Universal Disk
Format®
Specification

Revision 2.50

April 30, 2003

© Copyright 1994-2003
Optical Storage Technology Association
ALL RIGHTSRESERVED

REVISION HISTORY

1.00 October 24, 1995 Original Release

1.01 November 3, 1995 DVD appendix added

1.02 August 30, 1996 Incorporates Document Change Notices DCN 2-001 through DCN 2-024

1.50 February 4, 1997 Integrated support for CD-R and CD-RW media (DCN 2-025 through
DCN 2-032)

2.00 April 3, 1998 Integrated support for ECMA 167 3" Edition which included the support
for named streams. (DCN 2-033 through DCN 2-064)

2.01 March 15, 2000 Incorporates DCNs 5000, 5002, 5004, 5006-5009, 5013-5015, 5018-
5021, 5024-5027, 5029-5032, 5034-5042, 5044-5048, 5050

2.50 April 15, 2003 Incorporates DCNs 5049, 5061-5066, 5068-5072, 5074-5079, 5081-5082,
5086, 5089, 5090.

April 30, 2003 Approved by committee vote. Minor formatting changes.
POINTSOF CONTACT
pptical Storage Technology Association OSTA UDF E-Mail_Reflector
http://www.osta.org; e)
To subscribe: addressrequest@list.osta.orgiwith
Contact information____________ . “subscribe udf” as aline in the mail text.
http://www.osta.org/osta/contact.htm |

Technical Editor

editor.udf @osta.org:

Technical questions

{info@osta.org:

Important Notices

@

(b)

©

(©)

THISDOCUMENT ISAN AUTHORIZED AND APPROVED PUBLICATION OF OSTA. THE SPECIFICATIONS CONTAINED HEREIN ARE
THE EXCLUSIVE PROPERTY OF OSTA BUT MAY BE REFERRED TO AND UTILIZED BY THE GENERAL PUBLIC FOR ANY LEGITIMATE
PURPOSE, PARTICULARLY IN THE DESIGN AND DEVELOPMENT OF WRITABLE OPTICAL SYSTEMSAND SUBSYSTEMS THIS
DOCUMENT MAY BE COPIED IN WHOLE OR IN PART PROVIDED THAT NO REVISONS, ALTERATIONS, OR CHANGES OF ANY KIND
ARE MADE TO THE MATERIALS CONTAINED HEREIN.

COMPLIANCE WITH THISDOCUMENT MAY REQUIRE USE OF ONE OR MORE FEATURES COVERED BY THE PATENT RIGHTS OF AN
OSTA MEMBER, ASSOCIATE OR THIRD PARTY. NO POSTION ISTAKEN BY OSTAWTH RESPECT TO THE VALIDITY OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT, WHETHER OWNED BY A MEMBER OR
ASSOCIATE OF OSTA OR OTHERWSE. OSTA HEREBY EXPRESSLY DISCLAIMS ANY LIABILITY FOR INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF OTHERS BY VIRTUE OF THIS OSTA DOCUMENT, NOR DOES OSTA UNDERTAKE A DUTY TO ADVISE USERSOR
POTENTIAL USERS OF OSTA DOCUMENTS OF SUCH NOTICES OR ALLEGATIONS. OSTA HEREBY EXPRESSLY ADVISESALL USERSOR
POTENTIAL USERS OF THISDOCUMENT TO INVESTIGATE AND ANALYZE ANY POTENTIAL INFRINGEMENT S TUATION, SEEK THE
ADVICE OF INTELLECTUAL PROPERTY COUNSEL AND, IF INDICATED, OBTAIN A LICENSE UNDER ANY APPLICABLE INTELLECTUAL
PROPERTY RIGHT OR TAKE THE NECESSARY STEPS TO AVOID INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT. OSTA
EXPRESSLY DISCLAIMS ANY INTENT TO PROMOTE INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT BY VIRTUE OF THE
EVOLUTION, ADOPTION, OR PUBLICATION OF THIS OSTA DOCUMENT.

ONE OR MORE PATENT HOLDERS HAVE FILED STATEMENTS OF WILLINGNESS TO GRANT A LICENSE, ON REASONABLE AND
NONDISCRIMINATORY TERMS, ON A RECIPROCAL BAS'S UNDER PATENT CLAIMS ESSENTIAL TO IMPLEMENT THIS SPECIFICATION.
FURTHER INFORMATION MAY BE OBTAINED FROM OSTA.

OSTA MAKES NO REPRESENTATION OR WARRANTY REGARDING ANY SPECIFICATION, AND ANY COMPANY USING A SPECIFICATION
SHALL DO SO AT ITSSOLE RISK, INCLUDING SPECIFICALLY THE RISKSTHAT A PRODUCT DEVELOPED WILL NOT BE COMPATIBLE
WITH ANY OTHER PRODUCT OR THAT ANY PARTICULAR PERFORMANCE WILL NOT BE ACHIEVED. OSTA SHALL NOT BE LIABLE
FOR ANY EXEMPLARY, INCIDENTAL, PROXIMATE OR CONSEQUENTIAL DAMAGES OR EXPENSES ARISNG FROM THE USE OR
IMPLEMENTATION OF THISDOCUMENT. THISDOCUMENT DEFINES ONLY ONE APPROACH TO COMPATIBILITY, AND OTHER
APPROACHES MAY BE AVAILABLE IN THE INDUSTRY.

Universal Disk Format® and UDF® are registered marks of the Optical Storage Technology Association.

http://www.osta.org/
http://www.osta.org/osta/contact.htm
mailto:editor.udf@osta.org
mailto:info@osta.org
mailto:request@list.osta.org
mailto:request@list.osta.org
mailto:udf@list.osta.org

CONTENTS

M etadata Partition Ma.p...
Virtua Allocation Table.

535
533

6.7 Identifier Trandation Algorithms........... ettt r et er et nanear et et ettt arererereees 118

TR LT T TDOS ATGONAM. .o evereeeeeessoren 118!

5.7.? 0972, Macmtosh,Windows 95, Windows NT and UNIX Algorithm.....-." 70 126!
68 Extended Attribute Checksum Algorithm. ... s
69 REQUIT €MENtSTOr DVD-ROMooooovooooooooooocoosoeoooeosoes oo eseoes e ereresesererereserereeerenenerer 1321
“B.9.1 Congtraints imposed on UDF by DVD-Video ..

5.10 RecommMENdationNS fOr CD M EOIA.......cveeeeeeeeeeeeeeeeeee e ee et ee e et ee et et eteeeseeae st eeeeeeeeeeeeeeens 136:
“B.10.1 Use Of UDFE 0N CD TR MEAIA .o, 136!
B2 " Use of UBE on CH-RW media”. ol

This page left intentionally blank

1. Introduction

The OSTA Universa Disk Format (UDF®) specification defines a subset of the standard
ECMA 167 3 edition. The primary goa of the OSTA UDF is to maximize data
interchange and minimize the cost and complexity of implementing ECMA 167.

To accomplish this task this document defines a Domain. A domain defines rules and
restrictions on the use of ECMA 167. The domain defined in this specification is known
asthe“OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ECMA
167 on a per operating system basis:

Given some ECMA 167 structure X, for each field in structure X answer the
following questions for a given operating system:

1) When reading this field: If the operating system supports the data in
thisfield then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in
this field with certain limitations then how should the field be interpreted
under this operating system?

3) When reading this field: If the operating system does NOT support the
data in this field then how should the field be interpreted under this
operating system?

4) When writing this field: If the operating system supports the data for
thisfield then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the
data for thisfield then to what value should the field be set?

For some structures of ECMA 167 the answers to the above questions were self-
explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the
standard.

This document should help make the task of implementing the ECMA 167 standard
easier.

To be informed of changes to this document please fill out and return the OSTA UDF

UDF 2.50 1 April 15, 2003

1.1 Document Layout

This document presents information on the treatment of structures defined under standard
ECMA 167.

This document is separated into the following 4 basic sections:

 Basic Restrictions and Requirements - defines the restrictions and
requirements that are operating system independent.

» System Dependent Requirements - defines the restrictions and requirements
that are operating system dependent.

» User Interface Requirements - defines the restrictions and requirements which
arerelated to the user interface.

* Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard
ECMA 167. The following areas are covered:

& Interpretation of a structure/field upon reading from media.

&5 Contents of a structure/field upon writing to media. Unless specified otherwise
writing refers only to creating a new structure on the media. When it applies to
updating an existing structure on the mediait will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with
respect to the categories listed above. In certain cases, one or more fields of a structure
are not described if the semantics associated with the field are obvious.

A word on terminology: in common with ECMA 167, this document will use shall to
indicate a mandatory action or requirement, may to indicate an optional action or
requirement, and should to indicate a preferred, but still optional action or requirement.

Also, special comments associated with fields and/or structures are prefaced by the
notification: " NOTE:"

UDF 2.50 2 April 15, 2003

1.2 Compliance

This document requires conformance to parts 1, 2, 3 and 4 of ECMA 167. Compliance to
part 5 of ECMA 167 is not supported by this document. Part 5 may be supported in a
later revision of this document.

For an implementation to claim compliance to this document the implementation shall
meet al the requirements (indicated by the word shall) specified in this document.

The following are afew points of clarification in regards to compliance:

* Multi-Volume support isoptional. Animplementation can claim compliance
and only support single volumes.

* Multi-Partition support is optional. An implementation can claim compliance
without supporting the special multi-partition case on a single volume defined
in this specification.

* Media support. Animplementation can claim compliance and support a
single mediatype or any combination. All implementations should be ableto
read any mediathat is physically accessible.

» Multisession support. Any implementation that supports reading of CD-R

* FileName Tranglation - Any time an implementation has the need to
transform a filename to meet operating system restrictionsit shall use the
algorithms specified in this document.

