows the ARM instruction set encoding.

All other bit patterns are UNPREDICTABLE or UNDEFINED. See Extending the instruction set on page A3-32
for a description of the cases where instructions are UNDEFINED.

An entry in square brackets, for example [1], indicates that more information is given after the figure.

31302928272625242322212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0

shift | 0 Rm

Data processing immediate shift cond[1] |0 O O| opcode |S Rn Rd ‘ shift amount

Mlscellaneglé?'r_lisgt[]urgl:&)gj cond[1] [0 0 0|1 O x x[0O[x X X X X X X X X X X X X X x|0|X X X X

o

Data processing register shift [2] cond[1] [0 O opcode |S Rn ‘ Rd ‘ Rs 0| shift | 1 Rm

Miscellaneous instructions:
See Figure A3-4

Multiplies: See Figure A3-3
Extra load/stores: See Figure A3-5

cond[1] [0 0 0|1 0 x x|0|x x x X x X X X X X X x[0|x x|1|x X X X

cond[1] [0 0 O|x X x Xx X X X X X X X X X X X X x[1[x x|1]X X X X

Data processing immediate [2] cond[1] [0 O 1| opcode ‘S Rn ‘ Rd ‘ rotate immediate

Undefined instruction cond[1] [0 0 11 O|x|{0 Olx X X X X X X X X X X X X X X X X X X X

Move immediate to status register cond[1] |0 O 1|1 O/R|1 O Mask SBO rotate ‘ immediate
Load/store immediate offset cond[1] |0 1 O|P|U|B|W|L Rn Rd immediate
Load/store register offset cond[1] [0 1 1|P|U|B|W|L Rn Rd shift amount | shift | 0 Rm

Medlaslgzt{:l}'gcﬂ?gig]é cond[1] [0 1 1[X X X X X X X X X X X X X X X X X X X x|[1[x x x x

1711 1|x x x x

Architecturally undefined cond[1] |0 1 1{1 1 1 1 1]Xx X X X X X X X X X X X

Load/store multiple | cond[1] |1 0 O|P|U ‘ S ‘W‘ L Rn ‘ register list
Branch and branch with link cond[1] |1 0 1|L 24-bit offset
Coprocessor load/store and double .
register transfers | cond[3] |1 1 0|P|U|N|W|L Rn CRd cp_num 8-bit offset
Coprocessor data processing cond[3] |1 1 1 0O opcodel CRn CRd cp_num |opcode2| 0 CRm
Coprocessor register transfers cond[3] [1 1 1 0 |opcodel|L CRn Rd cp_num |opcode2 | 1 CRm
Software interrupt cond[1] [1 1 1 1 swi humber

Unconditional instructions: |1 1 1 1{Xx X
See Figure A3-6

Figure A3-1 ARM instruction set summary

1. The cond field is not allowed to be 1111 in this line. Other lines deal with the cases where bits[31:28]
of the instruction are 1111.

2. If the opcode field is of the form 10xx and the S field is 0, one of the following lines applies instead.
3. If the cond field is 1111, this instruction is UNPREDICTABLE prior to ARMvS5.
The architecturally Undefined instruction uses a small number of these instruction encodings.

A3-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A3.2

The ARM Instruction Set

The condition field

Most ARM instructions can be conditionally executed, which means that they only have their normal effect
on the programmers’ model state, memory and coprocessors if the N, Z, C and V flags in the CPSR satisfy
a condition specified in the instruction. If the flags do not satisfy this condition, the instruction acts as a
NOP: that is, execution advances to the next instruction as normal, including any relevant checks for
interrupts and Prefetch Aborts, but has no other effect.

Prior to ARMvS, all ARM instructions could be conditionally executed. A few instructions have been
introduced subsequently which can only be executed unconditionally. See Unconditional instruction
extension space on page A3-41 for details.

Every instruction contains a 4-bit condition code field in bits 31 to 28:

31 28 27 0

cond

This field contains one of the 16 values described in Table A3-1 on page A3-4. Most instruction mnemonics
can be extended with the letters defined in the mnemonic extension field.

If the always (AL) condition is specified, the instruction is executed irrespective of the value of the condition
code flags. The absence of a condition code on an instruction mnemonic implies the AL condition code.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-3

The ARM Instruction Set

A3.2.1 Condition code Ob1111

If the condition field is Ob1111, the behavior depends on the architecture version:

. In ARMv4, any instruction with a condition field of Ob1111 is UNPREDICTABLE.

. In ARMVS5 and above, a condition field of Ob1111 is used to encode various additional instructions
which can only be executed unconditionally (see Unconditional instruction extension space on
page A3-41). All instruction encoding diagrams which show bits[31:28] as cond only match
instructions in which these bits are not equal to Ob1111.

Table A3-1 Condition codes
;‘;fg&e znx'::nms?;‘:\c Meaning Condition flag state
0000 EQ Equal Z set
0001 NE Not equal Z clear
0010 CS/HS Carry set/unsigned higher or same C set
0011 CC/LO Carry clear/unsigned lower C clear
0100 MI Minus/negative N set
0101 PL Plus/positive or zero N clear
0110 VS Overflow V set
0111 vC No overflow V clear
1000 HI Unsigned higher C set and Z clear
1001 LS Unsigned lower or same C clear or Z set
1010 GE Signed greater than or equal N setand V set, or
N clear and V clear (N == V)
1011 LT Signed less than N set and V clear, or
N clear and V set (N !=V)
1100 GT Signed greater than Z clear, and either N set and V set, or
N clear and V clear (Z == 0O,N == V)
1101 LE Signed less than or equal Z set, or N set and V clear, or
Nclearand Vset (Z==1o0orN !=V)
1110 AL Always (unconditional) -
1111 - See Condition code Ob1111 -
A3-4 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

A3.3 Branch instructions

All ARM processors support a branch instruction that allows a conditional branch forwards or backwards
up to 32MB. As the PC is one of the general-purpose registers (R15), a branch or jump can also be generated
by writing a value to R15.

A subroutine call can be performed by a variant of the standard branch instruction. As well as allowing a
branch forward or backward up to 32MB, the Branch with Link (BL) instruction preserves the address of the
instruction after the branch (the return address) in the LR (R14).

In T variants of ARMv4 and above, the Branch and Exchange (BX) instruction copies the contents of a
general-purpose register Rm to the PC (like a MOV PC,Rm instruction), with the additional functionality that
if bit[0] of the transferred value is 1, the processor shifts to Thumb® state. Together with the corresponding
Thumb instructions, this allows interworking branches between ARM and Thumb code.

Interworking subroutine calls can be generated by combining BX with an instruction to write a suitable return
address to the LR, such as an immediately preceding MOV LR, PC instruction.

In ARMVS5 and above, there are also two types of Branch with Link and Exchange (BLX) instruction:

. One type takes a register operand Rm, like a BX instruction. This instruction behaves like a BX
instruction, and additionally writes the address of the next instruction into the LR. This provides a
more efficient interworking subroutine call than a sequence of MOV LR, PC followed by BX Rm.

. The other type behaves like a BL instruction, branching backwards or forwards by up to 32MB and
writing a return link to the LR, but shifts to Thumb state rather than staying in ARM state as BL does.
This provides a more efficient alternative to loading the subroutine address into Rm followed by a BLX
Rm instruction when it is known that a Thumb subroutine is being called and that the subroutine lies
within the 32MB range.

A load instruction provides a way to branch anywhere in the 4GB address space (known as a long branch).
A 32-bit value is loaded directly from memory into the PC, causing a branch. A long branch can be preceded
by MOV LR, PC or another instruction that writes the LR to generate a long subroutine call. In ARMvS5 and
above, bit[0] of the value loaded by a long branch controls whether the subroutine is executed in ARM state
or Thumb state, just like bit[0] of the value moved to the PC by a BX instruction. Prior to ARMVS, bits[1:0]
of the value loaded into the PC are ignored, and a load into the PC can only be used to call a subroutine in
ARM state.

In non-T variants of ARMVS, the instructions described above can cause an entry into Thumb state despite
the fact that the Thumb instruction set is not present. This causes the instruction at the branch target to enter
the Undefined Instruction exception. See The interrupt disable bits on page A2-14 for more details.

In ARMv6 and above, and in J variants of ARMvVS5, there is an additional Branch and Exchange Jazelle®
instruction, see BXJ on page A4-21.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-5

The ARM Instruction Set

A3.3.1 Examples
B Tabel ; branch unconditionally to Tabel
BCC Tabel ; branch to label if carry flag is clear
BEQ Tabel ; branch to label if zero flag is set
MoV PC, #0 ; R15 = @, branch to Tocation zero
BL func ; subroutine call to function
func
I\./IOV PC, LR ; R15=R14, return to instruction after the BL
MoV LR, PC ; store the address of the instruction
; after the next one into R14 ready to return
LDR PC, =func ; load a 32-bit value into the program counter
A3.3.2 List of branch instructions
B, BL Branch, and Branch with Link. See B, BL on page A4-10.
BLX Branch with Link and Exchange. See BLX (1) on page A4-16 and BLX (2) on page A4-18.
BX Branch and Exchange Instruction Set. See BX on page A4-20.
BXJ Branch and change to Jazelle state. See BXJ on page A4-21.
A3-6 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

A3.4 Data-processing instructions
ARM has 16 data-processing instructions, shown in Table A3-2.
Table A3-2 Data-processing instructions
Opcode Mnemonic Operation Action
0000 AND Logical AND Rd := Rn AND shifter_operand
0001 EOR Logical Exclusive OR Rd := Rn EOR shifter_operand
0010 SUB Subtract Rd :=Rn - shifter_operand
0011 RSB Reverse Subtract Rd := shifter_operand - Rn
0100 ADD Add Rd := Rn + shifter_operand
0101 ADC Add with Carry Rd :=Rn + shifter_operand + Carry Flag
0110 SBC Subtract with Carry Rd :=Rn - shifter_operand - NOT(Carry Flag)
0111 RSC Reverse Subtract with Carry Rd :=shifter_operand - Rn - NOT(Carry Flag)
1000 TST Test Update flags after Rn AND shifter_operand
1001 TEQ Test Equivalence Update flags after Rn EOR shifter_operand
1010 CMP Compare Update flags after Rn - shifter_operand
1011 CMN Compare Negated Update flags after Rn + shifter_operand
1100 ORR Logical (inclusive) OR Rd := Rn OR shifter_operand
1101 MOV Move Rd := shifter_operand (no first operand)
1110 BIC Bit Clear Rd := Rn AND NOT(shifter_operand)
1111 MVN Move Not Rd := NOT shifter_operand (no first operand)
Most data-processing instructions take two source operands, though Move and Move Not take only one. The
compare and test instructions only update the condition flags. Other data-processing instructions store a
result to a register and optionally update the condition flags as well.
Of the two source operands, one is always a register. The other is called a shifter operand and is either an
immediate value or a register. If the second operand is a register value, it can have a shift applied to it.
CMP, CMN, TST and TEQ always update the condition code flags. The assembler automatically sets the S bit in
the instruction for them, and the corresponding instruction with the S bit clear is not a data-processing
instruction, but instead lies in one of the instruction extension spaces (see Extending the instruction set on
page A3-32). The remaining instructions update the flags if an S is appended to the instruction mnemonic
(which sets the S bit in the instruction). See The condition code flags on page A2-11 for more details.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-7

The ARM Instruction Set

A3.4.1 Instruction encoding

<opcodel>{<cond>}{S} <Rd>, <shifter_operand>

<opcodel> := MOV | MVN

<opcode2>{<cond>} <Rn>, <shifter_operand>

<opcode2> := CMP | CMN | TST | TEQ

<opcode3>{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

<opcode3> := ADD | SUB | RSB | ADC | SBC | RSC | AND | BIC | EOR | ORR

31 28 27 26 25 24 21 20 19 16 15 12 11 0
cond 0 O|I| opcode |S Rn Rd shifter_operand

I bit Distinguishes between the immediate and register forms of <shifter_operand>.

S bit Signifies that the instruction updates the condition codes.

Rn Specifies the first source operand register.

Rd Specifies the destination register.

shifter_operand Specifies the second source operand. See Addressing Mode 1 - Data-processing

operands on page A5-2 for details of the shifter operands.

A3-8 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

A3.4.2 List of data-processing instructions

ADC Add with Carry. See ADC on page A4-4.
ADD Add. See ADD on page A4-6.
AND Logical AND. See AND on page A4-8.
BIC Logical Bit Clear. See BIC on page A4-12.
CMN Compare Negative. See CMN on page A4-26.
CMP Compare. See CMP on page A4-28.
EOR Logical EOR. See EOR on page A4-32.
MoV Move. See MOV on page A4-68.
MVN Move Not. See MVN on page A4-82.
ORR Logical OR. See ORR on page A4-84.
RSB Reverse Subtract. See RSB on page A4-115.
RSC Reverse Subtract with Carry. See RSC on page A4-117.
SBC Subtract with Carry. See SBC on page A4-125.
SuB Subtract. See SUB on page A4-208.
TEQ Test Equivalence. See TEQ on page A4-228.
TST Test. See TST on page A4-230.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-9

The ARM Instruction Set

A3.5

A3.5.1

A3.5.2

Multiply instructions
ARM has several classes of Multiply instruction:
Normal 32-bit x 32-bit, bottom 32-bit result
Long 32-bit x 32-bit, 64-bit result
Halfword 16-bit x 16-bit, 32-bit result
Word « halfword 32-bit x 16-bit, top 32-bit result
Most significant word

32-bit x 32-bit, top 32-bit result
Dual halfword dual 16-bit x 16-bit, 32-bit result.

All Multiply instructions take two register operands as the input to the multiplier. The ARM processor does
not directly support a multiply-by-constant instruction because of the efficiency of shift and add, or shift and
reverse subtract instructions.

Normal multiply

There are two 32-bit x 32-bit Multiply instructions that produce bottom 32-bit results:

MUL Multiplies the values of two registers together, truncates the result to 32 bits, and stores the
result in a third register.

MLA Multiplies the values of two registers together, adds the value of a third register, truncates
the result to 32 bits, and stores the result in a fourth register. This can be used to perform
multiply-accumulate operations.

Both Normal Multiply instructions can optionally set the N (Negative) and Z (Zero) condition code flags.
No distinction is made between signed and unsigned variants. Only the least significant 32 bits of the result
are stored in the destination register, and the sign of the operands does not affect this value.

Long multiply
There are five 32-bit x 32-bit Multiply instructions that produce 64-bit results.

Two of the variants multiply the values of two registers together and store the 64-bit result in third and fourth
registers. There are signed (SMULL) and unsigned (UMULL) variants. The signed variants produce a different
result in the most significant 32 bits if either or both of the source operands is negative.

Two variants multiply the values of two registers together, add the 64-bit value from the third and fourth
registers, and store the 64-bit result back into those registers (third and fourth). There are signed (SMLAL) and
unsigned (UMLAL) variants. These instructions perform a long multiply and accumulate.

UMAAL multiplies the unsigned values of two registers together, adds the two unsigned 32-bit values from the
third and fourth registers, and stores the 64-bit unsigned result back into those registers (third and fourth).

A3-10

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

All the Long Multiply instructions except UMAAL can optionally set the N (Negative) and Z (Zero) condition
code flags. UMAAL does not affect any flags.

UMAAL is available in ARMv6 and above.

A3.5.3 Halfword multiply
There are three signed 16-bit x 16-bit Multiply instructions that produce 32-bit results:

SMULxy Multiplies the 16-bit values of two half-registers together, and stores the signed 32-bit result
in a third register.

SMLAXxy Multiplies the 16-bit values of two half-registers together, adds the 32-bit value from a third
register, and stores the signed 32-bit result in a fourth register.

SMLALxy Multiplies the 16-bit values of two half-registers together, adds the 64-bit value from a third
and fourth register, and stores the 64-bit result back into those registers (third and fourth).

SMULxy and SMLALxy do not affect any flags. SMLAxy can set the Q flag if overflow occurs in the multiplication.
The x and y designators indicate whether the top (T) or bottom (B) bits of the register is used as the operand.

They are available in ARMVSTE and above.

A3.5.4 Word x halfword multiply
There are two signed Multiply instructions that produce top 32-bit results:

SMULWy Multiplies the 32-bit value of one register with the 16-bit value of either halfword of a
second register, and stores the top 32 bits of the signed 48-bit result in a third register.

SMLAWY Multiplies the 32-bit value of one register with the 16-bit value of either halfword of a
second register, extracts the top 32 bits, adds the 32-bit value from a third register, and stores
the signed 32-bit result in a fourth register.

SMLAWy sets the Q flag if overflow occurs in the multiplication. SMULWy does not affect any flags.

These instructions are available in ARMVS5TE and above.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-11

The ARM Instruction Set

A3.5.5 Most significant word multiply

There are three signed 32-bit x 32-bit Multiply instructions that produce top 32-bit results:

SMMUL Multiplies the 32-bit values of two registers together, and stores the top 32 bits of the signed
64-bit result in a third register.

SMMLA Multiplies the 32-bit values of two registers together, extracts the top 32 bits, adds the 32-bit
value from a third register, and stores the signed 32-bit result in a fourth register.

SMMLS Multiplies the 32-bit value of two registers together, extracts the top 32 bits, subtracts this
from a 32-bit value from a third register, and stores the signed 32-bit result in a fourth
register.

These instructions do not affect any flags.

They are available in ARMv6 and above.

A3.5.6 Dual halfword multiply

There are six dual, signed 16-bit x 16-bit Multiply instructions:

SMUAD Multiplies the values of the top halfwords of two registers together, multiplies the values of
the bottom halfwords of the same two registers together, adds the products, and stores the
32-bit result in a third register.

SMUSD Multiplies the values of the top halfwords of two registers together, multiplies the values of
the bottom halfwords of the same two registers together, subtracts one product from the
other, and stores the 32-bit result in a third register.

SMLAD Multiplies the 32-bit value of two registers together, extracts the top 32 bits, subtracts this
from a 32-bit value from a third register, and stores the signed 32-bit result in a fourth
register.

SMLSD Multiplies the 32-bit values of two registers together, extracts the top 32 bits, adds the 32-bit
value from a third register, and stores the signed 32-bit result in a fourth register.

SMLALD Multiplies the 32-bit value of two registers together, extracts the top 32 bits, subtracts this
from a 32-bit value from a third register, and stores the signed 32-bit result in a fourth
register.

SMLSLD Multiplies the 32-bit value of two registers together, extracts the top 32 bits, subtracts this
from a 32-bit value from a third register, and stores the signed 32-bit result in a fourth
register.

SMUAD, SMLAD, and SMLSLD can set the Q flag if overflow occurs in the operation. All other instructions do not

affect any flags.

They are available in ARMv6 and above.

A3-12 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A3.5.7 Examples

MUL R4,
MULS R4,
MLA R7,
SMULL R4,

UMULL R,
UMLAL RS,

The ARM Instruction Set

R2, R1 ; Set R4 to value of R2 multiplied by R1
R2, R1 ; R4 = R2 x R1, set N and Z flags
R8, R9, R3 ; R7 = R8 x R9 + R3

bits @ to 31 of R2 x R3

R8, R2, R3 ; R4

; R8 = bits 32 to 63 of R2 x R3
R8, RO, R1 ; R8, R6 = RO x R1
R8, RO, R1 ; R8, RS = RO x R1 + R8, RS

A3.5.8 List of multiply instructions

MLA
MUL
SMLA<x><y>

SMLAD
SMLAL
SMLAL<x><y>

SMLALD
SMLAW<y>
SMLSD
SMLSLD
SMMLA
SMMLS
SMMUL
SMUAD
SMUL<x><y>

SMULL
SMULW<y>
SMUSD
UMAAL
UMLAL
UMULL

Multiply Accumulate. See MLA on page A4-66.
Multiply. See MUL on page A4-80.

Signed halfword Multiply Accumulate. See SMLA<x><y> on page A4-141.
Signed halfword Multiply Accumulate, Dual. See SMLAD on page A4-144.
Signed Multiply Accumulate Long. See SMLAL on page A4-146.

Signed halfword Multiply Accumulate Long. See SMLAL<x><y> on page A4-148.
Signed halfword Multiply Accumulate Long, Dual. See SMLALD on page A4-150.
Signed halfword by word Multiply Accumulate. See SMLAW<y> on page A4-152.
Signed halfword Multiply Subtract, Dual. See SMLAD on page A4-144.

Signed halfword Multiply Subtract Long Dual. See SMLALD on page A4-150.
Signed Most significant word Multiply Accumulate. See SMMLA on page A4-158.
Signed Most significant word Multiply Subtract. See SMMLA on page A4-158.
Signed Most significant word Multiply. See SMMUL on page A4-162.

Signed halfword Multiply, Add, Dual. See SMUAD on page A4-164.

Signed halfword Multiply. See SMUL<x><y> on page A4-166.

Signed Multiply Long. See SMULL on page A4-168.

Signed halfword by word Multiply. See SMULW<y> on page A4-170.

Signed halfword Multiply, Subtract, Dual. See SMUSD on page A4-172.
Unsigned Multiply Accumulate significant Long. See UMAAL on page A4-247.
Unsigned Multiply Accumulate Long. See UMLAL on page A4-249.

Unsigned Multiply Long. See UMULL on page A4-251.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-13

The ARM Instruction Set

A3.6 Parallel addition and subtraction instructions

In addition to the normal data-processing and multiply instructions, ARMv6 introduces a set of parallel
addition and subtraction instructions.

There are six basic instructions:

ADD16 Adds the top halfwords of two registers to form the top halfword of the result.
Adds the bottom halfwords of the same two registers to form the bottom halfword of the
result.

ADDSUBX Does the following:
1. Exchanges halfwords of the second operand register.

2. Adds top halfwords and subtracts bottom halfwords.

SUBADDX Does the following:
1. Exchanges halfwords of the second operand register.
2. Subtracts top halfwords and adds bottom halfwords.

SUB16 Subtracts the top halfword of the first operand register from the top halfword of the second
operand register to form the top halfword of the result.
Subtracts the bottom halfword of the second operand registers from the bottom halfword of
the first operand register to form the bottom halfword of the result.

ADD8 Adds each byte of the second operand register to the corresponding byte of the first operand
register to form the corresponding byte of the result.

SUB8 Subtracts each byte of the second operand register from the corresponding byte of the first
operand register to form the corresponding byte of the result.

Each of the six instructions is available in the following variations, indicated by the prefixes shown:

S Signed arithmetic modulo 28 or 216, Sets the CPSR GE bits (see The GE[3:0] bits on
page A2-13).

Q Signed saturating arithmetic.

SH Signed arithmetic, halving the results to avoid overflow.

U Unsigned arithmetic modulo 28 or 216, Sets the CPSR GE bits (see The GE[3:0] bits on
page A2-13).

uQ Unsigned saturating arithmetic.

UH Unsigned arithmetic, halving the results to avoid overflow.

A3-14 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

A3.6.1 List of parallel arithmetic instructions

QADD16 Dual 16-bit signed saturating addition. See QADD16 on page A4-94.
QADD8 Quad 8-bit signed saturating addition. See QADDS on page A4-95.
QADDSUBX 16-bit exchange, signed saturating addition, subtraction. See QADDSUBX on page A4-97.
QSUB16 Dual 16-bit signed saturating subtraction. See QSUBI16 on page A4-104.
QSuB8 Quad 8-bit signed saturating subtraction. See QSUBS on page A4-105.
QSUBADDX 16-bit exchange, signed saturating subtraction, addition. See QSUBADDX on page A4-107.
SADD16 Dual 16-bit signed addition. See SADD16 on page A4-119.
SADD8 Quad 8-bit signed addition. See SADDS on page A4-121.
SADDSUBX 16-bit exchange, signed addition, subtraction. See SADDSUBX on page A4-123.
SSUB16 Dual 16-bit signed subtraction. See SSUB16 on page A4-180.
SSUB8 Quad 8-bit signed subtraction. See SSUBS on page A4-182.
SSUBADDX 16-bit exchange, signed subtraction, addition. See SSUBADDX on page A4-184.
SHADD16 Dual 16-bit signed half addition. See SHADD16 on page A4-130.
SHADD8 Quad 8-bit signed half addition. See SHADDS on page A4-131.
SHADDSUBX 16-bit exchange, signed half addition, subtraction. See SHADDSUBX on page A4-133.
SHSUB16 Dual 16-bit signed half subtraction. See SHSUB16 on page A4-135.
SHSUB8 Quad 8-bit signed half subtraction. See SHSUBS on page A4-137.
SHSUBADDX 16-bit exchange, signed half subtraction, addition. See SHSUBADDX on page A4-139.
UADD16 Dual 16-bit unsigned addition. See UADD16 on page A4-232.
UADD8 Quad 8-bit unsigned addition. See UADDS on page A4-233.
UADDSUBX 16-bit exchange, unsigned addition, subtraction. See UADDSUBX on page A4-235.
USUB16 Dual 16-bit unsigned subtraction. See USUB16 on page A4-269.
USuB8 Quad 8-bit unsigned subtraction. See USUBS on page A4-270.
USUBADDX 16-bit exchange, unsigned subtraction, addition. See USUBADDX on page A4-272.
UHADD16 Dual 16-bit unsigned half addition. See UHADD16 on page A4-237.
UHADD8 Quad 8-bit unsigned half addition. See UHADDS on page A4-238.
UHADDSUBX 16-bit exchange, unsigned half addition, subtraction. See UHADDSUBX on page A4-240.
UHSUB16 Dual 16-bit unsigned half subtraction. See UHSUB16 on page A4-242.
UHSUB8 Quad 8-bit unsigned half subtraction. See UHSUB16 on page A4-242.
UHSUBADDX 16-bit exchange, unsigned half subtraction, addition. See UHSUBADDX on page A4-245.
UQADD16 Dual 16-bit unsigned saturating addition. See UQADD16 on page A4-253.
UQADD8 Quad 8-bit unsigned saturating addition. See UQADDS on page A4-254.
UQADDSUBX 16-bit exchange, unsigned saturating addition, subtraction. See UQADDSUBX on
page A4-255.
UQSUB16 Dual 16-bit unsigned saturating subtraction. See UQSUBI6 on page A4-257.
uQsuBg Quad 8-bit unsigned saturating subtraction. See UQSUBS on page A4-258.
UQSUBADDX 16-bit exchange, unsigned saturating subtraction, addition. See UQSUBADDX on
page A4-259.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-15

The ARM Instruction Set

A3.7 Extend instructions
ARMV6 and above provide several instructions for unpacking data by sign or zero extending bytes to
halfwords or words, and halfwords to words. You can optionally add the result to the contents of another
register. You can rotate the operand register by any multiple of 8 bits before extending.
There are six basic instructions:
XTAB16 Extend bits[23:16] and bits[7:0] of one register to 16 bits, and add corresponding halfwords
to the values in another register.
XTAB Extend bits[7:0] of one register to 32 bits, and add to the value in another register.
XTAH Extend bits[15:0] of one register to 32 bits, and add to the value in another register.
XTB16 Extend bits[23:16] and bits[7:0] to 16 bits each.
XTB Extend bits[7:0] to 32 bits.
XTH Extend bits[15:0] to 32 bits.
Each of the six instructions is available in the following variations, indicated by the prefixes shown:
S Sign extension, with or without addition modulo 216 or 232,
u Zero (unsigned) extension, with or without addition modulo 216 or 232.
A3.7.1 List of sign/zero extend and add instructions
SXTAB16 Sign extend bytes to halfwords, add halfwords. See SXTAB16 on page A4-218.
SXTAB Sign extend byte to word, add. See SXTAB on page A4-216.
SXTAH Sign extend halfword to word, add. See SXTAH on page A4-220.
SXTB16 Sign extend bytes to halfwords. See SXTB16 on page A4-224.
SXTB Sign extend byte to word. See SX7TB on page A4-222.
SXTH Sign extend halfword to word. See SXTH on page A4-226.
UXTAB16 Zero extend bytes to halfwords, add halfwords. See UXTABI6 on page A4-276.
UXTAB Zero extend byte to word, add. See UXTAB on page A4-274.
UXTAH Zero extend halfword to word, add. See UXTAH on page A4-278.
UXTB16 Zero extend bytes to halfwords. See UXTB16 on page A4-282.
UXTB Zero extend byte to word. See UXTB on page A4-280.
UXTH Zero extend halfword to word. See UXTH on page A4-284.
A3-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A3.8

A3.8.1

A3.8.2

The ARM Instruction Set

Miscellaneous arithmetic instructions

ARMVS5 and above include several miscellaneous arithmetic instructions.

Count leading zeros

ARMYVS5 and above include a Count Leading Zeros (CLZ) instruction. This instruction returns the number of
0 bits at the most significant end of its operand before the first 1 bit is encountered (or 32 if its operand is
0). Two typical applications for this are:

. To determine how many bits the operand should be shifted left to normalize it, so that its most
significant bit is 1. (This can be used in integer division routines.)

. To locate the highest priority bit in a bit mask.

For details see CLZ on page A4-25.

Unsigned sum of absolute differences

ARMYV6 introduces an Unsigned Sum of Absolute Differences (USAD8) instruction, and an Unsigned Sum of
Absolute Differences and Accumulate (USADA8) instruction.

These instructions do the following:

1. Take corresponding bytes from two registers.

2. Find the absolute differences between the unsigned values of each pair of bytes.

3. Sum the four absolute values.

4. Optionally, accumulate the sum of the absolute differences with the value in a third register.

For details see USADS on page A4-261 and USADAS on page A4-263.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-17

The ARM Instruction Set

A3.9 Other miscellaneous instructions
ARMVv6 and above provide several other miscellaneous instructions:

PKHBT (Pack Halfword Bottom Top) combines the bottom, least significant, halfword of its first
operand with the top (most significant) halfword of its shifted second operand. The shift is
a left shift, by any amount from O to 31.

See PKHBT on page A4-86.

PKHTB (Pack Halfword Top Bottom) combines the top, most significant, halfword of its first
operand with the bottom (least significant) halfword of its shifted second operand. The shift
is an arithmetic right shift, by any amount from 1 to 32.

See PKHTB on page A4-88.

REV (Byte-Reverse Word) reverses the byte order in a 32-bit register.
See REV on page A4-1009.

REV16 (Byte-Reverse Packed Halfword) reverses the byte order in each 16-bit halfword of a 32-bit
register.

See REV16 on page A4-110.

REVSH (Byte-Reverse Signed Halfword) reverses the byte order in the lower 16-bit halfword of a
32-bit register, and sign extends the result to 32-bits.

See REVSH on page A4-111.

SEL (Select) selects each byte of its result from either its first operand or its second operand,
according to the values of the GE flags. The GE flags record the results of parallel additions
or subtractions, see Parallel addition and subtraction instructions on page A3-14.

See SEL on page A4-127.

SSAT (Signed Saturate) saturates a signed value to a signed range. You can choose the bit position
at which saturation occurs. You can apply a shift to the value before the saturation occurs.

See SSAT on page A4-176.

SSAT16 Saturates two 16-bit signed values to a signed range. You can choose the bit position at
which saturation occurs.
See SSAT16 on page A4-178.

USAT (Unsigned Saturate) saturates a signed value to an unsigned range. You can choose the bit

position at which saturation occurs. You can apply a shift to the value before the saturation
occurs.

See USAT on page A4-265.

USAT16 Saturates two signed 16-bit values to an unsigned range. You can choose the bit position at
which saturation occurs.
See USATI16 on page A4-267.

A3-18 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A3.10

A3.10.1

The ARM Instruction Set

Status register access instructions

There are two instructions for moving the contents of a program status register to or from a general-purpose
register. Both the CPSR and SPSR can be accessed.

In addition, in ARMVG, there are several instructions that can write directly to specific bits, or groups of bits,
in the CPSR.

Each status register is traditionally split into four 8-bit fields that can be individually written:

Bits[31:24] The flags field.
Bits[23:16] The status field.
Bits[15:8] The extension field.
Bits[7:0] The control field.

From ARMVv6, the ARM architecture uses the status and extension fields. The usage model of the bit fields
no longer reflects the byte-wide definitions. The revised categories are defined in Types of PSR bits on
page A2-11.

CPSR value
Altering the value of the CPSR has five uses:
. sets the value of the condition code flags (and of the Q flag when it exists) to a known value
. enables or disable interrupts
. changes processor mode (for instance, to initialize stack pointers)
. changes the endianness of load and store operations
. changes the processor state (J and T bits).
Note

The T and J bits must not be changed directly by writing to the CPSR, but only via the BX, BLX, or BX]
instructions, and in the implicit SPSR to CPSR moves in instructions designed for exception return.
Attempts to enter or leave Thumb or Jazelle state by directly altering the T or J bits have UNPREDICTABLE
consequences.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-19

The ARM Instruction Set

A3.10.2 Examples

These examples assume that the ARM processor is already in a privileged mode. If the ARM processor starts
in User mode, only the flag update has any effect.

MRS
BIC
MSR

MRS
ORR
MSR

MRS
BIC
ORR
MSR

RO, CPSR
RO, RO, #0xF0000000
CPSR_f, RO

RO, CPSR
RO, RO, #0x80
CPSR_c, R@

RO, CPSR

RO, RO, #Ox1F
RO, RO, #0x11
CPSR_c, RO

Read the CPSR

Clear the N, Z, C and V bits
Update the flag bits in the CPSR
N, Z, C and V flags now all clear

Read the CPSR

Set the interrupt disable bit
Update the control bits in the CPSR
interrupts (IRQ) now disabled

Read the CPSR

Clear the mode bits

Set the mode bits to FIQ mode
Update the control bits in the CPSR
now in FIQ mode

A3.10.3 List of status register access instructions

MRS

MSR

CPS

SETEND

Move PSR to General-purpose Register. See MRS on page A4-74.

Move General-purpose Register to PSR. See MSR on page A4-76.

Change Processor State. Changes one or more of the processor mode and interrupt enable
bits of the CPSR, without changing the other CPSR bits. See CPS on page A4-29.

Modifies the CPSR endianness, E, bit, without changing any other bits in the CPSR. See

SETEND on page A4-129.

The processor state bits can also be updated by a variety of branch, load and return instructions which update
the PC. Changes occur when they are used for Jazelle state entry/exit and Thumb interworking.

A3-20

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A3.11

A3.11.1

The ARM Instruction Set

Load and store instructions

The ARM architecture supports two broad types of instruction which load or store the value of a single
register, or a pair of registers, from or to memory:

. The first type can load or store a 32-bit word or an 8-bit unsigned byte.

. The second type can load or store a 16-bit unsigned halfword, and can load and sign extend a 16-bit
halfword or an 8-bit byte. In ARMvVSTE and above, it can also load or store a pair of 32-bit words.

Addressing modes

In both types of instruction, the addressing mode is formed from two parts:
. the base register
. the offset.

The base register can be any one of the general-purpose registers (including the PC, which allows
PC-relative addressing for position-independent code).

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base
register. Immediate offset addressing is useful for accessing data elements that are
a fixed distance from the start of the data object, such as structure fields, stack
offsets and input/output registers.

For the word and unsigned byte instructions, the immediate offset is a 12-bit
number. For the halfword and signed byte instructions, it is an 8-bit number.

Register The offset is a general-purpose register (not the PC), that can be added to or
subtracted from the base register. Register offsets are useful for accessing arrays or
blocks of data.

Scaled register The offset is a general-purpose register (not the PC) shifted by an immediate value,

then added to or subtracted from the base register. The same shift operations used

for data-processing instructions can be used (Logical Shift Left, Logical Shift Right,
Arithmetic Shift Right and Rotate Right), but Logical Shift Left is the most useful
as it allows an array indexed to be scaled by the size of each array element.

Scaled register offsets are only available for the word and unsigned byte
instructions.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-21

The ARM Instruction Set

As well as the three types of offset, the offset and base register are used in three different ways to form the
memory address. The addressing modes are described as follows:

Offset The base register and offset are added or subtracted to form the memory address.

Pre-indexed The base register and offset are added or subtracted to form the memory address.
The base register is then updated with this new address, to allow automatic indexing
through an array or memory block.

Post-indexed The value of the base register alone is used as the memory address. The base register
and offset are added or subtracted and this value is stored back in the base register,
to allow automatic indexing through an array or memory block.

A3.11.2 Load and store word or unsigned byte instructions
Load instructions load a single value from memory and write it to a general-purpose register.
Store instructions read a value from a general-purpose register and store it to memory.
These instructions have a single instruction format:
LDR|STR{<cond>}{B}{T} Rd, <addressing_mode>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1|I(P|UB|W|L Rn Rd addressing_mode_specific

LPUW Are bits that distinguish between different types of <addressing_mode>. See Addressing
Mode 2 - Load and Store Word or Unsigned Byte on page A5-18

L bit Distinguishes between a Load (L==1) and a Store instruction (L==0).

B bit Distinguishes between an unsigned byte (B==1) and a word (B==0) access.
Rn Specifies the base register used by <addressing_mode>.

Rd Specifies the register whose contents are to be loaded or stored.

A3-22 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

A3.11.3 Load and store halfword or doubleword, and load signed byte instructions

Load instructions load a single value from memory and write it to a general-purpose register, or to a pair of

general-purpose registers.

Store instructions read a value from a general-purpose register, or from a pair of general-purpose registers,

and store it to memory.

These instructions have a single instruction format:

LDR|STR{<cond>}D|H|SH|SB Rd, <addressing_mode>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 00 O|P|IU|T|W|L Rn Rd addr_mode | 1 |S |H| 1 | addr_mode
addr_mode Are addressing-mode-specific bits.

LPU W Are bits that specify the type of addressing mode (see Addressing Mode 3 - Miscellaneous
Loads and Stores on page A5-33).

L,S,H These bits combine to specify signed or unsigned loads or stores, and doubleword, halfword,
or byte accesses. See Addressing Mode 3 - Miscellaneous Loads and Stores on page A5-33
for details.

Rn Specifies the base register used by the addressing mode.

Rd Specifies the register whose contents are to be loaded or stored.

A3.11.4 Examples

LDR R1, [RO]

LDR R8, [R3, #4]

LDR R12, [R13, #-4]
STR R2, [R1, #0x100]
LDRB RS, [RI]

LDRB R3, [RS8, #3]

STRB R4, [R10, #0x200]
LDR R11, [R1, R2]
STRB R10, [R7, -R4]
LDR R11, [R3, RS, LSL #2]
LDR R1, [RO, #4]!
STRB R7, [R6, #-1]!
LDR R3, [RI9], #4

STR R2, [R5], #8

Load R1 from the address in R@

Load R8 from the address in R3 + 4
Load R12 from R13 - 4

Store R2 to the address in R1 + 0x100

Load byte into RS from R9
(zero top 3 bytes)
Load byte to R3 from R8 + 3
(zero top 3 bytes)
Store byte from R4 to R10 + 0x200

Load R11 from the address in Rl + R2
Store byte from R10 to addr in R7 - R4

Load R11 from R3 + (R5 x 4)

Load R1 from RO + 4, then RO = RO + 4
Store byte from R7 to R6 - 1,

then R6 = R6 - 1

Load R3 from R9, then R9 = R9 + 4
Store R2 to RS, then RS = R5 + 8

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A3-23

The ARM Instruction Set

LDR RO, [PC, #40]
LDR RO, [R1], R2
LDRH R1, [RO]

LDRH R8, [R3, #2]
LDRH R12, [R13, #-6]
STRH R2, [R1, #0@x80]
LDRSH RS, [R9]

LDRSB R3, [R8, #3]
LDRSB R4, [R10, #OxC1]
LDRH R11, [R1, R2]
STRH R10, [R7, -R4]

LDRSH ~ R1, [RO, #2]!

LDRSB R7, [R6, #-1]!
LDRH R3, [R9], #2
STRH R2, [R5], #8

LDRD R4, [RI]

STRD R8, [R2, #0@x2C]

Load RO from PC + 0x40 (= address of
the LDR instruction + 8 + 0x40)
Load RO from R1, then R1 = R1 + R2

Load halfword to R1 from RQ

(zero top 2 bytes)
Load halfword into R8 from R3 + 2
Load halfword into R12 from R13 - 6
Store halfword from R2 to R1 + 0x80

Load signed halfword to R5 from R9
Load signed byte to R3 from R8 + 3
Load signed byte to R4 from R10 + OxCl

Load halfword into R11 from address
in R1 + R2
Store halfword from R10 to R7 - R4

Load signed halfword R1 from RO + 2,
then RO = RO + 2

Load signed byte to R7 from R6 - 1,
then R6 = R6 - 1
Load halfword to R3 from R9,
then R9 = R9 + 2
Store halfword from R2 to RS,
then R5 = R5 + 8
Load word into R4 from
the address in R9
Load word into R5 from
the address in R9 + 4
Store R8 at the address in
R2 + 0x2C
Store R9 at the address in
R2 + 0x2C+4

A3-24 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

The ARM Instruction Set

A3.11.5 List of load and store instructions

LDR Load Word. See LDR on page A4-43.

LDRB Load Byte. See LDRB on page A4-46.

LDRBT Load Byte with User Mode Privilege. See LDRBT on page A4-48.

LDRD Load Doubleword. See LDRD on page A4-50.

LDREX Load Exclusive. See LDREX on page A4-52.

LDRH Load Unsigned Halfword. See LDRH on page A4-54.

LDRSB Load Signed Byte. See LDRSB on page A4-56.

LDRSH Load Signed Halfword. See LDRSH on page A4-58.

LDRT Load Word with User Mode Privilege. See LDRT on page A4-60.

STR Store Word. See STR on page A4-193.

STRB Store Byte. See STRB on page A4-195.

STRBT Store Byte with User Mode Privilege. See STRBT on page A4-197.

STRD Store Doubleword. See STRD on page A4-199.

STREX Store Exclusive. See STREX on page A4-202.

STRH Store Halfword. See STRH on page A4-204.

STRT Store Word with User Mode Privilege. See STRT on page A4-206.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-25

The ARM Instruction Set

A3.12 Load and Store Multiple instructions

Load Multiple instructions load a subset, or possibly all, of the general-purpose registers from memory.

Store Multiple instructions store a subset, or possibly all, of the general-purpose registers to memory.

Load and Store Multiple instructions have a single instruction format:

LDM{<cond>}<addressing_mode> Rn{!}, <registers>{A}
STM{<cond>}<addressing_mode> Rn{!}, <registers>{A}

where:

<addressing_mode> = IA | IB | DA | DB | FD | FA | ED | EA

31 28 27 26 25 24 23 22 21 20 19

16 15

cond 1 00

P

U

S

N

L

register list

register list

P, U, and W bits

S bit

L bit

Rn

A3.12.1 Examples

The list of <registers> has one bit for each general-purpose register. Bit O is for RO,
and bit 15 is for R15 (the PC).

The register syntax list is an opening bracket, followed by a comma-separated list
of registers, followed by a closing bracket. A sequence of consecutive registers can
be specified by separating the first and last registers in the range with a minus sign.

These distinguish between the different types of addressing mode (see Addressing
Mode 4 - Load and Store Multiple on page A5-41).

For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR
after all the registers have been loaded. For all STMs, and LDMs that do not load the PC,
it indicates that when the processor is in a privileged mode, the User mode banked
registers are transferred and not the registers of the current mode.

This distinguishes between a Load (L==1) and a Store (L==0) instruction.

This specifies the base register used by the addressing mode.

STMFD R13!, {R@ - R12, LR}
LDMFD R13!, {R@ - R12, PC}
LDMIA RO, {R5 - R8}

STMDA R1!, {R2, R5, R7 - R9, R11}

A3-26 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

The ARM Instruction Set

A3.12.2 List of Load and Store Multiple instructions

LDM Load Multiple. See LDM (1) on page A4-36.

LDM User Registers Load Multiple. See LDM (2) on page A4-38.

LDM Load Multiple with Restore CPSR. See LDM (3) on page A4-40.
ST™ Store Multiple. See STM (1) on page A4-189.

ST™ User Registers Store Multiple. See STM (2) on page A4-191.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-27

The ARM Instruction Set

A3.13 Semaphore instructions

The ARM instruction set has two semaphore instructions:
. Swap (SWP)
. Swap Byte (SWPB).

These instructions are provided for process synchronization. Both instructions generate an atomic load and
store operation, allowing a memory semaphore to be loaded and altered without interruption.

SWP and SWPB have a single addressing mode, whose address is the contents of a register. Separate registers
are used to specify the value to store and the destination of the load. If the same register is specified for both
of these, SWP exchanges the value in the register and the value in memory.

The semaphore instructions do not provide a compare and conditional write facility. If wanted, this must be
done explicitly.

Note
The swap and swap byte instructions are deprecated in ARMv®6. It is recommended that all software
migrates to using the new LDREX and STREX synchronization primitives listed in List of load and store
instructions on page A3-25.

A3.13.1 Examples

Swp R12, R10, [R9] ; Toad R12 from address R9 and
store R10 to address R9

SWPB R3, R4, [R8] ; load byte to R3 from address R8 and
store byte from R4 to address R8

SWP R1, R1, [R2] ; Exchange value in R1 and address in R2

A3.13.2 List of semaphore instructions
Swp Swap. See SWP on page A4-212.

SWPB Swap Byte. See SWPB on page A4-214.

A3-28 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A3.14

A3.14.1

A3.14.2

The ARM Instruction Set

Exception-generating instructions

The ARM instruction set provides two types of instruction whose main purpose is to cause a processor
exception to occur:

. The Software Interrupt (SWI) instruction is used to cause a SWI exception to occur (see Software
Interrupt exception on page A2-20). This is the main mechanism in the ARM instruction set by which
User mode code can make calls to privileged Operating System code.

. The Breakpoint (BKPT) instruction is used for software breakpoints in ARMvVS and above. Its default
behavior is to cause a Prefetch Abort exception to occur (see Prefetch Abort (instruction fetch
memory abort) on page A2-20). A debug monitor program which has previously been installed on
the Prefetch Abort vector can handle this exception.

If debug hardware is present in the system, it is allowed to override this default behavior. Details of
whether and how this happens are IMPLEMENTATION DEFINED.

Instruction encodings

SWI{<cond>} <immed_24>

31 28 27 26 25 24 23 0

cond 1 111 immed_24

BKPT <immediate>

31 28 27 26 25 24 23 22 21 20 19 8 17 4 3 0

11 10/000100T10 immed 01 1 1| immed

In both SWI and BKPT, the immediate fields of the instruction are ignored by the ARM processor. The SWI or
Prefetch Abort handler can optionally be written to load the instruction that caused the exception and extract
these fields. This allows them to be used to communicate extra information about the Operating System call
or breakpoint to the handler.

List of exception-generating instructions

BKPT Breakpoint. See BKPT on page A4-14.

SWI Software Interrupt. See SWI on page A4-210.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-29

The ARM Instruction Set

A3.15

Coprocessor instructions

The ARM instruction set provides three types of instruction for communicating with coprocessors. These

allow:

. the ARM processor to initiate a coprocessor data processing operation

. ARM registers to be transferred to and from coprocessor registers

. the ARM processor to generate addresses for the coprocessor Load and Store instructions.

The instruction set distinguishes up to 16 coprocessors with a 4-bit field in each coprocessor instruction, so
each coprocessor is assigned a particular number.

Note

One coprocessor can use more than one of the 16 numbers if a large coprocessor instruction set is required.

Coprocessors execute the same instruction stream as ARM, ignoring ARM instructions and coprocessor
instructions for other coprocessors. Coprocessor instructions that cannot be executed by coprocessor
hardware cause an Undefined Instruction exception, allowing software emulation of coprocessor hardware.

A coprocessor can partially execute an instruction and then cause an exception. This is useful for handling
run-time-generated exceptions, like divide-by-zero or overflow. However, the partial execution is internal to
the coprocessor and is not visible to the ARM processor. As far as the ARM processor is concerned, the
instruction is held at the start of its execution and completes without exception if allowed to begin execution.
Any decision on whether to execute the instruction or cause an exception is taken within the coprocessor

before the ARM processor is allowed to

start executing the instruction.

Not all fields in coprocessor instructions are used by the ARM processor. Coprocessor register specifiers
and opcodes are defined by individual coprocessors. Therefore, only generic instruction mnemonics are
provided for coprocessor instructions. Assembler macros can be used to transform custom coprocessor
mnemonics into these generic mnemonics, or to regenerate the opcodes manually.

A3.15.1 Examples

Cbp p5, 2, cl12, c10, c3, 4 ;

MRC pl5, 5, R4, c0, c2, 3

MCR pl4, 1, R7, c7, c12, 6

LDC p6, CRL, [R4] ;

Coproc 5 data operation
opcode 1 = 2, opcode 2 = 4
destination register is 12
source registers are 10 and 3

Coproc 15 transfer to ARM register
opcode 1 = 5, opcode 2 = 3

ARM destination register = R4
coproc source registers are 0 and 2

ARM register transfer to Coproc 14
opcode 1 = 1, opcode 2 = 6

ARM source register = R7

coproc dest registers are 7 and 12

Load from memory to coprocessor 6

A3-30

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

LDC

STC

STC

p6, CR4, [R2, #4]

p8, CR8, [R2, #4]!

p8, CR9, [R2], #-16

ARM register 4 contains the address
Load to CP reg 1

Load from memory to coprocessor 6
ARM register R2 + 4 is the address
Load to CP reg 4

Store from coprocessor 8 to memory
ARM register R2 + 4 is the address
after the transfer R2 = R2 + 4
Store from CP reg 8

Store from coprocessor 8 to memory
ARM register R2 holds the address
after the transfer R2 = R2 - 16
Store from CP reg 9

A3.15.2 List of coprocessor instructions

CDP

LDC

MCR

MCRR

MRC

MRRC

STC

Coprocessor Data Operations. See CDP on page A4-23.

Load Coprocessor Register. See LDC on page A4-34.

The ARM Instruction Set

Move to Coprocessor from ARM Register. See MCR on page A4-62.

Move to Coprocessor from two ARM Registers. See MCRR on page A4-64.

Move to ARM Register from Coprocessor. See MRC on page A4-70.

Move to two ARM Registers from Coprocessor. See MRRC on page A4-72.

Store Coprocessor Register. See STC on page A4-186.

Note

MCRR and MRRC are only available in ARMVS5TE and above.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-31

The ARM Instruction Set

A3.16 Extending the instruction set
Successive versions of the ARM architecture have extended the instruction set in a number of areas. This
section describes the six areas where extensions have occurred, and where further extensions can occur in
the future:
. Media instruction space on page A3-33
. Multiply instruction extension space on page A3-35
. Control and DSP instruction extension space on page A3-36
. Load/store instruction extension space on page A3-38
. Architecturally Undefined Instruction space on page A3-39
. Coprocessor instruction extension space on page A3-40
. Unconditional instruction extension space on page A3-41.
Instructions in these areas which have not yet been allocated a meaning are either UNDEFINED or
UNPREDICTABLE. To determine which, use the following rules:
1. The decode bits of an instruction are defined to be bits[27:20] and bits[7:4].
In ARMVS and above, the result of ANDing bits[31:28] together is also a decode bit. This bit
determines whether the condition field is Ob1111, which is used in ARMvVS5 and above to encode
various instructions which can only be executed unconditionally. See Condition code Ob1111 on
page A3-4 and Unconditional instruction extension space on page A3-41 for more information.
2. If the decode bits of an instruction are equal to those of a defined instruction, but the whole instruction
is not a defined instruction, then the instruction is UNPREDICTABLE.
For example, suppose an instruction has:
. bits[31:28] not equal to Ob1111
. bits[27:20] equal to 0b00010000
o bits[7:4] equal to 0b0000
but where:
. bit[11] of the instruction is 1.
Here, the instruction is in the control instruction extension space and has the same decode bits as an
MRS instruction, but is not a valid MRS instruction because bit[11] of an MRS instruction should be zero.
Using the above rule, this instruction is UNPREDICTABLE.
3. If the decode bits of an instruction are not equal to those of any defined instruction, then the
instruction is UNDEFINED.
Rules 2 and 3 above apply separately to each ARM architecture version. As a result, the status of an
instruction might differ between architecture versions. Usually, this happens because an instruction which
was UNPREDICTABLE or UNDEFINED in an earlier architecture version becomes a defined instruction in a later
version.
For the purposes of this section, all coprocessor instructions described in Chapter A4 ARM Instructions as
appearing in a version of the architecture have been allocated. The definitions of any coprocessors using the
coprocessor instructions determine the function of the instructions. Such coprocessors can define
UNPREDICTABLE and UNDEFINED behaviours.
A3-32 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

A3.16.1 Media instruction space

Instructions with the following opcodes are defined as residing in the media instruction space:

opcode[27:25] = 0b011

opcode[4] =1

31

28 27 26 25 24

5 4 3

cond

0

1

1

op

X X X X X X X X X X X X X X X X X X|[l|[x X X X

The meaning of unallocated instructions in the media instruction space is UNDEFINED on all versions of the
ARM architecture.

Table A3-3 summarizes the instructions that have already been allocated in this area.

Table A3-3 Media instruction space

Instructions

Architecture versions

Parallel additions, subtractions, and addition with subtractions. See ARMV6 and above
Parallel addition and subtraction instructions on page A3-14.

PKH, SSAT, SSAT16, USAT, USAT16, SEL ARMV6 and above
Also sign/zero extend and add instructions. See Extend instructions on

page A3-16.

SMLAD, SMLSD, SMLALD, SMUAD, SMUSD ARMV6 and above
USADS, USADA8 ARMV6 and above
REV, REV16, REVSH ARMYV6 and above

Figure A3-2 on page A3-34 provides details of these instructions.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A3-33

The ARM Instruction Set

Parallel add/subtract
Halfword pack

Word saturate

Parallel halfword saturate

Byte reverse word

Byte reverse packed halfword

Byte reverse signed halfword

Select bytes

Sign/zero extend (add)

Multiplies (type 3)

Unsigned sum of absolute differences

Unsigned sum of absolute differences, acc

Rn* Rn !=RI15.

313029 28272625242322212019 1817 16151413121110 9 8 7 6 5 4 3 2 1 0
cond 01100/ opct Rn Rd SBO ‘ opc2 ‘ 1 Rm
cond 01101000 Rn Rd shift_imm |op| 0 1 Rm
cond 0110 1/U1 sat_imm Rd shift_imm [sh| 0 1 Rm
cond 0110 1/U/1 0| sat_imm Rd SBO 0011 Rm
cond 01101011 SBO Rd SBO 0011 Rm
cond 0110 1|0 11 SBO Rd SBO 1011 Rm
cond 0110 1|111 SBO Rd SBO 1011 Rm
cond 01101/000 Rn Rd SBO 1011 Rm
cond 01101 op Rn Rd rotate| SBZ |0 1 1 1 Rm
cond 0111 0| opct Rd/RdHi Rn/RdLo Rs opc2 ‘ 1 Rm
cond 01111000 Rd Rn* Rs 0001 Rm
cond 01111/000 Rd 111 Rs 0001 Rm

Figure A3-2 Media instructions

A3-34

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

The ARM Instruction Set

A3.16.2 Multiply instruction extension space
Instructions with the following opcodes are the multiply instruction extension space:
opcode[27:24] == 0b000O
opcode[7:4] == 0b1001
opcode[31:28] != @b111l /x Only required for version 5 and above x/

The field names given are guidelines suggested to simplify implementation.

31 28 27 26 25 24 23 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0000 opl Rn Rd Rs 1 001 Rm

Table A3-4 summarizes the instructions that have already been allocated in this area.

Table A3-4 Multiply instruction extension space

Instructions Architecture versions

MUL, MULS, MLA, MLAS All

UMULL, UMULLS, UMLAL, UMLALS, SMULL, SMULLS, All
SMLAL, SMLALS

UMAAL ARMV6 and above

Figure A3-3 provides details of these instructions.

313029282726 25242322212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 o
Multiply (acc) cond 00 0O0|O00O ‘ A‘ S Rd Rn Rs 100 1 Rm
Unsigned multiply acc acc long cond 00 O0OO01 00O RdHi RdLo Rs 100 1 Rm
Multiply (acc) long cond 0 0 0 0f1|Un A‘ S RdHi RdLo Rs 1.0 0 1 Rm

Figure A3-3 Multiply instructions

A Accumulate
Un 1 = Unsigned, 0 = Signed
S Status register update (SPSR => CPSR)

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-35

The ARM Instruction Set

A3.16.3 Control and DSP instruction extension space
Instructions with the following opcodes are the control instruction space.

opcode[27:26] == 0b00

opcode[24:23] == 0b10

opcode[20] =0

opcode[31:28] != Qb1111 /x Only required for version 5 and above =/

and not:

opcode[25] == @
opcode[7] ==1
opcode[4] ==1

The field names given are guidelines suggested to simplify implementation.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0
cond 0 0|01 Ofopl |O Rn Rd Rs op2 |0 Rm
cond 0 0|01 Of|opl |O Rn Rd Rs 0| op2 |1 Rm
cond 0 0|11 O|R|1]O Rn Rd rotate_imm immed_8

Table A3-5 summarizes the instructions that have already been allocated in this area.

Table A3-5 Control and DSP extension space instructions

Instruction Architecture versions

MRS All

MSR (register form) All

BX ARMYVS and above, plus T variants of
ARMv4

CLz ARMYVS5 and above

BXJ ARMVSEJ and above

BLX (register form) ARMYVS5 and above

QADD E variants of ARMv5 and above

QsuB E variants of ARMvS5 and above

QDADD E variants of ARMv5 and above

A3-36 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

Table A3-5 Control and DSP extension space instructions (continued)

Instruction Architecture versions

QDSUB E variants of ARMv5 and above
BKPT ARMVS5 and above

SMLA<x><y> E variants of ARMvS5 and above
SMLAW<y> E variants of ARMvS5 and above
SMULW<y> E variants of ARMvS5 and above
SMLAL<x><y> E variants of ARMvS5 and above
SMUL<x><y> E variants of ARMvS5 and above

MSR (immediate form) All

Figure A3-4 provides details of these instructions.

313029282726 25242322212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
Move status register to register cond 00O0T1O0|R|O|O SBO Rd SBZ 00O00O SBZ
Move register to status register cond 000 1O0|RIT|O mask SBO SBZ 0000 Rm
Move immediate to status register cond 001 10[R|1|0 mask SBO rot_imm immed

Branch/exchange instruction set Thumb cond 000100 1/0 SBO SBO SBO |0 0 0 1 Rm
Branch/exchange instruction set Java cond 000100 1|0 SBO SBO SBO 0010 Rm
Count leading zeros cond 000101 1|0 SBO Rd SBO 0001 Rm
Branch and link/exchange instruction set Thumb cond 00O010[0 1|0 SBO SBO SBO 0011 Rm
Saturating add/subtract cond 00O0¢10|o0p |0 Rn Rd SBzZ 0101 Rm

Software breakpoint cond 00O010|0 1|0 immed o111 immed
Signed multiplies (type 2) cond 00O01O0| op|O Rd ‘ Rn ‘ Rs 1y x 0 Rm

Figure A3-4 Miscellaneous instructions

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-37

The ARM Instruction Set

A3.16.4 Load/store instruction extension space

Instructions with the following opcodes are the load/store instruction extension space:

opcode[27:25] == 0b00O

opcode[7] =1

opcode[4] =1

opcode[31:28] != Qb1111 /+ Only required for version 5 and above x/
and not:

opcode[24] == 0
opcode[6:5] == @

The field names given are guidelines suggested to simplify implementation.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00 O0lPIUB|W|L Rn Rd Rs 1|opl |1 Rm

Table A3-6 summarizes the instructions that have already been allocated in this area.

Table A3-6 Load/store instructions

Instruction Architecture versions

SWP/SWPB All (deprecated in ARMv6)

LDREX ARMYV6 and above

STREX ARMYv6 and above

STRH All

LDRD E variants of ARMv5 and above,
except ARMVSTExP

STRD E variants of ARMv5 and above,
except ARMVSTExP

LDRH All

LDRSB All

LDRSH All

Figure A3-5 on page A3-39 provides details of these extra load/store instructions.

A3-38 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The ARM Instruction Set

31302928272625242322212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0

Swap/swap byte cond 00O01/0/B|0O O Rn Rd SBZ 1001 Rm

Load/store register exclusive cond 000 1/1 0o0lL Rn Rd SBO 100 1 SBO

Load/store halfword register offset cond 00 OlPlUlOW|L Rn Rd SBZ 101 1 Rm
Load/store halfword immediate offset cond 00 O|PlUITW|IL Rn Rd HiOffset |1 0 1 1| LoOffset
Load signed halfword/byte immediate offset cond 00 0|P|U[T W|1 Rn Rd HiOffset |1 1|H|1 | LoOffset

Load signed halfword/byte register offset cond 00 O|PUIOW|1 Rn Rd SBZ 1 1[H|1 Rm

Load/store doubleword register offset cond 00 O0[P|U|O|W[O Rn Rd SBZ 1 1(St[1 Rm
Load/store doubleword immediate offset cond 00 O0|PUIT|W|O Rn Rd HiOffset |1 1[St|1| LoOffset

Figure A3-5 Extra Load/store instructions
B 1 = Byte, 0 = Word
P,UI W Pre/post indexing or offset, Up/down, Immediate/register offset, and address Write-back
fields for the address mode. See Chapter A5 ARM Addressing Modes for more details.

L 1 =Load, 0 = Store
H 1= Halfword, 0 = Byte
St 1 = Store, 0 = Load

A3.16.5 Architecturally Undefined Instruction space

In general, Undefined instructions might be used to extend the ARM instruction set in the future. However,
it is intended that instructions with the following encoding will not be used for this:

31 28 27 26 25 24 23 22 21 20 19 8 7 6 5 4 3 2 10

cond 0111111T1|x x x X X X X X x x xx|I1 11 1|x x x X

If a programmer wants to use an Undefined instruction for software purposes, with minimal risk that future
hardware will treat it as a defined instruction, one of the instructions with this encoding must be used.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-39

The ARM Instruction Set

A3.16.6 Coprocessor instruction extension space

Instructions with the following opcodes are the coprocessor instruction extension space:

opcode[27:23] == 0b11000
opcode[21] =0

The field names given are guidelines suggested to simplify implementation.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1000[x|0|x Rn CRd cp_num offset

In all variants of ARMv4, and in non-E variants of ARMvS5, all instructions in the coprocessor instruction
extension space are UNDEFINED. It is IMPLEMENTATION DEFINED how an ARM processor achieves this. The
options are:

. The ARM processor might take the Undefined Instruction exception directly.

. The ARM processor might require attached coprocessors not to respond to such instructions. This
causes the Undefined Instruction exception to be taken (see Undefined Instruction exception on
page A2-19).

From E variants of ARMVS, instructions in the coprocessor instruction extension space are treated as
follows:

. Instructions with bit[22] == 0 are UNDEFINED and are handled in precisely the same way as described
above for non-E variants.

. Instructions with bit[22] ==1 are the MCRR and MRRC instructions, see MCRR on page A4-64 and MRRC
on page A4-72.

A3-40

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A3.16.7 Unconditional instruction extension space

The ARM Instruction Set

In ARMVS and above, instructions with the following opcode are the unconditional instruction space:

opcode[31:28] == 0b11lll

31 30 29 28 27 20 19

8 7 4 3 0

11 11 opcodel X X X X X X X X X X X X| opcode2 |X X X X

Table A3-7 summarizes the instructions that have already been allocated in this area.

Table A3-7 Unconditional instruction extension space

Instruction Architecture versions
CPS/SETEND ARMV6 and above
E variants of ARMv5 and
PLD above, except
ARMVSTEXP
RFE ARMVv6
SRS ARMvV6
BLX

(address form)

ARMYVS5 and above

MCRR2

MRRC2

STC2

ARMV6 and above
ARMV6 and above

ARMYVS5 and above

LDC2

ARMVS and above

CDP2

ARMYVS5 and above

MCR2

ARMYVS5 and above

MRC2

ARMYVS5 and above

Figure A3-6 on page A3-42 provides details of the unconditional instructions.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A3-41

The ARM Instruction Set

313029 28272625242322212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0

Change Processor State (1 1 1 1/0 0 0 1 0 0 0 O|imod|{M|O SBZ A I‘F‘O‘ mode
S
Set Endianness |1 1 1 1|0 0 0 1 0 0 0 0/0 O O|1 SBzZ ‘E g 000 0‘ SBZ
Cache Preload |1 1 1 1|0 1|X|1(U|1 0 1 Rn 17111 addr_mode

Save Return State |1 1 1 1|1 0 O/P|{U|1/W/ 0|1 101 SBZ 0101 SBZ‘ mode

Return From Exception {1 1 1 1|1 0 O|P[U|0|W|1 Rn SBZ 1010 SBZ

Branch with Link ;
and change to Thumb 11110 1H 24-bit offset

Additional coprocessor
double register transfer |1 1 1 1|1 1000 1 0/L Rn Rd cp_num | opcode CRm

Additional coprocessor
register transfer 17111111 0| opct L CRn Rd cp_num opc2 |1 CRm

Undefined instruction {1 1 1 11 1 1 1/x x X

Figure A3-6 Unconditional instructions
mmod

X In addressing mode 2, X=0 implies an immediate offset/index, and X=1 a register based
offset/index.

A3-42 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter A4
ARM Instructions

This chapter describes the syntax and usage of every ARM? instruction, in the sections:
. Alphabetical list of ARM instructions on page A4-2

. ARM instructions and architecture versions on page A4-286.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-1

ARM Instructions

A4.1 Alphabetical list of ARM instructions
Every ARM instruction is listed on the following pages. Each instruction description shows:
. the instruction encoding
. the instruction syntax
. the version of the ARM architecture where the instruction is valid
. any exceptions that apply
. an example in pseudo-code of how the instruction operates
. notes on usage and special cases.
A4.1.1 General notes
These notes explain the types of information and abbreviations used on the instruction pages.
Addressing modes
Many instructions refer to one of the addressing modes described in Chapter A5 ARM Addressing Modes.
The description of the referenced addressing mode should be considered an intrinsic part of the instruction
description.
In particular:
. The addressing mode’s encoding diagram and assembler syntax provide additional details over and
above the instruction’s encoding diagram and assembler syntax.
. The addressing mode’s Operation pseudo-code calculates values used in the instruction’s
pseudo-code, and in some cases specify additional effects of the instruction.
. All usage notes, operand restrictions, and other notes about the addressing mode apply to the
instruction.
Syntax abbreviations
The following abbreviations are used in the instruction pages:
immed_n This is an immediate value, where n is the number of bits. For example, an 8-bit immediate
value is represented by:
immed_8
offset_n This is an offset value, where n is the number of bits. For example, an 8-bit offset value is
represented by:
offset_8
The same construction is used for signed offsets. For example, an 8-bit signed offset is
represented by:
signed_offset_8
A4-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Encoding diagram and assembler syntax

For the conventions used, see Assembler syntax descriptions on page XXii.

Architecture versions

This gives details of architecture versions where the instruction is valid. For further information on
architecture versions, see Architecture versions and variants on page Xiii.

Exceptions

This gives details of which exceptions can occur during the execution of the instruction. Prefetch Abort is
not listed in general, both because it can occur for any instruction and because if an abort occurred during
instruction fetch, the instruction bit pattern is not known. (Prefetch Abort is however listed for BKPT, since it
can generate a Prefetch Abort exception without these considerations applying.)

Operation
This gives a pseudo-code description of what the instruction does. For details of conventions used in this

pseudo-code, see Pseudo-code descriptions of instructions on page xxi.

Information on usage

Usage sections are included where appropriate to supply suggestions and other information about how to
use the instruction effectively.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-3

ARM Instructions

A4.1.2 ADC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|Ifo0 1 0 1(S Rn Rd shifter_operand

ADC (Add with Carry) adds two values and the Carry flag. The first value comes from a register. The second
value can be either an immediate value or a value from a register, and can be shifted before the addition.

ADC can optionally update the condition code flags, based on the result.

Syntax

ADC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the
instruction. Two types of CPSR update can occur when S is specified:

o If <Rd> is not R15, the N and Z flags are set according to the result of the addition, and
the Cand V flags are set according to whether the addition generated a carry (unsigned
overflow) and a signed overflow, respectively. The rest of the CPSR is unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page AS-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not ADC.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

A4-4 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = Rn + shifter_operand + C Flag
if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then
CPSR = SPSR
else UNPREDICTABLE
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + shifter_operand + C Flag)

V Flag = OverflowFrom(Rn + shifter_operand + C Flag)

Usage

Use ADC to synthesize multi-word addition. If register pairs RO, R1 and R2, R3 hold 64-bit values (where RO
and R2 hold the least significant words) the following instructions leave the 64-bit sum in R4, R5:

ADDS R4,R0,R2
ADC R5,RL,R3

If the second instruction is changed from:
ADC R5,RL,R3

to:
ADCS R5,R1,R3

the resulting values of the flags indicate:

N The 64-bit addition produced a negative result.
C An unsigned overflow occurred.

\ A signed overflow occurred.

VA The most significant 32 bits are all zero.

The following instruction produces a single-bit Rotate Left with Extend operation (33-bit rotate through the
Carry flag) on RO:

ADCS RQ,R0,R0O

See Data-processing operands - Rotate right with extend on page A5-17 for information on how to perform
a similar rotation to the right.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-5

ARM Instructions

A4.13 ADD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|If0O 1 0 O0fS Rn Rd shifter operand

ADD adds two values. The first value comes from a register. The second value can be either an immediate
value or a value from a register, and can be shifted before the addition.

ADD can optionally update the condition code flags, based on the result.

Syntax

ADD{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The condition field on page A3-3.
If <cond> is omitted, the AL (always) condition is used.

S Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the
instruction. Two types of CPSR update can occur when S is specified:

o If <Rd> is not R15, the N and Z flags are set according to the result of the addition, and
the Cand V flags are set according to whether the addition generated a carry (unsigned
overflow) and a signed overflow, respectively. The rest of the CPSR is unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page AS-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not ADD.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

A4-6 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = Rn + shifter_operand
if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then
CPSR = SPSR
else UNPREDICTABLE
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + shifter_operand)

V Flag = OverflowFrom(Rn + shifter_operand)

Usage

Use ADD to add two values together.

To increment a register value in Rx use:

ADD Rx, Rx, #1

You can perform constant multiplication of Rx by 27+1 into Rd with:
ADD Rd, Rx, Rx, LSL #n

To form a PC-relative address use:

ADD Rd, PC, #offset

where the offset must be the difference between the required address and the address held in the PC, where
the PC is the address of the ADD instruction itself plus 8 bytes.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-7

ARM Instructions

A4.1.4 AND

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|If0 0 0 OfS Rn Rd shifter_operand

AND performs a bitwise AND of two values. The first value comes from a register. The second value can be
either an immediate value or a value from a register, and can be shifted before the AND operation.

AND can optionally update the condition code flags, based on the result.

Syntax

AND{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the
instruction. Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shifter (see Addressing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

o If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not AND.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

A4-8

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then

Rd = Rn AND shifter_operand

if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then

CPSR = SPSR

else UNPREDICTABLE

else if S == 1 then
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

Usage

AND is most useful for extracting a field from a register, by ANDing the register with a mask value that has
1s in the field to be extracted, and Os elsewhere.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-9

ARM Instructions

A415 B,BL

31 28 27 26 25 24 23 0

cond 1 0 1|L signed_immed_24

B (Branch) and BL (Branch and Link) cause a branch to a target address, and provide both conditional and
unconditional changes to program flow.

BL also stores a return address in the link register, R14 (also known as LR).

Syntax

B{L}{<cond>} <target_address>

where:

L Causes the L bit (bit 24) in the instruction to be set to 1. The resulting instruction stores a
return address in the link register (R14). If L is omitted, the L bit is 0 and the instruction
simply branches without storing a return address.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<target_address>
Specifies the address to branch to. The branch target address is calculated by:
1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits.
2. Shifting the result left two bits to form a 32-bit value.

3. Adding this to the contents of the PC, which contains the address of the branch
instruction plus 8 bytes.

The instruction can therefore specify a branch of approximately £32MB (see Usage on
page A4-11 for precise range).

Architecture version

All

Exceptions

None.

A4-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
if L == 1 then
LR = address of the instruction after the branch instruction
PC = PC + (SignExtend_30(signed_immed_24) << 2)

Usage

Use BL to perform a subroutine call. The return from subroutine is achieved by copying R14 to the PC.
Typically, this is done by one of the following methods:

. Executing a BX R14 instruction, on architecture versions that support that instruction.
. Executing a MOV PC,R14 instruction.
. Storing a group of registers and R14 to the stack on subroutine entry, using an instruction of the form:

STMFD R13!,{<registers>,R14}
and then restoring the register values and returning with an instruction of the form:
LDMFD R13!,{<registers>,PC}

To calculate the correct value of signed_immed_24, the assembler (or other toolkit component) must:

1. Form the base address for this branch instruction. This is the address of the instruction, plus 8. In
other words, this base address is equal to the PC value used by the instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is always a multiple
of four, because all ARM instructions are word-aligned.

3. If the byte offset is outside the range —33554432 to +33554428, use an alternative code-generation
strategy or produce an error as appropriate.

4. Otherwise, set the signed_immed_24 field of the instruction to bits{25:2] of the byte offset.

Notes

Memory bounds Branching backwards past location zero and forwards over the end of the 32-bit
address space is UNPREDICTABLE.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-11

ARM Instructions

A4.1.6 BIC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0Oo0|Ifr 11 0(S Rn Rd shifter_operand

BIC (Bit Clear) performs a bitwise AND of one value with the complement of a second value. The first value
comes from a register. The second value can be either an immediate value or a value from a register, and can
be shifted before the BIC operation.

BIC can optionally update the condition code flags, based on the result.

Syntax

BIC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Causes the S bit, bit[20], in the instruction to be set to 1 and specifies that the instruction
updates the CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the
instruction. Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shifter (see Addressing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is O and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not BIC.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

A4-12

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = Rn AND NOT shifter_operand
if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then
CPSR = SPSR
else UNPREDICTABLE
else if S == 1 then
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

Usage

Use BIC to clear selected bits in a register. For each bit, BIC with 1 clears the bit, and BIC with 0 leaves it
unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-13

ARM Instructions

A4.1.7 BKPT

31 28 27 26 25 24 23 22 21 20 19 8 7 4 3 0

1 110/0001O00O0T10O0 immed 01 1 1| immed

BKPT (Breakpoint) causes a software breakpoint to occur. This breakpoint can be handled by an exception
handler installed on the Prefetch Abort vector. In implementations that also include debug hardware, the
hardware can optionally override this behavior and handle the breakpoint itself. When this occurs, the
Prefetch Abort exception context is presented to the debugger.

Syntax
BKPT <immed_16>
where:

<immed_16> Is a 16-bit immediate value. The top 12 bits of <immed_16> are placed in bits[19:8]
of the instruction, and the bottom 4 bits are placed in bits[3:0] of the instruction.
This value is ignored by the ARM hardware, but can be used by a debugger to store
additional information about the breakpoint.

Architecture version

Version 5 and above.

Exceptions

Prefetch Abort.

Operation

if (not overridden by debug hardware)
R14_abt = address of BKPT instruction + 4

SPSR_abt = CPSR

CPSR[4:0] = 0bl0111 /+ Enter Abort mode «/

CPSR[5] =10 /% Execute in ARM state =/

/% CPSR[6] is unchanged =/

CPSR[7] =1 /+ Disable normal interrupts =/

CPSR[8] =1 /+ Disable imprecise aborts - v6 only #/

CPSR[9] = CP15_regl_EEbit

if high vectors configured then
PC = OxFFFFOQOC

else
PC = 0x0000000C

A4-14

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

The exact usage of BKPT depends on the debug system being used. A debug system can use the BKPT
instruction in two ways:

Monitor debug-mode. Debug hardware, (optional prior to ARMv6), does not override the normal
behavior of the BKPT instruction, and so the Prefetch Abort vector is entered. The IFSR is updated to
indicate a debug event, allowing software to distinguish debug events due to BKPT instruction
execution from other system Prefetch Aborts.

When used in this manner, the BKPT instruction must be avoided within abort handlers, as it corrupts
R14_abt and SPSR_abt. For the same reason, it must also be avoided within FIQ handlers, since an
FIQ interrupt can occur within an abort handler.

Halting debug-mode. Debug hardware does override the normal behavior of the BKPT instruction and
handles the software breakpoint itself. When finished, it typically either resumes execution at the
instruction following the BKPT, or replaces the BKPT in memory with another instruction and resumes
execution at that instruction.

‘When BKPT is used in this manner, R14_abt and SPSR_abt are not corrupted, and so the above
restrictions about its use in abort and FIQ handlers do not apply.

Notes

Condition field BKPT is unconditional. If bits[31:28] of the instruction encode a valid condition other

than the AL (always) condition, the instruction is UNPREDICTABLE.

Hardware override Debug hardware in an implementation is specifically permitted to override the

normal behavior of the BKPT instruction. Because of this, software must not use this
instruction for purposes other than those documented by the debug system being
used (if any). In particular, software cannot rely on the Prefetch Abort exception
occurring, unless either there is guaranteed to be no debug hardware in the system
or the debug system specifies that it occurs.

For more information, consult the documentation for the debug system being used.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-15

ARM Instructions

A4.1.8 BLX(1)

31 30 29 28 27 26 25 24 23 0

1 11 1|1 0 1|H signed_immed_24

BLX (1) (Branch with Link and Exchange) calls a Thumb® subroutine from the ARM instruction set at an
address specified in the instruction.

This form of BLX is unconditional (always causing a change in program flow) and preserves the address of
the instruction following the branch in the link register (R14). Execution of Thumb instructions begins at
the target address.

Syntax
BLX <target_addr>
where:

<target_addr> Specifies the address of the Thumb instruction to branch to. The branch target
address is calculated by:

1. Sign-extending the 24-bit signed (two's complement) immediate to 30 bits
2. Shifting the result left two bits to form a 32-bit value

3. Setting bit[1] of the result of step 2 to the H bit
4

Adding the result of step 3 to the contents of the PC, which contains the
address of the branch instruction plus 8.

The instruction can therefore specify a branch of approximately +32MB (see Usage
on page A4-17 for precise range).
Architecture version

Version 5 and above. See The T and J bits on page A2-15 for further details of operation on non-T variants.

Exceptions

None.

Operation

LR = address of the instruction after the BLX instruction
CPSR T bit =1
PC = PC + (SignExtend(signed_immed_24) << 2) + (H << 1)

A4-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage
To return from a Thumb subroutine called via BLX to the ARM caller, use the Thumb instruction:
BX R14
as described in BX on page A7-32, or use this instruction on subroutine entry:
PUSH {<registers>,R14}
and this instruction to return:
POP {<registers>,PC}
To calculate the correct value of signed_immed_24, the assembler (or other toolkit component) must:

1. Form the base address for this branch instruction. This is the address of the instruction, plus 8. In
other words, this base address is equal to the PC value used by the instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is always even,
because all ARM instructions are word-aligned and all Thumb instructions are halfword-aligned.

3. If the byte offset is outside the range —33554432 to +33554430, use an alternative code-generation
strategy or produce an error as appropriate.

4. Otherwise, set the signed_immed_24 field of the instruction to bits[25:2] of the byte offset, and the
H bit of the instruction to bit[1] of the byte offset.

Notes
Condition Unlike most other ARM instructions, this instruction cannot be executed conditionally.
Bit[24] This bit is used as bit[1] of the target address.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-17

ARM Instructions

A4.1.9 BLX(2)

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00010010 SBO SBO SBO 0011 Rm

BLX (2) calls an ARM or Thumb subroutine from the ARM instruction set, at an address specified in a
register.

It sets the CPSR T bit to bit[0] of Rm. This selects the instruction set to be used in the subroutine.
The branch target address is the value of register Rm, with its bit[0] forced to zero.

It sets R14 to a return address. To return from the subroutine, use a BX R14 instruction, or store R14 on the
stack and reload the stored value into the PC.

