
The Design and Implementation

of the

Lout Document Formatting Language

Jeffrey H. Kingston

Basser Department of Computer Science,
The University of Sydney 2006,

Australia

27 January, 1993

SUMMARY

Lout is a high-level language for document formatting, whose ease of use has permit-
ted an unprecedented number of advanced features to be added quickly and reliably.
This paper charts the evolution of the design and implementation of Lout from concep-
tion in mid-1984 to public release in October 1991. It includes extensive discussions
of remaining problems and possible solutions.

Keywords document formatting typesetting

The Design and Implementation

of the

Lout Document Formatting Language

Jeffrey H. Kingston

Basser Department of Computer Science,
The University of Sydney 2006,

Australia

27 January, 1993

1. Introduction

Lout [1, 2] is a high-level language for document formatting,designed and implemented by
the author. The implementation, known as Basser Lout, is a fully operational production version
written in C for the Unix operating system,1 which translates Lout source code into PostScript,2

a device-independent graphics rendering language accepted by many high-resolution output
devices, including most laser printers. Basser Lout is available free of charge [3]. It includes
installation instructions, C source, seven standard packages, and complete documentation in the
form of six technical reports and a manual page.

The Lout project arose out of the author’s desire to bring to document formatting languages
the elegance of expression found in programming languages like Algol-60 and Pascal. This em-
phasis on expressivenesshas produced an order of magnitude reduction in the cost of developing
document formatting applications. For example, an equation formatting application, which may
be difficult or impossible to add to other systems, can be written in Lout in a few days.

When expert users can implement such applications quickly, non-experts benefit. Although
Lout itself provides only a small kernel of carefully chosen primitives, packages written in Lout
and distributed with Basser Lout provide an unprecedented array of advanced features in a form
accessible to non-expert users. The features include rotation and scaling, fonts, paragraph and
page breaking, displays and lists, floating figures and tables, footnotes, chapters and sections (au-
tomatically numbered), running page headers and footers, odd-even page layouts, automatically
generated tables of contents,sorted indexes and reference lists,bibliographicand other databases
(including databases of formats for printing references), equations, tables, diagrams, formatting
of Pascal programs, and automatically maintained cross references.

This paper charts the evolution of Lout from conception in mid-1984 to the public
release of Basser Lout in October 1991. Lout is organized around four key concepts – objects,
definitions, galleys, and cross references – and they were developed in the order listed, so this
paper will treat each in turn, discussing its design, implementation, problems, and prospects for

1Unix is a trademark of AT&T Bell Laboratories.
2PostScript is a trademark of Adobe Systems, Incorporated.

- 2 -

further improvement.

2. Objects

The essence of any move to a higher level is the introduction of some abstraction which
serves to organize the low-level operations, resulting in a more succinct expression of their com-
mon combinations at the cost of some loss of detailed control. The early part of the Lout project
was spent in the development of such an abstraction for the building blocks of documents, one
which could explain, not just the simple phenomena of words, lines, and paragraphs,but also the
alignment of columns in tables, and the complex nested structures of equations.

2.1. The genesis of the object abstraction

When one examines previous document formatting systems [4] looking for ideas for
abstractions, as the author did in 1984, the Eqn formatting language [5] stands out like a beacon.
In Eqn, a mathematical formula such as

2x + 1
4

is produced by typing

{ x sup 2 + 1 } over 4

in the input file;sup andover are binary operators, and braces are used for grouping. This is
document formatting at a very high level, close to the language of mathematics itself, with all
reference to font changes and spacing suppressed.

Eqn provides a single data type (let us call it theexpression), built up recursively in context-
free style: where one expression may appear, any expression may appear. This approach is
common in algebra and programming languages, where its simplicity and expressiveness have
long been appreciated; but Eqn was the first language to demonstrate its utility in document for-
matting.

Each expression is treated by Eqn as a rectangle with ahorizontal axis, used for alignment
with adjacent expressions:

2x + 1
4

The size and rendering of the expression on the printed page are known only to the implementa-
tion, never explicitly calculated or accessed by the user. This prohibition is crucial to the main-
tenance of the context-free property in practice. In Lout, for example, equations, figures, tables,
and arbitraryobjects may be mixed together freely. This would be impossible if size information
was hidden from the implementation in user calculations.

The object abstraction of Lout is a direct descendant of the Eqn expression. It employs

- 3 -

the same context-free recursive style of construction, and each object is treated by Lout as
a rectangle:

The horizontal axis, called arow mark in Lout, has a vertical analogue called acolumn mark,
creating a valuable symmetry between horizontal and vertical. Multiple column and row marks
are permitted:

so that objects are able to represent tables.

This abstraction has some limitations, the most obvious being the restriction of size calcula-
tions to rectangular bounding boxes. Non-rectangular and disconnected shapes arise naturally in
figures and in the characters of fonts; the extension to them is conceptually straightforward and
might help to explain some fine points of layout such as kerning. However, there are implemen-
tation and language design problems, particularly when filling non-rectangular shapes with text,
and so the author chose to keep to Eqn’s rectangles.

A more fundamental limitation of the object abstraction arises from the inability of
recursive data types to describe cross-linked structures, which seem to require some means of
naming the multiply referencedparts. Lout is obliged to introduce additional abstractions to cope
with cross linking: galleys for inserting text into pages (Section 5.1), cross references (Section
6.1), and labelled points in figure drawing [6]. An abstraction closer to hypertext might form a
more unified basis for these features.

2.2. Grammatical and lexical structure

If objects are to be constructed like mathematical expressions, the natural notation is a func-
tional language based on operators, as in Eqn. The grammar of Lout objects is accordingly

→
→
→
→
→
→
→
→

object object infixop object

prefixop object

object postfixop
noparsop

literalword
{ object }

object object

whereinfixop, prefixop, postfixop, andnoparsopare identifiers naming operators which take 0, 1
or 2 parameters,as shown, andliteralword is a sequence of non-space characters,or an arbitrary

- 4 -

sequence of characters enclosed in double quotes. Ambiguities are resolved by precedence
and associativity.

The last production allows a meaning for expressions such as{}, in which an object is
missing. The value of thisempty objectis a rectangle of size 0 by 0, with one column mark and
one row mark, that prints as nothing.

The second-last production generates sequences of arbitrary objects separated by white
space, calledparagraphs. Ignoring paragraph breaking for now, the natural meaning is that
the two objects should appear side by side, and Lout’s parser accordingly interpolates an infix
horizontal concatenation operator (see below) between them. This operator is associative, so the
grammatical ambiguity does no harm. However, the Algol-60 rule that white space should be
significant only as a separator is necessarily broken by Lout in just this one place.

Algol-like languages distinguish literal strings from identifiers by enclosing them in quotes,
but literals are far too frequent in document formatting for this to be viable. The conventional
solution is to begin identifiers with a special character, and Lout follows Scribe [7] in using ‘@’
rather than the ‘\’ of troff [8] and TEX [9].

However, Lout takes the unusual step of making an initial ‘@’ optional. The designers of
Eqn apparently considered such characters disfiguring in fine-grained input like equations, and
this author agrees. The implementation is straightforward: ‘@’ is classed as just another letter,
and every word is searched for in the symbol table. If it is found, it is an identifier, otherwise it
is a literal. A warning message is printed when a literal beginning with ‘@’ is found, since it is
probably a mis-spelt identifier. No such safety net is possible for identifiers without ‘@’.

Equation formatting also demands symbols made from punctuation characters, such as+
and<=. It is traditional to allow such symbols to be juxtaposed, which means that the input

<=++

for example must be interpreted within the lexical analyser by searching the symbol table for
its prefixes in the order<=++, <=+, <=. Although this takes quadratic time, in practice such
sequences are too short to make a more sophisticated linear method like tries worthwhile.

2.3. Basic structural operators

A programming language may be considered complete when it attains the power of a Turing
machine, but no such criterion seems relevant to document formatting. Instead, as the language
develops and new applications are attempted, deficiencies are exposed and the operator set is
revised to overcome them.

Lout has a repertoire of 23 primitive operators (Figure 1), which has proven adequate
for a wide variety of features, including equations, tables, and page layout, and so seems to be
reasonably complete in this pragmaticsense. In this section we introduce the eight concatenation
and mark-hiding operators. To them falls the basic task of assembling complex objects from
simple ones, and they were the first to be designed and implemented.