* Extended Attributes - All compliant implementations shall preserve existing
extended attributes encountered on the media. Implementations shall create
and maintain the extended attributes for the operating systems they support.
For example, an implementation that supports Macintosh shall preserve any
0S/2 extended attributes encountered on the media. An implementation that
supports Macintosh shall also create and maintain all Macintosh extended
attributes specified in this document.

» Backwards Read Compatibility — An implementation compliant to this version
of the UDF specification shall be able to read all media written under
previous versions of the UDF specification.

» BackwardsWrite Compatibility — UDF 2.xx structures shall not be written to
mediathat contain UDF 1.50 or UDF 1.02 structures. UDF 1.50 and UDF
1.02 structures shall not be written to media that contain UDF 2.xx structures.
These two requirements prevent media from containing different versions of
the UDF structures.

UDF 2.50 3 April 15, 2003

1.3 General References
1.3.1 References

SO 9660: 1988 Information Processing - VVolume and File Structure of CD-ROM for Information
Interchange
IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data I nterchange on read-only 120mm optical data discs
(CD-ROM based on the Philips/Sony “Y ellow Book™)

Orange Book part-11 Recordable Compact Disc System Part-11, N.V. Philips and Sony Corporation
Orange Book part-I11 Recordable Compact Disc System Part-111, N.V. Philips and Sony Corporation

ISO/IEC 13346:1995 Volume and file structure of write-once and rewritable media using non-
sequential recording for information interchange. This SO standard is equivalent
to ECMA 167 2™ edition..

ECMA 167 ECMA 167 3" edition is an update to ECMA 167 2™ edition that adds the
support for multiple data stream files, and is available from http://www.ecma.ch.
The previous edition of ECMA 167 (2") was is equivalent to |SO/IEC
13346:1995. References enclosed in [] in this document are referencesto ECMA
167 3 edition. The references arein the form [x/a.b.c], where x is the section
number and a.b.c is the paragraph or figure number.

1.3.2 Definitions

Audio session Audio session contains one or more audio tracks, and no data track.

Audio track Audio tracks are tracks that are designated to contain audio sectors specified in
ISO/IEC 908.

CD-R CD-Recordable. A write once CD defined in Orange Book, part-I1.

CD-RW CD-Rewritable. An overwritable CD defined in Orange Book, part-I11.

Clean File System The file system on the media conforms to this specification.

Data track Datatracks are tracks that are designated to contain data sectors specified in
ISO/IEC 10149.

Dirty File System A file system that is not a clean file system.

ECC Block Sze (bytes) Thisterm refers to values defined in relevant device and/or media specifications.
The reader should consult the appropriate document — for example, the “MMC”
or “Mt. Fuji” specifications for C/DVD class media. For media exposing no such
concept externally (e.g. hard disc) this term shall be interpreted to mean the sector
size of the media.

Fixed Packet An incremental recording method in which all packetsin agiven track are of a
length specified in the Track Descriptor Block. Addresses presented to a CD
drive are trand ated according to the Method 2 addressing specified in Orange
Book parts-Il and -111.

ICB A control nodein ECMA 167.
Logical Block Address A logical block number [3/8.8.1].

UDF 2.50 4 April 15, 2003

Media Block Address

Packet

Physical Address

Physical Block Address

NOTE 1: Thisis not to be confused with alogical block address[4/7.1], given by
the Ib_addr structure which contains both alogical block number [3/8.8.1] and a
partition reference number [3/8.8], the latter identifying the partition [3/8.7]
which contains the addressed logical block [3/8.8.1].

NOTE 2: A logical block number [3/8.8.1] trandatesto alogical sector number
[3/8.1.2] according to the scheme indicated by the partition map [3/10.7] of the
partition [3/8.7], which contains the addressed logical block [3/8.8.1]

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivaent to alogical sector number [3/8.1.2].

A recordable unit, which is an integer number of contiguous sectors[1/5.9],
which consist of user data sectors, and may include additional sectors[1/5.9]
which are recorded as overhead of the Packet-writing operation and are
addressable according to the relevant standard for recording [1/5.10].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivaent to alogical sector number [3/8.1.2].

A sector number [3/8.1.1], derived from the unique sector address given by a
relevant standard for recording [1/5.10]. In this specification, a sector number
[3/8.1.1] isequivaent to alogical sector number [3/8.1.2].

physical sector A sector [1/5.9] given by arelevant standard for recording [1/5.10]. Inthis
specification, a sector [1/5.9] is equivalent to aalogical sector [3/8.1.2].
Random Access File System A file system for randomly writable media, either write once or

Sequential File System
Session

Track

UDF

UDF 2.50

rewritable
A file system for sequentially written media (e.g. CD-R)

The tracks of avolume shall be organized into one or more sessions as specified
by the Orange Book part-11. A session shall be a sequence of one or more tracks,
the track numbers of which form a contiguous ascending sequence.

The sectors of avolume shall be organized into one or more tracks. A track shall
be a sequence of sectors, the sector numbers of which form a contiguous
ascending sequence. No sector shall belong to more than one track.

Note: There may be gaps between tracks; that is, the last sector of atrack need
not be adjacent to the first sector of the next track.

OSTA Universal Disk Format

5 April 15, 2003

user data blocks

user data sectors

Variable Packet

Virtual Address

virtual partition

virtual sector

VAT

VAT ICB

UDF 2.50

Thelogical blocks[3/8.8.1] which were recorded in the sectors[1/5.9]
(eguivalent in this specification to logical sectors[3/8.1.2]) of a Packet and which
contain the data intentionally recorded by the user of the drive. This specifically
does not include the logical blocks [3/8.8.1], if any, whose constituent sectors
[1/5.9] were used for the overhead of recording the Packet, even though those
sectors[1/5.9] are addressable according to the relevant standard for recording
[1/5.10]. Like any logical blocks[3/8.8.1], user data blocks are identified by
logical block numbers[3/8.8.1].

The sectors [1/5.9] of a Packet which contain the data intentionally recorded by
the user of the drive, specifically not including those sectors [1/5.9] used for the
overhead of recording the Packet, even though those sectors [1/5.9] may be
addressable according to the relevant standard for recording [1/5.10]. Like any
sectors[1/5.9], user data sectors are identified by sector numbers[3/8.1.1]. In
this specification, a sector number [3/8.1.1] is equivalent to aalogical sector
number [3/8.1.2].

An incremental recording method in which each packet in agiven track is of a
host determined length. Addresses presented to a CD drive are as specified in
Method 1 addressing in Orange Book parts |1 and I11.

A logical block number [3/8.8.1] of alogical block [3/8.8.1] in avirtual partition.
Such alogical block [3/8.8.1] isrecorded using the space of alogical block
[3/8.8.1] of a corresponding non-virtual partition. The Nth Uint32 inthe VAT
represents the logical block number [3/8.8.1] in anon-virtual partition used to
record logical block number N of its corresponding virtual partition. The first
virtual addressisO.

A partition of alogical volume [3/8.8] identified in alogical volume descriptor
[3/10.6] by a Type 2 partition map [3/10.7.3] recorded according section 2.2.8 of
this specification. The virtual partition map contains a partition number that is the
same as the partition number [3/10.7.2.4] in a Type 1 partition map [3/10.7.2] in
the same logical volume descriptor [3/10.6]. Each logical block [3/8.8.1] inthe
virtual partition is recorded using the space of alogical block [3/8.8.1] of that
corresponding non-virtual partition. A VAT liststhe logical blocks[3/8.8.1] of
the non-virtual partition, which have been used to record the logical blocks
[3/8.8.1] of its corresponding virtual partition.

A logical block [3/8.8.1] in avirtual partition. Such alogical block [3/8.8.1] is
recorded using the space of alogical block [3/8.8.1] of a corresponding non-
virtual partition. A virtual sector should not be confused with a sector [1/5.9] or a
logical sector [3/8.1.2].

A file[4/8.8] recorded in the space of anhon-virtual partition which has a
corresponding virtual partition, and whose data space [4/8.8.2] is structured

according to section .2. ;i:of this specification. Thisfile provides an ordered list
of Uint32s, where the Nth Uint32 represents the logical block number [3/8.8.1] of
anon-virtual partition used to record logical block number N of its corresponding
virtual partition. Thisfile[4/8.8] is not necessarily referenced by afile identifier
descriptor [4/14.4] of adirectory [4/8.6] in the file set [4/8.5] of the logical

volume [3/8.8].
A File Entry ICB that describes afile containing a Virtual Allocation Table.

6 April 15, 2003

1.3.3 Terms
May

Optional
Shall
Should

Reserved

Indicates an action or feature that is optional.

Describes a feature that may or may not be implemented. 1f implemented, the
feature shall be implemented as described.

Indicates an action or feature that is mandatory and must be implemented to claim
compliance to this standard.

Indicates an action or feature that is optional, but its implementation is strongly
recommended.

A reserved field isreserved for future use and shall be set to zero. A reserved
value isreserved for future use and shall not be used.

1.3.4 Acronyms

Acronym Definition
AD Allocation Descriptor
AVDP Anchor Volume Descriptor Pointer
EA Extended Attribute
EFE Extended File Entry
FE File Entry
FID File Identifier Descriptor
FSD File Set Descriptor
ICB Information Control Block
IlUVD Implementation Use V olume Descriptor
LV Logica Volume
LVD Logical Volume Descriptor
LVID Logica Volume Integrity Descriptor
PD Partition Descriptor
PVD Primary V olume Descriptor
SBD Space Bitmap Descriptor
USD Unallocated Space Descriptor
VAT Virtual Allocation Table
VDS V olume Descriptor Sequence
VRS V olume Recognition Sequence
UDF 2.50 7 April 15, 2003

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined
in this specification. These restrictions & requirements as well as additional ones are
described in detail in the following sections of this specification.

ltem

Restrictions & Requirements

Logical Sector Size

The Logical Sector Size for a specific volume shall be the
same as the physical sector size of the specific volume.