Syntax

BLX{<cond>} <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rm> Is the register containing the address of the target instruction. Bit[0] of Rm is O to select a

target ARM instruction, or 1 to select a target Thumb instruction. If R15 is specified for
<Rm>, the results are UNPREDICTABLE.
Architecture version

Version 5 and above. See The T and J bits on page A2-15 for further details of operation on non-T variants.

Exceptions

None.

Operation

if ConditionPassed(cond) then
target = Rm
LR = address of instruction after the BLX instruction
CPSR T bit = target[0]
PC = target AND OxFFFFFFFE

A4-18 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Notes

ARM/Thumb state transfers

If Rm[1:0] == 0b10, the result is UNPREDICTABLE, as branches to non word-aligned
addresses are impossible in ARM state.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-19

ARM Instructions

A4.1.10 BX

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00010010 SBO SBO SBO 0001 Rm

BX (Branch and Exchange) branches to an address, with an optional switch to Thumb state.

Syntax

BX{<cond>} <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rm> Holds the value of the branch target address. Bit[0] of Rm is 0 to select a target ARM

instruction, or 1 to select a target Thumb instruction.

Architecture version

Version 5 and above, and T variants of version 4. See The T and J bits on page A2-15 for further details of
operation on non-T variants of version 5.

Exceptions

None.

Operation

if ConditionPassed(cond) then
CPSR T bit = Rm[Q]
PC = Rm AND OXFFFFFFFE

Notes

ARM/Thumb state transfers

If Rm[1:0] == 0b10, the result is UNPREDICTABLE, as branches to non word-aligned
addresses are impossible in ARM state.

Use of R15 Register 15 can be specified for <Rm>, but doing so is discouraged.

In a BX R15 instruction, R15 is read as normal for ARM code, that is, it is the address of the
BX instruction itself plus 8. The result is to branch to the second following word, executing
in ARM state. This is precisely the same effect that would have been obtained if a B
instruction with an offset field of 0 had been executed, or an ADD PC,PC,#0 or MOV PC,PC
instruction. In new code, use these instructions in preference to the more complex BX PC
instruction.

A4-20 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.11 BXJ

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00010O0T1O0 SBO SBO SBO 0010 Rm

BXJ (Branch and change to Jazelle® state) enters Jazelle state if Jazelle is available and enabled. Otherwise
BXJ behaves exactly as BX (see BX on page A4-20).

Syntax

BXJ{<cond>} <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rm> Holds the value of the branch target address for use if Jazelle state is not available. Bit[0] of

Rm is O to select a target ARM instruction, or 1 to select a target Thumb instruction.

Architecture version

Version 6 and above, plus ARMvVSTEJ.

Exceptions

None.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-21

ARM Instructions

Operation

if ConditionPassed(cond) then
if (JE bit of Main Configuration register) == @ then
T Flag = Rm[Q]
PC = Rm AND OxFFFFFFFE
else
jpc = SUB-ARCHITECTURE DEFINED value
invalidhandler = SUB-ARCHITECTURE DEFINED value
if (Jazelle Extension accepts opcode at jpc) then
if (CV bit of Jazelle 0S Control register) == @ then
PC = invalidhandler
else
JFlag=1
Start opcode execution at jpc
else
if ((CV bit of Jazelle 0S Control register) == 0) AND
(IMPLEMENTATION DEFINED CONDITION) then
PC = invalidhandler
else

/+ Subject to SUB-ARCHITECTURE DEFINED restrictions on Rm: x/
T Flag = Rm[0]
PC = Rm AND OxFFFFFFFE
Usage
This instruction must only be used if one of the following conditions is true:
. The JE bit of the Main Configuration Register is 0.
. The Enabled Java Virtual Machine in use conforms to all the SUB-ARCHITECTURE DEFINED

restrictions of the Jazelle Extension hardware being used.

Notes

ARM/Thumb state transfers
IF (JE bit of Main Configuration register) ==

AND Rm[1:0] == Ob10, the result is UNPREDICTABLE, as branches to non word-aligned

addresses are impossible in ARM state.
Use of R15 If register 15 is specified for <Rm>, the result is UNPREDICTABLE.

Jazelle opcode address

The Jazelle opcode address is determined in a SUB-ARCHITECTURE DEFINED manner,
typically from the contents of a specific general-purpose register, the Jazelle Program

Counter (jpc).

A4-22 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.12 CDP

ARM Instructions

31 28 27 26 25 24 23 20 19 16 15 12 11 8 7 5 4 3 0

cond

1

1

1

0| opcode_1 CRn CRd cp_num |opcode_2{ 0 CRm

CDP (Coprocessor Data Processing) tells the coprocessor whose number is cp_num to perform an operation
that is independent of ARM registers and memory. If no coprocessors indicate that they can execute the
instruction, an Undefined Instruction exception is generated.

Syntax

CDP{<cond>} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>, <opcode_2>

CDP2

where:

<cond>

CDP2

<coproc>

<opcode_1>

<CRd>
<CRn>
<CRm>

<opcode_2>

<coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>, <opcode_2>

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Causes the condition field of the instruction to be set to Ob1111. This provides
additional opcode space for coprocessor designers. The resulting instructions can
only be executed unconditionally.

Specifies the name of the coprocessor, and causes the corresponding coprocessor
number to be placed in the cp_num field of the instruction. The standard generic
coprocessor names are p0, pl, ..., p15.

Specifies (in a coprocessor-specific manner) which coprocessor operation is to be
performed.

Specifies the destination coprocessor register for the instruction.
Specifies the coprocessor register that contains the first operand.
Specifies the coprocessor register that contains the second operand.

Specifies (in a coprocessor-specific manner) which coprocessor operation is to be
performed.

Architecture version

CDP is in all versions.

CDP2 is in version 5 and above.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-23

ARM Instructions

Exceptions

Undefined Instruction.

Operation

if ConditionPassed(cond) then
Coprocessor[cp_num]-dependent operation

Usage

Use CDP to initiate coprocessor instructions that do not operate on values in ARM registers or in main
memory. An example is a floating-point multiply instruction for a floating-point coprocessor.

Notes

Coprocessor fields Only instruction bits[31:24], bits[11:8], and bit[4] are architecturally defined. The
remaining fields are recommendations, for compatibility with ARM Development
Systems.

Unimplemented coprocessor instructions

Hardware coprocessor support is optional for coprocessors 0-13, regardless of the
architecture version, and is optional for coprocessors 14 and 15 before ARMv6. An
implementation can choose to implement a subset of the coprocessor instructions,
or no coprocessor instructions at all. Any coprocessor instructions that are not
implemented instead cause an Undefined Instruction exception.

A4-24 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.13 CLZ

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00010110 SBO Rd SBO 0001 Rm

CLZ (Count Leading Zeros) returns the number of binary zero bits before the first binary one bit in a value.

CLZ does not update the condition code flags.

Syntax

CLZ{<cond>} <Rd>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the operation. If R15 is specified for <Rd>, the result is
UNPREDICTABLE.

<Rm> Specifies the source register for this operation. If R15 is specified for <Rm>, the result is
UNPREDICTABLE.

Architecture version

Version 5 and above.

Exceptions

None.

Operation

if Rm ==
Rd = 32
else
Rd = 31 - (bit position of most significant'l' in Rm)

Usage

Use CLZ followed by a left shift of Rm by the resulting Rd value to normalize the value of register Rm. This
shifts Rm so that its most significant 1 bit is in bit[31]. Using MOVS rather than MOV sets the Z flag in the special
case that Rm is zero and so does not have a most significant 1 bit:

CLZ Rd, Rm
MOVS Rm, Rm, LSL Rd

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-25

ARM Instructions

A4.1.14 CMN

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0[I|1 O01T1]1 Rn SBZ shifter_operand

CMN (Compare Negative) compares one value with the twos complement of a second value. The first value
comes from a register. The second value can be either an immediate value or a value from a register, and can
be shifted before the comparison.

CMN updates the condition flags, based on the result of adding the two values.

Syntax

CMN{<cond>} <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not CMN.
Instead, see Multiply instruction extension space on page A3-35 to determine which
instruction it is.

Architecture version

All

Exceptions

None.

Operation

if ConditionPassed(cond) then
alu_out = Rn + shifter_operand
N Flag = alu_out[31]
Z Flag = if alu_out == @ then 1 else 0
C Flag = CarryFrom(Rn + shifter_operand)
V Flag = OverflowFrom(Rn + shifter_operand)

A4-26

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

CMN performs a comparison by adding the value of <shifter_operand> to the value of register <Rn>, and
updates the condition code flags (based on the result). This is almost equivalent to subtracting the negative
of the second operand from the first operand, and setting the flags on the result.

The difference is that the flag values generated can differ when the second operand is O or 0x80000000. For
example, this instruction always leaves the C flag = 1:

CMP Rn, #0
and this instruction always leaves the C flag = 0:

CMN Rn, #0

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-27

ARM Instructions

A4.1.15 CMP

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|Ifl 01 0]1 Rn SBZ shifter_operand

CMP (Compare) compares two values. The first value comes from a register. The second value can be either
an immediate value or a value from a register, and can be shifted before the comparison.

CMP updates the condition flags, based on the result of subtracting the second value from the first.

Syntax

CMP{<cond>} <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not CMP.
Instead, see Multiply instruction extension space on page A3-35 to determine which
instruction it is.

Architecture version

All

Exceptions

None.

Operation

if ConditionPassed(cond) then
alu_out = Rn - shifter_operand
N Flag = alu_out[31]
Z Flag = if alu_out == @ then 1 else 0
C Flag = NOT BorrowFrom(Rn - shifter_operand)
V Flag = OverflowFrom(Rn - shifter_operand)

A4-28

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.16 CPS
31 30 29 28 27 26 25 24 23 2221 2019 18 17 1615 9 8 7 6 5 4 0
111 1{0 0 01 0 0 0 0]|imod|{mmod|0 SBZ A|T|F|0 mode

CPS (Change Processor State) changes one or more of the mode, A, I, and F bits of the CPSR, without
changing the other CPSR bits.

Syntax
CPS<effect> <iflags> {, #<mode>}
CPS #<mode>

where:

<effect> Specifies what effect is wanted on the interrupt disable bits A, I, and F in the CPSR. This is
one of:

IE Interrupt Enable, encoded by imod == 0b10. This sets the specified bits to 0.
ID Interrupt Disable, encoded by imod == Ob11. This sets the specified bits to 1.

If <effect> is specified, the bits to be affected are specified by <iflags>. These are encoded
in the A, I, and F bits of the instruction. The mode can optionally be changed by specifying
a mode number as <mode>.

If <effect> is not specified, then:

. <iflags> is not specified and the A, I, and F mask settings are not changed

. the A, I, and F bits of the instruction are zero

. imod = 0b00

. mmod = 0bl

. <mode> specifies the new mode number.

<iflags> Is a sequence of one or more of the following, specifying which interrupt disable flags are
affected:

a Sets the A bit in the instruction, causing the specified effect on the CPSR A
(imprecise data abort) bit.

i Sets the I bit in the instruction, causing the specified effect on the CPSR I (IRQ
interrupt) bit.

f Sets the F bit in the instruction, causing the specified effect on the CPSR F (FIQ
interrupt) bit.

<mode> Specifies the number of the mode to change to. If it is present, then mmod == 1 and the mode
number is encoded in the mode field of the instruction. If it is omitted, then mmod == 0 and
the mode field of the instruction is zero. See The mode bits on page A2-14 for details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-29

ARM Instructions

Architecture version

Version 6 and above.

Exceptions

None.

Operation

if InAPrivilegedMode() then

if imod[1] == 1 then
if A == 1 then CPSR[8] = imod[0]
if I == 1 then CPSR[7] = imod[0]
if F == 1 then CPSR[6] = imod[0]

/% else no change to the mask =/

if mmod == 1 then
CPSR[4:0] = mode

Notes

User mode CPS has no effect in User mode.

Meaningless bit combinations

The following combinations of imod and mmod are meaningless:
o imod == 0b00, mmod == 0
o imod == 0b01, mmod == 0

o imod == 0b01, mmod ==

An assembler must not generate them. The effects are UNPREDICTABLE on execution.

Condition Unlike most other ARM instructions, CPS cannot be executed conditionally.

Reserved modes An attempt to change mode to a reserved value is UNPREDICTABLE

Examples
CPSIE a,#31 ; enable imprecise data aborts, change to System mode
CPSID if ; disable interrupts and fast interrupts
CPS #16 ; change to User mode

A4-30

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A4.1.17 CPY

31

ARM Instructions

28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond

00011010 SBZ Rd 000O0O0OO0O0O0OO Rm

CPY (Copy) copies a value from one register to another. It is a synonym for MOV, with no flag setting and no
shift. See MOV on page A4-68.

Syntax

CPY{<cond>} <Rd>, <Rm>

where:

<cond>

<Rd>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.
Specifies the source register.

Architecture version

Version 6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then

Rd =

Rm

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-31

ARM Instructions

A4.1.18 EOR

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|If0 OO0 1|S Rn Rd shifter_operand

EOR (Exclusive OR) performs a bitwise Exclusive-OR of two values. The first value comes from a register.
The second value can be either an immediate value or a value from a register, and can be shifted before the
exclusive OR operation.

EOR can optionally update the condition code flags, based on the result.

Syntax

EOR{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the

CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shifter (see Addressing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.
<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is O and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not EOR.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

A4-32

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then

Rd = Rn EOR shifter_operand

if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then

CPSR = SPSR

else UNPREDICTABLE

else if S == 1 then
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

Usage

Use EOR to invert selected bits in a register. For each bit, EOR with 1 inverts that bit, and EOR with O leaves it
unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-33

ARM Instructions

A4.1.19 LDC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 O0|P|[UIN|W|I Rn CRd cp_num 8_bit_word_offset

LDC (Load Coprocessor) loads memory data from a sequence of consecutive memory addresses to a
COProcessor.

If no coprocessors indicate that they can execute the instruction, an Undefined Instruction exception is
generated.

Syntax

LDC{<cond>}{L} <coproc>, <CRd>, <addressing_mode>

LDC2{L} <coproc>, <CRd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

LDC2 Causes the condition field of the instruction to be set to Ob1111. This provides additional
opcode space for coprocessor designers. The resulting instructions can only be executed
unconditionally.

L Sets the N bit (bit[22]) in the instruction to 1 and specifies a long load (for example,

double-precision instead of single-precision data transfer). If L is omitted, the N bit is 0 and
the instruction specifies a short load.

<coproc> Specifies the name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names
are p0, pl, ..., p15.

<CRd> Specifies the coprocessor destination register.

<addressing_mode>

Is described in Addressing Mode 5 - Load and Store Coprocessor on page A5-49. It
determines the P, U, Rn, W and 8_bit_word_offset bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register
write-back).

Architecture version
LDC is in all versions.

LDC2 is in version 5 and above.

A4-34

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

Undefined Instruction, Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
address = start_address
Toad Memory[address,4] for Coprocessor[cp_num]
while (NotFinished(Coprocessor[cp_num]))
address = address + 4
Toad Memory[address,4] for Coprocessor[cp_num]
assert address == end_address

Usage

LDC is useful for loading coprocessor data from memory.

Notes

Coprocessor fields Only instruction bits[31:23], bits[21:16], and bits[11:0] are ARM
architecture-defined. The remaining fields (bit[22] and bits[15:12]) are
recommendations, for compatibility with ARM Development Systems.

In the case of the Unindexed addressing mode (P==0, U==1, W==0), instruction
bits[7:0] are also not defined by the ARM architecture, and can be used to specify
additional coprocessor options.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of
data-aborted instructions on page A2-21.

Non word-aligned addresses

For CP15_regl_Ubit==0, the load coprocessor register instruction ignores the least
significant two bits of the address. If an implementation includes a System Control
coprocessor (see Chapter B3 The System Control Coprocessor), and alignment
checking is enabled, an address with bits[1:0] != 0b00 causes an alignment
exception.

For CP15_regl_Ubit == 1, all non-word aligned accesses cause an alignment fault.

Unimplemented coprocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version.
An implementation can choose to implement a subset of the coprocessor
instructions, or no coprocessor instructions at all. Any coprocessor instructions that
are not implemented instead cause an Undefined Instruction exception.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-35

ARM Instructions

A4.1.20 LDM (1)

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 O|P{U|0|W|I Rn register_list

LDM (1) (Load Multiple) loads a non-empty subset, or possibly all, of the general-purpose registers from
sequential memory locations. It is useful for block loads, stack operations and procedure exit sequences.

The general-purpose registers loaded can include the PC. If they do, the word loaded for the PC is treated
as an address and a branch occurs to that address. In ARMv5 and above, bit[0] of the loaded value
determines whether execution continues after this branch in ARM state or in Thumb state, as though a BX
(Toaded_value) instruction had been executed (but see also The T and J bits on page A2-15 for operation on
non-T variants of ARMVS). In earlier versions of the architecture, bits[1:0] of the loaded value are ignored
and execution continues in ARM state, as though the instruction MOV PC, (Toaded_value) had been executed.

Syntax

LDM{<cond>}<addressing_mode> <Rn>{!}, <registers>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<addressing_mode>

Is described in Addressing Mode 4 - Load and Store Multiple on page A5-41. It determines
the P, U, and W bits of the instruction.

<Rn> Specifies the base register used by <addressing_mode>. Using R15 as the base register <Rn>
gives an UNPREDICTABLE result.

Sets the W bit, causing the instruction to write a modified value back to its base register Rn
as specified in Addressing Mode 4 - Load and Store Multiple on page A5-41.1f ! is omitted,
the W bit is 0 and the instruction does not change its base register in this way. (However, if
the base register is included in <registers>, it changes when a value is loaded into it.)

<registers>

Is a list of registers, separated by commas and surrounded by { and }. It specifies the set of
registers to be loaded by the LDM instruction.

The registers are loaded in sequence, the lowest-numbered register from the lowest memory
address (start_address), through to the highest-numbered register from the highest memory
address (end_address). If the PC is specified in the register list (opcode bit[15] is set),

the instruction causes a branch to the address (data) loaded into the PC.

For each of i=0 to 15, bit[i] in the register_list field of the instruction is 1 if Ri is in the list
and O otherwise. If bits[15:0] are all zero, the result is UNPREDICTABLE.

A4-36 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Architecture version

All

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
address = start_address

for i = 0 to 14
if register_list[i] == 1 then
Ri = Memory[address,4]
address = address + 4

if register_1ist[15] == 1 then
value = Memory[address,4]
if (architecture version 5 or above) then
pc = value AND OXFFFFFFFE
T Bit = value[0]
else
pc = value AND OxFFFFFFFC
address = address + 4
assert end_address == address - 4

Notes

Operand restrictions
If the base register <Rn> is specified in <registers>, and base register write-back is specified,
the final value of <Rn> is UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Non word-aligned addresses
For CP15_regl_Ubit == 0, the Load Multiple instructions ignore the least significant two
bits of the address. If an implementation includes a System Control coprocessor
(see Chapter B3 The System Control Coprocessor), an address with bits[1:0] != 0b00 causes
an alignment exception if alignment checking is enabled.
For CP15_regl_Ubit == 1, all non-word aligned accesses cause an alignment fault.

ARM/Thumb state transfers (ARM architecture version 5 and above)
If bits[1:0] of a value loaded for R15 are Ob10, the result is UNPREDICTABLE, as branches to
non word-aligned addresses are impossible in ARM state.

Time order The time order of the accesses to individual words of memory generated by this instruction
is only defined in some circumstances. See Memory access restrictions on page B2-13for
details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-37

ARM Instructions

A4.1.21 LDM (2)

31 28 27 26 25 24 23 22 21 20 19 16 15 14 0

cond 1 0 O|P{U|1|0]|1 Rn 0 register_list

LDM (2) loads User mode registers when the processor is in a privileged mode. This is useful when
performing process swaps, and in instruction emulators. LDM (2) loads a non-empty subset of the User mode
general-purpose registers from sequential memory locations.

Syntax

LDM{<cond>}<addressing_mode> <Rn>, <registers_without_pc>A

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<addressing_mode>

Is described in Addressing Mode 4 - Load and Store Multiple on page A5-41. It determines
the P and U bits of the instruction. Only the forms of this addressing mode with W == 0 are
available for this form of the LDM instruction.

<Rn> Specifies the base register used by <addressing_mode>. Using R15 as <Rn> gives an
UNPREDICTABLE result.
<registers_without_pc>

Is a list of registers, separated by commas and surrounded by { and }. This list must not
include the PC, and specifies the set of registers to be loaded by the LDM instruction.

The registers are loaded in sequence, the lowest-numbered register from the lowest memory
address (start_address), through to the highest-numbered register from the highest memory
address (end_address).

For each of i=0 to 14, bit[i] in the register_list field of the instruction is 1 if Ri is in the list
and O otherwise. If bits[15:0] are all zero, the result is UNPREDICTABLE.

A For an LDM instruction that does not load the PC, this indicates that User mode registers are
to be loaded.
Architecture version

All

Exceptions

Data Abort.

A4-38

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
address = start_address
for i = 0 to 14
if register_Tist[i] ==
Ri_usr = Memory[address,4]
address = address + 4
assert end_address == address - 4

Notes
Write-back Setting bit[21] (the W bit) has UNPREDICTABLE results.

User and System mode

This form of LDM is UNPREDICTABLE in User mode or System mode.

Base register mode The base register is read from the current processor mode registers, not the User
mode registers.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of
data-aborted instructions on page A2-21.

Non word-aligned addresses

For CP15_regl_Ubit == 0, the Load Multiple instructions ignore the least
significant two bits of the address. If an implementation includes a System Control
coprocessor (see Chapter B3 The System Control Coprocessor), an address with
bits[1:0] != 0b00 causes an alignment exception if alignment checking is enabled.

For CP15_regl_Ubit == 1, all non-word aligned accesses cause an alignment fault.

Time order The time order of the accesses to individual words of memory generated by this
instruction is only defined in some circumstances. See Memory access restrictions
on page B2-13 for details.

Banked registers In ARM architecture versions earlier than ARMv6, this form of LDM must not be
followed by an instruction that accesses banked registers. A following NOP is a good
way to ensure this.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-39

ARM Instructions

A4.1.22 LDM (3)

31 28 27 26 25 24 23 22 21 20 19 16 15 14 0

cond 1 0 O|P|U|T1|W|I Rn 1 register_list

LDM (3) loads a subset, or possibly all, of the general-purpose registers and the PC from sequential memory
locations. Also, the SPSR of the current mode is copied to the CPSR. This is useful for returning from
an exception.

The value loaded for the PC is treated as an address and a branch occurs to that address. In ARMvS5 and
above, and in T variants of version 4, the value copied from the SPSR T bit to the CPSR T bit determines
whether execution continues after the branch in ARM state or in Thumb state (but see also The T and J bits
on page A2-15 for operation on non-T variants of ARMVS). In earlier architecture versions, it continues
after the branch in ARM state (the only possibility in those architecture versions).

Syntax

LDM{<cond>}<addressing_mode> <Rn>{!}, <registers_and_pc>A

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.
<addressing_mode>
Is described in Addressing Mode 4 - Load and Store Multiple on page A5-41. It determines
the P, U, and W bits of the instruction.
<Rn> Specifies the base register used by <addressing_mode>. Using R15 as <Rn> gives an
UNPREDICTABLE result.
Sets the W bit, and the instruction writes a modified value back to its base register Rn (see
Addressing Mode 4 - Load and Store Multiple on page A5-41). If ! is omitted, the W bit is
0 and the instruction does not change its base register in this way. (However, if the base
register is included in <registers>, it changes when a value is loaded into it.)
<registers_and_pc>
Is a list of registers, separated by commas and surrounded by { and }. This list must include
the PC, and specifies the set of registers to be loaded by the LDM instruction.
The registers are loaded in sequence, the lowest-numbered register from the lowest memory
address (start_address), through to the highest-numbered register from the highest memory
address (end_address).
For each of i=0 to 15, bit[i] in the register_list field of the instruction is 1 if Ri is in the list
and O otherwise.
A For an LDM instruction that loads the PC, this indicates that the SPSR of the current mode is
copied to the CPSR.

Architecture version

All

A4-40 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
address = start_address

for i = 0 to 14
if register_Tist[i] == 1 then
Ri = Memory[address,4]
address = address + 4

if CurrentModeHasSPSR() then
CPSR = SPSR

else
UNPREDICTABLE

value = Memory[address,4]

PC = value

address = address + 4

assert end_address == address - 4

Notes

User and System mode

This instruction is UNPREDICTABLE in User or System mode.

Operand restrictions
If the base register <Rn> is specified in <registers_and_pc>, and base register write-back is
specified, the final value of <Rn> is UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Non word-aligned addresses

For CP15_regl_Ubit == 0, the Load Multiple instructions ignore the least significant two
bits of the address. If an implementation includes a System Control coprocessor

(see Chapter B3 The System Control Coprocessor), an address with bits[1:0] != 0b00 causes
an alignment exception if alignment checking is enabled.

For CP15_regl_Ubit == 1, all non-word aligned accesses cause an alignment fault.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-41

ARM Instructions

ARM/Thumb state transfers (ARM architecture versions 4T, 5 and above)

If the SPSR T bit is O and bit[1] of the value loaded into the PC is 1, the results are
UNPREDICTABLE because it is not possible to branch to an ARM instruction at a non
word-aligned address. Note that no special precautions against this are needed on normal
exception returns, because exception entries always either set the T bit of the SPSR to 1 or
bit[1] of the return link value in R14 to 0.

Time order The time order of the accesses to individual words of memory generated by this instruction
is not defined. See Memory access restrictions on page B2-13 for details.

A4-42 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.23 LDR

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1|I|P{U|O0|W|I1 Rn Rd addr_mode

LDR (Load Register) loads a word from a memory address.

If the PC is specified as register <Rd>, the instruction loads a data word which it treats as an address, then
branches to that address. In ARMVST and above, bit[0] of the loaded value determines whether execution
continues after this branch in ARM state or in Thumb state, as though a BX (loaded_value) instruction had
been executed. In earlier versions of the architecture, bits[1:0] of the loaded value are ignored and execution
continues in ARM state, as though a MOV PC, (Toaded_value) instruction had been executed.

Syntax

LDR{<cond>} <Rd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value.

<addressing_mode>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page AS5-18.
It determines the I, P, U, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register
write-back).

Architecture version

All

Exceptions

Data Abort.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-43

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
if (CP15_regl_Ubit == @) then
data = Memory[address,4] Rotate_Right (8 x address[1:0])
else /+ CP15_reg_Ubit == 1 «/
data = Memory[address,4]
if (Rd is R15) then
if (ARMv5 or above) then
PC = data AND OxFFFFFFFE
T Bit = data[0]
else
PC = data AND OxFFFFFFFC
else
Rd = data

Usage

Using the PC as the base register allows PC-relative addressing, which facilitates position-independent
code. Combined with a suitable addressing mode, LDR allows 32-bit memory data to be loaded into a
general-purpose register where its value can be manipulated. If the destination register is the PC, this
instruction loads a 32-bit address from memory and branches to that address.

To synthesize a Branch with Link, precede the LDR instruction with MOV LR, PC.

Alignment

ARMYS5 and below

If the address is not word-aligned, the loaded value is rotated right by 8 times the value of
bits[1:0] of the address. For a little-endian memory system, this rotation causes the
addressed byte to occupy the least significant byte of the register. For a big-endian memory
system, it causes the addressed byte to occupy bits[31:24] or bits[15:8] of the register,
depending on whether bit[0] of the address is 0 or 1 respectively.

If an implementation includes a System Control coprocessor (see Chapter B3 The System
Control Coprocessor), and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

ARMVv6 and above

From ARMVv6, a byte-invariant mixed-endian format is supported, along with an
alignment-checking option. The pseudo-code for the ARMV6 case assumes that unaligned
mixed-endian support is configured, with the endianness of the transfer defined by the
CPSR E-bit.

For more details on endianness and alignment see Endian support on page A2-30 and
Unaligned access support on page A2-38.

A4-44 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Notes

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Operand restrictions
If <addressing_mode> specifies base register write-back, and the same register is specified for

<Rd> and <Rn>, the results are UNPREDICTABLE.

Use of R15 If R15 is specified for <Rd>, the value of the address of the loaded value must be word
aligned. That is, address[1:0] must be 0b00. In addition, for Thumb interworking reasons,
R15[1:0] must not be loaded with the value Ob10. If these constraints are not met, the result
iS UNPREDICTABLE.

ARM/Thumb state transfers (ARM architecture version 5 and above)

If bits[1:0] of a value loaded for R15 are Ob10, the result is UNPREDICTABLE, as branches to
non word-aligned addresses are impossible in ARM state.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-45

ARM Instructions

A4.1.24 LDRB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0O 1|T|P|U[T1|W[1 Rn Rd addr_mode

LDRB (Load Register Byte) loads a byte from memory and zero-extends the byte to a 32-bit word.

Syntax

LDR{<cond>}B <Rd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.
<Rd> Specifies the destination register for the loaded value. If register 15 is specified for <Rd>, the

result is UNPREDICTABLE.

<addressing_mode>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determines the I, P, U, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register

write-back).

Architecture version

All

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
Rd = Memory[address,1]

A4-46

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Usage

Combined with a suitable addressing mode, LDRB allows 8-bit memory data to be loaded into a
general-purpose register where it can be manipulated.

Using the PC as the base register allows PC-relative addressing, to facilitate position-independent code.

Notes

Operand restrictions
If <addressing_mode> specifies base register write-back, and the same register is specified for
<Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-47

ARM Instructions

A4.1.25 LDRBT

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0

1|1{0|U|1|1]1 Rn Rd addr_mode

LDRBT (Load Register Byte with Translation) loads a byte from memory and zero-extends the byte to a 32-bit

word.

If LDRBT is executed when the processor is in a privileged mode, the memory system is signaled to treat
the access as if the processor were in User mode.

Syntax

LDR{<cond>}BT <Rd>, <post_indexed_addressing_mode>

where:

<cond>

<Rd>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the result
iS UNPREDICTABLE.

<post_indexed_addressing_mode>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determines the I, U, Rn and addr_mode bits of the instruction. Only post-indexed forms
of Addressing Mode 2 are available for this instruction. These forms have P==0and W ==
0, where P and W are bit[24] and bit[21] respectively. This instruction uses P == 0 and W
== 1 instead, but the addressing mode is the same in all other respects.

The syntax of all forms of <post_indexed_addressing_mode> includes a base register <Rn>.
All forms also specify that the instruction modifies the base register value (this is known as
base register write-back).

Architecture version

All

Exceptions

Data Abort.

Operation

if ConditionPassed(cond) then

Rd =
Rn =

Memory[address,1]
address

A4-48

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

LDRBT can be used by a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User mode. The access is restricted as if it had User mode privilege.

Notes

User mode If this instruction is executed in User mode, an ordinary User mode access is performed.

Operand restrictions

If the same register is specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-49

ARM Instructions

A4.1.26 LDRD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00 O|PIUIT|IW|O Rn Rd addr_mode |1 1 O 1 |addr_mode

LDRD (Load Registers Doubleword) loads a pair of ARM registers from two consecutive words of memory.
The pair of registers is restricted to being an even-numbered register and the odd-numbered register that
immediately follows it (for example, R10 and R11).

A greater variety of addressing modes is available than for a two-register LDM.

Syntax

LDR{<cond>}D <Rd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the even-numbered destination register for the memory word addressed by

<addressing_mode>. The immediately following odd-numbered register is the destination
register for the next memory word. If <Rd> is R14, which would specify R15 as the second
destination register, the instruction is UNPREDICTABLE. If <Rd> specifies an odd-numbered
register, the instruction is UNDEFINED.

<addressing_mode>

Is described in Addressing Mode 3 - Miscellaneous Loads and Stores on page AS5-33. It
determines the P, U, I, W, Rn, and addr_mode bits of the instruction. The syntax of all forms
of <addressing_mode> includes a base register <Rn>. Some forms also specify that the
instruction modifies the base register value (this is known as base register write-back).

The address generated by <addressing_mode> is the address of the lower of the two words
loaded by the LDRD instruction. The address of the higher word is generated by adding 4 to
this address.

Architecture version

Version 5TE and above, excluding ARMvSTEXP.

Exceptions

Data Abort.

A4-50

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation
MemoryAccess(B-bit, E-bit)

if ConditionPassed(cond) then
if (Rd is even-numbered) and (Rd is not R14) and

(address[1:0] == 0b00) and
((CP15_regl Ubit == 1) or (address[2] == 0)) then
Rd = Memoryl[address, 4]
R(d+1l) = memory[address+4,4]
else
UNPREDICTABLE
Notes

Operand restrictions

If <addressing_mode> performs base register write-back and the base register <Rn> is one of
the two destination registers of the instruction, the results are UNPREDICTABLE.

If <addressing_mode> specifies an index register <Rm>, and <Rm> is one of the two destination
registers of the instruction, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Alignment Prior to ARMv6, if the memory address is not 64-bit aligned, the data read from memory is
UNPREDICTABLE. Alignment checking (taking a data abort), and support for a big-endian
(BE-32) data format are implementation options.

From ARMVv6, a byte-invariant mixed-endian format is supported, along with alignment
checking options; modulo4 and modulo8. The pseudo-code for the ARMv6 case assumes
that unaligned mixed-endian support is configured, with the endianness of the transfer
defined by the CPSR E-bit.

For more details on endianness and alignment see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Time order The time order of the accesses to the two memory words is not architecturally defined. In
particular, an implementation is allowed to perform the two 32-bit memory accesses in
either order, or to combine them into a single 64-bit memory access.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-51

ARM Instructions

A4.1.27 LDREX

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 000T1T1O0O0]1 Rn Rd SBO 1 001 SBO

LDREX (Load Register Exclusive) loads a register from memory, and:

. if the address has the Shared memory attribute, marks the physical address as exclusive access for the
executing processor in a shared monitor

. causes the executing processor to indicate an active inclusive access in the local monitor.

Syntax

LDREX{<cond>} <Rd>, [<Rn>]

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the memory word addressed by <Rd>.

<Rn> Specifies the register containing the address.

Architecture version

Version 6 and above.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
processor_id = ExecutingProcessor()
Rd = Memory[Rn,4]
physical_address = TLB(Rn)
if Shared(Rn) == 1 then
MarkExclusiveGlobal(physical_address,processor_id,4)
MarkExclusivelocal(physical_address,processor_id,4)
/+ See Summary of operation on page A2-49 x/

A4-52 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

Use LDREX in combination with STREX to implement inter-process communication in shared memory
multiprocessor systems. For more information see Synchronization primitives on page A2-44. The
mechanism can also be used locally to ensure that an atomic load-store sequence occurs with no intervening
context switch.

Notes
Use of R15 If register 15 is specified for <Rd> or <Rn>, the result is UNPREDICTABLE.

Data Abort If a data abort occurs during a LDREX it is UNPREDICTABLE whether the
MarkExclusiveGlobal() and MarkExclusiveLocal() operations are executed. Rd is not
updated.

Alignment If CP15 register 1(A,U) !=(0,0) and Rd<1:0> !=0b00, an alignment exception will be taken.
There is no support for unaligned Load Exclusive. If Rd<1:0> != 0b00 and (A,U) = (0,0),
the result is UNPREDICTABLE.

Memory support for exclusives

The behavior of LDREX in regions of shared memory that do not support exclusives (for
example, have no exclusives monitor implemented) is UNPREDICTABLE.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-53

ARM Instructions

A4.1.28 LDRH

31 28 27 26 25 24 23 22 21 20 19

16 15

12 11 8§ 7 6 5 4 3 0

cond 00 O0|P

U

I

w

1

Rn

Rd

addr_mode

1

0

1

1 | addr_mode

LDRH (Load Register Halfword) loads a halfword from memory and zero-extends it to a 32-bit word.

Syntax

LDR{<cond>}H <Rd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the result

is UNPREDICTABLE.

<addressing_mode>

Is described in Addressing Mode 3 - Miscellaneous Loads and Stores on page A5-33. It

determines the P, U, I, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register
write-back).

Architecture version

All

Exceptions

Data Abort.

A4-54

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
if (CP15_regl_Ubit == @) then
if address[0] == @ then
data = Memory[address,2]
else
data = UNPREDICTABLE
else /% CP15_regl_Ubit == 1 */
data = Memory[address,2]
Rd = ZeroExtend(data[15:0])

Usage

Used with a suitable addressing mode, LDRH allows 16-bit memory data to be loaded into a general-purpose
register where its value can be manipulated.

Using the PC as the base register allows PC-relative addressing to facilitate position-independent code.

Notes

Operand restrictions

If <addressing_mode> specifies base register write-back, and the same register is specified for
<Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Alignment Prior to ARMv6, if the memory address is not halfword aligned, the data read from memory
is UNPREDICTABLE. Alignment checking (taking a data abort when address[0] != 0), and
support for a big-endian (BE-32) data format are implementation options.

From ARMV6, a byte-invariant mixed-endian format is supported, along with an alignment
checking option. The pseudo-code for the ARMv6 case assumes that mixed-endian support
is configured, with the endianness of the transfer defined by the CPSR E-bit.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-55

ARM Instructions

A4.1.29 LDRSB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00 O|P|U|IT[W]|I Rn Rd addr_ mode |1 1 O 1 |addr_mode

LDRSB (Load Register Signed Byte) loads a byte from memory and sign-extends the byte to a 32-bit word.

Syntax

LDR{<cond>}SB <Rd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the result

is UNPREDICTABLE.

<addressing_mode>

Is described in Addressing Mode 3 - Miscellaneous Loads and Stores on page A5-33. It
determines the P, U, I, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register
write-back).

Architecture version

Version 4 and above.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)

if ConditionPassed(cond) then
data = Memory[address,1]
Rd = SignExtend(data)

A4-56 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

Use LDRSB with a suitable addressing mode to load 8-bit signed memory data into a general-purpose register
where it can be manipulated.

You can perform PC-relative addressing by using the PC as the base register. This facilitates
position-independent code.

Notes

Operand restrictions

If <addressing_mode> specifies base register write-back, and the same register is specified for
<Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-57

ARM Instructions

A4.1.30 LDRSH

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

—_

cond 00 O|P|U|IT[W]|I Rn Rd addrmode |1 1 1 addr_mode

LDRSH (Load Register Signed Halfword) loads a halfword from memory and sign-extends the halfword to a
32-bit word.

If the address is not halfword-aligned, the result is UNPREDICTABLE.

Syntax

LDR{<cond>}SH <Rd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the result

is UNPREDICTABLE.
<addressing_mode>

Is described in Addressing Mode 3 - Miscellaneous Loads and Stores on page A5-33. It
determines the P, U, I, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register
write-back).

Architecture version

Version 4 and above.

Exceptions

Data Abort.

A4-58 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
if (CP15_regl_Ubit == @) then
if address[0] == @ then
data = Memory[address,2]
else
data = UNPREDICTABLE
else /% CP15_regl_Ubit == 1 */
data = Memory[address,2]
Rd = SignExtend(data[15:0])

Usage

Used with a suitable addressing mode, LDRSH allows 16-bit signed memory data to be loaded into
a general-purpose register where its value can be manipulated.

Using the PC as the base register allows PC-relative addressing, which facilitates position-independent
code.

Notes

Operand restrictions

If <addressing_mode> specifies base register write-back, and the same register is specified for
<Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Alignment Prior to ARMVG, if the memory address is not halfword aligned, the data read from memory
is UNPREDICTABLE. Alignment checking (taking a data abort when address[0] != 0), and
support for a big-endian (BE-32) data format are implementation options.

From ARMv6, a byte-invariant mixed-endian format is supported, along with an alignment
checking option. The pseudo-code for the ARMv6 case assumes that mixed-endian support
is configured, with the endianness of the transfer defined by the CPSR E-bit.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-59

ARM Instructions

A4.1.31 LDRT

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0

1|1{0|U|O0|1]1 Rn Rd addr_mode

LDRT (Load Register with Translation) loads a word from memory.

If LDRT is executed when the processor is in a privileged mode, the memory system is signaled to treat the
access as if the processor were in User mode.

Syntax

LDR{<cond>}T <Rd>, <post_indexed_addressing_mode>

where:

<cond>

<Rd>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register for the loaded value. If R15 is specified for <Rd>, the result
iS UNPREDICTABLE.

<post_indexed_addressing_mode>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determines the I, U, Rn and addr_mode bits of the instruction. Only post-indexed forms
of Addressing Mode 2 are available for this instruction. These forms have P==0and W ==
0, where P and W are bit[24] and bit[21] respectively. This instruction uses P == 0 and W
== 1 instead, but the addressing mode is the same in all other respects.

The syntax of all forms of <post_indexed_addressing_mode> includes a base register <Rn>.
All forms also specify that the instruction modifies the base register value (this is known as
base register write-back).

Architecture version

All

Exceptions

Data Abort.

A4-60

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation
MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then
if (CP15_regl_Ubit == @) then
Rd = Memory[address,4] Rotate_Right (8 « address[1:0])
else /% CP15_regl_Ubit == 1 #/
Rd = Memory[address,4]
Usage

LDRT can be used by a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User mode. The access is restricted as if it had User mode privilege.

Notes

User mode If this instruction is executed in User mode, an ordinary User mode access is performed.

Operand restrictions

If the same register is specified for <Rd> and <Rn> the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Alignment As for LDR, see LDR on page A4-43.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-61

ARM Instructions

A4.1.32 MCR

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond

1

1 1 Olopcode_1{0 CRn Rd cp_num |opcode_2| 1 CRm

MCR (Move to Coprocessor from ARM Register) passes the value of register <Rd> to the coprocessor whose
number is cp_num.

If no coprocessors indicate that they can execute the instruction, an Undefined Instruction exception is

generated.

Syntax

MCR{<cond>}

MCR2

where:

<cond>

MCR2

<coproc>

<opcode_1>

<Rd>

<CRn>
<CRm>

<opcode_2>

<coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
<coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Causes the condition field of the instruction to be set to Ob1111. This provides additional
opcode space for coprocessor designers. The resulting instructions can only be executed
unconditionally.

Specifies the name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names
are p0, pl, ..., p15.

Is a coprocessor-specific opcode.

Is the ARM register whose value is transferred to the coprocessor. If R15 is specified for
<Rd>, the result is UNPREDICTABLE.

Is the destination coprocessor register.
Is an additional destination or source coprocessor register.

Is a coprocessor-specific opcode. If it is omitted, <opcode_2> is assumed to be 0.

Architecture version

MCR is in all versions.

MCR2 is in version 5 and above.

Exceptions

Undefined Instruction.

A4-62

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
send Rd value to Coprocessor[cp_num]

Usage

Use MCR to initiate a coprocessor operation that acts on a value from an ARM register. An example is
a fixed-point to floating-point conversion instruction for a floating-point coprocessor.

Notes

Coprocessor fields Only instruction bits[31:24], bit[20], bits[15:8], and bit[4] are defined by the ARM
architecture. The remaining fields are recommendations, for compatibility with
ARM Development Systems.

Unimplemented coprocessor instructions

Hardware coprocessor support is optional for coprocessors 0-13, regardless of the
architecture version, and is optional for coprocessors 14 and 15 before ARMv6. An
implementation can choose to implement a subset of the coprocessor instructions,
or no coprocessor instructions at all. Any coprocessor instructions that are not
implemented instead cause an Undefined Instruction exception.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-63

ARM Instructions

A4.1.33 MCRR

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 1 1000100 Rn Rd cp_num opcode CRm

MCRR (Move to Coprocessor from two ARM Registers) passes the values of two ARM registers to a
COprocessor.

If no coprocessors indicate that they can execute the instruction, an Undefined Instruction exception is
generated.
Syntax

MCRR{<cond>} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>
MCRR2 <coproc>, <opcode>, <Rd>, <Rn>, <CRm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

MCRR2 Causes the condition field of the instruction to be set to Ob1111. This provides additional
opcode space for coprocessor designers. The resulting instructions can only be executed
unconditionally.

<coproc> Specifies the name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names are
pO, pl, ..., p15.

<opcode> Is a coprocessor-specific opcode.

<Rd> Is the first ARM register whose value is transferred to the coprocessor. If R15 is specified
for <Rd>, the result is UNPREDICTABLE.

<Rn> Is the second ARM register whose value is transferred to the coprocessor. If R15 is specified
for <Rn>, or Rn = Rd, the result is UNPREDICTABLE.

<CRm> Is the destination coprocessor register.

Architecture version
MCRR is in version 5TE and above, excluding ARMvSTExP.

MCRR2 is in version 6 and above.

Exceptions

Undefined Instruction.

A4-64

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
send Rd value to Coprocessor[cp_num]
send Rn value to Coprocessor[cp_num]

Usage

Use MCRR to initiate a coprocessor operation that acts on values from two ARM registers. An example for a
floating-point coprocessor is an instruction to transfer a double-precision floating-point number held in two
ARM registers to a floating-point register.

Notes

Coprocessor fields

Only instruction bits[31:8] are defined by the ARM architecture. The remaining fields are
recommendations, for compatibility with ARM Development Systems.

Unimplemented coprocessor instructions

Hardware coprocessor support is optional for coprocessors 0-13, regardless of the
architecture version, and is optional for coprocessors 14 and 15 before ARMv6. An
implementation can choose to implement a subset of the coprocessor instructions, or no
coprocessor instructions at all. Any coprocessor instructions that are not implemented
instead cause an Undefined Instruction exception.

Order of transfers

If a coprocessor uses these instructions, it defines how each of the values of <Rd> and <Rn>
is used. There is no architectural requirement for the two register transfers to occur in any
particular time order. It is IMPLEMENTATION DEFINED whether Rd is transferred before Rn,
after Rn, or at the same time as Rn.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-65

ARM Instructions

A4.1.34 MLA

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

8§ 7 6 5 4 3 0

cond

000O0O0O

1

S

Rd

Rn

Rs

1

001 Rm

MLA (Multiply Accumulate) multiplies two signed or unsigned 32-bit values, and adds a third 32-bit value.
The least significant 32 bits of the result are written to the destination register.

MLA can optionally update the condition code flags, based on the result.

Syntax

MLA{<cond>}{S}

where:

<cond>

<Rd>

<Rm>

<Rs>

<Rn>

<Rd>, <Rm>, <Rs>, <Rn>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the
multiply-accumulate. If S is omitted, the S bit of the instruction is set to 0 and the entire
CPSR is unaffected by the instruction.

Specifies the destination register.
Holds the value to be multiplied with the value of <Rs>.

Holds the value to be multiplied with the value of <Rm>.

Contains the value that is added to the product of <Rs> and <Rm>.

Architecture version

All

Exceptions

None.

A4-66

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Operation

ARM Instructions

if ConditionPassed(cond) then
Rd = (Rm % Rs + Rn)[31:0]

if S == 1 then

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0

C Flag = unaffected in v5 and above, UNPREDICTABLE in v4 and earlier
V Flag = unaffected

Notes
Use of R15

Early termination

Signed and unsigned

C flag

Operand restriction

Specifying R15 for register <Rd>, <Rm>, <Rs>, or <Rn> has UNPREDICTABLE results.

If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

The MLA instruction produces only the lower 32 bits of the 64-bit product. Therefore,
MLA gives the same answer for multiplication of both signed and unsigned numbers.

The MLAS instruction is defined to leave the C flag unchanged in ARMvS5 and above.
In earlier versions of the architecture, the value of the C flag was UNPREDICTABLE
after an MLAS instruction.

Specifying the same register for <Rd> and <Rm> was previously described as
producing UNPREDICTABLE results. There is no restriction in ARMv6, and it is
believed that all relevant ARMv4 and ARMvS5 implementations do not require this
restriction either, because high performance multipliers read all their operands prior
to writing back any results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-67

ARM Instructions

A4.1.35 MOV

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0O o0|Ifr 1o 1(S SBZ Rd shifter_operand

MOV (Move) writes a value to the destination register. The value can be either an immediate value or a value
from a register, and can be shifted before the write.

MOV can optionally update the condition code flags, based on the result.

Syntax
MOV{<cond>}{S} <Rd>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the
CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.
Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the value moved (post-shift
if a shift is specified), and the C flag is set to the carry output bit generated by the
shifter (see Addressing Mode 1 - Data-processing operands on page A5-2). The V
flag and the rest of the CPSR are unaffected.

o If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.

<shifter_operand>

Specifies the operand. The options for this operand are described in Addressing Mode 1 -
Data-processing operands on page A5-2, including how each option causes the I bit
(bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is O and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not MOV.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

Exceptions

None.

A4-68

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then

Rd = shifter_operand

if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then

CPSR = SPSR

else UNPREDICTABLE

else if S == 1 then
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

Usage

Use MOV to:

. Move a value from one register to another.

. Put a constant value into a register.

. Perform a shift without any other arithmetic or logical operation. Use a left shift by »n to multiply by
2n,

. When the PC is the destination of the instruction, a branch occurs. The instruction:

MOV PC, LR

can therefore be used to return from a subroutine (see instructions B, BL on page A4-10). In T variants
of architecture 4 and in architecture 5 and above, the instruction BX LR must be used in place of MOV
PC, LR, as the BX instruction automatically switches back to Thumb state if appropriate (but see also
The T and J bits on page A2-15 for operation on non-T variants of ARM architecture version 5).

. When the PC is the destination of the instruction and the S bit is set, a branch occurs and the SPSR
of the current mode is copied to the CPSR. This means that you can use a MOVS PC, LR instruction to
return from some types of exception (see Exceptions on page A2-16).

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-69

ARM Instructions

A4.1.36 MRC

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond

1

1

1

0 lopcode_1| 1 CRn Rd cp_num |opcode_2| 1 CRm

MRC (Move to ARM Register from Coprocessor) causes a coprocessor to transfer a value to an ARM register
or to the condition flags.

If no coprocessors can execute the instruction, an Undefined Instruction exception is generated.

Syntax

MRC{<cond>}

MRC2

where:

<cond>

MRC2

<coproc>

<opcode_1>

<Rd>

<CRn>
<CRm>

<opcode_2>

<coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
<coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Causes the condition field of the instruction to be set to Ob1111. This provides
additional opcode space for coprocessor designers. The resulting instructions can
only be executed unconditionally.

Specifies the name of the coprocessor, and causes the corresponding coprocessor
number to be placed in the cp_num field of the instruction. The standard generic
coprocessor names are p0, pl, ..., p15.

Is a coprocessor-specific opcode.

Specifies the destination ARM register for the instruction. If R15 is specified for
<Rd>, the condition code flags are updated instead of a general-purpose register.

Specifies the coprocessor register that contains the first operand.
Is an additional coprocessor source or destination register.

Is a coprocessor-specific opcode. If it is omitted, <opcode_2> is assumed to be 0.

Architecture version

MRC is in all versions.

MRC2 is in version 5 and above.

Exceptions

Undefined Instruction.

A4-70

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
data = value from Coprocessor[cp_num]
if Rd is R15 then

N flag = data[31]
Z flag = data[30]
C flag = data[29]
V flag = data[28]

else /+ Rd is not R15 =/
Rd = data

Usage
MRC has two uses:

1. If <Rd> specifies R15, the condition code flags bits are updated from the top four bits of the value from
the coprocessor specified by <coproc> (to allow conditional branching on the status of a coprocessor)
and the other 28 bits are ignored.

An example of this use would be to transfer the result of a comparison performed by a floating-point
coprocessor to the ARM's condition flags.

2. Otherwise the instruction writes into register <Rd> a value from the coprocessor specified by <coproc>.

An example of this use is a floating-point to integer conversion instruction in a floating-point
COProcessor.

Notes

Coprocessor fields Only instruction bits[31:24], bit[20], bits[15:8] and bit[4] are defined by the ARM
architecture. The remaining fields are recommendations, for compatibility with
ARM Development Systems.

Unimplemented coprocessor instructions

Hardware coprocessor support is optional for coprocessors 0-13, regardless of the
architecture version, and is optional for coprocessors 14 and 15 before ARMv6. An
implementation can choose to implement a subset of the coprocessor instructions,
Or no coprocessor instructions at all. Any coprocessor instructions that are not
implemented instead cause an Undefined Instruction exception.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-71

ARM Instructions

A4.1.37 MRRC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 1 1000101 Rn Rd cp_num opcode CRm

MRRC (Move to two ARM registers from Coprocessor) causes a coprocessor to transfer values to two ARM
registers.

If no coprocessors can execute the instruction, an Undefined Instruction exception is generated.

Syntax

MRRC{<cond>} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>
MRRC2 <coproc>, <opcode>, <Rd>, <Rn>, <CRm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

MRRC2 Causes the condition field of the instruction to be set to Ob1111. This provides additional
opcode space for coprocessor designers. The resulting instructions can only be executed
unconditionally.

<coproc> Specifies the name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names are
pO, pl, ..., p15.

<opcode> Is a coprocessor-specific opcode.

<Rd> Is the first destination ARM register. If R15 is specified for <Rd>, the result is
UNPREDICTABLE.

<Rn> Is the second destination ARM register. If R15 is specified for <Rn>, the result is
UNPREDICTABLE.

<CRm> Is the coprocessor register which supplies the data to be transferred.

Architecture version
MRRC is in version STE and above, excluding ARMvSTEXP.

MRRC2 is in version 6 and above.

Exceptions

Undefined Instruction.

A4-72

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
Rd = first value from Coprocessor[cp_num]
Rn = second value from Coprocessor[cp_num]

Usage

Use MRRC to initiate a coprocessor operation that writes values to two ARM registers. An example for a
floating-point coprocessor is an instruction to transfer a double-precision floating-point number held in a
floating-point register to two ARM registers.

Notes

Operand restrictions

Specifying the same register for <Rd> and <Rn> has UNPREDICTABLE results.

Coprocessor fields

Only instruction bits[31:8] are defined by the ARM architecture. The remaining fields are
recommendations, for compatibility with ARM Development Systems.

Unimplemented coprocessor instructions

Hardware coprocessor support is optional for coprocessors 0-13, regardless of the
architecture version, and is optional for coprocessors 14 and 15 before ARMv6. An
implementation can choose to implement a subset of the coprocessor instructions, or no
coprocessor instructions at all. Any coprocessor instructions that are not implemented
instead cause an Undefined Instruction exception.

Order of transfers

If a coprocessor uses these instructions, it defines which value is written to <Rd> and which
value to <Rn>. There is no architectural requirement for the two register transfers to occur in
any particular time order. It is IMPLEMENTATION DEFINED whether Rd is transferred before
Rn, after Rn, or at the same time as Rn.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-73

ARM Instructions

A4.1.38 MRS

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0[{0{Of1I|O|R|O]|O SBO Rd SBZ

MRS (Move PSR to general-purpose register) moves the value of the CPSR or the SPSR of the current mode
into a general-purpose register. In the general-purpose register, the value can be examined or manipulated
with normal data-processing instructions.

Syntax

MRS{<cond>} <Rd>, CPSR
MRS{<cond>} <Rd>, SPSR

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register. If R15 is specified for <Rd>, the result is UNPREDICTABLE.

Architecture version

All

Exceptions

None.

Operation

if ConditionPassed(cond) then
if R == 1 then
Rd = SPSR
else
Rd = CPSR

A4-74

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

The MRS instruction is commonly used for three purposes:

As part of a read/modify/write sequence for updating a PSR. For more details, see MSR on

page A4-76.

‘When an exception occurs and there is a possibility of a nested exception of the same type occurring,
the SPSR of the exception mode is in danger of being corrupted. To deal with this, the SPSR value
must be saved before the nested exception can occur, and later restored in preparation for the
exception return. The saving is normally done by using an MRS instruction followed by a store
instruction. Restoring the SPSR uses the reverse sequence of a load instruction followed by an MSR
instruction.

In process swap code, the programmers’ model state of the process being swapped out must be saved,
including relevant PSR contents, and similar state of the process being swapped in must be restored.
Again, this involves the use of MRS/store and load/MSR instruction sequences.

Notes

User mode SPSR Accessing the SPSR when in User mode or System mode is UNPREDICTABLE.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-75

ARM Instructions

A4.1.39 MSR

Immediate operand:

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 00 1 1 O|R|1 O] field_mask SBO rotate_imm 8_bit_immediate

Register operand:

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00 0 1 O|R|1 O] field_mask SBO SBZ 00O0O0 Rm

MSR (Move to Status Register from ARM Register) transfers the value of a general-purpose register or an
immediate constant to the CPSR or the SPSR of the current mode.

Syntax

MSR{<cond>} CPSR_<fields>, #<immediate>
MSR{<cond>} CPSR_<fields>, <Rm>
MSR{<cond>} SPSR_<fields>, #<immediate>
MSR{<cond>} SPSR_<fields>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

<fields> Is a sequence of one or more of the following:
C sets the control field mask bit (bit 16)
X sets the extension field mask bit (bit 17)
s sets the status field mask bit (bit 18)
f sets the flags field mask bit (bit 19).

<immediate> Is the immediate value to be transferred to the CPSR or SPSR. Allowed immediate
values are 8-bit immediates (in the range 0x00 to 0xFF) and values that can be
obtained by rotating them right by an even amount in the range 0 to 30. These
immediate values are the same as those allowed in the immediate form as shown in
Data-processing operands - Immediate on page A5-6.

<Rm> Is the general-purpose register to be transferred to the CPSR or SPSR.

Architecture version

All

A4-76

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Exceptions

None.

Operation

ARM Instructions

There are four categories of PSR bits, according to rules about updating them, see Types of PSR bits on

page A2-11 for details.

The pseudo-code uses four bit mask constants to identify these categories of PSR bits. The values of these

masks depend on the architecture version, see Table A4-1.

Table A4-1 Bit mask constants

Architecture versions UnallocMask UserMask PrivMask StateMask
4 OXQFFFFF20 0xF0000000 0x0000000F 0x00000000
4T, 5T OXQFFFFFOO 0xF0000000 0x0000000F 0x00000020
5TE, STExP 0x07FFFF0O0 0xF8000000 0x0000000F 0x00000020
S5TEJ Ox06FFFFO0 0xF8000000 0x0000000F 0x01000020
6 0x06FOFC00 0xF80F0200 0x000001DF 0x01000020
if ConditionPassed(cond) then
if opcode[25] == 1 then
operand = 8_bit_immediate Rotate_Right (rotate_imm = 2)
else
operand = Rm
if (operand AND UnallocMask) !=0 then
UNPREDICTABLE /+ Attempt to set reserved bits x/
byte_mask = (if field_mask[@] == 1 then 0xQ00000FF else 0x00000000) OR
(if field_mask[1] == 1 then 0x0000FF0Q else 0x00000000) OR
(if field_mask[2] == 1 then 0xQ0FF0000 else 0x00000000) OR
(if field_mask[3] == 1 then 0xFF000 else 0x00000000)
if R == 0 then
if InAPrivilegedMode() then
if (operand AND StateMask) != @ then
UNPREDICTABLE /+ Attempt to set non-ARM execution state */
else
mask = byte_mask AND (UserMask OR PrivMask)
else
mask = byte_mask AND UserMask
CPSR = (CPSR AND NOT mask) OR (operand AND mask)
else /« R==13%/
if CurrentModeHasSPSR() then
mask = byte_mask AND (UserMask OR PrivMask OR StateMask)
SPSR = (SPSR AND NOT mask) OR (operand AND mask)
else
UNPREDICTABLE
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-77

ARM Instructions

Usage
Use MSR to update the value of the condition code flags, interrupt enables, or the processor mode.

You must normally update the value of a PSR by moving the PSR to a general-purpose register (using the
MRS instruction), modifying the relevant bits of the general-purpose register, and restoring the updated
general-purpose register value back into the PSR (using the MSR instruction). For example, a good way to
switch the ARM to Supervisor mode from another privileged mode is:

MRS R@,CPSR ; Read CPSR

BIC RO,RQ,#0x1F ; Modify by removing current mode
ORR RO,R0Q,#0x13 ; and substituting Supervisor mode
MSR CPSR_c,RQ ; Write the result back to CPSR

For maximum efficiency, MSR instructions should only write to those fields that they can potentially change.
For example, the last instruction in the above code can only change the CPSR control field, as all bits in the
other fields are unchanged since they were read from the CPSR by the first instruction. So it writes to
CPSR_c, not CPSR_fsxc or some other combination of fields.

However, if the only reason that an MSR instruction cannot change a field is that no bits are currently allocated
to the field, then the field must be written, to ensure future compatibility.

You can use the immediate form of MSR to set any of the fields of a PSR, but you must take care to use the
read-modify-write technique described above. The immediate form of the instruction is equivalent to
reading the PSR concerned, replacing all the bits in the fields concerned by the corresponding bits of the
immediate constant and writing the result back to the PSR. The immediate form must therefore only be used
when the intention is to modify all the bits in the specified fields and, in particular, must not be used if the
specified fields include any as-yet-unallocated bits. Failure to observe this rule might result in code which
has unanticipated side effects on future versions of the ARM architecture.

As an exception to the above rule, it is legitimate to use the immediate form of the instruction to modify the
flags byte, despite the fact that bits[26:25] of the PSRs have no allocated function at present. For example,
you can use MSR to set all four flags (and clear the Q flag if the processor implements the Enhanced DSP
extension):

MSR CPSR_f, #0xF0000000

Any functionality allocated to bits[26:25] in a future version of the ARM architecture will be designed so
that such code does not have unexpected side effects. Several bits must not be changed to reserved values
or the results are UNPREDICTABLE. For example, an attempt to write a reserved value to the mode bits (4:0),
or changing the J-bit (24).

A4-78

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Notes
The R bit Bit[22] of the instruction is O if the CPSR is to be written and 1 if the SPSR is to be written.

User mode CPSR

Any writes to privileged or execution state bits are ignored.

User mode SPSR
Accessing the SPSR when in User mode is UNPREDICTABLE.

System mode SPSR
Accessing the SPSR when in System mode is UNPREDICTABLE.

Obsolete field specification

The CPSR, CPSR_f1g, CPSR_ct1, CPSR_al1, SPSR, SPSR_f1g, SPSR_ct1 and SPSR_a11 forms of PSR
field specification have been superseded by the csxf format shown on page A4-76.

CPSR, SPSR, CPSR_a11 and SPSR_al11 produce a field mask of Ob1001.
CPSR_f1g and SPSR_f1g produce a field mask of 0b1000.
CPSR_ct1 and SPSR_ct1 produce a field mask of 0b0001.

The T bit or J bit

The MSR instruction must not be used to alter the T bit or the J bit in the CPSR. If such an
attempt is made, the results are UNPREDICTABLE.

Addressing modes

The immediate and register forms are specified in precisely the same way as the immediate
and unshifted register forms of Addressing Mode 1 (see Addressing Mode 1 -
Data-processing operands on page A5-2). All other forms of Addressing Mode 1 yield
UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-79

ARM Instructions

A4.1.40 MUL

31 28 27 26 25 24 23 22 21 20 19

16 15

12 11

8§ 7 6 5 4 3 0

cond 000O0O0O0O0]|S Rd

SBZ

Rs

1

001 Rm

MUL (Multiply) multiplies two signed or unsigned 32-bit values. The least significant 32 bits of the result are

written to the destination register.

MUL can optionally update the condition code flags, based on the result.

Syntax

MUL{<cond>}{S} <Rd>, <Rm>, <Rs>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the multiplication.
If S is omitted, the S bit of the instruction is set to 0 and the entire CPSR is unaffected by the
instruction.

<Rd> Specifies the destination register for the instruction.

<Rm> Specifies the register that contains the first value to be multiplied.

<Rs> Holds the value to be multiplied with the value of <Rm>.

Architecture version

All

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = (Rm = Rs)[31:0]
if S == 1 then
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag
V Flag

unaffected

unaffected in v5 and above, UNPREDICTABLE in v4 and earlier

A4-80 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Notes
Use of R15

Early termination

Signed and unsigned

C flag

Operand restriction

ARM Instructions

Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.

If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Because the MUL instruction produces only the lower 32 bits of the 64-bit product,
MUL gives the same answer for multiplication of both signed and unsigned numbers.

The MULS instruction is defined to leave the C flag unchanged in ARM architecture
version 5 and above. In earlier versions of the architecture, the value of the C flag
was UNPREDICTABLE after a MULS instruction.

Specifying the same register for <Rd> and <Rm> was previously described as
producing UNPREDICTABLE results. There is no restriction in ARMv6, and it is
believed all relevant ARMv4 and ARMvVS implementations do not require this
restriction either, because high performance multipliers read all their operands prior
to writing back any results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-81

ARM Instructions

A4.1.41 MVN

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0Oo|Irfr 11 1|S SBZ Rd shifter_operand

MVN (Move Not) generates the logical ones complement of a value. The value can be either an immediate
value or a value from a register, and can be shifted before the MVN operation.

MVN can optionally update the condition code flags, based on the result.

Syntax
MVN{<cond>}{S} <Rd>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the
CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.
Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shifter (see Addressing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

o If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.

<shifter_operand>

Specifies the operand. The options for this operand are described in Addressing Mode 1 -
Data-processing operands on page A5-2, including how each option causes the I bit
(bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not MVN.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

Exceptions

None.

A4-82

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
Rd = NOT shifter_operand
if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then
CPSR = SPSR
else UNPREDICTABLE
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else @
C Flag = shifter_carry_out

V Flag = unaffected

Usage

Use MWN to:
. form a bit mask
. take the ones complement of a value.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-83

ARM Instructions

A4.1.42 ORR

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0O 0|Ifr 10 0(S Rn Rd shifter_operand

ORR (Logical OR) performs a bitwise (inclusive) OR of two values. The first value comes from a register.
The second value can be either an immediate value or a value from a register, and can be shifted before the
OR operation.

ORR can optionally update the condition code flags, based on the result.

Syntax

ORR{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the

CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the operation,
and the C flag is set to the carry output bit generated by the shifter (see Addressing
Mode 1 - Data-processing operands on page A5-2). The V flag and the rest of the
CPSR are unaffected.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.
<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is O and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not ORR.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

A4-84

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then

Rd = Rn OR shifter_operand

if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then

CPSR = SPSR

else UNPREDICTABLE

else if S == 1 then
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

Usage

Use ORR to set selected bits in a register. For each bit, OR with 1 sets the bit, and OR with 0 leaves it
unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-85

ARM Instructions

A4.1.43 PKHBT

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 4 3 0

cond 0O11010O00 Rn Rd shift_imm 001 Rm

PKHBT (Pack Halfword Bottom Top) combines the bottom (least significant) halfword of its first operand with
the top (most significant) halfword of its shifted second operand. The shift is a left shift, by any amount from

0to 31.

Syntax

PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand. Bits[15:0] of this operand
become bits[15:0] of the result of the operation.

<Rm> Specifies the register that contains the second operand. This is shifted left by the
specified amount, then bits[31:16] of this operand become bits[31:16] of the result
of the operation.

<shift_imm> Specifies the amount by which <Rm> is to be shifted left. This is a value from 0 to 31.

If the shift specifier is omitted, a left shift by O is used.

Architecture version

Version 6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[15:0] = Rn[15:0]
Rd[31:16] = (Rm Logical_Shift_Left shift_imm)[31:16]

A4-86 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

To construct the word in Rd consisting of the top half of register Ra and the bottom half of register Rb as its
most and least significant halfwords respectively, use:

PKHBT ~ Rd, Rb, Ra

To construct the word in Rd consisting of the bottom half of register Ra and the bottom half of register Rb
as its most and least significant halfwords respectively, use:

PKHBT ~ Rd, Rb, Ra, LSL #16

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-87

ARM Instructions

A4.1.44 PKHTB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 4 3 0

cond

0

1

1

01000 Rn Rd shift_imm 1 01 Rm

PKHTB (Pack Halfword Top Bottom) combines the top (most significant) halfword of its first operand with
the bottom (least significant) halfword of its shifted second operand. The shift is an arithmetic right shift,
by any amount from 1 to 32.

Syntax

PKHTB {<cond>} <Rd>, <Rn>, <Rm> {, ASR #<shift_imm>}

where:

<cond>

<Rd>

<Rn>

<Rm>

<shift_imm>

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.

Specifies the register that contains the first operand. Bits[31:16] of this operand
become bits[31:16] of the result of the operation.

Specifies the register that contains the second operand. This is shifted right
arithmetically by the specified amount, then bits[15:0] of this operand become
bits[15:0] of the result of the operation.

Specifies the amount by which <Rm> is to be shifted right. A shift by 32 is encoded
as shift_imm ==
If the shift specifier is omitted, the assembler converts the instruction to PKHBT Rd,
Rm, Rn. This produces the same effect as an arithmetic shift right by 0.

Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift or LSL
#0, then it must accept ASR #0 here. It is equivalent to omitting the shift specifier.

Architecture version

Version 6 and above.

Exceptions

None.

A4-88

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
if shift_imm == @ then /+ ASR #32 case x/
if Rm[31] == @ then
Rd[15:0] = 0x0000
else
Rd[15:0]

OXFFFF
else
Rd[15:0] = (Rm Arithmetic_Shift_Right shift_imm)[15:0]
Rd[31:16] = Rn[31:16]
Usage

To construct the word in Rd consisting of the top half of register Ra and the top half of register Rb as its most
and least significant halfwords respectively, use:

PKHTB Rd, Ra, Rb, ASR #16

You can use this to truncate a Q31 number in Rb, and put the result into the bottom half of Rd. You can scale
the Rb value by using a different shift amount.

To construct the word in Rd consisting of the top half of register Ra and the bottom half of register Rb as its
most and least significant halfwords respectively, you can use:

PKHTB Rd, Ra, Rb
The assembler converts this into:

PKHBT Rd, Rb, Ra

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-89

ARM Instructions

A4.1.45 PLD
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 0
111 1{0 1{I{1|Ul1 0 1 Rn 1111 addr_mode

PLD (Preload Data) signals the memory system that memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions which are expected to speed up the
memory accesses when they do occur, such as pre-loading the cache line containing the specified address
into the cache. PLD is a hint instruction, aimed at optimizing memory system performance. It has no
architecturally-defined effect, and memory systems that do not support this optimization can ignore it. On
such memory systems, PLD acts as a NOP.

Syntax
PLD <addressing_mode>
where:

<addressing_mode>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page AS5-18.
It specifies the I, U, Rn, and addr_mode bits of the instruction. Only addressing modes with
P ==1 and W == 0 are available for this instruction. Pre-indexed and post-indexed
addressing modes have P == 0 or W == 1 and so are not available.

Architecture version

Version 5TE and above, excluding ARMvSTExP.

Exceptions

None.

Operation

/+ No change occurs to programmer's model state, but where
% appropriate, the memory system is signaled that memory accesses
+ to the specified address are 1ikely in the near future.

*/

A4-90 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Notes
Condition Unlike most other ARM instructions, PLD cannot be executed conditionally.
Write-back Clearing bit[24] (the P bit) or setting bit[21] (the W bit) has UNPREDICTABLE results.

Data Aborts This instruction never signals a precise Data Abort generated by the VMSA MMU, PMSA
MPU or by the rest of the memory system. Other memory system exceptions caused as a
side-effect of this operation might be reported using an imprecise Data Abort or by some
other exception mechanism.

Alignment There are no alignment restrictions on the address generated by <addressing_mode>. If an
implementation contains a System Control coprocessor (see Chapter B3 The System Control
Coprocessor), it must not generate an alignment exception for any PLD instruction.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-91

ARM Instructions

A4.1.46 QADD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 0001O0O0O0O0 Rn Rd SBZ 0

1

01 Rm

QADD (Saturating Add) performs integer addition. It saturates the result to the 32-bit signed integer range —23!

<x<2311.

If saturation occurs, QADD sets the Q flag in the CPSR.

Syntax

QADD{<cond>} <Rd>, <Rm>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<Rn> Specifies the register that contains the second operand.

Architecture version

Version 5TE and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = SignedSat(Rm + Rn, 32)
if SignedDoesSat(Rm + Rn, 32) then
QFlag =1

A4-92 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Usage

As well as performing saturated integer and Q31 additions, you can use QADD in combination with an
SMUL<x><y>, SMULW<y>, or SMULL instruction to produce multiplications of Q15 and Q31 numbers. Three
examples are:

To multiply the Q15 numbers in the bottom halves of RO and R1 and place the Q31 result in R2, use:
SMULBB R2, R@, R1
QADD R2, R2, R2

To multiply the Q31 number in RO by the Q15 number in the top half of R1 and place the Q31 result
in R2, use:

SMULWT R2, RO, R1
QADD R2, R2, R2
To multiply the Q31 numbers in RO and R1 and place the Q31 result in R2, use:

SMULL ~ R3, R2, RO, R1
QADD R2, R2, R2

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.
Condition flags QADD does not affect the N, Z, C, or V flags.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-93

ARM Instructions

A4.1.47 QADD16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 01100010 Rn Rd SBO 0001 Rm

QADD16 performs two 16-bit integer additions. It saturates the results to the 16-bit signed integer range
25 <x <2151,

QADD16 does not affect any flags.

Syntax

QADD16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

Version 6 and above.

Exceptions

None.

Operation
if ConditionPassed(cond) then
Rd[15:0] = SignedSat(Rn[15:0] + Rm[15:0], 16)
Rd[31:16] = SignedSat(Rn[31:16] + Rm[31:16], 16)
Usage
Use QADD16 in similar ways to the SADD16 instruction, but for signed saturated arithmetic. QADD16 does not set
the GE bits for use with SEL. See SADD16 on page A4-119 for more details.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-94

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.48 QADDS

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100010 Rn Rd SBO 1 001 Rm

QADD8 performs four 8-bit integer additions. It saturates the results to the 8-bit signed integer range
27<x<27 1.

QADD8 does not affect any flags.

Syntax

QADD8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

Version 6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[7:0] = SignedSat(Rn[7:0] + Rm[7:0], 8)
Rd[15:8] SignedSat(Rn[15:8] + Rm[15:8], 8)
Rd[23:16] = SignedSat(Rn[23:16] + Rm[23:16], 8)
Rd[31:24] = SignedSat(Rn[31:24] + 1, 8)

Rm[31:24

Usage

Use QADDS in similar ways to the SADD8 instruction, but for signed saturated arithmetic. QADD8 does not set the
GE bits for use with SEL. See SADDS on page A4-121 for more details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-95

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-96 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.49 QADDSUBX

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3

ARM Instructions

cond

01100010 Rn Rd SBO 00

1

1

Rm

QADDSUBX (Saturating Add and Subtract with Exchange) performs one 16-bit integer addition and one 16-bit
subtraction. It saturates the results to the 16-bit signed integer range —215 < x <215 — 1. QADDSUBX exchanges
the two halfwords of the second operand before it performs the arithmetic.

QADDSUBX does not affect any flags.

Syntax

QADDSUBX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.
Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

Version 6

and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then

Rd[31
Rd[15

:16] = SignedSat(Rn[31:16] + Rm[15:0], 16)
:0] = SignedSat(Rn[15:0] - Rm[31:16], 16)

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-97

ARM Instructions

Usage

You can use QADDSUBX for operations on complex numbers that are held as pairs of 16-bit integers or Q15
numbers. If you hold the real and imaginary parts of a complex number in the bottom and top half of a
register respectively, then the instruction:

QADDSUBX Rd, Ra, Rb
performs the complex arithmetic operation Rd = (Ra +1i * Rb).

QADDSUBX does not set the Q flag, even if saturation occurs on either operation.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-98 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.50 QDADD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00010100 Rn Rd SBZ 0101 Rm

QDADD (Saturating Double and Add) doubles its second operand, then adds the result to its first operand.

Both the doubling and the addition have their results saturated to the 32-bit signed integer range
231 <x <2311,

If saturation occurs in either operation, the instruction sets the Q flag in the CPSR.

Syntax

QDADD{<cond>} <Rd>, <Rm>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<Rn> Specifies the register whose value is to be doubled, saturated, and used as the second

operand for the saturated addition.

Architecture version

Version 5TE and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = SignedSat(Rm + SignedSat(Rn«2, 32), 32)
if SignedDoesSat(Rm + SignedSat(Rn«2, 32), 32) or
SignedDoesSat(Rn«2, 32) then
QFlag =1

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-99

ARM Instructions

Usage

The primary use for this instruction is to generate multiply-accumulate operations on Q15 and Q31
numbers, by placing it after an integer multiply instruction. Three examples are:

To multiply the Q15 numbers in the top halves of R4 and R5 and add the product to the Q31 number
in R6, use:

SMULTT R@, R4, RS

QDADD R6, R6, RO

To multiply the Q15 number in the bottom half of R2 by the Q31 number in R3 and add the product
to the Q31 number in R7, use:

SMULWB R@, R3, R2
QDADD R7, R7, RO
To multiply the Q31 numbers in R2 and R3 and add the product to the Q31 number in R4, use:

SMULL R@, R1, R2, R3
QDADD R4, R4, R1

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.
Condition flags The QDADD instruction does not affect the N, Z, C, or V flags.

A4-100

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.51 QDSUB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00010110 Rn Rd SBZ 0101 Rm

QDSUB (Saturating Double and Subtract) doubles its second operand, then subtracts the result from its first
operand.

Both the doubling and the subtraction have their results saturated to the 32-bit signed integer range
231 <x <231 1.

If saturation occurs in either operation, QDSUB sets the Q flag in the CPSR.

Syntax

QDSUB{<cond>} <Rd>, <Rm>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<Rn> Specifies the register whose value is to be doubled, saturated, and used as the second

operand for the saturated subtraction.

Rm and Rn are in reversed order in the assembler syntax, compared with the majority of ARM instructions.

Architecture version

Version 5TE and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = SignedSat(Rm - SignedSat(Rn«2, 32), 32)
if SignedDoesSat(Rm - SignedSat(Rn«2, 32), 32) or
SignedDoesSat(Rnx2, 32) then
QFlag =1

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-101

ARM Instructions

Usage

The primary use for this instruction is to generate multiply-subtract operations on Q15 and Q31 numbers,
by placing it after an integer multiply instruction. Three examples are:

. To multiply the Q15 numbers in the top half of R4 and the bottom half of RS, and subtract the product
from the Q31 number in R6, use:

SMULTB R@, R4, R5
QDSUB R6, R6, RO

. To multiply the Q15 number in the bottom half of R2 by the Q31 number in R3 and subtract the
product from the Q31 number in R7, use:

SMULWB R@, R3, R2
QDSUB R7, R7, RO

. To multiply the Q31 numbers in R2 and R3 and subtract the product from the Q31 number in R4, use:

SMULL R@, R1, R2, R3
QDSUB R4, R4, R1

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.
Condition flags The QDSUB instruction does not affect the N, Z, C, or V flags.

A4-102 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.52 QSUB

31 28 27 26 25 24 23 22 21 20 19

16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond 00O01O0O0T10O0 Rn

Rd

SBZ

0

1

0

1

Rm

QSUB (Saturating Subtract) performs integer subtraction. It saturates the result to the 32-bit signed integer

range 231 <x <231 1,

If saturation occurs, QSUB sets the Q flag in the CPSR.

Syntax

QSUB{<cond>} <Rd>, <Rm>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<Rn> Specifies the register that contains the second operand.

Rm and Rn are in reversed order in the assembler syntax, compared with the majority of ARM instructions.

Architecture version

Version 5TE and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = SignedSat(Rm - Rn, 32)
if SignedDoesSat(Rm - Rn, 32) then

QFlag =1
Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.
Condition flags QSUB does not affect the N, Z, C, or V flags.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-103

ARM Instructions

A4.1.53 QSUB16

31 28 27 26 25 24 23 22 21 20 19

16 15 12 11 8§ 7 6 5 4 3 0

cond 01100010 Rn

Rd SBO 0111 Rm

QSUB16 performs two 16-bit subtractions. It saturates the results to the 16-bit signed integer range

2I5<x <2151,

QSUB16 does not affect any flags.

struction is executed. The conditions are defined in The

condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Syntax

QSUB16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the in
<Rd> Specifies the destination register.
<Rn> Specifies the register that contains
<Rm> Specifies the register that contains

Architecture version

Version 6 and above.

Exceptions

None.

Operation
if ConditionPassed(cond) then

Rd[15:0] = SignedSat(Rn[15:0] - Rm[15:0],
Rd[31:16] = SignedSat(Rn[31:16] - Rm[31:16]

Usage

the first operand.

the second operand.