Many of the operators of Eqn can be viewed as building small tables. A built-up fraction,
for example, has one column and three rows (numerator, line, and denominator). Numerous

- 5 -

object /gap object Vertical concatenation with mark alignment
object //gap object Vertical concatenation with left justification
object |gap object Horizontal concatenation with mark alignment
object ||gap object Horizontal concatenation with top-justification
object &gap object Horizontal concatenation within paragraphs
@OneCol object Hide all but one column mark ofobject
@OneRow object Hide all but one row mark ofobject
font @Font object Renderobjectin nominated font
breakstyle@Break object Break paragraphs ofobjectin nominated style
spacestyle@Space object Render spaces between words in nominated style
length @Wide object Renderobjectto width length
length @High object Renderobjectto heightlength
@HExpand object Expand horizontal gaps to fill available space
@VExpand object Expand vertical gaps to fill available space
@HScale object Horizontal geometrical scaling to fill available space
@VScale object Vertical geometrical scaling to fill available space
angle @Rotate object Rotateobjectby angle
PostScript@Graphic object Escape to graphics language
@Next object Add 1 to an object denoting a number
object @Case alternatives Select from a set of alternative objects
identifier && object Cross reference
cross-reference@Open object Retrieve value from cross reference
cross-reference@Tagged object Attach cross referencing tag to object

Figure 1. The 23 primitive operators of Lout, in order of increasing precedence.

investigations of this kind convinced the author that operators capable of assembling the rows
and columns of tables would suffice for building all kinds of objects.

The simplest objects are empty objects and literal words likemetempsychosis, which have
one column mark and one row mark:

metempsychosis

To place two arbitrary objects side by side, we use the infix operator|, denoting horizontal
concatenation. For example,

USA |0.2i Australia

produces the object

USA Australia

The row marks are merged into one, fixing the vertical position of the objects relative to each
other; their horizontal separation is determined by thegapattached to the operator, in this case
0.2 inches. We think of the gap as part of the operator, although strictly it is a third parameter.
It may be omitted, defaulting to0i.

Vertical concatenation, denoted by the infix operator/, is the same apart from the change

- 6 -

of direction:

Australia /0.1i USA

produces the object

Australia
USA

with column marks merged and a 0.1 inch gap.

Consider now what happens when horizontal and vertical are combined:

{ USA |0.2i Australia }
/0.1i { Washington | Canberra }

The two parameters of/ now have two column marks each, and they will be merged with the
corresponding marks in the other parameter, yielding the object

USA Australia
Washington Canberra

The0.2i gap separates columns, not individual items in columns, so a gap attached to the second
| would serve no purpose; any such gap is ignored. If the number of marks to be merged differs,
empty columns are added at the right to equalize the number. The four marksprotruding from the
result are all available for merging with neighbouring marks by other concatenation operators.
The precedence of| is higher than the precedence of/, so the braces could be omitted.

When lines of text are concatenated, it is conventional to measure their separation from
baseline to baseline (mark to mark in Lout), rather than from edge to edge as above. This idea of
different referencepoints for measurement evolved over the years into a system of sixgap modes
(Figure 2), expressed by appending a letter to the length. For example,|0.2i is an abbreviation
for |0.2ie, meaning 0.2 inches measured from edge to edge;|0.3ix produces a 0.3 inch gap
measured from mark to mark and widened if necessary to prevent overstriking;and|2.5it places
its right parameter 2.5 inches from the current left margin, irrespective of the position of the left
parameter. There is also a choice of eleven units of measurement (inches, centimetres,multiples
of the current font size, etc.), the most interesting being ther unit: oner is the column width
minus the width of the following object, so that|1rt produces sufficient space to right justify the
following object, and|0.5rt to center it. These features implement spacings needed in practice
rather than suggested by theory. They work with all five concatenation operators,horizontal and
vertical.

When we construct a built-up fraction, the result has three row marks, but only the second
should be visible outside the object:

X
Y

This is a common problem, and accordingly a@OneRow operator was introduced for hiding
all but one of the row marks of its parameter. Normally, the first mark is the survivor, but a later

- 7 -

Edge-to-edge |lengthe

Hyphenation |lengthh

Overstrike |lengtho

Mark-to-mark |lengthx

Kerning |lengthk

Tabulation |lengtht

length

length

length

max(length, a + b)

a b

max(length, a, b)

a b

length

current bound

Figure 2. The six gap modes (length is any length). Hyphenation mode has an extra
property not shown here.

mark can be chosen by prefixing^ to the preceding concatenation operator:

@OneRow { X ^/2p @HLine /2p Y }

has the desired result, where2p is two points and@HLine is an easy combination of Lout’s
graphics operators. A similar operator,@OneCol, hides column marks.

A variant of / called // is provided which performs vertical concatenation but ignores all
column marks and simply left-justifies its two parameters:

Heading //0.1i
A |0.2i B /0.1i
C | D

has result

- 8 -

Heading

A B
C D

showing that spanning columns in tables motivate the inclusion of this operator. There is an
analogous|| operator. The author would have preferred to leave out these operators, since they
complicate the implementation, and it is interesting to examine the prospects of doing so.

The // operator is formally redundant, because in general the expressionx // y can be
replaced by

@OneCol { | x } /
@OneCol { | y }

for any objectsx andy. By concatenating an empty object at the left ofx and hiding all but that
empty object’s column mark,we effectively shiftx’s column mark to its left edge. The same goes
for y, so the/ operator has just one column mark to merge, at the extreme left, and its effect is
indistinguishable from//.

Unfortunately, ify consists of two rows separated by/, as in the example above, both rows
must be placed inside the@OneCol, and the table cannot be entered in the simple row-by-row
manner that non-expert users naturally expect. Another advantage of// is that its left parameter
can be printed before its right parameter is known; this is important when the left parameter is an
entire page.

The fifth and final concatenation operator,&, is an explicit version of the horizontal
concatenation operator interpolated when objects are separated by white space. It is formally
identical to| except for taking higher precedence and being subject to replacement by//1vx
during paragraph breaking (Section 2.5).

2.4. Implementation of objects and concatenation

In this section we discuss the implementation of objects and concatenation, and especially
mark alignment. The first step is to use an operator precedence parser to convert input such as

a |0.5i b /0.2i c | d

into parse trees such as

⁄

|

a 0 .5 i b

0 .2 i |

c d

Missing objects are replaced by empty objects, and sequences of concatenation operators

- 9 -

are consolidated:

|

a 0 .2 i |

c 0 .3 i d

⇒ |

a 0 .2 i c 0 .3 i d

to make manifest their associativity and reduce the depth of the tree for efficiency later.

The required semantic information is the size of each subobject, consisting of four
integers: width to left and right of the distinguished column mark, and height above and below
the distinguished row mark. These numbers are always non-negative in Basser Lout, but this
restriction is unnecessary and should be dropped.

For the leaves, which are simple words, the numbers are obtained from font tables. For the
higher levels we apply recursive rules. Suppose thathgap(x, g, y) returns the desired distance
between the column marks of objectsx andy when they are separated by gapg: right(x) + length
(g) + left(y) when the gap mode is edge-to-edge, the larger oflength(g) andright(x) + left(y)
when the mode is mark-to-mark, and so on. Given an object

X = x1 |g1 … ^|gi −1 xi … |gn−1 xn

we may calculate its size as follows:

left(X) = left(x1) + hgap(x1, g1, x2) + … + hgap(xi −1, gi −1, xi)

right(X) = hgap(xi, gi, xi +1) + … + hgap(xn−1, gn−1, xn) + right(xn)

above(X) = above(x1) ↑ … ↑ above(xn)

below(X) = below(x1) ↑ … ↑ below(xn)

where ↑ returns the larger of its two parameters. Similar formulas are easily derived for the
other operators.

For purposes of exposition we will now make the simplifying assumptions that all gaps are
0i, all column marks lie at the left edge,and all row marks lie at the top edge. Then the size of each
object can be expressed by just two numbers, width and height, and the four formulas reduce to

width(x1 | … | xn) = width(x1) + … + width(xn)

height(x1 | … | xn) = height(x1) ↑ … ↑ height(xn)

The corresponding formulas for vertical concatenation are

width(x1 / … / xn) = width(x1) ↑ … ↑ width(xn)

height(x1 / … / xn) = height(x1) + … + height(xn)

- 10 -

According to these formulas, the height of

a

|

b

⁄

c

|

d

is

[height(a) ↑ height(b)] + [height(c) ↑ height(d)]

which is correct, but for width they yield

[width(a) + width(b)] ↑ [width(c) + width(d)]

which is not, since it does not take the merging of column marks into account. The asymmetry
between horizontal and vertical has come about because the row entries, such asa andb, are
adjacent in the tree, but the column entries, such asa andc, are not. It would be possible to solve
this cross-linking problem by augmenting the size information stored in each node to record the
number of marks and the size of each, but the author has preferred the following method which
makes structural changes to the tree instead.