Logical Block Size

The Logical Block Szefor aLogical Volume shall be set to
the logical sector size of the volume or volume set on which
the specific logical volume resides.

Volume Sets

All media within the same Volume Set shall have the same
physical sector size. Rewritable/Overwritable media and
WORM media shall not be mixed in/ be present in the same
volume set.

First 32K of Volume Space

The first 32768 bytes of the V olume space shall not be used
for the recording of ECMA 167 structures. Thisarea shall
not be referenced by the Unallocated Space Descriptor or
any other ECMA 167 descriptor. Thisisintended for use by
the native operating system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in part 2 of
ECMA 167 shall be recorded.

Timestamp

All timestamps shall be recorded in local time. Time zones
shall be recorded on operating systems that support the
concept of atime zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with this
document. Unless otherwise specified in this specification
the Entity Identifiers shall contain a value that uniquely
identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for al Descriptors
except for the Space Bitmap Descriptor. Thereisa CRC
length special case for the Allocation Extent Descriptor.

File Name Length

Maximum of 255 bytes

Extent Length

Maximum Extent Length shall be 2° — 1 rounded down to
the nearest integral multiple of the Logical Block Size.
Maximum Extent Length for extentsin virtual space shall be
the Logical Block Size.

Primary V olume Descriptor

There shall be exactly one prevailing Primary Volume
Descriptor recorded per volume. The mediawhere the
VolumeSequenceNumber of this descriptor isequal to 1
(one) must be part of the logical volume defined by the
prevailing Logical VVolume Descriptor.

Anchor Volume Descriptor Pointer

Shall be recorded in at least 2 of the following 3 locations:
256, N-256, or N, where N is the last addressable sector of a
volume. See also 2.2.3!

Partition Descriptor

A Partition Descriptor Access Type of Read-Only,
Rewritable, Overwritable and Write-Once shall be
supported. There shall be exactly one prevailing Partition
Descriptor recorded per volume, with one exception. For
Volume Sets that consist of single volume, the volume may
contain 2 non-overlapping Partitions with 2 prevailing

UDF 2.50

8 April 15, 2003

Partition Descriptors only if one has an access type of
Read-Only and the other has an access type of Rewritable,
Overwritable, or Write-Once. The Logical Volume for this
volume would consist of the contents of both partitions.

Logical Volume Descriptor

There shall be exactly one prevailing Logical Volume
Descriptor recorded per Volume Set.

The Logical Volumel dentifier field shall not be null and
should contain an identifier that aids in the identification of
thelogical volume. Specifically, software generating
volumes conforming to this specification shall not set this
field to afixed or trivial value. Duplicate disks, which are
intended to be identical, may contain the same valuein this
field. Thisfield is extremely important in logical volume
identification when multiple media are present within a
jukebox. This nameistypically what is displayed to the
user.

The Logical VolumeDescriptor recorded on the volume
where the PrimaryVolumeDescriptor’s
VolumeSequenceNumber field is equal to 1 (one) must have
a Number ofPartitionMaps value and PartitionMaps
structure(s) that represent the entire logical volume. For
example, if avolume set is extended by adding partitions,
then the updated Logical VolumeDescriptor written to the
last volume in the set must also be written (or rewritten) to
the first volume of the set.

Logical Volume Integrity Descriptor

Shall be recorded. The extent of LVIDs may be terminated
by the extent length.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall be
recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor recorded per
Logical Volume on Rewritable/Overwritable media. For
WORM media multiple File Set Descriptors may be
recorded based upon certain restrictions defined in this
document. The FSD extent may be terminated by the extent
length.

ICB Tag

Only strategy types 4 or 4096 shall be recorded.

File Identifier Descriptor

Thetotal length of aFile Identifier Descriptor shall not
exceed the size of one Logical Block.

File Entry

Thetotal length of aFile Entry shall not exceed the size of
one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shall be
recorded.

Allocation Extent Descriptors

The length of any single extent of allocation descriptors
shall not exceed the Logical Block Sze.

Unallocated Space Entry

Thetotal length of an Unallocated Space Entry shall not
exceed the size of one Logical Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor sequence
extents shall each have a minimum length of 16 logical
sectors. The VDS Extent may be terminated by the extent

UDF 2.50

9 April 15, 2003

length.

Record Structure

Record structure files, as defined in part 5 of ECMA 167,
shall not be created.

UDF 2.50

10 April 15, 2003

2.1 Part 1- General

2.1.1 Character Sets
The character set used by UDF for the structures defined in this document is the
CS0 character set. The OSTA CSO character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in The Unicode Standard,
Version 2.0 (ISBN 0-201-48345-9 from Addison-Wesley Publishing Company

FFFE, stored in the OSTA Compressed Unicode format which is defined as

follows:
OSTA Compressed Unicode for mat
RBP | Length Name Contents
0 1 Compression ID Uint8
1 7? Compressed Bit Stream Byte

The CompressionI D shall identify the compression algorithm used to compress
the CompressedBitSream field. The following algorithms are currently

supported:
Compression Algorithm
Value Description
0-7 Reserved
8 Vaueindicates there are 8 bits per character

in the CompressedBitStream.
9-15 Reserved

16 Vaueindicates there are 16 bits per
character in the CompressedBitStream.
17-253 | Reserved

254 Vaue indicates the CSO expansion is empty
and unique. Compression Algorithm 8 is
used for compression.
255 Vaue indicates the CSO expansion is empty
and unique. Compression Algorithm 16 is
used for compression.

For a CompressionID of 8 or 16, the value of the CompressionID shall specify
the number of BitsPerCharacter for the d-characters defined in the
CharacterBitStream field. Each sequence of CompressionID bitsin the
CharacterBitStream field shall represent an OSTA Compressed Unicode d-
character. The bits of the character being encoded shall be added to the
CharacterBitStream from most- to least-significant-bit. The bits shall be added to
the CharacterBitStream starting from the most significant bit of the current byte
being encoded into.

UDF 2.50 11 April 15, 2003

http://www.awl.com/
http://www.unicode.org/

2.1.2

2.1.3

NOTE: Thisencoding causes characterswritten with a CompressioniD of 16 to
be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16
defines the value of the corresponding d-character in the Unicode 2.0 standard.
Refer to appendix on OSTA Compressed Unicode for sample C source code to
convert between OSTA Compressed Unicode and standard Unicode 2.0.

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

Compression IDs 254 and 255 shall only be used in FIDs where the deleted bit is
set to ONE.

When uncompressing file identifiers with Compression IDs 254 and 255, the
resulting name is to be considered empty and unique.

OSTA CS0 Char spec

struct charspec { [* ECMA 167 1/7.2.1*/
Uint8 Character SetType;
byte Character SetInfo[63];
}

The Character SetType field shall have the value of 0 to indicate the CSO coded
character set.

The Character Setinfo field shall contain the following byte values with the
remainder of the field set to avalue of 0.

HAF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #13, #65,
#64, #20, #55, #6E, #69, #63, #OF, #64, #65

The above byte values represent the following ASCI|I string:
“OSTA Compressed Unicode”

Dstrings

The ECMA 167 standard, as well as this document, has normally defined byte positions
relativeto 0. In section 7.2.12 of ECMA 167, dstrings are defined in terms of being
relativeto 1. Since this offers an opportunity for confusion, the following shows what the
definition would be if described relative to 0.

UDF 2.50

7.2.12 Fixed-length character fields
A dstring of length nisafield of n bytes where d-characters (1/7.2) are recorded. The number of
bytes used to record the characters shall be recorded asa Uint8 (1/7.1.1) in byte n-1, where nis the

12 April 15, 2003

length of the field. The characters shall be recorded starting with the first byte of the field, and any
remaining byte positions after the characters up until byte n-2 inclusive shall be set to #00.

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.

NOTE: The length of adstring includes the compression code byte (2.1.1) except for the
case of azero length string. A zero length string shall be recorded by setting the entire

dstring field to all zeros.

2.1.4 Timestamp

struct timestamp { [* ECMA 167 1/7.3*/
uUint16 TypeAndTimezone;
Int16 Year;
Uint8 Month;
Uint8 Day;
Uint8 Hour;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds;
Uint8 HundredsofMicroseconds;
Uint8 Microseconds,
}

2.1.4.1 Uint1l6 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this
field, and TimeZone refersto the least significant 12 bits of thisfield, whichis
interpreted as a signed 12-bit number in two’s complement form.

¢~ Thetimewithin the structure shall be interpreted as Local Time since Type
shall be equal to ONE for OSTA UDF compliant media.

& Type shall be set to ONE to indicate Local Time.

¢~ TimeZone shall beinterpreted as specifying the time zone for the location
when thisfield was last modified. If thisfield contains -2047 then the time
zone has not been specified.

& For operating systems that support the concept of atime zone, the offset of
the time zone (in 1 minute increments), from Coordinated Universal Time,
shall beinserted in the TimeZone field. Otherwise the TimeZone shall be
set to —2047.

UDF 2.50 13 April 15, 2003

215

NOTE: Time zones West of Coordinated Universal Time have negative offsets.
For example, Eastern Standard Time is -300 minutes; Eastern Daylight
Timeis-240 minutes.

NOTE: Implementations on systems that support time zones should interpret
unspecified time zones as Coordinated Universal Time. Although not a
requirement, this interpretation has the advantage that files generated on
systems that do not support time zones will always appear to have the
same time stamps on systems that do support time zones, irrespective of
the interpreting system's local time zone.

Entity Identifier

struct EntitylD { [* ECMA 167 1/7.4*/
Uint8 Flags,
char I dentifier[23];
char | dentifier Suffix[8];

}

NOTE: UDF uses Entityl D for the structure that is called regid in ECMA-167.