16)
, 16)

Use QSUB16 in similar ways to the SSUB16 instruction, but for signed saturated arithmetic. QSUB16 does not set

the GE bits for use with SEL. See SSUBI6 on page

Notes

A4-180 for more details.

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-104

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.54 QSUB8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100010 Rn Rd SBO 1111 Rm

QSUB8 performs four 8-bit subtractions. It saturates the results to the 8-bit signed integer range
27<x<27-1.

QSUB8 does not affect any flags.

Syntax

QSUB8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

Version 6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[7:0] = SignedSat(Rn[7:0] - Rm[7:0], 8)
Rd[15:8] SignedSat(Rn[15:8] Rm[15:8], 8)
Rd[23:16] = SignedSat(Rn[23:16] - Rm[23:16], 8)
Rd[31:24] = SignedSat(Rn[31:24] - Rm[31:24], 8)

Usage

Use QSUBS in similar ways to SSUB8, but for signed saturated arithmetic. QSUB8 does not set the GE bits for use
with SEL. See SSUBS on page A4-182 for more details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-105

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-106 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.55 QSUBADDX

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3

ARM Instructions

cond

01100010 Rn Rd SBO 0

1

0

1

Rm

QSUBADDX (Saturating Subtract and Add with Exchange) performs one 16-bit signed integer addition and one
16-bit signed integer subtraction, saturating the results to the 16-bit signed integer range
215 <x <2151, It exchanges the two halfwords of the second operand before it performs the arithmetic.
QSUBADDX does not affect any flags.

Syntax

QSUBADDX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.
Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

Version 6

and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then

Rd[31
Rd[15

:16] = SignedSat(Rn[31:16] - Rm[15:0], 16)
:0] = SignedSat(Rn[15:0] + Rm[31:16], 16)

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-107

ARM Instructions

Usage

You can use QSUBADDX for operations on complex numbers that are held as pairs of 16-bit integers or Q15
numbers. If you hold the real and imaginary parts of a complex number in the bottom and top half of a
register respectively, then the instruction:

QSUBADDX Rd, Ra, Rb
performs the complex arithmetic operation Rd = (Ra —1i * Rb).

QSUBADDX does not set the Q flag, even if saturation occurs on either operation.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-108 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.56 REV

31 28 27 23 22 21 20 19 16 15 12 11 8 7 6 4 3 0

cond 01 101|011 SBO Rd SBO 0(0 1 1 Rm

REV (Byte-Reverse Word) reverses the byte order in a 32-bit register.

Syntax

REV{<cond>} Rd, Rm

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand.

Architecture version

Version 6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[31:24] = Rm[7: 0]
Rd[23:16] = Rm[15: 8]
Rd[15: 8] = Rm[23:16]
Rd[1

7: 0] = Rm[31:24
Usage
Use REV to convert 32-bit big-endian data into little-endian data, or 32-bit little-endian data into big-endian
data.
Notes
Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-109

ARM Instructions

A4.1.57 REV16

31 28 27 23 22 21 20 19 16 15 12 11 8 7

cond 01 101|011 SBO Rd SBO 1

1 Rm

REV16 (Byte-Reverse Packed Halfword) reverses the byte order in each 16-bit halfword of a 32-bit register.

Syntax

REV16{<cond>} Rd, Rm

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand.

Architecture version

Version 6 and above.

Exceptions
None.
Operation
if Cond1t1onPassed(cond) then
Rd[15: 8] = Rm[7: 0]
Rd[7: 0] = Rm[15: 8]
Rd[31:24] = Rm[23:16]
Rd[23:16] = Rm[31:24]
Usage
Use REV16 to convert 16-bit big-endian data into little-endian data, or 16-bit little-endian data into big-endian
data.
Notes
Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.

A4-110

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

A4.1.58 REVSH

31 28 27 23 22 21 20 19 16 15 12 11 8 7 6 4 3 0

cond 01 101|111 SBO Rd SBO 110 1 1 Rm

REVSH (Byte-Reverse Signed Halfword) reverses the byte order in the lower 16-bit halfword of a 32-bit
register, and sign extends the result to 32-bits.

Syntax

REVSH{<cond>} Rd, Rm

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand.

Architecture version

Version 6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[15: 8] = Rm[7: 0]
Rd[7: @] = Rm[15: 8]
if Rm[7] == 1 then
Rd[31:16] = OxFFFF
else
Rd[31:16] = 0x0000

Usage

Use REVSH to convert either:
. 16-bit signed big-endian data into 32-bit signed little-endian data
. 16-bit signed little-endian data into 32-bit signed big-endian data.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-111

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.

A4-112 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.59 RFE
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 1211109 8 7 0
1 11 1|1 0 0|P|U|O0[W|I Rn SBZ 1010 SBZ

RFE (Return From Exception) loads the PC and the CPSR from the word at the specified address and the
following word respectively.

Syntax
RFE<addressing_mode> <Rn>{!}
where:

<addressing_mode>

Is similar to the <addressing_mode> in LDM and STM instructions, see Addressing Mode 4 -
Load and Store Multiple on page A5-41, but with the following differences:

. The number of registers to load is 2.

. The register list is {PC, CPSR}.

<Rn> Specifies the base register to be used by <addressing_mode>. If R15 is specified as the base
register, the result is UNPREDICTABLE.

If present, sets the W bit. This causes the instruction to write a modified value back to its
base register, in a manner similar to that specified for Addressing Mode 4 - Load and Store
Multiple on page A5-41. If | is omitted, the W bit is 0 and the instruction does not change
the base register.

Architecture version

Version 6 and above.

Exceptions

Data Abort.

Usage

While RFE supports different base registers, a general usage case is where Rn == sp (the stack pointer), held
in R13. The instruction can then be used as the return method associated with instructions SRS and CPS. See
New instructions to improve exception handling on page A2-28 for more details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-113

ARM Instructions

Operation

address = start_address
value = Memory[address,4]
If InAPrivilegedMode() then
CPSR = Memory[address+4,4]
else
UNPREDICTABLE
PC = value

assert end_address == address + 8

where start_address and end_address are determined as described in Addressing Mode 4 - Load and Store
Multiple on page A5-41, except that Number_Of_Set_Bits_in(register_l1ist) evaluates to 2, rather than
depending on bits[15:0] of the instruction.

Notes

Data Abort For details of the effects of this instruction if a Data Abort occurs, see Data Abort (data
access memory abort) on page A2-21.
Non word-aligned addresses

In ARMV6, an address with bits[1:0] != 0b00 causes an alignment exception if the CP15
register 1 bits U==1 or A==1, otherwise RFE behaves as if bits[1:0] are 0b00.

In earlier implementations, if they include a System Control coprocessor (see Chapter B3
The System Control Coprocessor), an address with bits[1:0] != 0b00 causes an alignment
exception if the CP15 register 1 bit A==1, otherwise RFE behaves as if bits[1:0] are 0b00.

Time order The time order of the accesses to individual words of memory generated by RFE is not
architecturally defined. Do not use this instruction on memory-mapped I/O locations where
access order matters.

User mode RFE is UNPREDICTABLE in User mode.
Condition Unlike most other ARM instructions, RFE cannot be executed conditionally.

ARM/Thumb State transfers

If the CPSR T bit as loaded is 0 and bit[1] of the value loaded into the PC is 1, the results
are UNPREDICTABLE because it is not possible to branch to an ARM instruction at a non
word-aligned address.

A4-114 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.60 RSB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|I|0 O 1 1]|S Rn Rd shifter_operand

RSB (Reverse Subtract) subtracts a value from a second value.

The first value comes from a register. The second value can be either an immediate value or a value from a
register, and can be shifted before the subtraction. This is the reverse of the normal order of operands in
ARM assembler language.

RSB can optionally update the condition code flags, based on the result.

Syntax

RSB{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the

CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the subtraction,
and the C and V flags are set according to whether the subtraction generated a borrow
(unsigned underflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.
<Rn> Specifies the register that contains the second operand.

<shifter_operand>

Specifies the first operand. The options for this operand are described in Addressing Mode
1 - Data-processing operands on page A5-2, including how each option causes the I bit
(bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not RSB.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-115

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = shifter_operand - Rn
if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then
CPSR = SPSR
else UNPREDICTABLE
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(shifter_operand - Rn)

V Flag = OverflowFrom(shifter_operand - Rn)

Usage

The following instruction stores the negation (twos complement) of Rx in Rd:
RSB Rd, Rx, #0

You can perform constant multiplication (of Rx) by 2"—1 (into Rd) with:

RSB Rd, Rx, Rx, LSL #n

Notes

C flag If S is specified, the C flag is set to:
1 if no borrow occurs
0 if a borrow does occur.

In other words, the C flag is used as a NOT(borrow) flag. This inversion of the borrow
condition is used by subsequent instructions: SBC and RSC use the C flag as a NOT(borrow)
operand, performing a normal subtraction if C == 1 and subtracting one more than usual if
C==0.

The HS (unsigned higher or same) and LO (unsigned lower) conditions are equivalent to CS
(carry set) and CC (carry clear) respectively.

A4-116 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.61 RSC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 o0|I|0O 1 1 1]|S Rn Rd shifter_operand

RSC (Reverse Subtract with Carry) subtracts one value from another, taking account of any borrow from a
preceding less significant subtraction. The normal order of the operands is reversed, to allow subtraction
from a shifted register value, or from an immediate value.

RSC can optionally update the condition code flags, based on the result.

Syntax

RSC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the

CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the subtraction,
and the C and V flags are set according to whether the subtraction generated a borrow
(unsigned underflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.
<Rn> Specifies the register that contains the second operand.

<shifter_operand>

Specifies the first operand. The options for this operand are described in Addressing Mode
1 - Data-processing operands on page A5-2, including how each option causes the I bit
(bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not RSC.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-117

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = shifter_operand - Rn - NOT(C Flag)
if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then
CPSR = SPSR
else UNPREDICTABLE
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(shifter_operand - Rn - NOT(C Flag))

V Flag = OverflowFrom(shifter_operand - Rn - NOT(C Flag))

Usage

Use RSC to synthesize multi-word subtraction, in cases where you need the order of the operands reversed to
allow subtraction from a shifted register value, or from an immediate value.

Example

You can negate the 64-bit value in RO,R1 using the following sequence (R0 holds the least significant word),
which stores the result in R2,R3:

RSBS R2,R0,#0
RSC R3,R1,#0

Notes

C flag If S is specified, the C flag is set to:
1 if no borrow occurs
0 if a borrow does occur.

In other words, the C flag is used as a NOT(borrow) flag. This inversion of the borrow
condition is used by subsequent instructions: SBC and RSC use the C flag as a NOT(borrow)
operand, performing a normal subtraction if C == 1 and subtracting one more than usual if
C==0.

The HS (unsigned higher or same) and LO (unsigned lower) conditions are equivalent to CS
(carry set) and CC (carry clear) respectively.

A4-118 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.62 SADD16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3

ARM Instructions

cond

01 10000O01 Rn Rd SBO 000

1

Rm

SADD16 (Signed Add) performs two 16-bit signed integer additions. It sets the GE bits in the CPSR according
to the results of the additions.

Syntax

SADD16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.
Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
sum = Rn[15:0] + Rm[15:0] /+ Signed addition =/
Rd[15:0] = sum[15:0]
GE[1:0] = if sum >= @ then 0bll else @
sum = Rn[31:16] + Rm[31:16] /* Signed addition =/
Rd[31:16] = sum[15:0]
GE[3:2] = if sum >= @ then 0bll else 0

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-119

ARM Instructions

Usage

Use the SADD16 instruction to speed up operations on arrays of halfword data. For example, consider the
instruction sequence:

LDR R3, [RO], #4
LDR RS, [R1], #4
SADD16 R3, R3, RS

STR R3, [R2], #4

This performs the same operations as the instruction sequence:

LDRH R3, [RO], #2
LDRH R4, [R1], #2
ADD R3, R3, R4

STRH R3, [R2], #2
LDRH R3, [RO], #2
LDRH R4, [R1], #2
ADD R3, R3, R4

STRH R3, [R2], #2

The first sequence uses half as many instructions and typically half as many cycles as the second sequence.

You can also use SADD16 for operations on complex numbers that are held as pairs of 16-bit integers or Q15
numbers. If you hold the real and imaginary parts of a complex number in the bottom and top half of a
register respectively, then the instruction:

SADD16 Rd, Ra, Rb
performs the complex arithmetic operation Rd = Ra + Rb.

SADD16 sets the GE flags according to the results of each addition. You can use these in a following SEL
instruction. See SEL on page A4-127.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-120

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.63 SADDS8

31 28 27 26 25 24 23 22 21 20 19 16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond

01 10000O01 Rn Rd

SBO

100

1

Rm

SADD8 performs four 8-bit signed integer additions. It sets the GE bits in the CPSR according to the results
of the additions.

Syntax
SADD8{<cond>}
where:

<cond>

<Rd>
<Rn>

<Rm>

<Rd>, <Rn>, <Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
sum = Rn[7:0] + Rm[7:0] /+ Signed addition =/
Rd[7:0] = sum[7:0]
GE[0] = if sum >= @ then 1 else @
sum = Rn[15:8] + Rm[15:8] /« Signed addition =/
Rd[15:8] = sum[7:0]
GE[1] = if sum >= @ then 1 else @
sum = Rn[23:16] + Rm[23:16] /# Signed addition */
Rd[23:16] = sum[7:0]
GE[2] = if sum >= 0 then 1 else 0
sum = Rn[31:24] + Rm[31:24] /* Signed addition =/
Rd[31:24] = sum[7:0]
GE[3] = if sum >= @ then 1 else @

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-121

ARM Instructions

Usage

Use SADD8 to speed up operations on arrays of byte data. This is similar to the way you can use the SADD16
instruction. See the usage subsection for SADD16 on page A4-119 for details.

SADDS sets the GE flags according to the results of each addition. You can use these in a following SEL
instruction, see SEL on page A4-127.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-122 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.64 SADDSUBX

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01 100O00O0°1 Rn Rd SBO 0011 Rm

SADDSUBX (Signed Add and Subtract with Exchange) performs one 16-bit signed integer addition and one
16-bit signed integer subtraction. It exchanges the two halfwords of the second operand before it performs
the arithmetic. It sets the GE bits in the CPSR according to the results of the additions.

Syntax

SADDSUBX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
sum = Rn[31:16] + Rm[15:0] /+ Signed addition =/
Rd[31:16] = sum[15:0]
GE[3:2] if sum >= 0 then 0Obll else 0
diff Rn[15:0] - Rm[31:16] /% Signed subtraction =/
Rd[15:0] = diff[15:0]
GE[1:0] if diff >= 0 then 0bll else 0

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-123

ARM Instructions

Usage

You can use SADDSUBX for operations on complex numbers that are held as pairs of 16-bit integers or Q15
numbers. If you hold the real and imaginary parts of a complex number in the bottom and top half of a
register respectively, then the instruction:

SADDSUBX Rd, Ra, Rb
performs the complex arithmetic operation Rd = Ra + (i * Rb).

SADDSUBX sets the GE flags according to the results the operation. You can use these in a following SEL
instruction, see SEL on page A4-127.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-124 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.65 SBC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|I|0O 1 1 0|S Rn Rd shifter_operand

SBC (Subtract with Carry) subtracts the value of its second operand and the value of NOT(Carry flag) from
the value of its first operand. The first operand comes from a register. The second operand can be either an
immediate value or a value from a register, and can be shifted before the subtraction.

Use SBC to synthesize multi-word subtraction.

SBC can optionally update the condition code flags, based on the result.

Syntax

SBC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the

CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

. If <Rd> is not R15, the N and Z flags are set according to the result of the subtraction,
and the C and V flags are set according to whether the subtraction generated a borrow
(unsigned underflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

. If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.
<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not SBC.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-125

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = Rn - shifter_operand - NOT(C Flag)
if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then
CPSR = SPSR
else UNPREDICTABLE
else if S == 1 then

N Flag
Z Flag
C Flag
V Flag

Usage

Rd[31]

if Rd == 0 then 1 else 0

NOT BorrowFrom(Rn - shifter_operand - NOT(C Flag))
= OverflowFrom(Rn - shifter_operand - NOT(C Flag))

If register pairs RO,R1 and R2,R3 hold 64-bit values (RO and R2 hold the least significant words), the
following instructions leave the 64-bit difference in R4,R5:

SUBS R4
SBC RS
Notes
C flag

,R0,R2
,R1,R3

If S is specified, the C flag is set to:

1 if no borrow occurs

0 if a borrow does occur.

In other words, the C flag is used as a NOT(borrow) flag. This inversion of the borrow
condition is used by subsequent instructions: SBC and RSC use the C flag as a NOT(borrow)

operand, performing a normal subtraction if C == 1 and subtracting one more than usual if
C==0.

The HS (unsigned higher or same) and LO (unsigned lower) conditions are equivalent to CS
(carry set) and CC (carry clear) respectively.

A4-126 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.66 SEL

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3

ARM Instructions

cond 01101000 Rn Rd SBO 10

1

1

Rm

SEL (Select) selects each byte of its result from either its first operand or its second operand, according to the

values of the GE flags.

Syntax

SEL{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[7:0] = if GE[@] == 1 then Rn[7:0] else Rm[7:0]
d[15:8] = if GE[1] == 1 then Rn[15:8] else Rm[15:8]
Rd[23:16] = if GE[2] == 1 then Rn[23:16] else Rm[23:16]
d[31:24] = if GE[3] == 1 then Rn[31:24] else Rm[31:24]

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-127

ARM Instructions

Usage

Use SEL after instructions such as SADD8, SADD16, SSUBS, SSUB16, UADD8, UADD16, USUBS, USUB16, SADDSUBX,
SSUBADDX, UADDSUBX and USUBADDX, that set the GE flags. For example, the following sequence of instructions
sets each byte of Rd equal to the unsigned minimum of the corresponding bytes of Ra and Rb:

USUB8 Rd, Ra, Rb
SEL Rd, Rb, Ra
Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-128 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.67 SETEND

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 4 3 0

111 1/000100O0O0(0O0O0|1 SBZ E{SBZ|{0 0 0 O SBZ

SETEND modifies the CPSR E bit, without changing any other bits in the CPSR.

Syntax
SETEND <endian_specifier>
where:

<endian_specifier>

Is one of:
BE Sets the E bit in the instruction. This sets the CPSR E bit.
LE Clears the E bit in the instruction. This clears the CPSR E bit.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

CPSR = CPSR with specified E bit modification

Usage

Use SETEND to change the byte order for data accesses. You can use SETEND to increase the efficiency of access
to a series of big-endian data fields in an otherwise little-endian application, or to a series of little-endian
data fields in an otherwise big-endian application.

Notes

Condition Unlike most other ARM instructions, SETEND cannot be executed conditionally.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-129

ARM Instructions

A4.1.68 SHADD16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 01100011 Rn Rd SBO 00 01 Rm

SHADD16 (Signed Halving Add) performs two 16-bit signed integer additions, and halves the results. It has
no effect on the GE flags.

Syntax

SHADD16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
sum = Rn[15:0] + Rm[15:0] /+ Signed addition =/
Rd[15:0] = sum[16:1]
sum = Rn[31:16] + Rm[31:16] /+ Signed addition =/
Rd[31:16] = sum[16:1]

Usage

Use SHADD16 for similar purposes to SADD16 (see SADDI16 on page A4-119). SHADD16 averages the operands.
It does not set any flags, as overflow is not possible.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-130

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.69 SHADDS8

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond

0

1 100O0T11 Rn

Rd

SBO

100

1

Rm

SHADD8 performs four 8-bit signed integer additions, and halves the results. It has no effect on the GE flags.

Syntax

SHADD8{<cond>}

where:

<cond>

<Rd>

<Rn>

<Rm>

<Rd>, <Rn>, <Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
= Rn[7:0] + Rm[7:0] /+ Signed addition =/

sum

Rd[7:0] =

sum
Rd[15
sum
Rd[23
sum
Rd[31

Usage

= Rn[15:8] + Rm[15:8] / Signed addition
18] =

sum[8:1]

sum[8:1]

:‘:/

= Rn[23:16] + Rm[23:16] /* Signed addition =/

:16]

= sum[8:1]

= Rn[31:24] + Rm[31:24] /x Signed addition =/

124] =

sum[8:1]

Use SHADD8 similar purposes to SADD16 (see SADD16 on page A4-119). SHADD8 averages the operands. It does
not set any flags, as overflow is not possible.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-131

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-132 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.70 SHADDSUBX

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100011 Rn Rd SBO 0011 Rm

SHADDSUBX (Signed Halving Add and Subtract with Exchange) performs one 16-bit signed integer addition
and one 16-bit signed integer subtraction, and halves the results. It exchanges the two halfwords of the
second operand before it performs the arithmetic.

SHADDSUBX has no effect on the GE flags.

Syntax

SHADDSUBX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
sum = Rn[31:16] + Rm[15:0] /+ Signed addition x/
Rd[31:16] = sum[16:1]
diff = Rn[15:0] - Rm[31:16] /% Signed subtraction x/

Rd[15:0] = diff[16:1]

Usage

Use SHADDSUBX for similar purposes to SADDSUBX, but when you want the results halved. See SADDSUBX on
page A4-123 for further details.

SHADDSUBX does not set any flags, as overflow is not possible.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-133

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-134 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.71 SHSUB16

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond

0

1 100O0T11 Rn

Rd

SBO

0

1

1

1

Rm

SHSUB16 (Signed Halving Subtract) performs two 16-bit signed integer subtractions, and halves the results.

SHSUB16 has no effect on the GE flags.

Syntax

SHSUB16{<cond>}

where:

<cond>

<Rd>

<Rn>

<Rm>

<Rd>, <Rn>, <Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

/% Signed subtraction =/

ARMVG6 and above.
Exceptions
None.
Operation
if ConditionPassed(cond) then
diff = Rn[15:0] - Rm[15:0]
Rd[15:0] = diff[16:1]
diff = Rn[31:16] - Rm[31:16] /« Signed subtraction x/
Rd[31:16] = diff[16:1]

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-135

ARM Instructions

Usage

Use SHSUB16 to speed up operations on arrays of halfword data. This is similar to the way you can use SADD16.
See the usage subsection for SADD16 on page A4-119 for details.

You can also use SHSUB16 for operations on complex numbers that are held as pairs of 16-bit integers or Q15
numbers. If you hold the real and imaginary parts of a complex number in the bottom and top half of a
register respectively, then the instruction:

SHSUB16 Rd, Ra, Rb
performs the complex arithmetic operation Rd = (Ra - Rb)/2.

SHSUB16 does not set any flags, as overflow is not possible.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-136

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.72 SHSUBS

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100011 Rn Rd SBO 1111 Rm

SHSUB8 performs four 8-bit signed integer subtractions, and halves the results.

SHSUB8 has no effect on the GE flags.

Syntax

SHSUB8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
diff = Rn[7:0] - Rm[7:0] /+ Signed subtraction =/
RA[7:0] = diff[8:1]
diff = Rn[15:8] - Rm[15:8] /% Signed subtraction =/
Rd[15:8] = diff[8:1]
diff = Rn[23:16] - Rm[23:16] /* Signed subtraction =/
Rd[23:16] = diff[8:1]
diff = Rn[31:24] - Rm[31:24] /« Signed subtraction x/
Rd[31:24] = diff[8:1]

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-137

ARM Instructions

Usage

Use SHSUBS to speed up operations on arrays of byte data. This is similar to the way you can use SADD16 to
speed up operations on halfword data. See the usage subsection for SADD16 on page A4-119 for details.

SHSUB8 does not set any flags, as overflow is not possible.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-138 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.73 SHSUBADDX

31 28 27 26 25 24 23 22 21 20 19

16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond 01100011

Rn

Rd

SBO

0

1

0

1

Rm

SHSUBADDX (Signed Halving Subtract and Add with Exchange) performs one 16-bit signed integer subtraction
and one 16-bit signed integer addition, and halves the results. It exchanges the two halfwords of the second

operand before it performs the arithmetic.

SHSUBADDX has no effect on the GE flags.

Syntax

SHSUBADDX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then

diff = Rn[31:16] - Rm[15:0]
Rd[31:16] = diff[16:1]
sum = Rn[15:0] + Rm[31:16]

RA[15:0] = sum[16:1]

/+ Signed subtraction =/

/% Signed addition

%/

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-139

ARM Instructions

Usage

Use SHSUBADDX for similar purposes to SSUBADDX, but when you want the results halved. See SSUBADDX on
page A4-184 for further details.

SHSUBADDX does not set any flags, as overflow is not possible.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-140 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.74 SMLA<x><y>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0001O0O0O00O0 Rd Rn Rs 1ly|x|O Rm

SMLA<x><y> (Signed multiply-accumulate BB, BT, TB, and TT) performs a signed multiply-accumulate
operation. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top half of
their respective source registers. The other halves of these source registers are ignored. The 32-bit product
is added to a 32-bit accumulate value and the result is written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the CPSR.
It is not possible for overflow to occur during the multiplication.

Syntax

SMLA<x><y>{<cond>} <Rd>, <Rm>, <Rs>, <Rn>

where:

<X> Specifies which half of the source register <Rm> is used as the first multiply operand. If <x>
is B, then x == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rm> is used.
If <x> is T, then x == 1 in the instruction encoding and the top half (bits[31:16]) of <Rm> is
used.

<y> Specifies which half of the source register <Rs> is used as the second multiply operand. If
<y>is B, then y == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs> is
used. If <y> is T, then y == 1 in the instruction encoding and the top half (bits[31:16]) of <Rs>
is used.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the source register whose bottom or top half (selected by <x>) is the first multiply
operand.

<Rs> Specifies the source register whose bottom or top half (selected by <y>) is the second
multiply operand.

<Rn> Specifies the register which contains the accumulate value.

Architecture version

Version 5TE and above.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-141

ARM Instructions

Exceptions

None.

Operation
if ConditionPassed(cond) then

if (x == 0) then

operandl = SignExtend(Rm[15:0])
else /# x == 1 «/

operandl = SignExtend(Rm[31:16])

if (y == 0) then

operand2 = SignExtend(Rs[15:0])
else /xy==1 1/

operand2 = SignExtend(Rs[31:16])

Rd = (operandl = operand2) + Rn
if OverflowFrom((operandl = operand2) + Rn) then
QFlag =1

A4-142 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

In addition to its straightforward uses for integer multiply-accumulates, these instructions sometimes
provide a faster alternative to Q15 x Q15 + Q31 — Q31 multiply-accumulates synthesized from SMUL<x><y>
and QDADD instructions. The main circumstances under which this is possible are:

. if it is known that saturation and/or overflow cannot occur during the calculation

. if saturation and/or overflow can occur during the calculation but the Q flag is going to be used to
detect this and take remedial action if it does occur.

For example, the following code produces the dot product of the four Q15 numbers in RO and R1 by the four
Q15 numbers in R2 and R3:

SMULBB R4, RO, R2
QADD R4, R4, R4
SMULTT R5, Re, R2
QDADD R4, R4, RS
SMULBB RS, R1, R3
QDADD R4, R4, R5
SMULTT R5, R1, R3
QDADD R4, R4, RS

In the absence of saturation, the following code provides a faster alternative:

SMULBB R4, RO, R2
SMLATT R4, R0, R2, R4
SMLABB R4, R1, R3, R4
SMLATT R4, R1, R3, R4
QADD R4, R4, R4

Furthermore, if saturation and/or overflow occurs in this second sequence, it sets the Q flag. This allows
remedial action to be taken, such as scaling down the data values and repeating the calculation.

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, <Rs>, or <Rn> has UNPREDICTABLE results.
Condition flags The SMLA<x><y> instructions do not affect the N, Z, C, or V flags.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-143

ARM Instructions

A4.1.75 SMLAD

31

28 27 26 25 24 23 22 21 20 19 16 15

12 11

8§ 7 6 5 4 3 0

cond

0

1110000 Rd Rn

Rs

00

X

1 Rm

SMLAD (Signed Multiply Accumulate Dual) performs two signed 16 x 16-bit multiplications. It adds the
products to a 32-bit accumulate operand.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications.

Syntax

SMLAD{X}{<cond>} <Rd>, <Rm>, <Rs>, <Rn>

where:

X

<cond>

<Rd>

<Rm>

<Rs>

<Rn>

Sets the X bit of the instruction to 1, and the multiplications are bottom x top and top x

bottom.

If the X is omitted, sets the X bit to 0, and the multiplications are bottom x bottom and top

X top.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Specifies the register that contains the accumulate operand.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-144

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
if X == 1 then
operand2 = Rs Rotate_Right 16
else
operand2 = Rs
productl = Rm[15:0] = operand2[15:0] /+ Signed multipTlication =/
product2 = Rm[31:16] * operand2[31:16] /% Signed multiplication =/
Rd = Rn + productl + product2
if OverflowFrom(Rn + productl + product2) then
Qflag=1

Usage

Use SMLAD to accumulate the sums of products of 16-bit data, with a 32-bit accumulator. This instruction
enables you to do this at approximately twice the speed otherwise possible. This is useful in many
applications, for example in filters.

You can use the X option for calculating the imaginary part for similar filters acting on complex numbers
with 16-bit real and 16-bit imaginary parts.

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.
Note
Your assembler must fault the use of R15 for register <Rn>.
Encoding If the <Rn> field of the instruction contains 0b1111, the instruction is an SMUAD

instruction instead, see SMUAD on page A4-164.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

N,Z,Cand V flags The SMLAD instruction leaves the N, Z, C and V flags unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-145

ARM Instructions

A4.1.76 SMLAL

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond

000O0T1T1T1]|S RdHi RdLo Rs 1 0 01 Rm

SMLAL (Signed Multiply Accumulate Long) multiplies two signed 32-bit values to produce a 64-bit value,
and accumulates this with a 64-bit value.

SMLAL can optionally update the condition code flags, based on the result.

Syntax

SMLAL{<cond>}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

where:

<cond>

<RdLo>

<RdHi>

<Rm>

<Rs>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the
multiply-accumulate. If S is omitted, the S bit of the instruction is set to 0 and the entire
CPSR is unaffected by the instruction.

Supplies the lower 32 bits of the value to be added to the product of <Rm> and <Rs>, and is
the destination register for the lower 32 bits of the result.

Supplies the upper 32 bits of the value to be added to the product of <Rm> and <Rs>, and is
the destination register for the upper 32 bits of the result.

Holds the signed value to be multiplied with the value of <Rs>.

Holds the signed value to be multiplied with the value of <Rm>.

Architecture version

All

Exceptions

None.

A4-146

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
RdLo = (Rm * Rs)[31:0] + RdLo /+ Signed multiplication =/
RdHi = (Rm * Rs)[63:32] + RdHi + CarryFrom((Rm % Rs)[31:0] + RdLo)
if S == 1 then
N Flag = RdHi[31]
Z Flag = if (RdHi == 0) and (RdLo == @) then 1 else 0
C Flag = unaffected /% See "C and V flags" note =/
V Flag = unaffected /% See "C and V flags" note =/

Usage

SMLAL multiplies signed variables to produce a 64-bit result, which is added to the 64-bit value in the two
destination general-purpose registers. The result is written back to the two destination general-purpose
registers.

Notes

Use of R15 Specifying R15 for register <RdHi>, <RdLo>, <Rm>, or <Rs> has UNPREDICTABLE
results.

Operand restriction <RdHi> and <RdLo> must be distinct registers, or the results are UNPREDICTABLE.

Specifying the same register for either <RdHi> and <Rm>, or <RdLo> and <Rm>, was
previously described as producing UNPREDICTABLE results. There is no restriction
in ARMv6, and it is believed all relevant ARMv4 and ARMvVS implementations do
not require this restriction either, because high performance multipliers read all their
operands prior to writing back any results.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

C and V flags SMLALS is defined to leave the C and V flags unchanged in ARMvS5 and above. In
earlier versions of the architecture, the values of the C and V flags were
UNPREDICTABLE after an SMLALS instruction.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-147

ARM Instructions

A4.1.77 SMLAL<x><y>

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond

00010100 RdHi RdLo Rs l{y|[x]|O Rm

SMLAL<x><y> (Signed Multiply-Accumulate Long BB, BT, TB, and TT) performs a signed multiply-accumulate
operation. The multiply acts on two signed 16-bit quantities, taken from either the bottom or the top half of
their respective source registers. The other halves of these source registers are ignored. The 32-bit product
is sign-extended and added to the 64-bit accumulate value held in <RdHi> and <RdLo>, and the result is written
back to <RdHi> and <RdLo>.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not
detected if it occurs. Instead, the result wraps around modulo 264,

Syntax

SMLAL<x><y>{<cond>} <RdLo>, <RdHi>, <Rm>, <Rs>

where:

<X>

<y>

<cond>

<RdLo>

<RdHi>

<Rm>

<Rs>

Specifies which half of the source register <Rm> is used as the first multiply operand. If <x>
is B, then x == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rm> is used.
If <x> is T, then x == 1 in the instruction encoding and the top half (bits[31:16]) of <Rm> is
used.

Specifies which half of the source register <Rs> is used as the second multiply operand. If

<y>is B, then y == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs> is

used. If <y> is T, then y == 1 in the instruction encoding and the top half (bits[31:16]) of <Rs>
is used.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Supplies the lower 32 bits of the 64-bit accumulate value to be added to the product, and is
the destination register for the lower 32 bits of the 64-bit result.

Supplies the upper 32 bits of the 64-bit accumulate value to be added to the product, and is
the destination register for the upper 32 bits of the 64-bit result.

Specifies the source register whose bottom or top half (selected by <x>) is the first multiply
operand.

Specifies the source register whose bottom or top half (selected by <y>) is the second
multiply operand.

Architecture version

Version 5TE and above.

A4-148

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

None.

Operation
if ConditionPassed(cond) then

if (x == 0) then

operandl = SignExtend(Rm[15:0])
else /+ x == 1 =/

operandl = SignExtend(Rm[31:16])

if (y == 0) then

operand2 = SignExtend(Rs[15:0])
else /xy ==1 %/

operand2 = SignExtend(Rs[31:16])

RdLo = RdLo + (operandl = operand2)
RdHi = RdHi + (if (operandlxoperand2) < @ then OXFFFFFFFF else 0)
+ CarryFrom(RdLo + (operandl = operand2))

Usage

These instructions allow a long sequence of multiply-accumulates of signed 16-bit integers or Q15 numbers
to be performed, with sufficient guard bits to ensure that the result cannot overflow the 64-bit destination in
practice. It would take more than 233 consecutive multiply-accumulates to cause such overflow.

If the overall calculation does not overflow a signed 32-bit number, then <RdLo> holds the result of the
calculation.

A simple test to determine whether such a calculation has overflowed <RdLo> is to execute the instruction:
CcMp <RdHi>, <RdLo>, ASR #31

at the end of the calculation. If the Z flag is set, <RdLo> holds an accurate final result. If the Z flag is clear,
the final result has overflowed a signed 32-bit destination.

Notes

Use of R15 Specifying R15 for register <RdLo>, <RdHi>, <Rm>, or <Rs> has UNPREDICTABLE
results.

Operand restriction If <RdLo> and <RdHi> are the same register, the results are UNPREDICTABLE.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Condition flags The SMLAL<x><y> instructions do not affect the N, Z, C, V, or Q flags.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-149

ARM Instructions

A4.1.78 SMLALD

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond

0

1110100 RdHi RdLo Rs 0 0|X|1 Rm

SMLALD (Signed Multiply Accumulate Long Dual) performs two signed 16 x 16-bit multiplications. It adds
the products to a 64-bit accumulate operand.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Syntax

SMLALD{X}{<cond>} <RdLo>, <RdHi>, <Rm>, <Rs>

where:

X

<cond>

<RdLo>

<RdHi>

<Rm>

<Rs>

Sets the X bit of the instruction to 1, and the multiplications are bottom X top and top x
bottom.

If the X is omitted, sets the X bit to 0, and the multiplications are bottom x bottom and top
X top.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Supplies the lower 32 bits of the 64-bit accumulate value to be added to the product, and is
the destination register for the lower 32 bits of the 64-bit result.

Supplies the upper 32 bits of the 64-bit accumulate value to be added to the product, and is
the destination register for the upper 32 bits of the 64-bit result.

Specifies the register that contains the first multiply operand.

Specifies the register that contains the second multiply operand.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-150

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then

if X == 1 then
operand2 = Rs Rotate_Right 16
else
operand2 = Rs
accvalue[31:0] = RdLo
accvalue[63:32] = RdHi
productl = Rm[15:0] = operand2[15:0] /% Signed multiplication =/
product2 = Rm[31:16] = operand2[31:16] /% Signed multiplication =/
result = accvalue + productl + product2 /+ Signed addition =/
RdLo = result[31:0]
RdHi = result[63:32]

Usage

Use

SMLALD in similar ways to SMLAD, but when you require a 64-bit accumulator instead of a 32-bit

accumulator. On most implementations, this runs more slowly. See the usage section for SMLAD on
page A4-144 for further details.

Notes

Use

of R15 Specifying R15 for register <RdLo>, <RdHi>, <Rm>, or <Rs> has UNPREDICTABLE
results.

Operand restriction If <RdLo> and <RdHi> are the same register, the results are UNPREDICTABLE.

Early termination If the multiplier implementation supports early termination, it must be implemented

on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Flags SMLALD leaves all the flags unchanged.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-151

ARM Instructions

A4.1.79 SMLAW<y>

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00010010 Rd Rn Rs 1{y|O0]O Rm

SMLAW<y> (Signed Multiply-Accumulate Word B and T) performs a signed multiply-accumulate operation.
The multiply acts on a signed 32-bit quantity and a signed 16-bit quantity, with the latter being taken from
either the bottom or the top half of its source register. The other half of the second source register is ignored.
The top 32 bits of the 48-bit product are added to a 32-bit accumulate value and the result is written to the
destination register. The bottom 16 bits of the 48-bit product are ignored. If overflow occurs during the
addition of the accumulate value, the instruction sets the Q flag in the CPSR. No overflow can occur during
the multiplication, because of the use of the top 32 bits of the 48-bit product.

Syntax

SMLAW<y>{<cond>} <Rd>, <Rm>, <Rs>, <Rn>

where:

<y> Specifies which half of the source register <Rs> is used as the second multiply operand. If
<y>is B, then y == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs> is
used. If <y> is T, then y == 1 in the instruction encoding and the top half (bits[31:16]) of <Rs>
is used.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the source register which contains the 32-bit first multiply operand.

<Rs> Specifies the source register whose bottom or top half (selected by <y>) is the second
multiply operand.

<Rn> Specifies the register which contains the accumulate value.

Architecture version

Version 5TE and above.

Exceptions

None.

A4-152

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation
if ConditionPassed(cond) then

if (y == 0) then

operand2 = SignExtend(Rs[15:0])
else /xy =1/

operand2 = SignExtend(Rs[31:16])

Rd = (Rm x operand2)[47:16] + Rn /% Signed multiplication =/
if OverflowFrom((Rm = operand2)[47:16] + Rn) then
Q Flag = 1
Usage

In addition to their straightforward uses for integer multiply-accumulates, these instructions sometimes
provide a faster alternative to Q31 x Q15 + Q31 — Q31 multiply-accumulates synthesized from SMULW<y>
and QDADD instructions. The circumstances under which this is possible and the benefits it provides are very
similar to those for the SMLA<x><y> instructions. See Usage on page A4-143 for more details.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, <Rs>, or <Rn> has UNPREDICTABLE results.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Condition flags The SMLAW<y> instructions do not affect the N, Z, C, or V flags.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-153

ARM Instructions

A4.1.80 SMLSD

31

28 27 26 25 24 23 22 21 20 19 16 15

12 11

8§ 7 6 5 4 3 0

cond

01110000 Rd Rn

Rs

0

1

X

1 Rm

SMLSD (Signed Multiply Subtract accumulate Dual) performs two signed 16 x 16-bit multiplications. It adds

the difference of the products to a 32-bit accumulate operand.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

Syntax

SMLSD{X}{<cond>} <Rd>, <Rm>, <Rs>, <Rn>

where:

X

<cond>

<Rd>

<Rm>

<Rs>

<Rn>

Sets the X bit of the instruction to 1, and the multiplications are bottom x top and top x

bottom.

If the X is omitted, sets the X bit to 0, and the multiplications are bottom x bottom and top

X top.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first multiply operand.

Specifies the register that contains the second multiply operand.

Specifies the register that contains the accumulate operand.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-154

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
if X == 1 then
operand2 = Rs Rotate_Right 16
else
operand2 = Rs
productl = Rm[15:0] = operand2[15:0] /+ Signed multipTlication =/
product2 = Rm[31:16] * operand2[31:16] /% Signed multiplication =/
diffofproducts = productl - product2 /% Signed subtraction =/
Rd = Rn + diffofproducts
if OverflowFrom(Rn + diffofproducts) then
Q flag = 1

Usage

You can use SMLSD for calculating the real part in filters with 32-bit accumulators, acting on complex
numbers with 16-bit real and 16-bit imaginary parts.

See also the usage section for SMLAD on page A4-144.

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.
Note
Your assembler must fault the use of R15 for register <Rn>.
Encoding If the <Rn> field of the instruction contains 0b1111, the instruction is an SMUSD

instruction instead, see SMUSD on page A4-172.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

N,Z,Cand V flags SMLSD leaves the N, Z, C and V flags unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-155

ARM Instructions

A4.1.81 SMLSLD

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond

0

1110100 RdHi RdLo Rs 0 1|X|1 Rm

SMLSLD (Signed Multiply Subtract accumulate Long Dual) performs two signed 16 x 16-bit multiplications.
It adds the difference of the products to a 64-bit accumulate operand.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Syntax

SMLSLD{X}{<cond>} <RdLo>, <RdHi>, <Rm>, <Rs>

where:

X

<cond>

<RdLo>

<RdHi>

<Rm>

<Rs>

Sets the X bit of the instruction to 1, and the multiplications are bottom X top and top x
bottom.

If the X is omitted, sets the X bit to 0, and the multiplications are bottom x bottom and top
X top.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Supplies the lower 32 bits of the 64-bit accumulate value to be added to the product, and is
the destination register for the lower 32 bits of the 64-bit result.

Supplies the upper 32 bits of the 64-bit accumulate value to be added to the product, and is
the destination register for the upper 32 bits of the 64-bit result.

Specifies the register that contains the first multiply operand.

Specifies the register that contains the second multiply operand.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-156

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then

if X == 1 then

operand2 = Rs Rotate_Right 16
else

operand2 = Rs
accvalue[31:0] = RdLo
accvalue[63:32] = RdHi
productl = Rm[15:0] = operand2[15:0] /% Signed multiplication =/
product2 = Rm[31:16] = operand2[31:16] /% Signed multiplication =/
result = accvalue + productl - product2 /+ Signed subtraction =/
RdLo = result[31:0]
RdHi = result[63:32]

Usage

The

instruction has similar uses to those of the SMLSD instruction (see the Usage section for SMLSD on

page A4-154), but when 64-bit accumulators are required rather than 32-bit accumulators. On most
implementations, the resulting filter will not run as fast as a version using SMLSD, but it has many more guard

bits

See

against overflow.

also the usage section for SMLAD on page A4-144.

Notes

Use

of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.

Operand restriction If <RdLo> and <RdHi> are the same register, the results are UNPREDICTABLE.

Early termination If the multiplier implementation supports early termination, it must be implemented

on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Flags SMLSD leaves all the flags unchanged.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-157

ARM Instructions

A4.1.82 SMMLA

31

28 27 26 25 24 23 22 21 20 19 16 15

12 11

8§ 7 6 5 4 3 0

cond

01110101 Rd Rn

Rs

00

R

1 Rm

SMMLA (Signed Most significant word Multiply Accumulate) multiplies two signed 32-bit values, extracts the
most significant 32 bits of the result, and adds an accumulate value.

Optionally, you can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

Syntax

SMMLA{R}{<cond>} <Rd>, <Rm>, <Rs>, <Rn>

where:

R

<cond>

<Rd>

<Rm>

<Rs>

<Rn>

Sets the R bit of the instruction to 1. The multiplication is rounded.

If the R is omitted, sets the R bit to 0. The multiplication is truncated.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first multiply operand.

Specifies the register that contains the second multiply operand.

Specifies the register that contains the accumulate operand.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-158

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Operation
if ConditionPassed(cond) then
value = Rm = Rs /+ Signed multiplication =/
if R == 1 then
Rd = ((Rn<<32) + value + 0x80000000)[63:32]
else

Rd = ((Rn<<32) + value)[63:32]

Usage

Provides fast multiplication for 32-bit fractional arithmetic. For example, the multiplies take two Q31 inputs
and give a Q30 result (where Qn is a fixed point number with n bits of fraction).

A short discussion on fractional arithmetic is provided in Saturated Q15 and Q31 arithmetic on page A2-69.

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.
Note
Your assembler must fault the use of R15 for register <Rn>.
Encoding If the <Rn> field of the instruction contains 0b1111, the instruction is an SMMUL

instruction instead, see SMMUL on page A4-162.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Flags SMMLA leaves all the flags unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-159

ARM Instructions

A4.1.83 SMMLS

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond

01110101 Rd Rn Rs 1 1T[R|1 Rm

SMMLS (Signed Most significant word Multiply Subtract) multiplies two signed 32-bit values, extracts the
most significant 32 bits of the result, and subtracts it from an accumulate value.

Optionally, you can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the accumulated value before the high word is extracted.

Syntax

SMMLS{R}{<cond>} <Rd>, <Rm>, <Rs>, <Rn>

where:

R

<cond>

<Rd>

<Rm>

<Rs>

<Rn>

Sets the R bit of the instruction to 1. The multiplication is rounded.

If the R is omitted, sets the R bit to 0. The multiplication is truncated.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.
Specifies the register that contains the first multiply operand.
Specifies the register that contains the second multiply operand.

Specifies the register that contains the accumulate operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then

value

= Rm Rs /+ Signed multipTlication =/

if R == 1 then
Rd = ((Rn<<32) - value + 0x80000000)[63:32]

else

Rd = ((Rn<<32) - value)[63:32]

A4-160

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

Provides fast multiplication for 32-bit fractional arithmetic. For example, the multiplies take two Q31 inputs
and give a Q30 result (where Qn is a fixed point number with 7 bits of fraction).

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, <Rs>, or <Rn> has UNPREDICTABLE results.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Flags SMMLS leaves all the flags unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-161

ARM Instructions

A4.1.84 SMMUL

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond 01110101 Rd 1 111 Rs 0 O|R|1 Rm

SMMUL (Signed Most significant word Multiply) multiplies two signed 32-bit values, and extracts the most
significant 32 bits of the result.

Optionally, you can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

Syntax

SMMUL{R}{<cond>} <Rd>, <Rm>, <Rs>

where:

R Sets the R bit of the instruction to 1. The multiplication is rounded.
If the R is omitted, sets the R bit to 0. The multiplication is truncated.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first multiply operand.

<Rs> Specifies the register that contains the second multiply operand.

Architecture version

ARMYV6 and above.
Exceptions
None.
Operation
if ConditionPassed(cond) then
if R == 1 then
value = Rm = Rs + 0x80000000 /x Signed multiplication =/
else
value = Rm = Rs /+ Signed multipTlication x/

Rd = value[63:32]

A4-162 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

You can use SMMUL in combination with QADD or QDADD to perform Q31 multiplies and multiply-accumulates.
It has two advantages over a combination of SMULL with QADD or QDADD:

. you can round the product
. no scratch register is required for the least significant half of the product.

You can also use SMMUL in optimized Fast Fourier Transforms and similar algorithms.

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Flags SMMUL leaves all the flags unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-163

ARM Instructions

A4.1.85 SMUAD

31

28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond

01110000 Rd 1 111 Rs 0 0|X|1 Rm

SMUAD (Signed Dual Multiply Add) performs two signed 16 x 16-bit multiplications. It adds the products
together, giving a 32-bit result.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets the Q flag if the addition overflows. The multiplications cannot overflow.

Syntax

SMUAD{X}{<cond>} <Rd>, <Rm>, <Rs>

where:

X

<cond>

<Rd>

<Rm>

<Rs>

Sets the X bit of the instruction to 1, and the multiplications are bottom X top and top X
bottom.

If the X is omitted, sets the X bit to 0, and the multiplications are bottom x bottom and top
X top.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.
Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-164

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then

if X == 1 then

operand2 = Rs Rotate_Right 16
else

operand2 = Rs
productl = Rm[15:0] = operand2[15:0] /+ Signed multipTlication =/
product2 = Rm[31:16] * operand2[31:16] /% Signed multiplication =/
Rd = productl + product2
if OverflowFrom(productl + product2) then

Qflag=1

Usage

Use SMUAD for the first pair of multiplications in a sequence that uses the SMLAD instruction for the following
multiplications, see SMLAD on page A4-144.

You can use the X option for calculating the imaginary part of a product of complex numbers with 16-bit
real and 16-bit imaginary parts.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.

Early termination If the multiplier implementation supports early termination, it must be implemented

on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

N,Z,Cand V flags SMUAD leaves the N, Z, C and V flags unchanged.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-165

ARM Instructions

A4.1.86 SMUL<x><y>

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond

00010110 Rd SBZ Rs l{y|[x]|O Rm

SMUL<x><y> (Signed Multiply BB, BT, TB, or TT) performs a signed multiply operation. The multiply acts on
two signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers.
The other halves of these source registers are ignored. No overflow is possible during this instruction.

Syntax

SMUL<x><y>{<cond>} <Rd>, <Rm>, <Rs>

where:

<X>

<y>

<cond>

<Rd>

<Rm>

<Rs>

Specifies which half of the source register <Rm> is used as the first multiply operand. If <x>
is B, then x == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rm> is used.
If <x> is T, then x == 1 in the instruction encoding and the top half (bits[31:16]) of <Rm> is
used.

Specifies which half of the source register <Rs> is used as the second multiply operand. If

<y> is B, then y == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs> is

used. If <y> is T, then y == 1 in the instruction encoding and the top half (bits[31:16]) of <Rs>
is used.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the source register whose bottom or top half (selected by <x>) is the first multiply
operand.

Specifies the source register whose bottom or top half (selected by <y>) is the second
multiply operand.

Architecture version

ARMVSTE and above.

Exceptions

None.

A4-166

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation
if ConditionPassed(cond) then

if (x == 0) then

operandl = SignExtend(Rm[15:0])
else /+ x == 1 x/

operandl = SignExtend(Rm[31:16])

if (y == 0) then

operand2 = SignExtend(Rs[15:0])
else /xy =1/

operand2 = SignExtend(Rs[31:16])

Rd = operandl x operand2

Usage

In addition to its straightforward uses for integer multiplies, this instruction can be used in combination with
QADD, QDADD, and QDSUB to perform multiplies, multiply-accumulates, and multiply-subtracts on Q15 numbers.
See the Usage sections on page A4-93, page A4-100, and page A4-102 for examples.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Condition flags SMUL<x><y> does not affect the N, Z, C, V, or Q flags.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-167

ARM Instructions

A4.1.87 SMULL

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 000O0T1T1O0]|S RdHi RdLo Rs 1 0 01 Rm

SMULL (Signed Multiply Long) multiplies two 32-bit signed values to produce a 64-bit result.

SMULL can optionally update the condition code flags, based on the 64-bit result.

Syntax

SMULL{<cond>}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the multiplication.
If S is omitted, the S bit of the instruction is set to 0 and the entire CPSR is unaffected by the
instruction.

<RdLo> Stores the lower 32 bits of the result.

<RdHi> Stores the upper 32 bits of the result.

<Rm> Holds the signed value to be multiplied with the value of <Rs>.

<Rs> Holds the signed value to be multiplied with the value of <Rm>.

Architecture version

All

Exceptions

None.

A4-168 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Operation

ARM Instructions

if ConditionPassed(cond) then
RdHi = (Rm * Rs)[63:32] /+ Signed multiplication =/
RdLo = (Rm * Rs)[31:0]

if S == 1 then

N Flag = RdHi[31]

Z Flag = if (RdHi == 0) and (RdLo == @) then 1 else 0
C Flag = unaffected /% See "C and V flags" note =/
V Flag = unaffected /% See "C and V flags" note =/

Usage

SMULL multiplies signed variables to produce a 64-bit result in two general-purpose registers.

Notes

Use of R15

Operand restriction

Early termination

C and V flags

Specifying R15 for register <RdHi>, <RdLo>, <Rm>, or <Rs> has UNPREDICTABLE
results.

<RdHi> and <RdLo> must be distinct registers, or the results are UNPREDICTABLE.

Specifying the same register for either <RdHi> and <Rm>, or <RdLo> and <Rm>, was
previously described as producing UNPREDICTABLE results. There is no restriction
in ARMv6, and it is believed all relevant ARMv4 and ARMvS implementations do
not require this restriction either, because high performance multipliers read all their
operands prior to writing back any results.

If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

SMULLS is defined to leave the C and V flags unchanged in ARMv5 and above. In
earlier versions of the architecture, the values of the C and V flags were
UNPREDICTABLE after an SMULLS instruction.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-169

ARM Instructions

A4.1.88 SMULW<y>

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

8§ 7 6 5 4 3 0

cond

000

1

00

1

0

Rd

SBZ

Rs

1

y

1

0 Rm

SMULW<y> (Signed Multiply Word B and T) performs a signed multiply operation. The multiply acts on a

signed 32-bit quantity and a signed 16-bit quantity, with the latter being taken from either the bottom or the
top half of its source register. The other half of the second source register is ignored. The top 32 bits of the
48-bit product are written to the destination register. The bottom 16 bits of the 48-bit product are ignored.

No overflow is possible during this instruction.

Syntax

SMULW<y>{<cond>}

where:

<y>

<cond>

<Rd>

<Rm>

<Rs>

Architecture version

<Rd>, <Rm>, <Rs>

Specifies which half of the source register <Rs> is used as the second multiply operand. If
<y> is B, then y == 0 in the instruction encoding and the bottom half (bits[15:0]) of <Rs> is
used. If <y> is T, then y == 1 in the instruction encoding and the top half (bits[31:16]) of <Rs>

is used.

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the source register which contains the 32-bit first operand.

Specifies the source register whose bottom or top half (selected by <y>) is the second

operand.

ARMVSTE and above.

Exceptions

None.

A4-170

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Operation
if ConditionPassed(cond) then
if (y == 0) then
operand2 = SignExtend(Rs[15:0])
else /xy==1 =/
operand2 = SignExtend(Rs[31:16])

Rd = (Rm * operand2)[47:16] /« Signed multipTlication =/

Usage

In addition to its straightforward uses for integer multiplies, this instruction can be used in combination with
QADD, QDADD, and QDSUB to perform multiplies, multiply-accumulates and multiply-subtracts between Q31 and
Q15 numbers. See the Usage sections on page A4-93, page A4-100, and page A4-102 for examples.
Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Flags SMULW<y> leaves all the flags unchanged.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-171

ARM Instructions

A4.1.89 SMUSD

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8 7 6 5 4 3 0

cond 01110000 Rd 1 111 Rs 0 1|X|1 Rm

SMUSD (Signed Dual Multiply Subtract) performs two signed 16 x 16-bit multiplications. It subtracts one
product from the other, giving a 32-bit result.

Optionally, you can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow cannot occur.

Syntax

SMUSD{X}{<cond>} <Rd>, <Rm>, <Rs>

where:

X Sets the X bit of the instruction to 1. The multiplications are bottom X top and top x bottom.
If the X is omitted, sets the X bit to 0. The multiplications are bottom x bottom and top x top.

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first multiply operand.

<Rs> Specifies the register that contains the second multiply operand.

Architecture version

ARMYV6 and above.

Exceptions

None.

A4-172 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then

if X == 1 then

operand2 = Rs Rotate_Right 16
else

operand2 = Rs
productl = Rm[15:0] = operand2[15:0] /+ Signed multipTlication =/
product2 = Rm[31:16] * operand2[31:16] /% Signed multiplication =/
Rd = productl - product2 /% Signed subtraction =/

Usage

You can use SMUSD for calculating the real part of a complex product of complex numbers with 16-bit real

and

16-bit imaginary parts.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.

Early termination If the multiplier implementation supports early termination, it must be implemented

on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Flags SMUSD leaves all the flags unchanged.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-173

ARM Instructions

A4.1.90 SRS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7

5

1 11110 0|P|UITW[0O|1 1 0 1 SBZ 010 1| SBZ

mode

SRS (Store Return State) stores the R14 and SPSR of the current mode to the word at the specified address
and the following word respectively. The address is determined from the banked version of R13 belonging

to a specified mode.

Syntax
SRS<addressing_mode> #<mode>{!}
where:

<addressing_mode>

Is similar to the <addressing_mode> in LDM and STM instructions, see Addressing Mode 4 -
Load and Store Multiple on page A5-41, but with the following differences:

. The base register, Rn, is the banked version of R13 for the mode specified by <mode>,

rather than the current mode.

. The number of registers to store is 2.

o The register list is {R14, SPSR}, with both R14 and the SPSR being the versions

belonging to the current mode.

<mode> Specifies the number of the mode whose banked register is used as the base register for
<addressing_mode>. The mode number is the 5-bit encoding of the chosen mode in a PSR, as

described in The mode bits on page A2-14.

If present, sets the W bit. This causes the instruction to write a modified value back to its
base register, in a manner similar to that specified for Addressing Mode 4 - Load and Store
Multiple on page AS5-41. If ! is omitted, the W bit is 0 and the instruction does not change

the base register.

Architecture version

ARMYV6 and above.

Exceptions

Data Abort.

A4-174

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
address = start_address
Memory[address,4] = R14
if Shared(address) then /% from ARMV6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,4)
if CurrentModeHasSPSR() then
Memory[address+4,4] = SPSR
if Shared(address+4) then /% from ARMV6 =/
physical_address = TLB(address+4)
ClearExclusiveByAddress(physical_address,processor_id,4)
else
UNPREDICTABLE
assert end_address == address + 8

where start_address and end_address are determined as described in Addressing Mode 4 - Load and Store
Multiple on page AS5-41, with the following modifications:

. Number_Of_Set_Bits_in(register_1ist) evaluates to 2, rather than depending on bits[15:0] of the
instruction.
. Rn is the banked version of R13 belonging to the mode specified by the instruction, rather than being

the version of R13 of the current mode.

Notes

Data Abort For details of the effects of this instruction if a Data Abort occurs, see Data Abort (data
access memory abort) on page A2-21.

Non word-aligned addresses
In ARMV6, an address with bits[1:0] != 0b00 causes an alignment exception if CP15
register 1 bits U==1 or A==1. Otherwise, SRS behaves as if bits[1:0] are 0b00.

Time order The time order of the accesses to individual words of memory generated by SRS is not
architecturally defined. Do not use this instruction on memory-mapped I/O locations where
access order matters.

User and System modes

SRS is UNPREDICTABLE in User and System modes, because they do not have SPSRs.

—— Note

In User mode, SRS must not give access to any banked registers belonging to other modes.
This would constitute a security hole.

Condition Unlike most other ARM instructions, SRS cannot be executed conditionally.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-175

ARM Instructions

A4.1.91 SSAT

31

28 27 26 25 24 23 22 21 20 16 15 12 11

7 6 5 4 3 0

cond

0110101 sat_imm Rd

shift_imm

sh

0

1 Rm

SSAT (Signed Saturate) saturates a signed value to a signed range. You can choose the bit position at which
saturation occurs.

You can apply a shift to the value before the saturation occurs.

The Q flag is set if the operation saturates.

Syntax

SSAT{<cond>} <Rd>, #<immed>, <Rm>{, <shift>}

where:

<cond>

<Rd>

<immed>

<Rm>

<shift>

Return

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the bit position for saturation, in the range 1 to 32. It is encoded in the sat_imm field

of the instruction as <immed>-1.

Specifies the register that contains the signed value to be saturated.

Specifies the optional shift. If present, it must be one of:

. LSL #N. N must be in the range O to 31.

This is encoded as sh == 0 and shift_imm==N.

. ASR #N. N must be in the range 1 to 32. This is encoded as sh == 1 and either shift_imm

== (0 for N == 32, or shift_imm == N otherwise.

If <shift> is omitted, LSL #0 is used.

The value returned in Rd is:

—2(m-1)
X

2m-1) _ 1

if X is < 2D
if 200-1) <= X <= 200-1) _ |

if X>20-D 1

where n is <immed>, and X is the shifted value from Rm.

A4-176

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
if shift == 1 then
if shift_imm == @ then
operand = (Rm Artihmetic_Shift_Right 32)[31:0]
else
operand = (Rm Artihmetic_Shift_Right shift_imm)[31:0]
else
operand = (Rm Logical_Shift_Left shift_imm)[31:0]
Rd = SignedSat(operand, sat_imm + 1)
if SignedDoesSat(operand, sat_imm + 1) then
Q Flag = 1

Usage

You can use SSAT in various DSP algorithms that require scaling and saturation of signed data.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-177

ARM Instructions

A4.1.92 SSAT16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 011 0101 0| sat_imm Rd SBO 0011 Rm

SSAT16 saturates two 16-bit signed values to a signed range. You can choose the bit position at which
saturation occurs. The Q flag is set if either halfword operation saturates.

Syntax

SSAT16{<cond>} <Rd>, #<immed>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<immed> Specifies the bit position for saturation. This lies in the range 1 to 16. It is encoded in the
sat_imm field of the instruction as <immed>-1.

<Rm> Specifies the register that contains the signed value to be saturated.

Return

The value returned in each half of Rd is:

—2-1) if X is < —200-D)
X if 20-1) <= X <= 20-1) — |
20-1) 1 if X > 20-1) |

where n is <immed>, and X is the value from the corresponding half of Rm.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-178

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation
if ConditionPassed(cond) then

Rd[15:0] = SignedSat(Rm[15:0], sat_imm + 1)

Rd[31:16] = SignedSat(Rm[31:16], sat_imm + 1)

if SignedDoesSat(Rm[15:0], sat_imm + 1)

OR SignedDoesSat(Rm[31:16], sat_imm + 1) then
Q Flag = 1

Usage

You can use SSAT16 in various DSP algorithms that require saturation of signed data.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-179

ARM Instructions

A4.1.93 SSUB16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 01 1000O0O01 Rn Rd SBO 0111 Rm

SSUB16 (Signed Subtract) performs two 16-bit signed integer subtractions. It sets the GE bits in the CPSR
according to the results of the subtractions.

Syntax

SSUB16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
diff = Rn[15:0] - Rm[15:0] /+ Signed subtraction =/
Rd[15:0] = diff[15:0]
GE[1:0] = if diff >= 0 then 0bll else @
diff = Rn[31:16] - Rm[31:16] /= Signed subtraction =/
Rd[31:16] = diff[15:0]

CGE[3:2] = if diff >= 0 then 0bll else @

A4-180 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

Use SSUB16 to speed up operations on arrays of halfword data. This is similar to the way you can use SADD16.
See the usage subsection for SADD16 on page A4-119 for details.

You can also use SSUB16 for operations on complex numbers that are held as pairs of 16-bit integers or Q15
numbers. If you hold the real and imaginary parts of a complex number in the bottom and top half of a
register respectively, then the instruction:

SSUB16 Rd, Ra, Rb
performs the complex arithmetic operation Rd = Ra - Rb.

SSUB16 sets the GE flags according to the results of each subtraction. You can use these in a following SEL
instruction. See SEL on page A4-127 for further information.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-181

ARM Instructions

A4.1.94 SSUBS8

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11 8§ 7 6 5 4 3 0

cond

01 1000O0O01

Rn

Rd

SBO 1

1

1

1 Rm

SSUB8 performs four 8-bit signed integer subtractions. It sets the GE bits in the CPSR according to the results
of the subtractions.

Syntax

SSUB8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

/* Signed subtraction

x/

= Rn[15:8] - Rm[15:8] /% Signed subtraction =/

= Rn[23:16] - Rm[23:16] /# Signed subtraction =/

= Rn[31:24] - Rm[31:24] /= Signed subtraction =/

ARMV6 and above.
Exceptions
None.
Operation
if ConditionPassed(cond) then
diff = Rn[7:0] - Rm[7:0]
Rd[7:0] = diff[7:0]
GE[0] = if diff >= 0 then 1 else @
diff
Rd[15:8] = diff[7:0]
GE[1] = if diff >= 0 then 1 else @
diff
Rd[23:16] = diff[7:0]
GE[2] = if diff >= 0 then 1 else @
diff
Rd[31:24] = diff[7:0]
GE[3] = if diff >= 0 then 1 else 0

A4-182

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Usage

Use SSUB8 to speed up operations on arrays of byte data. This is similar to the way you can use SADD16 to
speed up operations on halfword data. See the usage subsection for SADD16 on page A4-119 for details.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-183

ARM Instructions

A4.1.95 SSUBADDX

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

8§ 7 6 5 4 3 0

cond

0

1100001 Rn

Rd

SBO

0

1

01 Rm

SSUBADDX (Signed Subtract and Add with Exchange) performs one 16-bit signed integer subtraction and one
16-bit signed integer addition. It exchanges the two halfwords of the second operand before it performs the
arithmetic.

SSUBADDX sets the GE bits in the CPSR according to the results.

Syntax

SSUBADDX{<cond>}

where:

<cond>

<Rd>

<Rn>

<Rm>

<Rd>, <Rn>, <Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then

diff
Rd[31

:16] =

GE[3:2] =

sum
Rd[15

0] =

GE[1:0] =

Rn[31:16] - Rm[15:0]
diff[15:0]

if diff >= 0 then 0bll else @
/% Signed addition =/

Rn[15:0] + Rm[31:16]
sum[15:0]
if sum >= @ then 0bll else 0

/* Signed subtraction

%/

A4-184

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Usage

You can use SSUBADDX for operations on complex numbers that are held as pairs of 16-bit integers or Q15
numbers. If you hold the real and imaginary parts of a complex number in the bottom and top half of a
register respectively, then the instruction:

SSUBADDX Rd, Ra, Rb

performs the complex arithmetic operation Rd =Ra - i * Rb.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-185

ARM Instructions

A4.1.96 STC

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0|P|UIN|W|O Rn CRd cp_num 8_bit_word_offset

STC (Store Coprocessor) stores data from a coprocessor to a sequence of consecutive memory addresses. If
no coprocessors indicate that they can execute the instruction, an Undefined Instruction exception is

generated.

Syntax

STC{<cond>}{L} <coproc>, <CRd>, <addressing_mode>

STC2{L} <coproc>, <CRd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

STC2 Causes the condition field of the instruction to be set to Ob1111. This provides additional
opcode space for coprocessor designers. The resulting instructions can only be executed
unconditionally.

L Sets the N bit (bit[22]) in the instruction to 1 and specifies a long store (for example,

double-precision instead of single-precision data transfer). If L is omitted, the N bit is 0 and
the instruction specifies a short store.

<coproc> Specifies the name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names
are p0, pl, ..., p15.

<CRd> Specifies the coprocessor source register.

<addressing_mode>

Is described in Addressing Mode 5 - Load and Store Coprocessor on page A5-49. It
determines the P, U, Rn, W and 8_bit_word_offset bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register
write-back).

Architecture version
STC is in all versions.

STC2 is in ARMvVS5 and above.

A4-186 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

Undefined Instruction, Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
address = start_address
Memory[address,4] = value from Coprocessor[cp_num]
if Shared(address) then /= from ARMv6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,4)
while (NotFinished(coprocessor[cp_num]))
address = address + 4
Memory[address,4] = value from Coprocessor[cp_num]
if Shared(address) then /% from ARMv6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,4)
/% See Summary of operation on page A2-49 x/
assert address == end_address

Usage

STC is useful for storing coprocessor data to memory. The L (long) option controls the N bit and could be
used to distinguish between a single- and double-precision transfer for a floating-point store instruction.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-187

ARM Instructions

Notes

Coprocessor fields

Data Abort

Only instruction bits[31:23], bits[21:16} and bits[11:0] are defined by the ARM
architecture. The remaining fields (bit[22] and bits[15:12]) are recommendations,
for compatibility with ARM Development Systems.

In the case of the Unindexed addressing mode (P==0, U==1, W==0), instruction
bits[7:0] are also not ARM architecture-defined, and can be used to specify
additional coprocessor options.

For details of the effects of the instruction if a Data Abort occurs, see Effects of
data-aborted instructions on page A2-21.

Non word-aligned addresses

Alignment

For CP15_regl_Ubit==0 the store coprocessor register instructions ignore the least
significant two bits of address. For CP15_regl_Ubit == 1, all non-word aligned
accesses cause an alignment fault.

If an implementation includes a System Control coprocessor (see Chapter B3 The
System Control Coprocessor), and alignment checking is enabled, an address with
bits[1:0] != 0b00 causes an alignment exception.

Unimplemented coprocessor instructions

Hardware coprocessor support is optional, regardless of the architecture version.
An implementation can choose to implement a subset of the coprocessor
instructions, or no coprocessor instructions at all. Any coprocessor instructions that
are not implemented instead cause an Undefined Instruction exception.

A4-188

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.97 STM (1)

31

ARM Instructions

28 27 26 25 24 23 22 21 20 19 16 15 0

cond

100

P{U|0[W|O Rn register_list

STM (1) (Store Multiple) stores a non-empty subset (or possibly all) of the general-purpose registers to
sequential memory locations.

Syntax

STM{<cond>}<addressing_mode> <Rn>{!}, <registers>

where:

<cond>

<addressing_mode>

<Rn>

<registers>

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Is described in Addressing Mode 4 - Load and Store Multiple on page A5-41. It
determines the P, U, and W bits of the instruction.

Specifies the base register used by <addressing_mode>. If R15 is specified as <Rn>,
the result is UNPREDICTABLE.

Sets the W bit, causing the instruction to write a modified value back to its base
register Rn as specified in Addressing Mode 4 - Load and Store Multiple on
page AS5-41. If ! is omitted, the W bit is 0 and the instruction does not change its
base register in this way.

Is alist of registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be stored by the STM instruction.

The registers are stored in sequence, the lowest-numbered register to the lowest
memory address (start_address), through to the highest-numbered register to the
highest memory address (end_address).

For each of i=0 to 15, bit[i] in the register_list field of the instruction is 1 if Ri is in
the list and O otherwise. If bits[15:0] are all zero, the result is UNPREDICTABLE.

If R15 is specified in <registers>, the value stored is IMPLEMENTATION DEFINED.
For more details, see Reading the program counter on page A2-9.

Architecture version

All

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-189

ARM Instructions

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
address = start_address
for i =0 to 15
if register_list[i] == 1 then
Memory[address,4] = Ri
address = address + 4
if Shared(address) then /% from ARMv6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,4)
/+ See Summary of operation on page A2-49 =/
assert end_address == address - 4

Usage

STM is useful as a block store instruction (combined with LDM it allows efficient block copy) and for stack
operations. A single STMused in the sequence of a procedure can push the return address and general-purpose
register values on to the stack, updating the stack pointer in the process.

Notes

Operand restrictions
If <Rn> is specified in <registers> and base register write-back is specified:

. If <Rn> is the lowest-numbered register specified in <registers>, the original value of
<Rn> is stored.

. Otherwise, the stored value of <Rn> is UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Non word-aligned addresses

For CP15_regl_Ubit == 0, the STM[1] instruction ignores the least significant two bits of
address. For CP15_regl_Ubit == 1, all non-word aligned accesses cause an alignment fault.

Alignment If an implementation includes a System Control coprocessor (see Chapter B3 The System
Control Coprocessor), and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

Time order The time order of the accesses to individual words of memory generated by this instruction
is only defined in some circumstances. See Memory access restrictions on page B2-13 for
details.

A4-190

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.98 STM (2)

31

ARM Instructions

28 27 26 25 24 23 22 21 20 19 16 15 0

cond

100

P(U|1[{0|0 Rn register_list

STM (2) stores a subset (or possibly all) of the User mode general-purpose registers to sequential memory

locations.

Syntax

STM{<cond>}<addressing_mode> <Rn>, <registers>A

where:

<cond>

<addressing_mode>

<Rn>

<registers>

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Is described in Addressing Mode 4 - Load and Store Multiple on page A5-41. It
determines the P and U bits of the instruction. Only the forms of this addressing
mode with W == 0 are available for this form of the STM instruction.

Specifies the base register used by <addressing_mode>. If R15 is specified as the base
register <Rn>, the result is UNPREDICTABLE.

Is alist of registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be stored by the STM instruction.

The registers are stored in sequence, the lowest-numbered register to the lowest
memory address (start_address), through to the highest-numbered register to the
highest memory address (end_address).

For each of i=0 to 15, bit[i] in the register_list field of the instruction is 1 if Ri is in
the list and O otherwise. If bits[15:0] are all zero, the result is UNPREDICTABLE.

If R15is specified in <registers> the value stored is IMPLEMENTATION DEFINED. For
more details, see Reading the program counter on page A2-9.

For an STM instruction, indicates that User mode registers are to be stored.

Architecture version

All

Exceptions

Data Abort.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-191

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
address = start_address
for i = 0 to 15
if register_list[i] == 1
Memory[address,4] = Ri_usr
address = address + 4
if Shared(address) then /% from ARMv6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,4)
/+ See Summary of operation on page A2-49 i/
assert end_address == address - 4

Usage

Use STM (2) to store the User mode registers when the processor is in a privileged mode (useful when
performing process swaps, and in instruction emulators).

Notes
‘Write-back Setting bit 21, the W bit, has UNPREDICTABLE results.

User and System mode

This instruction is UNPREDICTABLE in User or System mode.

Base register mode For the purpose of address calculation, the base register is read from the current
processor mode registers, not the User mode registers.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of
data-aborted instructions on page A2-21.

Non word-aligned addresses

For CP15_regl_Ubit == 0, the STM[2] instruction ignores the least significant two
bits of address. For CP15_regl_Ubit == 1, all non-word aligned accesses cause an
alignment fault

Alignment If an implementation includes a System Control coprocessor (see Chapter B3 The
System Control Coprocessor), and alignment checking is enabled, an address with
bits[1:0] != 0b00 causes an alignment exception.

Time order The time order of the accesses to individual words of memory generated by this
instruction is only defined in some circumstances. See Memory access restrictions
on page B2-13 for details.

Banked registers In ARM architecture versions earlier than ARMv6, this form of STM must not be
followed by an instruction that accesses banked registers (a following NOP is a good
way to ensure this).

A4-192 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.99 STR

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

ARM Instructions

cond

01

1

P

U

0

w0

Rn

Rd

addr_mode

STR (Store Register) stores a word from a register to memory.

Syntax

STR{<cond>} <Rd>, <addressing_mode>

where:

<cond>

<Rd>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the source register for the operation. If R15 is specified for <Rd>, the value stored
is IMPLEMENTATION DEFINED. For more details, see Reading the program counter on

page A2-9.

<addressing_mode>

Architecture version

All

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determines the I, P, U, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register
write-back).

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
Memory[address,4] = Rd
if Shared(address) then

physical_address = TLB(address)

/% from ARMV6 =/

ClearExclusiveByAddress(physical_address,processor_id,4)

/+ See Summary of operation on page A2-49 =/

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-193

ARM Instructions

Usage

Combined with a suitable addressing mode, STR stores 32-bit data from a general-purpose register into
memory. Using the PC as the base register allows PC-relative addressing, which facilitates
position-independent code.

Notes

Operand restrictions

Data Abort

Alignment

If <addressing_mode> specifies base register write-back, and the same register is specified for
<Rd> and <Rn>, the results are UNPREDICTABLE.

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMvo6, STR ignores the least significant two bits of the address. This is different
from the LDR behavior. Alignment checking (taking a data abort when address[1:0] != 0b00),
and support for a big-endian (BE-32) data format are implementation options.

From ARMVv6, a byte- invariant mixed-endian format is supported, along with an alignment
checking option. The pseudo-code for the ARMv6 case assumes that unaligned
mixed-endian support is configured, with the endianness of the transfer defined by the
CPSR E-bit.

For more details on endianness and alignment see Endian support on page A2-30and
Unaligned access support on page A2-38.

A4-194

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.100 STRB
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0
cond 0 1|I|P{U|1|{W]|O Rn Rd addr_mode
STRB (Store Register Byte) stores a byte from the least significant byte of a register to memory.
Syntax
STR{<cond>}B <Rd>, <addressing_mode>
where:
<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.
<Rd> Specifies the source register for the operation. If R15 is specified for <Rd>, the result is

UNPREDICTABLE.

<addressing_mode>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determines the I, P, U, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register

write-back).

Architecture version

All

Exceptions

Data Abort.

Operation

processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
Memory[address,1] = Rd[7:0]
if Shared(address) then /% from ARMV6 =/
physical_address = TLB(address)

ClearExclusiveByAddress(physical_address,processor_id,1)

/+ See Summary of operation on page A2-49 =/

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-195

ARM Instructions

Usage

Combined with a suitable addressing mode, STRB writes the least significant byte of a general-purpose
register to memory. Using the PC as the base register allows PC-relative addressing, which facilitates
position-independent code.

Notes

Operand restrictions
If <addressing_mode> specifies base register write-back, and the same register is specified for
<Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

A4-196 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.101 STRBT

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0O 1|I|0(U|1]|1]|O0 Rn Rd addr_mode

STRBT (Store Register Byte with Translation) stores a byte from the least significant byte of a register to
memory. If the instruction is executed when the processor is in a privileged mode, the memory system is
signaled to treat the access as if the processor were in User mode.

Syntax

STR{<cond>}BT <Rd>, <post_indexed_addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the source register for the operation. If R15 is specified for <Rd>, the result is

UNPREDICTABLE.

<post_indexed_addressing_mode>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determines the I, U, Rn and addr_mode bits of the instruction. Only post-indexed forms
of Addressing Mode 2 are available for this instruction. These forms have P==0and W ==
0, where P and W are bit[24] and bit[21] respectively. This instruction uses P == 0 and W
== 1 instead, but the addressing mode is the same in all other respects.

The syntax of all forms of <post_indexed_addressing_mode> includes a base register <Rn>.
All forms also specify that the instruction modifies the base register value (this is known as
base register write-back).

Architecture version

All

Exceptions

Data Abort.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-197

ARM Instructions

Operation

processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
Memory[address,1] = Rd[7:0]
if Shared(address) then /% from ARMv6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,1)
/« See Summary of operation on page A2-49 x/

Usage

STRBT can be used by a (privileged) exception handler that is emulating a memory access instruction which
would normally execute in User mode. The access is restricted as if it had User mode privilege.

Notes

User mode If this instruction is executed in User mode, an ordinary User mode access is performed.

Operand restrictions

If the same register is specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

A4-198

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.102 STRD

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00 OlPIUITIW|O Rn Rd addr_mode (|1 1 1 1 |addr_mode

STRD (Store Registers Doubleword) stores a pair of ARM registers to two consecutive words of memory. The
pair of registers is restricted to being an even-numbered register and the odd-numbered register that
immediately follows it (for example, R10 and R11).

A greater variety of addressing modes is available than for a two-register STM.

Syntax

STR{<cond>}D <Rd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the even-numbered register that is stored to the memory word addressed by

<addressing_mode>. The immediately following odd-numbered register is stored to the next
memory word. If <Rd> is R14, which would specify R15 as the second source register, the
instruction is UNPREDICTABLE.

If <Rd> specifies an odd-numbered register, the instruction is UNDEFINED.

<addressing_mode>

Is described in Addressing Mode 3 - Miscellaneous Loads and Stores on page A5-33. It
determines the P, U, I, W, Rn, and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register
write-back).

The address generated by <addressing_mode> is the address of the lower of the two words
stored by the STRD instruction. The address of the higher word is generated by adding 4 to
this address.

Architecture version

ARMVSTE and above, excluding ARMvSTExP.