If a andc share a column mark, they each might as well have widthwidth(a) ↑ width(c),
since all width calculations apply to entire columns. Accordingly, we introduce a new operator,
COL, defined by

width(x1 COL … COL xn) = width(x1) ↑ … ↑ width(xn)

and replace botha and c by a COL c. To preventCOL operators from disturbing height
calculations, we define a binary operator calledSPLITby

width(x SPLIT y) = width(x)

height(x SPLIT y) = height(y)

which switches height and width calculations onto different subtrees. Then the transformation

a ⇒

a

COL

c

SPLIT

a

widensa to width(a) ↑ width(c) without affecting its height; it is applied to every object that
shares its column mark with at least one other object. A similar transformation involving aROW
operator deals with shared row marks. The effect on our little table is to replace

- 11 -

a

|

b

⁄

c

|

d

by

⁄

|

SPLIT

COL

a c

ROW

a b

SPLIT

COL

b d

ROW

a b

|

SPLIT

COL

a c

ROW

c d

SPLIT

COL

b d

ROW

c d

In fact, common subexpressionsare identified (trivially)and the result is a directed acyclic graph;
each affected leaf has two parents,one for width and one for height; and eachCOLor ROWnode
has one parent and one child for each object lying on the corresponding mark. The data structure
roughly doubles in size, and this occurs only rarely in practice.

This method can cope with any legal input, including

{ a // c | d } | { b / e }
/ { f / i } | { g | h // j }

which produces overlapping spanning columns:

a b

c d e

f g h

i j

The boxes have been added to clarify the structure. The width of this object is formally

((width(a) ↑ (x + y)) + z) ↑ (x + ((y + z) ↑ width(j)))

where

x = width(c) ↑ width(f) ↑ width(i)

y = width(d) ↑ width(g)

z = width(b) ↑ width(e) ↑ width(h)

- 12 -

It seems clear thaty at least must appear twice in any expression for the width of this object
made out of simple addition and maxing operations, showing that an ordinary tree structure
is insufficient for overlapping spanning columns. The Basser Lout interpreter actually rejects
such structures, owing to the author’s doubts about the implementability ofConstrainedand
AdjustSize(Section 5.3) on them; but with hindsight this caution was unnecessary.

The directed acyclic graph is ordered in the sense that the order of the edges entering and
leaving each node matters. The structure is highly dynamic, and traversalsboth with and against
the arrows are required. After a few ad-hoc attempts to extend the usual tree representation had
failed, the author developed a representation based on doubly linked lists of records denoting
links, whose flexibility more than compensated for the somewhat excessive memory consump-
tion. For example,

a b

c d

is represented by

a b

LK LK LK

c d

whereLK tags a record representing a link. The first list in any node contains all the incoming
links, the second contains the outgoing ones. The node serves as the header for both lists. The
required operations reduce to simple appends, deletes, and traversals of doubly linked lists,
all having small constant cost. There is a highly tuned memory allocator, and care is taken
to dispose of each node when the last incoming link is deleted, so that there is no need for
garbage collection.

- 13 -

In normal use the number of nodes at higher levels of the dag is small in comparison with
the leaves and their incoming links, so we may estimate the space complexity at about 60 bytes
per input word (20 bytes per link, 40 per leaf node). Careful optimization could easily halve this,
but since memory is reclaimed after printing each page there is little need.

2.5. Context-sensitive attributes of objects

Although we are free to place any object in any context, the context must influence the
appearance of the object, since otherwise

A short paragraph of text.

could not appear in a variety of fonts, column widths, etc. This influence cannot take the purely
static form that block-structured languages use to associate values with identifiers, for then an
operator could not influence the appearance of its parameters;and a state variable solution is not
compatible with the overall functional design.

The information needed from the context seems quite limited, comprising the font family,
face, and size to use, the style of paragraph breaking required, how much space to substitute
between the words of paragraphs, and how much horizontal and vertical space is available to
receive the object. These four items constitute the so-called ‘style information’ of Lout. As
graphics rendering hardware improves, the style information will probably grow to include
colour and texture information.

The way to deal with fonts at least is very clear:

{ Times Slope 12p } @Font { Hello, world }

should have result

Hello,world

Lout also provides@Break and@Space symbols for controlling the paragraph breaking and
space styles mentioned above. These work in the same way, returning their right parameters
in the style of their left. The implementation is very simple: one merely broadcasts the style
information down into the parse tree of the right parameter. A font, for example, is converted to
an 8-bit internal name and stored in each leaf, while a breaking style is stored in the root node of
each paragraph.

The same language design can be used for available width and height, only here the
implementation is much more demanding:

2i @Wide {
(1) |0.1i An example
containing a small
paragraph of filled text.
}

- 14 -

is guaranteed to be two inches wide:

(1) An example containing a
small paragraph of filled
text.

One must calculate that 1.9 inches minus the width of(1) is available to the paragraph,and break
it accordingly;Basser Lout does this in two stages. In the first, upward-moving stage, widths are
calculated using the formulae of Section 2.3, which assume that available space is infinite. If the
upward movement reachesaWIDEnode, corresponding to a@Wide operator,and the calculated
width exceeds that allowed, a second, downward-moving stage is initiated which attempts to
reduce the width by finding and breaking paragraphs. This second stage is quite routine except at
|nodes,whose children are the columns of a table. It is necessary to apportion the available width
(minus inter-column gaps) among the columns. Basser Lout leaves narrow columns unbroken
and breaks the remaining columns to equal width, using up all of the available space.

The size of an object is not clearly determined when the upward-moving size is less than the
downward-moving available space, and the object contains constructs that depend on available
space (e.g. right justification). For example, in

2i @Wide { Heading // a |1rt b }

it seems natural to assign a width of two inches to the subobjecta |1rt b because of the right
justification, but it would be equally plausible if the width ofHeading was assigned to the
subobject instead. The author is conscious of having failed to resolve this matter properly; an
extra operator for controlling available space is probably necessary.

The actual paragraph breaking is just a simple transformation on the parse tree; the real
issue is how to describe the various styles: ragged right, adjusted, outdented, and so on. Their
diversity suggests that they should somehow be defined using more basic features;but then there
are algorithms for high-quality paragraph breaking, which presumably must be built-in. This
dilemma was not clearly grasped by the author in 1985, and he included a built-in paragraph
breaker, with the@Break operator selecting from a fixed set of styles. A much better solution
based on galleys will be given in Section 5.5, but, regrettably, it is not implemented.

3. Definitions

The need to provide a means of packaging useful pieces of code for easy repeated use
was recognised in the very earliest programming languages. This need is even more acute in
document formatting, if that is possible, because the majority of users are not programmers and
do not understand the code they invoke.

3.1. Operators

It is evident from the example of Eqn that user-defined operators are needed that mimic the

- 15 -

primitive ones in taking objects as parameters and returning objects as results. For example, to
define a superscript operator so that

2 sup n

appears asn2 , the following operator definition may be used:

def sup
 precedence 50
 associativity right
 left x
 right y
{
 @OneRow { | {-2p @Font y} ^/0.5fk x }
}

The sup operator has precedence 50, is right associative, takes two objects as parameters
passed on the left and right, and returns the object between braces as result. This object has
the structure

y
x

but with the first row mark hidden by the@OneRow operator, andy two points smaller than
it would otherwise have been. The length0.5f specifies half the current font size; Figure 2
describes thek gap mode. In the Eq equation formatting package [10] the equation as a whole is
set in italic font, and2 is an identifier whose body contains a font change back to Roman. The
digits0 to 9 are classed as punctuation characters, permitting234 for example to be interpreted
as a sequence of three identifiers.

These definitions are easily implemented by a standard symbol table and an operator
precedence parser. Algol block structure with the usual scope rules was adopted as a matter
of course.

Operators are limited to at most two parameters, left and right, and the parameters cannot
be given default values.Namedparameters solve both problems:

def @Preface
 named @Tag {}
 named @Title { Preface }
 right @Body
{
 Bold @Font @Title
 //0.3v @Body
}

The default value appears just after the parameter’s declaration, between braces. Invocations

- 16 -

have a natural syntax:

@Preface
 @Title { About this book }
{
 Few observers would have supposed in 1984, that ...
}

with the actual named parameters following directly after the operator, before any right parame-
ter. In this example,@Tag will receive its default value, and a less expert user could safely omit
the@Title parameter as well.

Lout permits named parameters to have parameters, a feature with applications to biblio-
graphic databases, running headers, and other places where a format has to be supplied before
content is known. One could go further and provide a complete lambda calculus, with functions
as first-class objects, provided care was taken not to intimidate the non-expert user.

3.2. Recursion and page layout

Design and implementation should proceed together in exploratory projects, since
otherwise the design too easily becomes unrealistic. Sometimes the implementation does more
than its designer intended. The author wrote the following purely as a testing scaffold:

def @Page right x
{
 8i @Wide 11i @High
 {
 //1i ||1i x ||1i
 //1i
 }
}

Only afterwardsdid he realize its significance: the concept of a page had been defined outside the
implementation, removing the need for commands for setting page width and height, margins,
and so on.

Defining a sequence of pages is harder, since their number is not known in advance. A
simple version of this same problem is afforded by the leaders found in tables of contents:

Chapter 7 53

This seemed to require recursion, specifically the definition

def @Leaders { .. @Leaders }

Note that both.. and@Leaders are objects, so the two spaces separating them are significant.
No base case is given, and indeed we have no boolean or conditional operators with which to

- 17 -

express it; but we can adopt the implicit base ‘if space is not sufficient, delete@Leaders and any
preceding space’. Then the expression

4i @Wide { Chapter 7 @Leaders 53 }

will produce the object shown above. It is hard to see how this base could be made explicit,with-
out violating the generalprincipleof keepingall size information internal. In the implementation,
@Leaders remains unexpanded while sizes are being calculated; then it is treated similarly to a
receptive symbol, with its body as an incoming galley (Section 5.2).