UDF classifies Entity Identifiersinto 4 separate types. Each type hasits own
Suffix Type for the Identifier Suffix field. The 4 types are:

e Domain Entity Identifiers with a Domain Identifier Suffix

e UDF Entity Identifiers with a UDF Identifier Suffix

« Implementation Entity Identifiers with an Implementation Identifier Suffix
» Application Entity Identifiers with an Application Identifier Suffix

The following sections describe the format and use of Entity Identifiers based
upon the different types mentioned above. For al UDF descriptor fields
containing an EntitylD structure, the value of the Identifier field and the Suffix
Type for the IdentifierSuffix field are defined in the Entity Identifiers table of

definedin 2.1.5.3!

2.1.5.1 Uint8 Flags

UDF 2.50

¢ Sdf-explanatory.

& Shall be set to ZERO.

14 April 15, 2003

2.1.5.2 char Identifier[23]

UDF 2.50

Unless stated otherwise in this document this field shall be set to an identifier that

uniquely identifies the implementation. This methodology will allow for
identification of the implementation responsible for creating structures recorded

on media interchanged between different implementations.
If an implementation updates existing structures on the media written by other
implementations the updating implementation shall set the Identifier field to a
value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the ECMA

167 standard and this document and shows to what values they shall be set.

Entity Identifiers

Extended Attribute

Descriptor Field ID Value Suffix Type
Primary Volume Implementation ID “*Developer ID” Implementation
Descriptor Identifier Suffix
Primary Volume Application ID “*Application ID” | Application Identifier
Descriptor Suffix
Implementation Use | Implementation “*UDF LV Info” UDF Identifier Suffix
V olume Descriptor Identifier
Implementation Use | Implementation ID “*Developer ID” Implementation
V olume Descriptor (in Implementation Identifier Suffix

Usefield)

Partition Descriptor Implementation ID “*Developer ID” Implementation
Identifier Suffix

Partition Descriptor Partition Contents “+NSR03" Application Identifier
Suffix

Logica Volume Implementation ID “*Developer ID” Implementation

Descriptor Identifier Suffix

Logica Volume Domain ID "*OSTA UDF DOMAIN Identifier

Descriptor Compliant” Suffix

File Set Descriptor Domain ID "*OSTA UDF DOMAIN Identifier

Compliant” Suffix

File Identifier Implementation Use | “*Developer ID” Implementation

Descriptor Identifier Suffix
(optional)

File Entry Implementation ID “*Developer ID” Implementation
Identifier Suffix

Device Specification | Implementation Use | “*Developer ID” Implementation

Extended Attribute Identifier Suffix

UDF Implementation | Implementation ID SeeB.34.5 UDF Identifier Suffix

Use Extended

Attribute

Non-UDF Implementation ID “*Developer ID” Implementation

Implementation Use Identifier Suffix

Extended Attribute

UDF Application Use | Application ID SeeB.3.4.6 UDF Identifier Suffix

15

April 15, 2003

Non-UDF Application ID “*Application ID” | Application Identifier

Application Use Suffix

Extended Attribute

UDF Unique ID Implementation ID “*Developer ID” Implementation

Mapping Data Identifier Suffix

Power Calibration Implementation ID “*Developer ID” Implementation

Table Stream Identifier Suffix

Logica Volume Implementation ID “*Developer ID” Implementation

Integrity Descriptor (in Implementation Identifier Suffix
Usefield)

Partition Integrity Implementation ID N/A N/A

Entry

Virtual Partition Map | Partition Type “*UDF Virtual UDF Identifier Suffix
Identifier Partition”

Virtual Allocation Implementation Use | “*Developer ID” Implementation

Table Identifier Suffix

(optional)

Sparable Partition Partition Type “*UDF Sparable UDF Identifier Suffix

Map Identifier Partition”

Sparing Table Sparing | dentifier “*UDF Sparing UDF Identifier Suffix

Table’
Metadata Partition Partition Type “*UDF Metadata UDF Identifier Suffix
Map Identifier Partition”

NOTE: The vaue of the Entity Identifier field is interpreted as a sequence of
bytes, and not as a dstring specified in CS0. For ease of use the values used by
UDF for this field are specified in terms of ASCII character strings. The actual
sequence of bytes used for the Entity Identifiers defined by UDF are specified in
section 6.2}

NOTE: Inthe ID Value column in the above table “* Application ID” refersto an
identifier that uniquely identifies the writer’ s application.

In the ID Value column in the above table “ * Developer ID” refersto an Entity Identifier
that uniquely identifies the current implementation. The value specified should be used
when anew descriptor is created. Also, the value specified should be used for an existing
descriptor when anything within the scope of the specified EntitylD field is modified.

UDF 2.50

NOTE: Thevalue chosen for a“ *Developer ID” should contain enough
information to identify the company and product name for an implementation.

For example, acompany called XYZ with a UDF product called DataOne might
choose “ *XYZ DataOne” astheir developer ID. Also in the suffix of their
developer ID they may choose to record the current version number of their
DataOne product. Thisinformation is extremely helpful when trying to determine
which implementation wrote a bad structure on a piece of mediawhen multiple
products from different companies have been recording on the media.

16 April 15, 2003

The Suffix Type column in the above table defines the format of the suffix to be used with
the corresponding Entity Identifier. These different suffix types are defined in the
following paragraphs.

NOTE: All Identifiers defined in this document (appendix $6.1) shall be registered
by OSTA as UDF Identifiers.

2.1.5.3 char ldentifier Suffix[8]

UDF 2.50

The format of the Identifier Suffix field is dependent on the type of the Identifier.

In regard to OSTA Domain Entity Identifiers specified in this document (appendix

'5_.1] the Identifier Suffix field shall be constructed as follows:

Domain | dentifier Suffix field format

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0250)
2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #0250 to indicate revision 2.50 of this
document. Thisfield will allow an implementation to detect changes madein
newer revisions of this document. The OSTA Domain Identifiers are only used in
the Logical Volume Descriptor and the File Set Descriptor. The DomainFlags
field defines the following bit flags:

Domain Flags
Bit Description
0 Hard Write-Protect

1 Soft Write-Protect
2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or
file system structures within the scope of the descriptor in which it resides are
write protected. A SoftWriteProtect flag value of ONE shall indicate user write
protected structures. This flag may be set or reset by the user. The
HardWriteProtect flag is an implementation settable flag that indicates that the
scope of the descriptor in which it resides is permanently write protected. A
HardWriteProtect flag value of ONE shall indicate a permanently write protected
structure. Once set thisflag shall not bereset. The HardWriteProtect flag
overrides the SoftWriteProtect flag.

The write protect flags appear in the Logical VVolume Descriptor and in the File
Set Descriptor. They shall be interpreted as follows:

17 April 15, 2003

is fileset_write protected = LVD.HardWriteProtect || LV D.SoftWriteProtect ||

FSD.HardWriteProtect || FSD.SoftWriteProtect

is fileset_hard_protected = LVD.HardWriteProtect || FSD.HardWriteProtect
is fileset_soft_protected = (LVD.SoftWriteProtect || FSD.SoftWriteProtect) & &

lis fileset_hard protected

is vol_write_protected = LVD.HardWriteProtect || LV D.SoftWriteProtect
is vol_hard protected = LV D.HardWriteProtect
is vol_soft_protected = LV D.SoftWriteProtect & & 'LV D.HardWriteProtect

Implementation use Entity Identifiers defined by UDF (appendix 51) the
| dentifier Suffix field shall be constructed as follows:

UDF | dentifier Suffix

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0250)
2 1 OS Class Uints
3 1 OS ldentifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the
Appendix on Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the I dentifier Suffix
field shall be constructed as follows:

| mplementation | dentifier Suffix

RBP | Length Name Contents
0 1 OS Class Uint8
1 1 OS Identifier Uint8
2 6 Implementation Use Area bytes

NOTE: Itisimportant to understand the intended use and importance of the OS Class
and OS Identifier fields. The main purpose of these fieldsisto aid in debugging when
problems are found on a UDF volume. The fields also provide useful information that
could be provided to the end user. When set correctly these two fields provide an
implementation with information such as the following:

UDF 2.50

Identify under which operating system a particular structure was last modified.
Identify under which operating system a specific file or directory was last
modified.

If adeveloper supports multiple operating systems with their implementation,
it helps to determine under which operating system a problem may have
occurred.

18 April 15, 2003

For an Application Entity Identifier not defined by UDF, the Identifier Suffix field
shall be constructed as follows, unless specified otherwise.

Application | dentifier Suffix

RBP | Length Name Contents

0 8 Implementation Use Area bytes

2.1.6 Descriptor Tag Serial Number at Formatting Time

In order to support disaster recovery, the TagSerialNumber value of all UDF descriptors
that will be recorded at formatting time, shall be set to a value that differs from ones
previously recorded, upon volume re-initialization.

If no disaster recovery will be supported, a value zero (#0000) shall be used for the
TagSerialNumber field of al UDF descriptors that will be recorded at formatting time,
see ECMA 3/7.2.5and 4/7.2.5.

If disaster recovery is supported, the value to be used depends on the state of the volume
prior to formatting. There are only two states in which avolume can be formatted such
that disaster recovery will be possible in the future. These states are:

1) Thevolumeiscompletely erased. Only after this action, and where disaster recovery
isto be supported then a value of one (#0001) shall be used as the TagSerial Number
value.

2) Thevolumeisaclean UDF volume that supports disaster recovery for
TagSerialNumber values, and the TagSerialNumber values of at |east two Anchor
Volume Descriptor Pointers are both equal to X, where X is not equal to zero. If
disaster recovery isto be supported then avalue X+1 shall be used as the
TagSerialNumber value. If X+1 wrapsto zero then keep it as zero to indicate that
disaster recovery is not supported.