Exceptions

Data Abort.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-199

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
if (Rd is even-numbered) and (Rd is not R14) and
(address[1:0] == 0b00) and
((CP15_regl_Ubit == 1) or (address[2] == 0)) then
Memory[address,4] = Rd
Memory[address+4,4] = R(d+1)
else
UNPREDICTABLE
if Shared(address) then /+ from ARMV6 =/
physical_address = TLB(address)

ClearExclusiveByAddress(physical_address,processor_id,4)

if Shared(address+4)
physical_address = TLB(address+4)

ClearExclusiveByAddress(physical_address,processor_id,4)

A4-200 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Notes

ARM Instructions

Operand restrictions

Data Abort

Alignment

Time order

If <addressing_mode> performs base register write-back and the base register <Rn> is one of
the two source registers of the instruction, the results are UNPREDICTABLE.

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMv®6, if the memory address is not 64-bit aligned, the instruction is
UNPREDICTABLE. Alignment checking (taking a data abort), and support for a big-endian
(BE-32) data format are implementation options.

From ARMv6, a byte-invariant mixed-endian format is supported, along with alignment
checking options; modulo4 and modulo8. The pseudo-code for the ARMvo6 case assumes
that unaligned mixed-endian support is configured, with the endianness of the transfer
defined by the CPSR E-bit.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

The time order of the accesses to the two memory words is not architecturally defined. In
particular, an implementation is allowed to perform the two 32-bit memory accesses in
either order, or to combine them into a single 64-bit memory access.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-201

ARM Instructions

A4.1.103 STREX

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

8§ 7 6 5 4 3 0

cond

000

1

1

0

0

0

Rn

Rd

SBO

1

001 Rm

STREX (Store Register Exclusive) performs a conditional store to memory. The store only occurs if the
executing processor has exclusive access to the memory addressed.

Syntax

STREX{<cond>} <Rd>, <Rm>, [<Rn>]

where:

<cond>

<Rd>

<Rm>

<Rn>

Architecture version

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register for the returned status value. The value returned is:

0
1

if the operation updates memory

if the operation fails to update memory.

Specifies the register containing the word to be stored to memory.

Specifies the register containing the address.

ARMYV6 and above.

Exceptions

Data Abort.

A4-202

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
if ConditionPassed(cond) then

processor_id = ExecutingProcessor()

physical_address = TLB(Rn)

if IsExclusivelocal(physical_address, processor_id, 4) then

if Shared(Rn) == 1 then
if IsExclusiveGlobal(physical_address, processor_id, 4) then
Memory[Rn,4] = Rm

Rd =0
ClearExclusiveByAddress(physical_address,processor_id,4)
else
Rd =1
else
Memory[Rn,4] = Rm
Rd = 0
else
Rd =1

ClearExclusivelocal(processor_id)

/« See Summary of operation on page A2-49 x/

/+ The notes take precedence over any implied atomicity or
order of events indicated in the pseudo-code =/

Usage

Use STREX in combination with LDREX to implement inter-process communication in multiprocessor and
shared memory systems. See LDREX on page A4-52 for further information.

Notes
Use of R15 Specifying R15 for register <Rd>, <Rn>, or <Rm> has UNPREDICTABLE results.

Operand restrictions
<Rd> must be distinct from both <Rm> and <Rn>, otherwise the results are UNPREDICTABLE.
Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21. If a Data Abort occurs during execution of a STREX instruction:

. memory is not updated

. <Rd> is not updated.

Alignment If CP15 register 1(A,U) !=(0,0) and Rd<1:0> !=0b00, an alignment exception will be taken.

There is no support for unaligned Load Exclusive. If Rd<1:0> != 0b00 and (A,U) = (0,0),
the result is UNPREDICTABLE

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-203

ARM Instructions

A4.1.104 STRH

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00 O|PIUITW|O Rn Rd addr_mode | 1

0

1

1 | addr_mode

STRH (Store Register Halfword) stores a halfword from the least significant halfword of a register to memory.

If the address is not halfword-aligned, the result is UNPREDICTABLE.

Syntax

STR{<cond>}H <Rd>, <addressing_mode>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the source register for the operation. If R15 is specified for <Rd>, the result is

UNPREDICTABLE.
<addressing_mode>

Is described in Addressing Mode 3 - Miscellaneous Loads and Stores on page A5-33. It

determines the P, U, I, W, Rn and addr_mode bits of the instruction.

The syntax of all forms of <addressing_mode> includes a base register <Rn>. Some forms also
specify that the instruction modifies the base register value (this is known as base register

write-back).

Architecture version

All

Exceptions

Data Abort.

A4-204

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
if (CP15_regl_Ubit == @) then
if address[0] == 0b@ then
Memory[address,2] = Rd[15:0]
else
Memory[address,2] = UNPREDICTABLE
else /% CP15_regl_Ubit ==1 =/
Memory[address,2] = Rd[15:0]
if Shared(address) then /% ARMV6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,2)
/+ See Summary of operation on page A2-49 x/

Usage

Combined with a suitable addressing mode, STRH allows 16-bit data from a general-purpose register to be
stored to memory. Using the PC as the base register allows PC-relative addressing, to facilitate
position-independent code.

Notes

Operand restrictions If <addressing_mode> specifies base register write-back, and the same register is
specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of
data-aborted instructions on page A2-21.

Alignment Prior to ARMV®6, if the memory address is not halfword aligned, the instruction is
UNPREDICTABLE. Alignment checking (taking a data abort when address[0] !=0),
and support for a big-endian (BE-32) data format are implementation options.

From ARMv6, a byte-invariant mixed-endian format is supported, along with an
alignment checking option. The pseudo-code for the ARMv6 case assumes that
mixed-endian support is configured, with the endianness of the transfer defined by
the CPSR E-bit.

For more details on endianness and alignment, see Endian support on page A2-30
and Unaligned access support on page A2-38.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-205

ARM Instructions

A4.1.105 STRT

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

0

1|/1{0|U|0|1]0 Rn Rd addr_mode

STRT (Store Register with Translation) stores a word from a register to memory. If the instruction is executed
when the processor is in a privileged mode, the memory system is signaled to treat the access as if the
processor was in User mode.

Syntax

STR{<cond>}T <Rd>, <post_indexed_addressing_mode>

where:

<cond>

<Rd>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the source register for the operation. If R15 is specified for <Rd>, the value stored
is IMPLEMENTATION DEFINED. For more details, see Reading the program counter on
page A2-9.

<post_indexed_addressing_mode>

Is described in Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18.
It determines the I, U, Rn and addr_mode bits of the instruction. Only post-indexed forms
of Addressing Mode 2 are available for this instruction. These forms have P==0and W ==
0, where P and W are bit[24] and bit[21] respectively. This instruction uses P == 0 and W
== 1 instead, but the addressing mode is the same in all other respects.

The syntax of all forms of <post_indexed_addressing_mode> includes a base register <Rn>.
All forms also specify that the instruction modifies the base register value (this is known as
base register write-back).

Architecture version

All

Exceptions

Data Abort.

A4-206

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
Memory[address,4] = Rd
if Shared(address) then /% ARMV6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,4)
/+ See Summary of operation on page A2-49 x/

Usage

STRT can be used by a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User mode. The access is restricted as if it had User mode privilege.

Notes
User mode If this instruction is executed in User mode, an ordinary User mode access is performed.

Operand restrictions
If the same register is specified for <Rd> and <Rn>, the results are UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Alignment As for STR, see STR on page A4-193.

If an implementation includes a System Control coprocessor (see Chapter B3 The System
Control Coprocessor), and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-207

ARM Instructions

A4.1.106 SUB

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|If0 01 O0|S Rn Rd shifter_operand

SUB (Subtract) subtracts one value from a second value.

The second value comes from a register. The first value can be either an immediate value or a value from a
register, and can be shifted before the subtraction.

SUB can optionally update the condition code flags, based on the result.

Syntax

SUB{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Sets the S bit (bit[20]) in the instruction to 1 and specifies that the instruction updates the

CPSR. If S is omitted, the S bit is set to 0 and the CPSR is not changed by the instruction.

Two types of CPSR update can occur when S is specified:

o If <Rd> is not R15, the N and Z flags are set according to the result of the subtraction,
and the C and V flags are set according to whether the subtraction generated a borrow
(unsigned underflow) and a signed overflow, respectively. The rest of the CPSR is
unchanged.

o If <Rd> is R15, the SPSR of the current mode is copied to the CPSR. This form of the
instruction is UNPREDICTABLE if executed in User mode or System mode, because
these modes do not have an SPSR.

<Rd> Specifies the destination register.
<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not SUB.
Instead, see Extending the instruction set on page A3-32 to determine which instruction it is.

Architecture version

All

A4-208

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd = Rn - shifter_operand
if S == 1 and Rd == R15 then
if CurrentModeHasSPSR() then
CPSR = SPSR
else UNPREDICTABLE
else if S == 1 then
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - shifter_operand)
V Flag = OverflowFrom(Rn - shifter_operand)

Usage
Use SUB to subtract one value from another. To decrement a register value (in Ri) use:
SUB Ri, Ri, #1

SUBS is useful as a loop counter decrement, as the loop branch can test the flags for the appropriate
termination condition, without the need for a separate compare instruction:

SUBS Ri, Ri, #1
This both decrements the loop counter in Ri and checks whether it has reached zero.

You can use SUB, with the PC as its destination register and the S bit set, to return from interrupts and various
other types of exception. See Exceptions on page A2-16 for more details.

Notes

C flag If S is specified, the C flag is set to:
1 if no borrow occurs
0 if a borrow does occur.

In other words, the C flag is used as a NOT(borrow) flag. This inversion of the borrow
condition is used by subsequent instructions: SBC and RSC use the C flag as a NOT(borrow)
operand, performing a normal subtraction if C == 1 and subtracting one more than usual if
C==0.

The HS (unsigned higher or same) and LO (unsigned lower) conditions are equivalent to CS
(carry set) and CC (carry clear) respectively.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-209

ARM Instructions

A4.1.107 SWI

31 28 27 26 25 24 23 0

cond 1 111 immed_24

SWI (Software Interrupt) causes a SWI exception (see Exceptions on page A2-16).

Syntax

SWI{<cond>} <immed_24>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<immed_24> Is a 24-bit immediate value that is put into bits[23:0] of the instruction. This value is ignored

by the ARM processor, but can be used by an operating system SWI exception handler to
determine what operating system service is being requested (see Usage on page A4-211
below for more details).

Architecture version

All

Exceptions

Software interrupt.

Operation

if ConditionPassed(cond) then
R14_svc = address of next instruction after the SWI instruction
SPSR_svc = CPSR
CPSR[4:0] = 0b10011 /+ Enter Supervisor mode =/
CPSR[5] =10 /+ Execute in ARM state x/
/% CPSR[6] is unchanged =/
CPSR[7] =1 /+ Disable normal interrupts =/

/% CPSR[8] is unchanged =/
CPSR[9] = CP15_regl_EEbit
if high vectors configured then
PC = OxFFFF0008
else
PC = 0x00000008

A4-210

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

SWI is used as an operating system service call. The method used to select which operating system service
is required is specified by the operating system, and the SWI exception handler for the operating system
determines and provides the requested service. Two typical methods are:

. The 24-bit immediate in the instruction specifies which service is required, and any parameters
needed by the selected service are passed in general-purpose registers.

. The 24-bit immediate in the instruction is ignored, general-purpose register RO is used to select which
service is wanted, and any parameters needed by the selected service are passed in other
general-purpose registers.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-211

ARM Instructions

A4.1.108 SWP

31 28 27 26 25 24 23 22 21 20 19

16 15

12 11

8§ 7 6 5 4 3 0

cond

0001O0O0O0TO

Rn

Rd

SBZ

1

001 Rm

SWP (Swap) swaps a word between registers and memory. SWP loads a word from the memory address given
by the value of register <Rn>. The value of register <Rm> is then stored to the memory address given by the
value of <Rn>, and the original loaded value is written to register <Rd>. If the same register is specified for
<Rd> and <Rm>, this instruction swaps the value of the register and the value at the memory address.

Syntax
SWP{<cond>}

where:

<cond>

<Rd>
<Rm>

<Rn>

<Rd>, <Rm>, [<Rn>]

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register for the instruction.

Contains the value that is stored to memory.

Contains the memory address to load from.

Architecture version

All (deprecated in ARMv6).

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
if (CP15_regl_Ubit == @) then
temp = Memory[address,4] Rotate_Right (8 » address[1:0])
Memory[address,4] = Rm

Rd =

temp

else /+ CP15_regl_Ubit ==1 «/
temp = Memory[address,4]
Memory[address,4] = Rm

Rd =
if Shared(address) then

temp

/% ARMV6 +/

A4-212

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

physical_address = TLB(address)
ClearExclusiveByAddress(physical_address,processor_id,4)
/+ See Summary of operation on page A2-49 x/

Usage

You can use SWP to implement semaphores. This instruction is deprecated in ARMv6. Software should
migrate to using the Load/Store exclusive instructions described in Synchronization primitives on

page A2-44.

Notes

Use of R15

If R15 is specified for <Rd>, <Rn>, or <Rm>, the result is UNPREDICTABLE.

Operand restrictions

Data Abort

Alignment

If the same register is specified as <Rn> and <Rm>, or <Rn> and <Rd>, the result is
UNPREDICTABLE.

If a precise Data Abort is signaled on either the load access or the store access, the loaded
value is not written to <Rd>. If a precise Data Abort is signaled on the load access, the store
access does not occur.

Prior to ARMv6, the alignment rules are the same as for an LDR on the read (see LDR on
page A4-43) and an STR on the write (see STR on page A4-193). Alignment checking (taking
a data abort when address[1:0] != 0b00), and support for a big-endian (BE-32) data format
are implementation options.

From ARMVG, if CP15 register 1(A,U) !=(0,0) and Rn[1:0] != 0b00, an alignment
exception is taken. If CP15 register 1(A,U) == (0,0), the behavior is the same as the
behavior before ARMV6.

For more details on endianness and alignment see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Memory model considerations

Swap is an atomic operation for all accesses, cached and non-cached.

The swap operation does not include any memory barrier guarantees. For example, it does
not guarantee flushing of write buffers, which is an important consideration on
multiprocessor systems.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-213

ARM Instructions

A4.1.109 SWPB

31 28 27 26 25 24 23 22 21 20 19

16 15

12 11

8§ 7 6 5 4 3 0

cond 00O01O0T1O00 Rn

Rd

SBZ

1

001 Rm

SWPB (Swap Byte) swaps a byte between registers and memory. SWPB loads a byte from the memory address
given by the value of register <Rn>. The value of the least significant byte of register <Rm> is stored to the

memory address given by <Rn>, the original loaded value is zero-extended to a 32-bit word, and the word is
written to register <Rd>. If the same register is specified for <Rd> and <Rm>, this instruction swaps the value

of the least significant byte of the register and the byte value at the memory address.

Syntax

SWP{<cond>}B <Rd>, <Rm>, [<Rn>]

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register for the instruction.

<Rm> Contains the value that is stored to memory.

<Rn> Contains the memory address to load from.

Architecture version

All (deprecated in ARMV6).

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
if ConditionPassed(cond) then
temp = Memory[address,1]
Memory[address,1] = Rm[7:0]
Rd = temp
if Shared(address) then /% ARMV6 =/
physical_address = TLB(address)

ClearExclusiveByAddress(physical_address,processor_id,1)

/« See Summary of operation on page A2-49 x/

A4-214

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Usage

You can use SWPB to implement semaphores. This instruction is deprecated in ARMv6. Software should
migrate to using the Load /Store exclusive instructions described in Synchronization primitives on
page A2-44.

Notes
Use of R15 If R15 is specified for <Rd>, <Rn>, or <Rm>, the result is UNPREDICTABLE.

Operand restrictions If the same register is specified as <Rn> and <Rm>, or <Rn> and <Rd>, the result is
UNPREDICTABLE.

Data Abort If a precise Data Abort is signaled on either the load access or the store access, the
loaded value is not written to <Rd>. If a precise Data Abort is signaled on the load
access, the store access does not occur.

Memory model considerations Swap is an atomic operation for all accesses, cached and non-cached.

The swap operation does not include any memory barrier guarantees. For example,
it does not guarantee flushing of write buffers, which is an important consideration
on multiprocessor systems.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-215

ARM Instructions

A4.1.110 SXTAB

31

28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond

0

1

1

01010 Rn Rd rotate| SBZ [0 1 1 1 Rm

SXTAB extracts an 8-bit value from a register, sign extends it to 32 bits, and adds the result to the value in
another register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

Syntax

SXTAB{<cond>}

where:

<cond>

<Rd>
<Rn>
<Rm>

<rotation>

<Rd>, <Rn>, <Rm>{, <rotation>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the first operand.
Specifies the register that contains the second operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-216

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation
if ConditionPassed(cond) then
operand2 = Rm Rotate_Right(8 * rotate)
Rd = Rn + SignExtend(operand2[7:0])
Usage

You can use SXTAB to eliminate a separate sign-extension instruction in many instruction sequences that act
on signed char values in C/C++.

Notes
Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.
Note
Your assembler must fault the use of R15 for register <Rn>.
Encoding If the <Rn> field of the instruction contains @b1111, the instruction is an SXTB

instruction instead, see SXTB on page A4-222.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-217

ARM Instructions

A4.1.111 SXTAB16

31

28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond

0

1

1

01000 Rn Rd rotate| SBZ [0 1 1 1 Rm

SXTAB16 extracts two 8-bit values from a register, sign extends them to 16 bits each, and adds the results to
two 16-bit values from another register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting
the 8-bit values.

Syntax

SXTAB16{<cond>}

where:

<cond>

<Rd>

<Rn>

<Rm>

<rotation>

<Rd>, <Rn>, <Rm>{, <rotation>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the first operand.
Specifies the register that contains the second operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-218

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
operand2 = Rm Rotate_Right(8 * rotate)
Rd[15:0] = Rn[15:0] + SignExtend(operand2[7:0])
Rd[31:16] = Rn[31:16] + SignExtend(operand2[23:16])

Usage

Use SXTAB16 when you need to keep intermediate values to higher precision while working on arrays of
signed byte values. See UXTAB16 on page A4-276 for an example of a similar usage.

Notes
Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.
Note
Your assembler must fault the use of R15 for register <Rn>.
Encoding If the <Rn> field of the instruction contains @b1111, the instruction is an SXTB16

instruction instead, see SXTB16 on page A4-224.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-219

ARM Instructions

A4.1.112 SXTAH

31

28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond

0

1

1

01 011 Rn Rd rotate| SBZ [0 1 1 1 Rm

SXTAH extracts a 16-bit value from a register, sign extends it to 32 bits, and adds the result to a value in another
register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

Syntax

SXTAH{<cond>}

where:

<cond>

<Rd>
<Rn>
<Rm>

<rotation>

<Rd>, <Rn>, <Rm>{, <rotation>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the first operand.
Specifies the register that contains the second operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-220

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
operand2 = Rm Rotate_Right(8 * rotate)
Rd = Rn + SignExtend(operand2[15:0])

Usage

You can use SXTAH to eliminate a separate sign-extension instruction in many instruction sequences that act
on signed short values in C/C++.

Notes
Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.
Note
Your assembler must fault the use of R15 for register <Rn>.
Encoding If the <Rn> field of the instruction contains @b1111, the instruction is an SXTH

instruction instead, see SXTH on page A4-226.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-221

ARM Instructions

A4.1.113 SXTB

31

28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211 10 9 8 7 6 5 4 3 0

cond

0

1

1

010101111 Rd rotate| SBZ|0 1 1 1 Rm

SXTB extracts an 8-bit value from a register and sign extends it to 32 bits. You can specify a rotation by 0, 8,
16, or 24 bits before extracting the 8-bit value.

Syntax

SXTB{<cond>} <Rd>, <Rm>{, <rotation>}

where:

<cond>

<Rd>

<Rm>

<rotation>

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-222

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
operand2 = Rm Rotate_Right(8 * rotate)
Rd[31:0] = SignExtend(operand2[7:0])

Usage

Use SXTB to sign-extend a byte to a word, for example in instruction sequences acting on signed char values
in C/C++.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-223

ARM Instructions

A4.1.114 SXTB16

31

28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211 10 9 8 7 6 5 4 3 0

cond

0

1

1

01 0O0O0|1 111 Rd rotate| SBZ [0 1 1 1 Rm

SXTB16 extracts two 8-bit values from a register and sign extends them to 16 bits each. You can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

Syntax

SXTB16{<cond>}

where:

<cond>

<Rd>

<Rm>

<rotation>

<Rd>, <Rm>{, <rotation>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-224

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
operand2 = Rm Rotate_Right(8 * rotate)
Rd[15:0] = SignExtend(operand2[7:0])
Rd[31:16] = SignExtend(operand2[23:16])

Usage

Use SXTB16 when you need to keep intermediate values to higher precision while working on arrays of signed
byte values. See UXTABI6 on page A4-276 for an example of a similar usage.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-225

ARM Instructions

A4.1.115 SXTH

31

28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211 10 9 8 7 6 5 4 3 0

cond

011010111111 Rd rotate| SBZ|0 1 1 1 Rm

SXTH extracts a 16-bit value from a register and sign extends it to 32 bits. You can specify a rotation by 0, 8,
16, or 24 bits before extracting the 16-bit value.

Syntax

SXTH{<cond>} <Rd>, <Rm>{, <rotation>}

where:

<cond>

<Rd>

<Rm>

<rotation>

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-226

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
operand2 = Rm Rotate_Right(8 * rotate)
Rd[31:0] = SignExtend(operand2[15:0])

Usage

Use SXTH to sign-extend a halfword to a word, for example in instruction sequences acting on signed short
values in C/C++.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-227

ARM Instructions

A4.1.116 TEQ

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|Ifl 00 1]|1 Rn SBZ shifter_operand

TEQ (Test Equivalence) compares a register value with another arithmetic value. The condition flags are
updated, based on the result of logically exclusive-ORing the two values, so that subsequent instructions can
be conditionally executed.

Syntax

TEQ{<cond>} <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page AS5-2, including how each option sets the I bit
(bit[25]) and the shifter_operand bits (bits[11:0]) in the instruction.

If the I bit is O and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not TEQ.
Instead, see Multiply instruction extension space on page A3-35 to determine which
instruction it is.

Architecture version

All

Exceptions

None.

Operation

if ConditionPassed(cond) then
alu_out = Rn EOR shifter_operand
N Flag = alu_out[31]
Z Flag = if alu_out == @ then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

A4-228

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

Use TEQ to test if two values are equal, without affecting the V flag (as C(MP does). The C flag is also
unaffected in many cases. TEQ is also useful for testing whether two values have the same sign. After the
comparison, the N flag is the logical Exclusive OR of the sign bits of the two operands.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-229

ARM Instructions

A4.1.117TST

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0|Ifl 00 01 Rn SBZ shifter_operand

TST (Test) compares a register value with another arithmetic value. The condition flags are updated, based
on the result of logically ANDing the two values, so that subsequent instructions can be conditionally
executed.

Syntax

TST{<cond>} <Rn>, <shifter_operand>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rn> Specifies the register that contains the first operand.

<shifter_operand>

Specifies the second operand. The options for this operand are described in Addressing
Mode 1 - Data-processing operands on page A5-2, including how each option causes the I
bit (bit[25]) and the shifter_operand bits (bits[11:0]) to be set in the instruction.

If the I bit is 0 and both bit[7] and bit[4] of shifter_operand are 1, the instruction is not TST.
Instead, see Multiply instruction extension space on page A3-35 to determine which
instruction it is.

Architecture version

All

Exceptions

None.

Operation

if ConditionPassed(cond) then
alu_out = Rn AND shifter_operand
N Flag = alu_out[31]
Z Flag = if alu_out == @ then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

A4-230

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Usage

Use TST to determine whether a particular subset of register bits includes at least one set bit. A very common
use for TST is to test whether a single bit is set or clear.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-231

ARM Instructions

A4.1.118 UADD16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 01100101 Rn Rd SBO 00 01 Rm

UADD16 (Unsigned Add) performs two 16-bit unsigned integer additions. It sets the GE bits in the CPSR as
carry flags for the additions.

Syntax

UADD16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[15:0] = Rn[15:0] + Rm[15:0]

GE[1:0] = if CarryFroml6(Rn[15:0] + Rm[15:0]) == 1 then 0bll else 0

Rd[31:16] = Rn[31:16] + Rm[31:16]

CGE[3:2] = if CarryFroml6(Rn[31:16] + Rm[31:16]) == 1 then 0bll else @
Usage

UADD16 produces the same result value as SADD16. However, the GE flag values are based on unsigned
arithmetic instead of signed arithmetic.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-232

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.119 UADDS8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100101 Rn Rd SBO 1 001 Rm

UADD8 performs four 8-bit unsigned integer additions. It sets the GE bits in the CPSR as carry flags for the

additions.

Syntax

UADD8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then

Rd[7:0] = Rn[7:0] + Rm[7:0]

GE[0] = CarryFrom8(Rn[7:0] + Rm[7:0])

Rd[15:8] = Rn[15:8] + Rm[15:8]

GE[1] = CarryFrom8(Rn[15:8] + Rm[15:8])

Rd[23:16] = Rn[23:16] + Rm[23:16]

GE[2] = CarryFrom8(Rn[23:16] + Rm[23:16])

Rd[31:24] = Rn[31:24] + Rm[31:24]

GE[3] = CarryFrom8(Rn[31:24] + Rm[31:24])
Usage

UADD8 produces the same result value as SADD8. However, the GE flag values are based on unsigned arithmetic
instead of signed arithmetic.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-233

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-234 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.120 UADDSUBX

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond

0

1 100101 Rn

Rd

SBO

00

1

1

Rm

UADDSUBX (Unsigned Add and Subtract with Exchange) performs one 16-bit unsigned integer addition and
one 16-bit unsigned integer subtraction. It exchanges the two halfwords of the second operand before it
performs the arithmetic. It sets the GE bits in the CPSR according to the results of the addition and
subtraction.

Syntax

UADDSUBX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rn[31:16] + Rm[15:0] /+ unsigned addition =/

sum
Rd[31

:16] =

GE[3:2] =

diff
RA[15

0] =

GE[1:0] =

sum[15:0]

if CarryFroml6(Rn[31:16] + Rm[15:0]) then 0bll else 0

Rn[15:0] - Rm[31:16]
diff[15:0]

/+# unsigned subtraction x/

if BorrowFrom(Rn[15:0] - Rm[31:16]) then 0bll else @

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-235

ARM Instructions

Usage

UADDSUBX produces the same result value as SADDSUBX. However, the GE flag values are based on unsigned
arithmetic instead of signed arithmetic.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-236 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.121 UHADD16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100111 Rn Rd SBO 0001 Rm

UHADD16 (Unsigned Halving Add) performs two 16-bit unsigned integer additions, and halves the results. It
has no effect on the GE flags.

Syntax

UHADD16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
sum = Rn[15:0] + Rm[15:0] /* Unsigned addition =/
Rd[15:0] = sum[16:1]

sum = Rn[31:16] + Rm[31:16] /* Unsigned addition =/
Rd[31:16] = sum[16:1]
Usage

Use UHADD16 for similar purposes to UADD16 (see UADD16 on page A4-232). UHADD16 averages the operands.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-237

ARM Instructions

A4.1.122 UHADDS8

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond

01100111 Rn Rd SBO 1 0 01 Rm

UHADD16 performs four 8-bit unsigned integer additions, and halves the results. It has no effect on the GE

flags.

Syntax

UHADD8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.
Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
sum = Rn[7:0] + Rm[7:0] /% Unsigned addition =/
RA[7:0] = sum[8:1]
sum = Rn[15:8] + Rm[15:8] /+ Unsigned addition =/
Rd[15:8] = sum[8:1]
sum = Rn[23:16] + Rm[23:16] /% Unsigned addition =/
Rd[23:16] = sum[8:1]
sum = Rn[31:24] + Rm[31:24] /+ Unsigned addition =/
Rd[31:24] = sum[8:1]

Usage

Use UHADDS for similar purposes to UADD8 (see UADDS on page A4-233). UHADD8 averages the operands.

A4-238

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-239

ARM Instructions

A4.1.123 UHADDSUBX
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7.6 5 4 3 0
cond (01100111 Rn Rd SBO |0 0 1 1 Rm

UHADDSUBX (Unsigned Halving Add and Subtract with Exchange) performs one 16-bit unsigned integer
addition and one 16-bit unsigned integer subtraction, and halves the results. It exchanges the two halfwords
of the second operand before it performs the arithmetic.

It has no effect on the GE flags.

Syntax

UHADDSUBX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
sum = Rn[31:16] + Rm[15:0] /* Unsigned addition =/
Rd[31:16] = sum[16:1]
diff = Rn[15:0] - Rm[31:16] /« Unsigned subtraction x/
Rd[15:0] = diff[16:1]

Usage

Use UHADDSUBX for similar purposes to UADDSUBX (see UADDSUBX on page A4-235). UHADDSUBX halves the
results.

A4-240

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-241

ARM Instructions

A4.1.124 UHSUB16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 01100111 Rn Rd SBO 0111 Rm

UHSUB16 (Unsigned Halving Subtract) performs two 16-bit unsigned integer subtractions, and halves the
results. It has no effect on the GE flags.

Syntax

UHSUB16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
diff = Rn[15:0] - Rm[15:0] /% Unsigned subtraction =/
Rd[15:0] = diff[16:1]
diff = Rn[31:16] - Rm[31:16] /x Unsigned subtraction =/

Rd[31:16] = diff[16:1]

Usage

Use UHSUB16 for similar purposes to USUB16 (see USUBI6 on page A4-269). UHSUB16 gives half the difference
instead of the full difference.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-242

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.125 UHSUBS8

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond

01100111 Rn Rd SBO 1111 Rm

UHSUB8 performs four 8-bit unsigned integer subtractions, and halves the results. It has no effect on the GE

flags.

Syntax

UHSUB8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.
Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
diff = Rn[7:0] - Rm[7:0] /+# Unsigned subtraction =/
Rd[7:0] = diff[8:1]
diff = Rn[15:8] - Rm[15:8] /% Unsigned subtraction =/
Rd[15:8] = diff[8:1
diff = Rn[23:16] - Rm[23:16] /* Unsigned subtraction =/
Rd[23

diff
Rd[31

Usage

]
]
:16] = diff[8:1]
]
]

= Rn[31:24] - Rm[31:24] /* Unsigned subtraction =/

:24] = diff[8:1

Use UHSUBS for similar purposes to USUB8 (see USUBS on page A4-270). UHSUB8 gives half the difference
instead of the full difference.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-243

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-244 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.126 UHSUBADDX

31

28 27 26 25 24 23 22 21 20 19

16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond

0

1 100111 Rn

Rd

SBO

0

1

0

1

Rm

UHSUBADDX (Unsigned Halving Subtract and Add with Exchange) performs one 16-bit unsigned integer
subtraction and one 16-bit unsigned integer addition, and halves the results. It exchanges the two halfwords
of the second operand before it performs the arithmetic.

It has no effect on the GE flags.

Syntax

UHSUBADDX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
diff = Rn[31:16] - Rm[15:0]
Rd[31:16] = diff[16:1]
sum = Rn[15:0] + Rm[31:16]
RA[15:0] = sum[16:1]

Usage

/% Unsigned subtraction

/% Unsigned addition x/

+/

Use UHSUBADDX for similar purposes to USUBADDX (see USUBADDX on page A4-272). UHSUBADDX gives half the
difference and the average instead of the full difference and sum.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-245

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-246 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.127 UMAAL

31

28 27 26 25 24 23 22 21 20 19 16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond

0000O0OT1O0O0 RdHi RdLo

Rs

100

1

Rm

UMAAL (Unsigned Multiply Accumulate Accumulate Long) multiplies the unsigned value of register <Rm>

with the unsigned value of register <Rs> to produce a 64-bit product. Both the unsigned 32-bit value held in
<RdHi> and the unsigned 32-bit value held in <RdLo> are added to this product, and the sum is written back
to <RdHi> and <RdLo> as a 64-bit value. The flags are not updated.

Syntax
UMAAL {<co

where:

<cond>

<RdLo>

<RdHi>

<Rm>

<Rs>

nd>} <RdLo>, <RdHi>, <Rm>, <Rs>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Supplies one of the 32-bit values to be added to the product of <Rm> and <Rs>, and is the
destination register for the lower 32 bits of the result.

Supplies the other 32-bit value to be added to the product of <Rm> and <Rs>, and is the
destination register for the upper 32 bits of the result.

Holds the unsigned value to be multiplied with the value of <Rs>.

Holds the unsigned value to be multiplied with the value of <Rm>.

Architecture version

ARMVG6 and above.

Excepti

None.

Operati

if Condit
resul
RdLo
RdH1

Usage

ons

on

ionPassed(cond) then

t = Rm = Rs + RdLo + RdHi
result[31:0]
result[63:32]

/% Unsigned multiplication and additions =/

Adding two 32-bit values to a 32-bit unsigned multiply is a useful function in cryptographic applications.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-247

ARM Instructions

Notes

Use of R15 Specifying R15 for register <RdHi>, <RdLo>, <Rm>, or <Rs> has UNPREDICTABLE
results.

Operand restriction If <RdLo> and <RdHi> are the same register, the results are UNPREDICTABLE.

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

A4-248 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A4.1.128 UMLAL

31

ARM Instructions

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond

000O01O0T1|S RdHi RdLo Rs 1 001 Rm

UMLAL (Unsigned Multiply Accumulate Long) multiplies the unsigned value of register <Rm> with the
unsigned value of register <Rs> to produce a 64-bit product. This product is added to the 64-bit value held
in <RdHi> and <RdLo>, and the sum is written back to <RdHi> and <RdLo>. The condition code flags are
optionally updated, based on the result.

Syntax

UMLAL{<cond>}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

where:

<cond>

<RdLo>

<RdHi>

<Rm>

<Rs>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the
multiply-accumulate. If S is omitted, the S bit of the instruction is set to 0 and the entire
CPSR is unaffected by the instruction.

Supplies the lower 32 bits of the value to be added to the product of <Rm> and <Rs>, and is
the destination register for the lower 32 bits of the result.

Supplies the upper 32 bits of the value to be added to the product of <Rm> and <Rs>, and is
the destination register for the upper 32 bits of the result.

Holds the signed value to be multiplied with the value of <Rs>.

Holds the signed value to be multiplied with the value of <Rm>.

Architecture version

All
Exceptions
None.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-249

ARM Instructions

Operation

if ConditionPassed(cond) then
RdLo = (Rm = Rs)[31:0] + RdLo /+ Unsigned multiplication =/
RdHi = (Rm * Rs)[63:32] + RdHi + CarryFrom((Rm % Rs)[31:0] + RdlLo)

if S == 1 then

N Flag = RdHi[31]

Z Flag
C Flag

if (RdHi == 0) and (RdLo == 0) then 1 else 0
unaffected /+ See "C and V flags" note */

V Flag = unaffected /+ See "C and V flags" note =/

Usage

UMLAL multiplies unsigned variables to produce a 64-bit result, which is added to the 64-bit value in the two
destination general-purpose registers. The result is written back to the two destination general-purpose

registers.

Notes

Use of R15

Operand restriction

Early termination

C and V flags

Specifying R15 for register <RdHi>, <RdLo>, <Rm>, or <Rs> has UNPREDICTABLE
results.

<RdHi> and <RdLo> must be distinct registers, or the results are UNPREDICTABLE.

Specifying the same register for either <RdHi> and <Rm>, or <RdLo> and <Rm>, was
previously described as producing UNPREDICTABLE results. There is no restriction
in ARMv6, and it is believed all relevant ARMv4 and ARMvVS implementations do
not require this restriction either, because high performance multipliers read all their
operands prior to writing back any results.

If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

UMLALS is defined to leave the C and V flags unchanged in ARMvS5 and above. In
earlier versions of the architecture, the values of the C and V flags were
UNPREDICTABLE after a UMLALS instruction.

A4-250 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.129 UMULL

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 000O01O0O0|S RdHi RdLo Rs 1001 Rm

UMULL (Unsigned Multiply Long) multiplies the unsigned value of register <Rm> with the unsigned value of
register <Rs> to produce a 64-bit result. The upper 32 bits of the result are stored in <RdHi>. The lower 32 bits
are stored in <RdLo>. The condition code flags are optionally updated, based on the 64-bit result.

Syntax

UMULL{<cond>}{S} <RdLo>, <RdHi>, <Rm>, <Rs>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

S Causes the S bit (bit[20]) in the instruction to be set to 1 and specifies that the instruction
updates the CPSR by setting the N and Z flags according to the result of the multiplication.
If S is omitted, the S bit of the instruction is set to 0 and the entire CPSR is unaffected by the
instruction.

<RdLo> Stores the lower 32 bits of the result.

<RdHi> Stores the upper 32 bits of the result.

<Rm> Holds the signed value to be multiplied with the value of <Rs>.

<Rs> Holds the signed value to be multiplied with the value of <Rm>.

Architecture version

All

Exceptions

None.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-251

ARM Instructions

Operation

if ConditionPassed(cond) then
RdHi = (Rm = Rs)[63:32] /% Unsigned multiplication =/
RdLo = (Rm = Rs)[31:0]

if S == 1 then

N Flag = RdHi[31]

Z Flag
C Flag

if (RdHi == 0) and (RdLo == 0) then 1 else 0
unaffected /+ See "C and V flags" note */

V Flag = unaffected /+ See "C and V flags" note =/

Usage

UMULL multiplies unsigned variables to produce a 64-bit result in two general-purpose registers.

Notes

Use of R15

Operand restriction

Early termination

C and V flags

Specifying R15 for register <RdHi>, <RdLo>, <Rm>, or <Rs> has UNPREDICTABLE
results.

<RdHi> and <RdLo> must be distinct registers, or the results are UNPREDICTABLE.

Specifying the same register for either <RdHi> and <Rm>, or <RdLo> and <Rm>, was
previously described as producing UNPREDICTABLE results. There is no restriction
in ARMv6, and it is believed all relevant ARMv4 and ARMv5 implementations do
not require this restriction either, because high performance multipliers read all their
operands prior to writing back any results.

If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rs> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

UMULLS is defined to leave the C and V flags unchanged in ARMvS5 and above. In
earlier versions of the architecture, the values of the C and V flags were
UNPREDICTABLE after a UMULLS instruction.

A4-252

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.130 UQADD16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100110 Rn Rd SBO 0001 Rm

UQADD16 (Unsigned Saturating Add) performs two 16-bit integer additions. It saturates the results to the
16-bit unsigned integer range 0 < x < 216 — 1. It has no effect on the GE flags.

Syntax

UQADD16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation
if ConditionPassed(cond) then
Rd[15:0] = UnsignedSat(Rn[15:0] + Rm[15:0], 16)
Rd[31:16] = UnsignedSat(Rn[31:16] + Rm[31:16], 16)
Usage
Use UQADD16 in similar ways to UADD16, but for unsigned saturated arithmetic. UQADD16 does not set the GE
bits for use with SEL. See UADD16 on page A4-232 for more details.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-253

ARM Instructions

A4.1.131 UQADDS8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 01100110 Rn Rd SBO 1 0 01 Rm

UQADDS performs four 8-bit integer additions. It saturates the results to the 8-bit unsigned integer range
0 < x <28 — 1. It has no effect on the GE flags.

Syntax

UQADD8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[7:0] = UnsignedSat(Rn[7:0] + Rm[7:0], 8)
Rd[15:8] = UnsignedSat(Rn[15:8] + Rm[15:8], 8)
Rd[23:16] = UnsignedSat(Rn[23:16] + Rm[23:16], 8)
Rd[31:24] = UnsignedSat(Rn[31:24] + Rm[31:24], 8)

Usage

Use UQADDS in similar ways to UADD8, but for unsigned saturated arithmetic. UQADD8 does not set the GE bits
for use with SEL. See UADDS on page A4-233 for more details.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-254

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.132 UQADDSUBX
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond (01 100110 Rn Rd SBO |0 0 I 1 Rm

UQADDSUBX (Unsigned Saturating Add and Subtract with Exchange) performs one 16-bit integer addition and
one 16-bit subtraction. It saturates the results to the 16-bit unsigned integer range 0 < x <216 — 1. It
exchanges the two halfwords of the second operand before it performs the arithmetic. It has no effect on the

GE flags.

Syntax

UQADDSUBX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation
if ConditionPassed(cond) then
Rd[15:0] = UnsignedSat(Rn[15:0] - Rm[31:16], 16)
Rd[31:16] = UnsignedSat(Rn[31:16] + Rm[15:0], 16)
Usage

Use UQADDSUBX in similar ways to UADDSUBX, but for unsigned saturated arithmetic. UQADDSUBX does not set the
GE bits for use with SEL. See UADDSUBX on page A4-235 for more details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-255

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-256 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.133 UQSUB16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100110 Rn Rd SBO 0111 Rm

UQSUB16 (Unsigned Saturating Subtract) performs two 16-bit subtractions. It saturates the results to the 16-bit
unsigned integer range 0 < x < 216 — 1. It has no effect on the GE flags.

Syntax

UQSUB16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation
if ConditionPassed(cond) then
Rd[15:0] = UnsignedSat(Rn[15:0] - Rm[15:0], 16)
Rd[31:16] = UnsignedSat(Rn[31:16] - Rm[31:16], 16)
Usage
Use UQSUB16 in similar ways to USUB16, but for unsigned saturated arithmetic. UQSUB16 does not set the GE
bits for use with SEL. See SSUB16 on page A4-180 for more details.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-257

ARM Instructions

A4.1.134UQSUB8

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 01100110 Rn Rd SBO 1 111 Rm

UQSUB8 performs four 8-bit subtractions. It saturates the results to the 8-bit unsigned integer range
0 < x <28 — 1. It has no effect on the GE flags.

Syntax

UQSUB8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[7:0] = UnsignedSat(Rn[7:0] - Rm[7:0], 8)
Rd[15:8] = UnsignedSat(Rn[15:8] - Rm[15:8], 8)
Rd[23:16] = UnsignedSat(Rn[23:16] - Rm[23:16], 8)
Rd[31:24] = UnsignedSat(Rn[31:24] - Rm[31:24], 8)

Usage

Use UQSUB8 in similar ways to USUB8, but for unsigned saturated arithmetic. UQSUB8 does not set the GE bits
for use with SEL. See SSUBS on page A4-182 for more details.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-258

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.135 UQSUBADDX
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond (01 100110 Rn Rd SBO |01 01 Rm

UQSUBADDX (Unsigned Saturating Subtract and Add with Exchange) performs one 16-bit integer subtraction
and one 16-bit integer addition. It saturates the results to the 16-bit unsigned integer range

0 <x <216 1. It exchanges the two halfwords of the second operand before it performs the arithmetic. It
has no effect on the GE flags.

Syntax

UQSUBADDX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation
if ConditionPassed(cond) then

Rd[31:16] = UnsignedSat(Rn[31:16] - Rm[15:0], 16)
Rd[15:0] = UnsignedSat(Rn[15:0] + Rm[31:16], 16)

Usage

You can use UQSUBADDX in similar ways to USUBADDX, but for unsigned saturated arithmetic. UQSUBADDX does not
set the GE bits for use with SEL. See UADDSUBX on page A4-235 for more details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-259

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

A4-260 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.136 USADS

31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 8§ 7 6 5 4 3 0

cond 01111000 Rd 1 111 Rs 0001 Rm

USAD8 (Unsigned Sum of Absolute Differences) performs four unsigned 8-bit subtractions, and adds the
absolute values of the differences together.

Syntax

USAD8{<cond>} <Rd>, <Rm>, <Rs>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<Rs> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-261

ARM Instructions

Operation
if ConditionPassed(cond) then

if Rm[7:0] < Rs[7:0] then
diffl = Rs[7:0] - Rm[7:0]
else
diffl = Rm[7:0] - Rs[7:0]

if Rm[15:8] < Rs[15:8] then
diff2 = Rs[15:8] - Rm[15:8]
else
diff2 = Rm[15:8] - Rs[15:8]

if Rm[23:16] < Rs[23:16] then
diff3 = Rs[23:16] - Rm[23:16]
else
diff3 = Rm[23:16] - Rs[23:16]

if Rm[31:24] < Rs[31:24] then
diff4 = Rs[31:24] - Rm[31:24]
else
diff4 = Rm[31:24] - Rs[31:24]

/x

/%

/%

« Unsigned comparison x/

Unsigned comparison x/

Unsigned comparison =/

Unsigned comparison x/

Rd = ZeroExtend(diffl) + ZeroExtend(diff2)

+ ZeroExtend(diff3) + ZeroExtend(diff4]

Usage

You can use USAD8 to process the first four bytes in a video motion estimation calculation.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.

A4-262

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A4.1.137 USADAS

31 28 27 26 25 24 23 22 21 20 19

16 15

12 11

8 7 6 5 4 3

ARM Instructions

cond 01111000 Rd

Rn

Rs

000

1

Rm

USADA8 (Unsigned Sum of Absolute Differences and Accumulate) performs four unsigned 8-bit subtractions,
and adds the absolute values of the differences to a 32-bit accumulate operand.

Syntax

USADA8{<cond>} <Rd>, <Rm>, <Rs>, <Rn>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first main operand.

<Rs> Specifies the register that contains the second main operand.

<Rn> Specifies the register that contains the accumulate operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-263

ARM Instructions

Operation
if ConditionPassed(cond) then

if Rm[7:0] < Rs[7:0] then
diffl = Rs[7:0] - Rm[7:0]
else
diffl = Rm[7:0] - Rs[7:0]

if Rm[15:8] < Rs[15:8] then
diff2 = Rs[15:8] - Rm[15:8]
else
diff2 = Rm[15:8] - Rs[15:8]

if Rm[23:16] < Rs[23:16] then
diff3 = Rs[23:16] - Rm[23:16]
else
diff3 = Rm[23:16] - Rs[23:16]

if Rm[31:24] < Rs[31:24] then
diff4 = Rs[31:24] - Rm[31:24]
else
diff4 = Rm[31:24] - Rs[31:24]

/x

/%

/%

« Unsigned comparison x/

Unsigned comparison x/

Unsigned comparison =/

Unsigned comparison x/

Rd = Rn + ZeroExtend(diffl) + ZeroExtend(diff2)
+ ZeroExtend(diff3) + ZeroExtend(diff4]

Usage

You can use USADAS in video motion estimation calculations.

Notes
Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rs> has UNPREDICTABLE results.
Encoding If the <Rn> field of the instruction contains @b1111, the instruction is a USAD8

instruction instead, see USADS on page A4-261.

A4-264

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A4.1.138 USAT

31

28 27 26 25 24 23 22 21 20

16 15

12 11

7 6 5 4 3

ARM Instructions

cond

0

1

1

0111 sat_imm

Rd

shift_imm

sh

0

1

Rm

USAT (Unsigned Saturate) saturates a signed value to an unsigned range. You can choose the bit position at
which saturation occurs.

You can apply a shift to the value before the saturation occurs.

The Q flag is set if the operation saturates.

Syntax

USAT{<cond>}

where:

<cond>

<Rd>

<immed>

<Rm>

<shift>

Return

<Rd>, #<immed>, <Rm>{, <shift>}

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the bit position for saturation. This lies in the range O to 31. It is encoded in the
sat_imm field of the instruction.

Specifies the register that contains the signed value to be saturated.

Specifies the optional shift. If present, it must be one of:

LSL #N. N must be in the range O to 31.
This is encoded as sh == 0 and shift_imm == N.

ASR #N. N must be in the range 1 to 32. This is encoded as sh == 1 and either shift_imm
== (for N == 32, or shift_imm == N otherwise.

If <shift> is omitted, LSL #0 is used.

The value returned in Rd is:

0

2n-1

if Xis<0

if0<=X<2n

ifX>20-1

where n is <immed>, and X is the shifted value from Rm.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A4-265

ARM Instructions

Architecture version

ARMYV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
if shift == 1 then
if shift_imm == 0 then
operand = (Rm Artihmetic_Shift_Right 32)[31:0]
else
operand = (Rm Artihmetic_Shift_Right shift_imm)[31:0]
else
operand = (Rm Logical_Shift_Left shift_imm)[31:0]
Rd = UnsignedSat(operand, sat_imm) /+ operand treated as signed =/
if UnsignedDoesSat(operand, sat_imm) then
Q Flag = 1

Usage

You can use USAT in various DSP algorithms, such as calculating a pixel color component, that require
scaling and saturation of signed data to an unsigned destination.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.

A4-266 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.139 USAT16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0110111 0| sat_imm Rd SBO 0011 Rm

USAT16 saturates two signed 16-bit values to an unsigned range. You can choose the bit position at which
saturation occurs. The Q flag is set if either halfword operation saturates.

Syntax

USAT16{<cond>} <Rd>, #<immed>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<immed> Specifies the bit position for saturation. This lies in the range O to 15. It is encoded in the
sat_imm field of the instruction.

<Rm> Specifies the register that contains the signed value to be saturated.

Return

The value returned in each half of Rd is:

0 if Xis<0
X if0<=X<2n
-1 ifX>2n—1

where n is <immed>, and X is the value from the corresponding half of Rm.

Architecture version

ARMVG6 and above.

Exceptions

None.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-267

ARM Instructions

Operation

if ConditionPassed(cond) then
Rd[15:0] = UnsignedSat(Rm[15:0], sat_imm) // Rm[15:0] treated as signed
Rd[31:16] = UnsignedSat(Rm[31:16], sat_imm) // Rm[31:16] treated as signed
if UnsignedDoesSat(Rm[15:0], sat_imm)
OR UnsignedDoesSat(Rm[31:16], sat_imm) then
Q Flag = 1

Usage

You can use USAT16 in various DSP algorithms, such as calculating a pixel color component, that require
saturation of signed data to an unsigned destination.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.

A4-268 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

A4.1.140 USUB16

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 01100101 Rn Rd SBO 0111 Rm

USUB16 (Unsigned Subtract) performs two 16-bit unsigned integer subtractions. It sets the GE bits in the
CPSR as borrow bits for the subtractions.

Syntax

USUB16{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[15:0] = Rn[15:0] - Rm[15:0]

GE[1:0] = if BorrowFrom(Rn[15:0] - Rm[15:0]) then @ else 0bll

Rd[31:16] = Rn[31:16] - Rm[31:16]

GE[3:2] = if BorrowFrom(Rn[31:16] - Rm[31:16]) then 0 else 0bll
Usage

USUB16 produces the same result as SSUB16 (see SSUBI16 on page A4-180), but produces GE bit values based
on unsigned arithmetic instead of signed arithmetic.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-269

ARM Instructions

A4.1.141USUBS

31

28 27 26 25 24 23 22 21 20 19 16 15

12 11

8§ 7 6 5 4 3 0

cond

01100101 Rn

Rd

SBO

1

1

1

1 Rm

USUB8 performs four 8-bit unsigned integer subtractions. It sets the GE bits in the CPSR as borrow bits for
the subtractions.

Syntax

USUB8{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond>

<Rd>

<Rn>

<Rm>

Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

Specifies the destination register.

Specifies the register that contains the first operand.

Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then
Rd[7:0] = Rn[7:0] - Rm[7:0]

GE[0]
Rd[15
GE[1]
Rd[23
GE[2]
Rd[31
GE[3]

Usage

= NOT BorrowFrom(Rn[7:0] - Rm[7:0])

:8] = Rn[15:8] - Rm[15:8]

= NOT BorrowFrom(Rn[15:8] - Rm[15:8])

:16] = Rn[23:16] - Rm[23:16]

= NOT BorrowFrom(Rn[23:16] - Rm[23:16])

:24] = Rn[31:24] - Rm[31:24]

= NOT BorrowFrom(Rn[31:24] - Rm[31:24])

USUB8 produces the same result as SSUB8 (see SSUBS on page A4-182), but produces GE bit values based on
unsigned arithmetic instead of signed arithmetic.

A4-270

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-271

ARM Instructions

A4.1.142 USUBADDX
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7.6 5 4 3 0
cond (01100101 Rn Rd SBO |0 1 0 1 Rm

USUBADDX (Unsigned Subtract and Add with Exchange) performs one 16-bit unsigned integer subtraction and

one 16-bit unsigned integer addition.

It exchanges the two halfwords of the second operand before it performs the arithmetic.

It sets the GE bits in the CPSR as borrow and carry bits.

Syntax

USUBADDX{<cond>} <Rd>, <Rn>, <Rm>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The
condition field on page A3-3. If <cond> is omitted, the AL (always) condition is used.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if ConditionPassed(cond) then

diff = Rn[31:16] - Rm[15:0]
Rd[31:16] = diff[15:0]

GE[3:2] =

sum = Rn[15:0] + Rm[31:16]
Rd[15:0] = sum[15:0]

CE[1:0] =

/% unsigned subtraction =/

if BorrowFrom(Rn[31:16] - Rm[15:0]) then 0bll else @

/+ unsigned addition =/

if CarryFroml6(Rn[15:0] + Rm[31:16]) then 0bll else @

A4-272 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Instructions

Usage

USUBADDX produces the same result as SSUBADDX (see SSUBADDX on page A4-184), but produces GE bit
values based on unsigned arithmetic instead of signed arithmetic.

Notes

Use of R15 Specifying R15 for register <Rd>, <Rm>, or <Rn> has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-273

ARM Instructions

A4.1.143 UXTAB

31

28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond

0

1

1

01110 Rn Rd rotate| SBZ|0 1 1 1 Rm

UXTAB extracts an 8-bit value from a register, zero extends it to 32 bits, and adds the result to the value in
another register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

Syntax

UXTAB{<cond>}

where:

<cond>

<Rd>
<Rn>
<Rm>

<rotation>

<Rd>, <Rn>, <Rm>{, <rotation>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the first operand.
Specifies the register that contains the second operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-274

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
operand2 = (Rm Rotate_Right(8 * rotate)) AND 0x000000ff
Rd = Rn + operand2

Usage

You can use UXTAB to eliminate a separate sign-extension instruction in many instruction sequences that act
on unsigned char values in C/C++.

Notes
Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.
Note
Your assembler must fault the use of R15 for register <Rn>.
Encoding If the <Rn> field of the instruction contains @b1111, the instruction is an UXTB

instruction instead, see UXTB on page A4-280.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-275

ARM Instructions

A4.1.144 UXTAB16

31

28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond

0

1

1

01100 Rn Rd rotate| SBZ [0 1 1 1 Rm

UXTAB16 extracts two 8-bit values from a register, zero extends them to 16 bits each, and adds the results to
the two values from another register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.

Syntax

UXTAB16{<cond>}

where:

<cond>

<Rd>
<Rn>
<Rm>

<rotation>

<Rd>, <Rn>, <Rm>{, <rotation>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the first operand.
Specifies the register that contains the second operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-276

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
operand2 = (Rm Rotate_Right(8 * rotate)) AND 0x00ffooff
Rd[15:0] = Rn[15:0] + operand2[15:0]
Rd[31:16] = Rn[31:16] + operand2[23:16]

Usage
Use UXTAB16 to keep intermediate values to higher precision while working on arrays of unsigned byte
values.
Notes
Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.
Note

Your assembler must fault the use of R15 for register <Rn>.

Encoding If the <Rn> field of the instruction contains 0b1111, the instruction is a UXTB16

instruction instead, see UXTBI6 on page A4-282.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-277

ARM Instructions

A4.1.145 UXTAH

31

28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond

0

1

1

01111 Rn Rd rotate| SBZ|0 1 1 1 Rm

UXTAH extracts a 16-bit value from a register, zero extends it to 32 bits, and adds the result to a value in
another register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.

Syntax

UXTAH{<cond>}

where:

<cond>

<Rd>
<Rn>
<Rm>

<rotation>

<Rd>, <Rn>, <Rm>{, <rotation>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the first operand.
Specifies the register that contains the second operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-278

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
operand2 = (Rm Rotate_Right(8 * rotate)) AND 0x0000ffff
Rd = Rn + operand2

Usage

You can use UXTAH to eliminate a separate zero-extension instruction in many instruction sequences that act
on unsigned short values in C/C++.

Notes
Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results.
Note
Your assembler must fault the use of R15 for register <Rn>.
Encoding If the <Rn> field of the instruction contains @b1111, the instruction is a UXTH

instruction instead, see UXTH on page A4-284.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-279

ARM Instructions

A4.1.146 UXTB

31

28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211 10 9 8 7 6 5 4 3 0

cond

0

1

1

011101111 Rd rotate| SBZ|0 1 1 1 Rm

UXTB extracts an 8-bit value from a register and zero extends it to 32 bits. You can specify a rotation by 0, 8,
16, or 24 bits before extracting the 8-bit value.

Syntax

UXTB{<cond>} <Rd>, <Rm>{, <rotation>}

where:

<cond>

<Rd>

<Rm>

<rotation>

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-280

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
Rd[31:0] = (Rm Rotate_Right(8 =« rotate)) AND 0x000000ff

Usage

Use UXTB to zero extend a byte to a word, for example in instruction sequences acting on unsigned char
values in C/C++.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-281

ARM Instructions

A4.1.147 UXTB16

31

28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211 10 9 8 7 6 5 4 3 0

cond

0

1

1

011001111 Rd rotate| SBZ|0 1 1 1 Rm

UXTB16 extracts two 8-bit values from a register and zero extends them to 16 bits each. You can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.

Syntax

UXTB16{<cond>}

where:

<cond>

<Rd>

<Rm>

<rotation>

<Rd>, <Rm>{, <rotation>}

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-282

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
Rd[31:0] = (Rm Rotate_Right(8 =« rotate)) AND 0xQ0ffooff

Usage

Use UXTB16 to zero extend a byte to a halfword, for example in instruction sequences acting on unsigned char
values in C/C++.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-283

ARM Instructions

A4.1.148 UXTH

31

28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211 10 9 8 7 6 5 4 3 0

cond

011011111111 Rd rotate| SBZ|0 1 1 1 Rm

UXTH extracts a 16-bit value from a register and zero extends it to 32 bits. You can specify a rotation by 0, 8,
16, or 24 bits before extracting the 16-bit value.

Syntax

UXTH{<cond>} <Rd>, <Rm>{, <rotation>}

where:

<cond>

<Rd>

<Rm>

<rotation>

Is the condition under which the instruction is executed. The conditions are defined
in The condition field on page A3-3. If <cond> is omitted, the AL (always) condition
is used.

Specifies the destination register.
Specifies the register that contains the operand.

This can be any one of:

. ROR #8. This is encoded as 0b01 in the rotate field.

. ROR #16. This is encoded as Ob10 in the rotate field.

. ROR #24. This is encoded as Ob11 in the rotate field.

. Onmitted. This is encoded as 0b00 in the rotate field.
Note

If your assembler accepts shifts by #0 and treats them as equivalent to no shift
or LSL #0, then it must accept ROR #0 here. It is equivalent to omitting
<rotation>.

Architecture version

ARMV6 and above.

Exceptions

None.

A4-284

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Operation

if ConditionPassed(cond) then
Rd[31:0] = (Rm Rotate_Right(8 =« rotate)) AND 0xQ00QQffff

Usage

Use UXTH to zero extend a halfword to a word, for example in instruction sequences acting on unsigned short
values in C/C++.

Notes

Use of R15 Specifying R15 for register <Rd> or <Rm> has UNPREDICTABLE results

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-285

ARM Instructions

A4.2 ARM instructions and architecture versions

Table A4-2 shows which ARM instructions are present in each current ARM architecture version.

Table A4-2 ARM instructions by architecture version

Instruction v4 v4aT v5T ngE;;STEJ’ v6

ADC Yes Yes Yes Yes Yes
ADD Yes Yes Yes Yes Yes
AND Yes Yes Yes Yes Yes
B Yes Yes Yes Yes Yes
BIC Yes Yes Yes Yes Yes
BKPT No No Yes Yes Yes
BL Yes Yes Yes Yes Yes
BLX (both forms) No No Yes Yes Yes
BX No Yes Yes Yes Yes
BXJ No No No Only v5TEJ Yes
CbP Yes Yes Yes Yes Yes
CDP2 No No Yes Yes Yes
CL.z No No Yes Yes Yes
CWN Yes Yes Yes Yes Yes
CcMP Yes Yes Yes Yes Yes
CPS No No No No Yes
CPY No No No No Yes
EOR Yes Yes Yes Yes Yes
LDC Yes Yes Yes Yes Yes
LDC2 No No Yes Yes Yes
LDM (all forms) Yes Yes Yes Yes Yes
LDR Yes Yes Yes Yes Yes

A4-286 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Table A4-2 ARM instructions by architecture version (continued)

Instruction v4 v4aT v5T xglg;‘F’FTEJ’ v6

LDRB Yes Yes Yes Yes Yes
LDRD No No No Only v5TE, v5TEJ Yes
LDRBT Yes Yes Yes Yes Yes
LDREX No No No No Yes
LDRH Yes Yes Yes Yes Yes
LDRSB Yes Yes Yes Yes Yes
LDRSH Yes Yes Yes Yes Yes
LDRT Yes Yes Yes Yes Yes
MCR Yes Yes Yes Yes Yes
MCR2 No No Yes Yes Yes
MCRR No No No Only v5TE, vSTEJ Yes
MCRR2 No No No No Yes
MLA Yes Yes Yes Yes Yes
MoV Yes Yes Yes Yes Yes
MRC Yes Yes Yes Yes Yes
MRC2 No No Yes Yes Yes
MRRC No No No Only v5TE, vSTEJ Yes
MRRC2 No No No No Yes
MRS Yes Yes Yes Yes Yes
MSR Yes Yes Yes Yes Yes
MuL Yes Yes Yes Yes Yes
MWN Yes Yes Yes Yes Yes
ORR Yes Yes Yes Yes Yes
PKH (both forms) No No No No Yes

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-287

ARM Instructions

Table A4-2 ARM instructions by architecture version (continued)

Instruction v4 vaT v5T ngE;‘;STEJ, v6

PLD No No No Only v5TE, v5TEJ Yes
QADD No No No Yes Yes
QADD16 No No No No Yes
QADD8 No No No No Yes
QADDSUBX No No No No Yes
QDADD No No No Yes Yes
QDSUB No No No Yes Yes
QsuB No No No Yes Yes
QSUB16 No No No No Yes
QSuB8 No No No No Yes
QSUBADDX No No No No Yes
REV (all forms) No No No No Yes
RFE No No No No Yes
RSB Yes Yes Yes Yes Yes
RSC Yes Yes Yes Yes Yes
SADD (all forms) No No No No Yes
SBC Yes Yes Yes Yes Yes
SEL No No No No Yes
SETEND No No No No Yes
SHADD (all forms) No No No No Yes
SHSUB (all forms) No No No No Yes
SMLAD No No No No Yes
SMLAL Yes Yes Yes Yes Yes
SMLALD No No No No Yes

A4-288 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Instructions

Table A4-2 ARM instructions by architecture version (continued)

Instruction v4 v4aT v5T xglg;‘F’FTEJ’ v6
SMLA<x><y> No No No Yes Yes
SMLAL<x><y> No No No Yes Yes
SMLAW<y> No No No Yes Yes
SMLSD No No No No Yes
SMLSLD No No No No Yes
SMMLA No No No No Yes
SMMLS No No No No Yes
SMMUL No No No No Yes
SMUAD No No No No Yes
SMULL Yes Yes Yes Yes Yes
SMUL<x><y> No No No Yes Yes
SMULW<y> No No No Yes Yes
SMUSD No No No No Yes
SRS No No No No Yes
SSAT (both forms) No No No No Yes
SSUB (all forms) No No No No Yes
STC Yes Yes Yes Yes Yes
STC2 No No Yes Yes Yes
STM (both forms) Yes Yes Yes Yes Yes
STR Yes Yes Yes Yes Yes
STRB Yes Yes Yes Yes Yes
STRBT Yes Yes Yes Yes Yes
STRD No No No Only v5TE, vSTEJ Yes
STREX No No No No Yes
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A4-289

ARM Instructions

Table A4-2 ARM instructions by architecture version (continued)

Vv5TE, v5TEJ,

Instruction v4 VAT v5T V5TEXP v6

STRH Yes Yes Yes Yes Yes

STRT Yes Yes Yes Yes Yes

SUB Yes Yes Yes Yes Yes

SWI Yes Yes Yes Yes Yes

Swp Yes Yes Yes Yes Deprecated
SWPB Yes Yes Yes Yes Deprecated
SXT (all forms) No No No No Yes

TEQ Yes Yes Yes Yes Yes

TST Yes Yes Yes Yes Yes

UADD (all forms) No No No No Yes

UHADD (all forms) No No No No Yes

UMAAL No No No No Yes

UMLAL Yes Yes Yes Yes Yes

UMULL Yes Yes Yes Yes Yes

UQADD (all forms) No No No No Yes

UQSUB (all forms) No No No No Yes

USAD (both forms) No No No No Yes

USAT (both forms) No No No No Yes

USUB (all forms) No No No No Yes

UXT (all forms) No No No No Yes

A4-290 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter A5
ARM Addressing Modes

This chapter describes each of the five addressing modes used with ARM® instructions. The chapter contains
the following sections:

. Addressing Mode 1 - Data-processing operands on page A5-2

. Addressing Mode 2 - Load and Store Word or Unsigned Byte on page A5-18
. Addressing Mode 3 - Miscellaneous Loads and Stores on page A5-33

. Addressing Mode 4 - Load and Store Multiple on page A5-41

. Addressing Mode 5 - Load and Store Coprocessor on page A5-49.

Note

All valid architecture variants (from v4, see Architecture versions and variants on page Xxiii) support address
modes 1 to 5 inclusive.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-1

ARM Addressing Modes

A5.1 Addressing Mode 1 - Data-processing operands

There are 11 formats used to calculate the <shifter_operand> in an ARM data-processing instruction. The
general instruction syntax is:

<opcode>{<cond>}{S} <Rd>, <Rn>, <shifter_operand>
where <shifter_operand> is one of the following:

1. #<immediate>

See Data-processing operands - Immediate on page AS-6.

2. <Rm>

See Data-processing operands - Register on page A5-8.
3. <Rm>, LSL #<shift_imm>
See Data-processing operands - Logical shift left by immediate on page A5-9.
4. <Rm>, LSL <Rs>
See Data-processing operands - Logical shift left by register on page A5-10.
5. <Rm>, LSR #<shift_imm>
See Data-processing operands - Logical shift right by immediate on page A5-11.

6. <Rm>, LSR <Rs>
See Data-processing operands - Logical shift right by register on page A5-12.

7. <Rm>, ASR #<shift_imm>
See Data-processing operands - Arithmetic shift right by immediate on page A5-13.

8. <Rm>, ASR <Rs>
See Data-processing operands - Arithmetic shift right by register on page A5-14.

9. <Rm>, ROR #<shift_imm>

See Data-processing operands - Rotate right by immediate on page A5-15.

10. <Rm>, ROR <Rs>

See Data-processing operands - Rotate right by register on page A5-16.

11. <Rm>, RRX

See Data-processing operands - Rotate right with extend on page A5-17.

A5-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A5.1.1 Encoding

The following diagrams show the encodings for this addressing mode:

32-bit immediate

ARM Addressing Modes

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 0
cond 0{0|1| opcode |S Rn Rd rotate_imm immed_8§

Immediate shifts

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0
cond 0 0{0| opcode |S Rn Rd shift_imm shift | O Rm

Register shifts

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0|0| opcode |S Rn Rd Rs 0| shift | 1 Rm

opcode Specifies the operation of the instruction.

S bit Indicates that the instruction updates the condition codes.

Rd Specifies the destination register.

Rn Specifies the first source operand register.

Bits[11:0] The fields within bits[11:0] are collectively called a shifter operand. This is described in The
shifter operand on page A5-4.

Bit[25] Is referred to as the I bit, and is used to distinguish between an immediate shifter operand
and a register-based shifter operand.

If all three of the following bits have the values shown, the instruction is not a data-processing instruction,
but lies in the arithmetic or Load/Store instruction extension space:

bit[25] ==10
bit[4] =1
bit[7] =1

See Extending the instruction set on page A3-32 for more information.

Addressing mode 3, MCRR{2}, MRRC{2}, STC{2} are examples of instructions that reside in this space.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A5-3

ARM Addressing Modes

A5.1.2 The shifter operand
As well as producing the shifter operand, the shifter produces a carry-out which some instructions write into
the Carry Flag. The default register operand (register Rm specified with no shift) uses the form register shift
left by immediate, with the immediate set to zero.
The shifter operand takes one of the following three basic formats.
Immediate operand value
An immediate operand value is formed by rotating an 8-bit constant (in a 32-bit word) by an even number
of bits (0,2,4,8...26,28,30). Therefore, each instruction contains an 8-bit constant and a 4-bit rotate to be
applied to that constant.
Some valid constants are:

0OxFF,0x104,0xFF0,0xFF00,0xFF000,0xFF000000,0xF000000F
Some invalid constants are:
0x101,0x102,0xFF1,0xFF04,0xFF003, 0xFFFFFFFF,0xFO00001F

For example:
Mov RO, #0 ; Move zero to RO
ADD R3, R3, #1 ; Add one to the value of register 3
cvp R7, #1000 ; Compare value of R7 with 1000
BIC R9, R8, #0OxFF0O ; Clear bits 8-15 of R8 and store in R9
Register operand value
A register operand value is simply the value of a register. The value of the register is used directly as the
operand to the data-processing instruction. For example:
MOV~ R2, RO ; Move the value of RO to R2
ADD R4, R3, R2 ; Add R2 to R3, store result in R4
CcMP R7, R8 ; Compare the value of R7 and R8

A5-4 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

Shifted register operand value

A shifted register operand value is the value of a register, shifted (or rotated) before it is used as the
data-processing operand. There are five types of shift:

ASR Arithmetic shift right
LSL Logical shift left

LSR Logical shift right

ROR Rotate right

RRX Rotate right with extend.

The number of bits to shift by is specified either as an immediate or as the value of a register. For example:

MoV R2, RO, LSL #2 ; Shift RO left by 2, write to R2, (R2=R0x4)
ADD R9, R5, R5, LSL #3 ; R9 =R5 +R5 x 8or R9 =R5 x9

RSB R9, RS, R5, LSL #3 ; R9=R5 x 8 -R50rR9I=R5x7

SuB R10, R9, R8, LSR #4 ; RI0 = R9 - R8 / 16

MoV R12, R4, ROR R3 ; R12 = R4 rotated right by value of R3

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-5

ARM Addressing Modes

A5.1.3 Data-processing operands - Immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 0

cond 001 opcode |S Rn Rd rotate_imm immed_8

This data-processing operand provides a constant (defined in the instruction) operand to a data-processing
instruction.

The <shifter_operand> value is formed by rotating (to the right) an 8-bit immediate value to any even bit
position in a 32-bit word. If the rotate immediate is zero, the carry-out from the shifter is the value of the C
flag, otherwise, it is set to bit[31] of the value of <shifter_operand>.

Syntax

#<immediate>

where:

<immediate> Specifies the immediate constant wanted. It is encoded in the instruction as an 8-bit
immediate (immed_8) and a 4-bit immediate (rotate_imm), so that <immediate> is
equal to the result of rotating immed_8 right by (2 x rotate_imm) bits.

Operation

shifter_operand = immed_8 Rotate_Right (rotate_imm = 2)
if rotate_imm == @ then

shifter_carry_out = C flag
else /+ rotate_imm != 0 «/

shifter_carry_out = shifter_operand[31]

A5-6

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Notes

ARM Addressing Modes

Legitimate immediates

Encoding

Use of R15

Not all 32-bit immediates are legitimate. Only those that can be formed by rotating an 8-bit
immediate right by an even amount are valid 32-bit immediates for this format.

Some values of <immediate> have more than one possible encoding. For example, a value of

0x3F0 could be encoded as:

immed_8 == 0x3F, rotate_imm == 0xE

or as:

immed_8 == 0xFC, rotate_imm == 0xF

When more than one encoding is available, an assembler must choose the correct one to use,

as follows:

. If <immediate> lies in the range O to 0xFF, an encoding with rotate_imm == 0 is
available. The assembler must choose that encoding. (Choosing another encoding
would affect how some instructions set the C flag.)

. Otherwise, it is recommended that the encoding with the smallest value of
rotate_imm is chosen. (This choice does not affect instruction functionality.)

For more precise control of the encoding, the instruction fields can be specified directly by

using the syntax:

#<immed_8>, <rotate_amount>

where <rotate_amount> = 2 * rotate_imm.

If R15 is specified as register Rn, the value used is the address of the current instruction plus

eight.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-7

ARM Addressing Modes

A5.1.4 Data-processing operands - Register

31 28 27 26 25 24 21 20 19 16 15 1211 10 9 8 7 6 5 4 3 0

cond 0 0 O opcode |S Rn Rd 000O0O0(0O0O Rm

This data-processing operand provides the value of a register directly. The carry-out from the shifter is the
C flag.

Syntax
<Rm>

where:

<Rm> Specifies the register whose value is the instruction operand.

Operation

shifter_operand = Rm
shifter_carry_out = C Flag

Notes

Encoding This instruction is encoded as a logical shift left by immediate (see Data-processing
operands - Logical shift left by immediate on page A5-9) with a shift of zero (shift_imm ==
0).

Use of R15 If R15 is specified as register Rm or Rn, the value used is the address of the current
instruction plus 8.

A5-8

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.1.5 Data-processing operands - Logical shift left by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 O 0| opcode |S Rn Rd shift_ imm |0 0 O Rm

This data-processing operand is used to provide either the value of a register directly (lone register operand,
as described in Data-processing operands - Register on page A5-8), or the value of a register shifted left
(multiplied by a constant power of two).

This instruction operand is the value of register Rm, logically shifted left by an immediate value in the range
0 to 31. Zeros are inserted into the vacated bit positions. The carry-out from the shifter is the last bit shifted
out, or the C flag if no shift is specified.

Syntax

<Rm>, LSL #<shift_imm>

where:

<Rm> Specifies the register whose value is to be shifted.
LSL Indicates a logical shift left.

<shift_imm> Specifies the shift. This is a value between 0 and 31.

Operation

if shift_imm == @ then /x Register Operand =/
shifter_operand = Rm
shifter_carry_out = C Flag

else /« shift_imm > @ =/
shifter_operand = Rm Logical_Shift_Left shift_imm
shifter_carry_out = Rm[32 - shift_imm]

Notes

Default shift If the value of <shift_imm> == 0, the operand can be written as just <Rm> (see
Data-processing operands - Register on page AS-8).

Use of R15 If R15 is specified as register Rm or Rn, the value used is the address of the current
instruction plus 8.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-9

ARM Addressing Modes

A5.1.6 Data-processing operands - Logical shift left by register

31 28 27 26 25 24 21 20 19 16 15

12 11

8 7 6 5 4 3 0

cond 0 0 O opcode |S Rn

Rd

Rs

0001 Rm

This data-processing operand is used to provide the value of a register multiplied by a variable power of two.

This instruction operand is the value of register Rm, logically shifted left by the value in the least significant
byte of register Rs. Zeros are inserted into the vacated bit positions. The carry-out from the shifter is the last
bit shifted out, which is zero if the shift amount is more than 32, or the C flag if the shift amount is zero.

Syntax
<Rm>, LSL <Rs>

where:

<Rm> Specifies the register whose value is to be shifted.

LSL Indicates a logical shift left.

<Rs> Is the register containing the value of the shift.

Operation

if Rs[7:0] == 0 then
shifter_operand = Rm
shifter_carry_out = C Flag

else if Rs[7:0] < 32 then
shifter_operand = Rm Logical_Shift_Left Rs[7:0]
shifter_carry_out = Rm[32 - Rs[7:0]]

else if Rs[7:0] == 32 then
shifter_operand = 0
shifter_carry_out = Rm[0]

else /x Rs[7:0] > 32 =/
shifter_operand = 0
shifter_carry_out = 0

Notes

Use of R15 Specifying R15 as register Rd, register Rm, register Rn, or register Rs has UNPREDICTABLE

results.

A5-10

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.1.7 Data-processing operands - Logical shift right by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 O 0| opcode |S Rn Rd shift_ imm |0 1 O Rm

This data-processing operand is used to provide the unsigned value of a register shifted right (divided by a
constant power of two).

This instruction operand is the value of register Rm, logically shifted right by an immediate value in the
range 1 to 32. Zeros are inserted into the vacated bit positions. The carry-out from the shifter is the last bit
shifted out.

Syntax

<Rm>, LSR #<shift_imm>

where:

<Rm> Specifies the register whose value is to be shifted.

LSR Indicates a logical shift right.

<shift_imm> Specifies the shift. This is an immediate value between 1 and 32. (A shift by 32 is
encoded by shift_imm == 0.)

Operation

if shift_imm == @ then
shifter_operand = 0
shifter_carry_out =

else /« shift_imm > @ =/
shifter_operand = Rm Logical_Shift_Right shift_imm
shifter_carry_out = Rm[shift_imm - 1]

Rm[31]

Notes

Use of R15 If R15 is specified as register Rm or Rn, the value used is the address of the current
instruction plus 8.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-11

ARM Addressing Modes

A5.1.8 Data-processing operands - Logical shift right by register

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 O opcode |S Rn Rd Rs 0011 Rm

This data-processing operand is used to provide the unsigned value of a register shifted right (divided by a
variable power of two).

It is produced by the value of register Rm, logically shifted right by the value in the least significant byte of
register Rs. Zeros are inserted into the vacated bit positions. The carry-out from the shifter is the last bit
shifted out, which is zero if the shift amount is more than 32, or the C flag if the shift amount is zero.

Syntax
<Rm>, LSR <Rs>

where:
<Rm> Specifies the register whose value is to be shifted.
LSR Indicates a logical shift right.

<Rs> Is the register containing the value of the shift.

Operation

if Rs[7:0] == 0 then
shifter_operand = Rm
shifter_carry_out = C Flag

else if Rs[7:0] < 32 then
shifter_operand = Rm Logical_Shift_Right Rs[7:0]
shifter_carry_out = Rm[Rs[7:0] - 1]

else if Rs[7:0] == 32 then
shifter_operand = 0
shifter_carry_out = Rm[31]

else /x Rs[7:0] > 32 «/
shifter_operand = 0
shifter_carry_out = 0

Notes

Use of R15 Specifying R15 as register Rd, register Rm, register Rn, or register Rs has UNPREDICTABLE
results.

A5-12

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.1.9 Data-processing operands - Arithmetic shift right by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 O 0| opcode |S Rn Rd shift_imm 100 Rm

This data-processing operand is used to provide the signed value of a register arithmetically shifted right
(divided by a constant power of two).

This instruction operand is the value of register Rm, arithmetically shifted right by an immediate value in
the range 1 to 32. The sign bit of Rm (Rm[31]) is inserted into the vacated bit positions. The carry-out from
the shifter is the last bit shifted out.

Syntax

<Rm>, ASR #<shift_imm>

where:

<Rm> Specifies the register whose value is to be shifted.

ASR Indicates an arithmetic shift right.

<shift_imm> Specifies the shift. This is an immediate value between 1 and 32. (A shift by 32 is
encoded by shift_imm == 0.)

Operation

if shift_imm == @ then
if Rm[31] == @ then
shifter_operand = 0
shifter_carry_out = Rm[31]
else /x Rm[31] == 1 =/
shifter_operand = OxFFFFFFFF
shifter_carry_out = Rm[31]
else /« shift_imm > @ =/
shifter_operand = Rm Arithmetic_Shift_Right <shift_imm>
shifter_carry_out = Rm[shift_imm - 1]

Notes

Use of R15 If R15 is specified as register Rm or Rn, the value used is the address of the current
instruction plus 8.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-13

ARM Addressing Modes

A5.1.10 Data-processing operands - Arithmetic shift right by register

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 O opcode |S Rn Rd Rs 01 01 Rm

This data-processing operand is used to provide the signed value of a register arithmetically shifted right
(divided by a variable power of two).

This instruction operand is the value of register Rm arithmetically shifted right by the value in the least
significant byte of register Rs. The sign bit of Rm (Rm[31]) is inserted into the vacated bit positions. The
carry-out from the shifter is the last bit shifted out, which is the sign bit of Rm if the shift amount is more
than 32, or the C flag if the shift amount is zero.