With this settled, it is now clear how to define a document which is a numbered sequence
of pages. Let@Next be a prefix operator which returns its parameter plus one. Then

def @PageList
 right @PageNum
{
 @Page {
 |0.5rt - @PageNum -
 //1v @TextPlace
 //1rt @FootSect
 }
 //
 @PageList @Next @PageNum
}

when invoked in the expression@PageList 1, has for its result the potentially infinite object

- 1 -
@TextPlace

@FootSect

- 2 -
@TextPlace

@FootSect

@PageList 3

- 18 -

Similarly, we may define@FootSect like this:

def @FootSect
{
 def @FootList
 right @Num
 {
 @FootPlace
 //1v
 @FootList @Next @Num
 }

 1i @Wide @HLine
 //1v
 @FootList 1
}

so that an invocation of@FootSect produces

@FootPlace
@FootPlace
@FootPlace
...

The expansion process is very similar to a BNF derivation, and would be attempted only
on demand.

Clearly, deciding which expansions to take and replacing@TextPlace and@FootPlace by
the appropriate actual text will not be easy; this is the subject of Section 5.1. The important point
for now is that we have here a very simple and flexible method of specifying the layout of pages,
which requires no specialized language features.

3.3. Modules

It is well accepted that the visibility of symbols is not adequately controlled by Algol block
structure. The author is aware of several major problems of this kind in document formatting.

One problem is that some symbols should be visible only within restricted parts of a
document. For example, we naturally expect equation formatting to be accomplished like this:

surrounding text
@Eq { {x sup 2 + 1} over 4 }
surrounding text

with the symbolssup, over, etc., visible only within the equation, not in the surrounding text.

It seems natural to define these symbols within@Eq, since they are local to equations. It

- 19 -

only remains then to decree that symbols local to@Eq are to be visible within its actual right
parameter, and this is done by replacing the right formal parameter with abodyparameter:

export sup over
def @Eq
 body @Body
{
 def sup ...
 def over ...

 Slope @Font @Body
}

Theexport clause lists the identifiers which are permitted to be visible outside their usual range,
the body of@Eq; and thebody declaration imports them into (makes them visible within) the
actual right parameter of each invocation of@Eq. This arrangement has proven very convenient
for defining a variety of special-purpose packages.

Another problem arises when global symbols, such as the ones used for headings and
paragraph separators, call on values that the non-expert user will need to modify, such as the
initial font or paragraph indent. These values are like parametersof the document as a whole, so
it is natural to try this:

export @Heading @PP ...
def @BookLayout
 named @InitialFont { Times Base 12p }
 named @InitialBreak { adjust 14p }
 named @ColumnWidth { 6i }
 ...
{
 def @Heading ...
 def @PP ...
}

Now @Heading and @PP may invoke @InitialFont and the other parameters. To make
@Heading and@PP visible throughout the document, we need only add a body parameter to
@BookLayout and present the entire document as

@BookLayout
 @InitialFont { Helvetica Base 10p }
 @InitialBreak { adjust 12p }
{
 The document.
}

but for practical reasons given below we prefer not to enclose the entire document in braces.

- 20 -

Instead, we write

@Use { @BookLayout
 @InitialFont { Helvetica Base 10p }
 @InitialBreak { adjust 12p }
}
The document.

which has the same effect:@Use makes the exported symbols of@BookLayout visible for the
remainder of the document, and is permitted only at the beginning.

The third feature that affects visibility, and which will prove useful for cross referencing
(Section 6.1), is the@Open symbol. It makes the exported symbols of its left parameter visible
within its right parameter, and is therefore similar to the Pascalwith statement.

It could be argued that Lout is over-supplied with these visibility modifying features: the
body parameter,@Use and@Open do not seem sufficiently different from each another. The
@Open symbol is the most general, being capable of replacing the other two. For example,

@Use { x }
@Use { y }
Body of document

can be replaced by

x @Open {
y @Open {
Body of document
}}

and, taking the@Eq symbol above as example, we could eliminate its body parameter, add

def @Body right x { Slope @Font x }

to the exported definitions of@Eq, and replace

@Eq { object }

by

@Eq @Open { @Body { object } }

If @Eq is a galley (Section 5.1),@Body must take over that function. But one would not want
to write these clumsy expressions in practice, and the enclosure of large quantities of input in
extra braces could cause Basser Lout to run out of memory (Section 5.4).

A quite separate kind of visibility problem arises when expert users wish to define an object
or operator for repeated use within, say, equations:

def isum { sum from i=1 to n }

As it stands this can only be placed within the@Eq package itself, wheresum and the other

- 21 -

symbols are visible, but it is not desirable to modify the source code of a standard package. Lout
provides animport clause to solve this problem:

import @Eq
def isum { sum from i=1 to n }

may appear after@Eq is defined, and it will make the exported symbols of@Eq visible within
the body ofisum. This feature complicates the treatment of environments (Section 3.4),and even
introduces an insecurity, whenisum is invoked outside an equation. A simpler approach would
be to allow only one symbol in animport clause, and treat the following definition exactly like
a local definition of that symbol; but then it would not be possible to define symbols using the
resources of more than one of the standard packages.

3.4. Implementation of definitions

Input is processed by a hybrid parser which employs operator precedence for objects
and simple recursive descent for the headers of definitions. A symbol table stores the body
of each definition as a parse tree, except for macros which are lists of tokens, and manages the
usual stack of static scopes, acceptingPushScopeandPopScopeoperations as the parser enters
and leaves scope regions, including actual body parameters and the right parameter of the
@Open operator.

As the parse proceeds, a complete call graph is constructed, recording, for each symbol,
which symbols are invoked within its body. Immediately after the last definition is read, the tran-
sitive closure of the call graph is computed, and used to determine whether each non-parameter
symbol is recursive or receptive (Section 5.1), and whether each parameter is invoked exactly
once or not.

Purely functional systems may evaluate symbol invocations in applicative order (where
parameters are evaluated before substitution into bodies), or in normal order (substitution before
evaluation), and they may also share the value of a parameter among all uses of it. But in Basser
Lout, the presence of context-sensitive style information (Section 2.5) forces normal order
evaluation and prevents sharing of parameter values.

To evaluate an unsized object (pure parse tree), itsenvironment, the equivalent of the stack
frames in Algol-like languages, must be available, containing the actual values of all formal
parameters that are visible within the unsized object. Environment handling is a well-known
implementation technique, so it will be discussed only briefly here.

Environments are extra subtrees hung from the objects they refer to. This organization
makes excellent use of the ordered dag to permit environments to be shared, and deleted when
the last reference to them is removed. Several optimizations have been implemented. Actual pa-
rametersknown to be invoked only once are moved in from the environment,not copied;copying
could lead to quadratic time complexity. Actual parametersof the form@Next objectreceive an
applicative pre-evaluation which prevents long chains of@Next symbols from forming during
the generation of large page numbers. Some environments which provably contribute nothing
are deleted, most notably when a symbol invocation has no symbols within its actual parameters
and no import list, so that only the environment of its body need be kept; this saves a great deal
of space when objects with environments are written to auxiliary files (Section 6.1).

- 22 -

4. Implementation of the functional subset

The objects and definitions of Lout are very similar to those found in other functional
languages, and they form a natural subset of the language. So we pause here and present an
overview of the Basser Lout object evaluation algorithm.

The problem is to take an unsized object (pure parse tree), its environment (Section 3.4),
and its style (Section 2.5), and to produce a PostScript file for rendering the object on an output
device. This file is essentially a sequence of instructions to print a given string of characters in
a given font at a given point.

Before the algorithm begins, the parse tree must be obtained, either by parsing input or by
copying from the symbol table. Afterwards the data structure must be disposed. The algorithm
proper consists of five passes, each a recursive traversal of the structure from the root down to
the leaves and back.

1. Evaluation of unsized objects.On the way down, calculate environments and replace
non-recursive,non-receptive symbols by their bodies (Section 3.4); broadcast fonts to the leaves,
and paragraph breaking and spacing styles to the paragraph nodes. On the way back up, delete
FONT, BREAK, andSPACEnodes, and insertSPLIT, COL, andROWnodes (Section 2.3).

2. Width calculations and breaking.Calculate the width of every subobject from the bottom
up. As described in Section 2.3,WIDE nodes may trigger object breaking sub-traversals during
this pass.

3. Height calculations.Calculate the height of every subobject, from the bottom up.

4. Horizontal coordinates.Calculate the horizontal coordinate of each subobject from the top
down, and store each leaf’s coordinate in the leaf.