NOTE: Thereason for thisisthat if X+1 wrapsto zero then the uniqueness of any
TagSerialNumber value unequal to zero can no longer be guaranteed on the volume.

NOTE: By ‘erased’ in the above paragraphs, we mean that the sectors are made non-valid
for UDF —for example by writing zeroes to the sectors.

2.1.7 Volume Recognition Sequence
The following rules shall apply when writing the volume recognition sequence:

& The Volume Recognition Sequence (VRS) as described in part 2 and part 3 of

ECMA 167 shall be recorded. There shall be exactly one NSR descriptor in the
VRS. The NSR and BOOT2 descriptors shall be in the Extended Area. There shall

UDF 2.50 19 April 15, 2003

be only one Extended Area with one BEAOL and one TEAOQL. All other VSDs are
only allowed before the Extended Area. The first sector after the VRS shall be
unrecorded or contain all #00 bytes.

&~ Implementers should expect that media recorded by UDF 2.00 and lower revisions
do not have the requirement mentioned above concerning the first sector after the

VRS.

NOTE: Currently, no BOOT2 descriptor is defined for UDF, see§3, Further, see ECMA
part 2, 3/3.1, 3/3.2 and 3/9.1.

UDF 2.50 20 April 15, 2003

2.2 Part 3-Volume Structure
2.2.1 Descriptor Tag

struct tag { [* ECMA 167 3/7.2*/
Uint16 Tagldentifier;
Uint16 DescriptorVersion,
Uint8 TagChecksum;
byte Reserved,
uUint1l6 TagSerialNumber;
uint16 DescriptorCRC;
uint16 Descriptor CRCL ength;
Uint32 TagLocation;

}

2.2.1.1 Uint16 TagSerialNumber
¢ Ignored. Intended for disaster recovery.

& Shall be set to the TagSerialNumber value of the Anchor Volume
Descriptor Pointers on this volume.

In order to preserve disaster recovery support, the TagSerialNumber must be set to
avalue that differs from ones previously recorded, upon volume re-initialization.
Thisvalueis determined at volume formatting time and may depend on the state
of the volume prior to formatting. See 2.1.6 for further details.

2.2.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor. The value of this
field shall be set to (Size of the Descriptor) - (Length of Descriptor Tag). When
reading a descriptor the CRC should be validated.

NOTE: The Descriptor CRCLength field must not be used to determine the actua
length of the descriptor or the number of bytesto read. These lengths do not
match in all cases; there are exceptions in the standard where the Descriptor CRC
Length need not match the length of the descriptor.

UDF 2.50 21 April 15, 2003

2.2.2 Primary Volume Descriptor

struct PrimaryV olumeDescriptor { /* ECMA 167 3/10.1*/
struct tag DescriptorTag;
Uint32 V olumeDescriptorSequenceNumber;
Uint32 PrimaryV olumeDescriptorNumber;
dstring Volumeldentifier[32];
Uintl6 V olumeSequenceNumber;
Uintl6 MaximumV olumeSequenceNumber;
Uintl6 Interchangel evel;
Uintl6 M aximuml nter changel evel;
Uint32 Character SetList;
Uint32 MaximumChar acter SetList;
dstring VolumeSetl dentifier[128];

struct charspec
struct charspec
struct extent_ad
struct extent_ad
struct EntitylD
struct timestamp
struct EntitylD
byte
Uint32
Uintl6
byte

}

Descriptor Char acter Set;
ExplanatoryChar acter Set;
VolumeAbstract;
VolumeCopyrightNotice;
Applicationl dentifier;
RecordingDateandTime;

| mplementationl dentifier;
ImplementationUse[64];
PredecessorV olumeDescriptor Sequencelocation;
Flags,

Reserved[22];

2.2.2.1 Uint16 Interchangel evel

¢~ Interpreted as specifying the current interchange level (as specified in
ECMA 167 3/11), of the contents of the associated volume and the
restrictions implied by the specified level.

& If thisvolumeis part of a multi-volume Volume Set then the level shall be
set to 3, otherwise the level shall be set to 2.

ECMA 167 requires an implementation to enforce the restrictions associated with
the specified current Interchange Level. The implementation may change the
value of thisfield aslong as it does not exceed the value of the Maximum

Interchange Level field.

2.2.2.2 Uint16 Maximumlnterchangel evel
&~ Interpreted as specifying the maximum interchange level (as specified in
ECMA 167 3/11), of the contents of the associated volume.

UDF 2.50

& This field shall be set to level 3 (No Restrictions Apply), unless
specifically given a different value by the user.

22 April 15, 2003

NOTE: Thisfield is used to determine the intent of the originator of the volume.
If this field has been set to 2 then the originator does not wish the volume to be
included in a multi-volume set (interchange level 3). The receiver may override
this field and set it to a 3 but the implementation should give the receiver a strict
warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 Character SetL ist
&~ Interpreted as specifying the character set(s) in use by any of the structures
defined in Part 3 of ECMA 167 (3/10.1.9).

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.4 Uint32 MaximumChar acter SetList
&~ Interpreted as specifying the maximum supported character sets (as
specified in ECMA 167) which may be specified in the Character SetlList
field.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.5 dstring VolumeSet|dentifier[128]
&~ Interpreted as specifying the identifier for the volume set .

& The first 16 characters of this field should be set to a unique value. The
remainder of the field may be set to any allowed value. Specificaly,
software generating volumes conforming to this specification shall not set
thisfield to afixed or trivial value. Duplicate disks which are intended to
be identical may contain the same valuein thisfield.

NOTE: The intended purpose of this is to guarantee Volume Sets with
unique identifiers. The first 8 characters of the unique part should come
from a CSO hexadecima representation of a 32-bit time value. The
remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec Descriptor Character Set
&~ Interpreted as specifying the character sets allowed in the Volume
Identifier and Volume Set Identifier fields.
& Shall be set to indicate support for CS0 as defined in 2.1.2.
2.2.2.7 struct charspec ExplanatoryCharacter Set
¢~ Interpreted as specifying the character sets used to interpret the contents of
the VolumeAbstract and VolumeCopyrightNotice extents.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

UDF 2.50 23 April 15, 2003

identifying the application that last wrote this field, or the field is filled
with al #00 bytes, meaning that no application is identified.

& Either al #00 bytes or a valid Entity Identifier (section 2.1.5} shall be
recorded in thisfield.

2.2.3 Anchor Volume Descriptor Pointer
struct AnchorV olumeDescriptorPointer { [* ECMA 167 3/10.2*/
struct tag DescriptorTag;
struct extent_ad MainVolumeDescriptor SequenceExtent;
struct extent_ad ReserveVolumeDescriptor SequenceExtent;
byte Reserved[480];
}

NOTE: An AnchorVolumeDescriptorPointer structure shall be recorded in at
least 2 of the following 3 locations on the media:

* Logica Sector 256.
* Logica Sector (N - 256).
* N

media may have a single AVDP present at either sector 256 or 512. If on an
unclosed disc a single AVDP is recorded on sector 256, any AVDP recorded on
sector 512 must be ignored. Closed media shall conform to the above rules.

2.2.3.1 struct MainVolumeDescriptor SequenceExtent
The main VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

2.2.3.2 struct ReserveVolumeDescriptor SequenceExtent

The reserve VolumeDescriptor SequenceExtent shall have a minimum length of 16
logical sectors.

UDF 2.50 24 April 15, 2003

2.2.4 Logical Volume Descriptor

struct LogicalVolumeDescriptor { [* ECMA 167 3/10.6 */
struct tag DescriptorTag;
Uint32 V olumeDescriptorSequenceNumber;
struct charspec Descriptor Char acter Set;
dstring LogicaVVolumeldentifier[128];
Uint32 L ogicalBlockSize,
struct EntitylD Domainl dentifier;
byte L ogicalVolumeContentsUse[16];
Uint32 MapTablelength;
Uint32 Numberof PartitionM aps;
struct EntitylD Implementationl dentifier;
byte ImplementationUse[128];
extent_ad I ntegritySequenceExtent,
byte PartitionMapq[];

}

2.2.4.1 struct charspec Descriptor Character Set
¢~ Interpreted as specifying the character set alowed in the
Logical Volumeldentifier field.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
&~ Interpreted as specifying the Logical Block Sze for the logical volume
identified by this Logical VolumeDescriptor.

& This field shall be set to the largest logical sector size encountered
amongst al the partitions on media that constitute the logical volume
identified by this LogicalVolumeDescriptor. Since UDF requires that all
Volumes within a VolumeSet have the same logical sector size, the
Logical Block Sze will be the same as the logical sector size of the
Volume.

2.2.4.3 struct EntitylD Domainldentifier
¢~ Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield isall zero then
it isignored, otherwise the Entity Identifier rules are followed.

NOTE: If the field does not contain “*OSTA UDF Compliant” then an
implementation may deny the user access to the logical volume.

UDF 2.50 25 April 15, 2003

& Thisfield shall indicate that the contents of thislogical volume conforms
to the domain defined in this document, therefore the Domainldentifier
shall be set to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shall contain the revision of this document for which the
contents of the Logical Volume is compatible. For more information on

the proper handling of this field see section 2.1.5!

NOTE: The IdentifierSuffix field of this EntitylD contains

2.2.4.4 byte L ogicalVolumeContentUse[16]

Thisfield contains the extent location of the FileSet Descriptor. Thisis described
in 4/3.1 of ECMA 167 asfollows:

“If the volume is recorded according to Part 3, the extent in which the first File Set Descriptor
Sequence of the logical volume is recorded shall be identified by along_ad (4/14.14.2) recorded
in the Logical Volume Contents Use field (see 3/10.6.7) of the Logical Volume Descriptor
describing the logical volume in which the File Set Descriptors are recorded.”