Syntax
<Rm>, ASR <Rs>

where:
<Rm> Specifies the register whose value is to be shifted.
ASR Indicates an arithmetic shift right.

<Rs> Is the register containing the value of the shift.

Operation

if Rs[7:0] == 0 then
shifter_operand = Rm
shifter_carry_out = C Flag
else if Rs[7:0] < 32 then
shifter_operand = Rm Arithmetic_Shift_Right Rs[7:0]
shifter_carry_out = Rm[Rs[7:0] - 1]
else /« Rs[7:0] >= 32 =/
if Rm[31] == @ then
shifter_operand = 0
shifter_carry_out =
else /+ Rm[31] == 1 =/
shifter_operand = OxFFFFFFFF
shifter_carry_out = Rm[31]

Rm[31]

Notes

Use of R15 Specifying R15 as register Rd, register Rm, register Rn, or register Rs has UNPREDICTABLE
results.

A5-14

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.1.11 Data-processing operands - Rotate right by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 O 0| opcode |S Rn Rd shift_imm 110 Rm

This data-processing operand is used to provide the value of a register rotated by a constant value.

This instruction operand is the value of register Rm rotated right by an immediate value in the range 1 to 31.
As bits are rotated off the right end, they are inserted into the vacated bit positions on the left. The carry-out
from the shifter is the last bit rotated off the right end.

Syntax

<Rm>, ROR #<shift_imm>

where:

<Rm> Specifies the register whose value is to be rotated.

ROR Indicates a rotate right.

<shift_imm> Specifies the rotation. This is an immediate value between 1 and 31. When
shift_imm == 0, an RRX operation (rotate right with extend) is performed. This is
described in Data-processing operands - Rotate right with extend on page A5-17.

Operation

if shift_imm == @ then

See “Data-processing operands - Rotate right with extend” on page A5-17
else /x shift_imm > 0 =/

shifter_operand = Rm Rotate_Right shift_imm

shifter_carry_out = Rm[shift_imm - 1]

Notes

Use of R15 If R15 is specified as register Rm or Rn, the value used is the address of the current
instruction plus 8.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-15

ARM Addressing Modes

A5.1.12 Data-processing operands - Rotate right by register

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 O opcode |S Rn Rd Rs 01 11 Rm

This data-processing operand is used to provide the value of a register rotated by a variable value.

This instruction operand is produced by the value of register Rm rotated right by the value in the least
significant byte of register Rs. As bits are rotated off the right end, they are inserted into the vacated bit
positions on the left. The carry-out from the shifter is the last bit rotated off the right end, or the C flag if the
shift amount is zero.

Syntax

<Rm>, ROR <Rs>

where:

<Rm> Specifies the register whose value is to be rotated.

ROR Indicates a rotate right.

<Rs> Is the register containing the value of the rotation.

Operation

if Rs[7:0] == 0 then
shifter_operand = Rm
shifter_carry_out = C Flag
else if Rs[4:0] == 0 then
shifter_operand = Rm
shifter_carry_out = Rm[31]
else /+ Rs[4:0] > 0 =/
shifter_operand = Rm Rotate_Right Rs[4:0]
shifter_carry_out = Rm[Rs[4:0] - 1]

Notes

Use of R15 Specifying R15 as register Rd, register Rm, register Rn, or register Rs has UNPREDICTABLE
results.

A5-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.1.13 Data-processing operands - Rotate right with extend

31 28 27 26 25 24 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 0 0 O| opcode |S Rn Rd 000O0O01T1O0 Rm

This data-processing operand can be used to perform a 33-bit rotate right using the Carry Flag as the 33rd
bit.

This instruction operand is the value of register Rm shifted right by one bit, with the Carry Flag replacing
the vacated bit position. The carry-out from the shifter is the bit shifted off the right end.

Syntax

<Rm>, RRX

where:

<Rm> Specifies the register whose value is shifted right by one bit.

RRX Indicates a rotate right with extend.

Operation

shifter_operand = (C Flag Logical_Shift_Left 31) OR (Rm Logical_Shift_Right 1)
shifter_carry_out = Rm[0]

Notes

Encoding The instruction encoding is in the space that would be used for ROR #0.

Use of R15 If R15 is specified as register Rm or Rn, the value used is the address of the current
instruction plus 8.

ADC instruction A rotate left with extend can be performed with an ADC instruction.

ADC <Rd>, <Rm>
where <Rn> ==<Rm> for the modified operand to equal the result, or
ADC <Rd>, <Rn>, <Rm>, LSL #1

where the rotate left and extend is the second operand rather than the result.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-17

ARM Addressing Modes

A5.2 Addressing Mode 2 - Load and Store Word or Unsigned Byte

There are nine formats used to calculate the address for a Load and Store Word or Unsigned Byte
instruction. The general instruction syntax is:

LDR|STR{<cond>}{B}{T} <Rd>, <addressing_mode>

where <addressing_mode> is one of the nine options listed below.

All nine of the following options are available for LDR, LDRB, STR and STRB. For LDRBT, LDRT, STRBT and STRBT,
only the post-indexed options (the last three in the list) are available. For the PLD instruction described in
PLD on page A4-90, only the offset options (the first three in the list) are available.

1.

[<Rn>, #+/-<offset_12>]

See Load and Store Word or Unsigned Byte - Immediate offset on page A5-20.
[<Rn>, +/-<Rm>]

See Load and Store Word or Unsigned Byte - Register offset on page AS5-21.

[<Rn>, +/-<Rm>, <shift> #<shift_imm>]

See Load and Store Word or Unsigned Byte - Scaled register offset on page AS5-22.

[<Rn>, #+/-<offset_12>]!

See Load and Store Word or Unsigned Byte - Immediate pre-indexed on page A5-24.
[<Rn>, +/-<Rm>]!

See Load and Store Word or Unsigned Byte - Register pre-indexed on page A5-25.

[<Rn>, +/-<Rm>, <shift> #<shift_imm>]!

See Load and Store Word or Unsigned Byte - Scaled register pre-indexed on page A5-26.

[<Rn>], #+/-<offset_12>
See Load and Store Word or Unsigned Byte - Immediate post-indexed on page A5-28.

[<Rn>], +/-<Rm>

See Load and Store Word or Unsigned Byte - Register post-indexed on page A5-30.

[<Rn>], +/-<Rm>, <shift> #<shift_imm>

See Load and Store Word or Unsigned Byte - Scaled register post-indexed on page AS5-31.

A5-18

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A5.2.1 Encoding

ARM Addressing Modes

The following three diagrams show the encodings for this addressing mode:

Immediate offset/index

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

010

P

U|(B|(W|L Rn Rd offset_12

Register offset/index

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond

0 11

P

U|B|W|L Rn Rd 000O0O0OO0OO0OO Rm

Scaled register offset/index

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0
cond 0 1|1|P|U[B|W|L Rn Rd shift_imm | shift | O Rm
The P bit Has two meanings:

The U bit

The B bit

The W bit

The L bit

P==

P==

Indicates the use of post-indexed addressing. The base register value is used for
the memory address, and the offset is then applied to the base register value and
written back to the base register.

Indicates the use of offset addressing or pre-indexed addressing (the W bit
determines which). The memory address is generated by applying the offset to
the base register value.

Indicates whether the offset is added to the base (U == 1) or is subtracted from the base
(U==0).

Distinguishes between an unsigned byte (B == 1) and a word (B == 0) access.

Has two meanings:

P==

P==

If W == 0, the instruction is LDR, LDRB, STR or STRB and a normal memory access
is performed. If W == 1, the instruction is LDRBT, LDRT, STRBT or STRT and an
unprivileged (User mode) memory access is performed.

If W == 0, the base register is not updated (offset addressing). If W == 1, the
calculated memory address is written back to the base register (pre-indexed
addressing).

Distinguishes between a Load (L == 1) and a Store (L == 0).

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-19

ARM Addressing Modes

A5.2.2 Load and Store Word or Unsigned Byte - Inmediate offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0|{1]0(1|U|B|O|L Rn Rd offset_12

This addressing mode calculates an address by adding or subtracting the value of an immediate offset to or
from the value of the base register Rn.

Syntax

[<Rn>, #+/-<offset_12>]

where:

<Rn> Specifies the register containing the base address.

<offset_12> Specifies the immediate offset used with the value of Rn to form the address.
Operation

if U ==1 then

address = Rn + offset_12
else /% U ==10 =/

address = Rn - offset_12
Usage

This addressing mode is useful for accessing structure (record) fields, and accessing parameters and local
variables in a stack frame. With an offset of zero, the address produced is the unaltered value of the base
register Rn.

Notes

Offset of zero The syntax [<Rn>] is treated as an abbreviation for [<Rn>, #0], unless the instruction is one
that only allows post-indexed addressing modes (LDRBT, LDRT, STRBT or STRT).

The B bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.
The L bit This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.

Use of R15 If R15 is specified as register Rn, the value used is the address of the instruction plus eight.

A5-20 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A5.2.3

ARM Addressing Modes

Load and Store Word or Unsigned Byte - Register offset

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond O 1I{1|1|U|B|O|L Rn Rd 000O0O0OO0OO0OO Rm

This addressing mode calculates an address by adding or subtracting the value of the index register Rm to
or from the value of the base register Rn.

Syntax

[<Rn>, +/-<Rm>]

where:

<Rn> Specifies the register containing the base address.

<Rm> Specifies the register containing the value to add to or subtract from Rn.
Operation

if U ==1 then

address = Rn + Rm
else /x U ==0 =/
address = Rn - Rm
Usage
This addressing mode is used for pointer plus offset arithmetic, and accessing a single element of an array
of bytes.
Notes
Encoding This addressing mode is encoded as an LSL scaled register offset, scaled by zero.
The B bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.
The L bit This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.

Use of R15 If R15 is specified as register Rn, the value used is the address of the instruction plus eight.
Specifying R15 as register Rm has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-21

ARM Addressing Modes

A5.2.4 Load and Store Word or Unsigned Byte - Scaled register offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 1

1{U|B|0|L Rn Rd shift imm | shift | O Rm

These five addressing modes calculate an address by adding or subtracting the shifted or rotated value of the
index register Rm to or from the value of the base register Rn.

Syntax
One of:

[<Rn>, +/-<Rm>, LSL #<shift_imm>]
[<Rn>, +/-<Rm>, LSR #<shift_imm>]
[<Rn>, +/-<Rm>, ASR #<shift_imm>]
[<Rn>, +/-<Rm>, ROR #<shift_imm>]

[<Rn>, +/-<Rm>, RRX]
where:

<Rn>

<Rm>

LSL

LSR

ASR

ROR

RRX

<shift_imm>

Specifies the register containing the base address.

Specifies the register containing the offset to add to or subtract from Rn.
Specifies a logical shift left.

Specifies a logical shift right.

Specifies an arithmetic shift right.

Specifies a rotate right.

Specifies a rotate right with extend.

Specifies the shift or rotation.

LSL 0 to 31, encoded directly in the shift_imm field.

LSR 1 to 32. A shift amount of 32 is encoded as shift_imm == 0. Other shift
amounts are encoded directly.

ASR 1 to 32. A shift amount of 32 is encoded as shift_imm == 0. Other shift

amounts are encoded directly.

ROR 1 to 31, encoded directly in the shift_imm field. (The shift_imm ==
encoding is used to specify the RRX option.)

A5-22 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

Operation

case shift of
0b0Q /+ LSL */
index = Rm Logical_Shift_Left shift_imm
0b01 /= LSR =/
if shift_imm == @ then /+ LSR #32 =/
index = 0
else
index = Rm Logical_Shift_Right shift_imm
0b10 /+ ASR /
if shift_imm == @ then /« ASR #32 =/
if Rm[31] == 1 then
index = OXFFFFFFFF
else
index = 0
else
index = Rm Arithmetic_Shift_Right shift_imm
@b1l /+ ROR or RRX #/
if shift_imm == @ then /+ RRX =/
index = (C Flag Logical_Shift_Left 31) OR
(Rm Logical_Shift_Right 1)
else /+ ROR #/
index = Rm Rotate_Right shift_imm

endcase
if U == 1 then

address = Rn + index
else /+ U==0 %/

address = Rn - index

Usage

These addressing modes are used for accessing a single element of an array of values larger than a byte.

Notes
The B bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.
The L bit This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.

Use of R15 If R15 is specified as register Rn, the value used is the address of the instruction plus eight.
Specifying R15 as register Rm has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-23

ARM Addressing Modes

A5.2.5 Load and Store Word or Unsigned Byte - Inmediate pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11

cond 0 1|0(1|{U|B|1|L Rn Rd offset_12

This addressing mode calculates an address by adding or subtracting the value of an immediate offset to or

from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated address is
written back to the base register Rn. The conditions are defined in The condition field on page A3-3.

Syntax

[<Rn>, #+/-<offset_12>]!

where:

<Rn> Specifies the register containing the base address.

<offset_12> Specifies the immediate offset used with the value of Rn to form the address.
Sets the W bit, causing base register update.

Operation

if U ==1 then

address = Rn + offset_12
else /x if U ==10 »/

address = Rn - offset_12
if ConditionPassed(cond) then

Rn = address

Usage

This addressing mode is used for pointer access to arrays with automatic update of the pointer value.

Notes

Offset of zero The syntax [<Rn>] must never be treated as an abbreviation for [<Rn>, #0]!.

The B bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.

The L bit This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.

Use of R15 Specifying R15 as register Rn has UNPREDICTABLE results.

A5-24 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

ARM Addressing Modes

A5.2.6 Load and Store Word or Unsigned Byte - Register pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond O 1I{1|1|U|B|1|L Rn Rd 000O0O0OO0OO0OO Rm

This addressing mode calculates an address by adding or subtracting the value of an index register Rm to or
from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated address is
written back to the base register Rn. The conditions are defined in The condition field on page A3-3.

Syntax

[<Rn>, +/-<Rm>]!

where:

<Rn> Specifies the register containing the base address.

<Rm> Specifies the register containing the offset to add to or subtract from Rn.
Sets the W bit, causing base register update.

Operation

if U ==1 then

address = Rn + Rm

else /x U ==10 «/
address = Rn - Rm

if ConditionPassed(cond) then
Rn = address

Notes

Encoding This addressing mode is encoded as an LSL scaled register offset, scaled by zero.
The B bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.
The L bit This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.

Use of R15 Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand restriction There are no operand restrictions in ARMv6 and above. In earlier versions of the
architecture, if the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-25

ARM Addressing Modes

A5.2.7 Load and Store Word or Unsigned Byte - Scaled register pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0O 1|1|1|U|B|1|L Rn Rd shift_imm shift | O Rm

These five addressing modes calculate an address by adding or subtracting the shifted or rotated value of the
index register Rm to or from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated address is
written back to the base register Rn. The conditions are defined in The condition field on page A3-3.

Syntax
One of:

[<Rn>, +/-<Rm>, LSL #<shift_imm>]!
[<Rn>, +/-<Rm>, LSR #<shift_imm>]!
[<Rn>, +/-<Rm>, ASR #<shift_imm>]!
[<Rn>, +/-<Rm>, ROR #<shift_imm>]!
[<Rn>, +/-<Rm>, RRX]!

where:
<Rn> Specifies the register containing the base address.
<Rm> Specifies the register containing the offset to add to or subtract from Rn.
LSL Specifies a logical shift left.
LSR Specifies a logical shift right.
ASR Specifies an arithmetic shift right.
ROR Specifies a rotate right.
RRX Specifies a rotate right with extend.
<shift_imm> Specifies the shift or rotation.
LSL 0 to 31, encoded directly in the shift_imm field.
LSR 1 to 32. A shift amount of 32 is encoded as shift_imm == 0. Other shift
amounts are encoded directly.
ASR 1 to 32. A shift amount of 32 is encoded as shift_imm == 0. Other shift
amounts are encoded directly.
ROR 1 to 31, encoded directly in the shift_imm field. (The shift_imm == 0

encoding is used to specify the RRX option.)

Sets the W bit, causing base register update.

A5-26 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

Operation

case shift of
0b0Q /+ LSL */
index = Rm Logical_Shift_Left shift_imm
0b01 /= LSR =/
if shift_imm == @ then /+ LSR #32 =/
index = 0
else
index = Rm Logical_Shift_Right shift_imm
0b10 /+ ASR /
if shift_imm == @ then /« ASR #32 =/
if Rm[31] == 1 then
index = OXFFFFFFFF
else
index = 0
else
index = Rm Arithmetic_Shift_Right shift_imm
@b1l /+ ROR or RRX #/
if shift_imm == @ then /+ RRX =/
index = (C Flag Logical_Shift_Left 31) OR
(Rm Logical_Shift_Right 1)
else /+ ROR #/
index = Rm Rotate_Right shift_imm

endcase
if U == 1 then

address = Rn + index
else /+ U==0 %/

address = Rn - index
if ConditionPassed(cond) then
Rn = address

Notes

The B bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.
The L bit This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.

Use of R15 Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand restriction There are no operand restrictions in ARM v6 and above. In earlier versions of the
architecture, if the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-27

ARM Addressing Modes

A5.2.8 Load and Store Word or Unsigned Byte - Inmediate post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1{0{0|UIB|O|L Rn Rd offset_12

This addressing mode uses the value of the base register Rn as the address for the memory access.

If the condition specified in the instruction matches the condition code status, the value of the immediate
offset is added to or subtracted from the value of the base register Rn and written back to the base register
Rn. The conditions are defined in The condition field on page A3-3.

Syntax

[<Rn>], #+/-<offset_12>

where:

<Rn> Specifies the register containing the base address.

<offset_12> Specifies the immediate offset used with the value of Rn to form the address.
Operation

address = Rn
if ConditionPassed(cond) then
if U == 1 then
Rn = Rn + offset_12
else /+ U==0 =/
Rn = Rn - offset_12

Usage

This addressing mode is used for pointer access to arrays with automatic update of the pointer value.

A5-28

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

Notes

Post-indexed addressing modes

LDRBT, LDRT, STRBT, and STRT only support post-indexed addressing modes. They use a minor
modification of the above bit pattern, where bit[21] (the W bit) is 1, not O as shown.

Offset of zero The syntax [<Rn>] is treated as an abbreviation for [<Rn>],#0 for instructions that only
support post-indexed addressing modes (LDRBT, LDRT, STRBT, STRT), but not for other
instructions.

The B bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.
The L bit This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.

Use of R15 Specifying R15 as register Rn has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-29

ARM Addressing Modes

A5.2.9 Load and Store Word or Unsigned Byte - Register post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 1211 10 9 8 7 6 5 4 3 0

cond 0 1{1{0|UIB|O|L Rn Rd 000O0O0O0O0OO Rm

This addressing mode uses the value of the base register Rn as the address for the memory access.

If the condition specified in the instruction matches the condition code status, the value of the index register
Rm is added to or subtracted from the value of the base register Rn and written back to the base register Rn.
The conditions are defined in The condition field on page A3-3.

Syntax

[<Rn>], +/-<Rm>

where:

<Rn> Specifies the register containing the base address.

<Rm> Specifies the register containing the offset to add to or subtract from Rn.
Operation

address = Rn
if ConditionPassed(cond) then
if U == 1 then
Rn = Rn + Rm
else /+ U==0 =/
Rn = Rn - Rm

Notes

Encoding This addressing mode is encoded as an LSL scaled register offset, scaled by zero.

Post-indexed addressing modes

LDRBT, LDRT, STRBT, and STRT only support post-indexed addressing modes. They use
a minor modification of the above bit pattern, where bit[21] (the W bit) is 1, not O

as shown.
The B bit This bit distinguishes between an unsigned byte (B==1) and a word (B==0) access.
The L bit This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.
Use of R15 Specifying R15 as register Rn or Rm has UNPREDICTABLE results.

Operand restriction There are no operand restrictions in ARMv6 and above. In earlier versions of the
architecture, if the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

A5-30 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.2.10 Load and Store Word or Unsigned Byte - Scaled register post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond

01

1

0O|(U|B|O|L Rn Rd shift_imm shift | O Rm

This addressing mode uses the value of the base register Rn as the address for the memory access.

If the condition specified in the instruction matches the condition code status, the shifted or rotated value of
index register Rm is added to or subtracted from the value of the base register Rn and written back to the
base register Rn. The conditions are defined in The condition field on page A3-3.

Syntax
One of:

<Rn>], +/-<Rm>, LSL #<shift_imm>
<Rn>], +/-<Rm>, LSR #<shift_imm>

<Rn>], +/-<Rm>, ROR #<shift_imm>

[
[
[<Rn>], +/-<Rm>, ASR #<shift_imm>
[
[

<Rn>], +/-<Rm>, RRX

where:
<Rn>
<Rm>
LSL
LSR
ASR
ROR
RRX

<shift_imm>

Specifies the register containing the base address.

Specifies the register containing the offset to add to or subtract from Rn.
Specifies a logical shift left.

Specifies a logical shift right.

Specifies an arithmetic shift right.

Specifies a rotate right.

Specifies a rotate right with extend.

Specifies the shift or rotation.

LSL 0 to 31, encoded directly in the shift_imm field.

LSR 1 to 32. A shift amount of 32 is encoded as shift_imm == 0. Other shift
amounts are encoded directly.

ASR 1 to 32. A shift amount of 32 is encoded as shift_imm == 0. Other shift
amounts are encoded directly.

ROR 1 to 31, encoded directly in the shift_imm field. (The shift_imm == 0

encoding is used to specify the RRX option.)

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-31

ARM Addressing Modes

Operation

address = Rn
case shift of
0b00 /« LSL +/
index = Rm Logical_Shift_Left shift_imm
0b01 /« LSR +/
if shift_imm == @ then /x LSR #32 x/
index = 0
else
index = Rm Logical_Shift_Right shift_imm
0b10 /+ ASR /
if shift_imm == @ then /x ASR #32 x/
if Rm[31] == 1 then
index = OxFFFFFFFF
else
index = 0
else
index = Rm Arithmetic_Shift_Right shift_imm
Qb1l /+ ROR or RRX =/
if shift_imm == @ then /x RRX x/
index = (C Flag Logical_Shift_Left 31) OR
(Rm Logical_Shift_Right 1)
else /% ROR x/
index = Rm Rotate_Right shift_imm

endcase
if ConditionPassed(cond) then
if U == 1 then

Rn = Rn + index
else /# U ==0 =/
Rn = Rn - index

Notes

The W bit LDRBT, LDRT, STRBT, and STRT only support post-indexed addressing modes. They use
a minor modification of the above bit pattern, where bit[21] (the W bit) is 1, not 0
as shown.

The B bit This bit distinguishes between an unsigned byte (B == 1) and a word (B == 0)
access.

The L bit This bit distinguishes between a Load (L == 1) and a Store (L == 0) instruction.

Use of R15 Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand restriction There are no operand restrictions in ARMv6 and above. In earlier versions of the
architecture, if the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

A5-32 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.3 Addressing Mode 3 - Miscellaneous Loads and Stores

There are six formats used to calculate the address for load and store (signed or unsigned) halfword, load
signed byte, or load and store doubleword instructions. The general instruction syntax is:

LDR|STR{<cond>}H|SH|SB|D <Rd>, <addressing_mode>

where <addressing_mode> is one of the following six options:

1.

[<Rn>, #+/-<offset_8>]

See Miscellaneous Loads and Stores - Immediate offset on page A5-35.

[<Rn>, +/-<Rm>]

See Miscellaneous Loads and Stores - Register offset on page A5-36.

[<Rn>, #+/-<offset_8>]!

See Miscellaneous Loads and Stores - Immediate pre-indexed on page A5-37.
[<Rn>, +/-<Rm>]!

See Miscellaneous Loads and Stores - Register pre-indexed on page AS5-38.

[<Rn>], #+/-<offset_8>

See Miscellaneous Loads and Stores - Immediate post-indexed on page A5-39.

[<Rn>], +/-<Rm>

See Miscellaneous Loads and Stores - Register post-indexed on page A5-40.

A5.3.1 Encoding

The following diagrams show the encodings for this addressing mode:

Immediate offset/index

31

28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 00 O(P|U|1[(W|L Rn Rd immedH |1 |S|H|1| ImmedL

Register offset/index

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
cond 0 0 O|P|U[O0O|W|L Rn Rd SBZ 1|S|H|1 Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-33

ARM Addressing Modes

The P bit Has two meanings:

P==0 Indicates the use of post-indexed addressing. The base register value is used for
the memory address, and the offset is then applied to the base register value and
written back to the base register.

P== Indicates the use of offset addressing or pre-indexed addressing (the W bit
determines which). The memory address is generated by applying the offset to
the base register value.

The U bit Indicates whether the offset is added to the base (U == 1) or subtracted from the base

U==0).

The W bit Has two meanings:

P== The W bit must be 0 or the instruction is UNPREDICTABLE.

P==1 W == 1 indicates that the memory address is written back to the base register
(pre-indexed addressing), and W == (that the base register is unchanged (offset
addressing).

The L, S and H bits

These bits combine to specify signed or unsigned loads or stores, and doubleword, halfword,

or byte accesses:

L=0, S=0, H=1 Store halfword.

L=0, S=1, H=0 Load doubleword.

L=0, S=1, H=1 Store doubleword.

L=1, S=0, H=1 Load unsigned halfword.

L=1, S=1, H=0 Load signed byte.

L=1, S=1, H=1 Load signed halfword.

Prior to v5TE, the bits were denoted as Load/!Store (L), Signed/!Unsigned (S) and

halfword/!Byte (H) bits.

Signed bytes and halfwords can be stored with the same STRB and STRH instructions as are

used for unsigned quantities, so no separate signed store instructions are provided.

Unsigned bytes

Signed stores

If S == 0 and H == 0, apparently indicating an unsigned byte, the instruction is not one that
uses this addressing mode. Instead, it is a multiply instruction, a SWP or SWPB instruction, an
LDREX or STREX instruction, or an unallocated instruction in the arithmetic or load/store
instruction extension space (see Extending the instruction set on page A3-32).

Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions, which use
addressing mode 2 rather than addressing mode 3.

If S ==1 and L == 0, apparently indicating a signed store instruction, the encoding along
with the H-bit is used to support the LDRD (H == 0) and STRD (H == 1) instructions.

A5-34 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A5.3.2

ARM Addressing Modes

Miscellaneous Loads and Stores - Immediate offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00 0 1{U|1 OfL Rn Rd immedH |1 |S|H|1| immedL

This addressing mode calculates an address by adding or subtracting the value of an immediate offset to or
from the value of the base register Rn.

Syntax

[<Rn>, #+/-<offset_8>]

where:

<Rn> Specifies the register containing the base address.

<offset_8> Specifies the immediate offset used with the value of Rn to form the address. The
offset is encoded in immedH (top 4 bits) and immedL (bottom 4 bits).

Operation

offset_8 = (immedH << 4) OR immedL
if U == 1 then

address = Rn + offset_8
else /x U==10 «/

address = Rn - offset_8
Usage

This addressing mode is used for accessing structure (record) fields, and accessing parameters and locals
variable in a stack frame. With an offset of zero, the address produced is the unaltered value of the base
register Rn.

Notes

Zero offset The syntax [<Rn>] is treated as an abbreviation for [<Rn>,#0].

The L, S and H bits The L, S and H bits are defined in Encoding on page A5-33.

Use of R15 If R15 is specified as register Rn, the value used is the address of the instruction plus eight.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-35

ARM Addressing Modes

A5.3.3 Miscellaneous Loads and Stores - Register offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 000 1|UI0 O0|L Rn Rd SBZ 1[{S{H|1 Rm

This addressing mode calculates an address by adding or subtracting the value of the index register Rm to
or from the value of the base register Rn.

Syntax

[<Rn>, +/-<Rm>]

where:

<Rn> Specifies the register containing the base address.

<Rm> Specifies the register containing the offset to add to or subtract from Rn.
Operation

if U ==1 then

address = Rn + Rm
else /x U==10 «/
address = Rn - Rm

Usage

This addressing mode is useful for pointer plus offset arithmetic and for accessing a single element of an
array.

Notes
The L, S and H bits The L, S and H bits are defined in Encoding on page A5-33.

Unsigned bytes If S == 0 and H == 0, apparently indicating an unsigned byte, the instruction is not
one that uses this addressing mode. Instead, it is a multiply instruction, a SWP or SWPB
instruction, or an unallocated instruction in the arithmetic or load/store instruction
extension space (see Extending the instruction set on page A3-32).

Unsigned bytes are accessed by the LDRB, LDRBT, STRB and STRBT instructions, which

use addressing mode 2 rather than addressing mode 3.

Use of R15 IfR15 is specified as register Rn, the value used is the address of the instruction plus
eight. Specifying R15 as register Rm has UNPREDICTABLE results.

A5-36 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A5.3.4

ARM Addressing Modes

Miscellaneous Loads and Stores - Inmediate pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 000 1{U|1l 1|L Rn Rd immedH |1 |S|H|1| ImmedL

This addressing mode calculates an address by adding or subtracting the value of an immediate offset to or
from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated address is
written back to the base register Rn. The conditions are defined in The condition field on page A3-3.

Syntax

[<Rn>, #+/-<offset_8>]!

where:

<Rn> Specifies the register containing the base address.

<offset_8> Specifies the immediate offset used with the value of Rn to form the address. The
offset is encoded in immedH (top 4 bits) and immedL (bottom 4 bits).
Sets the W bit, causing base register update.

Operation

offset_8 = (immedH << 4) OR immedL
if U == 1 then
address = Rn + offset_8
else /% U ==10 «/
address = Rn - offset_8
if ConditionPassed(cond) then
Rn = address

Usage

This addressing mode gives pointer access to arrays, with automatic update of the pointer value.

Notes
Offset of zero The syntax [<Rn>] must not be treated as an abbreviation for [<Rn>,#0]!.
The L, S and H bits The L, S and H bits are defined in Encoding on page A5-33.

Use of R15 Specifying R15 as register Rn has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-37

ARM Addressing Modes

A5.3.5 Miscellaneous Loads and Stores - Register pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 000 1|UI0 1|L Rn Rd SBZ 1[{S{H|1 Rm

This addressing mode calculates an address by adding or subtracting the value of the index register Rm to
or from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status, the calculated address is
written back to the base register Rn. The conditions are defined in The condition field on page A3-3.

Syntax

[<Rn>, +/-<Rm>]!

where:

<Rn> Specifies the register containing the base address.

<Rm> Specifies the register containing the offset to add to or subtract from Rn.
Sets the W bit, causing base register update.

Operation

if U ==1 then

address = Rn + Rm

else /% U ==10 «/
address = Rn - Rm

if ConditionPassed(cond) then
Rn = address

Notes
The L, S and H bits The L, S and H bits are defined in Encoding on page A5-33.
Use of R15 Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand restriction There are no operand restrictions in ARMv6 and above. In earlier versions of the
architecture, if the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

A5-38 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.3.6 Miscellaneous Loads and Stores - Inmediate post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00 0 O(U|l OfL Rn Rd immedH |1 |S|H|1| ImmedL

This addressing mode uses the value of the base register Rn as the address for the memory access.

If the condition specified in the instruction matches the condition code status, the value of the immediate
offset is added to or subtracted from the value of the base register Rn and written back to the base
register Rn. The conditions are defined in The condition field on page A3-3.

Syntax

[<Rn>], #+/-<offset_8>

where:

<Rn> Specifies the register containing the base address.

<offset_8> Specifies the immediate offset used with the value of Rn to form the address. The
offset is encoded in immedH (top 4 bits) and immedL (bottom 4 bits).

Operation

address = Rn
offset_8 = (immedH << 4) OR immedL
if ConditionPassed(cond) then
if U == 1 then
Rn = Rn + offset_8
else /+ U==10 «/
Rn = Rn - offset_8
Usage

This addressing mode gives pointer access to arrays, with automatic update of the pointer value.

Notes
Offset of zero The syntax [<Rn>] must not be treated as an abbreviation for [<Rn>],#0.
The L, S and H bits The L, S and H bits are defined in Encoding on page A5-33.

Use of R15 Specifying R15 as register Rn has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-39

ARM Addressing Modes

A5.3.7 Miscellaneous Loads and Stores - Register post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 00 0 O0|U|O0 O|L Rn Rd SBZ 1|S|{H|1 Rm

This addressing mode uses the value of the base register Rn as the address for the memory access.

If the condition specified in the instruction matches the condition code status, the value of the index register
Rm is added to or subtracted from the value of the base register Rn and written back to the base register Rn.
The conditions are defined in The condition field on page A3-3.

Syntax

[<Rn>], +/-<Rm>

where:

<Rn> Specifies the register containing the base address.

<Rm> Specifies the register containing the offset to add to or subtract from Rn.
Operation

address = Rn
if ConditionPassed(cond) then
if U == 1 then
Rn = Rn + Rm
else /+ U==0 =/
Rn = Rn - Rm

Notes
The L, S and H bits The L, S and H bits are defined in Encoding on page A5-33.

Use of R15 Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand restriction There are no operand restrictions in ARMv6 and above. In earlier versions of the
architecture, if the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

A5-40 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A5.4

ARM Addressing Modes

Addressing Mode 4 - Load and Store Multiple

Load Multiple instructions load a subset (possibly all) of the general-purpose registers from memory. Store
Multiple instructions store a subset (possibly all) of the general-purpose registers to memory.

Load and Store Multiple addressing modes produce a sequential range of addresses. The lowest-numbered
register is stored at the lowest memory address and the highest-numbered register at the highest memory
address.

The general instruction syntax is:
LDM|STM{<cond>}<addressing_mode> <Rn>{!}, <registers>{A}
where <addressing_mode> is one of the following four addressing modes:

1. IA (Increment After)
See Load and Store Multiple - Increment after on page AS5-43.

2. IB (Increment Before)

See Load and Store Multiple - Increment before on page A5-44.

3. DA (Decrement After)
See Load and Store Multiple - Decrement after on page A5-45.

4. DB (Decrement Before)
See Load and Store Multiple - Decrement before on page A5-46.

There are also alternative mnemonics for these addressing modes, useful when LDM and STM are being used
to access a stack, see Load and Store Multiple addressing modes (alternative names) on page A5-47.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-41

ARM Addressing Modes

A5.4.1

Encoding

The following diagram shows the encoding for this addressing mode:

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond

1

0 O|P|U|S|W|L Rn register list

The P bit

The U bit

The S bit

The W bit

The L bit

Register list

Has two meanings:

P==0 indicates that the word addressed by Rn is included in the range of memory
locations accessed, lying at the top (U==0) or bottom (U==1) of that range.

==1 indicates that the word addressed by Rn is excluded from the range of memory
locations accessed, and lies one word beyond the top of the range (U==0) or one
word below the bottom of the range (U==1).

Indicates that the transfer is made upwards (U==1) or downwards (U==0) from the base
register.

For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR. For
LDMs that do not load the PC and all STMs, the S bit indicates that when the processor is in a
privileged mode, the User mode banked registers are transferred instead of the registers of
the current mode.

LDM with the S bit set is UNPREDICTABLE in User or System mode.

Indicates that the base register is updated after the transfer. The base register is incremented
(U==1) or decremented (U==0) by four times the number of registers in the register list.

Distinguishes between Load (L==1) and Store (L==0) instructions.

The register_list field of the instruction has one bit for each general-purpose register: bit[0]
for register zero through to bit[15] for register 15 (the PC). If no bits are set, the result is
UNPREDICTABLE.

The instruction syntax specifies the registers to load or store in <registers>, which is a
comma-separated list of registers, surrounded by { and }.

A5-42

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.4.2 Load and Store Multiple - Increment after

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0(0[1|S|W|L Rn register list

This addressing mode is for Load and Store Multiple instructions, and forms a range of addresses.

The first address formed is the <start_address>, and is the value of the base register Rn. Subsequent
addresses are formed by incrementing the previous address by four. One address is produced for each
register that is specified in <registers>.

The last address produced is the <end_address>. Its value is four less than the sum of the value of the base
register and four times the number of registers specified in <registers>.

If the condition specified in the instruction matches the condition code status and the W bit is set, Rn is
incremented by four times the number of registers in <registers>. The conditions are defined in The
condition field on page A3-3.

Syntax
IA

See also the alternative syntax described in Load and Store Multiple addressing modes (alternative names)
on page A5-47.

Operation

start_address = Rn
end_address = Rn + (Number_Of_Set_Bits_In(register_Tist) = 4) - 4
if ConditionPassed(cond) and W == 1 then

Rn = Rn + (Number_Of_Set_Bits_In(register_list) = 4)

Notes
The L bit This bit distinguishes between a Load Multiple and a Store Multiple.

The S bit For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR. For
LDMs that do not load the PC and all STMs, the S bit indicates that when the processor is in a
privileged mode, the User mode banked registers are transferred instead of the registers of
the current mode.

LDM with the S bit set is UNPREDICTABLE in User or System mode.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-43

ARM Addressing Modes

A5.4.3 Load and Store Multiple - Increment before

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0|1|1|S|W|L Rn register list

This addressing mode is for Load and Store Multiple instructions, and forms a range of addresses.

The first address formed is the <start_address>, and is the value of the base register Rn plus four.
Subsequent addresses are formed by incrementing the previous address by four. One address is produced for
each register that is specified in <registers>.

The last address produced is the <end_address>. Its value is the sum of the value of the base register and four
times the number of registers specified in <registers>.

If the condition specified in the instruction matches the condition code status and the W bit is set, Rn is
incremented by four times the number of registers in <registers>. The conditions are defined in The
condition field on page A3-3.

Syntax
I8

See also the alternative syntax described in Load and Store Multiple addressing modes (alternative names)
on page A5-47.

Operation

start_address = Rn + 4
end_address = Rn + (Number_Of_Set_Bits_In(register_Tist) = 4)
if ConditionPassed(cond) and W == 1 then

Rn = Rn + (Number_Of_Set_Bits_In(register_list) = 4)

Notes
The L bit This bit distinguishes between a Load Multiple and a Store Multiple.

The S bit For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR. For
LDMs that do not load the PC and all STMs, the S bit indicates that when the processor is in a
privileged mode, the User mode banked registers are transferred instead of the registers of
the current mode.

LDM with the S bit set is UNPREDICTABLE in User or System mode.

A5-44 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.4.4 Load and Store Multiple - Decrement after

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0(0{0|S|W|L Rn register list

This addressing mode is for Load and Store Multiple instructions, and forms a range of addresses.

The first address formed is the <start_address>, and is the value of the base register minus four times the
number of registers specified in <registers>, plus 4. Subsequent addresses are formed by incrementing the
previous address by four. One address is produced for each register that is specified in <registers>.

The last address produced is the <end_address>. Its value is the value of the base register Rn.

If the condition specified in the instruction matches the condition code status and the W bit is set, Rn is
decremented by four times the number of registers in <registers>. The conditions are defined in The
condition field on page A3-3.

Syntax
DA

See also the alternative syntax described in Load and Store Multiple addressing modes (alternative names)
on page A5-47.

Operation

start_address = Rn - (Number_Of_Set_Bits_In(register_Tlist) = 4) + 4
end_address = Rn
if ConditionPassed(cond) and W == 1 then

Rn = Rn - (Number_Of_Set_Bits_In(register_Tist) = 4)

Notes
The L bit This bit distinguishes between a Load Multiple and a Store Multiple.

The S bit For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR. For
LDMs that do not load the PC and all STMs, the S bit indicates that when the processor is in a
privileged mode, the User mode banked registers are transferred instead of the registers of
the current mode.

LDM with the S bit set is UNPREDICTABLE in User or System mode.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-45

ARM Addressing Modes

A5.4.5 Load and Store Multiple - Decrement before

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0|1|0|S|W|L Rn register list

This addressing mode is for Load and Store multiple instructions, and forms a range of addresses.

The first address formed is the <start_address>, and is the value of the base register minus four times the
number of registers specified in <registers>. Subsequent addresses are formed by incrementing the previous
address by four. One address is produced for each register that is specified in <registers>.

The last address produced is the <end_address>. Its value is the value of the base register Rn minus four.

If the condition specified in the instruction matches the condition code status and the W bit is set, Rn is
decremented by four times the number of registers in <registers>. The conditions are defined in The
condition field on page A3-3.

Syntax

DB

See also the alternative syntax described in Load and Store Multiple addressing modes (alternative names)
on page A5-47.

Architecture version

All

Operation

start_address = Rn - (Number_Of_Set_Bits_In(register_list) = 4)
end_address = Rn - 4
if ConditionPassed(cond) and W == 1 then

Rn = Rn - (Number_Of_Set_Bits_In(register_list) = 4)

Notes
The L bit This bit distinguishes between a Load Multiple and a Store Multiple.

The S bit For LDMs that load the PC, the S bit indicates that the CPSR is loaded from the SPSR. For
LDMs that do not load the PC and all STMs, the S bit indicates that when the processor is in a
privileged mode, the User mode banked registers are transferred instead of the registers of
the current mode.

LDM with the S bit set is UNPREDICTABLE in User or System mode.

A5-46 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A5.4.6

ARM Addressing Modes

Load and Store Multiple addressing modes (alternative names)

The four addressing mode names given in Addressing Mode 4 - Load and Store Multiple on page A5-41 (IA,
IB, DA, DB) are most useful when a load and Store Multiple instruction is being used for block data transfer,
as it is likely that the Load Multiple and Store Multiple have the same addressing mode, so that the data is
stored in the same way that it was loaded.

However, if Load Multiple and Store Multiple are being used to access a stack, the data is not loaded with
the same addressing mode that was used to store the data, because the load (pop) and store (push) operations
must adjust the stack in opposite directions.

Stack operations

Load Multiple and Store Multiple addressing modes can be specified with an alternative syntax, which is
more applicable to stack operations:

Full stacks Have stack pointers that point to the last used (full) location.

Empty stacks Have stack pointers that point to the first unused (empty) location.
Descending stacks Grow towards decreasing memory addresses (towards the bottom of memory).
Ascending stacks Grow towards increasing memory addresses (towards the top of memory).

Two attributes allow four types of stack to be defined:
. Full Descending, with the syntax FD

. Empty Descending, with the syntax ED

. Full Ascending, with the syntax FA

. Empty Ascending, with the syntax EA.

Note

When defining stacks on which coprocessor data is to be placed (or might be placed in the future),
programmers are advised to use the FD or EA stack types. This is because coprocessor data can be pushed to
these types of stack with a single STC instruction and popped from them with a single LDC instruction.
Multi-instruction sequences are required for coprocessor access to FA or ED stacks.

Table A5-1 on page A5-48 and Table A5-2 on page AS5-48 show the relationship between the four types of
stack, the four types of addressing mode shown above, and the L, U, and P bits in the instruction format.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-47

ARM Addressing Modes

Table A5-1 shows the relationship for LDM instructions.

Table A5-1 LDM addressing modes

Non-stack addressing mode Stack addressing mode L bit P bit U bit
LDMDA (Decrement After) LDMFA (Full Ascending) 1 0 0
LDMIA (Increment After) LDMFD (Full Descending) 1 0 1
LDMDB (Decrement Before) LDMEA (Empty Ascending) 1 1 0
LDMIB (Increment Before) LDMED (Empty Descending) 1 1 1

Table A5-2 shows the relationship for STM instructions.

Table A5-2 STM addressing modes

Non-stack addressing mode Stack addressing mode L bit P bit U bit

STMDA (Decrement After) STMED (Empty Descending) 0 0 0

STMIA (Increment After) STMEA (Empty Ascending) 0 0 1

STMDB (Decrement Before) STMFD (Full Descending) 0 1 0

STMIB (Increment Before) STMFA (Full Ascending) 0 1 1
A5-48 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.5 Addressing Mode 5 - Load and Store Coprocessor

There are four addressing modes which are used to calculate the address of a Load or Store Coprocessor
instruction. The general instruction syntax is:

<opcode>{<cond>}{L} <coproc>,<CRd>,<addressing_mode>
where <addressing_mode> is one of the following four options:

1. [<Rn>, #+/-<offset_8>x4]

See Load and Store Coprocessor - Immediate offset on page AS5-51.

2. [<Rn>, #+/-<0offset_8>x4]!

See Load and Store Coprocessor - Immediate pre-indexed on page A5-52.

3. [<Rn>1, #+/-<offset_8>x4

See Load and Store Coprocessor - Immediate post-indexed on page A5-53.

4. [<Rn>],<option>

See Load and Store Coprocessor - Unindexed on page A5-54.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-49

ARM Addressing Modes

A5.5.1 Encoding

The following diagram shows the encoding for this addressing mode:

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0
cond 1 1 0|P|UIN|W|L Rn CRd cp_num offset_8
The P bit Has two meanings:

The U bit

The N bit

The W bit

The L bit

P==0 Indicates the use of post-indexed addressing or unindexed addressing (the W bit
determines which). The base register value is used for the memory address.

P== Indicates the use of offset addressing or pre-indexed addressing (the W bit
determines which). The memory address is generated by applying the offset to
the base register value.

Has two meanings:
U== Indicates that the offset is added to the base.
U== Indicates that the offset is subtracted from the base

The meaning of this bit is coprocessor-dependent. Its recommended use is to distinguish
between different-sized values to be transferred.

Has two meanings:

W== Indicates that the memory address is written back to the base register.
W==0 Indicates that the base register value is unchanged.

Also:

. If P == 0, this distinguishes unindexed addressing (W == 0) from post-indexed
addressing (W == 1). For unindexed addressing, U must equal 1 or the result is either
UNDEFINED or UNPREDICTABLE (see Coprocessor instruction extension space on

page A3-40).
. If P == 1, this distinguishes offset addressing (W == 0) from pre-indexed addressing
W==1).

Distinguishes between Load (L == 1) and Store (L == 0) instructions.

A5-50 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A5.5.2

ARM Addressing Modes

Load and Store Coprocessor - Immediate offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0|1|U[N|O|L Rn CRd cp_num offset_8

This addressing mode produces a sequence of consecutive addresses. The first address is calculated by
adding or subtracting four times the value of an immediate offset to or from the value of the base register
Rn. The subsequent addresses in the sequence are produced by incrementing the previous address by four
until the coprocessor signals the end of the instruction. This allows a coprocessor to access data whose size
is coprocessor-defined.

The coprocessor must not request a transfer of more than 16 words.

Syntax

[<Rn>, #+/-<offset_8>x4]

where:

<Rn> Specifies the register containing the base address.

<offset_8> Specifies the immediate offset that is multiplied by 4, then added to or subtracted
from the value of Rn to form the address.

Operation

if ConditionPassed(cond) then

if U == 1 then
address = Rn + offset_8 = 4

else /+ U==10 %/
address = Rn - offset_8 = 4

start_address = address

while (NotFinished(coprocessor[cp_num]))
address = address + 4

end_address = address

Notes
The N bit Is coprocessor-dependent.
The L bit Distinguishes between Load (L==1) and Store (L==0) instructions.

Use of R15 If R15 is specified as register Rn, the value used is the address of the instruction plus eight.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-51

ARM Addressing Modes

A5.5.3 Load and Store Coprocessor - Inmediate pre-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 O|1|UIN|1|L Rn CRd cp_num offset_8

This addressing mode produces a sequence of consecutive addresses. The first address is calculated by
adding or subtracting four times the value of an immediate offset to or from the value of the base register
Rn. If the condition specified in the instruction matches the condition code status, the first address is written
back to the base register Rn. The subsequent addresses in the sequence are produced by incrementing the
previous address by four until the coprocessor signals the end of the instruction. This allows a coprocessor
to access data whose size is coprocessor-defined.

The coprocessor must not request a transfer of more than 16 words.

Syntax

[<Rn>, #+/-<offset_8>x4]!

where:

<Rn> Specifies the register containing the base address.

<offset_8> Specifies the immediate offset that is multiplied by 4, then added to or subtracted
from the value of Rn to form the address.
Sets the W bit, causing base register update.

Operation

if ConditionPassed(cond) then

if U == 1 then
Rn = Rn + offset_8 « 4

else /+ U==0 =/
Rn = Rn - offset_8 = 4

start_address = Rn

address = start_address

while (NotFinished(coprocessor[cp_num]))
address = address + 4

end_address = address

Notes
The N bit Is coprocessor-dependent.
The L bit Distinguishes between Load (L==1) and Store (L==0) instructions.

Use of R15 Specifying R15 as register Rn has UNPREDICTABLE results.

A5-52 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

ARM Addressing Modes

A5.5.4 Load and Store Coprocessor - Inmediate post-indexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0|0|U[N|I1|L Rn CRd cp_num offset_8

This addressing mode produces a sequence of consecutive addresses. The first address is the value of the
base register Rn. The subsequent addresses in the sequence are produced by incrementing the previous
address by four until the coprocessor signals the end of the instruction. This allows a coprocessor to access
data whose size is coprocessor-defined.

If the condition specified in the instruction matches the condition code status, the base register Rn is updated
by adding or subtracting four times the value of an immediate offset to or from the value of the base register
Rn.

The coprocessor must not request a transfer of more than 16 words.

Syntax

[<Rn>], #+/-<offset_8>«4

where:

<Rn> Specifies the register containing the base address.

<offset_8> Specifies the immediate offset that is multiplied by 4, then added to or subtracted
from the value of Rn to form the address.

Operation

if ConditionPassed(cond) then

start_address = Rn

if U == 1 then
Rn = Rn + offset_8 « 4

else /« U ==10 =/
Rn = Rn - offset_8 = 4

address = start_address

while (NotFinished(coprocessor[cp_num]))
address = address + 4

end_address = address

Notes
The N bit Is coprocessor-dependent.
The L bit Distinguishes between Load (L==1) and Store (L==0) instructions.

Use of R15 Specifying R15 as register Rn has UNPREDICTABLE results.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A5-53

ARM Addressing Modes

A5.5.5 Load and Store Coprocessor - Unindexed

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0|0|UN|O|L Rn CRd cp_num option

This addressing mode produces a sequence of consecutive addresses. The first address is the value of the
base register Rn. The subsequent addresses in the sequence are produced by incrementing the previous
address by four until the coprocessor signals the end of the instruction. This allows a coprocessor to access
data whose size is coprocessor-defined.

The base register Rn is not updated. Bits[7:0] of the instruction are therefore not used by the ARM, either
for the address calculation or to calculate a new value for the base register, and so can be used to specify
additional instruction options to the coprocessor.

The coprocessor must not request a transfer of more than 16 words.

Syntax

[<Rn>], <option>

where:

<Rn> Specifies the register containing the base address.

<option> Specifies additional instruction options to the coprocessor. The <option> is specified in the
instruction syntax as an integer in the range 0-255, surrounded by { and }.

Operation

if ConditionPassed(cond) then
start_address = Rn
address = start_address
while (NotFinished(coprocessor{cp_num]))
address = address + 4
end_address = address

Notes

The N bit Is coprocessor-dependent.

The L bit Distinguishes between Load (L==1) and Store (L==0) instructions.

Use of R15 If R15 is specified as register Rn, the value used is the address of the instruction plus eight.

The U bit If bit[23] (the Up/down bit) is not set, the result is either UNDEFINED or UNPREDICTABLE (see
Coprocessor instruction extension space on page A3-40).

Option bits Are unused by the ARM in this addressing mode, and therefore can be used to request
additional instruction options in a coprocessor-dependent fashion.

A5-54

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter A6
The Thumb Instruction Set

This chapter introduces the Thumb® instruction set and describes how Thumb uses the ARM® programmers’
model. It contains the following sections:

. About the Thumb instruction set on page A6-2

. Instruction set encoding on page A6-4

. Branch instructions on page A6-6

. Data-processing instructions on page A6-8

. Load and Store Register instructions on page A6-15
. Load and Store Multiple instructions on page A6-18
. Exception-generating instructions on page A6-20

. Undefined Instruction space on page A6-21.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-1

The Thumb Instruction Set

A6.1

A6.1.1

About the Thumb instruction set

The Thumb instruction set is a re-encoded subset of the ARM instruction set. Thumb is designed to increase
the performance of ARM implementations that use a 16-bit or narrower memory data bus and to allow better
code density than provided by the ARM instruction set. T variants of the ARM architecture incorporate both
a full 32-bit ARM instruction set and the 16-bit Thumb instruction set. Every Thumb instruction is encoded
in 16 bits. Thumb support is mandatory in ARMv6.

Thumb does not alter the underlying programmers’ model of the ARM architecture. It merely presents
restricted access to it. All Thumb data-processing instructions operate on full 32-bit values, and full 32-bit
addresses are produced by both data-access instructions and instruction fetches.

When the processor is executing Thumb instructions, eight general-purpose integer registers are available,
RO to R7, which are the same physical registers as RO to R7 when executing ARM instructions. Some
Thumb instructions also access the Program Counter (ARM register 15), the Link Register

(ARM register 14) and the Stack Pointer (ARM register 13). Further instructions allow limited access to
ARM registers 8 to 15, which are known as the high registers.

When R15 is read, bit[0] is zero and bits[31:1] contain the PC. When R15 is written, bit[0] is IGNORED and
bits[31:1] are written to the PC. Depending on how it is used, the value of the PC is either the address of the
instruction plus 4 or is UNPREDICTABLE.

Thumb execution is flagged by the T bit (bit[5]) in the CPSR:

T== 32-bit instructions are fetched (and the PC is incremented by four) and are executed as ARM
instructions.

T== 16-bit instructions are fetched (and the PC is incremented by two) and are executed as
Thumb instructions.

In ARMV6, the Thumb instruction set provides limited access to the CPSR with the CPS instruction. There
is no direct access to the SPSRs. Earlier versions provided no direct access to the CPSR. (In the ARM
instruction set, the MSR and MRS instructions, and CPS in ARMv6, do this.)

Entering Thumb state

Thumb execution is normally entered by executing an ARM BX instruction (Branch and Exchange). This
instruction branches to the address held in a general-purpose register, and if bit[0] of that register is 1,
Thumb execution begins at the branch target address. If bit[0] of the target register is 0, ARM execution
continues from the branch target address. On ARMvV5T and above, BLX instructions and LDR/LDM instructions
that load the PC can be used similarly.

Thumb execution can also be initiated by setting the T bit in the SPSR and executing an ARM instruction
which restores the CPSR from the SPSR (a data-processing instruction with the S bit set and the PC as the
destination, or a Load Multiple with Restore CPSR instruction). This allows an operating system to
automatically restart a process independent of whether that process is executing Thumb code or ARM code.

The result is UNPREDICTABLE if the T bit is altered directly by writing the CPSR.

AB-2

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A6.1.2

The Thumb Instruction Set

Exceptions

Exceptions generated during Thumb execution switch to ARM execution before executing the exception
handler (whose first instruction is at the hardware vector). The state of the T bit is preserved in the SPSR,
and the LR of the exception mode is set so that the normal return instruction performs correctly, regardless
of whether the exception occurred during ARM or Thumb execution. Table A6-1 lists the values of the
exception mode LR for exceptions generated during Thumb execution.

Table A6-1 Exception return instructions

Exception Exception link register value Return instruction

Reset UNPREDICTABLE value -

Undefined Address of Undefined instruction + 2 MOVS PC, R14

SWI Address of SWI instruction + 2 MOVS PC, R14

Prefetch Abort Address of aborted instruction fetch + 4 SUBS PC, R14, #4

Data Abort Address of the instruction that generated the abort + 8 SUBS PC, R14, #8

IRQ Address of the next instruction to be executed + 4 SUBS PC, R14, #4

FIQ Address of the next instruction to be executed + 4 SUBS PC, R14, #4
Note

For each exception, the return instruction indicated by Table 6-1 is the same as the return instruction
required if the exception occurred during ARM execution, for the primary or only method of return from
that instruction listed in Exceptions on page A2-16. However, the following two types of exception have a
secondary return method, for which different return instructions are needed depending on whether the
exception occurred during ARM or Thumb execution:

. For the Data Abort exception, the primary method of return causes execution to resume at the aborted
instruction, which causes it to be re-executed. As described in Data Abort (data access memory
abort) on page A2-21, it is also possible to return to the next instruction after the aborted instruction,
using a SUBS PC,R14,#4 instruction. If this type of return is required for a Data Abort caused by a
Thumb instruction, use SUBS PC,R14,#6 for the return instruction.

. For the Undefined Instruction exception, the primary method of return causes execution to resume at
the next instruction after the Undefined instruction. As described in Undefined Instruction exception
on page A2-19, it is also possible to return to the Undefined instruction itself, using the instruction
SUBS PC,R14,#4. If this type of return is required for a Thumb Undefined instruction, use SUBS
PC,R14,#2 for the return instruction. However, the main use of this type of return is for some types of
coprocessor instruction, and as the Thumb instruction set does not contain any coprocessor
instructions, you are unlikely to need this secondary method of return for Thumb instructions.

When these secondary methods of return are used, the exception handler code must test the SPSR T bit to
determine which of the two return instructions to use.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A6-3

The Thumb Instruction Set

A6.2 Instruction set encoding

Figure A6-1 shows the Thumb instruction set encoding. An entry in square brackets, for example [1],
indicates a note on the following page.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Shift by immediate 0 0 0 opcode [1] immediate Rm Rd
Add/subtract register 0 0 0 1 1 0 |opc Rm Rn Rd
Add/subtract immediate 0 0 0 1 1 1 opc immediate Rn Rd
Add/subtract/compare/move immediate 0 0 1 opcode Rd/Rn immediate
Data-processing register 0 1 0 0 0 0 opcode Rm/Rs Rd/Rn
Special data processing 0 1 0 0 0 1 opcode [1] | H1 | H2 Rm Rd/Rn
?r:g‘{:ﬁgiﬁfncgg{‘[gﬁ o 1 0o o0 0 1|1 1 |L |H Rm sBz
Load from literal pool 0 1 0 0 1 ‘ Rd PC-relative offset
Load/store register offset 0 1 0 1 opcode ‘ Rm Rn Rd
Load/store word/byte immediate offset 0 1 1 ‘ B L offset Rn Rd
Load/store halfword immediate offset 1 0 0 0 L offset Rn Rd
Load/store to/from stack 1 0 0 1 L Rd SP-relative offset
Add to SP or PC 1 0 1 0 SP Rd immediate
Miscellaneous: 1 0 1 1 X X X X X X X X X X X X
See Figure 6-2
Load/store multiple 1 1 0 0 L Rn register list
Conditional branch 1 1 0 1 cond [2] offset
Undefined instruction 1 1 0 1 1 1 1 0 X X X X X X X X
Software interrupt 1 1 0 1 1 1 1 1 immediate
Unconditional branch 1 1 1 0 0 offset
BLX suffix [4] 1 1 1 0 1 offset 0
Undefined instruction 1 1 1 0 1 X X X X X X X X X X 1
BL/BLX prefix 1 1 1 1 0 offset
BL suffix 1 1 1 1 1 offset

Figure A6-1 Thumb instruction set overview

A6-4 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The Thumb Instruction Set

1. The opc field is not allowed to be 11 in this line. Other lines deal with the case that the opc field is 11.

2. The cond field is not allowed to be 1110 or 1111 in this line. Other lines deal with the cases where the
cond fieldis 1110 or 1111.

3. The form with L==1 is UNPREDICTABLE prior to ARMvS5T.
This is an Undefined instruction prior to ARMvST.

A6.2.1 Miscellaneous instructions

Figure A6-2 lists miscellaneous Thumb instructions. An entry in square brackets, for example [1], indicates
a note below the figure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Adjust stack pointer 1 0 1 1 0 0 0 0 |opc immediate
Sign/zero extend [2] 1 0 1 1 0 0 1 0 opc ‘ Rm Rd
Push/pop register list 1 0 1 1 L 1 0 R register list

UNPREDICTABLE 1 0 1 1 0 1 1 0 0 1 0 0 X X X X

Set Endianness [2] 1 0 1 1 0 1 1 0 0 1 0 1 E SBZ

Change Processor State [2] 1 0 1 1 0 1 1 0 0 1 1 |imod| O A ‘ | ‘ F

UNPREDICTABLE 1 0 1 1 0 1 1 0 0 1 1 0 1 X X X

UNPREDICTABLE 1 0 1 1 0 1 1 0 0 1 1 1 1 X X X

Reverse bytes [2] 1 0 1 1 1 0 1 0 opc Rn Rd

Software breakpoint [1] 1 0 1 1 1 1 1 0 immediate

Figure A6-2 Miscellaneous Thumb instructions
1. This is an Undefined instruction prior to ARMvS.

2. These are Undefined instructions prior to ARMvo6.

Note

Any instruction with bits[15:12] = 1011, and which is not shown in Figure A6-2, is an Undefined
instruction.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-5

The Thumb Instruction Set

A6.3 Branch instructions
Thumb supports six types of branch instruction:
. a conditional branch to allow forward and backward branches of up to 256 bytes (-256 to + 254)
. an unconditional branch that allows a forward or backward branch of up to 2KB (-2048 to +2046)
. a Branch with Link (subroutine call) is supported with a pair of instructions that allow forward and
backward branches of up to 4MB (-222 <= offset <= +222 - 2)
o a Branch with Link and Exchange uses a pair of instructions, similar to Branch with Link, but
additionally switches to ARM code execution.
. a Branch and Exchange instruction branches to an address in a register and optionally switches to
ARM code execution
. a second form of Branch with Link and Exchange instruction performs a subroutine call to an address
in a register and optionally switches to ARM code execution
The encoding for these instructions is given below.
A6.3.1 Conditional branch
B<cond> <target_address>
15 14 13 12 11 8 7 0
1 1 0 1 cond 8_bit_signed_offset
A6.3.2 Unconditional branch
B <target_address>
BL <target_address> ; Produces two 16-bit instructions
BLX <target_address> ; Produces two 16-bit instructions
15 14 13 12 11 10 0
1 1 1 H offset_11
A6.3.3 Branch with exchange
BX <Rm>
BLX <Rm>
15 14 13 12 11 10 9 8 7 6 5 3 2 0
0 1 0 0 0 1 1 1 L | H2 Rm SBZ
AB-6 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A6.3.4 Examples

B
BCC
BEQ
BL

func

Mov

BX

The Thumb Instruction Set

Tabel ; unconditionally branch to Tabel
Tabel ; branch to label if carry flag is clear
Tabel ; branch to Tabel if zero flag is set
func ; subroutine call to function
; Include body of function here
PC, LR ; R15=R14, return to instruction after the BL
R12 ; branch to address in R12; begin ARM execution if

bit @ of R12 is zero; otherwise continue executing
Thumb code

A6.3.5 List of branch instructions

The following instructions follow the formats shown above.

B Conditional Branch. See B (1) on page A7-19.
B Unconditional Branch. See B (2) on page A7-21.
BL Branch with Link. See BL, BLX (1) on page A7-26.
BX Branch and Exchange instruction set. See BX on page A7-32.
BLX Branch with Link and Exchange instruction set. See BL, BLX (1) on page A7-26 and BLX
(2) on page A7-30.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-7

The Thumb Instruction Set

A6.4 Data-processing instructions
Thumb data-processing instructions are a subset of the ARM data-processing instructions. They are divided
into two sets. The first set can only operate on the low registers, rO-r7. The second set can operate on the
high registers, r8-r15, or on a mixture of low and high registers.
A6.4.1 Low register data-processing instructions
The low register data processing instructions are shown in Table A6-2. Some of these instructions also
appear in the high register data processing instruction list. When operating on low registers, all instructions
in this table, except CPY, set the condition codes.
Table A6-2 Low register data-processing instructions
Mnemonic Operation Action
ADC Rd, Rm Add with Carry Rd :=Rd + Rm + Carry flag
ADD Rd, Rn, Rm Add Rd :=Rn+Rm
ADD Rd, Rn, #0 to 7 Add Rd := Rn + 3-bit immediate
ADD Rd, #@ to 255 Add Rd :=Rd + 8-bit immediate
AND Rd, Rm Logical AND Rd :=Rd AND Rm
ASR Rd, Rm, #1 to 32 Arithmetic Shift Right Rd :=Rm ASR 5-bit immediate
ASR Rd, Rs Arithmetic Shift Right Rd :=Rd ASR Rs
BIC Rd, Rm Bit Clear Rd := Rd AND NOT Rm
CMN Rn, Rm Compare Negated Update flags after Rn + Rm
CMP Rn, #0 to 255 Compare Update flags after Rn - 8-bit immediate
CMP Rn, Rm Compare Update flags after Rn - Rm
CPY Rd, Rn Copy Rd:=Rn
EOR Rd, Rm Logical Exclusive OR Rd :=Rd EOR Rm
LSL Rd, Rm, #0 to 31 Logical Shift Left Rd := Rm LSL 5-bit immediate
LSL Rd, Rs Logical Shift Left Rd :=Rd LSL Rs
LSR Rd, Rm, #1 to 32 Logical Shift Right Rd := Rm LSR 5-bit immediate
LSR Rd, Rs Logical Shift Right Rd :=Rd LSR Rs
MOV Rd, #0 to 255 Move Rd := 8-bit immediate
AB-8 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The Thumb Instruction Set

Table A6-2 Low register data-processing instructions (continued)

Mnemonic Operation Action
MOV Rd, Rn Move Rd :=Rn
MUL Rd, Rm Multiply Rd :=Rm x Rd
MVN Rd, Rm Move Not Rd :=NOT Rm
NEG Rd, Rm Negate Rd:=0-Rm
ORR Rd, Rm Logical (inclusive) OR ~ Rd := Rd OR Rm
ROR Rd, Rs Rotate Right Rd :=Rd ROR Rs
SBC Rd, Rm Subtract with Carry Rd :=Rd - Rm - NOT(Carry Flag)
SUB Rd, Rn, Rm Subtract Rd :=Rn - Rm
SUB Rd, Rn, #0 to 7 Subtract Rd := Rn - 3-bit immediate
SUB Rd, #0 to 255 Subtract Rd := Rd - 8-bit immediate
TST Rn, Rm Test Update flags after Rn AND Rm
For example:
ADD RO, R4, R7 ; RO = R4 + R7
SUB R6, R1, R2 ; R6 = R1 - R2
ADD RO, #255 ; RO = RO + 255
ADD R1, R4, #4 ; RL=R4 + 4
NEG R3, R1 ; R3=0-R1
AND R2, RS ; R2 = R2 AND RS
EOR R1, R6 ; R1 = R1 EOR R6
CcMP R2, R3 ; update flags after R2 - R3
CMP R7, #100 ; update flags after R7 - 100
MoV RO, #200 ; RO = 200

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-9

The Thumb Instruction Set

A6.4.2 High registers

There are eight types of data-processing instruction which operate on ARM registers 8 to 14 and the PC as
shown in Table A6-3. Apart from CMP, instructions in this table do not change the condition code flags.

Table A6-3 High register data-processing instructions

Mnemonic Operation Action

MOV Rd, Rn Move Rd :=Rn

CPY Rd, Rn Copy Rd :=Rn

ADD Rd, Rm Add Rd:=Rd +Rm

CMP Rn, Rm Compare Update flags after Rn - Rm

ADD SP, #0 to 508 Increment stack pointer R13 =R13 + 4* (7-bit immediate)
SUB SP, #0 to 508 Decrement stack pointer R13 =R13 - 4* (7-bit immediate)
ADD Rd, SP, #0 to 1020 Form Stack address Rd = R13 + 4* (8-bit immediate)
ADD Rd, PC, #0 to 1020 Form PC address Rd = PC + 4* (8-bit immediate)

For example:

MOV RO, R12 ; RO = R12

ADD R10, R1 ; R10 = R10 + R1

MoV PC, LR ; PC = R14

Mp R10, R11 ; update flags after R10 - R11
SuB SP, #12 ; increase stack size by 12 bytes
ADD SP, #16 ; decrease stack size by 16 bytes
ADD R2, SP, #20 ; R2 = SP + 20

ADD RO, PC, #500 ; RO = PC + 500

AB6-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A6.4.3

The Thumb Instruction Set

Formats

Data-processing instructions use the following eight instruction formats:

Format 1

<opcodel> <Rd>, <Rn>, <Rm>
<opcodel> := ADD | SUB

15 14 13 12 11 10 9 8 6 5 3 2 0
0 0 0 1 1 0 |op_1 Rm Rn Rd
Format 2
<opcode2> <Rd>, <Rn>, #<3_bit_immed>
<opcode2> := ADD | SUB
15 14 13 12 11 10 9 8 6 5 3 2 0
0 0 0 1 1 1 |op_2| 3_bit_immediate Rn Rd
Format 3
<opcode3> <Rd>|<Rn>, #<8_bit_immed>
<opcode3> := ADD | SUB | MOV | CMP
15 14 13 12 11 10 8 7 0
0 0 1 op_3 RdIRn 8_bit_immediate
Format 4
<opcoded> <Rd>, <Rm>, #<shift_imm>
<opcoded> := LSL | LSR | ASR
15 14 13 12 11 10 6 5 3 2 0
0 0 0 op_4 shift_immediate Rm Rd
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-11

The Thumb Instruction Set

Format 5
<opcode5> <Rd>|<Rn>, <Rm>|<Rs>
<opcode5> = MVN | CMP | CMN | TST | ADC | SBC | NEG | MUL |
LSL | LSR | ASR | ROR | AND | EOR | ORR | BIC
15 14 13 12 11 10 9 6 3 0
0 1 0 0 0 0 op_5 RmlIRs RdIRn
Format 6
ADD <Rd>, <reg>, #<8_bit_immed>
<reg> := SP | PC
15 14 13 12 11 10 8 7 0
1 0 1 0 | reg Rd 8_bit_immediate
Format 7
<opcode6> SP, SP, #<7_bit_immed>
<opcode6> := ADD | SUB
15 14 13 12 11 10 9 8 7 6 0
1 0 1 1 0 0 0 0 |op_6 7_bit_immediate
Format 8
<opcode7> <Rd>|<Rn>, <Rm>
<opcode7> := MOV | ADD | CMP | CPY
15 14 13 12 11 10 9 8 7 6 3 0
0 1 0 0 0 1 opcode H1 | H2 Rm RdIRn
AB-12 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The Thumb Instruction Set

A6.4.4 List of data-processing instructions

The following instructions follow the formats shown above.

ADC Add with Carry. See ADC on page A7-4.
ADD Add (immediate). See ADD (1) on page A7-5.
ADD Add (large immediate). See ADD (2) on page A7-6.
ADD Add (register). See ADD (3) on page A7-7.
ADD Add high registers. See ADD (4) on page A7-8.
ADD Add (immediate to program counter). See ADD (5) on page A7-10.
ADD Add (immediate to stack pointer). See ADD (6) on page A7-11.
ADD Increment stack pointer. See ADD (7) on page A7-12.
AND Logical AND. See AND on page A7-14.
ASR Arithmetic Shift Right (immediate). See ASR (1) on page A7-15.
ASR Arithmetic Shift Right (register). See ASR (2) on page A7-17.
BIC Bit Clear. See BIC on page A7-23.
CMN Compare Negative (register). See CMN on page A7-34.
CMP Compare (immediate). See CMP (1) on page A7-35.
cvp Compare (register). See CMP (2) on page A7-36.
cvp Compare high registers. See CMP (3) on page A7-37.
CPY Copy high or low registers. See CPY on page A7-41.
EOR Exclusive OR. See EOR on page A7-43.
LSL Logical Shift Left (immediate). See LSL (1) on page A7-64.
LSL Logical Shift Left (register). See LSL (2) on page A7-66.
LSR Logical Shift Right (immediate). See LSR (1) on page A7-68.
LSR Logical Shift Right (register). See LSR (2) on page A7-70.
MoV Move (immediate). See MOV (1) on page A7-72.
MoV Move a low register to another low register. See MOV (2) on page A7-73.
MoV Move high registers. See MOV (3) on page A7-75.
MUL Multiply. See MUL on page A7-77.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-13

The Thumb Instruction Set

MVN

NEG

ORR

ROR

SBC

SuB

SuB

SuB

SuB

TST

Move NOT (register). See MVN on page A7-79.

Negate (register). See NEG on page A7-80.

Logical OR. See ORR on page A7-81.

Rotate Right (register). See ROR on page A7-92.
Subtract with Carry (register). See SBC on page A7-94.
Subtract (immediate). See SUB (1) on page A7-113.
Subtract (large immediate). See SUB (2) on page A7-114.
Subtract (register). See SUB (3) on page A7-115.
Decrement stack pointer. See SUB (4) on page A7-116.

Test (register). See TST on page A7-122.

A6-14

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A6.5

A6.5.1

The Thumb Instruction Set

Load and Store Register instructions

Thumb supports eight types of Load and Store Register instructions. Two basic addressing modes are
available. These allow the load and store of words, halfwords and bytes, and also the load of signed
halfwords and bytes:

. register plus register
. register plus 5-bit immediate (not available for signed halfword and signed byte loads).

If an immediate offset is used, it is scaled by 4 for word access and 2 for halfword accesses.

In addition, three special instructions allow:

. words to be loaded using the PC as a base with a 1KB (word-aligned) immediate offset

. words to be loaded and stored with the stack pointer (R13) as the base and a 1KB (word-aligned)
immediate offset.

Formats

Load and Store Register instructions have the following formats:

Format 1

<opcodel> <Rd>, [<Rn>, #<5_bit_offset>]
<opcodel> := LDR|LDRH|LDRB|STR|STRH|STRB

15 11 10 6 5 3 2 0

opcodel 5_bit_offset Rn Rd

Format 2

<opcode2> <Rd>, [<Rn>, <Rm>]
<opcode2> := LDR|LDRH|LDRSH|LDRB|LDRSB|STR|STRH|STRB

15 9 8 6 5 3 2 0

opcode2 Rm Rn Rd

Format 3
LDR <Rd>, [PC, #<8_bit_offset>]

15 14 13 12 11 10 8 7 0

0 1 0 0 1 Rd 8_bit_immediate

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-15

The Thumb Instruction Set

Format 4

<opcode3>

<opcode3> := LDR | STR

<Rd>, [SP, #<8_bit_offset>]

15 14 13 12 11 10 8 7 0
1 0 0 1 L Rd 8_bit_immediate

For example:

LDR R4, [R2, #4] ; Load word into R4 from address R2 + 4

LDR R4, [R2, R1] ; Load word into R4 from address R2 + R1

STR RO, [R7, #0x7C] ; Store word from RO to address R7 + 124

STRB R1, [RS, #31] ; Store byte from R1 to address R5 + 31

STRH R4, [R2, R3] ; Store halfword from R4 to R2 + R3

LDRH R3, [R6, R5] ; Load word into R3 from R6 + RS

LDRB R2, [R1, #5] ; Load byte into R2 from R1 + 5

LDR R6, [PC, #0x3F(C] ; Load R6 from PC + @Ox3FC

LDR R5, [SP, #64] ; Load R5 from SP + 64

STR R4, [SP, #0x260] ; Load R5 from SP + 0x260

AB-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The Thumb Instruction Set

A6.5.2 List of Load and Store Register instructions

The following instructions follow the formats shown above.

LDR Load Word (immediate offset). See LDR (1) on page A7-47.
LDR Load Word (register offset). See LDR (2) on page A7-49.
LDR Load Word (PC-relative). See LDR (3) on page A7-51.
LDR Load Word (SP-relative). See LDR (4) on page A7-53.
LDRB Load Unsigned Byte (immediate offset). See LDRB (1) on page A7-55.
LDRB Load Unsigned Byte (register offset). See LDRB (2) on page A7-56.
LDRH Load Unsigned Halfword (immediate offset). See LDRH (1) on page A7-57.
LDRH Load Unsigned Halfword (register offset). See LDRH (2) on page A7-59.
LDRSB Load Signed Byte (register offset). See LDRSB on page A7-61.
LDRSH Load Signed Halfword (register offset). See LDRSH on page A7-62.
STR Store Word (immediate offset). See STR (1) on page A7-99.
STR Store Word (register offset). See STR (2) on page A7-101.
STR Store Word (SP-relative). See STR (3) on page A7-103.
STRB Store Byte (immediate offset). See STRB (1) on page A7-105.
STRB Store Byte (register offset). See STRB (2) on page A7-107.
STRH Store Halfword (immediate offset). See STRH (1) on page A7-109.
STRH Store Halfword (register offset). See STRH (2) on page A7-111.
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-17

The Thumb Instruction Set

A6.6 Load and Store Multiple instructions

Thumb supports four types of Load and Store Multiple instructions:

. Two instructions, LDMIA and STMIA, are designed to support block copy. They have a fixed Increment
After addressing mode from a base register.

. The other two instructions, PUSH and POP, also have a fixed addressing mode. They implement a full
descending stack and the stack pointer (R13) is used as the base register.

All four instructions update the base register after transfer and all can transfer any or all of the lower 8
registers. PUSH can also stack the return address, and POP can load the PC.

A6.6.1 Formats

Load and Store Multiple instructions have the following formats:

Format 1

<opcodel> <Rn>!, <registers>
<opcodel> := LDMIA | STMIA

15 14 13 12 11 10 8 7 0
1 1 0 0 L Rn register_list

Format 2

PUSH {<registers>}

POP {<registers>}
15 14 13 12 11 10 9 8 7 0
1 0 1 1 L 1 0 R register_list

A6.6.2 Examples

LDMIA R7!, {RO-R3, R5}
STMIA RO!, {R3, R4, R5}

function
PUSH {RO-R7, LR}

POP {R0-R7, PC}

Load RO to R3-R5 from R7, add 20 to R7
Store R3-R5 to RO: add 12 to RO

push onto the stack (R13) RO-R7 and
the return address
code of the function body

restore R0O-R7 from the stack
and the program counter, and return

AB6-18 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The Thumb Instruction Set

A6.6.3 List of Load and Store Multiple instructions

The following instructions follow the formats shown above.

LDMIA Load Multiple. See LDMIA on page A7-44.
POP Pop Multiple. See POP on page A7-82.
PUSH Push Multiple. See PUSH on page A7-85.
STMIA Store Multiple. See STMIA on page A7-96.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB6-19

The Thumb Instruction Set

A6.7 Exception-generating instructions

The Thumb instruction set provides two types of instruction whose main purpose is to cause a processor

exception to occur:

. The Software Interrupt (SWI) instruction is used to cause a SWI exception to occur (see Software
Interrupt exception on page A2-20). This is the main mechanism in the Thumb instruction set by
which User mode code can make calls to privileged Operating System code.

. The Breakpoint (BKPT) instruction is used for software breakpoints in ARMvST and above. Its default
behavior is to cause a Prefetch Abort exception to occur (see Prefetch Abort (instruction fetch
memory abort) on page A2-20). A debug monitor program that has previously been installed on the
Prefetch Abort vector can handle this exception.

If debug hardware is present in the system, it is allowed to override this default behavior. See Notes
in BKPT on page A7-24 for more details.
A6.7.1 Instruction encodings
SWI <immed_8>
15 14 13 12 11 10 9 8 7 0
1 1 0 1 1 1 1 1 immed_38
BKPT <immed_8>
15 14 13 12 11 10 9 8 7 0
1 0 1 1 1 1 1 0 immed_8

In both SWI and BKPT, the immed_8 field of the instruction is ignored by the ARM processor. The SWI or

Prefetch Abort handler can optionally be written to load the instruction that caused the exception and extract

these fields. This allows them to be used to communicate extra information about the Operating System call

or breakpoint to the handler.
A6.7.2 List of exception-generating instructions

BKPT Breakpoint. See BKPT on page A7-24.

SWI Software Interrupt. See SWI on page A7-118.