5. Vertical coordinates and PostScript generation.Calculate the vertical coordinate of every
subobject from the top down, and at each leaf, retrieve the character string, font, and horizontal
coordinate, and print the PostScript instruction for rendering that leaf.

Figure 3 gives the amount of code required for each pass. Symmetry between horizontal and
vertical is exploited throughout Basser Lout, and passes 2 and 3, as well as 4 and 5, are executed
on shared code.

The author can see no simple way to reduce the number of passes. The introduction of
horizontal galleys (Section 5.5) would remove the need for the object breaking transformations
within this algorithm that are the principal obstacles in the way of the merging of passes 2
and 3.

5. Galleys

With objects and definitions under control, the author faced the problem of getting body
text, footnotes, floating figures and tables, references, index entries, and entries in the table of
contents into their places. The resulting investigation occupied three months of full-time design

- 23 -

1. Initialization 200
2. Memory allocation, ordered dag operations 400
3. Lexical analysis, macros, file handling 1,350
4. Parsing of objects and definitions 1,150
5. Symbol table and call graph 600
6. Evaluation of pure parse trees 1,650
7. Reading, storing, and scaling of fonts 600
8. Cross references and databases 1,000
9. Width and height calculations, and breaking 700

10. ConstrainedandAdjustSize 700
11. Transfer of sized objects into galley tree 450
12. Galley flushing algorithm 1,500
13. Coordinate calculations and PostScript output 700
14. Debugging and error handling 1,200

12,200

Figure 3. Major components of the Basser Lout interpreter, showing the approximate
number of lines of C code.

work, and proceeded approximately as described in Section 5.1; the implementation occupied
the years 1987-89.

5.1. The galley abstraction

Let us take the footnote as a representative example. At some point in the document, we
wish to write

preceding text
@FootNote { footnote text }
following text

and we expect the formatter to remove the footnote from this context and place it at the bottom
of the current page, possibly splitting some or all of it onto a following page if space is insuf-
ficient.

An object appears in the final document at the point it is invoked, but this basic property
does not hold for footnotes: the point of invocation and the point of appearance are different.
In some way, the footnote is attached to the document at both points, introducing a cross linking
(Section 2.1) that cannot be described in purely functional terms.

Since the interpretation of any object depends on an environment and style inherited from
the context, the first question must be whether the footnote inherits them through the invocation
point or through the point(s) of appearance.

If symbols are to be interpreted statically as heretofore,then environmentsmust be inherited
through the invocation point alone. Dynamic inheritance through the point of appearance is
enticing in some ways: it might replace the body parameter, and it might help with automatic
numbering, since the number of a footnote is known only at the point of appearance; but the

- 24 -

implementation problems are severe, and static inheritance seems much simpler and more
comprehensible to the user. Style, at least its available width and height part, must of necessity
be inherited through the point of appearance. For consistency, the entire style should be inherited
in this way. There is a suggestive analogy here with actual parameters, which have a point of
invocation from which they inherit an environment, and a point of appearance within the body
of the enclosing definition, from which they inherit a style. It may be possible to treat a footnote
as the actual parameter of some symbol, therefore, although the details seem very obscure.

But the most profound consequence of having two types of attachment point is that it leads
to two distinctive tree structures. Considering invocation points only leads to static trees like
this one:

footnote

body text

figure

footnote

which shows that the body text contains a footnote and a figure, the latter itself containing a
footnote. Considering points of appearance only gives a completely different, dynamic tree:

sequence of pages

body text footnote figure footnote

The tree can be deeper, for example with sections appearing within chapters which appear
within the body text, which appears within the final sequence of pages. Document formatting
languages generally shirk the issues raised by this dual tree structure, by making the dynamic
tree built-in, by limiting one or both trees to two levels, and so on, providing a classic example
of the impoverishing effect of failing to permit language features to attain their natural level
of generality.

We are thus led to propose a second abstraction for document formatting, which we name
the galley in recognition of its similarity to the galleys used in manual typesetting. A galley
consists of an object (such as a footnote) together with a sequence of places where that object
may appear (such as the bottoms of the current and following pages). Splitting occurs quite
naturally when space at any place is insufficient to hold the entire object.

In Lout, a footnote galley and its place of appearance are defined as follows:

def @FootPlace { @Galley }

def @FootNote into { @FootPlace&&following }
 right x
{ x }

- 25 -

The@FootPlace symbol contains the special symbol@Galley, indicating that it is a point of
appearance for a galley. By placing invocations of@FootPlace at the bottoms of pages, as in
Section 3.2, we define the desired points of appearance for footnotes. Symbols whose body
contains@Galley either directly or indirectly are called receptive symbols, meaning receptive
to galleys, and they are expanded only on demand. The effect of theinto clause is to make each
invocation of@FootNote a galley whose object is the result of the invocation in the usual way,
and whose sequence of points of appearance is specified by theinto clause; in this example, the
sequence of all@FootPlace symbols following the invocation point.

Lout permits galleys to be invoked within other galleys to arbitrary depth, so that one may
have footnotes within figures within the body text galley, for example, creating arbitrary static
trees. Receptive symbols like@FootPlace may appear within any galley, creating arbitrary
dynamic trees as well. The root of the dynamic tree, which would normally consist of the
sequence of pages of the complete assembled document, is considered to be a galley whose
point of appearance is the output file. Points of appearance may bepreceding or following the
invocation point; entries in tables of contents are the main users ofpreceding.

The galley abstraction is adequate for all of the applications listed at the beginning of this
section, except that there is no provision for sorting index entries and references. Sorting of
galleys has been added to Lout as a built-in feature, invoked by adding a special@Key parameter
to the galleys,and using its value as the sort key. The author was at a loss to find any other way,or
any useful generalization of this feature. Its implementation will be discussed in Section 6.2.

5.2. The galley flushing algorithm

Galley components are promoted one by one into the point of appearance in the dynamic
parent galley, then carried along with it, ultimately to the root galley and the output file. This
process is calledgalley flushing: the galleys are rivers running together to the sea, and each
component is a drop of water.

Here is a snapshot of a small dynamic tree, based on the@PageList definitions of
Section 3.2:

output file root galley

- 1 -
A small

@Galley *

@FootSect

@PageList 2

body text

paragraph

of text.

@Input

The components of the body text galley are lines, except for the special receptive symbol
@Input which is a placeholder for as yet unread input (Section 5.4). The components of the root

- 26 -

galley are pages, except for the concluding unexpanded invocation of@PageList, which is an
inexhaustible source of more pages, expanded on demand.

The concrete data structure used by Basser Lout permits the galley flushing algorithm to
navigate the dynamic tree and find significant features quickly:

HEAD RECEIVING *

RECEPTIVE

- 1 -
A small

@Galley

@FootSect

GAP

RECEPTIVE

@PageList 2

HEAD paragraph

GAP

of text.

GAP

RECEPTIVE

@Input

Each galley has aHEADnode whose children are its component objects,separated byGAPnodes
recording the inter-component gaps.

Each component is preceded by zero or moregalley index nodesof various types. Every
receptive symbol has aRECEPTIVEindex pointing to it, so that it can be found without search-
ing through its component. If the symbol is currently the target of a galley, it has aRECEIVING
index instead which is also linked to the incoming galley. Galleys that are currently without a
target are linked to the dynamic tree byUNATTACHEDgalley indexes,either just after their most
recent target if there has been one, or else at their point of invocation.

Each galley should be thought of as a concurrent process, although the implementation
in C uses coroutines implemented by procedures. A galley may promote its first component
only if it has a target, sufficient space is available at the target to receive the component, and
the component contains no receptive symbols. This last condition seems to be the key to galley
synchronization: it forces a bottom-up promotion regime, preventing pages from flushing to
output before text flushes into them, for example.

- 27 -

Each galley contains a number of binary semaphores, shown as asterisks in our snapshots
when set. At any given moment, a galley process is either running or else is suspended on one
of its own semaphores. TheHEADnode contains a semaphore which is set when the galley has
tried to find a target and failed. Each receptive symbol has a semaphore which is set when that
symbol is preventing the first component from being promoted.

For example, in the snapshot at the beginning of this section, the root galley is suspended on
the@Galley symbol, but the text galley is running. It will suspend on the@Input symbol after
the first two components are promoted.

Every galleyG, be it a list of pages, body text, a footnote, or whatever, executes the
following algorithm in parallel with every other galley:

1. Initially G is unattached. Search forwards or backwards from itsUNATTACHEDindex as
required, to find a receptive symbolSwhich can expand to reveal a target forG.

2. If noScan be found, suspend on the attachment semaphore. Resume later from step 1.

3. ExpandSto reveal the target ofG. PreserveS’s semaphore by moving it to the first receptive
symbol within the expansion ofS.

4. Calculate the available width and height at the target, and ifG is still a pure parse tree, use
the environment attached toG and the style information from the target to evaluateG as in
Section 4.