Thisfield can be used to find the FileSet descriptor, and from the FileSet
descriptor the root directory can be found.

2.2.4.5 struct EntitylD Implementationl dentifier;

2.2.4.6 struct extent_ad IntegritySequenceExtent

A valueinthisfield isrequired for the Logical Volume Integrity Descriptor. For
Rewriteable or Overwriteable mediathis shall be set to a minimum of 8K bytes.

WARNING: For WORM media thisfield should be set to an extent of some
substantial length. Once the WORM volume on which the Logical Volume
Integrity Descriptor residesis full anew volume must be added to the volume set
since the Logical Volume Integrity Descriptor must reside on the same volume as
the prevailing Logical Volume Descriptor.

2.2.4.7 byte PartitionM apq[]

UDF 2.50

For the purpose of interchange partition maps shall be limited to Partition Map

26 April 15, 2003

2.2.5 Unallocated Space Descriptor

struct UnallocatedSpaceDesc { /* ECMA 167 3/10.8 */
struct tag DescriptorTag;
Uint32 V olumeDescriptorSequenceNumber;
Uint32 Numberof AllocationDescriptors;
extent_ad AllocationDescriptord[];
}

This descriptor shall be recorded, even if there is no free volume space. The first
32768 bytes of the Volume space shall not be used for the recording of ECMA
167 structures. This area shall not be referenced by the Unallocated Space
Descriptor or any other ECMA 167 descriptor.

2.2.6 Logical Volume Integrity Descriptor

struct LogicalVolumelntegrityDesc { /* ECMA 167 3/10.10 */
struct tag DescriptorTag,
Timestamp RecordingDateAndTime,
Uint32 Integrity Type,
struct extend_ad NextlntegrityExtent,
byte L ogicalVolumeContentsUse[32],
Uint32 NumberOfPartitions,
Uint32 LengthOfImplementationUse,
Uint32 FreeSpaceT abl€(],
Uint32 SizeTabl€],
byte | mplementationUse[]
}

The Logical Volume Integrity Descriptor is astructure that shall be written any
time the contents of the associated Logical Volume is modified. Through the
contents of the Logical Volume Integrity Descriptor an implementation can easily
answer the following useful questions:

1) Are the contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

3) What isthe total Logical VVolume free spacein logical blocks?
4) What is the total size of the Logical Volumein logica blocks?

5) What is the next available Uniquel D for use within the Logical
Volume?

UDF 2.50 27 April 15, 2003

6) Has some other implementation modified the contents of the logical
volume since the last time that the original implementation, which created
the logical volume, accessed it.

2.2.6.1 byte L ogicalVolumeContentsUse[32]

See section3.2.1for information on the contents of this field.

2.2.6.2 Uint32 FreeSpaceTablg[]
Since most operating systems require that an implementation provide the true free
space of aLogical Volume at mount time it isimportant that these values be
maintained for all non-virtual partitions. The optional value of #FFFFFFFF, which
indicates that the amount of available free space is not known, shall not be used
for non-virtual partitions. For virtual partitions the FreeSpaceTable value shall be
set to #FFFFFFFF.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical
Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTablq[]
Since most operating systems require that an implementation provide the total size
of aLogical Volume at mount time it isimportant that these values be maintained
for al non-virtual partitions. The optional value of #FFFFFFFF, which indicates
that the partition size is not known, shall not be used for non-virtual partitions.
For virtual partitions the SizeTable value shall be set to #FFFFFFFF.

2.2.6.4 byte ImplementationUse][]
The ImplementationUse area for the Logical Volume Integrity Descriptor shall be
structured as follows:

I mplementationUse format

RBP | Length Name Contents

0 32 Implementationl D EntitylD

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uint16

42 2 Minimum UDF Write Revision Uint16

44 2 Maximum UDF Write Revision Uint16

46 7? Implementation Use byte

NOTE: For a Sequential File System using aVAT, all field values above will be

Implementation ID - The implementation identifier EntitylD of the
implementation which last modified anything within the scope of this

UDF 2.50 28 April 15, 2003

UDF 2.50

EntitylD. The scope of this EntitylD isthe Logical Volume Descriptor,
and the contents of the associated Logical Volume. Thisfield allows an
implementation to identify which implementation last modified the
contents of a Logical Volume.

Number of Files - The current number of files in the Logical Volume,
including hard links. The count includes all FIDs in the directory hierarchy
for which the Directory bit, Parent bit and Deleted bit are al ZERO. FIDs
identifying a stream are not included in the count. This information is
needed by the Macintosh OS. All implementations shal maintain this
information.

Number of Directories - The current number of directories in the Logical
Volume, plus the root directory. The count includes the root directory and
al FIDs in the directory hierarchy for which the Directory bit is ONE and
the Parent bit and Deleted bit are both ZERO. FIDs identifying a stream
directory are not included in the count. This information is needed by the
Macintosh OS. All implementations shall maintain this information.

Minimum UDF Read Revision - Shall indicate the minimum recommended
revision of the UDF specification that an implementation is required to
support to successfully be able to read all potential structures on the
media. This number shall be stored in binary coded decimal format, for
example #0150 would indicate revision 1.50 of the UDF specification.

Minimum UDF Write Revision - Shall indicate the minimum revision of
the UDF specification that an implementation is required to support to
successfully be able to modify all structures on the media. This number
shall be stored in binary coded decimal format, for example #0150 would
indicate revision 1.50 of the UDF specification.

Maximum UDF Wkite Revision - Shall indicate the maximum revision of
the UDF specification that an implementation that has modified the media
has supported. An implementation shall update this field only if it has
modified the media and the level of the UDF specification it supports is
higher than the current value of this field. This number shall be stored in
binary coded decimal format, for example #0150 would indicate revision
1.50 of the UDF specification.

Implementation Use - Contains implementation specific information
unique to the implementation identified by the Implementation ID.

29 April 15, 2003

2.2.7 Implemention Use Volume Descriptor

struct ImpUseV olumeDescriptor { /* ECMA 167 3/10.4*/
struct tag DescriptorTag;
Uint32 V olumeDescriptorSequenceNumber;
struct EntitylD Implementationl dentifier;
byte I mplementationUse[460];
}

This section defines an UDF Implementation Use Volume Descriptor. This
descriptor shall be recorded on every Volume of aVolume Set. The Volume may
also contain additional Implementation Use Volume Descriptors that are
implementation specific. The intended purpose of this descriptor isto aid in the
identification of aVVolume within aVolume Set that belongs to a specific Logical
Volume.

NOTE: Animplementation may still record an additional Implementation Use
Volume Descriptor in its own format on the media. The UDF Implementation
Use Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 EntitylD Implementationldentifier

section 2.1.5:0n Entity Identifier.

2.2.7.2 bytes | mplementationUse[460]
The implementation use area shall contain the following structure:

struct LVInformation {
struct charspec LVIChar s,

dstring L ogicalVolumel dentifier[128],
dstring LVInfol[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

struct EntitylD Implementation| D,

bytes | mplementationUse[128];

}

2.2.7.2.1 charspecLVICharset
&~ Interpreted as specifying the character sets alowed in the
Logical Volumeldentifier and LVInfo fields.
& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.7.2.2 dstring LogicalVolumel dentifier[128]
Identifies the Logical Volume referenced by this descriptor.

UDF 2.50 30 April 15, 2003

2.2.7.2.3 dstring LVInfol[36], LVInfo2[36] and LVInfo3[36]
Thefields LVInfol, LVInfo2 and LVInfo3 should contain additional information
to aid in the identification of the media. For example the LVInfo fields could
contain information such as Owner Name, Organization Name, and Contact
Information.

2.2.7.2.4 struct Entityl D Implementationl D

Refer to section 2.1.5:0n Entity Identifier.

2.2.7.2.5 bytesImplementationUse[128]
This area may be used by the implementation to store any additional
implementation specific information.

UDF 2.50 31 April 15, 2003

2.2.8 Virtual Partition Map
Thisis an extension of ECMA 167 to expand its scope to include sequentially written
media (eg. CD-R). Thisextension isfor a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains alist of partitions that make up agiven volume.
Asthe virtual partition cannot be described in the same manner as a physical partition, a
Type 2 partition map defined below shall be used.

If aVirtual Partition Map is recorded, then the Logica Volume Descriptor shall contain
at least two partition maps. One partition map shall be recorded as a Type 1 partition

map. One partition map shall be recorded as a Type 2 partition map. The format of this
Type 2 partition map shall be as specified in the following table.

L ayout of Type 2 partition map for virtual partition

RBP | Length Name Contents
0 1 Partition Map Type uint8 =2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntitylD

36 2 Volume Sequence Number Uint16

38 2 Partition Number uintl6

40 24 Reserved #00 bytes

» Partition Type Identifier:

Flags=0
Identifier =*UDF Virtual Partition
|dentifierSuffix is recorded as defined in section 2,15

* Volume Sequence Number = volume upon which the VAT and Partition is recorded
» Partition Number = the partition number in the Type 1 partition map in the same logical

volume descriptor.

2.2.9 Sparable Partition Map
Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide

partition map defines the partition number, packet size (see section 1.3.2), and size and

locations of the sparing tables. Thistype 2 map isintended to replace the type 1 map
normally found on the media. There should not be atype 1 map recorded if a Sparable
Partition Map is recorded. The Sparable Partition Map identifies not only the partition
number and the volume sequence number, but aso identifies the packet length and the
gparing tables. A Sparable Partition Map shall not be recorded on disk/drive systems that
perform defect management.