AB-20 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The Thumb Instruction Set

A6.8 Undefined Instruction space
The following instructions are UNDEFINED in the Thumb instruction set:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 1 X X X X X X X X

In general, these instructions can be used to extend the Thumb instruction set in the future. However, it is
intended that the following group of instructions will not be used in this manner:

Use one of these instructions if you want to use an Undefined instruction for software purposes, with
minimal risk that future hardware will treat it as a defined instruction.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. AB-21

The Thumb Instruction Set

AB-22 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter A7
Thumb Instructions

This chapter describes the syntax and usage of every Thumb® instruction, in the sections:
. Alphabetical list of Thumb instructions on page A7-2

. Thumb instructions and architecture versions on page A7-125.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-1

Thumb Instructions

A7.1 Alphabetical list of Thumb instructions
Every Thumb instruction is listed on the following pages. Each instruction description shows:
. the instruction encoding
. the instruction syntax
. the versions of the ARM® architecture where the instruction is valid
. any exceptions that might apply
. a pseudo-code specification of how the instruction operates
. notes on usage and special cases
. the equivalent ARM instruction encoding.
A7.1.1 General notes
These notes explain the types of information and abbreviations used on the instruction pages.
Syntax abbreviations
The following abbreviations are used in the instruction pages:
immed_<n> This is an <n>-bit immediate value. For example, an 8-bit immediate value is represented by:
immed_8
signed_immed_<n>
This is a signed immediate. For example, an 8-bit signed immediate is represented by:
signed_immed_8
Architecture version
For the convenience of the reader, this section describes the version of the ARM architecture that the
instruction is associated with, not the version of the Thumb instruction set. There have been three versions
of the Thumb instruction set architecture to date:
THUMBv1 This is used in T variants of version 4 of the ARM instruction set architecture.
THUMBvV2 This is used in T variants of version 5 of the ARM instruction set architecture.
THUMBvV3 This is used in version 6 and above of the ARM instruction set architecture.
Instructions which are described as being in all T variants are therefore present in THUMBv1, THUMBV2,
and THUMBV3. and those that are described as being in T variants of version 6 and above are in THUMBV3
only.
A7-2 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Equivalent ARM syntax and encoding

This section shows the syntax and encoding of an equivalent ARM instruction. When no precise equivalent
is available, a close equivalent is shown and the reasons why it is not a precise equivalent are explained.

A common reason for the instruction not being a precise equivalent is that it reads the value of the PC. This
produces the instruction's own address plus N, where N is 8 for ARM instructions and 4 for Thumb
instructions. This difference can often be compensated for by adjusting an immediate constant in the
equivalent ARM instruction.

In the equivalent instruction encodings, named fields and bits must be filled in with the corresponding fields
and bits from the Thumb instruction, or in a few cases with values derived from the Thumb instruction as
described in the text.

The ARM instruction fields are normally the same length as the corresponding Thumb instruction fields,
with one important exception. Thumb register fields are normally 3 bits long, whereas ARM register fields
are normally 4 bits long. In these cases, the Thumb register field must be extended with a high-order 0 when
substituted into the ARM register field, so that the ARM instruction refers to the correct one of RO to R7.

Information on usage

Usage information is only given for Thumb instructions where it differs significantly from ARM instruction
usage. If no Usage section appears for a Thumb instruction, see the equivalent ARM instruction page in
Chapter A4 ARM Instructions for usage information.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-3

Thumb Instructions

A7.1.2 ADC

15 14 13 12 11 10 9 8 7 6 5 3

Rd

ADC (Add with Carry) adds two values and the Carry flag.
Use ADC to synthesize multi-word addition.

ADC updates the condition code flags, based on the result.

Syntax
ADC <Rd>, <Rm>

where:

<Rd> Holds the first value for the addition, and is the destination register for the operation.

<Rm> Specifies the register that contains the second operand for the addition.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rd + Rm + C Flag

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0

C Flag = CarryFrom(Rd + Rm + C Flag)

V Flag = OverflowFrom(Rd + Rm + C Flag)

Equivalent ARM syntax and encoding

ADCS <Rd>, <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

11 10/000010T1°1 Rd Rd 000O0O0OO00O0O Rm

A7-4

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Thumb Instructions

A7.1.3 ADD (1)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 0 immed_3 Rn Rd

ADD (1) adds a small constant value to the value of a register and stores the result in a second register.

It updates the condition code flags, based on the result.

Syntax

ADD <Rd>, <Rn>, #<immed_3>

where:

<Rd> Is the destination register for the completed operation.

<Rn> Specifies the register that contains the operand for the addition.
<immed_3> Specifies a 3-bit immediate value that is added to the value of <Rn>.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rn + immed_3

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + immed_3)

V Flag = OverflowFrom(Rn + immed_3)

Equivalent ARM syntax and encoding
ADDS <Rd>, <Rn>, #<immed_3>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 2 0

111000101001 Rn Rd 00O0O0O0O0O0 0 Ofimmed3

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-5

Thumb Instructions

A7.1.4 ADD (2)

15 14

0 0

Rd

immed_8

ADD (2) adds a large immediate value to the value of a register and stores the result back in the same register.

The condition code flags are updated, based on the result.

Syntax

ADD <Rd>, #<immed_8>

where:

<Rd>

<immed_8>

Holds the first operand for the addition, and is the destination register for the
completed operation.

Specifies an 8-bit immediate value that is added to the value of <Rd>.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rd + immed_8

N Flag

Rd[31]

Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rd + immed_8)

V Flag

OverflowFrom(Rd + immed_8)

Equivalent ARM syntax and encoding

ADDS <Rd>, <Rd>, #<immed_8>

31 30 29 28 27 26 25 24 23 22 21 20 19

16 15

12 11 10 9 8 7 0

1 110

00101001

Rd

Rd

00O0O0 immed_8

A7-6

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Thumb Instructions

A7.1.5 ADD (3)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 0 0 Rm Rn Rd

ADD (3) adds the value of one register to the value of a second register, and stores the result in a third register.

It updates the condition code flags, based on the result.

Syntax

ADD <Rd>, <Rn>, <Rm>

where:

<Rd> Is the destination register for the completed operation.

<Rn> Specifies the register containing the first value for the addition.
<Rm> Specifies the register containing the second value for the addition.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rn + Rm

N Flag = Rd[31]

Z Flag = if Rd == @ then 1 else @
C Flag = CarryFrom(Rn + Rm)

V Flag = OverflowFrom(Rn + Rm)

Equivalent ARM syntax and encoding
ADDS <Rd>, <Rn>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

111000001001 Rn Rd 000O0OO0OO0OO Rm

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-7

Thumb Instructions

A7.1.6 ADD (4)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 0 0 H1 | H2 Rm Rd

ADD (4) adds the values of two registers, one or both of which are high registers.

Unlike the low-register only ADD instruction (ADD (3) on page A7-7), this instruction does not change the

flags.

Syntax

ADD <Rd>, <Rm>

where:

<Rd> Specifies the register containing the first value, and is also the destination register. It can be
any of RO to R15. The register number is encoded in the instruction in H1 (most significant
bit) and Rd (remaining three bits).

<Rm> Specifies the register containing the second value. It can be any of RO to R15. Its number is

encoded in the instruction in H2 (most significant bit) and Rm (remaining three bits).

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rd + Rm

Notes

Operand restriction If a low register is specified for <Rd> and Rm (H1==0 and H2==0), the result is
UNPREDICTABLE.

A7-8 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Equivalent ARM syntax and encoding
A close equivalent is:
ADD <Rd>, <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 121110 9 8 7 6 5 4 3 2 0

1 110/000O01O0O0OHI RdId HI Rd 00O0O0O0OOOO0H2 Rm

There are slight differences when the instruction accesses the PC, because of the different definitions of the
PC when executing ARM and Thumb code.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-9

Thumb Instructions

A7.1.7 ADD (5)

15

14 13 12 11 10

1

0 1 0 0 Rd

immed_8

ADD (5) adds an immediate value to the PC and writes the resulting PC-relative address to a destination
register. The immediate can be any multiple of 4 in the range 0 to 1020.

The condition codes are not affected.

Syntax

ADD <Rd>, PC, #<immed_8> = 4

where:

<Rd> Is the destination register for the completed operation.
PC Indicates PC-relative addressing.

<immed_8>

Architecture version

All T variants.

Exceptions

None.

Operation

Rd =

(PC AND OxFFFFFFFC) + (immed_8 = 4)

Equivalent ARM syntax and encoding

A close equivalent is:

Specifies an 8-bit immediate value that is quadrupled and added to the value of the PC.

ADD <Rd>, PC, #<immed_8> = 4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 0
11 10/00101000O01 111 Rd 1 111 immed_8

The definitions of the PC differ between ARM and Thumb code. This makes a difference between the
precise results of the instructions.

A7-10

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A7.1.8

Thumb Instructions

ADD (6)
15 14 13 12 11 10 8 7 0
1 0 1 0 1 Rd immed_8

ADD (6) adds an immediate value to the SP and writes the resulting SP-relative address to a destination
register. The immediate can be any multiple of 4 in the range 0 to 1020.

The condition codes are not affected.

Syntax

ADD <Rd>, SP, #<immed_8> x 4

where:

<Rd> Is the destination register for the completed operation.

SP Indicates SP-relative addressing.

<immed_8> Specifies an 8-bit immediate value that is quadrupled and added to the value of the SP.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = SP + (immed_8 << 2)

Equivalent ARM syntax and encoding
ADD <Rd>, SP, #<immed_8> 4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1211 10 9 8 7 0

11 10/001010O0O01 101 Rd 1111 immed_8

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-11

Thumb Instructions

A7.1.9 ADD (7)

15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 0 0 0 immed_7

ADD (7) increments the SP by four times a 7-bit immediate (that is, by a multiple of 4 in the range 0 to 508).

The condition codes are not affected.

Syntax

ADD SP, #<immed_7> x 4

where:

SP Contains the first operand for the addition. SP is also the destination register for the
operation.

<immed_7> Specifies the immediate value that is quadrupled and added to the value of the SP.

Architecture version

All T variants.

Exceptions

None.

Operation

SP = SP + (immed_7 << 2)

Usage

For the Full Descending stack which the Thumb instruction set is designed to use, incrementing the SP is
used to discard data on the top of the stack.

Notes

Alternative syntax This instruction can also be written as ADD SP, SP, #(<immed_7> = 4).

A7-12 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Equivalent ARM syntax and encoding

ADD SP, SP, #<immed_7> « 4

Thumb Instructions

31 30 29 28 27 26 25 24 23 2221 2019 18 17 16 1514 13 12 11 10 9 8 7 6 0
111000101 00O01 101110101110 immed_7
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-13

Thumb Instructions

A7.1.10 AND
15 14 13 12 1110 9 8 7 6 5 3 2 0
0 1 0 0 0 0 0 0 0 0 Rm Rd

AND (Logical AND) performs a bitwise AND of the values in two registers.

AND updates the condition code flags, based on the result.

Syntax

AND <Rd>, <Rm>

where:

<Rd> Specifies the register containing the first operand, and is also the destination register.
<Rm> Specifies the register containing the second operand.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rd AND Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected

V Flag = unaffected

Equivalent ARM syntax and encoding
ANDS <Rd>, <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

11 10/0000000O0°1 Rd Rd 000O0O0OO00O0O Rm

A7-14 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.11 ASR (1)

15 14 13 12 11 10 6 5 3 2 0

0 0 0 1 0 immed_5 Rm Rd

ASR (1) (Arithmetic Shift Right) provides the signed value of the contents of a register divided by a constant
power of 2.

It updates the condition code flags, based on the result.

Syntax

ASR <Rd>, <Rm>, #<immed_5>

where:

<Rd> Is the destination register for the completed operation.

<Rm> Specifies the register that contains the value to be shifted.

<immed_5> Specifies the shift amount, in the range 1 to 32. Shifts by 1 to 31 are encoded directly

in immed_5. A shift by 32 is encoded as immed_5 == 0.

Architecture version

All T variants.

Exceptions

None.

Operation

if immed_5 ==
C Flag = Rm[31]
if Rm[31] == @ then
Rd = 0
else /+ Rm[31] == 1 «/]
Rd = OXFFFFFFFF
else /x immed_5 > @ =/
C Flag = Rm[immed_5 - 1]
Rd = Rm Arithmetic_Shift_Right immed_5
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else @
V Flag = unaffected

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-15

Thumb Instructions

Equivalent ARM syntax and encoding
MOVS <Rd>, <Rm>, ASR #<immed_5>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

111000011011 SBZ Rd immed_5 1 00 Rm

A7-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.12 ASR (2)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 1 0 0 Rs Rd

ASR (2) provides the signed value of the contents of a register divided by a variable power of 2.

It updates the condition code flags, based on the result.

Syntax

ASR <Rd>, <Rs>

where:

<Rd> Contains the value to be shifted, and is also the destination register for the completed
operation.

<Rs> Specifies the register that contains the value of the shift.

Architecture version

All T variants.

Exceptions

None.

Operation

if Rs[7:0] == 0 then
C Flag = unaffected
Rd = unaffected
else if Rs[7:0] < 32 then
C Flag = Rd[Rs[7:0] - 1]
Rd = Rd Arithmetic_Shift_Right Rs[7:0]
else /+ Rs[7:0] >= 32 =/
C Flag = Rd[31]
if Rd[31] == 0 then
Rd = 0
else /x Rd[31] == 1 =/
Rd = OxFFFFFFFF
N Flag = Rd[31]
Z Flag = if Rd == @ then 1 else @
V Flag = unaffected

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-17

Thumb Instructions

Equivalent ARM syntax and encoding
MOVS <Rd>, <Rd>, ASR <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

111000011011 SBZ Rd Rs 0101 Rd

A7-18 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.13 B(1)

15 14 13 12 11 8 7 0

1 1 0 1 cond signed_immed_8§

B (1) (Branch) provides a conditional branch to a target address.

Syntax

B<cond> <target_address>

where:

<cond> Is the condition under which the instruction is executed. The conditions are defined in The

condition field on page A3-3.

<target_address>

Specifies the address to branch to. The branch target address is calculated by:
1. Shifting the 8-bit signed offset field of the instruction left by one bit.
2. Sign-extending the result to 32 bits.

3. Adding this to the contents of the PC (which contains the address of the branch
instruction plus 4).

The instruction can therefore specify a branch of —256 to +254 bytes, relative to the current
value of the PC (R15).

Architecture version

All T variants.

Exceptions

None.

Operation

if ConditionPassed(cond) then
PC = PC + (SignExtend(signed_immed_8) << 1)

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-19

Thumb Instructions

Usage

To calculate the correct value of signed_immed_8, the assembler (or other toolkit component) must:

1. Form the base address for the branch. This is the address of the branch instruction, plus 4. In other
words, the base address is equal to the PC value read by that instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is always even,
because all Thumb instructions are halfword-aligned.

3. If the byte offset is outside the range -256 to +254, use an alternative code-generation strategy or
produce an error as appropriate.

4. Otherwise, set the signed_immed_8 field of the instruction to the byte offset divided by 2.

Notes

Memory bounds Branching backwards past location zero and forwards over the end of the 32-bit
address space is UNPREDICTABLE.

AL condition If the condition field indicates AL (Ob1110), the instruction is instead UNDEFINED.
‘When an unconditional branch is required, use the unconditional Branch instruction
described in B (2) on page A7-21.

NYV condition If the condition field indicates NV (Ob1111), the instruction is a SWI instead (see SWI

on page A7-118).

Equivalent ARM syntax and encoding
A close equivalent is:
B<cond> <target_address>

31 28 27 26 25 24 23 8 7 0

cond 1 0 1|0 sign extension of signed_immed_8 signed_immed_8

This differs from the Thumb instruction, because the offset in the ARM instruction is shifted left by 2 before
being added to the PC, whereas the offset in the Thumb instruction is shifted left by 1. Also, the PC values
read by the ARM and Thumb instructions are different.

A7-20 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.14 B(2)

15 14 13 12 11 10 0

1 1 1 0 0 signed_immed_11

B (2) provides an unconditional branch to a target address.

Syntax
B <target_address>

where:

<target_address>
Specifies the address to branch to. The branch target address is calculated by:
1. Shifting the 11-bit signed offset of the instruction left one bit.
2. Sign-extending the result to 32 bits.
3. Adding this to the contents of the PC (which contains the address of the branch
instruction plus 4).

The instruction can therefore specify a branch of —2048 to +2046 bytes, relative to the
current value of the PC (R15).

Architecture version

All T variants.

Exceptions

None.

Operation

PC = PC + (SignExtend(signed_immed_11) << 1)

Usage

To calculate the correct value of signed_immed_11, the assembler (or other toolkit component) must:

1. Form the base address for the branch. This is the address of the branch instruction, plus 4. In other
words, the base address is equal to the PC value read by that instruction.

2. Subtract the base address from the target address to form a byte offset. This offset is always even,
because all Thumb instructions are halfword-aligned.

3. If the byte offset is outside the range -2048 to +2046, use an alternative code-generation strategy or
produce an error as appropriate.

4. Otherwise, set the signed_immed_11 field of the instruction to the byte offset divided by 2.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-21

Thumb Instructions

Notes

Memory bounds Branching backwards past location zero and forwards over the end of the 32-bit
address space is UNPREDICTABLE.

Equivalent ARM syntax and encoding
A close equivalent is:

B <target_address>

31 28 27 26 25 24 23 11 10 0

1 1101 010 sign extension of signed_immed_11 signed_immed_11

This differs from the Thumb instruction, because the offset in the ARM instruction is shifted left by 2 before
being added to the PC, whereas the offset in the Thumb instruction is shifted left by 1. Also, the PC values
read by the ARM and Thumb instructions are different.

A7-22

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.15 BIC
15 14 13 12 11 10 5 3 2 0
0 1 0 0 0 0 Rm Rd

BIC (Bit Clear) performs a bitwise AND of the value of one register and the bitwise inverse of the value of
another register.

BIC updates the condition code flags, based on the result.

Syntax

BIC <Rd>, <Rm>

where:

<Rd>

<Rm>

Architecture version

Is the register containing the value to be ANDed, and is also the destination register for the
completed operation.

Specifies the register that contains the value whose complement is ANDed with the value in

<Rd>.

All T variants.

if Rd == 0 then 1 else 0

Exceptions
None.

Operation

Rd = Rd AND NOT Rm
N Flag = Rd[31]

Z Flag =

C Flag = unaffected
V Flag = unaffected

Equivalent ARM syntax and encoding

BICS <Rd>, <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

11 10/(0001T1T1F01 Rd Rd 000O0O0OO0OO 0O Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-23

Thumb Instructions

A7.1.16 BKPT

15 14 13 12 11 10 9 8 7 0

1 0 1 1 1 1 1 0 immed_8

BKPT (Breakpoint) causes a software breakpoint to occur. This breakpoint can be handled by an exception
handler installed on the Prefetch Abort vector. In implementations which also include debug hardware, the
hardware can optionally override this behavior and handle the breakpoint itself. When this occurs, the
Prefetch Abort vector is not entered.

Syntax

BKPT <immed_8>

where:

<immed_8> Is an 8-bit immediate value, which is placed in bits[7:0] of the instruction. This value is

ignored by the ARM hardware, but can be used by a debugger to store additional
information about the breakpoint.
Architecture version

T variants of ARMvS5 and above.

Exceptions

Prefetch Abort.

Operation

if (not overridden by debug hardware)
R14_abt = address of BKPT instruction + 4

SPSR_abt = CPSR

CPSR[4:0] = 0bl0111 /« Enter Abort mode x/

CPSR[5] =10 /% Execute in ARM state =/

/% CPSR[6] is unchanged =/

CPSR[7] =1 /+ Disable normal interrupts =/

CPSR[8] =1 /« Disable imprecise aborts - v6 onlysx/
CPSR[9] = CP15_regl_EEbit
if high vectors configured then
PC = OxFFFFo00C
else
PC = 0x0000000C

A7-24 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Usage

The exact usage of BKPT depends on the debug system being used. A debug system can use BKPT in two ways:

Debug hardware (if present) does not override the normal behavior of BKPT, and so the Prefetch Abort
vector is entered. If the system also allows real Prefetch Aborts to occur, the Prefetch Abort handler
determines (in a system-dependent manner) whether the vector entry occurred as a result of a BKPT
instruction or as a result of a real Prefetch Abort, and branches to debug code or Prefetch Abort code
accordingly. Otherwise, the Prefetch Abort handler just branches straight to debug code.

When used in this manner, BKPT must be avoided within abort handlers, as it corrupts R14_abt and
SPSR_abt. For the same reason, it must also be avoided within FIQ handlers, as an FIQ interrupt can
occur within an abort handler.

Debug hardware overrides the normal behavior of BKPT and handles the software breakpoint itself.
When finished, it typically either resumes execution at the instruction following the BKPT, or replaces
it with another instruction and resumes execution at that instruction.

When BKPT is used in this manner, R14_abt and SPSR_abt are not corrupted, and so the above
restrictions about its use in abort and FIQ handlers do not apply.

Notes

Hardware override Debug hardware in an implementation is specifically permitted to override the

normal behavior of BKPT. Because of this, software must not use this instruction for
purposes other than those permitted by the debug system being used (if any). In
particular, software cannot rely on the Prefetch Abort exception occurring, unless
either there is guaranteed to be no debug hardware in the system or the debug system
specifies that it occurs.

For ARMV6, the Debug Status and Control Register (DSCR) provides a debug
hardware enable bit, and Method of Entry status field indicating when a BKPT
instruction is executed; see Register 1, Debug Status and Control Register (DSCR)
on page D3-10.

Equivalent ARM syntax and encoding

BKPT <immed_8>

31 30 29 28 27 26 25 24 23 22 21 10 19 18 17 6 15 14 13 12 11 8 17 4 3 0

immed_8 immed_8

1 0j0 0 O1T 00T1O0(0O0O0O0O0OO0OGO0O [7:4] [3:0]

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-25

Thumb Instructions

A7.1.17 BL, BLX (1)

15 14 13 12 11 10 0

1 1 1 H offset_11

BL (Branch with Link) provides an unconditional subroutine call to another Thumb routine. The return from
subroutine is typically performed by one of the following:

. MOV PC,LR
. BX LR
. a POP instruction that loads the PC.

BLX (1) (Branch with Link and Exchange) provides an unconditional subroutine call to an ARM routine. The
return from subroutine is typically performed by a BX LR instruction, or an LDR or LDM instruction that loads
the PC.

To allow for a reasonably large offset to the target subroutine, the BL or BLX instruction is automatically
translated by the assembler into a sequence of two 16-bit Thumb instructions:

. The first Thumb instruction has H == 10 and supplies the high part of the branch offset. This
instruction sets up for the subroutine call and is shared between the BL and BLX forms.

. The second Thumb instruction has H == 11 (for BL) or H == 01 (for BLX). It supplies the low part of
the branch offset and causes the subroutine call to take place.

Syntax

BL <target_addr>
BLX <target_addr>

where:

<target_addr> Specifies the address to branch to. The branch target address is calculated by:
1. Shifting the offset_11 field of the first instruction left twelve bits.
2. Sign-extending the result to 32 bits.

3. Adding this to the contents of the PC (which contains the address of the first
instruction plus 4).

4. Adding twice the offset_11 field of the second instruction. For BLX, the
resulting address is forced to be word-aligned by clearing bit[1].

The instruction can therefore specify a branch of approximately +4MB, see Usage
on page A7-27 for the exact range.

Architecture version
BL (H==10 and H == 11 forms) is in all T variants.

BLX (H == 01 form) is in T variants of ARMv5 and above.

A7-26 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Exceptions

None.

Operation

if H == 10 then
LR = PC + (SignExtend(offset_11) << 12)

else if H == 11 then
PC = LR + (offset_11 << 1)
LR = (address of next instruction) | 1

else if H == 01 then
PC = (LR + (offset_11 << 1)) AND OXFFFFFFFC
LR = (address of next instruction) | 1
CPSR T bit =0

Usage

To generate the correct pair of instructions, the assembler (or other toolkit component) must first generate
the branch offset, as follows:

1. Form the base address for the branch. This is the address of the first of the two Thumb instructions
(the one with H == 10), plus 4. In other words, the base address is equal to the PC value read by that
instruction.

2. If the instruction is BLX, set bit[1] of the target address to be equal to bit[1] of the base address. This
is an exception to the normal rule that bits[1:0] of the address of an ARM instruction are 0b00. This
adjustment is required to ensure that the restrictions associated with the H == 01 form of the
instruction are obeyed.

3. Subtract the base address from the target address to form the offset.
The resulting offset is always even. If the offset lies outside the range:
-222 <= offset <= +222 - 2

the target address lies outside the addressing range of these instructions. This results in alternative code or
an error, as appropriate.

If the offset is in range, a sequence of two Thumb instructions must be generated, both using the above form:
o The first with H == 10 and offset_11 = offset[22:12].
o The second with H == 11 (for BL) or H== 01 (for BLX) and offset_11 = offset[11:1].

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-27

Thumb Instructions

Notes

Encoding

Bit[0] for BLX

Memory bounds

Instruction pairs

Exceptions

If H == 00, the instruction is an unconditional branch instruction instead (see the
Thumb instruction B (2) on page A7-21).

If H == 01, then bit[0] of the instruction must be zero, or the instruction is
UNDEFINED. The offset calculation method described in Usage above ensures that
the offset calculated for a BLX instruction is a multiple of four, and that this
restriction is obeyed.

Branching backwards past location zero and forwards over the end of the 32-bit
address space is UNPREDICTABLE.

These Thumb instructions must always occur in the pairs described above.
Specifically:

. If a Thumb instruction at address A is the H==10 form of this instruction, the
Thumb instruction at address A+2 must be either the H==01 or the H==11
form of this instruction.

. If a Thumb instruction at address A is either the H==01 or the H==11 form
of this instruction, the Thumb instruction at address A-2 must be the H==10
form of this instruction.

Also, except as noted below under Exceptions, the second instruction of the pair
must not be the target of any branch, whether as the result of a branch instruction or
of some other instruction that changes the PC.

Failure to adhere to any of these restrictions can result in UNPREDICTABLE behavior.

It is IMPLEMENTATION DEFINED whether processor exceptions can occur between
the two instructions of a BL or BLX pair. If they can, the ARM instructions designed
for use for exception returns must be capable of returning correctly to the second
instruction of the pair. So, exception handlers need take no special precautions about
returning to the second instruction of a BL or BLX pair.

A7-28

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Equivalent ARM syntax and encoding

Close equivalents to these instruction pairs are as follows.

To call a Thumb subroutine:

BLX <target_addr>

31 30 29 28 27 26 25 24 23 22 21 20

Thumb Instructions

1

1

1 1{1 01

L

offset sign

offset[22:2]

where L == offset[1].

To call an ARM routine:

BL <target_addr>

31 30 29 28 27 26 25 24 23 22 21 20

1

1

1 0|1 01

1

offset sign

offset[22:2]

These differ slightly from the Thumb instruction pairs because of the different values of the PC in ARM and
Thumb code. This can be compensated for by adjusting the offset by 4.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-29

Thumb Instructions

A7.1.18 BLX (2)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 1 1 1 H2 Rm SBZ

BLX (2) calls an ARM or Thumb subroutine from the Thumb instruction set, at an address specified in a
register. This instruction branches and selects the instruction decoder to use to decode the instructions at the
branch destination.

The CPSR T bit is updated with bit[0] of the value of register Rm. To return from the subroutine to the caller,
use BX R14.

Syntax
BLX <Rm>

where:

<Rm> Is the register that contains the branch target address. It can be any of R0 to R14. The register
number is encoded in the instruction in H2 (most significant bit) and Rm (remaining three
bits). If R15 is specitied for <Rm>, the results are UNPREDICTABLE.

Architecture version

T variants of ARMvS5 and above.

Exceptions

None.

Operation

target = Rm

LR = (address of the instruction after this BLX) | 1
CPSR T bit = target[0]

PC = target AND OxFFFFFFFE

Notes

Encoding Bit 7 is the H1 bit for some of the other instructions that access the high registers. If it is 0
for this instruction, rather than 1 as shown, the instruction is a BX instruction instead (see BX
on page A7-32).

ARM/Thumb state transfers

If Rm[1:0] == 0b10, the result is UNPREDICTABLE, as branches to non word-aligned
addresses are impossible in ARM state.

A7-30

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Equivalent ARM syntax and encoding

BLX <Rm>
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 2 0
111 0/000T1|00T10O0 SBO SBO SBO 0 01 1H2 Rm

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-31

Thumb Instructions

A7.1.19 BX
15 14 13 12 1110 9 8 7 6 5 3 2 0
0 1 0o 0 0 1 1 1 0 | H2 Rm SBZ

BX (Branch and Exchange) branches between ARM code and Thumb code.

Syntax

BX <Rm>

where:

<Rm> Is the register that contains the branch target address. It can be any of RO to R15. The register
number is encoded in the instruction in H2 (most significant bit) and Rm (remaining three
bits).

Architecture version

All T variants.

Exceptions

None.

Operation

CPSR T bit = Rm[0]
PC = Rm[31:1] << 1
Usage

The normal subroutine return instruction in Thumb code is BX R14. The following subroutine call
instructions leave a suitable return value in R14:

. ARM BLX instructions (See BLX (1) on page A4-16 and BLX (2) on page A4-18)
. Thumb BL and BLX instructions (see BL, BLX (1) on page A7-26 and BLX (2) on page A7-30).

In T variants of ARMv4, a subroutine call to an ARM routine can be performed by a code sequence of the
form:

<Put address of routine to call in Ra>
MOV LR,PC ; Return to second following instruction
BX Ra

In T variants of ARM architecture 5 and above, a subroutine call to an ARM routine can be performed more
efficiently with a BLX instruction (see BL, BLX (1) on page A7-26 and BLX (2) on page A7-30).

A7-32

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Notes

Encoding Bit 7 is the H1 bit for some of the other instructions that access the high registers. If it is 1
for this instruction, rather than 0 as shown, the instruction is:
. a BLX instruction instead in ARMVS5 and above (see BLX (2) on page A7-30)
. UNPREDICTABLE prior to ARMVS.

ARM/Thumb state transfers

If Rm[1:0] == 0b10, the result is UNPREDICTABLE, as branches to non word-aligned
addresses are impossible in ARM state.

Use of R15 Register 15 can be specified for <Rm>. If this is done, R15 is read as normal for Thumb code,
that is, it is the address of the BX instruction itself plus 4. If the BX instruction is at a
word-aligned address, this results in a branch to the next word, executing in ARM state.
However, if the BX instruction is not at a word-aligned address, this means that the results of
the instruction are UNPREDICTABLE (because the value read for R15 has bits[1:0]==0b10).

Equivalent ARM syntax and encoding

A close equivalent is:

BX <Rm>
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
1 1 10/00 01|00 T1O0 SBO SBO SBO 0 0 0 1H2] Rm

This ARM instruction is not quite equivalent to the Thumb instruction, because their specified behavior
differs when <Rm> is R15.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-33

Thumb Instructions

A7.1.20 CMN
15 14 13 12 11109 8 7 6 5 3 2 0
0 1 0 0 0 0 1 0 1 1 Rm Rn

CMN (Compare Negative) compares a register value with the negation of another register value. The condition
flags are updated, based on the result of adding the two register values, so that subsequent instructions can
be conditionally executed (using a conditional branch).

Syntax

CMN <Rn>, <Rm>

where:

<Rn> Is the register containing the first value for comparison.
<Rm> Is the register containing the second value for comparison.

Architecture version

All T variants.

Exceptions

None.

Operation

alu_out = Rn + Rm

N Flag = alu_out[31]

Z Flag = if alu_out == 0 then 1 else @
C Flag = CarryFrom(Rn + Rm)

V Flag = OverflowFrom(Rn + Rm)

Equivalent ARM syntax and encoding
CMN <Rn>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

1110/(000T1O0T1T11 Rn SBZ 000O0O0O0O0OO Rm

A7-34

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.21 CMP (1)

15

14 13

Thumb Instructions

0

Rn

immed_8

CMP (1) (Compare) compares a register value with a large immediate value. The condition flags are updated,
based on the result of subtracting the constant from the register value, so that subsequent instructions can be
conditionally executed (using a conditional branch).

Syntax

CMP <Rn>, #<immed_8>

where:

<Rn>

<immed_8>

Architecture version

All T variants.

if alu_out == @ then 1 else 0
NOT BorrowFrom(Rn - immed_8)

Is the register containing the first value for comparison.

Is the 8-bit second value for comparison.

Exceptions

None.

Operation

alu_out = Rn - immed_8
N Flag = alu_out[31]

Z Flag =

C Flag =

V Flag =

Equivalent ARM syntax and encoding

OverflowFrom(Rn - immed_8)

CMP <Rn>, #<immed_8>

31 30 29 28 27 26 25 24 23 22 21 20 19

16 15

1211 10 9 8 7 0

1

1

1

0({0 0

1

1

010

1

SBZ

00O00O0 immed_8

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-35

Thumb Instructions

A7.1.22 CMP (2)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 0 1 0 Rm Rn

CMP (2) compares two register values. The condition code flags are updated, based on the result of
subtracting the second register value from the first, so that subsequent instructions can be conditionally
executed (using a conditional branch).

Syntax

CMP <Rn>, <Rm>

where:

<Rn> Is the register containing the first value for comparison.
<Rm> Is the register containing the second value for comparison.

Architecture version

All T variants.

Exceptions

None.

Operation

alu_out = Rn - Rm

N Flag = alu_out[31]

Z Flag = if alu_out == 0 then 1 else @
C Flag = NOT BorrowFrom(Rn - Rm)

V Flag = OverflowFrom(Rn - Rm)

Equivalent ARM syntax and encoding
CMP <Rn>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

1110{(000T1O0T1¢01 Rn SBZ 000O0O0O0O0OO Rm

A7-36

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.23 CMP (3)

15

14 13 12 11 10 9 8 7

Thumb Instructions

0

1 0 0 0 1 0 1 H1

H2

Rm

Rn

CMP (3) compares the values of two registers, one or both of which are high registers. The condition flags are
updated, based on the result of subtracting the second register value from the first, so that subsequent

instructions can be conditionally executed (using a conditional branch).

Syntax

CMP <Rn>, <Rm>

where:

<Rn>

<Rm>

Is the register containing the first value. It can be any of RO to R14. Its number is encoded
in the instruction in H1 (most significant bit) and Rn (remaining three bits). If HI == 1 and
Rn==0bl111, apparently encoding R15, the results of the instruction are UNPREDICTABLE.

Is the register containing the second value. It can be any of RO to R15. Its number is encoded

in the instruction in H2 (most significant bit) and Rm (remaining three bits).

Architecture version

All T variants.

Exceptions

None.

Operation

alu_out = Rn - Rm

N Flag
Z Flag
C Flag
V Flag

Notes

alu_out[31]

if alu_out == 0 then 1 else 0
NOT BorrowFrom(Rn - Rm)
OverflowFrom(Rn - Rm)

Operand restriction If a low register is specified for both <Rn> and <Rm> (H1==0 and H2==0), the result

iS UNPREDICTABLE.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A7-37

Thumb Instructions

Equivalent ARM syntax and encoding

A close equivalent is:

CMP <Rn>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 121110 9 8 7 6 5 4 3 2 0

1

1 10/0001O010 1H] Rn SBZ 000O0O0OOO0O0H2 Rm

There are slight differences when the instruction accesses the PC, because of the different definitions of the
PC when executing ARM and Thumb code.

A7-38

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Thumb Instructions

A7.1.24 CPS

15 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 1 |imod| O A I F

CPS (Change Processor State) changes one or more of the A, I, and F bits of the CPSR, without changing

other CPSR bits.
Syntax
CPS<effect> <iflags>
where:
<effect> Specifies what effect is wanted on the interrupt disable bits A, I, and F in the CPSR. This is
either:
IE Interrupt Enable, encoded by imod == 0b0. This sets the specified bits to 0.
D Interrupt Disable, encoded by imod == Ob1. This sets the specified bits to 1.
<iflags> Is a sequence of one or more of the following, specifying which interrupt disable flags are
affected:
a Sets the A bit (bit[2]), causing the specified effect on the CPSR A bit.
i Sets the I bit (bit[1]), causing the specified effect on the CPSR I bit.
f Sets the F bit (bit[0]), causing the specified effect on the CPSR F bit.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

if InAPrivilegedMode() then
if A == 1 then CPSR[8] = imod
if I == 1 then CPSR[7] = imod
if F == 1 then CPSR[6] = imod
/+ else no change to interrupt disable bits =/

Notes

User mode This instruction has no effect in User mode.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-39

Thumb Instructions

Equivalent ARM syntax and encoding

CPS <effect>, <flags>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15

1

1

1 1/0 001 0O0O0O0

imoda

0

0

SBZ

A|T|F|O SBZ

a.

imod is strictly a 2-bit field in the ARM syntax, with the most significant bit set (bit[19] ==1).

A7-40

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Thumb Instructions

A7.1.25 CPY
15 14 13 12 11 109 8 7 6 5 3 2 0
0 1 0 0 o0 1 1 0 | HI | H2 Rm Rd

CPY (Copy) moves a value from one high or low register to another high or low register, without changing

the flags.

Syntax

CPY <Rd>, <Rm>

where:

<Rd> Is the destination register for the operation. It can be any of RO to R15, and its number is
encoded in the instruction in H1 (most significant bit) and Rd (remaining three bits).

<Rm> Is the register containing the value to be copied. It can be any of RO to R15, and its number

is encoded in the instruction in H2 (most significant bit) and Rm (remaining three bits).

Architecture version

T variants of ARMv6 and above.

Exceptions

None.

Operation

Rd = Rm

Usage

CPY PC,R14 can be used as a subroutine return instruction if it is known that the caller is also a Thumb routine.
However, it is more usual to use BX R14 (see BX on page A7-32), which works regardless of whether the
caller is an ARM routine or a Thumb routine.

Notes

Encoding CPY has the same functionality as MOV (3) on page A7-75, and uses the same instruction
encoding, but has an assembler syntax that allows both operands to be low registers.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-41

Thumb Instructions

Equivalent ARM syntax and encoding

A close equivalent is:

CPY <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 121110 9 8 7 6 5 4 3 2 0

1

11000011010 SBZ |H1] Rd 000O0O0OOO0O0H2 Rm

There are slight differences when the instruction accesses the PC, because of the different definitions of the
PC when executing ARM and Thumb code.

A7-42

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A7.1.26 EOR

15

Thumb Instructions

0

Rm

Rd

EOR (Exclusive OR) performs a bitwise EOR of the values from two registers.

EOR updates the condition code flags, based on the result.

Syntax

EOR <Rd>, <Rm>

where:

<Rd>

<Rm>

Specifies the register containing the first operand, and is also the destination register.

Specifies the register containing the second operand.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rd EOR Rm

N Flag
Z Flag
C Flag
V Flag

Equivalent ARM syntax and encoding

Rd[31]

unaffected
= unaffected

EORS <Rd>, <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19

if Rd == 0 then 1 else 0

16 15

121110 9 8 7 6 5 4 3 0

1

1

1 0|0 OOOO0O01

1

Rd

Rd

000O0OO0OO0OO

Rm

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A7-43

Thumb Instructions

A7.1.27 LDMIA

15 14

1 1

0 1 Rn register_list

LDMIA (Load Multiple Increment After) loads a non-empty subset, or possibly all, of the general-purpose
registers RO to R7 from sequential memory locations.

Syntax

LDMIA <Rn>!, <registers>

where:

<Rn>

<registers>

Is the register containing the start address for the instruction.
Causes base register write-back, and is not optional.

Is a list of registers to be loaded, separated by commas and surrounded by { and }.
The list is encoded in the register_list field of the instruction, by setting bit[i] to 1 if
register Ri is included in the list and to O otherwise, for each of i=0 to 7.

At least one register must be loaded. If bits[7:0] are all zero, the result is
UNPREDICTABLE.

The registers are loaded in sequence, the lowest-numbered register from the lowest
memory address (start_address), through to the highest-numbered register from the
highest memory address (end_address).

The start_address is the value of the base register <Rn>. Subsequent addresses are
formed by incrementing the previous address by four. One address is produced for
each register that is specified in <registers>.

The end_address value is four less than the sum of the value of the base register and
four times the number of registers specified in <registers>.

Finally, when <Rn> is not a member of <registers>, the base register <Rn> is
incremented by four times the number of registers in <registers>. See operand
restrictions.

Architecture version

All T variants.

Exceptions

Data Abort.

A7-44 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Operation

Thumb Instructions

MemoryAccess(B-bit, E-bit)
start_address = Rn

end_address =

Rn + (Number_Of_Set_Bits_In(register_list) = 4) - 4

address = start_address

for i =0 to7

if register_list[i] == 1
Ri = Memory[address,4]
address = address + 4
assert end_address == address - 4
Rn = Rn + (Number_Of_Set_Bits_In(register_Tist) = 4)

Usage

Use LDMIA as a block load instruction. Combined with STMIA (Store Multiple), it allows efficient block copy.

Notes

Operand restrictions

Data Abort

Alignment

Time order

If the base register <Rn> is specified in <registers>, the final value of <Rn> is the loaded value
(not the written-back value).

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

If an implementation includes a System Control coprocessor (see Chapter B3 The System
Control Coprocessor) and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

From ARMv6, an alignment checking option is supported:
. If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
. If CP15_regl_Abit == 0:

— and CP15_regl_Ubit==0, the instruction ignores the least significant two bits
of the address.

— and CP15_regl_Ubit==1, unaligned accesses cause a Data Abort (Alignment
fault).

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

The time order of the accesses to individual words of memory generated by this instruction
is only defined in some circumstances. See Memory access restrictions on page B2-13 for
details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-45

Thumb Instructions

Equivalent ARM syntax and encoding
If <Rn> is not in the register list (W == 1):

LDMIA <Rn>!, <registers>

If <Rn> is in the register list (W == 0):

LDMIA <Rn>, <registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

1 1101 0001 0|W|I Rn 000O0O0O0OOO O register_list

A7-46 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.28 LDR (1)

15 14 13 12 11 10

Thumb Instructions

0 1

1 0 1 immed_5

Rn

Rd

LDR (1) (Load Register) allows 32-bit memory data to be loaded into a general-purpose register.

The addressing mode is useful for accessing structure (record) fields. With an offset of zero, the address

produced is the unaltered value of the base register <Rn>.

Syntax

LDR <Rd>, [<Rn>, #<immed_5> = 4]

where:
<Rd>
<Rn>

<immed_5>

Is the destination register for the word loaded from memory.

Is the register containing the base address for the instruction.

Is a 5-bit value that is multiplied by 4 and added to the value of <Rn> to form the memory

address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)

address =

Rn + (immed_5 =+ 4)

if (CP15_regl_Ubit == 0)
if address[1:0] == 0b0@ then
data = Memory[address,4]

else

data = UNPREDICTABLE
else /+ CP15_regl_Ubit == 1 =/
data = Memory[address,4]

Rd = data

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A7-47

Thumb Instructions

Notes

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Alignment Prior to ARMV6, if the memory address is not word-aligned, the data read from memory is
UNPREDICTABLE. Alignment checking (taking a data abort when address[1:0] != 0b00), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 1211 10 9 8 7 6 2 1 0

1 110/01 011001 Rn Rd 0000 0| immed.5 00

A7-48 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.29 LDR (2)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 0 0 Rm Rn Rd

LDR (2) loads 32-bit memory data into a general-purpose register. The addressing mode is useful for
pointer+large offset arithmetic and for accessing a single element of an array.

Syntax

LDR <Rd>, [<Rn>, <Rm>]

where:

<Rd> Is the destination register for the word loaded from memory.

<Rn> Is the register containing the first value used in forming the memory address.
<Rm> Is the register containing the second value used in forming the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
address = Rn + Rm
if (CP15_regl_Ubit == 0)
if address[1:0] == 0b0@ then
data = Memory[address,4]
else
data = UNPREDICTABLE
else /% CP15_regl_Ubit == 1 «/
data = Memory[address,4]
Rd = data

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-49

Thumb Instructions

Notes

Data Abort

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMvV6, if the memory address is not word-aligned, the data read from memory is
UNPREDICTABLE. Alignment checking (taking a data abort when address[1:0] != 0b00), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

LDR <Rd>, [<Rn>, <Rm>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15

121110 9 8 7 6 5 4 3 0

1

1

1

0

0

1111001 Rn Rd 000O0O0O0O0OO Rm

A7-50

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.30 LDR (3)

15 14 13 12 11 10

Thumb Instructions

0

1

0 0 1 Rd

immed_8

LDR (3) loads 32-bit memory data into a general-purpose register. The addressing mode is useful for
accessing PC-relative data.

Syntax

LDR <Rd>, [PC, #<immed_8> x 4]

where:
<Rd>

PC

<immed_8>

Is the destination register for the word loaded from memory.

Is the program counter. Its value is used to calculate the memory address. Bit 1 of the PC
value is forced to zero for the purpose of this calculation, so the address is always

word-aligned.

Is an 8-bit value that is multiplied by 4 and added to the value of the PC to form the memory

address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)

address = (PC & OxFFFFFFFC) + (immed_8 = 4)

Rd = Memory[address, 4]

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-51

Thumb Instructions

Notes

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted

instructions on page A2-21.

Alignment Prior to ARMV6, if the memory address is not word-aligned, the data read from memory is

UNPREDICTABLE. Alignment checking (taking a data abort when address[1:0] != 0b00), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

A close equivalent is:

LDR <Rd>, [PC, #<immed_8> =+ 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 2 10

1

1

1

0j/0 1 01 10O0T1|1 111 Rd 00 immed_8 00

There are slight differences caused by the different definitions of the PC and the fact that the Thumb
instruction ignores bit[1] of the PC.

A7-52

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.31 LDR (4)

15 14 13 12 11 10 8 7 0

1 0 0 1 1 Rd immed_8

LDR (4) loads 32-bit memory data into a general-purpose register. The addressing mode is useful for
accessing stack data.

Syntax

LDR <Rd>, [SP, #<immed_8> x 4]

where:

<Rd> Is the destination register for the word loaded from memory.

SP Is the stack pointer. Its value is used to calculate the memory address.

<immed_8> Is an 8-bit value that is multiplied by 4 and added to the value of the SP to form the memory

address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
address = SP + (immed_8 = 4)
if (CP15_regl_Ubit == 0)
if address[1:0] == 0b00 then
data = Memory[address,4]
else
data = UNPREDICTABLE
else /+ CP15_regl_Ubit == 1 =/
data = Memory[address,4]
Rd = data

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-53

Thumb Instructions

Notes

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Alignment Prior to ARMV6, if the memory address is not word-aligned, the data read from memory is
UNPREDICTABLE. Alignment checking (taking a data abort when address[1:0] != 0b00), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding
LDR <Rd>, [SP, #<immed_8> + 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 2 10

1110010110011 101 Rd 00 immed_8 00

A7-54 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.32 LDRB (1)

15 14 13 12 11 10 6 5 3 2 0

0 1 1 1 1 immed_5 Rn Rd

LDRB (1) (Load Register Byte) loads a byte from memory, zero-extends it to form a 32-bit word, and writes
the result to a general-purpose register. The addressing mode is useful for accessing structure (record) fields.
With an offset of zero, the address produced is the unaltered value of the base register <Rn>.

Syntax

LDRB <Rd>, [<Rn>, #<immed_5>]

where:

<Rd> Is the destination register for the byte loaded from memory.

<Rn> Is the register containing the base address for the instruction.

<immed_5> Is a 5-bit value that is added to the value of <Rn> to form the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

address = Rn + immed_5

Rd = Memory[address,1]

Notes

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Equivalent ARM syntax and encoding

LDRB <Rd>, [<Rn>, #<immed_5>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 0

11 10/010111O01 Rn Rd 00O0O0O0O 0| immed.5

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-55

Thumb Instructions

A7.1.33 LDRB (2)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 1 0 Rm Rn Rd

LDRB (2) loads a byte from memory, zero-extends it to form a 32-bit word, and writes the result to a
general-purpose register. The addressing mode is useful for pointer+large offset arithmetic and for accessing
a single element of an array.

Syntax

LDRB <Rd>, [<Rn>, <Rm>]

where:

<Rd> Is the destination register for the byte loaded from memory.

<Rn> Is the register containing the first value used in forming the memory address.
<Rm> Is the register containing the second value used in forming the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

address = Rn + Rm

Rd = Memory[address,1]

Notes

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Equivalent ARM syntax and encoding

LDRB <Rd>, [<Rn>, <Rm>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

1 110/01 111101 Rn Rd 000O0O0OO0O0O Rm

A7-56

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.34 LDRH (1)

15 14 13 12 11 10

Thumb Instructions

1 0 0 0 1 immed_5

Rn

Rd

LDRH (1) (Load Register Halfword) loads a halfword (16 bits) from memory, zero-extends it to form a 32-bit
word, and writes the result to a general-purpose register. The addressing mode is useful for accessing
structure (record) fields. With an offset of zero, the address produced is the unaltered value of the base
register <Rn>.

Syntax

LDRH <Rd>, [<Rn>, #<immed_5> = 2]

where:
<Rd>
<Rn>

<immed_5>

Is the destination register for the halfword loaded from memory.

Is the register containing the base address for the instruction.

Is a 5-bit value that is multiplied by 2, then added to the value of <Rn> to form the memory

address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
address = Rn + (immed_5 = 2)
if (CP15_regl_Ubit == 0)
if address[0] == Qb0 then
data = Memory[address,2]

else

data = UNPREDICTABLE

else /% CP15_regl_Ubit == 1 =/
data = Memory[address,2]

Rd = ZeroExtend(data[15:0])

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A7-57

Thumb Instructions

Notes

Data Abort

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMVG, if the memory address is not halfword-aligned, the data read from memory
is UNPREDICTABLE. Alignment checking (taking a data abort when address[0] != 0), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

LDRH <Rd>, [<Rn>, #<immed_5> = 2]

31 30 29 28 27 26 25 24 23 22 21 10 19 16 15 121110 9 8 7 6 5 4 3 1 0
1110/0001110T1| Rn Rd |0 ofmmedty o g o[immed i,
[4:3] [2:0]

A7-58

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.35 LDRH (2)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 0 1 Rm Rn Rd

LDRH (2) loads a halfword (16 bits) from memory, zero-extends it to form a 32-bit word, and writes the result
to a general-purpose register. The addressing mode is useful for pointer + large offset arithmetic and for
accessing a single element of an array.

Syntax

LDRH <Rd>, [<Rn>, <Rm>]

where:

<Rd> Is the destination register for the halfword loaded from memory.

<Rn> Is the register containing the first value used in forming the memory address.
<Rm> Is the register containing the second value used in forming the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
address = Rn + Rm
if (CP15_regl_Ubit == 0)
if address[0] == 0b0 then
data = Memory[address,2]
else
data = UNPREDICTABLE
else /+ CP15_regl_Ubit == 1 =/
data = Memory[address,2]
Rd = ZeroExtend(data[15:0])

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-59

Thumb Instructions

Notes

Data Abort

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMVG, if the memory address is not halfword-aligned, the data read from memory
is UNPREDICTABLE. Alignment checking (taking a data abort when address[0] != 0), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

LDRH <Rd>, [<Rn>, <Rm>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11

8 7 6 5 4 3 0

1

1

1

0

000T1T1O0O01 Rn Rd SBZ 1 011 Rm

A7-60

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.36 LDRSB

15

14 13 12

Thumb Instructions

0

1 0 1

Rm

Rn

Rd

LDRSB (Load Register Signed Byte) loads a byte from memory, sign-extends it to form a 32-bit word, and
writes the result to a general-purpose register.

Syntax

LDRSB <Rd>, [<Rn>, <Rm>]

where:

<Rd>

<Rn>

<Rm>

Architecture version

Is the destination register for the byte loaded from memory.

Is the register containing the first value used in forming the memory address.

Is the register containing the second value used in forming the memory address.

All T variants.

Exceptions

Data Abort.

Operation

address = Rn + Rm
Rd = SignExtend(Memory[address,1])

Notes

Data Abort

Equivalent ARM syntax and encoding

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

LDRSB <Rd>, [<Rn>, <Rm>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

11 10(0001T1O0°01 Rn Rd SBZ 1101 Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-61

Thumb Instructions

A7.1.37 LDRSH

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 1 1 Rm Rn Rd

LDRSH (Load Register Signed Halfword) loads a halfword from memory, sign-extends it to form a 32-bit
word, and writes the result to a general-purpose register.

Syntax

LDRSH <Rd>, [<Rn>, <Rm>]

where:

<Rd> Is the destination register for the halfword loaded from memory.

<Rn> Is the register containing the first value used in forming the memory address.
<Rm> Is the register containing the second value used in forming the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
address = Rn + Rm
if (CP15_regl_Ubit == 0)
if address[@] == 0b@ then
data = Memory[address,2]
else
data = UNPREDICTABLE
else /% CP15_regl_Ubit == 1 */
data = Memory[address,2]
Rd = SignExtend(data[15:0])

A7-62 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Notes

Data Abort

Alignment

Thumb Instructions

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMVG, if the memory address is not halfword-aligned, the data read from memory
is UNPREDICTABLE. Alignment checking (taking a data abort when address[0] != 0), and
support for a big endian (BE-32) data format are implementation options.

From ARMv6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

. If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
. If CP15_regl_Abit == 0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

LDRSH <Rd>, [<Rn>, <Rm>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

11 10{(0001T1QO00O01 Rn Rd SBZ 11 11 Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-63

Thumb Instructions

A7.1.38 LSL (1)

15 14 13 12 11 10 6 5 3

0 0 0 0 0 immed_5 Rm

Rd

LSL (1) (Logical Shift Left) provides the value of the contents of a register multiplied by a constant power
of two. It inserts zeroes into the bit positions vacated by the shift, and updates the condition code flags, based

on the result.

Syntax

LSL <Rd>, <Rm>, #<immed_5>

where:

<Rd> Is the register that stores the result of the operation.
<Rm> Is the register containing the value to be shifted.
<immed_5> Specifies the shift amount, in the range O to 31.

Architecture version

All T variants.

Exceptions

None.

Operation

if immed_5 ==
C Flag = unaffected
Rd = Rm
else /x immed_5 > @ =/
C Flag = Rm[32 - immed_5]
Rd = Rm Logical_Shift_Left immed_5
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

A7-64 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Equivalent ARM syntax and encoding

MOVS <Rd>, <Rm>, LSL #<immed_5>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0
111000011011 SBZ Rd immed_5 000 Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-65

Thumb Instructions

A7.1.39 LSL (2)

15 14 13 12 11 10

0 1 0 0 0 0

Rs

Rd

LSL (2) provides the value of a register multiplied by a variable power of two. It inserts zeroes into the

vacated bit positions.

It updates the condition code flags, based on the result.

Syntax
LSL <Rd>, <Rs>

where:

<Rd> Contains the value to be shifted, and is the destination register for the result of the operation.

<Rs> Is the register containing the shift value. The value is held in the least significant byte.

Architecture version

All T variants.

Exceptions

None.

Operation

if Rs[7:0] ==
C Flag = unaffected
Rd = unaffected
else if Rs[7:0] < 32 then
C Flag = Rd[32 - Rs[7:0]]
Rd = Rd Logical_Shift_Left Rs[7:0]
else if Rs[7:0] == 32 then
C Flag = Rd[0]
Rd = 0
else /« Rs[7:0] > 32 =/
C Flag = 0
Rd = 0
N Flag = Rd[31]
Z Flag = if Rd == @ then 1 else @
V Flag = unaffected

A7-66

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Equivalent ARM syntax and encoding

MOVS <Rd>, <Rd>, LSL <Rs>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
111000011011 SBZ Rd Rs 0001 Rd
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-67

Thumb Instructions

A7.1.40 LSR (1)

15 14 13 12 11 10 6 5 3 2 0

0 0 0 0 1 immed_5 Rm Rd

LSR (1) (Logical Shift Right) provides the unsigned value of a register, divided by a constant power of two.
It inserts zeroes into the vacated bit positions.

It updates the condition code flags, based on the result.

Syntax

LSR <Rd>, <Rm>, #<immed_5>

where:

<Rd> Is the destination register for the operation.

<Rm> Is the register containing the value to be shifted.

<immed_5> Specifies the shift amount, in the range 1 to 32. Shifts by 1 to 31 are encoded directly

in immed_5. A shift by 32 is encoded as immed_5 == 0.

Architecture version

All T variants.

Exceptions

None.

Operation

if immed_5 ==
C Flag = Rm[31]
Rd = 0
else /x immed_5 > @ =/
C Flag = Rm[immed_5 - 1]
Rd = Rm Logical_Shift_Right immed_5
N Flag = Rd[31] /+ @Ob@ =/
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

A7-68

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Equivalent ARM syntax and encoding

MOVS <Rd>, <Rm>, LSR #<immed_5>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0
111000011011 SBZ Rd immed_5 010 Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-69

Thumb Instructions

A7.1.41 LSR (2)

15 14 13 12 11 10

0 1 0 0 0 0

Rs

Rd

LSR (2) provides the unsigned value of a register divided by a variable power of two. It inserts zeroes into

the vacated bit positions.

It updates the condition code flags, based on the result.

Syntax

LSR <Rd>, <Rs>

where:

<Rd> Contains the value to be shifted, and is the destination register for the result of the operation.
<Rs> Is the register containing the shift value. The value is held in the least significant byte.

Architecture version

All T variants.

Exceptions

None.

Operation

if Rs[7:0] == 0 then

C Flag = unaffected

Rd = unaffected
else if Rs[7:0] < 32 then

C Flag = Rd[Rs[7:0] - 1]

Rd = Rd Logical_Shift_Right Rs[7:0]
else if Rs[7:0] == 32 then

C Flag = Rd[31]

Rd = 0

else /« Rs[7:0] > 32 =/
C Flag = 0
Rd = 0

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

A7-70

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Thumb Instructions

Equivalent ARM syntax and encoding
MOVS <Rd>, <Rd>, LSR <Rs>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

11 10/0001101°1 SBZ Rd Rs 0011 Rd

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-71

Thumb Instructions

A7.1.42 MOV (1)

15 14 13 12 11 10 0
0 0 1 0 0 Rd immed_8
MOV (1) (Move) moves a large immediate value to a register.
It updates the condition code flags, based on the result.
Syntax
MOV <Rd>, #<immed_8>
where:
<Rd> Is the destination register for the operation.
<immed_8> Is an 8-bit immediate value, in the range O to 255, to move into <Rd>.
Architecture version
All T variants.
Exceptions
None.
Operation
Rd = immed_8
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected
V Flag = unaffected
Equivalent ARM syntax and encoding
MOVS <Rd>, #<immed_8>
31 3029 28 27 26 25 24 23 22 21 20 19 16 15 12 1110 9 8 7 0
1 110/001110T1°1 SBZ Rd 0000 immed_8
A7-72 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.43 MOV (2)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 0 0 1 1 1 0 0 0 0 Rn Rd

MOV (2) moves a value from one low register to another.

It updates the condition code flags, based on the value.

Syntax

MOV <Rd>, <Rn>

where:

<Rd> Is the destination register for the operation.
<Rn> Is the register containing the value to be copied.

Architecture Version

All T variants.

Exceptions

None.

Operation

Rd = Rn
N Flag
Z Flag
C Flag
V Flag

Rd[31]

if Rd == 0 then 1 else 0
0

0

Notes

Encoding This instruction is encoded as ADD Rd, Rn, #0.
See also ADD (1) on page A7-5.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-73

Thumb Instructions

Equivalent ARM syntax and encoding

ADDS <Rd>, <Rn>, #0

31 30 29 28 27 26 25 24 23 22 21 20 19

16 15

121110 9 8 7 6 5 4 3 2 1 0

1

11000101001

Rd

0000O0OO0OO0O0OO0OO0OO0OO

A7-74

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.44 MOV (3)

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 1 0 H1 | H2 Rm Rd

MOV (3) moves a value to, from, or between high registers.

Unlike the low register MOV instruction described in MOV (2) on page A7-73, this instruction does not change

the flags.

Syntax

MOV <Rd>, <Rm>

where:

<Rd> Is the destination register for the operation. It can be any of RO to R15, and its number is
encoded in the instruction in H1 (most significant bit) and Rd (remaining three bits).

<Rm> Is the register containing the value to be copied. It can be any of RO to R15, and its number

is encoded in the instruction in H2 (most significant bit) and Rm (remaining three bits).

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rm

Usage

The instruction MOV PC,R14 can be used as a subroutine return instruction if it is known that the caller is also
a Thumb routine. However, you are strongly recommended to use BX R14 (see BX on page A7-32). The BX
R14 instruction works regardless of whether the caller is an ARM routine or a Thumb routine, and has
performance advantages on some processors.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-75

Thumb Instructions

Notes

Assembler syntax If a low register is specified for both <Rd> and <Rm>, the assembler syntax
MOV <Rd>, <Rm> is assembled to the MOV (2) instruction described on page A7-73.

Both registers low If Hl1==0 and H2==0 in the encoding, the instruction specifies a non-flag-setting
copy move from one low register to another low register. This instruction cannot be
written using the MOV syntax, because MOV <Rd>, <Rm> generates a flag-setting copy.
However, you can write it using the CPY mnemonic, see CPY on page A7-41.

Note

Prior to ARMVG, specifying a low register for <Rd> and <Rm> (H1 == 0 and H2
== (), the result is UNPREDICTABLE.

Equivalent ARM syntax and encoding
A close equivalent is:
MOV <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 121110 9 8 7 6 5 4 3 2 0

1 110/000110T10 SBZ Hl] Rd |0 0 0 0 0 0 0 0|H2, Rm

There are slight differences when the instruction accesses the PC, because of the different definitions of the
PC when executing ARM and Thumb code.

A7-76 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.45 MUL

15

14 13 12 11 10 9 8 7 6 5 3

Thumb Instructions

0

1 0 0 0 0 1 1 0 1 Rm

Rd

MUL (Multiply) multiplies signed or unsigned variables to produce a 32-bit result.

MUL updates the condition code flags, based on the result.

Syntax

MUL <Rd>, <Rm>

where:

<Rd>

<Rm>

Contains the value to be multiplied with the value of <Rm>, and is also the destination register

for the operation.

Is the register containing the value to be multiplied with the value of <Rd>.

Architecture version

All T variants.

Exceptions
None.
Operation
Rd = (Rm = Rd)[31:0]
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected /+ See "C flag" note =/
V Flag = unaffected
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-77

Thumb Instructions

Notes

Early termination If the multiplier implementation supports early termination, it must be implemented
on the value of the <Rd> operand. The type of early termination used (signed or
unsigned) is IMPLEMENTATION DEFINED.

Signed and unsigned As MUL produces only the lower 32 bits of the 64-bit product, MUL gives the same
answer for multiplication of both signed and unsigned numbers.

C flag The MUL instruction is defined to leave the C flag unchanged in ARMvS and above.
In earlier versions of the architecture, the value of the C flag was UNPREDICTABLE
after a MUL instruction.

Operand restriction Prior to ARMv6, specifying the same register for <Rd> and <Rm> had UNPREDICTABLE
results.
Equivalent ARM syntax and encoding

MULS <Rd>, <Rm>, <Rd>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
1 110(00O0O0O0O0O0T1 Rd SBZ Rd 1 001 Rm
Note

The following instruction is not a suitable alternative, as it violates the operand restriction on the ARM
instruction (see MUL on page A4-80) and might have the wrong early termination behavior:

MULS <Rd>, <Rd>, <Rm>

A7-78

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.46 MVN

Thumb Instructions

15 14 13 12 11 10 8 5 3 2 0
0 1 0 0 0 0 Rm Rd
MVN (Move NOT) complements a register value. This is often used to form a bit mask.
MWN updates the condition code flags, based on the result.
Syntax
MVN <Rd>, <Rm>
where:
<Rd> Is the destination register for the operation.
<Rm> Is the register containing the value whose ones complement is written to <Rd>.
Architecture version
All T variants.
Exceptions
None.
Operation
Rd = NOT Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected
V Flag = unaffected
Equivalent ARM syntax and encoding
MVNS <Rd>, <Rm>
31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 1211109 8 7 6 5 4 3 0
11 10/0001 11711 SBZ Rd 000O0O0O0OO0O Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-79

Thumb Instructions

A7.1.47 NEG

15

Rm Rd

NEG (Negate) negates the value of one register and stores the result in a second register.

NEG updates the condition code flags, based on the result.

Syntax

NEG

<Rd>, <Rm>

where:

<Rd>

<Rm>

Is the destination register for the operation.

Is the register containing the value that is subtracted from zero.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd =0 - Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0

C Flag

V Flag = OverflowFrom(@ - Rm)

NOT BorrowFrom(@ - Rm)

Equivalent ARM syntax and encoding

RSBS

31 30 29 28 27 26 25 24 23 22 21 20 19

<Rd>, <Rm>, #0

16 15

121110 9 8 7 6 5 4 3 2 1 0

1

110001001

1

1

Rm

Rd

0000O0OO0OO0O0OO0OO0OO0OO

A7-80

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A7.1.48 ORR

15 14

Thumb Instructions

0 1

Rm

Rd

ORR (Logical OR) performs a bitwise OR of the values from two registers.

ORR updates the condition code flags, based on the result.

Syntax

ORR <Rd>, <Rm>

where:

<Rd>

<Rm>

Is the destination register for the operation.

Is the register containing the value that is ORed with the value of <Rd>. The operation is a

bitwise inclusive OR.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rd OR Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected

V Flag = unaffected

Equivalent ARM syntax and encoding

ORRS <Rd>, <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 1211109 8 7 6 5 4 3 0
111000011001 Rd Rd 000O0O0OO0OO0ODO Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-81

Thumb Instructions

A7.1.49 POP
15 14 13 12 11 10 9 8 7 0
1 0 1 1 1 1 0 R register_list

POP (Pop Multiple Registers) loads a subset (or possibly all) of the general-purpose registers R0-R7 and the
PC from the stack.

The general-purpose registers loaded can include the PC. If they do, the word loaded for the PC is treated
as an address and a branch occurs to that address. In ARMv5 and above, bit[0] of the loaded value
determines whether execution continues after this branch in ARM state or in Thumb state, as though the
following instruction had been executed:

BX (loaded_value)

In T variants of ARMv4, bit[0] of the loaded value is ignored and execution continues in Thumb state, as
though the following instruction had been executed:

MOV PC, (Toaded_value)

Syntax
POP <registers>

where:

<registers> Is the list of registers, separated by commas and surrounded by { and }. The list is
encoded in the register_list field of the instruction, by setting bit[i] to 1 if register Ri
is included in the list and to O otherwise, for each of i=0 to 7. The R bit (bit[8]) is
set to 1 if the PC is in the list and to O otherwise.

At least one register must be loaded. If bits[8:0] are all zero, the result is
UNPREDICTABLE.

The registers are loaded in sequence, the lowest-numbered register from the lowest
memory address (start_address), through to the highest-numbered register from the
highest memory address (end_address). If the PC is specified in the register list
(opcode bit[8] is set), the instruction causes a branch to the address (data) loaded
into the PC.

The <start_address> is the value of the SP.

Subsequent addresses are formed by incrementing the previous address by four. One
address is produced for each register that is specified in <registers>.

The end_address value is four less than the sum of the value of the SP and four times
the number of registers specified in <registerss.

The SP register is incremented by four times the numbers of registers in
<registers>.

A7-82 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)

start_address = SP

end_address = SP + 4x(R + Number_Of_Set_Bits_In(register_list))
address = start_address

for i =0 to 7
if register_Tist[i] == 1 then
Ri = Memory[address,4]
address = address + 4

if R == 1 then
value = Memory[address,4]
PC = value AND OxFFFFFFFE
if (architecture version 5 or above) then
T Bit = value[0]
address = address + 4

assert end_address = address
SP = end_address
Usage

Use POP for stack operations. A POP instruction with the PC in the register list can be used for an efficient
procedure exit, as it restores saved registers, loads the PC with the return address, and updates the stack
pointer with a single instruction.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-83

Thumb Instructions

Notes

Data Abort

CPSR

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Only the T-bit in the CPSR can be updated by the POP instruction. All other bits are
unaffected.

If an implementation includes a System Control coprocessor (see Chapter B3 The System
Control Coprocessor) and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

From ARMV6, an alignment checking option is supported:
o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit == 0:

— and CP15_regl_Ubit ==, the instruction ignores the least significant two bits
of the address.

— and CP15_regl_Ubit == 1, unaligned accesses cause a Data Abort (Alignment
fault).

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

ARM/Thumb state transfers

Time order

In ARM architecture 5 and above, if bits[1:0] of a value loaded for R15 are Ob10, the result
is UNPREDICTABLE, as branches to non word-aligned addresses are not possible in ARM
state.

The time order of the accesses to individual words of memory generated by this instruction
is only defined in some circumstances. See Memory access restrictions on page B2-13 for
details.

Equivalent ARM syntax and encoding

LDMIA SP!, <registers>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

1110

100010111 101R{OO0O0O0O0O0O0 register_list

A7-84

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.50 PUSH

15 14 13

Thumb Instructions

1 0 1

1 0 1 0 R register_list

PUSH (Push Multiple Registers) stores a subset (or possibly all) of the general-purpose registers RO-R7 and

the LR to the stack.

Syntax
PUSH <registers>
where:

<registers>

Is the list of registers to be stored, separated by commas and surrounded by { and }.
The list is encoded in the register_list field of the instruction, by setting bit[i] to 1 if
register Ri is included in the list and to O otherwise, for each of i=0 to 7. The R bit
(bit[8]) is set to 1 if the LR is in the list and to O otherwise.

At least one register must be stored. If bits[8:0] are all zero, the result is
UNPREDICTABLE.

The registers are stored in sequence, the lowest-numbered register to the lowest
memory address (start_address), through to the highest-numbered register to the
highest memory address (end_address)

The start_address is the value of the SP minus 4 times the number of registers to be
stored.

Subsequent addresses are formed by incrementing the previous address by four. One
address is produced for each register that is specified in <registers>.

The end_address value is four less than the original value of SP.

The SP register is decremented by four times the numbers of registers in
<registers>.

Architecture version

All T variants.

Exceptions

Data Abort.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-85

Thumb Instructions

Operation

MemoryAccess(B-bit, E-bit)
start_address = SP - 4«(R + Number_Of_Set_Bits_In(register_list))
end_address = SP - 4
address = start_address
for i =0 to 7
if register_list[i] == 1
Memory[address,4] = Ri
address = address + 4
if R ==
Memory[address,4] = LR
address = address + 4
assert end_address == address - 4
SP = SP - 4«(R + Number_Of_Set_Bits_In(register_Tlist))
if (CP15_regl_Ubit == 1) /% ARMV6 x/
if Shared(address then /% from ARMV6 =/
physical_address = TLB(address
ClearExclusiveByAddress(physical_address, size)

For details on shared memory and synchronization primitives, see Synchronization primitives on
page A2-44.

Usage

Use PUSH for stack operations. A PUSH instruction with the LR in the register list can be used for an efficient
procedure entry, as it saves registers (including the return address) on the stack and updates the stack pointer
with a single instruction. A matching POP instruction can be used later to return from the procedure.

Notes

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.
Alignment PUSH instructions ignore the least significant two bits of address.

If an implementation includes a System Control coprocessor (see Chapter B3 The System
Control Coprocessor) and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

From ARMVv6, an alignment checking option is supported:
. If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
. If CP15_regl_Abit == 0:

— and CP15_regl_Ubit==0, the instruction ignores the least significant two bits
of the address.

— and CP15_regl_Ubit==1, unaligned accesses cause a Data Abort (Alignment
fault).

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

A7-86 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Time order The time order of the accesses to individual words of memory generated by this instruction
is only defined in some circumstances. See Memory access restrictions on page B2-13 for

details.

Equivalent ARM syntax and encoding

STMDB SP!, <registers>
0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
R{0O O OO0 O O register_list

11 10/1 00100101 1O0T1]|0

A7-87

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

Thumb Instructions

A7.1.51 REV

15 12 11 8 7 6 5 3 2 0

1 0 1 1 1 0 1 0 0 0 Rn Rd

REV (Byte-Reverse Word) reverses the byte order in a 32-bit register. It does not affect the flags.

Syntax

REV Rd, Rn

where:

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the operand.

Architecture version

ARMV6 and above.
Exceptions

None.

Operation
Rd[31:24] = Rn[7: 0]
Rd[23:16] = Rn[15: 8]
Rd[15: 8] = Rn[23:16]
Rd[7: 0] = Rn[31:24]
Usage

Use REV to convert 32-bit big-endian data into little-endian data, or 32-bit little-endian data into big-endian
data.

Equivalent ARM syntax and encoding

REV Rd, Rm
31 28 27 23 22 21 20 19 16 15 12 11 8 7 6 4 3 0
111001 10T1(0|1 1 SBO Rd SBO 0|0 1 1 Rm

A7-88 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.52 REV16

15

Thumb Instructions

1 0

Rn

Rd

REV16 (Byte-Reverse Packed Halfword) reverses the byte order in each 16-bit halfword of a 32-bit register.
It does not affect the flags

Syntax
REV16 Rd, Rn
where:

<Rd>

<Rn>

Specifies the destination register.

Specifies the register that contains the operand.

Architecture version

ARMVG6 and above.
Exceptions

None.

Operation

Rd[15: 8] = Rn[7: 0]
Rd[7: @] = Rn[15: 8]
Rd[31:24] = Rn[23:16]
Rd[23:16] = Rn[31:24]
Usage

Use REV16 to convert 16-bit big-endian data into little-endian data, or 16-bit little-endian data into big-endian

data.

Equivalent ARM syntax and encoding

REV16 Rd, Rm

31 28 27 23 22 21 20 19 16 15 12 11 8 7 6 4 3 0

11 10(0110T1[0|11 SBO Rd SBO 110 1 1 Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-89

Thumb Instructions

A7.1.53 REVSH

15 12 11 8 7 6 5

1 0 1 1 1 0 1 0 1 1

Rn

Rd

REVSH (Byte-Reverse Signed Halfword) reverses the byte order in the lower 16-bit halfword of a 32-bit

register, and sign extends the result to 32-bits. It does not affect the flags.

Syntax

REVSH Rd, Rn

where:

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the operand.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

if Rn[7] ==
Rd[31:16

else
Rd[31:16] = 0x0000

XFFFF

Usage

Use REVSH to convert either:

. 16-bit signed big-endian data into 32-bit signed little-endian data

. 16-bit signed little-endian data into 32-bit signed big-endian data.

A7-90

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Thumb Instructions

Equivalent ARM syntax and encoding

REVSH Rd, Rm
31 28 27 23 22 21 20 19 16 15 12 11 8§ 7 6 4 3 0
11 10(0110T1[1]|11 SBO Rd SBO 110 1 1 Rm

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-91

Thumb Instructions

A7.1.54 ROR

15 14 13 12 11

0 1 0 0 0

Rs

Rd

ROR (Rotate Right Register) provides the value of the contents of a register rotated by a variable value. The

bits that are rotated off the right end are inserted into the vacated bit positions on the left.

ROR updates the condition code flags, based on the result.

Syntax

ROR <Rd>, <Rs>

where:

<Rd> Contains the value to be rotated, and is also the destination register for the operation.

<Rs> Is the register containing the rotation applied to the value of <Rd>. The value of the rotation

is stored in the least significant byte.

Architecture version

All T variants.

Exceptions

None.

Operation

if Rs[7:0] == 0 then

C Flag = unaffected

Rd = unaffected
else if Rs[4:0] == 0 then

C Flag = Rd[31]

Rd = unaffected
else /+ Rs[4:0] > @ =/

C Flag = Rd[Rs[4:0] - 1]

Rd = Rd Rotate_Right Rs[4:0]
N Flag = Rd[31]
Z Flag = if Rd == @ then 1 else @
V Flag = unaffected

A7-92

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Equivalent ARM syntax and encoding

MOVS <Rd>, <Rd>, ROR <Rs>

Thumb Instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0
111000011011 SBZ Rd Rs 0111 Rd
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-93

Thumb Instructions

A7.1.55 SBC
15 14 13 12 11109 8 7 6 5 3 2 0
0 1 0 0 0 0 0 1 1 0 Rm Rd

SBC (Subtract with Carry) subtracts the value of its second operand and the value of NOT(Carry flag) from
the value of its first operand.

SBC updates the condition code flags, based on the result.

Use SBC to synthesize multi-word subtraction.

Syntax

SBC <Rd>, <Rm>

where:

<Rd> Contains the first operand for the subtraction, and is also the destination register for the
operation.

<Rm> Contains the value to be subtracted from <Rd>.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rd - Rm - NOT(C Flag)

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0

C Flag = NOT BorrowFrom(Rd - Rm - NOT(C Flag))
V Flag = OverflowFrom(Rd - Rm - NOT(C Flag))
Equivalent ARM syntax and encoding
SBCS <Rd>, <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

1110{(0000T1T1Q01 Rd Rd 000O0O0O0O0O Rm

A7-94

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.56 SETEND

15 14 13 12 11 10 9 8 7 6 5 3 2 0

1 0 1 1 0 1 1 0 0 1 0 1 E SBZ

SETEND modifies the CPSR E bit, without changing any other bits in the CPSR.

Syntax
SETEND <endian_specifier>

where:

<endian_specifier>

Is one of:
BE Sets the E bit in the instruction. This sets the CPSR E bit.
LE Clears the E bit in the instruction. This clears the CPSR E bit.

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

CPSR = CPSR with specified E bit modification

Usage

Use SETEND to change the byte order for data accesses. You can use SETEND to increase the efficiency of access
to a series of big-endian data fields in an otherwise little-endian application, or to a series of little-endian
data fields in an otherwise big-endian application. See Endian support on page A2-30 for more information.
Equivalent ARM syntax and encoding

SETEND <endian_specifier>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 4 3 0

1111/000100O0O0(0O0O01 SBZ E{SBZ|{0 0 0 O SBZ

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-95

Thumb Instructions

A7.1.57 STMIA

15 14 13 12 11 10 8 7 0

1 1 0 0 0 Rn register_list

STMIA (Store Multiple Increment After) stores a non-empty subset, or possibly all, of the general-purpose
registers to sequential memory locations.

Syntax
STMIA <Rn>!, <registers>
where:
<Rn> Is the register containing the start address for the instruction.
Causes base register write-back, and is not optional.
<registers> Is a list of registers to be stored, separated by commas and surrounded by { and }.

The list is encoded in the register_list field of the instruction, by setting bit[i] to 1 if
register Ri is included in the list and to O otherwise, for each of i=0 to 7.

At least one register must be stored. If bits[7:0] are all zero, the result is
UNPREDICTABLE.

The registers are stored in sequence, the lowest-numbered register to the lowest
memory address (start_address), through to the highest-numbered register to the
highest memory address (end_address).

The start_address is the value of the base register <Rn>. Subsequent addresses are
formed by incrementing the previous address by four. One address is produced for
each register that is specified in <registers>.

The end_address value is four less than the sum of the value of the base register and
four times the number of registers specified in <registers>.

Finally, the base register <Rn> is incremented by 4 times the numbers of registers in
<registers>.

Architecture version

All T variants.

Exceptions

Data Abort.

A7-96 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
start_address = Rn
end_address = Rn + (Number_Of_Set_Bits_In(register_list) = 4) - 4
address = start_address
for i =0 to 7
if register_list[i] ==
Memory[address,4] = Ri
if Shared(address then /x from ARMv6 =/
physical_address = TLB(address
ClearExclusiveByAddress(physical_address,4)
address = address + 4
assert end_address == address - 4
Rn = Rn + (Number_Of_Set_Bits_In(register_Tist) = 4)

For details on shared memory and synchronization primitives, see Synchronization primitives on
page A2-44.

Usage

STMIA is useful as a block store instruction. Combined with LDMIA (Load Multiple), it allows efficient block
copy.

Notes

Operand restrictions
If <Rn> is specified in <registers>:

. If <Rn> is the lowest-numbered register specified in <registerss, the original value of
<Rn> is stored.

. Otherwise, the stored value of <Rn> is UNPREDICTABLE.

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Alignment Store Multiple instructions ignore the least significant two bits of address.

If an implementation includes a System Control coprocessor (see Chapter B3 The System
Control Coprocessor) and alignment checking is enabled, an address with bits[1:0] != 0b00
causes an alignment exception.

From ARMv6, an alignment checking option is supported:
. If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
. If CP15_regl_Abit ==0:

— and CP15_regl_Ubit==0, the instruction ignores the least significant two bits
of the address.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-97

Thumb Instructions

Time order

— and CP15_regl_Ubit == 1, unaligned accesses cause a Data Abort (Alignment

fault).