5. Examine the components ofG one by one. For each component there are three possibilities:

ACCEPT.If the component fits into the available space, and has no other problems, then
promote it into the target. If this is the first component promoted into this target, andG is a
forcing galley (Section 5.4), delete every receptive symbol preceding the target in the parent
galley. If G is the root galley, render the component on the output file and dispose it;

REJECT. If the component is too large for the available space, or aFOLLOWSindex
(described below) forbids its promotion into this target, then detachG from the target. If this was
the first component at this target,Shas been a complete failure,so undo step 3 (Basser Lout is not
able to undo step 4); otherwise delete the target. Return to step 1 and continue immediately;

SUSPEND.If the component contains a receptive symbol, it cannot be promoted yet. If
this symbol is the target of a galley that was written to an auxiliary file on a previous run, read in
that galley and flush it. Otherwise suspend on the receptive symbol’s semaphore; resume later
from step 4.

6. Terminate when the galley is empty.

At various points in this algorithm, receptive symbols (and their semaphores) are deleted
in the dynamic parent galley, possibly permitting it to resume flushing. When this happens,
Basser Lout resumes the parent immediately afterG suspends or terminates. Also, whenever a
component is promoted, any child galleys connected to it byUNATTACHEDindexes must be
resumed, since these galleys may be able to find a target now. A good example of this situation
occurs when a line of body text with one or more footnotes is promoted onto a page. Basser Lout

- 28 -

gives priority to such children, suspendingG while each is given a chance to flush.

Basser Lout searches for the first target ofG only in regions of the dynamic tree that
will clearly precede or followG’s invocation point in the final printed document, whichever is
specified in theinto clause; subsequent targets are sought later in the same galley as the first. An
exception to this rule, whose necessity will be made clear later, is that a firstfollowing target will
be sought within a dynamic sibling galley precedingG’s invocation point:

dynamic parent

@XTarget

UNATTACHED

@XTarget

X into { @XTarget&&following }

@GTarget

G into { @GTarget&&following }

HereG will find the @GTarget target withinX. This is dangerous, since if the first component
of G is then promoted viaX into the first@XTarget rather than into the second,G’s target
will not appear later in the final printed document than its invocation point, as required by the
into clause.

Accordingly,when such a target is chosen, two special galley indexesare inserted and linked
together: aPRECEDESindex atG’s invocation point, and aFOLLOWSindex at the first com-
ponent ofG. The algorithm checks before promoting anyFOLLOWSindex that its promotion
would not place it earlier than the correspondingPRECEDESindex in the same galley, and re-
jects the component if it would. SincePRECEDESandFOLLOWSindexes are rarely used, this
check can be implemented by linear search.

When two components are separated by/, as opposed to the more usual//, each influences
the horizontal position of the other. Because of this, theSUSPENDaction is in fact taken if a
receptive symbol occurs in any component separated from the first by/ operators only. Again,
linear search forwards to the first// suffices for this check.

A good illustration of these unusual cases is afforded by the@Align symbols from the
standard DocumentLayout package. These are used to produce displayed equations, aligned on
their equals signs despite being separated by arbitrary body text.

The@Align symbols are packaged neatly for the convenience of the non-expert user, but
we will show just the essence of the implementation here. First, an@AlignList galley is created
which contains an infinite supply of@AlignPlace receptive symbols separated by/ operators:

- 29 -

body text galley

@Galley @AlignList

@AlignPlace
@AlignPlace
...
@EndAlignList

Then equations like

f (x) = g(x) + 2

are created and sent to@AlignPlace&&following targets. They collect in the@AlignList galley
and are aligned there:

body text galley

@Galley @AlignList

f (x) = g(x) + 2
f (x) − g(x) = 2

...
@EndAlignList

The @AlignList galley does not flush, because its first component is connected to a receptive
symbol by/ operators.

After the last equation, an empty forcing galley is sent to@EndAlignList, deleting the two
remaining receptive symbols from the@AlignList galley and permitting it to flush.FOLLOWS
indexes ensure that each equation finds a target placed in the body text just after its point of
invocation,so the equations return,aligned, to approximately the points where they were invoked.
Notice that the flushing of body text is suspended until the list of equations is completed, as it
must be, since the horizontal position of the first equation cannot be known until the last equation
is added to the list.

Layout quality can occasionally be improved by rejecting a component that could be
promoted – for example, a component of body text that carries a footnote too large to fit on the
current page. Since Lout does not specify how breaking decisions are made, beyond the basic
constraints imposed by available space andinto clauses, in principle such high quality breaking
could be added to the implementation with no change to the language. However, the generality
of the galley flushing algorithm, and its already considerable complexity, make this a daunting

- 30 -

problem in practice, although a fascinating one. TEX [9], with its unnested set of ‘floating
insertions’clearly identifiable as each page is begun, has the advantage in this respect.

5.3. Size constraints and size adjustments

The galley flushing algorithm needs to know the available width and height at each receptive
symbol. These symbols may lie within arbitrarily complex objects, and they may compete with
each other for available space (as body text and footnote targets do), so this information must be
extracted from the tree structure when required.

For example, consider the object

5i @Wide { a / b }

and suppose that the width ofa is 1i , 2i (1i to the left of the mark,2i to the right). What then is
the available width atb? If we let the width ofb bel , r, we must have

(1i ↑ l) + (2i ↑ r) ≤ 5i

with the↑ (i.e. max) operations arising from mark alignment. Eliminating them gives

1i + 2i ≤ 5i
l + 2i ≤ 5i
1i + r ≤ 5i
l + r ≤ 5i

and since we assume thata fits into the available space, the first inequality may be dropped,
leaving

l ≤ 3i
l + r ≤ 5i

r ≤ 4i

Objectb may have widthl , r for anyl andr satisfying these inequalities, and no others.

Here is another example:

5i @High { a /2ix b }

Assuming thata has height1i , 1i, the heightl , r of b must satisfy

1i + ((1i + l) ↑ 2 i) + r ≤ 5i

This time the↑ operation arises from the mark-to-mark gap mode, which will widen the2i gap
if necessary to preventa andb from overlapping. This inequality can be rewritten as

l ≤ ∞
l + r ≤ 3i

r ≤ 2i

- 31 -

In general, Lout is designed so that the available width or height at any point can be expressed
by three inequalities of the form

l ≤ x
l + r ≤ y

r ≤ z

wherex, y andzmay be∞. We abbreviate these three inequalities tol , r ≤ x, y, z, and we callx
, y, zasize constraint.

The two examples above showed how to propagate the size constraint∞, 5i , ∞ for a / b
down one level to the childb. Basser Lout contains a complete set of general rules for all node
types, too complicated to give here. Instead, we give just one example of how these rules are
derived, using the object

x1 / x2 / . . . / xn

wherexj has widthl j , rj for all j.

Suppose the whole object has width constraintX, Y, Z, and we require the width constraint
of xi. Let L = maxj l j andR = maxj rj, so thatL, R is the width of the whole object. We assume
L, R ≤ X, Y, Z. Thenxi can be enlarged to any sizel i , ri satisfying

(l i ↑ L), (ri ↑ R) ≤ X, Y, Z

which expands to eight inequalities:

l i ≤ X

L ≤ X
l i + ri ≤ Y

l i + R ≤ Y

L + ri ≤ Y

L + R ≤ Y
ri ≤ Z

R ≤ Z

Three are already known, and slightly rearranging the others gives

l i ≤ X

l i ≤ Y − R

l i + ri ≤ Y

ri ≤ Z

ri ≤ Y − L

- 32 -

Therefore the width constraint ofxi is

min(X, Y − R), Y, min(Z, Y − L)

The size constraint of any node can be found by climbing the tree to aWIDE or HIGH node
where the constraint is trivial, then propagating it back down to the node, and this is the function
of procedureConstrainedin Basser Lout.

After some components have been promoted into a target, the sizes stored in its parent and
higher ancestors must be adjusted to reflect the increased size. This is done by yet another set of
recursive rules, upward-moving this time, which cease as soon as some ancestor’s size does not
change. These rules are embodied in procedureAdjustSizeof Basser Lout. The adjustment must
be done before relinquishing control to any other galley, but not after every component.

5.4. The limited lookahead problem

Basser Lout assumes that there will be enough internal memory to hold the symbol table
plus a few pages, but not an entire document. This section describes the consequent problems
and how they were solved. Other interpreters, notably interactive editors running on virtual
memory systems, would not necessarily need this assumption.

Although Basser Lout can read and format any legal input, its memory consumption will be
optimized when the bulk of the document resides in galleys whose targets can be identified at the
moment they are encountered. Let us take the typical example of a root galley which is a list of
pages, a@BodyText galley targeted into the pages,@Chapter galleys targeted into@BodyText,
and@Section galleys targeted into the@Chapter galleys:

@PageList
//
@BodyText
//
@Chapter {
 @Section { ... }
 @Section { ... }
 ...
 @Section { ... }
}
@Chapter {
 ...
}

Basser Lout is able to read and process such galleys one paragraph at a time (strictly, from one
// at the outer level of a galley to the next), as we now describe.