UDF 2.50

32

April 15, 2003

L ayout of Type 2 partition map for sparable partition

RBP Length Name Contents
0 1 Partition Map Type Uint8 =2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 Volume Sequence Number Uint16
38 2 Partition Number Uintl6
40 2 Packet Length Uint16
42 1 Number of Sparing Tables (=N_ST) Uint8
43 1 Reserved #00 byte
44 4 Size of each sparing table Uint32
48 4* N_ST Locations of sparing tables Uint32
48+4* N ST | 16-4* N_ST | Pad #00 bytes

» Partition Type Identifier:
e Flags=0
e ldentifier =*UDF Sparable Partition
« IdentifierSuffix is recorded as defined in section 2,15

e Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition.

e Packet Length = the number of user data blocks per fixed packet. Thisvalueis specifiedin
the medium specific section of Appendix 6.

e Number of Sparing Tables = the number of redundant tables recorded. Thisshall beavauein
therange of 1to 4.

e Size of each sparing table = Length, in bytes, allocated for each sparing table.

» Locations of sparing tables = the start locations of each sparing table specified as amedia
block address. Implementations should align the start of each sparing table with the beginning
of apacket. Implementations should record at least two sparing tablesin physically distant
locations.

2.2.10 Metadata Partition M ap

This partition map shall be recorded for volumes which contain asingle partition having
an access type of 1 (read only) or 4 (overwritable). It shall not be recorded in all other
Cases.

See section 2.2.13 for further description of the metadata partition.

UDF 2.50 33 April 15, 2003

L ayout of Type 2 partition map for metadata partition

RBP Length Name Contents
0 1 Partition Map Type Uint8 =2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Type Identifier EntitylD
36 2 Volume Sequence Number Uint16
38 2 Partition Number Uintl6
40 4 Metadata File Location Uint32
44 4 Metadata Mirror File Location Uint32
48 4 Metadata Bitmap File L ocation Uint32
52 4 Allocation Unit Size (blocks) Uint32
56 2 Alignment Unit Size (blocks) Uint16
58 1 Flags Uint8
59 5 Reserved #00 bytes

UDF 2.50

Partition Type Identifier:

Flags=0

Identifier =* UDF Met adata Partition
IdentifierSuffix is recorded asin section 2.1.5.

Partition Number = the number of this partition. Shall identify a Partition Descriptor
associated with this partition. This shall match the partition number in the Type 1 map or Type
2 sparable map, one and only one of which shall also be recorded as appropriate to the media
type.

Metadata File Location = address of the block containing the File Entry for the metadatafile.
This address shall be interpreted as alogical block number within the physical or sparable
partition associated with this partition map (see above “Partition Number” field).

Metadata Mirror File Location = address of block containing the File Entry for the metadata
file mirror. This address shall be interpreted as alogical block number within the physical or
sparable partition associated with this partition map (see above “Partition Number” field).

Metadata Bitmap File Location = the address of of block containing the File Entry for the
metadata bitmap file. This address shall be interpreted as alogica block number within the
physical or sparable partition associated with this partition map (see above “Partition
Number” field).

Allocation Unit Size = the number of logical blocks per Allocation Unit for the metadata file
(and mirror file) associated with this partition map. This value shall be an integer multiple of
the larger of the following three values. (media ECC block size (divided by) logical block
size); Packet Length (if atype 2 sparable partition map is recorded); 32.

Alignment Unit Size (blocks) = all extents allocated to the Metadata File (or Mirror File) must
have a starting Lbn which is an integer multiple of this value. This value shall be an integer
multiple of the larger of the following: (media ECC block size (divided by) logical block
size); Packet Length (if atype 2 sparable partition map is recorded).

Flags:

e Bit0—"Duplicate Metadata Flag”: When set, indicates that the Metadata Mirror file has
its own unique alocation (i.e. it duplicates the datain the Metadata File). When clear
indicates that the Metadata Mirror File all ocation descriptors describe the same allocation
as the Metadata File allocation descriptors (i.e. the datais not duplicated, and the data
blocks are shared between both main and mirror files, but each File Entry and its
associated allocation descriptors are unique and distinct).

34 April 15, 2003

e Bits1-7: Reserved. Shall be set to zero on write, and ignored on read.

NOTE: The Metadata Partition shall have an entry in the LVID Size and Free space

tables (see2.2.6).

NOTE: The Metadata File Location, Metadata Mirror File Location and Metadata
Bitmap File Location Uint32 fields define File Entry locations. The number of blocks
allocated for each File Entry shall be one logical block.

2.2.11 Virtual Allocation Table

The Virtual Allocation Table (VAT) is used on sequentially written media (eg. CD-R) to
give the appearance of randomly writable mediato the system. The existence of this
partition isidentified in the partition maps. The VAT shall only be recorded on
sequentially written media (eg. CD-R).

The VAT isamap that tranglates Virtual Addressesto logical addresses. It shall be
recorded as afileidentified by aFile Entry ICB (VAT ICB) that allows great flexibility in
building the table. The VAT ICB isthe last sector recorded in any transaction. The VAT
itself may be recorded at any location.

The VAT shall beidentified by a File Entry ICB with afile type of 248. This ICB shall be
the last valid data sector recorded. Error recovery schemes can find the last valid VAT by
finding ICBs with file type 248.

Thisfile, when small, can be embedded in the ICB that describesit. If it islarger, it can
be recorded in a sector or sectors preceding the ICB. The sectors do not have to be
contiguous, which alows writing only new parts of the table if desired. This alows small
incremental updates, even on disks with many directories.

When the VAT issmall (asmall number of directories on the disk), the VAT is updated
by writing anew file ICB with the VAT embedded. When the VAT becomestoo large to
fitin the ICB, writing a single sector with the VAT and a second sector with the ICB is
required. Beyond this point, more than one sector isrequired for the VAT. However, as
multiple extents are supported, updating the VAT may consist of writing only the sector
or sectors that need updating and writing the ICB with pointersto all of the pieces of the
VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the
proper logical location. The indirection provided by this table provides the appearance of
direct overwrite capability. For example, the ICB describing the root directory could be
referenced as virtual sector 1. A virtual sector is contained in a partition identified by a
virtual partition map entry. Over the course of updating the disk, the root directory may
change. When it changes, a new sector describing the root directory iswritten, and its
Logical Block Addressisrecorded as the Logical Block Address corresponding to virtual
sector 1. Nothing that references virtual sector 1 needs to change, asit still points to the

UDF 2.50 35 April 15, 2003

most current virtual sector 1 that exists, even though it exists at anew Logical Block
Address.

The use of virtual addressing allows any desired structure to become effectively
rewritable. The structure is rewritable when every pointer that references it does so only
by its Virtual Address. When areplacement structure is written, the virtual reference does
not need to change. The proper entry in the VAT is changed to reflect the new Logical
Block Address of the corresponding Virtual Address and all virtual references then
indirectly point to the new structure. All structures that require updating, such as directory
ICBs, shall be referenced by aVirtual Address. As each structure is updated, its
corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entriesin afile. Each entry shall be
the offset, in sectors, into the physical partition in which the VAT islocated. The first
entry shall be for the virtual partition sector O, the second entry for virtual partition sector
1, etc. The Uint32 entries shall follow the VAT header. The entry for the previous VAT
ICB allows for viewing the file system as it appeared in an earlier state. If thisfield is
#FFFFFFFF, then no such ICB is specified.

Virtual Allocation Table structure

Offset Length Name Contents
0 2 Length of Header (=L_HD) Uint16
2 2 Length of Implementation Use (=L_1U) Uint16
4 128 Logical Volume Identifier Dstring
132 4 Previous VAT ICB location Uint32
136 4 Number of Files Uint32
140 4 Number of Directories Uint32
144 2 Minimum UDF Read Revision Uint16
146 2 Minimum UDF Write Revision Uint16
148 2 Maximum UDF Write Revision Uint16
150 2 Reserved #00 bytes
152 L U Implementation Use bytes
152+L IU |4 VAT entry O Uint32
156+L IU |4 VAT entry 1 Uint32
Information | 4 VAT entry n Uint32
Length - 4

Length of Header - Indicates the amount of data preceding the VAT entries. Thisvalue
shall be 152 + L_|U.

Length of Implementation Use - Shall specify the number of bytes in the Implementation

Usefield. If thisfield is non-zero, the value shall be at least 32 and be an integral
multiple of 4.

UDF 2.50 36 April 15, 2003

Logical Volume Identifier - Shall identify the logical volume. Thisfield shall be used by
implementations instead of the corresponding field in the Logical V olume Descriptor.
The value of thisfield should be the same asthe field in the LV D until changed by the
uSer.

Previous VAT ICB Location - Shall specify the logical block number of an earlier VAT
ICB in the partition identified by the partition map entry. If thisfield is #FFFFFFFF, no
such ICB is specified.

Maximum UDF Write Revision - Defined in2.2.6.4: The contents of thisfield shall be

used instead of the corresponding LVID field.

Implementation Use - If non-zero in length, shall begin with an EntitylD identifying the
usage of the remainder of the Implementation Use area.

VAT Entry - VAT entry n shall identify the logical block number of the virtual block n.
An entry of #FFFFFFFF indicates that the virtual sector is currently unused. The LBN
specified islocated in the partition identified by the partition map entry. The number of
entries in the table can be determined from the VAT file sizein the ICB:

Number of entries (N) = (Information Length - L_HD) / 4.

2.2.12 Sparing Table

Certain disk/drive systems do not perform defect management (eg. CD-RW). A Sparing
Table is used to provide an apparent defect-free space for these systems. Certain media
can only be written in groups of sectors (“packets’), further complicating relocation: a
whole packet must be relocated rather than only the sectors being written. To addressthis
issue a sparable partition isidentified in the partition map, which further identifies the
location of the sparing tables. The sparing table identifies relocated areas on the media.
Sparing tables are identified by a sparable partition map. Sparing tables shall not be
recorded on disk/drive systems that perform defect management.