For more details on endianness and alignment, see Endian support on page A2-30 and

Unaligned access support on page A2-38.

The time order of the accesses to individual words of memory generated by this instruction

is only defined in some circumstances. See Memory access restrictions on page B2-13 for

details.

Equivalent ARM syntax and encoding

STMIA <Rn>!, <registers>

A7-98

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0
111010001010 Rn 000O0O0O0OOO O register_list
Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.58 STR (1)

15 1

4 13 12 11 10

Thumb Instructions

0

1 1 0 0 immed_5

Rn

Rd

STR (1) (Store Register) stores 32-bit data from a general-purpose register to memory. The addressing mode
is useful for accessing structure (record) fields. With an offset of zero, the address produced is the unaltered
value of the base register <Rn>.

Syntax
STR <Rd>
where:
<Rd>

<Rn>

<immed_5>

, [<Rn>, #<immed_5> = 4]

Is the register that contains the word to be stored to memory.

Is the register containing the base address for the instruction.

Is a 5-bit value that is multiplied by 4 and added to the value of <Rn> to form the memory

address.

Architecture version

All T vari

Excepti

ants.

ons

Data Abort.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

A7-99

Thumb Instructions

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
address = Rn + (immed_5 = 4)
if (CP15_regl_Ubit == 0)
if address[1:0] == 0b00 then
Memory[address,4] = Rd

else

Memory[address,4] = UNPREDICTABLE

else

/% CP15_regl_Ubit == 1 #/

Memory[address,4] = Rd

if Shared(address) then /% from ARMv6 +/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address, 4)

For details on shared memory and synchronization primitives, see Synchronization primitives on

page A2-44.

Notes

Data Abort

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMV6, if the memory address is not word-aligned, the instruction is
UNPREDICTABLE. Alignment checking (taking a data abort when address[1:0] != 0b00), and
support for a big endian (BE-32) data format are implementation options.

From ARMVG, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

. If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
o If CP15_regl_Abit == 0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

STR <Rd>, [<Rn>, #<immed_5> = 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 1211 10 9 8 7 6 2 10

1 110

01011000 Rn Rd 000 O0 0| immed.5 00

A7-100 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.59 STR(2)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 0 0 Rm Rn Rd

STR (2) stores 32-bit data from a general-purpose register to memory. The addressing mode is useful for
pointer + large offset arithmetic, and for accessing a single element of an array.

Syntax

STR <Rd>, [<Rn>, <Rm>]

where:

<Rd> Is the register that contains the word to be stored to memory.

<Rn> Is the register containing the first value used in forming the memory address.
<Rm> Is the register containing the second value used in forming the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
address = Rn + Rm
if (CP15_regl_Ubit == 0)
if address[1:0] == 0b0@ then
Memory[address,4] = Rd
else
Memory[address,4] = UNPREDICTABLE
else /% CP15_regl_Ubit == 1 =/
Memory[address,4] = Rd
if Shared(address) then /x from ARMv6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address, 4)

For details on shared memory and synchronization primitives, see Synchronization primitives on
page A2-44.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-101

Thumb Instructions

Notes

Data Abort

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMv6, if the memory address is not word-aligned, the instruction is
UNPREDICTABLE. Alignment checking (taking a data abort when address[1:0] != 0b00), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

STR <Rd>, [<Rn>, <Rm>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15

121110 9 8 7 6 5 4 3 0

1

1

1

0

0

1111000 Rn Rd 000O0O0O0O0OO Rm

A7-102

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.60 STR(3)

15 14 13 12 11 10 8 7 0

1 0 0 1 0 Rd immed_8

STR (3) stores 32-bit data from a general-purpose register to memory. The addressing mode is useful for
accessing stack data. In this case, STR stores a word from register <Rd> to memory.

Syntax

STR <Rd>, [SP, #<immed_8> = 4]

where:

<Rd> Is the register that contains the word to be stored to memory.

SP Is the stack pointer. Its value is used to calculate the memory address.

<immed_8> Is an 8-bit value that is multiplied by 4 and added to the value of the SP to form the memory

address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
address = SP + (immed_8 = 4)
if (CP15_regl_Ubit == 0)
if address[1:0] == 0b0@ then
Memory[address,4] = Rd

else
Memory[address,4] = UNPREDICTABLE

else /% CP15_regl_Ubit == 1 «/
Memory[address,4] = Rd

if Shared(address) then /% from ARMV6 =/

physical_address = TLB(address)
ClearExclusiveByAddress(physical_address, 4)

For details on shared memory and synchronization primitives, see Synchronization primitives on
page A2-44.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-103

Thumb Instructions

Notes

Data Abort

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMv6, if the memory address is not word-aligned, the instruction is
UNPREDICTABLE. Alignment checking (taking a data abort when address[1:0] != 0b00), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

STR <Rd>, [SP, #<immed_8> x 4]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 2 10

1

1

1

0

0101100O0j1 101 Rd 00 immed_8 00

A7-104

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.61 STRB (1)

15 14 13 12 11 10 6 5 3 2 0

0 1 1 1 0 immed_5 Rn Rd

STRB (1) (Store Register Byte) stores 8-bit data from a general-purpose register to memory. The addressing
mode is useful for accessing structure (record) fields.

With an offset of zero, the address produced is the unaltered value of the base register <Rn>.

Syntax

STRB <Rd>, [<Rn>, #<immed_5>]

where:

<Rd> Is the register whose least significant byte is stored to memory.

<Rn> Is the register containing the base address for the instruction.

<immed_5> Is a 5-bit immediate value that is added to the value of <Rn> to form the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)

processor_id = ExecutingProcessor()

address = Rn + immed_5

Memory[address,1] = Rd[7:0]

if Shared(address) then /% from ARMV6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address, 1)

For details on shared memory and synchronization primitives, see Synchronization primitives on
page A2-44.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-105

Thumb Instructions

Notes

Data Abort For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted

instructions on page A2-21.

Equivalent ARM syntax and encoding

STRB <Rd>, [<Rn>, #<immed_5>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 0
111001011100 Rn Rd 000O0O0OO0O0| immed)5
A7-106 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.62 STRB (2)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 1 0 Rm Rn Rd

STRB (2) stores 8-bit data from a general-purpose register to memory. The addressing mode is useful for
pointer + large offset arithmetic, and for accessing a single element of an array.

Syntax

STRB <Rd>, [<Rn>, <Rm>]

where:

<Rd> Is the register whose least significant byte is stored to memory.

<Rn> Is the register containing the first value used in forming the memory address.
<Rm> Is the register whose value is added to <Rn> to form the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)

processor_id = ExecutingProcessor()

address = Rn + Rm

Memory[address,1] = Rd[7:0]

if Shared(address) then /% from ARMV6 =/
physical_address = TLB(address)
ClearExclusiveByAddress(physical_address, 1)

For details on shared memory and synchronization primitives, see Synchronization primitives on
page A2-44.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-107

Thumb Instructions

Notes

Data Abort

instructions on page A2-21.

Equivalent ARM syntax and encoding

STRB <Rd>, [<Rn>, <Rm>]

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

1

1

10(01 111100 Rn Rd 000O0O0O0O0O Rm

A7-108

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Thumb Instructions

A7.1.63 STRH (1)

15 14 13 12 11 10 6 5 3 2 0

1 0 0 0 0 immed_5 Rn Rd

STRH (1) (Store Register Halfword) stores 16-bit data from a general-purpose register to memory. The
addressing mode is useful for accessing structure (record) fields. With an offset of zero, the address
produced is the unaltered value of the base register <Rn>.

Syntax

STRH <Rd>, [<Rn>, #<immed_5> = 2]

where:

<Rd> Is the register whose least significant halfword is stored to memory.

<Rn> Is the register containing the base address for the instruction.

<immed_5> Is a 5-bit immediate value that is multiplied by two and added to the value of <Rn> to form

the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
address = Rn + (immed_5 * 2)
if (CP15_regl_Ubit == 0)
if address[0] == 0b0 then
Memory[address,2] = Rd[15:0]

else
Memory[address,2] = UNPREDICTABLE
else /+ CP15_regl_Ubit == 1 =/
Memory[address,2] = Rd[15:0]
if Shared(address) then /% from ARMv6 =/

physical_address = TLB(address)
ClearExclusiveByAddress(physical_address, 2)

For details on shared memory and synchronization primitives, see Synchronization primitives on
page A2-44.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-109

Thumb Instructions

Notes

Data Abort

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMv6, if the memory address is not halfword-aligned, the instruction is
UNPREDICTABLE. Alignment checking (taking a data abort when address[0] != 0), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

STRH <Rd>, [<Rn>, #<immed_5> = 2]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 1 0
1110[00011100| Rn Rd [0 ofmmedy oy |immed],
[43] 2:0]

A7-110

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.64 STRH (2)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 0 1 Rm Rn Rd

STRH (2) stores 16-bit data from a general-purpose register to memory. The addressing mode is useful for
pointer + large offset arithmetic and for accessing a single element of an array.

Syntax

STRH <Rd>, [<Rn>, <Rm>]

where:

<Rd> Is the register whose least significant halfword is stored to memory.

<Rn> Is the register containing the first value used in forming the memory address.
<Rm> Is the register whose value is added to <Rn> to form the memory address.

Architecture version

All T variants.

Exceptions

Data Abort.

Operation

MemoryAccess(B-bit, E-bit)
processor_id = ExecutingProcessor()
address = Rn + Rm
if (CP15_regl_Ubit == 0)
if address[0] == 0b@ then
Memory[address,2] = Rd[15:0]

else
Memory[address,2] = UNPREDICTABLE
else /% CP15_regl_Ubit == 1 «/
Memory[address,2] = Rd[15:0]
if Shared(address) then /% from ARMV6 =/

physical_address = TLB(address)
ClearExclusiveByAddress(physical_address, 2)

For details on shared memory and synchronization primitives, see Synchronization primitives on
page A2-44.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-111

Thumb Instructions

Notes

Data Abort

Alignment

For details of the effects of the instruction if a Data Abort occurs, see Effects of data-aborted
instructions on page A2-21.

Prior to ARMv6, if the memory address is not halfword-aligned, the instruction is
UNPREDICTABLE. Alignment checking (taking a data abort when address[0] != 0), and
support for a big endian (BE-32) data format are implementation options.

From ARMvV6, a byte-invariant mixed endian format is supported, along with an alignment
checking option:

o If CP15_regl_Abit == 1, unaligned accesses cause a Data Abort (Alignment fault).
D If CP15_regl_Abit==0:

— and CP15_regl_Ubit == 0, unaligned accesses are UNPREDICTABLE.

— and CP15_regl_Ubit == 1, unaligned accesses are supported.

For more details on endianness and alignment, see Endian support on page A2-30 and
Unaligned access support on page A2-38.

Equivalent ARM syntax and encoding

STRH <Rd>, [<Rn>, <Rm>]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11

8§ 7 6 54 3 2 10

1

1

1

0

00011000 Rn Rd SBZ 1 011 Rm

A7-112

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.65 SUB (1)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 1 immed_3 Rn Rd

SUB (1) (Subtract) subtracts a small constant value from the value of a register and stores the result in a
second register.

It updates the condition code flags, based on the result.

Syntax

SUB <Rd>, <Rn>, #<immed_3>

where:

<Rd> Is the destination register for the operation.

<Rn> Is the register containing the first operand for the subtraction.
<immed_3> Is a 3-bit immediate value (values O to 7) that is subtracted from <Rn>.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rn - immed_3

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0

C Flag = NOT BorrowFrom(Rn - immed_3)
V Flag = OverflowFrom(Rn - immed_3)

Equivalent ARM syntax and encoding
SUBS <Rd>, <Rn>, #<immed_3>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 2 0

111000100101 Rn Rd 00O0O0O0O0O0 0 Ofimmed3

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-113

Thumb Instructions

A7.1.66 SUB (2)

15 14 13 12 11 10 8 7 0

0 0 1 1 1 Rd immed_8

SUB (2) subtracts a large immediate value from the value of a register and stores the result back in the same
register.

It updates the condition code flags, based on the result.

Syntax

SUB <Rd>, #<immed_8>

where:

<Rd> Is the register containing the first operand for the subtraction, and is also the
destination register for the operation.

<immed_8> Is an 8-bit immediate value (values O to 255) that is subtracted from <Rd>.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rd - immed_8

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0

C Flag = NOT BorrowFrom(Rd - immed_8)
V Flag = OverflowFrom(Rd - immed_8)

Equivalent ARM syntax and encoding
SUBS <Rd, <Rd>, #<immed_8>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 1211 10 9 8 7 0

1110{(0010O0T101 Rd Rd 0000 immed_8

A7-114

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Thumb Instructions

A7.1.67 SUB (3)

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 0 1 Rm Rn Rd

SUB (3) subtracts the value of one register from the value of a second register and stores the result in a third
register.

It updates the condition code flags, based on the result.

Syntax

SUB <Rd>, <Rn>, <Rm>

where:

<Rd> Is the destination register for the operation.

<Rn> Is the register containing the first operand for the subtraction.
<Rm> Is the register whose value is subtracted from <Rn>.

Architecture version

All T variants.

Exceptions

None.

Operation

Rd = Rn - Rm

N Flag = Rd[31]

Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - Rm)
V Flag = OverflowFrom(Rn - Rm)

Equivalent ARM syntax and encoding
SUBS <Rd>, <Rn>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

11 10/000O0010°1 Rn Rd 000O0OO0OO0OO Rm

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-115

Thumb Instructions

A7.1.68 SUB (4)

15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 0 0 1 immed_7

SUB (4) decrements the SP by four times a 7-bit immediate (that is, by a multiple of 4 in the range 0 to 508).

The condition codes are not affected.

Syntax

SUB SP, #<immed_7> « 4

where:

SP Indicates the stack pointer. The result of the operation is also stored in the SP.
<immed_7> Is a 7-bit immediate value that is multiplied by 4 and then subtracted from the value

of the stack pointer.

Architecture version

All T variants.

Exceptions

None.

Operation

SP = SP - (immed_7 << 2)

Usage

For the Full Descending stack which the Thumb instruction set is designed to use, decrementing the SP is
used to allocate extra memory variables on the top of the stack.

Notes

Alternative syntax This instruction can also be written as SUB SP, SP, #<immed_7> * 4.

A7-116 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Equivalent ARM syntax and encoding

SUB SP, SP, #<immed_7> « 4

Thumb Instructions

31 30 29 28 27 26 25 24 23 2221 2019 18 17 16 1514 13 12 11 10 9 8 7 6 0
1110001001 0O01 101110111110 immed_7
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-117

Thumb Instructions

A7.1.69 Swi

15 14 13 12 11 10 9 8 7 0

1 1 0 1 1 1 1 1 immed_8

SWI (Software Interrupt) generates a software interrupt or SWI, which is handled by an operating system.
See Exceptions on page A2-16.

Use it as a call to an operating system service to provide a service.

Syntax
SWI <immed_8>
where:

<immed_8> Is an 8-bit immediate value that is put into bits[7:0] of the instruction. This value is
ignored by the processor, but can be used by an operating system's SWI exception
handler to determine which operating system service is being requested.

Architecture version

All T variants.

Exceptions

Software Interrupt.

Operation

R14_svc = address of next instruction after the SWI instruction
SPSR_svc = CPSR

CPSR[4:0] = 0bl10011 /« Enter Supervisor mode x/
CPSR[5] =10 /+ Execute in ARM state x/

/+ CPSR[6] 1is unchanged =/

CPSR[7] =1 /% Disable normal interrupts =/

/+ CPSR[8] is unchanged =/
CPSR[9] = CP15_regl_EEbit
if high vectors configured then
PC = OxFFFF0008
else
PC = 0x00000008

A7-118 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Equivalent ARM syntax and encoding

Thumb Instructions

SWI <immed_8>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

11101 111/00000O0O0O0O0O0O0O0O0O0O0OO0 immed_8
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-119

Thumb Instructions

A7.1.70 SXTB

15 14 13 12 11 10 9

Rm Rd

SXTB (Signed Extend Byte) extracts the least significant 8 bits of the operand, and sign extends the value to

32 bits. It does not affect the flags.

Syntax

SXTB <Rd>, <Rm>

where:

<Rd> Specifies the destination register.
<Rm> Specifies the operand register.

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

Rd = SignExtend(Rm[7:0])

Usage

Use SXTB to sign extend a byte to a word, for example in instruction sequences acting on signed char values

in C/C++.

Equivalent ARM syntax and encoding

SXTB <Rd>, <Rm>

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15

1211 10 9 8 7 6 5 4 3 0

111001 101010111

1

Rd

000O0O0OT1T11 Rm

A7-120

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

A7.1.71 SXTH

15

Thumb Instructions

1

Rm

Rd

SXTH16 (Signed Extend Halfword) extracts the least significant 16 bits of the operand, and sign extends the
value to 32 bits.

SXTH does not affect the flags.

Syntax

SXTH <Rd>, <Rm>

where:

<Rd>

<Rm>

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

Rd = SignExtend(Rm[15:0])

Usage

Specifies the destination register.

Specifies the operand register.

Use SXTH to sign extend a halfword to a word, for example in instruction sequences acting on signed short
values in C/C++.

Equivalent ARM syntax and encoding

SXTH <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0

11 10/(01 10107111 111 Rd 000O0O0T1T1 Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-121

Thumb Instructions

A7.1.72 TST

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 0 0 0 Rm Rn

TST (Test) determines whether a particular subset of bits in a register includes at least one set bit. A very
common use for TST is to test whether a single bit is set or clear.

It updates the condition code flags, based on the result.

Syntax

TST <Rn>, <Rm>

where:

<Rn> Is the register containing the first operand for the instruction.

<Rm> Is the register whose value is logically ANDed with the value of <Rn>.

Architecture version

All T variants.

Exceptions

None.

Operation

alu_out = Rn AND Rm
N Flag = alu_out[31]
Z Flag = if alu_out == 0 then 1 else @
C Flag = unaffected
V Flag = unaffected

Equivalent ARM syntax and encoding
TST <Rn>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

1 110/0001000°1 Rn SBZ 000O0O0OO0O0OO Rm

A7-122

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

A7.1.73 UXTB

15

Thumb Instructions

1

Rm

Rd

UXTB (Unsigned Extend Byte) extracts the least significant 8 bits of the operand, and zero extends the value
to 32 bits.

Syntax

UXTB <Rd>, <Rm>

where:

<Rd>

<Rm>

Architecture version

ARMVG6 and above.

Exceptions

None.

Operation

Specifies the destination register.

Specifies the operand register.

Rd = Rm AND 0x000000ff

Usage

Use UXTB to zero extend a halfword to a word, for example in instruction sequences acting on unsigned short
values in C/C++.

Equivalent ARM syntax and encoding

UXTB <Rd>, <Rm>

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 121110 9 8 7 6 5 4 3 0

11 10/(01 1011101 111 Rd 000O0O0T1T1 Rm
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-123

Thumb Instructions

A7.1.74 UXTH

15

Rm

Rd

UXTH (Unsigned Extend Halfword) extracts the least significant 16 bits of the operand, and zero extends the
value to 32 bits.

Syntax

UXTH <Rd>, <Rm>

where:

<Rd>

<Rm>

Architecture version

ARMV6 and above.

Exceptions

None.

Operation

Specifies the destination register.

Specifies the operand register.

Rd = Rm AND 0x0000ffff

Usage

Use UXTH to zero extend a halfword to a word, for example in instruction sequences acting on unsigned short
values in C/C++.

Equivalent ARM syntax and encoding

UXTH <Rd>, <Rm>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15

1211 10 9 8 7 6 5 4 3 0

1

1

1 00

1

1

0

1

1

1

1

1

1

1

1

Rd

00000

1

1

1 Rm

A7-124

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

ARM DDI 0100l

Thumb Instructions

A7.2 Thumb instructions and architecture versions
Table A7-1 shows which Thumb instructions are present in each current ARM architecture version that
supports Thumb.
Table A7-1 Thumb instructions by architecture

Instruction vaT v5T v6

ADC Yes Yes Yes
ADD (all forms) Yes Yes Yes
AND Yes Yes Yes
ASR (both forms) Yes Yes Yes
B (both forms) Yes Yes Yes
BIC Yes Yes Yes
BKPT No Yes Yes
BL Yes Yes Yes
BLX (both forms) No Yes Yes
BX Yes Yes Yes
CMN Yes Yes Yes
CMP (all forms) Yes Yes Yes
CPS No No Yes
CPY No No Yes
EOR Yes Yes Yes
LDMIA Yes Yes Yes
LDR (all forms) Yes Yes Yes
LDRB (both forms) Yes Yes Yes
LDRH (both forms) Yes Yes Yes
LDRSB Yes Yes Yes
LDRSH Yes Yes Yes
LSL (both forms) Yes Yes Yes

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. A7-125

Thumb Instructions

Table A7-1 Thumb instructions by architecture (continued)

Instruction v4T v5T v6

LSR (both forms) Yes Yes Yes
MoV (all forms) Yes Yes Yes
MUL Yes Yes Yes
MVN Yes Yes Yes
NEG Yes Yes Yes
ORR Yes Yes Yes
POP Yes Yes Yes
PUSH Yes Yes Yes
REV (all forms) No No Yes
ROR Yes Yes Yes
SBC Yes Yes Yes
SETEND No No Yes
STMIA Yes Yes Yes
STR (all forms) Yes Yes Yes
STRB (both forms) Yes Yes Yes
STRH (both forms) Yes Yes Yes
SUB (all forms) Yes Yes Yes
SWI Yes Yes Yes
SXTB/H No No Yes
TST Yes Yes Yes
UXTB/H No No Yes

A7-126 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Part B

Memory and System Architectures

Chapter B1
Introduction to Memory and System
Architectures

This chapter provides a high-level overview of memory and system architectures. It contains the following
sections:

. About the memory system on page B1-2
. Memory hierarchy on page B1-4

. LI cache on page B1-6

. L2 cache on page B1-7

. Write buffers on page B1-8

. Tightly Coupled Memory on page B1-9
. Asynchronous exceptions on page B1-10
. Semaphores on page B1-12.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B1-1

Introduction to Memory and System Architectures

B1.1

About the memory system

The ARM® architecture has evolved over many years. Over a billion ARM processors have shipped in this
period, the vast majority of these were ARMv4 or ARMvS5 compliant. The memory system requirements of
these applications vary considerably, from simple memory blocks with a flat address map, to systems using
any or all of the following to optimize their use of memory resources:

. multiple types of memory

. caches

. write buffers

. virtual memory and other memory remapping techniques.

Memory system control has primarily been described through the cacheable and bufferable attributes. These
attributes derived their names from the underlying hardware mechanisms, without any formal description
of the properties associated with the mechanisms on which the programmer could rely. In addition, the order
model of the memory accesses made was not defined. An implicit model evolved from early
implementations, which were much simpler systems than those being developed today.

To meet the demands of higher performance systems and their associated implementations, ARMv6
introduces new disciplines for virtual memory systems and a weakly-ordered memory model including an
additional memory barrier command.

Memory behavior is now classified by type:
. strongly ordered
. device

. normal.
These basic types can be further qualified by cacheable and shared attributes as well as access mechanisms.

As in the second edition of the ARM Architecture Reference Manual, general requirements are described in
keeping with the diversity of needs, however, emphasis is given to the ARMv6 virtual memory model and
its absolute requirements. The virtual memory support mechanisms associated with earlier variants are
described in the backwards compatibility model. Some earlier features are deprecated, and therefore not
recommended for use in new designs.

Coprocessor 15 (CP15) remains the primary control mechanism for virtual memory systems, as well as
identification, configuration and control of other memory configurations and system features. CP15
provision is a requirement of ARMvV6.

The Memory System and Memory Order Model is described in Part B as a series of chapters as follows:

Introduction

This chapter.

Memory hierarchy

An overview including basic cache theory and the concept of tightly coupled memory.

Memory Order Model

Memory attributes and order rules introduced with ARMv6.

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to Memory and System Architectures

The System Control coprocessor

An overview of the features and support provided.

Virtual Memory System Architecture (VMSA)

A sophisticated system to control virtual-to-physical address mapping, access permissions
to memory, and other memory attributes, based on the use of a Memory Management Unit
(MMU). The revised ARMv6 model, and the model used by earlier architecture variants, are
described.

Protected Memory System Architecture (PMSA)

An alternative, simpler protection mechanism suitable for many applications that do not
require the full facilities provided by the MMU memory system. The revised ARMv6 and
earlier architecture variant models are described.

Caches and Write buffers

Mechanisms provided to control cache and write buffer functionality in a memory hierarchy.

L1 Tightly Coupled Memory Support

ARMUV6 provision including the associated DMA and Smartcache models.

Fast Context Switch Extension

Describes the Fast Context Switch Extension. This facilitated fast switching between up to
128 processes executing in separate process blocks, each of size up to 32 MB. This is
supported in ARMv6 only for backwards compatibility, and its use is deprecated.

Note

Part B describes a wide variety of functionality. ARMv6 is the first architecture variant to standardize the
memory model and many system level features. It is the first architecture variant to mandate provision of
the System Control coprocessor, and a level of consistency at the system level for hardware and software
design. Because of this, ARMV6 is considered a watershed in terms of how material is presented in Part B.
Absolute requirements are provided for ARMv6 compliant implementations, whereas information can only
be considered as system guidelines for earlier architecture variants.

It is assumed that all versions of the architecture prior to version 4 are now OBSOLETE. For example, all
references to 26-bit mode have been removed.

Some ARM processors prior to ARMv6 have implemented functions in a different manner from those
described here. Because of this, the datasheet or Technical Reference Manual for a particular ARM
processor is the definitive source of information for memory and system control facilities. Processors which
have followed the guidelines are more likely to be compatible with existing and future ARM software.
ARMYV6 establishes a baseline for system design, but there will always be additional functionality and areas
of implementation dependent options. The system designer is strongly encouraged to read the architecture
in conjunction with vendor datasheets for optimal system design and performance.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B1-3

Introduction to Memory and System Architectures

B1.2 Memory hierarchy
Good system design is a balance of many trade-offs to achieve the overall system performance and cost
goals. An important part of this decision process is the memory provision:
. types of memory, for example ROM, Flash, DRAM, SRAM, disk based storage
. size - capacity and silicon area
. access speed - core clock cycles required to read or write a location
. architecture - Harvard (separate instruction and data memories) or Von Neumann (unified memory).
As a general rule, the faster the memory access time, the more constrained the amount of resource available,
because it needs to be closely coupled to the processor core, that is, on the same die. Even on-chip memory
may have different timing requirements because of its type or size, power constraints, and the associated
critical path lengths to access it in the physical layout. Caches provide a means to share the fastest, most
expensive system memory resources between the currently active process threads in an application.
Where a system is designed with different types of memory in a layered model, this is referred to as a
memory hierarchy. Systems can employ caches at multiple levels. The outer layers trade increased latency
for increasing size. All the caches in the system must adhere to a memory coherency policy, which is part
of the system architecture. Such layered systems usually number the layers - level 1, level 2 ... level n- with
the increasing numbers representing increased access times for layers further from the core.
IO can also be provided at the different layers, that is, some no-wait-state register-based peripherals at level
1, out to memory mapped peripherals on remote system buses.
Figure B1-1 shows an example memory hierarchy.
Virtual]
address Address Physical address
Translation
CP15|configuration/
control ovel 1 C A B Y
> evel eve
ARM Core Instruction Cache(s) Caches Level 3
<« — — > |e <« - - > |e
Prefetch DRAM
R15 e e D SRAM
Load Flash
— Tightly ROM
. Store Coupled
> Memo
RO v
TCM(s)
Level 4
(for example,
CF card, disk)
Figure B1-1 Memory hierarchy example
B1-4 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to Memory and System Architectures

The ARMV6 specifies the Level 1 (L1) subsystem, providing cache, Tightly-Coupled Memory (TCM), and
an associated TCM-L1 DMA system. The architecture permits a range of implementations, with software
visible configuration registers to allow identification of the resources that exist. Options are provided to
support the L1 subsystem with a Memory Management Unit (VMSAv6) or a simpler Memory Protection
Unit (PMSAvVO6).

Some provision is also made for multiprocessor implementations and Level 2 (L2) caches. However, these
are not fully specified in this document. To ensure future compatibility, it is recommended that
Implementors of L2 caches and closely-coupled multiprocessing systems work closely with ARM.

VMSAUV6 describes Inner and Outer attributes which are defined for each page-by-page. These attributes are
used to control the caching policy at different cache levels for different regions of memory. Implementations
can use the Inner and Outer attributes to describe caching policy at other levels in an IMPLEMENTATION
DEFINED manner. See sections Memory region attributes on page B4-11 for the architecture details. All
levels of cache need appropriate cache management and must support:

. cache cleaning (write-back caches only)
. cache invalidation (all caches).

ARM processors and software are designed to be connected to a byte-addressed memory. Prior to ARMv6,
addressing was defined as word invariant. Word and halfword accesses to the memory ignored the byte
alignment of the address, and accessed the naturally-aligned value that was addressed, that is, a memory
access ignored address bits 0 and 1 for word access, and ignored bit O for halfword accesses. The endianness
of the ARM processor normally matched that of the memory system, or was configured to match it before
any non-word accesses occurred.

ARMV6 introduces:

. a byte-invariant address model

. support of unaligned word and halfword accesses

. additional control features for loading and storing data in a little or big endian manner.

See Endian support on page A2-30 for details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B1-5

Introduction to Memory and System Architectures

B1.3

L1 cache

Before ARMv6, ARM caches were normally implemented as virtually addressed caches, with virtual
indexing and virtual address tags. With this model, physical pages were only mapped into a single virtual
page, otherwise the result was UNPREDICTABLE. These implementations did not provide coherence between
multiple virtual copies of a single physical page.

ARMV6 specifies a cache architecture where the expected behavior is that normally associated with
physically tagged caches. The ARMv6 L1 cache architecture is designed to reduce the requirement for
cache clean and/or invalidation on a context switch, and to support multiple virtual address aliases to a
particular memory location. Flexibility on the size, associativity or organization of the caches within this
subsystem is provided in the Coprocessor System Control Register (CP15). The cache organization may be
a Harvard architecture with separate instruction and data caches, or a von Neumann architecture with a
single, unified cache.

In a Harvard architecture, an implementation does not need to include hardware support for coherency
between the Instruction and Data caches. Where such support would be required, for example, in the case
of self-modifying code, the software must make use of the cache cleaning instructions to avoid such
problems.

An ARMV6 L1 cache must appear to software to behave as follows:

. the entries in the cache do not need to be cleaned and/or invalidated by software for different virtual
to physical mappings

. aliases to the same physical address may exist in memory regions that are described in the page tables
as being cacheable, subject to the restrictions for 4KB small pages outlined in Restrictions on Page
Table Mappings on page B6-11.

Caches can be implemented with virtual or physical addressing (including indexing) provided these
behavior requirements are met. ARMv6 L1 cache management uses virtual addresses, which is consistent
with earlier architecture guidelines and implementations.

For architecture details on the L1 cache see Chapter B6 Caches and Write Buffers.

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

B1.4

Introduction to Memory and System Architectures

L2 cache

L1 caches are always tightly coupled to the core, but L2 caches can be either:
. tightly coupled to the core
. implemented as memory mapped peripherals on the system bus.

A recommended minimum set of L2 cache commands is defined for configuration and control.
Closely-coupled L2 caches must be managed through the System Control Coprocessor. It is
IMPLEMENTATION DEFINED whether they use virtual or physical addresses for control functions. Memory
mapped L2 caches must use physical address based control.

Further levels of cache are possible, but their control is not mandated within ARMv6 except that they must
comply with:

. the inner and outer attribute model described in Memory region attributes on page B4-11.

. coherency needs associated with managing multi-level caches through the System Control
Coprocessor interface, see Considerations for additional levels of cache on page B6-12.

For architecture details on the L2 cache see section L2 cache.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B1-7

Introduction to Memory and System Architectures

B1.5

Write buffers

The term write buffer can cover a number of different behaviors. The effects of these behaviors on different
uses of memory mapped space needs to be understood by the programmer to avoid unexpected results. For
this reason, the term bufferable is no longer used as an attribute to describe the required behavior of a
memory system.

A write buffer exists to decouple a write transaction from the execution of subsequent memory transactions.
In addition, particular buffer implementations may perform additional tasks such as the re-ordering of
memory transfers, the merging of multiple writes into proximate locations, or the forwarding of write data
to subsequent reads. These buffering behaviors are becoming more cache-like in nature. The memory
attributes Strongly Ordered, Device, and Normal described in Strongly Ordered memory attribute on

page B2-12 are designed to allow the programmer to describe the required behavior, leaving the
Implementor free to choose whatever structures are optimal for a given system, provided that the behavior
for each memory attribute is correctly fulfilled.

For writes to buffered areas of memory, precise aborts can only be signaled to the processor as a result of
conditions that are detectable at the time the data is placed in the write buffer. Conditions that can only be
detected when the data is later written to main memory, such as an ECC error from main memory, must be
handled by other methods, by raising an interrupt or an imprecise abort.

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Introduction to Memory and System Architectures

B1.6 Tightly Coupled Memory

The Tightly Coupled Memory (TCM) is an area of memory that can be implemented alongside the L1 cache,
as part of the level 1 memory subsystem. The TCM is physically addressed, with each bank occupying a
unique part of the physical memory map. See SmartCache Behavior on page B7-6 for an optional,
smartcache, ARMv6 usage model. In keeping with the L1 cache, the TCM may be structured as a Harvard
architecture with separate instruction and data TCM, or as a Von Neumann architecture with a unified TCM.

The TCM is designed to provide low latency memory that can be used by the processor without the
unpredictability that is a feature of caches. Such memory can be used to hold critical routines, such as
interrupt handling routines or real-time tasks, where the indeterminacy of a cache would be highly
undesirable. Other example uses are:

. scratchpad data
. data types whose locality properties are not well suited to caching
. critical data structures such as Interrupt stacks.

For architectural details on TCM, see Chapter B7 Tightly Coupled Memory.

B1.6.1 Tightly Coupled Memory versus cache memory

The TCM is designed to be used as part of the physical memory map of the system, and is not expected to
be backed by a level of external memory with the same physical addresses. For this reason, the TCM behaves
differently from the caches for regions of memory which are marked as being Write-Through cacheable. In
such regions, no external writes occur in the event of a write to memory locations contained in the TCM.

It is an architectural requirement that memory locations are contained either in the TCM or the cache, not
in both. In particular, no coherency mechanisms are supported between the TCM and the cache. This means
that it is important when allocating the base address of the TCM to ensure that the TCM address range does
not overlap with any valid cache entries.

B1.6.2 DMA support for Tightly Coupled Memory

ARMYV6 includes a DMA model with register support for its configuration. This is the only mechanism other
than the associated processor core that can read and write the TCM. Up to two DMA channels are provided
for. This allows chained operations, see Level I (L1) DMA model on page B7-8 for architectural details.

Note

The TCM DMA mechanism and smartcache functionality described in SmartCache Behavior on page B7-6
are mutually exclusive.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B1-9

Introduction to Memory and System Architectures

B1.7 Asynchronous exceptions
Many exceptions are synchronous events related to instruction execution in the core. However, the following
exceptions cause asynchronous events to occur:
. Reset on page A2-18
. Interrupts
. Imprecise aborts on page B1-11.
B1.7.1 Reset
This is the only non-maskable event in the ARM architecture. See Reset on page A2-18 for more
information.
B1.7.2 Interrupts
ARM processors implement fast and normal levels of interrupt. Both interrupts are signaled externally, and
many implementations synchronize interrupts before an exception is raised.
Fast interrupt request (F1IQ)
Disables subsequent normal and fast interrupts by setting the I and F bits in the CPSR.
Non-maskable (by software) fast interrupt request Same as FIQ, except the F bit in the CPSR can only
be set by hardware on exception entry. Software can only (re)enable the interrupt
mechanism.
Normal interrupt request (IRQ)
Disables subsequent normal interrupts by setting the I bit in the CPSR.
Some implementations incorporate a mechanism controlled by the System Control Coprocessor to return
interrupt vectors directly to the core. The mechanism typically applies to the IRQ mode, but can also apply
to FIQ mode. The exact behavior is IMPLEMENTATION DEFINED.
For more information on interrupts, see Interrupt request (IRQ) exception on page A2-24, Fast interrupt
request (FIQ) exception on page A2-24, and Vectored interrupt support on page A2-26.
Cancelling interrupts
It is the responsibility of software (the interrupt handler) to ensure that the cause of an interrupt is cancelled
(no longer signaled to the processor) before interrupts are re-enabled (by clearing the I or F bit, or both, in
the CPSR). Interrupts can be cancelled with any instruction that might make an explicit data access, that is:
. any load
. any store
. a swap
. any coprocessor instruction.
B1-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

B1.7.3

Introduction to Memory and System Architectures

The latency between the memory or coprocessor operation to cancel an interrupt and the point at which the
interrupt masks (I and F) in the CPSR can be cleared is IMPLEMENTATION DEFINED. In particular, the
ARMv6 memory types do not include a type whose accesses are architecturally guaranteed to complete
before the execution of a following instruction. As a result, the architected mechanism to ensure the
cancelling of an interrupt is to poll an IMPLEMENTATION DEFINED location dedicated to each interrupt
cancelling mechanism, in order to ensure that the interrupt has been cancelled before the interrupt mask is
cleared.

Imprecise aborts

ARMYV6 has introduced the concept of imprecise aborts. These aborts can occur after the instruction that
caused the abort has been retired. Therefore an imprecise abort is fatal, at least to the process that caused it,
or requires external resources to record address, data and control information for a software recovery. These
aborts are masked on entry to most exception vectors, and can be masked by privileged software using the
CPSR_A bit. See Exceptions on page A2-16 for more information.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B1-11

Introduction to Memory and System Architectures

B1.8

Semaphores

The Swap (SWP) and Swap Byte (SWPB) instructions need to be used with care to ensure that expected behavior
is observed. Two examples are as follows:

Systems with multiple bus masters that use the Swap instructions to implement semaphores to control
interaction between different bus masters.

In this case, the semaphores must be placed in an uncached region of memory, where any buffering
of writes occurs at a point common to all bus masters using the mechanism. The Swap instruction
then causes a locked read-write bus transaction.

This type of semaphore can be externally aborted.
Systems with multiple threads running on a uniprocessor that use the Swap instructions to implement
semaphores to control interaction of the threads.

In this case, the semaphores can be placed in a cached region of memory, and a locked read-write bus
transaction might or might not occur. The Swap and Swap Byte instructions are likely to have better
performance on such a system than they do on a system with multiple bus masters (as described
above).

This type of semaphore has UNPREDICTABLE behavior if it is externally aborted.

From ARMV6, load and store exclusive instructions (LDREX and STREX) are the preferred method of
implementing semaphores for system performance reasons. The new mechanism is referred to as
synchronization primitives, and requires data monitor logic within the memory system that monitors access
to the requested location from all sources in the shared memory model case. The instructions provide a
degree of decoupling between the load and store elements, with the store only being successful if no other
resource has written to the location since its associated load. See Synchronization primitives on page A2-44
for more details.

Note

The Swap and Swap Byte instructions are deprecated in ARMv6.

B1-12

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter B2
Memory Order Model

This chapter provides a high-level overview of the memory order model. It contains the following sections:
. About the memory order model on page B2-2

. Read and write definitions on page B2-4

. Memory attributes prior to ARMv6 on page B2-7

. ARMv6 memory attributes - introduction on page B2-8

. Ordering requirements for memory accesses on page B2-16

. Memory barriers on page B2-18

. Memory coherency and access issues on page B2-20.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-1

Memory Order Model

B2.1

About the memory order model

The architecture prior to ARMv6 did not attempt to define the acceptable memory ordering of explicit
memory transactions, describing the regions of memory according to the hardware approaches that had
previously been used to implement such memory systems. Thus regions of memory had been termed as
being one of Write-Through Cacheable, Write-Back Cacheable, Non-Cacheable Bufferable or
Non-Cacheable, Non-Bufferable. These terms are based on the previous hardware implementations of cores
and the exact properties of the memory transactions could not be rigorously inferred from the memory
names. Implementations have chosen to interpret these names in different ways, leading to potentially
incompatible uses.

In a similar manner, the order in which memory accesses could be presented to memory was not defined,
and in particular there was no definition of what order could be relied upon by an observer of the memory
transactions generated by a processor. As implementations and systems become more complicated, these
undefined areas of the architecture move from being simply based on a standard default to having the
potential of presenting significant incompatibilities between different implementations; at processor core
and system level.

ARMV6 introduces a set of memory types - Normal, Device, and Strongly Ordered - with memory access
properties defined to fit in a largely backwards compatible manner to the defacto meanings of the original
memory regions. A potential incompatibility has been introduced with the need for a software polling policy
when it is necessary for the program to be aware that memory accesses to I/O space have completed, and all
side effects are visible across the whole system. This reflects the increasing difficulty of ensuring linkage
between the completion of memory accesses and the execution of instructions within a complex
high-performance system.

A shared memory attribute to indicate whether a region of memory is shared between multiple processors
(and therefore requires an appearance of cache transparency in an ordering model) is also introduced.
Implementations remain free to choose the mechanisms to implement this functionality.

The key issues with the memory order model are slightly different depending on the target audience:

. for software programmers, the key factor is that side effects are only architecturally visible after
software polling of a location that indicates that it is safe to proceed

. for silicon Implementors, the Strongly Ordered and Device memory attributes defined in this chapter
place certain restrictions on the system designer in terms of what they are allowed to build, and when
to indicate completion of a transaction.

Additional attributes and behaviors relate to the memory system architecture. These features are defined in
other areas of this manual:

. Virtual memory systems based on an MMU described in Chapter B4 Virtual Memory System
Architecture.

. Protected memory systems based on an MPU described in Chapter B5 Protected Memory System
Architecture.

. Caches and write buffers described in Chapter B6 Caches and Write Buffers.

. Tightly Coupled Memory (TCM) described in Chapter B7 Tightly Coupled Memory

B2-2

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

Some attributes are described in relation to an MMU for ARMv6. In general, these can also be applied to
an MPU based system.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-3

Memory Order Model

B2.2

B2.2.1

B2.2.2

B2.2.3

Read and write definitions

Memory accesses can be either reads or writes.

Reads
Reads are defined as memory operations that have the semantics of a load.

In the ARM® instruction set, these are:
. LDM, LDRH, LDRSH, LDRB, LDRSB

. LDM, LDRD, LDRT, LDRBT,

. LDC, RFE, SWP, SWPB, LDREX, STREX.

In the Thumb® instruction set, they are:
. LDR, LDRH, LDRSH, LDRB, LDRSB
. LDM, POP.

Jazelle® opcodes that are accelerated by hardware can cause a number of reads to occur, according to the
state of the operand stack and the implementation of the Jazelle hardware acceleration.

Writes
Writes are defined as operations that have the semantics of a store.

In the ARM instruction set, these are:
. STR, STRH, STRB

. STM, STRD, STRT, STRBT

. STC, SRS, SWP, SWPB, STREX

In the Thumb instruction set, they are:
. STR, STRH, STRB
. STM, PUSH

Jazelle opcodes that are accelerated by hardware can cause a number of writes to occur, according to the
state of the operand stack and the implementation of the Jazelle hardware acceleration.

Memory synchronization primitives

Synchronization primitives are required to ensure correct operation of system semaphores within the
memory order model. The memory synchronization primitive instructions are defined as those instructions
that are used to ensure memory synchronization:

. LDREX, STREX

. SWP, SWPB (deprecated in ARMVO).

Prior to ARMv6, support consisted of the SWP and SWPB instructions. ARMv6 has introduced new LDREX and
STREX (Load and Store Exclusive) instructions. See Memory barriers on page B2-18 for the architecture
details.

B2-4

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

LDREX and STREX are supported to shared and non-shared memory. Non-shared memory can be used when the
processes to be synchronized are running on the same processor. When the processes to be synchronized are
running on different processors, shared memory must be used.

B2.2.4 Observability and completion

The concept of observability applies to all memory, however, the concept of global observability only
applies to shared memory. Normal, Device and Strongly Ordered memory are defined in ARMv6 memory
attributes - introduction on page B2-8.

For all memory:

. A write to a location in memory is said to be observed by a memory system agent when a subsequent
read of the location by the same memory system agent returns the value written by the write.

. A write to a location in memory is said to be globally observed when a subsequent read of the location
by any memory system agent returns the value written by the write.

. A read to a location in memory is said to be observed by a memory system agent when a subsequent
write of the location by the same memory system agent has no effect on the value returned by the read.

. A read to a location in memory is said to be globally observed when a subsequent write of the location
by any memory system agent has no effect on the value returned by the read.

Additionally, for Strongly Ordered memory:

. A read or write to a memory mapped location in a peripheral which exhibits side-effects is said to be
observed, and globally observed, only when the read or write meets the general conditions listed, can
begin to affect the state of the memory-mapped peripheral, and can trigger any side effects that affect
other peripheral devices, cores and/or memory.

For all memory, the completion rules are:

. A read or write is defined to be complete when it is globally observed and any page table walks
associated with the read or write are complete.

. A page table walk is defined to be complete when the memory transactions associated with the page
table walk are globally observed, and the TLB is updated.

. A cache, branch predictor or TLB maintenance operation is defined to be complete when the effects
of operation are globally observed and any page table walks which arise are complete.

Note

For all memory-mapped peripherals, where the side-effects of a peripheral are required to be visible to the
entire system, the peripheral must provide an IMPLEMENTATION DEFINED location which can be read to
determine when all side effects are complete.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-5

Memory Order Model

Side effect completion in Strongly Ordered and Device memory

To determine when any side effects have completed, it is necessary to poll a location associated with the
device, for example, a status register. This is a key element of the architected memory order model.

B2-6 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

B2.3 Memory attributes prior to ARMv6

Prior to ARMv6, all memory has been tagged with a combination of two control bits in the ARM virtual
and protected memory management models, VMSA and PMSA respectively. The bits are:

o a bufferable (B) bit (allow write buffering between the core and memory)
. a cacheable (C) bit.

These are traditionally interpreted to define the memory behavior of a given location as shown in

Table B2-1.
Table B2-1 Interpretation of cacheable and bufferable bits
c B Write-through Write-back only Write-back/write-through
cache cache cache

0 0 Uncached/unbuffered Uncached/unbuffered Uncached/unbuffered

0 1 Uncached/buffered Uncached/buffered Uncached/buffered

1 0 IMPLEMENTATION UNPREDICTABLE Write-through cached/buffered
DEFINED

1 1 Cached/buffered Cached/buffered Write-back cached/buffered

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-7

Memory Order Model

B2.4 ARMv6 memory attributes - introduction

ARMVG6 defines a set of memory attributes with the characteristics required to support all memory and

devices in the system memory map. The ordering of accesses for regions of memory is also defined by the

memory attributes.

There are three mutually exclusive main memory type attributes to describe the memory regions:

. Normal

. Device

. Strongly Ordered.

Normal memory is idempotent, exhibiting the following properties:

. write transactions can be repeated with no side effects

. repeated read transactions return the last value written to the resource being read

. transactions can be restarted if interrupted

. multibyte accesses need not be atomic, and can be restarted or replayed

. unaligned accesses can be supported

. transactions can be merged prior to accessing the target memory system

. read transactions can prefetch additional memory locations with no side effects.

System peripherals (I/0) generally conform to different access rules; defined in ARMv6 as Strongly

Ordered or Device memory. Examples of I/O accesses are:

. FIFOs where consecutive accesses add (write) or remove (read) queued values

. interrupt controller registers where an access can be used as an interrupt acknowledge changing the
state of the controller itself

. memory controller configuration registers that are used to set up the timing (and correctness) of areas
of normal memory

. memory-mapped peripherals where the accessing of memory locations causes side effects within the
system.

To ensure system correctness, access rules are more restrictive than those to normal memory:

. accesses (reads and writes) can have side effects

. transactions must not be repeated, for example, on return from an exception

. transaction number, size and order must be maintained.

In addition, the Shared attribute indicates whether the memory is private to a single processor, or accessible

from multiple processors or other bus master resources, for example, an intelligent peripheral with DMA

capability.

Table B2-2 on page B2-9 shows a summary of the memory attributes.

B2-8 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

Table B2-2 Memory attribute summary

Memory type Shared . -
attribute attribute Other attributes Description
Strongly Ordered - All memory accesses to Strongly Ordered
memory occur in program order. All Strongly
Ordered accesses are assumed to be Shared.
Device Shared Designed to handle memory mapped peripherals
that are shared by several processors.
Non-Shared Designed to handle memory mapped peripherals
that are used only by a single processor.
Normal Shared Non-cacheable/ Designed to handle normal memory which is
Write-Through shared between several processors.
cacheable/
Write-Back cacheable
Non-Shared Non-cacheable/ Designed to handle normal memory which is used
Write-Through only by a single processor.
cacheable/
Write-Back cacheable
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-9

Memory Order Model

B2.4.1

Normal memory attribute

This attribute is defined for each page in an MMU, can be further defined as being Shared or Non-Shared,
and describes most memory used in a system. It is designed to provide memory access orderings that are
suitable for Normal memory. Such memory stores information without side effects. Normal memory may
be read/write or read-only.

For writable Normal memory unless there is a change to the physical address mapping:

. A load from a specific location will return the most recently stored data at that location for the same
processor.

o Two loads from a specific location, without a store in between, will return the same data for each load.
For read-only Normal memory:
. Two loads from a specific location will return the same data for each load.

Accesses to Normal Memory conform to the weakly-ordered model of memory ordering. A description of
the weakly-ordered model can be found in standard texts describing memory ordering issues. A
recommended text is chapter 2 of Memory Consistency Models for Shared Memory-Multiprocessors,
Kourosh Gharachorloo, Stanford University Technical Report CSL-TR-95-685.

All explicit accesses must correspond to the ordering requirements of accesses described in Ordering
requirements for memory accesses on page B2-16.

Non-shared Normal memory

The Non-Shared Normal memory attribute is designed to describe normal memory that can be accessed only
by a single processor.

A region of memory marked as Non-Shared Normal does not have any requirement to make the effect of a
cache transparent. For regions of memory marked as Non-shared Non-cacheable, a DMB memory barrier
must be used in situations where the forwarding of data from the internal buffering of previous accesses
within the single processor is required.

Shared Normal memory

The Shared Normal memory attribute is designed to describe normal memory that can be accessed by
multiple processors or other system masters.

A region of memory marked as Shared Normal is one in which the effect of interposing a cache (or caches)
on the memory system is entirely transparent to data accesses. Explicit software management is still
required to ensure coherency of instruction caches. Implementations can use a variety of mechanisms to
support this, from very simply not caching accesses in shared regions to more complex hardware schemes
for cache coherency for those regions.

Writes to Shared Normal Memory may not be atomic, that is, all observers might not see the writes
occurring at the same time. To preserve coherence where two writes are made to the same location, it is
required that the order of those writes is seen to be the same by all observers. Reads to Shared Normal
Memory that are aligned in memory to the size of the access must be atomic.

B2-10

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

Cacheable write-through, cacheable write-back and non-cacheable memory

In addition to marking a region of normal memory as being Shared or Non-Shared, each page of memory
marked in an MMU as Normal can also be marked as being one of:

. cacheable write-through
. cacheable write-back
. non-cacheable.

This marking is independent of the marking of a region of memory as being Shared or Non-Shared. It
indicates the required handling of the data region for reasons other than those to handle the requirements of
shared data. As a result, it is acceptable for a region of memory that is marked as being cacheable and shared
not to be held in the cache in an implementation which handles shared regions as not caching the data.

If the same memory locations are marked as having different cacheable attributes, for example by the use of
synonyms in a virtual to physical address mapping, UNPREDICTABLE behavior results.

B2.4.2 Device memory attribute

The Device memory attribute is defined for memory locations where an access to the location can cause side
effects, or where the value returned for a load can vary depending on the number of loads performed.
Memory mapped peripherals and I/O locations are typical examples of areas of memory that should be
marked as being Device. The Device attribute is defined for each page in an MMU.

Explicit accesses from the processor to regions of memory marked as Device occur at the size and order
defined by the instruction. The number of accesses that occur to such locations is the number that is specified
by the program. Implementations must not repeat accesses to such locations when there is only one access
in the program, that is, the accesses are not restartable. An example where an implementation might want
to repeat an access is before and after an interrupt, in order to allow the interrupt to cause a slow access to
be abandoned. Such implementation optimizations must not be performed for regions of memory marked
as Device.

In addition, address locations marked as Device are non-cacheable. While writes to device memory may be
buffered, writes shall only be merged where the correct number of accesses, order, and their size is
maintained. Multiple accesses to the same address cannot change the number of accesses to that address.
Coalescing of accesses is not permitted in this case.

Accesses to memory mapped locations that have side effects that apply to Normal memory locations require
Memory Barriers to ensure correct execution. An example is the programming of the configuration registers
of a memory controller with respect to the memory accesses it controls.

All explicit accesses to memory marked as Device must correspond to the ordering requirements of accesses
described in Ordering requirements for memory accesses on page B2-16.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-11

Memory Order Model

B2.4.3

Shared attribute

The Shared attribute is defined for each page in an MMU. These regions can be referred to as:
. memory marked as Shared Device
. memory marked as Non-Shared Device.

Memory marked as Non-Shared Device is defined as only accessible by a single processor. An example of
a system supporting Shared and Non-shared Device memory is an implementation that supports a local bus
for its private peripherals, whereas system peripherals are situated on the main (Shared) system bus. Such a
system might have more predictable access times for local peripherals such as watchdog timers or interrupt
controllers.

Strongly Ordered memory attribute

The Strongly Ordered memory attribute is defined for each page in the MMU. Accesses to memory marked
as Strongly Ordered have a strong memory-ordering model for all explicit memory accesses from that
processor. An access to memory marked as Strongly Ordered is required to act as if a DMB memory barrier
were inserted before and after the access from that processor. See DataMemoryBarrier (DMB) CP15
register 7 on page B2-18.

To maintain backwards compatibility with ARMvS, any ARMVS instructions that implicitly or explicitly
change the interrupt masks in the CSPR and appear in program order after a Strongly Ordered access must
wait for the Strongly Ordered memory access to complete. These instructions are MSR, with the control field
mask bit set, and the flag-setting variants of arithmetic and logical instructions with R15 as the destination
register (these copy the SPSR to CSPR). This requirement exists only for backwards compatibility with
previous versions of the ARM architecture; the behavior is deprecated in ARMv6. ARMv6 compliant
programs must not rely on this behavior, but instead include an explicit Memory Barrier between the
memory access and the following instruction, see DataSynchronizationBarrier (DSB) CP15 register 7 on
page B2-18 when synchronization is required.

Explicit accesses from the processor to memory marked as Strongly Ordered occur at their program size,
and the number of accesses that occur to such locations is the number that are specified by the program.
Implementations must not repeat accesses to such locations when there is only one access in the program,
that is, the accesses are not restartable.

Address locations marked as Strongly Ordered are not held in a cache, and are always treated as Shared
memory locations.

All explicit accesses to memory marked as Strongly Ordered must correspond to the ordering requirements
of accesses described in Ordering requirements for memory accesses on page B2-16.

B2-12

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

B2.4.4 Memory access restrictions

The following restrictions apply to memory accesses:

For any access X, the bytes accessed by X must all have the same memory type attribute, otherwise,
the behavior of the access is UNPREDICTABLE. That is, unaligned accesses that span a boundary
between different memory types are UNPREDICTABLE.

For any two memory accesses X and Y, such that X and Y are generated by the same instruction, X
and Y must all have the same memory type attribute, otherwise, the results are UNPREDICTABLE. For
example, an LDC, LDM, LDRD, STC, STM, or STRD that spans a boundary between Normal and Device
memory is UNPREDICTABLE.

Instructions that generate unaligned memory accesses to Device or Strongly Ordered memory are
UNPREDICTABLE.

Memory operations which cause multiple transactions to Device or Strongly Ordered memory should
not crosses a 4KB address boundary to ensure access rules are maintained. For this reason, it is
important that accesses to volatile memory devices are not made using single instructions that cross
a 4KB address boundary. This restriction is expected to cause restrictions to the placing of such
devices in the memory map of a system, rather than to cause a compiler to be aware of the alignment
of memory accesses.

For instructions that generate accesses to Device or Strongly Ordered memory, implementations do
not change the sequence of accesses specified by the pseudo-code of the instruction. This includes
not changing how many accesses there are, nor their time order, nor the data sizes and other properties
of each individual access. Furthermore, processor core implementations expect any attached memory
system to be able to identify accesses by memory type, and to obey similar restrictions with regard
to the number, time order, data sizes and other properties of the accesses.

Exceptions to this rule are:

— Animplementation of a processor core can break this rule, provided that the information it
does supply to the memory system enables the original number, time order, and other details
of the accesses to be reconstructed. In addition, the implementation must place a requirement
on attached memory systems to do this reconstruction when the accesses are to Device or
Strongly Ordered memory.

For example, the word loads generated by an LDM might be paired into 64-bit accesses by an
implementation with a 64-bit bus. This is because the instruction semantics ensure that the
64-bit access is always a word load from the lower address followed by a word load from the
higher address, provided a requirement is placed on memory systems to unpack the two word
loads where the access is to Device or Strongly Ordered memory.

— Any implementation technique that produces results that cannot be observed to be different
from those described above is legitimate.

Multi-access instructions that load or store R15 must only access normal memory. If they access
Device or Strongly Ordered memory the results are UNPREDICTABLE.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-13

Memory Order Model

. Instruction fetches must only access normal memory. If they access Device or Strongly Ordered
memory, the results are UNPREDICTABLE. By example, instruction fetches must not be performed to
areas of memory containing read-sensitive devices, because there is no ordering requirement between
instruction fetches and explicit accesses.

o If the same memory location is marked as Shared Normal and Non-Shared Normal in a MMU, for
example by the use of synonyms in a virtual to physical address mapping, UNPREDICTABLE behavior
results.

. If the same memory locations are marked as having different memory types (Normal, Device, or

Strongly Ordered), for example by the use of synonyms in a virtual to physical address mapping,
UNPREDICTABLE behavior results.

. If the same memory locations are marked as having different cacheable attributes, for example by the
use of synonyms in a virtual to physical address mapping, UNPREDICTABLE behavior results.

. If the same memory location is marked as being Shared Device and Non-Shared Device in an MMU,
for example by the use of synonyms in a virtual to physical address mapping, UNPREDICTABLE
behavior results.

Note

Implementations must also ensure that prefetching down non-sequential paths, for example, as a result of a
branch predictor, cannot cause unwanted accesses to read-sensitive devices. Implementations may prefetch
by an IMPLEMENTATION DEFINED amount down a sequential path from the instruction currently being
executed.

Prior to ARMv6, it is IMPLEMENTATION DEFINED whether a low interrupt latency mode is supported. From
ARMVv6, low interrupt latency support is controlled from the System Control coprocessor (FI-bit). It is
IMPLEMENTATION DEFINED whether multi-access instructions behave correctly in low interrupt latency
configurations.

B2-14

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

B2.4.5 Backwards compatibility

ARMYV6 memory attributes are significantly different from those in previous versions of the architecture.
Table B2-3 shows the interpretation of the earlier memory types in the light of this definition.

Table B2-3 Backwards compatibility

Previous architectures ARMv6 attribute

NCNB (Non-cacheable, Non-Bufferable) Strongly Ordered 2

NCB (Non-cacheable, Bufferable) Shared Device 2
Write-Through cacheable, Bufferable Non-Shared Normal (Write-Through cacheable)
Write-Back cacheable, Bufferable Non-Shared Normal (Write-Back cacheable)

a. Memory locations contained within the TCMs are treated as being Non-Cacheable, not
Strongly Ordered or Shared Device

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-15

Memory Order Model

B2.5 Ordering requirements for memory accesses

ARMV6 defines access restrictions in the memory ordering allowed, depending on the memory attributes of
the accesses involved. Figure B2-1 shows the memory ordering between two explicit accesses Al and A2,
where A1 occurs before A2 in program order.

The symbols used in Figure B2-1 are as follows:

< Accesses must be globally observed in program order, that is, A1 must be globally observed
strictly before A2.
(blank) Accesses can be globally observed in any order, provided that the requirements of

uniprocessor semantics, for example respecting dependencies between instructions within a
single processor, are maintained.

A2 Normal Device Read Strongly Normal Device Write Strongly
Read Ordered Write Ordered
A Non- Shared Read Non- Shared Write
Shared Shared
Normal Read < <
Device Read
(Non-Shared) < < < <
Device Read
(Shared) < < < <
Strongly Ordered < < < < < < < <
Read
Normal Write < <
Device Write < < < <
(Non-Shared)
Device Write
(Shared) < < < <
Strongly Or(:ﬁ;ietg < < < < < < < <

Figure B2-1 Memory ordering restrictions

There are no ordering requirements for implicit accesses to any type of memory.

B2-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

B2.5.1 Program order for instruction execution
Program order of instruction execution is the order of the instructions in the control flow trace.
Explicit memory accesses in an execution can be either:
Strictly Ordered Denoted by <. Must occur strictly in order.
Ordered Denoted by <=. Must occur either in order, or simultaneously.

Multiple load and store instructions, such as LDM, LDRD, STM, and STRD, generate multiple word accesses, each
of which is a separate access for the purpose of determining ordering.

The rules for determining program order for two accesses Al and A2 are:
If A1 and A2 are generated by two different instructions:

. Al < A2 if the instruction that generates A1 occurs before the instruction that generates A2 in
program order

. A2 < Al if the instruction that generates A2 occurs before the instruction that generates Al in
program order.

If Al and A2 are generated by the same instruction:

. If A1 and A2 are the load and store generated by a SWP or SWPB instruction:
— Al < A2if Al is the load and A2 is the store
— A2 < Al if A2 is the load and Al is the store.
. If Al and A2 are two word loads generated by an LDC, LDRD, or LDM instruction, or two word stores

generated by an STC, STRD, or STM instruction, excluding LDM or STM instructions whose register list
includes the PC:

— Al <= A2 if the address of Al is less than the address of A2
— A2 <= Al if the address of A2 is less than the address of Al.
. If A1 and A2 are two word loads generated by an LDM instruction whose register list includes the PC

or two word stores generated by an STM instruction whose register list includes the PC, the program
order of the memory operations is not defined.

. If A1 and A2 are two word loads generated by an LDRD instruction or two word stores generated by
an STRD instruction whose register list includes the PC, Rd equals R14 and the instruction is
UNPREDICTABLE.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-17

Memory Order Model

B2.6

B2.6.1

B2.6.2

Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, used to force
synchronization events by a processor with respect to retiring load/store instructions in a processor core. A
memory barrier is used to guarantee completion of preceding load/store instructions to the programmers
model, flushing of any prefetched instructions prior to the event, or both. ARMv6 mandates three explicit
barrier instructions in the System Control Coprocessor to support the memory order model described in this
chapter, and requires these instructions to be available in both privileged and user modes:

. DataMemoryBarrier as described in DataMemoryBarrier (DMB) CP15 register 7

. DataSynchronizationBarrier (DataWriteBarrier) as described in DataSynchronizationBarrier (DSB)
CP1I5 register 7

. PrefetchFlush as described in PrefetchFlush CP15 register 7 on page B2-19.

These instructions may be sufficient on their own, or may need to be used in conjunction with cache and
memory management maintenance operations; operations which are only available in privileged modes.
Support of memory barriers in earlier versions of the architecture is IMPLEMENTATION DEFINED.

Explicit memory barriers affect reads and writes to the memory system generated by load and store
instructions being executed in the CPU. Reads and writes generated by L1 DMA transactions, and
instruction fetches or accesses caused by a hardware page table access, are not explicit accesses.

DataMemoryBarrier (DMB) CP15 register 7
DMB acts as a data memory barrier, exhibiting the following behavior:

. All explicit memory accesses by instructions occurring in program order before this instruction are
globally observed before any explicit memory accesses due to instructions occurring in program
order after this instruction are observed.

. DataMemoryBarrier has no effect on the ordering of other instructions executing on the processor.

As such, DMB ensures the apparent order of the explicit memory operations before and after the instruction,
without ensuring their completion.

The encoding for DataMemoryBarrier is described in Register 7: cache management functions on
page B6-19.

DataSynchronizationBarrier (DSB) CP15 register 7

Note

This operation has historically been referred to as DrainWriteBuffer or DataWriteBarrier (DWB). From
ARMVG, these names (and the use of DWB) are deprecated in favor of the new DataSynchronizationBarrier
name and DSB. DSB better reflects the functionality provided in ARMV6; it is architecturally defined to
include all cache, TLB and branch prediction maintenance operations as well as explicit memory operations.

B2-18

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

The DataSynchronizationBarrier operation acts as a special kind of memory barrier. The DSB operation
completes when:

. All explicit memory accesses before this instruction complete.
. All Cache, Branch predictor and TLB maintenance operations preceding this instruction complete.
In addition, no instruction subsequent to the DSB may execute until the DSB completes.

The encoding for DataSynchronizationBarrier is described in Register 7: cache management functions on
page B6-19.

B2.6.3 PrefetchFlush CP15 register 7

The PrefetchFlush instruction flushes the pipeline in the processor, so that all instructions following the
pipeline flush are fetched from cache or memory after the instruction has been completed. It ensures that
the effects of context altering operations, such as changing the Application Space IDentifier (ASID), or
completed TLB maintenance operations or branch predictor maintenance operations, as well as all changes
to the CP15 registers, executed before the PrefetchFlush are visible to the instructions fetched after the
PrefetchFlush.

In addition, the PrefetchFlush operation ensures that any branches which appear in program order after the
PrefetchFlush are always written into the branch prediction logic with the context that is visible after the
PrefetchFlush. This is required to ensure correct execution of the instruction stream.

Note

Any context altering operations appearing in program order after the PrefetchFlush only take effect after the
PrefetchFlush has been executed. This is due to the behavior of the context altering instructions.

Note

ARM implementations are free to choose how far ahead of the current point of execution they prefetch
instructions; either a fixed or a dynamically varying number of instructions. As well as being free to choose
how many instructions to prefetch, an ARM implementation can choose which possible future execution
path to prefetch along. For example, after a branch instruction, it can choose to prefetch either the instruction
following the branch or the instruction at the branch target. This is known as branch prediction.

A potential problem with all forms of instruction prefetching is that the instruction in memory might be
changed after it was prefetched but before it is executed. If this happens, the modification to the instruction
in memory does not normally prevent the already prefetched copy of the instruction from executing to
completion. The PrefetchFlush and memory barrier instructions (DMB or DSB as appropriate) are used to force
execution ordering where necessary. See Ordering of cache maintenance operations in the memory order
model on page B2-21.

The encoding for the PrefetchFlush is described in Register 7: cache management functions on page B6-19.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-19

Memory Order Model

B2.7

B2.7.1

Memory coherency and access issues

System designers and programmers need to consider all aspects of a design for overall system correctness.
This section outlines some of the problems and pitfalls faced, along with the necessary steps which should
be taken to ensure predictable system behavior.

Note

For the definitions in this section, a return from an exception is defined to mean one of:

. Using a data-processing instruction with the S bit set, and the PC as the destination.
. Using the Load Multiple with Restore CPSR instruction. See LDM (3) on page A4-40 for details.
. Using an RFE instruction.

Introduction to cache coherency

When a cache and/or a write buffer is used, the system can hold multiple versions of the value of a memory
location. Possible physical locations for these values are main memory, write buffers and caches. If Harvard
caches are used, either or both of the instruction cache and the data cache can contain a value for the memory
location. In a multi-level cache, a cache line may only be present in some levels, having been overwritten or
evicted elsewhere.

Not all of these physical locations necessarily contain the value written to the memory location most
recently. The memory coherency problem is to ensure that when a memory location is read (either by a data
read or an instruction fetch), the value actually obtained is always the value that was written to the location
most recently.

In the ARM memory system architectures, some aspects of memory system coherency are required to be
provided automatically by the system. Other aspects are dealt with by memory coherency rules, which are
limitations on how programs must behave if memory coherency is to be maintained. The memory attribute
distinguishing shared and non-shared memory, as defined in ARMv6 memory attributes - introduction on
page B2-8 for ARMV6 is designed to provide information on coherency needs, allowing implementations
to maintain overall correctness, for example, allowing an implementation to enforce a non-cacheable policy
on a region of memory marked as shared cacheable where snooping is not provided. The behavior of a
program that breaks a memory coherency rule is UNPREDICTABLE. Address mapping and caches require
careful management to ensure memory coherency at all times. Cache and write buffer management typically
requires a sequence containing one or more of the following:

. cleaning the data cache if it is a write-back cache

. invalidating the data cache

. invalidating the instruction cache

. draining the write buffer

. performing a prefetch flush on the instruction pipeline.

. flushing branch prediction logic (branch target buffers).

B2-20

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

Prior to ARMv6, the operations and sequences are IMPLEMENTATION DEFINED. In ARMv6, the memory
order model, cache, TLB and memory barrier operations supported in the System Control Coprocessor
(CP15) allow the operating system support to be standardized for level 1 memory.

Note

Implementors are strongly advised to work with ARM where control of additional cache levels is required,
to minimize potential impacts of future compatibility.

B2.7.2 Ordering of cache maintenance operations in the memory order model

The following rules apply to cache maintenance operations with respect to the memory order model:

All Cache and Branch Predictor Maintenance operations are executed in program order relative to
each other. Where a cache or branch predictor maintenance operation appears in program order
before a change to the page tables, the cache or branch predictor maintenance operation is guaranteed
to take place before change to the page tables is visible.

Where a change of the page tables appears in program order before a cache or branch predictor
maintenance operation, the sequence outlined in 7LB maintenance operations and the memory order
model on page B2-22 must be executed before that change can be guaranteed to visible.

DMB causes the effect of all cache maintenance operations appearing in program order prior to the
DMB operation to be visible to all explicit load and store operations appearing in program order after
the DMB. It also ensures that the effects of any cache maintenance operations appearing in program
order before the DMB are globally observable before any cache maintenance or explicit memory
operations appearing in program order after the DMB are observed. Completion of the DMB does
not ensure the visibility of all data to other (relevant) observers. (e.g. page table walks).

DSB causes the completion of all cache maintenance operations appearing in program order prior to
the DSB operation, and ensures that all data written back is visible to all (relevant) observers.

PrefetchFlush or a return from exception causes the effect of all Branch Predictor maintenance
operations appearing in program order prior to the PrefetchFlush operation to be visible to all
instructions after the PrefetchFlush operation or exception return.

An exception causes the effect of all Branch Predictor maintenance operations appearing in program
order prior to the point in the instruction stream where the exception is taken to be visible to all
instructions executed after the exception entry (including the instruction fetch of those instructions).

A Data (or unified) cache maintenance operation by MVA must be executed in program order relative
to any explicit load or store on the same processor to an address covered by the MVA of the cache
operation.

The ordering of a Data (or unified) cache maintenance operation by M VA relative to any explicit load
or store on the same processor where the address of the explicit load or store is not covered by the
MVA of the cache operation is not restricted. Where the ordering is to be restricted, a DMB operation
must be inserted to enforce ordering.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-21

Memory Order Model

B2.7.3

The ordering of a Data (or unified) cache maintenance operation by Set/Way relative to any explicit
load or store on the same processor is not restricted. Where the ordering is to be restricted, a DMB
operation must be inserted to enforce ordering.

The execution of a Data (or unified) cache maintenance operation by Set/Way is not necessarily
visible to other observers within the system until a DSB operation has been executed.

The execution of an Instruction cache maintenance operation is only guaranteed to be complete after
the execution of a DSB barrier.

The completion of an Instruction cache maintenance operation is only guaranteed to be visible to the
instruction fetch after the execution of a PrefetchFlush operation or an exception or return from
exception.

As aresult of the last two points, the sequence of cache cleaning operations for a line of self-modifying code
on a uniprocessor system is:

STR rx, [Instruction location]

Clean Data cache by MVA to point of unification [instruction Tocation]
DSB ; ensures visibility of the data cleaned from the D Cache
Invalidate Instruction cache by MVA [instruction Tocation]

Invalidate BTB entry by MVA [instruction Tocation]

DSB ; ensures completion of the ICache invalidation
PrefetchFlush

TLB maintenance operations and the memory order model

The following rules apply to the TLB maintenance operations with respect to the memory order model:

The completion of a TLB maintenance operation is only guaranteed to be completed by the execution
of a DSB instruction.

PrefetchFlush, or a return from an exception, causes the effect of all completed TLB maintenance
operations appearing in program order prior to the PrefetchFlush or return from exception to be
visible to all subsequent instructions (including the instruction fetch for those instructions).

An exception causes all completed TLB maintenance operations which appear in the instruction
stream prior to the point that the exception was taken to be visible to all subsequent instructions
(including the instruction fetch for those instructions).

All TLB Maintenance operations are executed in program order relative to each other.

The execution of a data (or unified) TLB maintenance operation is guaranteed by hardware not to
affect any explicit memory transaction of any instructions which appear in program order prior to the
TLB maintenance operation. As a result, no memory barrier is required.

The execution of a data (or unified) TLB maintenance operation is only guaranteed to be visible to a
subsequent explicit load or store after the execution of a DSB operation to ensure the completion of
the TLB operation and a subsequent PrefetchFlush operation, the taking of an exception, or the return
from an exception.

B2-22

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

. The execution of an instruction (or unified) TLB maintenance operation is only guaranteed to be
visible to the instruction fetch after the execution of a DSB operation to ensure the completion of the
TLB operation and a subsequent PrefetchFlush operation, the taking of an exception, or the return
from an exception.

The following rules apply when writing page table entries to ensure their visibility to subsequent
transactions (including cache maintenance operations):

. The TLB page table walk is treated as a separate observer for the purposes of TLB maintenance:

— A write to the page tables (once cleaned from the cache if appropriate) is only guaranteed to
be seen by a page table walk caused by an explicit load or store after the execution of a DSB
operation. However, it is guaranteed that any writes to the page tables will not be seen by an
explicit memory transaction occurring in program order before the write to the page tables.

— A clean of the page table must be performed between writing to the page tables and their
visibility by a hardware page table walk if the page tables are held in WB cacheable memory.

— A write to the page tables (once cleaned from the cache if appropriate) is only guaranteed to
be seen by a page table walk caused by an instruction fetch of an instruction following the write
to the page tables after the execution of a DSB operation and a PrefetchFlush operation.

The typical code for writing a page table entry (covering changes to the instruction or data mappings) in a
uniprocessor system is therefore:

STR rx, [Page table entry] ;

Clean Tine [Page table entry]

DSB ; ensures visibility of the data cleaned from the D Cache
Invalidate TLB entry by MVA [page address]

Invalidate BTB

DSB ; ensure completion of the Invalidate TLB

PrefetchFlush

B2.7.4 Synchronization primitives and the memory order model

The synchronization primitives, SWP/SWPB and LDREX/STREX, follow the memory ordering model of the
memory types accessed by those instructions. For this reason:

. Portable code for claiming a spinlock is expected to include a DMB instruction between claiming the
spinlock and making accesses that make use of the spinlock.

. Portable code for releasing a spinlock is expected to include a DMB instruction before writing to clear
the spinlock.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-23

Memory Order Model

B2.7.5

B2.7.6

Branch predictor maintenance operations and the memory order model

The following rule applies to the Branch Predictor maintenance operations with respect to the memory order
model:

. Any invalidation of the branch predictor is only guaranteed to take effect after the execution of a
PrefetchFlush operation, the taking of an exception, or a return from an exception.

The branch predictor maintenance operations must be used to invalidate entries in the branch predictor after
one of the following events:

. enabling or disabling the MMU

. writing new data to instruction locations

. writing new mappings to the page tables

. changes to the TTBRO, TTBR1, or TTBCR

. changes to the FCSE ProcessID or ContextID.

Failure to invalidate entries might give UNPREDICTABLE results caused by the execution of old branches.

Changes to CP15 registers and the memory order model

All changes to CP14 and CP15 registers which appear in program order after any explicit memory
operations are guaranteed not to affect those preceding memory operations.

All changes to CP14 and CP15 registers are only guaranteed to be visible to subsequent instructions after
the execution of a PrefetchFlush operation, or the taking of an exception, or the return from an exception.

However, the following applies to coprocessor register accesses:

. When an MRC operation directly reads a register using the same register number which was used by
an MCR operation to write it, it is guaranteed to observe the value written, without requiring a
context-synchronization between the MCR and the MRC.

. When an MCR operation directly writes a register using the same register number which was used
by a previous MCR operation to write it, the final result will be the value of the second MCR, without
requiring a context-synchronization between the two MCR instructions.

Some CP15 registers might, on a case by case basis, require additional operations prior to the PrefetchFlush,
exception or return from exception to guarantee their visibility. These cases are specifically identified with
the definition of those registers.

Where a change to the CP15 registers which is not yet guaranteed to be visible has an effect on exception
processing, the following rule applies:

. Any change of state held in CP15 registers involved in the triggering of an exception is not yet
guaranteed to be visible while any change involved with the processing of the exception itself (once
it is determined that the exception is being taken) is guaranteed to take effect.

Therefore, in the following example (where A=1, V=0 initially), the LDR may or may not take a data abort
due to the unaligned transaction, but if an exception occurs, the vector used will be affected by the V bit:

B2-24

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Memory Order Model

MCR p15, r@, cl, c@, @ ; clears the A bit and sets the V bit
LDR r2, [R3] ; unaligned load.

Synchronization of changes of ASID and TTBR

A common usage model of TLB management requires that the ContextID and Translation Table Base
Registers are changed together to allow the ContextID to be associated with different page tables. However,
the IMPLEMENTATION DEFINED depth of prefetch and the use of branch prediction create problems in
ensuring the synchronization of changes of the ContextID and Translation Table Register (for example,
TLBs, branch target caches and/or other caching of ASID and translation information might become corrupt
with invalid translations). This synchronization is necessary to avoid either:

. the old ASID from being associated with page table walks from the new page tables

. the new ASID from being associated with page table walks from the old page tables.

There are a number of possible solutions to this problem, as illustrated by the following example.

Example solution

In this approach, the ASID value of 0 is reserved by the operating system, and is not used except for the
synchronization of the ASID and Translation Table Base Register. The following sequence is then followed
(executed from memory marked as being Global):

Change ASID to 0

PrefetchFlush

Change Translation Table Base Register
PrefetchFlush

Change ASID to new value

This approach ensures that any non-global pages accessed (by prefetch) at a time when it is uncertain
whether the old or new page tables are being accessed will be associated with the unused ASID value of 0,
and so cannot result in corruption of execution.

Another manifestation of this same problem is that if a branch is encountered between the changing of an
ASID and its synchronization, then the value in the branch predictor might be associated with the incorrect
ASID. This manifestation is addressed by the ASID 0 approach, but might also be addressed by avoiding
such branches.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B2-25

Memory Order Model

B2.7.7

Changes to CPSR and the memory order model

All changes to the CPSR via CPS, SETEND, and MSR instructions (that operate on the CPSR without causing or
returning from exceptions), that appear in program order after any instruction operations, are guaranteed not
to affect those instructions.

All changes to the CPSR via CPS, SETEND, and MSR instructions (that operate on the CPSR without causing or
returning from exceptions), are guaranteed to be visible to all instructions that appear in program order after
those changes, in all aspects except the effect on instruction permission checking. If the effect on the CPSR
is to change the privilege (or security) status of the execution, then this change is only visible for the
purposes of instruction permission checking after the execution of a PrefetchFlush operation, or the taking
of an exception, or the return from an exception.

B2-26

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter B3
The System Control Coprocessor

This chapter describes coprocessor 15, the System Control coprocessor. It contains the following sections:
. About the System Control coprocessor on page B3-2

. Registers on page B3-3

. Register 0: ID codes on page B3-7

. Register 1: Control registers on page B3-12

. Registers 2 to 15 on page B3-18.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B3-1

The System Control Coprocessor

B3.1

About the System Control coprocessor

All of the standard memory and system facilities are controlled by coprocessor 15 (CP15), which is known
as the System Control coprocessor. Some facilities also use other methods of control, and these are
described in the chapters relating to those facilities. For example, the Memory Management Unit described
in Chapter B4 Virtual Memory System Architecture is also controlled by page tables in memory.