When the parser encounters the beginning of a galley, like@Chapter or @Section, it
initiates a new galley process. The special receptive symbol@Input is substituted for the as
yet unread right parameter of the galley. As each paragraph of the right parameter is read, it is
deleted from the parse tree and injected into the galley’s@Input. The galley is then resumed.

- 33 -

The parser thus acts as an extra concurrent process; it has low priority, so that input is read only
when there is nothing else to do. Since galleys may be nested, a stack of@Input symbols is
needed, each with its own environment and style. If a galley is encountered for which a target is
not immediately identifiable (a footnote, for example), it is read in its entirety and hung in pure
parse tree form from anUNATTACHEDindex in the usual way, with an environment but without
a style. It will be flushed later when its component is promoted.

In addition to producing a steady flow of components from input, we must also ensure that
receptive symbols do not unduly block their promotion. The@FootSect symbol at the foot of
each page is a typical example: until it is deleted the page cannot be printed.

Receptive symbols are expanded only on demand, so@FootSect can be deleted as soon
as we can prove that it is not wanted. The symbol table can tell us that only@FootNote galleys
(with @FootPlace&&following targets) want it, so it might be possible to deduce that@FootSect
may be deleted as soon as body text enters the following page.

The author was unable to make this work, so Basser Lout requires the user to identify those
galleys which will carry the bulk of the document (@Chapter,@Section,@BodyText) asforcing
galleys, by writing force into instead ofinto in their definitions. As described in the previous
section, when a forcing galley attaches to a target, all receptive symbols preceding the target in
its galley are deleted, removing all impediments to flushing. For example, when a forcing body
text galley enters a new page, the@FootSect symbol on the preceding page will be deleted. It
seems likely that a system which could afford to wait until all input was read before deleting any
receptive symbols would not need forcing galleys.

Galleys whose targets are a long way from their invocation points can be a problem. If the
direction isfollowing, such galleys are held in internal memory for a long time, unless they are
to be sorted. If the direction ispreceding, then either the entire intervening document must be
held in memory (prevented by the target from flushing), or else some forcing galley prematurely
deletes the target, leaving the galley bereft.

The typical example of the latter case occurs when the galley is an entry in the table of
contents, launched backwards from the beginning of a chapter or section. Its target in the table
of contents will have been deleted long before, to permit the rest of the document to print, so
the galley ultimately emerges as an unattached galley promoted out of the root galley. All such
galleys are written to an auxiliary file, indexed by the missing target. On the next run, just before
that target is deleted, the auxiliary file is checked and any galleys for it are read in and flushed.

5.5. Horizontal galleys

There is a strong analogy between breaking a column of text into page-sized pieces, and
breaking a paragraph into line-sized pieces. In fact, the two differ only in direction: vertical
for body text, horizontal for paragraphs. In this section we definehorizontal galleys, and show
how they provide an unlimited number of paragraph breaking styles, as well as solve some
other problems. Regrettably, lack of time has prevented their incorporation into the Basser
Lout interpreter.

Imagine a galley whose components are separated by horizontal concatenation operators
instead of vertical ones, perhaps indicated by ahorizontally into clause. Then all object breaking,

- 34 -

including paragraph breaking, could be replaced by galley component promotion like this:

def @Paragraph right x
{
 def @LinePlace { @Galley }

 def @LineList
 {
 @HExpand @LinePlace
 //1vx @LineList
 }

 def @Par horizontally into { @LinePlace&&preceding }
 right x
 { x }

 @LineList // @Par { 0.2i @Wide {} &0i x &1rt }
}

The@HExpand operator, which is a primitive of Basser Lout, horizontally expands the gaps in
its right parameter until the result fills the available space, thus implementing line adjustment,
except when the parameter contains tabulation gaps like&1rt, which cause the parameter to be
already expanded. The result of

@Paragraph { A short paragraph of text. }

would then be something like

A short paragraph
of text.

depending on the available horizontal space. An unlimited range of paragraph breaking styles
could be defined, including ragged right, ragged left, break-and-center, and so on.

In Basser Lout, indented paragraphs are produced by preceding them with a horizontal
concatenation operator, for example|0.5i. This has the unfortunate effect of making an indented
paragraph into a single component of the enclosing galley, so that it will always be kept together
on one page. Horizontal galleys solve this problem with a simple change to@LineList:

def @LineList
{
 |0.5i @HExpand @LinePlace
 //1vx @LineList
}

showing the flexibility that comes from bringing the full power of the Lout language to bear on
paragraph layout. It is easy to make provision for a tag on the first line.

Although Basser Lout permits receptive symbols within paragraphs, they are of little use,

- 35 -

because their available width is calculated after paragraph breaking, and the incoming galley
cannot spread over more than one line. With horizontal galleys, such symbols would have
infinite available width, and we could easily produce a filled paragraph of footnotes like this:

1See Jones and Saunders (1982).2Or so Jacobsen
(1973) asserts.3ibid, p. 327.

based on an infinite horizontal sequence of@FootPlace symbols inside a horizontal galley.

When body text is placed on pages, the length of each column varies depending on the
available vertical space. Horizontal galleys could analogously produce lines of varying length,
and so could fill non-rectangular shapes.

An important theoretical benefit of horizontal galleys is that they would permit horizontal
and vertical to be treated in a perfectly symmetrical way, whereas at present paragraph breaking
is horizontal only, and galley breaking is vertical only. This must simplify the treatment of
non-European languages which fill in unusual directions, although it is not itself sufficient to
implement them.

There are a few minor problems with horizontal galleys. First, the syntactic overhead
of enclosing each paragraph in@Paragraph { ... } or whatever is unacceptable. Permitting
user-defined operators to have lower precedence than the white space between two words might
help here. Second, the built-in paragraphbreaker includeshyphenation,and it permits line breaks
in the input to determine line breaks in the output, if desired. These features must somehow be
preserved. Finally, we have explained how the Basser Lout interpreter assigns equal width to the
wider columns of tables (Section 2.5). The equivalent situation in vertical galleys occurs when
two receptive symbols compete for vertical space (e.g.@TextPlace and@FootSect), and there
it is conventional to grant as much as required to the first arrival. It is not clear to the author how
these different approaches can be reconciled.

6. Cross references

Cross references,such as ‘see page 57’and ‘see Figure 5,’are a useful but highly error-prone
feature of documents. Scribe [7] introduced a method of keeping them up to date automatically
as the document changes: the user gives each referenced entity a tag, and operators are provided
that return the page or sequence number of the entity with a given tag.

A cross reference takes an object (such as a page number) from one point in the document
and copies it to another, and this generalization suggests other applications. For example, a
running header is copied from the title of a nearby chapter, and a reference is copied from
a bibliographic database. Making the unity of these applications manifest is an interesting
language design problem.

6.1. The cross reference abstraction

In developing the cross reference abstraction, it seemed best to begin with the database ap-
plication, since it is the simplest. Database relations are naturally mapped into Lout definitions:

- 36 -

def @Reference
 named @Tag {}
 named @Author {}
 named @Title {}
 named @Journal {}
{}

The set of all invocations of@Reference is a relation whose attributes are the parameters, and
whose tuples are the invocations. To complete the correspondence,we need only declare that the
@Tag parameter is special, serving as the key attribute.

Following the database model, we next need a notation for retrieving the invocation with a
given tag:

@Reference&&kingston91

This cross referenceis like an arrow pointing to the invocation. To access its attributes,
we write

@Reference&&kingston91 @Open { @Author, @Title }

The @Open operator evaluates its right parameter in an environment which includes the
exported parameters of its left.

An invocation is chosen to be a running header because of its proximity to the place where
it is used, rather than by its tag. Such proximity is naturally expressed by two special tags,
preceding and following; for example,@Sym&&following will point to the closest following
invocation of @Sym in the final printed document. This is much simpler conceptually than
reference to the internal state of the document formatter at a critical moment, the usual approach
to running headers.

It turns out that the above design solves all the cross referencing problems encountered in
practice except one, which may be typified by the problem of finding the number of the page
on which the chapter whose tag isintro begins. Two cross referencing steps are needed, first to
@Chapter&&intro, then from there to@Page&&preceding, where the page number is known.

Given our success so far, this last problem proves to be surprisingly difficult. We first try

@Chapter&&intro @Open {
 @Page&&preceding @Open { @PageNum }
}

but this fails because@Page&&preceding is evaluated in the present context, not in the context
of @Chapter&&intro as required. So our next attempt is

def @Chapter
 named @PageNum { @Page&&preceding @Open { @PageNum } }
 ...

with the@Page&&preceding cross reference attached to the chapter; we write

@Chapter&&intro @Open { @PageNum }

- 37 -

This also fails, because parameters are evaluated after substitution, so once again
@Page&&preceding is evaluated in the wrongcontext. We could of course define a new operator
specifically for this case:

@Page&&{ @Preceding @Chapter&&intro }

or some such. This is free of the annoying context-sensitivity, but it seems quite complex, and
the expected cross reference@Page&&preceding does not appear.