ARMV6 systems shall include a System Control Coprocessor, with support for automatic interrogation of
cache, tightly coupled memory, and coprocessor provision. It also provides the control mechanism for
memory management (MMU and MPU support as applicable).

Prior to ARMv6, CP15 instructions are UNDEFINED when CP15 is not implemented. However, CP15 has
become a de facto standard for processor ID, cache control, and memory management (MMU and MPU
support) in implementations since ARMv4. This manual should be read in conjunction with the relevant
implementation reference manual to determine the exact details of CP15 support in a particular part.

This chapter describes the overall design of the System Control coprocessor and how its registers are
accessed. Detailed information is given about some of its registers. Other registers are allocated to facilities
described in detail in other chapters and are only summarized in this chapter.

B3-2

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

B3.2

B3.2.1

The System Control Coprocessor

Registers

The System Control coprocessor can contain up to 16 primary registers, each of which is 32 bits long.
Additional fields in the register access instructions are used to further refine the access, increasing the
number of physical 32-bit registers in CP15. The 4-bit primary register number is used to identify registers
in descriptions of the System Control coprocessor, because it is the primary factor determining the function
of the register.

CP15 registers can be read-only, write-only or read/write. The detailed descriptions of the registers specify:

. the types of access that are allowed

. the functionality invoked by each type of access

. whether a primary register identifies more than one physical register, and if so, how they are
distinguished

. any other details that are relevant to the use of the register.

Register access instructions

The only defined System Control coprocessor instructions are:

. MCR instructions to write an ARM® register to a CP15 register

. MRC instructions to read the value of a CP15 register into an ARM register

. MCRR instructions for range operations introduced in ARMv6, and optional in earlier versions of the
architecture.

. MRRC optional for IMPLEMENTATION DEFINED features.

All CP15 CDP, CDP2, LDC, LDC2, MCR2, MCRR2, MRC2, MRRC2 , STC, and STC2 instructions are UNDEFINED.

The format of the MCR/MRC instructions is illustrated below, with bits[11:8](cp_num) indicating CP15, and the
CRn field indicating the primary register number, with CRm and opcode?2 providing additional register
decode.

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 17 5 4 3 0

cond 1 1 1 0fopcodel L CRn Rd 1 1 1 1|opcode2|1 CRm

The MCR and MRC instructions to access the CP15 registers use the generic syntax for those instructions:

MCR{<cond>} p15, @, <Rd>, <CRn>, <CRm>{, <opcode2>} (L=0)
MRC{<cond>} p15, @, <Rd>, <CRn>, <CRm>{, <opcode2>} (L=1)

where:

<cond> This is the condition under which the instruction is executed. The conditions are
defined in The condition field on page A3-3. If <cond> is omitted, the AL (always)
condition is used.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B3-3

The System Control Coprocessor

Bits[23:21] These bits of the instruction, which are the <opcodel> field in generic MRC and MCR
instructions, are generally Ob000 in valid CP15 instructions. However, <opcodel>
== 11is being used for level 2 cache support and considered for some other specialist
tasks. Unassigned values are UNPREDICTABLE.

<Rd> This is the ARM register involved in the transfer (the source register for MCR and the
destination register for MRC). This register must not be R15, even though MRC
instructions normally allow it to be R15. If R15 is specified for <Rd> in a CP15 MRC
or MCR instruction, the instruction is UNPREDICTABLE.

<CRn> This is the primary CP15 register involved in the transfer (the destination register
for MCR and the source register for MRC). The standard generic coprocessor register
names are c0, cl, ..., c15.

<CRm> This is an additional coprocessor register name which is used for accesses to some
primary registers to specify additional information about the version of the register
and/or the type of access.

When the description of a primary register does not specify <CRm>, cO must be
specified. If another register is specified, the instruction is UNPREDICTABLE.

<opcode2> This is an optional 3-bit number which is used for accesses to some primary
registers to specify additional information about the version of the register and/or
the type of access. If it is omitted, O is used.

When the description of a primary register does not specify <opcode2>, it must be
omitted or O must be specified. If another value is specified, the instruction is
UNPREDICTABLE.

The MCRR format (see MCRR on page A4-64) has less scope for decode. The primary register is implied (no
CRn field), and the CRm and opcode fields are used to decode the correct function.

Prior to ARMv6, MCR and MRC instructions can only be used when the processor is in a privileged mode. If
they are executed when the processor is in User mode, an Undefined Instruction exception occurs.

ARMYV6 introduced user access of the following commands:
. Prefetch flush

. Data synchronization barrier

. Data memory barrier

. Clean and prefetch range operations.
Note

If access to privileged System Control coprocessor functionality by User mode programs is required, the
usual solution is that the operating system defines one or more SW1Is to supply it. As the precise set of
memory and system facilities available on different processors can vary considerably, it is recommended
that all such SWIs are implemented in an easily replaceable module and that the SWI interface of this
module is defined to be as independent of processor details as possible.

B3-4

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

B3.2.2 Primary register allocation

The System Control Coprocessor

Table B3-1 shows the allocation of the primary registers of the System Control coprocessor.

Table B3-1 Primary register allocation

Reg Generic use Specific uses Details in

0 ID codes (read-only) Processor ID, Cache, Register 0: ID codes on page B3-7
Tightly-coupled Memory
and TLB type

1 Control bits (read/write) System Configuration Bits Control register on page B3-12, and
Register 1: Control register on
page B4-40

2 Memory protection and control ~ Page Table Control Register 2: Translation table base on
page B4-41

3 Memory protection and control ~ Domain Access Control Register 3: Domain access control on
page B4-42

4 Memory protection and control ~ Reserved None. This is a reserved register.

5 Memory protection and control Fault status Fault Address and Fault Status registers
on page B4-19, and Register 5: Fault
status on page B4-43

6 Memory protection and control Fault address Fault Address and Fault Status registers
on page B4-19, and Register 6: Fault
Addpress register on page B4-44

7 Cache and write buffer Cache/write buffer control Register 7: cache management functions
on page B6-19

8 Memory protection and control ~ TLB control Register 8: TLB functions on page B4-45

9 Cache and write buffer Cache lockdown Register 9: cache lockdown functions on
page B6-31

10 Memory protection and control ~ TLB lockdown Register 10: TLB lockdown on
page B4-47

11 Tightly-coupled Memory DMA Control L1 DMA control using CP15 Register 11

Control on page B7-9
12 Reserved Reserved None. This is a reserved register.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

B3-5

The System Control Coprocessor

Table B3-1 Primary register allocation

Reg Generic use Specific uses Details in

13 Process ID Process ID Register 13: Process ID on page B4-52,
and Register 13: FCSE PID on
page B8-7

14 Reserved - -

15 IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED Implementation documents

B3-6 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

B3.3

B3.3.1

The System Control Coprocessor

Register 0: ID codes

CP15 register O contains one or more identification codes for the ARM and system implementation. When
this register is read, the opcode2 field of the MRC instruction selects which identification code is wanted, as
shown in Table B3-2, and the CRm field must be specified as c0 (if it is not, the instruction is
UNPREDICTABLE). Writing to CP15 register 0 is UNPREDICTABLE.

Table B3-2 System Control coprocessor ID registers

opcode2 Register Details in

0b000 Main ID register Main ID register

0b001 Cache type register Cache type register on page B3-10
0b010 Tightly Coupled Memory (TCM) type register ~ TCM type register on page B3-10
0b011 TLB type register

0b100 MPU type register (PMSAv6)

other Reserved (see main text) -

If an <opcode2> value corresponding to an unimplemented or reserved ID register is encountered, the System
Control coprocessor returns the value of the main ID register.

ID registers other than the main ID register are defined so that when implemented, their value cannot be
equal to that of the main ID register. Software can therefore determine whether they exist by reading both
the main ID register and the desired register and comparing their values. If the two values are not equal, the
desired register exists.

Main ID register

When CP15 register O is read with <opcode2> == 0, an identification code is returned from which, among
other things, the ARM architecture version number can be determined, as well as whether or not the Thumb®
instruction set has been implemented.

Note
Only some of the fields in CP15 register O are architecturally defined. The rest are IMPLEMENTATION
DEFINED and provide more detailed information about the exact processor variant. Consult individual
datasheets for the precise identification codes used for each processor.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B3-7

The System Control Coprocessor

Implementor code
Bits[31:24] of the main ID register contain an implementor code.

The following codes are defined (all other values of the architecture code are reserved by ARM Limited.):
0x41 A (ARM Limited)

0x44 D (Digital Equipment Corporation)

0x4D M (Motorola - Freescale Semiconductor Inc.)
0x56 V (Marvell Semiconductor Inc.)

0x69 i (Intel Corporation)

ARM processor implementation IDs

For historical reasons, there are a variety of ways in which the CP15 register 0 ID code might need to be
interpreted. If bit[19] is zero, bits[15:12] should be interpreted as follows:

. if they are 0x0, this indicates an OBSOLETE part (pre-ARMv4 architecture)
. if they are 0x7, this indicates that the processor is in the ARM7 family
. if > 0x7, a more recent processor family than ARM?7 is involved.

ARMT processor IDs are interpreted as follows:

31 24 23 22 16 15 4 3 0
Implementor A Variant Primary part number Revision

Bits[3:0] Contain the IMPLEMENTATION DEFINED revision number for the processor.

Bits[15:4] Contain the IMPLEMENTATION DEFINED representation of the primary part number for the

processor. The top four bits of this number are 0x7.

Bits[22:16] Contain an IMPLEMENTATION DEFINED variant number.

Bit[23] Indicates which of the two possible architectures for an ARM7-based process is involved:
0 Architecture 3 (OBSOLETE part)
1 Architecture 4T.

Bits[31:24] 0x41 = A (ARM Limited) implementation code.

Processor implementations since ARM7 have a general format of bits[23:0] which are common across
implementations from ARM and architecture licensees. Two general formats are defined, dependent on the
value of bit[19]. They are described in the following sections.

B3-8

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Post-ARM7 processors

If bits[15:12] of the ID code are neither 0x@ nor 0x7, the ID code is interpreted as follows:

The System Control Coprocessor

31 24 23 20 19 16 15 4 3 0
Implementor Variant |Architecture Primary part number Revision

Bits[3:0] Contain the IMPLEMENTATION DEFINED revision number for the processor.

Bits[15:4] Contain an IMPLEMENTATION DEFINED representation of the primary part number for the

processor. The top four bits of this number are not allowed to be 0x0 or 0x7.

Bits[19:16] Contain an architecture code. The following architecture codes are defined:

0x1
0x2
0x3
0x4
0x5
0x6
ox7
OxF

All other values of the architecture code are reserved by ARM Limited

ARM architecture v4
ARM architecture v4T
ARM architecture v5
ARM architecture v5T
ARM architecture vSTE
ARM architecture vSTEJ
ARM architecture v6

Revised CPUID format. Details available from ARM.

Bits[23:20] Contain an IMPLEMENTATION DEFINED variant number. This is typically used to distinguish
two variants of the same primary part, for example, two different cache size variants.

Bits[31:24] Contain an implementor code. See Implementor code on page B3-8.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

B3-9

The System Control Coprocessor

B3.3.2

B3.3.3

Cache type register

The Cache type register supplies the following details about the cache:

. whether it is a unified cache or separate instruction and data caches
. its size, line length and associativity

. whether it is a write-through cache or a write-back cache

. cache cleaning and lockdown capabilities.

The format of the Cache type register is:

31 29 28 25 24 23 12 11 0

000 ctype S Dsize Isize

ctype Specifies details of the cache not specified by the S bit and the Dsize and Isize fields. All
values not specified in the table are reserved for future expansion.

S bit Specifies whether the cache is a unified cache (S == 0), or separate instruction and data
caches (S == 1). If S == 0, the Isize and Dsize fields both describe the unified cache, and
must be identical.

Dsize Specifies the size, line length and associativity of the data cache, or of the unified cache if
S==0.

Isize Specifies the size, line length and associativity of the instruction cache, or of the unified
cache if S ==0.

A detailed discussion on caches is provided in Chapter B6 Caches and Write Buffers. See Cache Type
register on page B6-14 for the encoding of the cache type register fields.

TCM type register

The format of the Tightly-Coupled Memory (TCM) type register is:

31 29 28 19 18 16 15 3 2 0

0({0(0 SBZ/UNP DTCM SBZ/UNP ITCM

ITCM (Bits[2:0]) Indicate the number of Instruction (or Unified) Tightly-Coupled Memories
implemented. This value lies in the range 0-4, all other values are reserved. All Instruction
TCMs must be accessible to both instruction and data sides.

DTCM (Bits[18:16]) Indicate the number of Data Tightly-Coupled Memories implemented. This value lies
in the range 0-4, all other values are reserved.

A detailed discussion of tightly coupled memory is provided in chapter Chapter B7 Tightly Coupled
Memory.

B3-10

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The System Control Coprocessor

B3.3.4 TLB type register

The format of the TLB type register is:

31 24 23 16 15 8 7 1 0

SBZ/UNP ILsize DLsize SBZ/UNP S

S-bit Specifies whether the TLB is a unified TLB (S == 0), or separate instruction and data TLBs
S==1).

DLsize Specifies the number of lockable entries in the data TLB if S ==1, or the unified TLB if S

ILsize Specifies the number of lockable entries in the instruction TLB, if S == 1, otherwise SBZ.

A detailed description of the virtual memory system architecture is provided in Chapter B4 Virtual Memory
System Architecture.

B3.3.5 MPU type register

The format of the Memory Protection Unit (MPU) type register is:

31 24 23 16 15 8 17 1 0
SBZ/UNP IRegion DRegion SBZ/UNP S
S-bit Specifies whether the MPU is a unified MPU (S == 0), or separate instruction and data
MPUs (S ==1).
DRegion Specifies the number of protected regions in the data MPU if S ==1, or the unified MPU if
S==0.
IRegion Specifies the number of protected regions in the instruction MPU, if S == 1, otherwise SBZ.

A detailed description of the protected memory system architecture is provided in Chapter BS Protected
Memory System Architecture.

Note
The MPU type register is introduced with PMSAv6.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B3-11

The System Control Coprocessor

B3.4

B3.4.1

Register 1: Control registers

CP15 register 1 contains configuration control bits for the ARM processor. It contains 3 registers selected
by the opcode_2 field. When opcode_2 is O the architecturally specified control register is selected. When
opcode_2 is 1 an IMPLEMENTATION DEFINED control register is selected.

Table B3-3 System Control coprocessor Control registers

opcode2 Register

0b000 Control register

0b001 Auxiliary control register (format IMPLEMENTATION DEFINED)

0b010 Coprocessor access control register

other RESERVED

Control register
This register contains:

. Enable/disable bits for the caches, MMUs, and other memory system blocks that are primarily
controlled by other CP15 registers. This allows these memory system blocks to be programmed
correctly before they are enabled.

. Various configuration bits for memory system blocks and for the ARM processor itself.

Note

Extra bits of both varieties might be added in the future. Because of this, this register should normally be
updated using read/modify/write techniques, to ensure that currently unallocated bits are not needlessly
modified. Failure to observe this rule might result in code which has unexpected side effects on future
processors.

31 27 26 25 24 23 22 21 20 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UNP/SBZP L2 |(EE|VE|XP| U | FI L4RR|V|I|Z|F|R|S|B|L|D|P|W|C|AM

When a control bit in CP15 register 1 is not applicable to a particular implementation, it reads as the value
that most closely reflects that implementation, and ignores writes. (Specific examples of this general rule
are documented in the individual bit descriptions below.) Apart from bits that read as 1 according to this
rule, all bits in CP15 register 1 are set to O on reset.

M (bit[0]) This is the enable/disable bit for the MMU or Protection Unit:
0 = MMU or Protection Unit disabled

B3-12

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The System Control Coprocessor

1 = MMU or Protection Unit enabled.

On systems without an MMU, this bit reads as 0 and ignores writes.

A (bit[1]) In ARM architecture v6, this controls strict alignment:
0 = Alignment not strict

1 = Strict alignment. If a data access is not aligned to the width of the accessed data item, a
Data Abort exception is generated.

In architectures before v6, for memory systems which optionally allow the alignment of data
memory accesses to be checked, this bit enables and disables alignment fault checking:

0 = Alignment fault checking disabled
1 = Alignment fault checking enabled.
For other memory systems, this bit ignores writes, and reads as 1 or 0 according to whether
the memory system does or does not check the alignment of data memory accesses.
C (bit[2]) If a L1 unified cache is used, this is the enable/disable bit for the unified cache. If separate
L1 caches are used, this is the enable/disable bit for the data cache. In either case:
0 =L1 unified/data cache disabled
1 = L1 unified/data cache enabled.

If the L1 cache is not implemented, this bit reads as O and ignores writes. If the L1 cache
cannot be disabled, this bit reads as 1 and ignores writes.

The state of this bit does not affect other levels of cache in the system.

W (bit[3]) This is the enable/disable bit for the write buffer:
0 = Write buffer disabled
1 = Write buffer enabled.
If the write buffer is not implemented, this bit reads as zero (RAZ) and ignores writes. If the
write buffer cannot be disabled, this bit reads as one and ignores writes.
SBO (bits[4:6])

These bits read as 1 and ignore writes.

B (bit[7]) This bit is used to configure the ARM processor to the endianness of the memory system.

ARM processors which support both little-endian and big-endian word-invariant memory
systems use this bit to configure the ARM processor to rename the four byte addresses
within a 32-bit word.

In V6 this becomes the mechanism by which legacy big-endian operating systems and
applications can be supported.

0 = configured little-endian memory system (LE)

1 = configured big-endian word-invariant memory system (BE-32)

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B3-13

The System Control Coprocessor

Two configuration bits CFGENDI[1:0] define the endian model at reset as described in
Table A2-7 on page A2-35. (Previous architectures allowed an IMPLEMENTATION DEFINED
configuration option to pre-set or reset this bit externally, depending on the external memory
subsystem).

S (bit[8]) System protection bit, supported for backwards compatibility. The effect of this bit is
described in Access permissions on page B4-8. The functionality is deprecated in ARMvo6.

R (bit[9]) ROM protection bit, supported for backwards compatibility. The effect of this bit is
described in Access permissions on page B4-8. The functionality is deprecated in ARMvo6.

F (bit[10]) The meaning of this bit is IMPLEMENTATION DEFINED.

Z (bit[11]) On ARM processors which support branch prediction, this is the enable/disable bit for
branch prediction:
0 = Program flow prediction disabled
1 = Program flow prediction enabled.

If program flow prediction cannot be disabled, this bit reads as 1 and ignores writes.
Program flow prediction includes all possible forms of speculative change of instruction
stream prediction. Examples include static prediction, dynamic prediction, and return
stacks.

On ARM processors that do not support branch prediction, this bit reads as 0 and ignores
writes.

1 (bit[12]) If separate L1 caches are used, this is the enable/disable bit for the L1 instruction cache:
0 = L1 instruction cache disabled
1 = L1 instruction cache enabled.

If an L1 unified cache is used or the L1 instruction cache is not implemented, this bit reads
as 0 and ignores writes. If the L1 instruction cache cannot be disabled, this bit reads as 1 and
ignores writes.

The state of this bit does not affect further levels of cache in the system.

V (bit[13]) This bit is used to select the location of the exception vectors:
0 = Normal exception vectors selected (address range 0x00000000-0x0000001C)
1 = High exception vectors selected (address range 0xFFFF0000-0xFFFFOQ1C).
An implementation can provide an input signal that determines the state of this bit after
reset.
RR (bit[14]) If the cache allows an alternative replacement strategy to be used that has a more predictable
performance, this bit selects it:
0 = Normal replacement strategy (for example, random replacement)
1 = Predictable strategy (for example, round-robin replacement).

L4 (bit[15]) This bit inhibits ARMvST Thumb interworking behavior when set. It stops bit[0] updating
the CPSR T-bit. The disable feature is deprecated in ARMv6

B3-14 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The System Control Coprocessor

The instructions affected by this are:
. LDM (1) on page A4-36
. LDR on page A4-43
. POP on page A7-82.
DT (bit[16]) SBO.
SBZ (bit[17]) This bit reads as 0 and ignores writes.
IT (bit[18]) SBO.
SBZ (bit[19]) This bit reads as 0 and ignores writes.
ST (bit[20]) SBZ/UNP.
FI (bit[21]) Configure Fast Interrupt configuration. This bit may be used to reduce interrupt latency in
an implementation by disabling IMPLEMENTATION DEFINED performance features:
0 = All performance features enabled
1 = Low interrupt latency configuration enabled.
U(bit[22])) This bit enables unaligned data access operation, including support for mixed little-endian
and big-endian data.
0 = unaligned loads are treated as rotated aligned data accesses (legacy code behavior).
1 = unaligned loads and stores are permitted and mixed-endian data support enabled.
XP(bit[23]) Extended page table configure. This bit configures the hardware page table translation
mechanism:
0 = Subpage AP bits enabled.
1 = Subpage AP bits disabled. In this case, hardware translation tables support additional
features.
VE(bit[24]) Configure vectored interrupts. Enables use of an IMPLEMENTATION DEFINED hardware
mechanism to determine the interrupt vectors:

0 = Interrupt vectors are fixed:
. IRQ at 0x00000018 if V bit == 0, IRQ at 0xFFFF0018 if V bit == 1
. FIQ at 0x0000001C if V bit == 0, FIQ at 0xFFFF01C if V bit == 1

1 = Interrupt vectors are defined by an IMPLEMENTATION DEFINED hardware mechanism.

EE Bit[25] Mixed Endian exception entry. The EE bit is used to define the value of the CPSR E-bit on
entry to an exception vector, including reset. The value is also used to indicate the
endianness of page table data for page table lookups. This bit may be preset by
CFGENDI1:0] pins on system reset. See Endian configuration and control on page A2-34
for more details.

L2 Bit[26] L2 unified cache enable.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B3-15

The System Control Coprocessor

Bits[31:26] RESERVED. These bits are normally updated using read/modify/write techniques, to ensure
that currently unallocated bits are not needlessly modified. Failure to observe this rule might
result in code which has unexpected side effects on future processors. One exception that
might be useful in some circumstances is that 0 can be written to these bits to restore them
to their reset state.

B3.4.2 Auxiliary control register
The contents of this register are IMPLEMENTATION DEFINED. The register is guaranteed to be privileged
read/write accessible, even if an implementation has not created any control bits within this register.
B3.4.3 Coprocessor access register
This register controls accesses to all coprocessors other than CP15 and CP14.
A typical use for this register is to enable an operating system to control coprocessor resource sharing among
applications. Initially all applications are denied access to the shared resources. When an application
attempts to use that resource it results in an Undefined Instruction exception. The Undefined Instruction
handler can then grant access to that resource by setting the appropriate bits in the coprocessor access
register.
Sharing resources among applications requires a state saving mechanism. Two possibilities are:
. the operating system, during a context switch, saves the state of the coprocessor if the last executing
process had access rights to a coprocessor
. the operating system, after a request for access to a coprocessor, saves off the old coprocessor state
with the last process to have access to it.
31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 0
UNP/SBZP | cp13 | cpl2 | cpll | cplO| cp9 | cp8 | cp7 | cpb | cpS | cp4 | cp3 | cp2 | cpl | cpO
Coprocessor access rights
Each pair of bits corresponds to the access rights for each coprocessor:
00 Access denied. Attempts to access corresponding coprocessor generates an undefined
exception.
01 Privileged access only. Attempts to access corresponding coprocessor in user mode
generates an undefined exception.
10 RESERVED (UNPREDICTABLE)
11 Full access (as defined by the relevant coprocessor).
B3-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

The System Control Coprocessor

After updating this register a PrefetchFlush instruction should be executed before the effect of the change
to the coprocessor access register can be guaranteed to be visible. None of the instructions executed after
changing this register and before the PrefetchFlush should be coprocessor instructions affected by the
change in coprocessor access privileges.

After a system reset all coprocessor access rights are set to Access denied.

Any unimplemented coprocessors shall result in the associated bit field read-as-zero (RAZ). This allows
system software to write all-1's to the coprocessor access register, then read back the result to determine
which coprocessors are present, as part of an auto-configuration sequence.

If more than one coprocessor is used for a set of functionality (for example in the case with VFP, where
CP10 and CP11 are used) then having different values in the fields of the coprocessor access register for
those coprocessors can lead to UNPREDICTABLE behavior.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B3-17

The System Control Coprocessor

B3.5

Registers 2 to 15

System Control coprocessor registers other than registers O and 1 are allocated to specific areas as follows:

CP15 registers 2 to 6, 8, 10, and 13 are allocated to the memory protection system. See Chapter B4
Virtual Memory System Architecture, Chapter BS Protected Memory System Architecture, and
Chapter B8 Fast Context Switch Extension for details of these registers.

CP15 registers 7 and 9 are allocated to the control of caches, and write buffers. See Chapter B6
Caches and Write Buffers for details of these registers.

CP15 register 11 is allocated to the level 1 memory DMA support. See Chapter B7 Tightly Coupled
Memory for details.

CP15 register 15 is reserved for IMPLEMENTATION DEFINED purposes. See the technical reference
manual for the implementation or other implementation-specific documentation for details of the
facilities available through this register.

CP15 registers 12 and 14 are reserved for future expansion. Accessing (reading or writing) any of
these registers is UNPREDICTABLE, and UNDEFINED from ARMv6.

B3-18

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Chapter B4
Virtual Memory System Architecture

This chapter describes the Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU). It contains the following sections:

. About the VMSA on page B4-2

. Memory access sequence on page B4-4

. Memory access control on page B4-8

. Memory region attributes on page B4-11

. Aborts on page B4-14

. Fault Address and Fault Status registers on page B4-19
. Hardware page table translation on page B4-23

. Fine page tables and support of tiny pages on page B4-35
. CP15 registers on page B4-39.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-1

Virtual Memory System Architecture

B4.1

About the VMSA

Complex operating systems typically use a virtual memory system to provide separate, protected address
spaces for different processes. Processes are dynamically allocated memory and other memory mapped
system resources under the control of a Memory Management Unit (MMU). The MMU allows fine-grained
control of a memory system through a set of virtual to physical address mappings and associated memory
properties held within one or more structures known as Translation Lookaside Buffers (TLBs) within the
MMU. The contents of the TLBs are managed through hardware translation lookups from a set of translation
tables maintained in memory.

The process of doing a full translation table lookup is called a translation table walk. 1t is performed
automatically by hardware, and has a significant cost in execution time, at least one main memory access,
and often two. TLBs reduce the average cost of a memory access by caching the results of translation table
walks. Implementations can have a unified TLB (von Neumann architecture) or separate Instruction and
Data TLBs (Harvard architecture).

The VMSA has been significantly enhanced in ARMv6. This is referred to as VMSAvo6. To prevent the need
for a TLB invalidation on a context switch, each virtual to physical address mapping can be marked as being
associated with a particular application space, or as global for all application spaces. Only global mappings
and those for the current application space are enabled at any time. By changing the Application Space
IDentifier (ASID), the enabled set of virtual to physical address mappings can be altered. VMSAv6 has
added definitions for different memory types (see ARMv6 memory attributes - introduction on page B2-8),
and other attributes (see Memory access control on page B4-8). For backwards compatibility there is an XP
control bit in the System Control Coprocessor, CP15 register 1, as defined in Register 1: Control register on
page B4-40.

The set of memory properties associated with each TLB entry includes:

Memory access permission control

This controls whether a program has no-access, read-only access, or read/write access to the
memory area. When an access is not permitted, a memory abort is signaled to the processor.

The level of access allowed can be affected by whether the program is running in User mode,
or a privileged mode, and by the use of domains.

Memory region attributes

These describe properties of a memory region. Examples include device (VMSAv0),
non-cacheable, write-through, and write-back.

Virtual-to-physical address mapping

An address generated by the ARM® processor is called a virtual address. The MMU allows
this address to be mapped to a different physical address. This physical address identifies
which main memory location is being accessed.

This can be used to manage the allocation of physical memory in many ways. For example,
it can be used to allocate memory to different processes with potentially conflicting address
maps, or to allow an application with a sparse address map to use a contiguous region of
physical memory.

B4-2

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

B4.1.1

Virtual Memory System Architecture

Note

Because of the Fast Context Switch Extension (FCSE, see Chapter B8), all references to virtual address in
this chapter are made to the modified virtual address that it generates, except where explicitly stated
otherwise. The virtual address and modified virtual address are equal when the FCSE mechanism is disabled
(PID == zero).

The FCSE is only present in ARMv6 for backwards compatibility. Its use in new systems is deprecated.

System Control coprocessor registers allow high-level control of this system, such as the location of the
translation tables. They are also used to provide status information about memory aborts to the ARM.

The VMSA allows for specific TLB entries to be locked down in a TLB. This ensures that accesses to the
associated memory areas never require looking up by a translation table walk. This enables the worst case
access time to code and data for real-time routines to be minimized and deterministic.

When translation tables in memory are changed or a different translation table is selected (by writing to
CP15 register 2), previously cached translation table walk results in the TLBs can cease to be valid. The
VMSA therefore supplies operations to flush TLBs.

Key changes introduced in VMSAv6

The following list summarizes the changes introduced in VMSAv6:

. Entries can be associated with an application space identifier, or marked as a global mapping. This
eliminates the requirement for TLB flushes on most context switches.

. Access permissions extended to allow both privileged read only, and privileged/user read-only modes
to be simultaneously supported. The use of the System (S) and ROM (R) bits to control access
permission determination are only supported for backwards compatibility.

. Memory region attributes to mark pages shared by multiple processors.

. The use of Tiny pages, and the fine page table second level format is now obsolete.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-3

Virtual Memory System Architecture

B4.2

Memory access sequence

When the ARM CPU generates a memory access, the MMU performs a lookup for a mapping for the
requested modified virtual address in a TLB. From VMSAV6 this also includes the current ASID.
Implementations can use either Harvard or unified TLBs. If the implementation has separate instruction and
data TLBs, it uses:

. the instruction TLB for an instruction fetch

o the data TLB for all other accesses.

If no global mapping, or mapping for the currently selected ASID (VMSAv6), for the modified virtual
address can be found in the appropriate TLB then a translation table walk is automatically performed by
hardware.

Note

Prior to VMSAV6, all modified virtual address translations can be considered as globally mapped. From
ARMYv6, the modified virtual address should be considered as the 32-bit modified virtual address, plus the
ASID value when a non-global address is accessed.

The FCSE mechanism described in Chapter B8 Fast Context Switch Extension is deprecated in ARMvo6.
Furthermore, concurrent use of both the FCSE and ASID results in UNPREDICTABLE behavior. Either the
FCSE register must be cleared, or all memory declared as global.

If a matching TLB entry is found then the information it contains is used as follows:

1. The access permission bits and the domain are used to determine whether access is permitted. If the
access is not permitted the MMU signals a memory abort. Otherwise the access is allowed to proceed.

2. The memory region attributes are used to control:
. the cache and write buffer
. whether the access is cached or uncached
. the target memory type

. whether the target memory is shared or unshared.

3. The physical address is used for any access to external or tightly coupled memory, and can be used
to perform TAG matching for cache entries in physically tagged cache implementations.

Figure B4-1 on page B4-5 shows this for a cached system.

B4-4

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

Access bits,
Access domain Translation
control table walk
hardware hardware
TLB
Abort Physical address
(PA) Main
T memory
Physical |
address ! Control bits
(PA) I
A4
R
ARM ~=="> Cache Cache
Modified and line fetch
virtual address | write buffer hardware
(MVA)

Figure B4-1 Cached MMU memory system overview

B4.2.1 TLB match process

Each TLB entry contains a modified virtual address, a page size, a physical address, and a set of memory
properties. It is marked as being associated with a particular application space, or as global for all
application spaces. Where an ASID is used, register 13 in CP15 determines the currently selected
application space.

A TLB entry matches if bits 31-N of the modified virtual address match, and it is either marked as global,
or the ASID matches the current ASID, where N is log; of the page size for the TLB entry.

If two or more entries match at any time (including global and ASID specific entries), the behavior of a TLB
is UNPREDICTABLE. The operating system must ensure that no more than one TLB entry can match at any
time, typically by flushing its TLBs when global page mappings are changed.

A TLB can store entries based on the following block sizes:
Supersections consist of 16MB blocks of memory
Sections consist of IMB blocks of memory

Large pages consist of 64KB blocks of memory

Small pages consist of 4KB blocks of memory.

Note
The use of Tiny (1KB) pages is not supported in VMSAv6.

Supersections, sections and large pages are supported to allow mapping of a large region of memory while
using only a single entry in a TLB.

If no mapping for an address can be found within the TLB then the translation table is automatically read
by hardware, and a mapping is placed in the TLB. See Hardware page table translation on page B4-23 for
more details.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-5

Virtual Memory System Architecture

B4.2.2 Virtual to physical translation mapping restrictions

The VMSA can be used in conjunction with virtually-indexed, physically-tagged caches. For details of any

mapping page table restrictions for virtual to physical addresses see Restrictions on Page Table Mappings

on page B6-11.
B4.2.3 Enabling and disabling the MMU

The MMU can be enabled and disabled by writing the M bit (bit[0]) of register 1 of the System Control

coprocessor. On reset, this bit is cleared to 0, disabling the MMU.

When the MMU is disabled, memory accesses are treated as follows:

. All data accesses are treated as uncacheable and strongly ordered. Unexpected data cache hit
behavior is IMPLEMENTATION DEFINED.

o If a Harvard cache arrangement is used then all instruction accesses are cacheable, non-sharable,
normal memory if the I bit (bit[12]) of CP15 register 1 is set (1), and non-cacheable, non-sharable
normal memory if the I bit is clear (0). The other cache related memory attributes (for example,
Write-Through cacheable, Write-Back cacheable) are IMPLEMENTATION DEFINED.

If a unified cache is used, all instruction accesses are treated as non-shared, normal, non-cacheable.

. All explicit accesses are strongly ordered. The value of the W bit (bit[3], write buffer enable) of CP15
register 1 is ignored.

. No memory access permission checks are performed, and no aborts are generated by the MMU.

. The physical address for every access is equal to its modified virtual address (this is known as a flat
address mapping).

. The FCSE PID (see Register 13: Process ID on page B4-52) Should Be Zero (SBZ) when the MMU
is disabled. This is the reset value for the FCSE PID. If the MMU is to be disabled, the FCSE PID
should be cleared. The behavior is UNPREDICTABLE if the FCSE is not cleared when the MMU is
disabled.

. Cache CP15 operations act on the target cache whether the MMU is enabled or not, and regardless
of the values of the memory attributes. However, if the MMU is disabled, they use the architected flat
mapping.

CP15 TLB invalidate operations act on the target TLB whether the MMU is enabled or not.

. Instruction and data prefetch operations work as normal.

. Accesses to the TCMs work as normal if the TCM is enabled.

Before the MMU is enabled all relevant CP15 registers must be programmed. This includes setting up

suitable translation tables in memory. Prior to enabling the MMU, the instruction cache should be disabled

and invalidated. The instruction cache can then be re-enabled at the same time as the MMU is enabled.
B4-6 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

Note

Enabling or disabling the MMU effectively changes the virtual-to-physical address mapping (unless the
translation tables are set up to implement a flat address mapping). Any virtually tagged caches, for example,
that are enabled at the time need to be flushed (see Memory coherency and access issues on page B2-20).

In addition, if the physical address of the code that enables or disables the MMU differs from its modified
virtual address, instruction prefetching can cause complications (see PrefetchFlush CP15 register 7 on
page B2-19). It is therefore strongly recommended that code which enables or disables the MMU has
identical virtual and physical addresses.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-7

Virtual Memory System Architecture

B4.3

B4.3.1

Memory access control

Access to a memory region is controlled by the access permission and domain bits in the TLB entry. APX
and XN (execute never) bits have been added in VMSAv6. These form part of the page table entry formats
described in Hardware page table translation on page B4-23.

Access permissions

The access permission bits control access to the corresponding memory region. If an access is made to an
area of memory without the required permissions, a Permission Fault is raised. The access permissions are
determined by a combination of the AP and APX bits in the page table, and the S and R bits in CP15 register
1. For page table formats not supporting the APX bit, the value 0 is used.

Note
The use of the S and R bits is deprecated in VMSAv6. Changes to the S and R bits do not affect the access
permissions of entries already in the TLB. The TLB must be flushed for the updated S and R bit values to
take effect.

If an access is made to an area of memory without the required permission, a Permission Fault is raised (see
Aborts on page B4-14).

B4-8

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

Table Table B4-1 shows the encoding of the access permissions.

Table B4-1 MMU access permissions

Privileged

User

S R APXe AP[1:0] permissions permissions Description

0O 0 O 0b00 No access No access All accesses generate permission faults

x x 0 0b01 Read/write No access Privileged access only

x x 0 0b10 Read/write Read only Writes in User mode generate permission faults
x x O Obl1 Read/write Read/write Full access

0 0 1 0b00 - - RESERVED

0 0 1 0b01 Read only No access Privileged read only

0 0 1 0b10 Read only Read only Privileged/User read only

0 0 1 Obl11 - - RESERVED

The S and R bits are deprecated in VMSAv6. The following entries apply to legacy systems only.

01 O 0b00 Read only Read only Privileged/User read only
1 0 O 0b00 Read only No access Privileged read only

1 1 0 0b00 - - RESERVED

0 1 1 Obxx - - RESERVED

1 0 1 Obxx - - RESERVED

1 1 1 Obxx - - RESERVED

a. VMSAV6 and above only.

Each memory region can be tagged as not containing executable code. If the Execute-Never (XN) bit is set
to 1, any attempt to execute an instruction in that region results in a permission fault. If the XN bit is cleared
to 0, code can execute from that memory region.

Note

The XN bit acts as an additional permission check. The address must also have a valid read access.

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-9

Virtual Memory System Architecture

B4.3.2 Domains

A domain is a collection of memory regions. The ARM architecture supports 16 domains. Each page table
entry and TLB entry contains a field that specifies which domain the entry is in. Access to each domain is
controlled by a two-bit field in the Domain Access Control Register. Each field allows the access to an entire
domain to be enabled and disabled very quickly, so that whole memory areas can be swapped in and out of
virtual memory very efficiently. Two kinds of domain access are supported:

Clients Users of domains (execute programs and access data), guarded by the access permissions of
the TLB entries for that domain.

Managers Control the behavior of the domain (the current sections and pages in the domain, and the
domain access), and are not guarded by the access permissions for TLB entries in that
domain.

One program can be a client of some domains, and a manager of some other domains, and have no access
to the remaining domains. This allows very flexible memory protection for programs that access different
memory resources. Table B4-2 shows the encoding of the bits in the Domain Access Control Register.

Table B4-2 Domain Access Values

Value Accesstypes Description

0b00 No access Any access generates a domain fault

0b01 Client Accesses are checked against the access permission bits in the TLB entry
0b10 Reserved Using this value has UNPREDICTABLE results

0Obll Manager Accesses are not checked against the access permission bits in the TLB

entry, so a permission fault cannot be generated

B4-10 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

B4.4

B4.4.1

Virtual Memory System Architecture

Memory region attributes

Each TLB entry has an associated set of memory region attributes. These control accesses to the caches,
how the write buffer is used, and if the memory region is shareable and therefore must be kept coherent.

Prior to VMSAV6, only C (cacheable) and B (bufferable) bits were provided. Their exact usage model (for
example, how the bit settings affected write through versus write back cache policies) and any additional
controls were IMPLEMENTATION DEFINED. VMSAV6 has introduced a more formal memory model (see
ARMv6 memory attributes - introduction on page B2-8), supported by the additional bit field (TEX) and
definitions described in this section.

C, B, and TEX Encodings

Page table formats use five bits to encode the memory region type. These are TEX[2:0] and the C and B bits.
Table B4-3 on page B4-12 shows the mapping of the Type extension field (TEX) and the cacheable and
bufferable bits (C and B) to memory region type. For page tables formats with no TEX field the value 0b000
is used.

In addition, certain page tables contain the shared bit (S). This bit only applies to normal, not device or
strongly ordered memory, and determines if the memory region is shared (1), or not-shared (0). If not
present, the S bit is assumed to be 0 (not-shared).

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-11

Virtual Memory System Architecture

Table B4-3 shows the C, B, and TEX encodings.

Table B4-3 CB + TEX Encodings

TEX C B Description Memory type Page shareable

0b000 0 0 Strongly ordered Strongly ordered Shareable

0b000 0 1 Shared Device Device Shareable

0b000 1 0 Outer and inner write through, no write allocate Normal S

0b000 1 1 Outer and inner write back, no write allocate Normal S

0b001 0 0 Outer and inner non-cacheable Normal S

0b001 0 1 RESERVED - -

0b001 1 0 IMPLEMENTATION DEFINED IMPLEMENTATION ~ IMPLEMENTATION

DEFINED DEFINED

0b001 1 1 Outer and inner write back, write allocate Normal S

0b010 0 0 Non-shared device Device Not shareable

0b010 0O 1 RESERVED - -

0b010 1 X RESERVED - -

0b011 X X RESERVED - -

0ObIBB A A Cached memory Normal S

BB = outer policy, AA = inner policy
S indicates shareable if page table present, and S-bit in page table set, otherwise not shareable.
For an explanation of the Shareable attribute, and Normal, Strongly ordered and Device memory types see
ARMv6 memory attributes - introduction on page B2-8.
The terms Inner and Outer refer to levels of caches that might be built in a system. Inner refers to the
innermost caches, including Level 1. Outer refers to the outermost caches. The boundary between Inner and
Outer caches is defined in the implementation of a cached system. Inner always includes L1. For example,
in a system with three levels of caches, the Inner attributes might apply to L1 and L2, whereas the Outer
attributes apply to L3. In a two-level system, it is expected that Inner applies to L1 and Outer to L2.
B4-12 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

Table B4-4 shows the encoding of the inner and outer cache policies.

Table B4-4 Inner and outer cache policy

Encoding Description

0 0 Non-cacheable

0 1 Write back, write allocate

1 0 Write through, no write allocate
1 1 Write back, no write allocate

It is optional which write allocation policies an implementation supports. The allocate on write and no
allocate on write cache policies indicate which allocation policy is preferred for a memory region, but it
should not be relied on that the memory system implements that policy.

Not all inner and outer cache policies are mandatory. Table B4-5 describes the implementation options.

Table B4-5 Cache policy implementation options

Cache policy Implementation options

Inner non-cacheable = Mandatory.

Inner write through Mandatory.

Inner write back Optional. If not supported, memory system should implement as inner write through.

Outer non-cacheable = Mandatory.

Outer write through ~ Optional. If not supported, memory system should implement as outer non-cacheable.

Outer write back Optional. If not supported, memory system should implement as outer write through.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-13

Virtual Memory System Architecture

B4.5 Aborts
Mechanisms that can cause the ARM processor to take an exception because of a memory access are:
MMU fault The MMU detects the restriction and signals the processor.
Debug abort Monitor debug-mode is enabled and a breakpoint or a watchpoint has been detected.
External abort The external memory system signals an illegal or faulting memory access.
Collectively, these are called aborts. Accesses that cause aborts are said to be aborted, and use Fault Address
and Fault Status registers to record associated context information. The FAR and FSR registers are
described in Fault Address and Fault Status registers on page B4-19

B4.5.1 MMU faults
The MMU generates four types of fault:
. alignment fault
. translation fault
. domain fault
. permission fault.
Aborts that are detected by the MMU do not make an external access to the address that the abort was
detected on.
If the memory request that aborts is an instruction fetch, then a Prefetch Abort exception is raised if and
when the processor attempts to execute the instruction corresponding to the aborted access. If the aborted
access is a data access or a cache maintenance operation, a Data Abort exception is raised. See Exceptions
on page A2-16 for more information about Prefetch and Data Aborts.
Fault-checking sequence
The sequence used by the MMU to check for access faults is slightly different for Sections and Pages.
Figure B4-2 on page B4-15 shows the sequence for both types of access.

B4-14 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Translation
external
abort

Section
translation
fault

Section

Virtual Memory System Architecture

Modified virtual address

Checking

alignment? Check address alignment

v

Misaligned?

No

v

Get first-level descriptor

Check domain

No
access

Section

Alignment
fault

External
abort

Descriptor
fault

Section or page?

Get second-level descriptor

Translation
external
abort

External
abort

Page
translation
fault

Invalid
descriptor?

Check domain

v

Access

Manager

domain
fault

Check access permissions

Section
permission
fault

type

Client

Check access permissions

Sub-page
permission
fault

Alignment fault

Ll

v
Physical address

Figure B4-2 Sequence for checking faults

For details of when alignment faults are generated, see Table A2-10 on page A2-40

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

B4-15

Virtual Memory System Architecture

Translation fault

There are two types of translation fault:

Section This is generated if the first-level descriptor is marked as invalid. It happens when bits[1:0]
of the descriptor are both 0, and in VMSAv6 formats when the value is Ob11, a RESERVED
value.

Page This is generated if the second-level descriptor is marked as invalid. It happens if bits[1:0]

of the descriptor are both 0.

Page Table Entry (PTE) fetches which result in translation faults are guaranteed not to be cached (no TLB
updates). TLB maintenance operations are not required to flush corrupted entries on a translation fault.

Domain fault

There are two types of domain fault:
Section domain faults

the domain is checked when the first-level descriptor is returned.
Page domain faults

the domain is checked (based on the domain field of the first level descriptor) if a valid
second-level descriptor is returned.

Where a Domain fault results in an update to the associated page tables, it is necessary to flush the
appropriate TLB entry to ensure correctness. See the page table entry update example in 7LB maintenance
operations and the memory order model on page B2-22 for more details.

Changes to the Domain Access Control register are synchronized by performing a PrefetchFlush operation
(or as result of an exception or exception return). See Changes to CP15 registers and the memory order
model on page B2-24 for details.

Permission fault

If the two-bit domain field returns client (01), the permission access check is performed on the access
permission field in the TLB entry.

Where a permission fault results in an update to the associated page tables, it is necessary to flush the
appropriate TLB entry to ensure correctness. See the page table entry update example in 7LB maintenance
operations and the memory order model on page B2-22 for more details.

B4-16 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

B4.5.2 Debug events

When Monitor debug-mode is enabled, an abort can be taken because of a breakpoint on an instruction
access or a watchpoint on a data access.

If an abort is taken because of Monitor debug-mode then the appropriate FSR (instruction or data) is updated
to indicate a Debug abort. This is the only information saved on a Prefetch Abort (a breakpoint) debug event.
This is a precise abort. R14_abt is used to determine the address of the failing instruction.

Watchpoints are not taken precisely, because following instructions can run underneath load and store
multiples. The debugger must read the Watchpoint Fault Address Register (WFAR) to determine which
instruction caused the debug event.

B4.5.3 External aborts

External memory errors are defined as those that occur in the memory system other than those that are
detected by an MMU. External memory errors are expected to be rare and are likely to be fatal to the running
process. An example of an event that could cause an external memory error is an uncorrectable parity or
ECC failure on a Level 2 Memory structure.

It is IMPLEMENTATION DEFINED which, if any, external aborts are supported.

The presence of a precise external abort is signaled in the DFSR or IFSR. For further details of the imprecise
external abort model see Imprecise data aborts on page A2-23.

External abort on instruction fetch

Externally generated errors during an instruction prefetch are precise in nature, and are only recognized by
the CPU if it attempts to execute the instruction fetched from the location that caused the error.

The Fault Address register is not updated on an external abort on instruction fetch.

External abort on data read/write

Externally generated errors during a data read or write can be imprecise. This means that R14_abt on entry
into the Abort handler on such an abort is not guaranteed to hold an address that is related to the instruction
that caused the exception. Correspondingly, external aborts can be unrecoverable.

If an imprecise external abort causes entry into the abort state while the abort state is not re-entrant, the
processor is in an unrecoverable state, as the R14 and SPSR values have been corrupted. For this reason, the
existence of an imprecise external abort must only be recognized by the processor at a point when the abort
state is re-entrant. This is managed by the provision of a mask for imprecise external aborts in the CSPR,
which is referred to as the A bit.

Entry into the abort state caused by an imprecise external abort causes the DFSR to indicate the presence of
an imprecise external abort. The FAR is not updated on an imprecise external abort on a data access.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-17

Virtual Memory System Architecture

External abort on a hardware page table walk

An external abort occurring on a hardware page table access must be returned with the page table data. Such
aborts are precise. The FAR is updated on an external abort on a hardware page table walk on a data access,
but not on an instruction access. The appropriate FSR (instruction or data) indicates that this has occurred.

Parity error reporting

Parity errors can occur as a precise (for example, from an L1 cache hit read) or an imprecise (for example,
a cache linefill) abort. A fault status code is defined for reporting parity errors. It is IMPLEMENTATION
DEFINED what parity error support is provided and whether the assigned fault status code or another
appropriate encoding is used to report them.

B4-18 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

B4.6 Fault Address and Fault Status registers

Prior to VMSAV6, the architecture supported a single Fault Address Register (FAR) and Fault Status
Register (FSR).

VMSAVG6 requires four registers:

. Instruction Fault Status Register (IFSR) updated on Prefetch Aborts

. Data Fault Status Register (DFSR) updated on Data Aborts

. Fault Address Register (FAR) updated with the faulting address for precise exceptions

. Watchpoint Fault Address Register (WFAR) updated on a watchpoint access with the address of the
instruction that caused the Data Abort.

Note

The IFSR and DFSR are updated on Data Aborts because of instruction cache maintenance operations.

For a description of precise and imprecise exceptions see Exceptions on page A2-16.

VMSAV6 added a fifth fault status bit (bit[10]) to both the IFSR and DFSR. It is IMPLEMENTATION DEFINED
how this bit is encoded in earlier versions of the architecture. A write flag (bit[11] of the DFSR) has also
been introduced.

Precise aborts resulting from data accesses (Precise Data Aborts) are immediately acted upon by the CPU.
The DFSR is updated with a five-bit Fault Status (FS[10,3:0]) and the domain number of the access. In
addition, the modified virtual address which caused the Data Abort is written into the FAR. If a data access
simultaneously generates more than one type of Data Abort, they are prioritized in the order given in
Table B4-1 on page B4-20. The highest priority abort is reported.

Aborts arising from instruction fetches are flagged as the instruction enters the instruction pipeline. Only
when, and if, the instruction is executed does it cause a Prefetch Abort exception. An abort resulting from
an instruction fetch is not acted upon if the instruction is not used (for example, if it is branched around).

The fault address associated with a Prefetch Abort exception is determined from the value saved in R14_abt
when the Prefetch Abort exception vector is entered. If the Instruction Fault Address Register (IFAR) is
implemented, then the modified virtual address which caused the abort will also be in that register.

It is IMPLEMENTATION DEFINED whether the DFSR and FAR are updated for an abort arising from an
instruction fetch, and if so, what useful information they contain about the fault. However, an abort arising
from an instruction fetch never updates the DFSR and the FAR between the time that an abort arising from
a data access updates them and the time of the corresponding entry into the Data Abort exception vector. In
other words, a Data Abort handler can rely upon its FAR and DFSR values not being corrupted by an abort
arising from an instruction fetch that was not acted upon. From VMSAV6, only the IFSR is updated by a
Prefetch Abort.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-19

Virtual Memory System Architecture

Table B4-1 Fault status register encodings

Architecture Priority Sources FS Domaina FAR
[10,3:0]
All Highest Alignment 0b00001 Invalid Valid
VMSAv6 PMSA - TLB miss 0b00000 Invalid Valid
(MPU)
Alignment (deprecated) 0b00011
VMSAv6 Instruction Cache 0b00100 Invalid Valid
Maintenance
Operation Fault
All External Abort on Istlevel 0b01100 Invalid Valid
Translation 2ndlevel 0bO1110 Valid Valid
All Translation Section 0b00101 Invalid Valid
Page 0b00111 Valid Valid
All Domain Section 0b01001 Valid Valid
Page 0b01011 Valid Valid
All Permission Section 0b01101 Valid Valid
Page 0b01111 Valid Valid
VMSAv6 Precise External Abort 0b01000 Invalid Valid
External Abort, Precise 0b01010
(deprecated)
VMSAv6 TLB Lock b 0b10100 Invalid Invalid
VMSAv6 Coprocessor Data 0b11010 Invalid Invalid
Abort
(IMPLEMENTATION
DEFINED)
VMSAv6 Imprecise External Abort 0b10110 Invalid Invalid
VMSAv6 Parity Error Exception 0b11000 Invalid IMPLEMENTATION
DEFINED
VMSAv6 Lowest Debug event 0b00010 Valid UNPREDICTABLE
a. domains only valid for the DFSR.
b. see TLB lockdown procedure - translate and lock model on page B4-51.
B4-20 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

B4.6.1 Notes for fault status register encodings table

Prior to VMSAv6, the usage of FS[3:0] values associated with items marked as ARMvV6 is IMPLEMENTATION
DEFINED. This is true for either value of FS[10].

All other FS encodings are RESERVED.

Before VMSAV6, and for VMSAVG6 if the IFAR is not implemented, R14 must be used to determine the
faulting address for Prefetch Aborts.

Domain information is only available for data accesses. For Prefetch Aborts, the domain information can be
determined by performing a TLB lookup for the faulting address and extracting the domain field.

From VMSAVvG6:

All Data Aborts cause the Data Fault Status Register (DFSR) to be updated so that the cause of the
abort can be determined. All Instruction Aborts cause the Instruction Fault Status Register (IFSR) to
be updated so that the cause of the abort can be determined.

For all Data Aborts, excluding external aborts (other than on translation), the Fault Address register
(FAR) will be updated with the address that caused the abort. External data aborts, other than on
translation, can all be imprecise and hence the FAR does not contain the address of the abort. See
section Imprecise data aborts on page A2-23 for more details on imprecise aborts.

If a translation abort occurs during a data cache maintenance operation by modified virtual address,
a Data Abort is taken and the DFSR indicates the reason. The FAR provides the faulting address.

If a precise abort occurs during an instruction cache maintenance operation, then a Data Abort is
taken, and an Instruction Cache Maintenance Operation Fault indicated in the DFSR. The IFSR
indicates the reason. The FAR provides the faulting modified virtual address.

The WFAR contains a copy of the PC: the address + 8 when executing in ARM state, and the address
+4 when executing in Thumb® state. The value is relative to the virtual address of the instruction
causing the abort, not the modified virtual address.

The WFAR is used to store the address of the instruction that caused the watchpoint access.

If the IFAR is implemented, it holds the faulting address for a Prefetch Abort (other than Debug
aborts).

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-21

Virtual Memory System Architecture

B4.6.2 Abort FSR/FAR update summary

For VMSAV6, a summary of which abort vector is taken, and which of the fault status and Fault Address
registers are updated on each abort type is given in Table B4-2. The IFAR is optional.

Table B4-2 Abort FSR/FAR update summary

Abort Type Vector Precise IFSR DFSR FAR WFAR IFAR
Instruction MMU fault PABORT Yes Y N N Y
Instruction debug abort PABORT Yes Y N N N UNP
Instruction external abort on translation =~ PABORT Yes Y N N N Y
Instruction external abort PABORT Yes Y N N N Y
Instruction cache Parity error PABORT Yes Y N N N Y
Instruction cache maintenance operation ~DABORT Yes Y Y Y N N
Data MMU fault DABORT Yes N Y Y N N
Data debug abort DABORT No N Y N Y N
Data external abort on translation DABORT Yes N Y Y N N
Data external abort DABORT No N Y N N N
Data cache Parity error DABORT No N Y N N N
Data cache maintenance operation DABORT Yes N Y Y N N

Here:

Y Register is updated on this abort type

N Register is not updated on this abort type.

UNP UNPREDICTABLE.

B4-22 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

B4.7 Hardware page table translation
The MMU supports memory accesses based on sections or pages:

Supersections (optional)

Consist of 16MB blocks of memory
Sections Consist of 1MB blocks of memory.
The following page sizes are supported:

Tiny pages (not in VMSAv6)
Consist of 1KB blocks of memory.

Small pages Consist of 4KB blocks of memory.
Large pages Consist of 64KB blocks of memory.

Sections and large pages are supported to allow mapping of a large region of memory while using only a
single entry in the TLB. Additional access control mechanisms are extended within small pages to 1KB
subpages, and within large pages to 16KB subpages. The use of subpage AP bits is deprecated in VMSAv6.

The translation table held in main memory has two levels:
First-level table Holds section and supersection translations, and pointers to second-level tables.

Second-level tables Hold both large and small page translations. A second form of page table, fine rather
than coarse, supports tiny pages.

The MMU translates modified virtual addresses generated by the CPU into physical addresses to access
external memory, and also derives and checks the access permission. Translations occur as the result of a
TLB miss, and start with a first-level fetch. A section-mapped access only requires a first-level fetch,
whereas a page-mapped access also requires a second-level fetch.

The value of the EE-bit in the System Control coprocessor is used to determine the endianness of the page
table look ups. See Endian configuration and control on page A2-34 for more details.

Note

As the fine page table format and support for tiny pages is now OBSOLETE, definition of these features has
been moved into a separate section, Fine page tables and support of tiny pages on page B4-35.

B4.7.1 Translation table base

The translation process is initiated when the on-chip TLB does not contain an entry for the requested
modified virtual address. The Translation Table Base Register (TTBR in CP15 register 2) holds the physical
address of the base of the first-level table.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-23

Virtual Memory System Architecture

B4.7.2

Prior to VMSAV6, a single TTBR existed. Only bits[31:14] of the Translation Table Base Register are
significant, and bits[13:0] should be zero. Therefore, the first-level page table must reside on a 16KB
boundary.

VMSAVv6 introduced an additional translation table base register and a translation table base control register:
TTBRO, TTBR1 and TTBCR. On a TLB miss, the top bits of the modified virtual address determine if the
first or second translation table base is used, see Page table translation in VMSAv6 on page B4-25 for a
detailed description of the usage model.

TTBRI is expected to be used for operating system and I/O addresses, which do not change on a context
switch. TTBRO is expected to be used for process specific addresses. When TTBCR is programmed to zero,
all translations use TTBRO in a manner compatible with earlier versions of the architecture. The size of the
TTBRI table is always 16KB, but the TTBRO table ranges in size from 128 bytes to 16KB, depending on
the value (N) in the TTBCR, where N = 0 to 7. All translation tables must be naturally aligned.

VMSAV6 has also introduced a control bit field into the lowest bits of the TTBRs, see Page table translation
in VMSAv6 on page B4-25 for details.

First-level fetch

Bits[31:14] of the Translation Table Base register are concatenated with bits[31:20] of the modified virtual
address and two zero bits to produce a 32-bit physical address as shown in Figure B4-3. This address selects
a four-byte translation table entry which is a first-level descriptor for a section or a pointer to a second-level
page table.

31 14-X 13-X 0

Translation base ‘ SBZ ‘

31-X 20 19 0

Table index

31 <> 14-X 13-X

Translation base ‘ Table index ‘ 0 0‘

Figure B4-3 Accessing the translation table first-level descriptors

Note

Under VMSAV6, the Translation Base is always address [31:14] when TTBRI is selected. However, the
value used with TTBRO varies from address [31:14] to address [31:7] for TTBCR values of N=0 to N=7
respectively. The value of X shown in Figure B4-3 to Figure B4-7 on page B4-34 is 0 if TTBR1 is used, and
is the TTBCR value N if TTBRO is used.

Before VMSAUV6, only the TTBRO existed, and the value of X in these diagrams is always 0.

B4-24

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

B4.7.3

Virtual Memory System Architecture

Page table translation in VMSAv6
VMSAV6 supports two page table formats:

. A backwards-compatible format supporting sub-page access permissions. These have been extended
so certain page table entries support extended region types.

. A new format, not supporting sub-page access permissions, but with support for the VMSAv6
features. These features are:

— extended region types

— global and process specific pages

— more access permissions

— marking of shared and nonshared regions
— marking of execute-never regions.

Subpages are described in Second-level descriptor - Coarse page table format on page B4-31.

It is IMPLEMENTATION DEFINED whether hardware page table walks can cause a read from the L1
unified/data cache. Hardware page table walks cannot cause reads from TCM. The RGN, P, S and C bits in
the translation table base registers determine the memory region attributes for the page table walk. To ensure
coherency on implementations that do not support page tables accesses from L1, either page tables should
be stored in inner write-through memory, or if in inner write-back, the appropriate cache entries must be
cleaned after modification. Page table walks may be outer-cacheable accessible as defined in the TTBR
region (RGN) bits in Translating page references in fine page tables on page B4-38.

The page table format is selected using the XP bit in CP15 register 1. When subpage AP bits are enabled
(CP15 register 1 XP = 0), the page table formats are backwards compatible with ARMv4/v5:

. all mappings are treated as global, and executable (XN = 0)
. all normal memory is nonshared
. device memory may be shared or nonshared as determined by the TEX + CB bits

. the use of subpage AP bits where AP3, AP2, AP1, APO contain different values is deprecated.

When subpage AP bits are disabled (CP15 register 1 XP = 1), the page tables have support for ARMv6
MMU features. New page table bits are added to support these features:

. The not-global (nG) bit determines whether the translation should be marked as global (0), or process
specific (1) in the TLB. For process-specific translations the translation is inserted into the TLB using
the current ASID, from the ContextID register.

. The shared (S) bit, determines whether the translation is for not-shared (0), or shared (1) memory.
This only applies to normal memory regions. Device memory can be shared or nonshared, as
determined by the TEX + CB bits. Strongly ordered memory is always treated as shared.

o The execute-never (XN) bit determines whether the region is executable (0) or not-executable (1).

. Three access permission bits. The access permissions extension (APX) bit provides an extra access
permission bit.

. All page table mappings support the TEX field.

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-25

Virtual Memory System Architecture

Note

In VMSAV6, an invalid entry (bits[1:0] = 0b00) or a RESERVED entry (bits[1:0] = Ob11) shall result in a
translation fault.

The following sections describe the first and second level access mechanisms, and define the different table
formats for VMSAV6 and earlier versions of the architecture.

B4.7.4 First-level descriptors

Each entry in the first-level table is a descriptor of how its associated 1MB modified virtual address range

is mapped. Bits[1:0] of the first-level page table entry determine the type of first-level descriptor as follows:

. If bits[1:0] == 0b00, the associated modified virtual addresses are unmapped, and attempts to access
them generate a translation fault (see Aborts on page B4-14). Software can use bits[31:2] for its own
purposes in such a descriptor, as they are ignored by the hardware. Where appropriate, it is suggested
that bits[31:2] continue to hold valid access permissions for the descriptor.

. If bits[1:0] == 0b10, the entry is a section descriptor for its associated modified virtual addresses. See
Sections and supersections on page B4-28 for details of how it is interpreted.

. If bits[1:0] == 0b01, the entry gives the physical address of a coarse second-level table, that specifies
how the associated 1MB modified virtual address range is mapped. Coarse tables require 1KB per
table and can map large pages and small pages (see Coarse page table descriptor on page B4-30).

. If bits[1:0] == Ob11, the entry gives the physical address of a fine second-level table prior to
VMSAV6, and is RESERVED in VMSAV6. See Fine page tables and support of tiny pages on
page B4-35.

There are two formats of first-level descriptor table:

. VMSAUv6, subpages enabled, shown in Table B4-1 on page B4-27

. VMSAV6, subpages disabled, shown in Table B4-2 on page B4-27.

The AP, APX, and domain fields are described in Memory access control on page B4-8. The C, B, and TEX

fields are described in Memory region attributes on page B4-11.

The IMPLEMENTATION DEFINED (IMP) bit[9] should be set to O unless the implementation defined

functionality enabled when bit[9]==1 is required. When this bit is 0, the implementation defined

functionality is disabled.
B4-26 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

Table B4-1 First-level descriptor format (VMSAv6, subpages enabled)

31 20 19 14 1211 10 9 8 543210
Fault IGN 00
Coarse !
Coarse page table base address M| Domain SBZ |0 1
page table P
1 S
Section Section base address SBZ TEX | AP (M| Domain |B|C 10
P Z
RESERVED 11
Table B4-2 First-level descriptor format (VMSAv6, subpages disabled)
31 24 23 20 19 14 12 11 10 9 8 543210
Fault IGN 00
Coarse page !
pag Coarse page table base address M| Domain SBZ [0 1
table P
S| 1n|. AP ! X
Section Section base address B0 S TEX | AP |M| Domain C 10
7 G X P N
Base S 1
Supersection|{Supersection base address| address B |1 "ls AP TEX | AP MBase a.ddress X C 10
. G X [39:36] |N
[35:32] |Z P
RESERVED 11
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-27

Virtual Memory System Architecture

B4.7.5

Sections and supersections

If Bits[1:0] equal Ob10, the first-level descriptor is a IMB section or a 16MB supersection descriptor.

Supersections are optional. If used, they translate 32-bit modified virtual addresses to a larger physical
address space (up to eight additional address bits), and are defined as follows:

The bit fields are described in the VMSAV6 revised format. See First-level descriptor format
(VMSAv6, subpages disabled) on page B4-27.

Bits[1:0] =0bl0
Bit[18] =0 defines a IMB section

=1 defines a 16MB supersection
Bits[8:5] optional extended physical address bits; PA[39:36]
Bits[23:20] optional extended physical address bits; PA[35:32].

It is IMPLEMENTATION DEFINED how many additional address bits are supported.
Supersections default to domain 0.

It is IMPLEMENTATION DEFINED whether supersections are offered in section descriptor formats prior
to ARMvo6.

Figure B4-4 on page B4-29 shows how virtual to physical addresses are generated for sections. The shaded
area of the descriptor represents the access control data fields.

Note

The access permissions in the first-level descriptor must be checked before the physical address is
generated. The sequence for checking access permissions is given in Access permissions on page B4-8.

B4-28

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

i 31 14-X_13-X)
Translation Transiation b
table base ranslation base SBZ
Modified > =k 0
virtual Table index Section index
address
31 v 14-X 13-X 210
Address of Transiation b Tablo ind
first-level descriptor ranslation base able index 00
First-level fetch .
31
First-level descriptor ‘ Section base address

31 20 19 e 0

Physical
address

Section base address ‘ Section index ‘

Figure B4-4 Section translation

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-29

Virtual Memory System Architecture

B4.7.6 Coarse page table descriptor

If the first-level descriptor is a coarse page table descriptor, the fields have the following meanings:

Bits[1:0] Identify the type of descriptor (ObO1 marks a coarse page table descriptor).
Bits[4:2] The meaning of these bits is IMPLEMENTATION DEFINED. From VMSAV6 these bits SBZ.
Bits[8:5] The domain field specifies one of the 16 possible domains for all the pages controlled by

this descriptor.
Bit[9] IMPLEMENTATION DEFINED.

Bits[31:10] The Page Table Base Address is a pointer to a coarse second-level page table, giving the base
address for a second-level fetch to be performed. Coarse second-level page tables must be
aligned on a 1KB boundary.

If a coarse page table descriptor is returned from the first-level fetch, a second-level fetch is initiated to
retrieve a second-level descriptor, as shown in Figure B4-5. The shaded area of the descriptor represents the
access control data fields.

31 14-X 18X 0
Translation]
table base Translation base SBz
o Modified 2 20 19 121 0
= v First-level Second-level |-
] virtual S, s |
.| address
31 <> 14X 13X 210
Address of ‘ First-level
first-level descriptor Transtation base table ndex 00
First-level fetch
s~
First-level descriptor Page table base address
31 109 <> 210
Addr f ¥
ddress o . Page table base address S‘e%?nd lfve‘ 00
second-level descriptor able index

Figure B4-5 Accessing coarse page table second-level descriptors

B4-30 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

B4.7.7 Second-level descriptor - Coarse page table format
Coarse tables are 1KB in size. Each 32-bit entry provides translation information for 4KB of memory.
VMSAV6 supports two page sizes:
. large pages are 64KB in size
. small pages are 4KB in size.
A second-level table can support page sizes greater than or equal to the amount of memory mapped by an
entry. To map pages larger than the entry size, the page table entry needs to be replicated in the table the
appropriate number of times:
. for a coarse table, large pages require 16 replicated entries.
There are two formats of second-level descriptor table (coarse page format):
. subpages enabled, shown in Table B4-3
. subpages disabled, shown in Table B4-4.
Table B4-3 Second-level descriptor format (subpages enabled)
31 16 15 14 1211109 8 7 6 5 4 3 2 10
Fault IGN 00
S
Large page Large page base address B| TEX | AP3|AP2| APl |APO|C|B|0 1
zZ
Small page Small page base address AP3 | AP2 | AP1 |APO|C(B|1 O
Extended Extended small page base address SBZ TEX | AP |[C|B|1 1
small page
Table B4-4 Second-level descriptor format (subpages disabled)
31 16 15 14 1211109 8 7 6 5 4 3 2 1 0
Fault IGN 00
X n A
Large page Large page base address N TEX G S|P| SBZ | AP |[C|B|0 1
X
Extended n A X
Extended small page base address S|P| TEX | AP |C|B|1
small page G X N

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-31

Virtual Memory System Architecture

Second-level page table descriptor fields

The fields in a second-level page table have the following meanings:

Bits[1:0] Identify the type of descriptor (and include XN bit in revised VMSAv6 format).
Bits[3:2] Are the cacheable and bufferable bits.
Bits[5:4] Are the access permission bits, full page or APO subpage.

The following bits are used for the corresponding physical address bits, the field size depending on the page
size:

Bits[31:16] large (64KB) pages

Bits[31:12] small (4KB) pages

The following bits are used for additional access control functions:

Bits[15:6] depending on the format:

. large page control

. subpage access permissions
. TEX

. APX

. S

. nG

. XN

Bits[11:6] depending on the format:

. small page control
. subpage access permissions
. TEX
. APX
. S
. nG
Bits[9:6] tiny page control, SBZ.

For details of these fields see the following sections:

AP and APX see Access permissions on page B4-8.

C, B and TEX see C, B, and TEX Encodings on page B4-11

XN, nG and S see Page table translation in VMSAv6 on page B4-25.

Where subpages are supported, the page is divided into four blocks, each of the same size. APO refers to the
block with the lowest block base address, with AP1, AP2 and AP3 applying to blocks with incrementing
block base addresses.

B4-32

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

B4.7.8 Translating page references in coarse page tables
Figure B4-6 shows the complete translation sequence for a 64KB large page in a coarse second-level table.
Note
Because the upper four bits of the Page Index and low-order four bits of the Second-level Table Index
overlap, each page table entry for a large page must be repeated 16 times (in consecutive memory locations)
in a coarse page table.
31 14-X 13-X 0
Translation
table base Translation base SBZ
e 31X 2019 1615 12 11 0
- Motdlflled First-level Second- Page index
: : ;gdl:'gss table index level table index
31 v 14-X 13-X 2 10
Address of) 3
first-level descriptor fransiaton base | tbie 00
First-level fetch
gl
First-level descriptor Page table base address
31 v 10 9 2 10
Address of -
second-level descriptor Page table base address | %Zf)?:?n:jegfl 00
Second-level fetch
31 v 16 15 210
Second-level descriptor Large page base address ‘
31 v 16 15 V\{ 0
Physical address Large page base address | Page index |

Figure B4-6 Large page translation in a coarse second-level table

ARM DDI 0100l

Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved.

B4-33

Virtual Memory System Architecture

Figure B4-7 shows the complete translation sequence for a 4KB small (standard or extended) page in a
coarse second-level table.

31 14X 13X 0
Translation]
table base Translation base SBZ
. Modified 2 20 19 12 11 0
vinual | e e | e
31 v 14-X 13X -l 210
Address of S
first-level descriptor Transiation base table index 00
First-level fetch
g1
First-level descriptor Page table base address
31 10 9 . 210
Address Of Second-level
second-level descriptor Page table base address table index | © 0
Second-level fetch
3= > 1211 210
Second-level descriptor Small page base address
=~ 2 <l 0
Physica| address Small page base address Page index

Figure B4-7 Small page translation in a coarse second-level table

B4-34 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

B4.8 Fine page tables and support of tiny pages

Tiny pages and the fine page table format are OBSOLETE in VMSAV6. For this reason, the definition of tiny
pages support and the associated first and second level descriptors is listed separately from the coarse page
table formats described in Hardware page table translation on page B4-23.

B4.8.1 First-level descriptor

Each entry in the first-level table is a descriptor of how its associated 1MB modified virtual address range
is mapped. Bits[1:0] of the first-level page table entry determine the type of first-level descriptor as follows:

If bits[1:0] == 0b0O0, the associated modified virtual addresses are unmapped, and attempts to access
them generate a translation fault (see Aborts on page B4-14). Software can use bits[31:2] for its own
purposes in such a descriptor, as they are ignored by the hardware. Where appropriate, it is suggested
that bits[31:2] continue to hold valid access permissions for the descriptor.

If bits[1:0] == 0b10, the entry is a section descriptor for its associated modified virtual addresses. See
Sections and supersections on page B4-28 for details of how it is interpreted.

If bits[1:0] == 0b01, the entry gives the physical address of a coarse second-level table, that specifies
how the associated 1MB modified virtual address range is mapped.

If bits[1:0] == Ob11, the entry gives the physical address of a fine second-level table. A fine
second-level page table specifies how the associated IMB modified virtual address range is mapped.
It requires 4KB per table, and can map large, small and tiny pages, see Fine page tables and support

of tiny pages.

The first-level descriptor format supporting fine page tables is shown in Table B4-5.

The AP and domain fields are described in Memory access control on page B4-8. The C and B fields are
described in Memory region attributes on page B4-11.

Table B4-5 First-level descriptor format

31 20 19 14 1211 10 9 8 543 210
Fault IGN 00
Coarse S
Coarse page table base address B| Domain IMP |0 1
page table 7
S I
Section Section base address SBZ AP |B| Domain [M|C|B|1 O
Z P
Flrtlszl):ge Fine page table base address SBZ Domain IMP |1 1
ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-35

Virtual Memory System Architecture

B4.8.2 Second-level descriptor
Fine tables are 4KB in size. Each 32-bit entry provides translation information for 1KB of memory.

The VMSA supports three page sizes:

. large pages are 64KB in size
. small pages are 4KB in size
. tiny pages are 1KB in size.

A second-level table can support page sizes greater than, or equal to, the amount of memory mapped by an
entry. For this reason, tiny pages are only supported in fine page tables. To map pages larger than the entry
size, the page table entry needs to be replicated four times for small pages and 64 times for large pages.

The second-level descriptor format supporting fine page tables is shown in Table B4-1.

Table B4-1 Second-level descriptor format

31 16 15 121110 9 8 7 6 5 4 3 2 1 0

Fault IGN 00
Large page Large table base address SBZ AP3 | AP2 | AP1 | APO|C|B|0 1
Small page Small page base address AP3 | AP2 | AP1 | APO|C|B|1 O
Tiny page Tiny page base address SBZ AP |C|B|1 1

If the first-level descriptor is a fine page table descriptor, the fields have the following meanings:

Bits[1:0] Identify the type of descriptor (Ob11 marks a fine page table descriptor).
Bits[4:2] The meaning of these bits is IMPLEMENTATION DEFINED.
Bits[8:5] The domain field specifies one of the sixteen possible domains for all the pages controlled

by this descriptor.
Bit[11:9] These bits are not currently used, and should be zero.

Bits[31:12] The Page Table Base Address is a pointer to a fine second-level page table, giving the base
address for a second-level fetch to be performed. Fine second-level page tables must be
aligned on a 4KB boundary.

If a fine page table descriptor is returned from the first-level fetch, a second-level fetch is initiated to retrieve
a second-level descriptor, as shown in Figure B4-8 on page B4-37. The shaded area of the descriptor
represents the access control data fields.

B4-36 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

31 1413 0
Translation]
table base Translation base SBZ
- ce 481 20 19
- Modified vt P
- H Irst-level econd-level
o Vg:’ual | table index | table index
- .| address
31 <= 1413 210
Address of) First-level
first-level descriptor Transiation base table indx 00
First-level fetch
3 1211 : 210
First-level descriptor Page table base address
31 121 ~_ = 210
Address of Second-level
second-level descriptor Page table base address table index 00

Figure B4-8 Accessing fine page table second-level descriptors

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-37

Virtual Memory System Architecture

B4.8.3 Translating page references in fine page tables

The translation sequence for a large or small page in a fine second-level table is similar to that for a coarse
page, but with the address of the second-level descriptor being determined as shown in Figure B4-9.

When a small page appears in a fine second-level table, the upper two bits of the Page Index and the
low-order two bits of the Second-level Table Index overlap; bits[11:10]. Each page table entry for a small
page must be repeated four times (in consecutive memory locations) in a fine page table. For a large page
the overlap is six bits, bits[15:10], and each page entry must be repeated sixty-four times.

Tiny pages have no overlap, with one entry per 1KB page. Figure B4-9 shows the complete translation
sequence for a 1 KB tiny page in a fine second-level table.

31 1413 0
Translation]
table base Translation base SBz
i IO 20 19 10 9 0
.1 Modified e o
. H irst-level econad-level i
- Vg:jual ta{)Ie im‘ilex | table indevx | Page index
.1 address
31 > 1413 210
Address of First-level
first-level descriptor Translation base table index 0o
First-level fetch
31*'\':/ 12 11 . 210
First-level descriptor Page table base address d11
El < &> 121 <> 210
Address of Second-level
second-level descriptor Page table base address table index 00

Second-level fetch

a0t

Tiny page base address

Second-level descriptor

3=~ 109~ 0

Tiny page base address | Page index

Physical address

Figure B4-9 Tiny page translation in a fine second-level table

B4-38 Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. ARM DDI 0100l

Virtual Memory System Architecture

B4.9 CP15 registers

The MMU is controlled with the System Control coprocessor registers. From VMSAV6, several new
registers, and register fields have been added:

. a TLB type register in register 0

. additional control bits to register 1

. a second translation table base register, and new control fields to register 2
. an additional fault status register to register 5

. an additional Fault Address register to register 6

. TLB invalidate by ASID support in register 8
. ASID control in register 13.

Domain support (register 3) and TLB lockdown support (register 10) are the same as in earlier versions of
the architecture.

All VMSA-related registers are accessed with instructions of the form:

MRC p15, @, Rd, CRn, CRm, opcode_2
MCR p15, @, Rd, CRn, CRm, opcode_2

Where CRn is the system control coprocessor register. Unless specified otherwise, CRm and opcode_2 SBZ.

B4.9.1 Register 0: TLB type register (VMSAvV6)

The TLB size and organization is IMPLEMENTATION DEFINED. This read-only register describes the number
of lockable TLB entries, and whether separate instruction and data or a unified TLB is present. This allows
operating systems to establish how to manage the TLB. The TLB type register is accessed by reading CP15
register 0 with the opcode_2 field set to 0b011. For example:

MRC p15, 0, Rd, c@, c@, 3 ; returns TLB Type register

bit[0] 0 = Unified TLB

1 = Separate instruction/data TLBs.
Bits[7:1] SBZ
Bits[15:8] Number of unified/data TLB lockable entries. 0 <= N <= 255.

Bits[23:16] Number of instruction TLB lockable entries. 0 <= N <= 255. Bits[23:16] SBZ for unified
TLBs.

Bits[31:24] SBZ

ARM DDI 0100l Copyright © 1996-1998, 2000, 2004, 2005 ARM Limited. All rights reserved. B4-39

Virtual Memory System Architecture

B4.9.2 Register 1: Control register
The following bits in the System Control coprocessor register 1 are used to control the MMU:

M (bit[0]) This is the enable/disable bit for the MMU:
0 =MMU disabled.
1 = MMU enabled.
On systems without an MMU or memory protection unit (MPU), this bit must read as zero
and ignore writes.
A (bit[1]) This is the enable/disable bit for alignment fault checking (see Alignment fault on
page B4-15):
0 = Alignment fault che