The author was lost in these obscurities for some time, and ultimately rescued himself
by looking ahead to the implementation of thepreceding andfollowing tags, to see if a simple
extension of it would solve the problem. This led to the@Tagged operator:

@Page&&preceding @Tagged intro

placed at the beginning of the body of the chapter will attachintro as an extra tag to the closest
preceding invocation of@Page, so that

@Page&&intro @Open { @PageNum }

yields the desired page number. There is something low-level and ad hoc about the@Tagged
operator, but the two cross references do appear naturally, and it works.

6.2. Implementation of cross references

Before an object can be sized and printed, the values of any cross references within it must
be known. If they refer to invocations that have not yet been read, there is a problem. Scribe [7]
solves it by capitalizing on the fact that documents are formatted repeatedly during the drafting
process. All tagged invocations are copied to an auxiliary file during the first run,and indexed for
quick retrieval on the second. A new auxiliary file is written during the second run, for retrieval
on the third, and so on. Cross references always lag one run behind the rest of the document; a
perfect copy may be produced by formatting the same version twice,except in a few pathological
cases that fail to converge.

Cross referencing in Lout is implemented on top of a simple database system. Each
database is either writable or readable but not both at once, and holds a set of key-value entries:
the keys are ASCII strings, and the values are Lout objects, possibly with environments, written
in Lout source. Operations are provided for writing an entry, converting from writable to
readable, retrieval by key, and sequential retrieval in key order.

The implementation, which is quite unsophisticated, employs one or more ASCIIdatabase
files, containing the values, and one ASCIIindex fileper database, containing the keys. To write
an entry, the value is first appended to a database file, then a line like

@Chapter&&intro ch1.ld 57

is appended to the index file, giving the file and offset where the value is stored. To convert from
writable to readable, the index file is sorted. Then retrieval by key requires a binary search of the
index file and one seek into a database file, and sequential retrieval by key is trivial.

This database system is used in several ways. For an external database, say of bibliographic

- 38 -

references, the user creates the database file of values (without environments), Lout creates the
index file whenever it cannot find one, and retrievals by key proceed as usual. Cross references
with tags other thanpreceding andfollowing are treated as described above, by writing all tagged
invocations (with environments) to a single database,which is converted to readable at the end of
the run for retrievalson the next run. Sorted galleys,such as index entries,are written out indexed
by target and key and retrieved sequentially on the next run. Unsorted galleys with preceding
targets which pop off the top of the root galley without finding a target, such as entries in tables
of contents, are treated similarly, except that they are indexed by target and a sequence number
that preserves their relative order during the sort.

When Lout processes a multi-file document, one cross reference database file is written for
each input file, but they share a common index file. At end of run, the new index file is sorted
and merged with the old one in such a way as to preserve entries relating to files not read on the
current run. This provides some support for piecemeal formatting, but eventually the files must
all be formatted together.

When apreceding or following cross reference is found, it is attached to a galley index of
typeCROSS_PRECor CROSS_FOLL, together with an automatically generated tag composed
of the current file name and a sequence number. When a tagged invocation is found, it is attached
to aCROSS_TARGindex. These galley indexes are carried along through the dynamic tree, and
eventually pop off the top of the root galley, at which point it is easy to determine which cross
references refer to which invocations, since the indexes are now in final printed document order.
Each referenced invocation is then written to the cross reference database, multiply indexed by
the generated tags of the associated cross references. On the next run, when the samepreceding
andfollowing cross references are found, chances are good that the same tags will be generated,
and the appropriate values can be retrieved from the database immediately.

This approach was the genesis of the@Tagged operator, whose implementation is now
immediate: for each@Tagged operator we produce oneCROSS_PRECor CROSS_FOLLgalley
index, replacing the generated tag with the right parameter of the@Tagged operator. Nothing
more is required.

7. Conclusion

Since its public release in October 1991, the Basser Lout interpreterhas been ported without
incident to a wide variety of Unix systems and hardware. It was tested extensively before release
on its own documentation, and the few minor bugs which have emerged since then have all been
fixed in the second release, scheduled to appear in mid-1992.

Seven substantial packages of definitions are distributed with Basser Lout. The Document-
Layout package, and its variants ReportLayout and BookLayout, provide the standard features
that all documents require: pages, columns, paragraphs,headings, footnotes, floating figures and
tables, chapters and sections, displays and lists, access to bibliographic databases, cross refer-
ences,and so on [11]. The BookLayout package has extra featuresneeded by books, including an
automatically generated table of contents, Roman page numbers for the prefatory material, run-
ning page headers,odd and even page layouts, and a sorted index. The Eq package formatsequa-
tions, and Pas formats Pascal programs [10]; Tab formats tables [12]; and Fig draws figures [6].

The non-expert user who uses these packages perceives a system of a standard quite similar
to other fully developed batch formatters, although the interface is considerably more coherent

- 39 -

than, say, the troff family’s [8]. The expert user perceives a system which is radically different
from previous ones, in which a great deal can be achieved very quickly. To take an extreme
example, Pas was designed, implemented, tested, and documented in one afternoon. Eq took
about a week, but most of that time was spent in marshalling the vast repertoire of mathematical
symbols, and fine-tuning the spacing. Most of the effort seems to go into designing a good
interface; most symbols are implemented in just one or a few lines of Lout.

A group of about 20 satisfied non-expert usershas grown up within the author’sdepartment,
mainly Honoursstudentswith no investment in older systems to hold them back. Basser Lout has
been advertised on the Internet news as available via anonymousftp, so the extent of its outside
user community is hard to gauge. About 50 people have mailed comments or questions to the
author; many of these people have ported the program, written small definitions, and modified
the standard packages.

Future work could usefully begin with the improvements suggested in this paper: overlap-
ping spanning columns, better semantics for available space, and especially horizontal galleys.
Support for non-European languages is also needed. However, the main task is the development
of an interactive document editor based on Lout. A structure editor similar to Lilac [13], which
already has objects and user-defined symbols, is envisaged; since cross references are easy when
the whole document is available, the only major new problem is the treatment of galleys, includ-
ing the expansion and retraction of receptive symbols.

Note. Since the above was written the author has completed a revised version of Basser Lout,
in which the problem concerning available space mentioned in Section 2.5 has been resolved.

Acknowledgment. The author gratefully acknowledges many valuable discussions with
Douglas W. Jones, especially during the development of the galley abstraction; and also many
helpful comments on presentation by the anonymous referee.

References

1. Kingston, Jeffrey H.. Document Formatting with Lout. Tech. Rep. 408 (1991), Basser
Department of Computer Science, The University of Sydney, Australia.

2. Kingston, Jeffrey H.. A new approach to document formatting. Tech. Rep. 412 (1991),
Basser Department of Computer Science, The University of Sydney, Australia.

3. Kingston, Jeffrey H.. The Basser Lout Document Formatter, 1991. Computer program;
Version 2 publicly available in thepubsubdirectory of the home directory offtp to host
ftp.cs.su.oz.auwith login nameanonymousand no password. Distribution via email is
available for non-ftp sites. All enquiries to jeff@cs.su.oz.au.

4. Furuta, Richard, Scofield, Jeffrey, and Shaw, Alan. Document formatting systems: survey,
concepts, and issues.Computing Surveys14, 417–472 (1982).

5. Kernighan, Brian W. and Cherry, Lorinda L.. A system for typesetting mathematics.
Communications of the ACM18, 182–193 (1975).

- 40 -

6. Kingston, Jeffrey H.. Fig – a Lout package for drawing figures. Tech. Rep. 411 (1991),
Basser Department of Computer Science, The University of Sydney, Australia.

7. Reid, Brian K.. A High-Level Approach to Computer Document Production. InProceed-
ings of the 7th Symposium on the Principles of Programming Languages (POPL), Las Ve-
gas NV, pages 24–31, 1980.

8. Joseph F. Ossanna. Nroff/Troff User’s Manual. Tech. Rep. 54 (1976), Bell Laboratories,
Murray Hill, NJ 07974.

9. Knuth, Donald E..The TEXBook. Addison-Wesley, 1984.

10. Kingston, Jeffrey H.. Eq – a Lout package for typesetting mathematics. Tech. Rep. 410
(1991), Basser Department of Computer Science, The University of Sydney, Australia.
(Contains an appendix describing the Pas Pascal formatter.)

11. Kingston, Jeffrey H.. A beginners’ guide to Lout. Tech. Rep. 409 (1991), Basser Depart-
ment of Computer Science, The University of Sydney, Australia.

12. Kingston, Jeffrey H.. Tab – a Lout package for formatting tables. Tech. Rep. 413 (1991),
Basser Department of Computer Science, The University of Sydney, Australia.

13. Brooks, Kenneth P.. Lilac: a two-view document editor.IEEE Computer, 7–19 (1991).