UDF 2.50 37 April 15, 2003

Sparing Tables point to space allocated for sparing and contains alist of mappings of
defective sectors to their replacements. Separate copies of the sparing tables shall be
recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical spaceto physical space. Normally, thisis alinear mapping where
an offset and alength are specified. A sparable partition is based on this mapping, where
the offset and length of a partition within physical space is specified by a Partition

The sparing tabl e further specifies an exception list of logical to physical mappings. All
mappings are one packet in length. The packet size is specified in the sparable partition
map.

Available sparing areas may be anywhere on the media, either inside or outside of a
partition. If located inside a partition, sparable space shall be marked as allocated and
shall be included in the Non-Allocatable Space Stream. The mapped locations should be
filled in at format time; the original locations are assigned dynamically as errors occur.
Each sparing table shall be structured as shown below.

Sparing Table layout

BP | Length Name Contents
0 16 Descriptor Tag tag=0
16 32 Sparing | dentifier EntitylD
48 2 Reallocation Table Length (=RT_L) Uint16
50 2 Reserved #00 bytes
52 4 Sequence Number Uint32
56 8*RT_L Map Entry Map Entries

This structure may be larger than a single sector if necessary.

» Descriptor Tag
Contains a Tag ldentifier of 0, which indicates that the format of the Descriptor Tag is not
specified by ECMA 167. All other fields of the Descriptor Tag shall be valid, asif the Tag
I dentifier were one of the values defined by ECMA 167.
e Sparing ldentifier:
e Flags=0
« ldentifier =*UDF Sparing Table
* IdentifierSuffix is recorded as defined in2.1.5!
» Reallocation Table Length
Indicates the number of entriesin the Map Entry table.

* Sequence Number
Contains a number that shall be incremented each time the sparing table is updated.

* Map Entry
A map entry is described in the table below. Maps shall be sorted in ascending order by the
Original Location field.

UDF 2.50 38 April 15, 2003

Map Entry description

RBP | Length Name Contents
0 4 Original Location Uint32
4 4 Mapped Location Uint32

* Original Location
Logical Block Address of the packet to be spared. The address of a packet is the address of
the first user data block of a packet. If thisfield is #FFFFFFFF, then thisentry is available for
sparing. If thisfield is #FFFFFFFO, then the corresponding mapped location is marked as
defective and should not be used for mapping. Original Locations of #FFFFFFF1 through
#FFFFFFFE are reserved.

* Mapped Location
Physical Block Address of active data. Requeststo the original packet location are redirected
to the packet location identified here. All Mapped Location entries shall be valid, including
those entries for which the Original Location is #FFFFFFFO, #FFFFFFFF, or reserved. If the
mapped |ocation overlaps a partition, that partition shall have that space marked as allocated
and that space shall be part of the Non-Allocatable Space Stream.

2.2.13 Metadata Partition

The files and policies defined in this section facilitate rapid location of al metadatain the
volume, promote clustering of ICBs/ directory information, and optionally facilitate
duplication of al metadata. Thiswill, in most cases, greatly speed file system repair
operations by eliminating the need to perform an exhaustive media scan, or directory
traversal, solely for the purpose of locating ICBs. The clustering of metadata will also
significantly improve performance of metadata intensive implementation operations.
When the metadata duplication option is chosen, file system robustness to media damage
isincreased, at some cost to performance.

When a Type 2 Metadata Partition map is recorded, the Metadata File, Metadata Mirror
File and Metadata Bitmap File shall also be recorded and maintained.

The allocation descriptors of the Metadata Mirror File File Entry shall either:

» reference the same extents in the physical/sparable partition as referenced by the
allocation descriptors of the Metadata File - in this case the Duplicate Metadata
Flag in the Metadata Partition Map Flags field shall not be set.
OR
» reference different extents thus duplicating all metadata.- in this case the
Duplicate Metadata Flag in the Metadata Partition Map Flags field shall be set.

The File Entries for the Metadata, Metadata Mirror and Metadata Bitmap files shall not
be referenced by any structure other than the M etadata Partition Map and shall have alink
count of 0. These files, when present, shall be recorded in the physical/sparable partition
referenced by the metadata partition map.

UDF 2.50 39 April 15, 2003

(FSD, ICBs, Allocation Descriptors, and directory data) shall be recorded, with the sole
exception of the ICBs and data comprising the Metadata, M etadata Mirror, and Metadata
Bitmap files as described above.

File Entries describing directories or stream directories shall use either “immediate”
alocation (i.e. the datais embedded in the File Entry - see ECMA 4/14.6.8 flag bits 0-2)
or SHORT _ADs to describe the data space of the directory, since this dataresidesin the
metadata partition along with the File Entry itself.

File Entries describing any other type of file data (including streams) shall use either
“immediate” alocation, or LONG_ADs which shall reference the physical or sparable
partition referenced by the metadata partition, to describe the data space of thefile.

The Extent Location field of any allocation descriptor referencing data recorded in the
Metadata Partition shall be interpreted as a block offset into the Metadata File. For
example logical block 40 in the Metadata Partition corresponds to byte offset (40 *

logical block size) in the Metadata File, which in turn (through the Allocation Descriptors
for the Metadata File) corresponds to some logical block in the associated
physical/sparable partition.

Implementations shall support both the duplicate and shared allocation modes for the
Metadata Mirror File (see above and2.2.10; Metadata Partition Map, Flags field). The

File Entry for the Metadata Mirror shall be actively maintained along with the Metadata
File File Entry, but should be updated after the Metadata File File Entry.

If the Duplicate Metadata Flag is set in the Metadata Partition Map Flags field, the
Metadata Mirror File shall be maintained dynamically so that it containsidentical datato
the Metadata File at al times. In this case blocks in the metadata partition may be read
from the same offset in either the Metadata Mirror file or the Metadata File. Data should
be written first to the Metadata File and second to the Metadata Mirror File.

When the Duplicate Metadata Flag in the Metadata Partition Map Flagsfield is set,
implementations and repair utilities should consider the M etadata File content to be
primary over that of the Metadata Mirror File. For example, arepair utility could repair
the volume based on metadata read from the M etadata File (excepting unreadable
portions which would be read from the Mirror) and then replace the contents of the
Metadata Mirror file with that of the (now consistent) Metadata File.

Logical blocks allocated to the Metadata or Metadata Mirror Files shall be marked as
allocated in the partition unallocated space bitmap, therefore a mechanism to determine
available blocks within the metadata partition is needed. Thisis accomplished through the
Metadata Bitmap file.

UDF 2.50 40 April 15, 2003

LVD

" FSD (1,0)

Type 1 map (ref 0)

Type 2 map (ref 1)
Metadata Partition.

Duplicate MD Flag 1

METADATA FILE
FILE ENTRY (A)

METADATA MIRROR

FSD (D)
FILE ENTRY (C)

Allocation Descriptors

(0,16,64)
(0,256,32)

Allocation Descriptors Root. bir ICB (L1)

Sys. Stream Dir ICB (1,2)

(0,X+1,96)

MD BITMAP FILE
FILE ENTRY (B)

Allocation Descriptors

Extent addresses shown in form

Mgli\)/l":”e I'::IIEE (8’2) (immediate) (part ref, start Ibn)
MD E;irtrr%rap FE ((0"12 or... (part ref, start Ibn, length (blocks))
Partition
unallocated
space 0| | 0 | | 0 | 1 (unallocated) 0 | |
bitmap.
o 9 § x
zZ b4
3 8 z 8
Physical
Partition
(ref 0)
AB A
Mgtadataf (Metadata
Partition (re] 1) Mirror File)
(Metadata File)
o ™D 9 D
4
g § NOTE: Because the “Duplicate Metadata
Flag” is set in the metadata partition map,
Metadata | s the mirror file has it's own unique
Bitmap B allocation. If this flag was not set, the Mirror
File o|09| 1 (unallocated) File FE ADs would reference the same
blocks as the Metadata File ADs.
£ g
m o o

NOTE: the LBN values used in the diagram above are for illustrative purposes only and
are not fixed. The partition references used are fixed as a consequence of the Metadata
Partition implementation.

A more detailed description of these files and how they are used follows in section

UDF 2.50

41

April 15, 2003

2.2.13.1 Metadata File (and Metadata Mirror File)

These files shall have the values of 250 (main) and 251 (Mirror) recorded in the IcbhTag
File Type fields of their File Entries. The Uniquel D field of these File Entries shall have a
value of zero.

 Be SHORT_ADs (referencing space in the same physical/sparable partition in
which the ICB resides).

» Either be of type “allocated and recorded” or type “not allocated”.

* Have an extent length that is an integer multiple of the Allocation Unit Sze
specified in the Metadata Partition Map.

* Haveastarting logical block number which is an integer multiple of the
Alignment Unit Sze specified in the Metadata Partition Map.

The Information Length field of the File Entries for these files shall be equal to (number
of blocks described by the ADs for this stream * logical block size).

The Allocation Descriptors for thisfile shall describe only logical blocks which contain
one of the below datatypes. No user data or other metadata may be referenced.

e FSD

« ICB

» Directory or stream directory data (i.e. FI Ds)

* Anunused block marked free in the Metadata Bitmap File.

NOTE: In the case where the Duplicate Metadata Flag in the M etadata Partition Map is
set, the alocations for the Metadata File and Metadata Mirror File should be as far apart
(physically) as possible. Typically thisis achieved by maximizing the difference between
the start LBNs of the extents belonging to the file and its mirror. Likewise the file entries
for these two files should be recorded as far apart as possible. Some drive/media

“incremental formatting”, and implementations using such features should consider this
when locating the metadata files and data. In such cases it may be practically impossible
to position the files far apart without impacting the early gect time/ mediareadability.

The Access Time and Modification Time fields of the Metadata File and Mirror File File
Entries shall be set to legal values at format time but need not be updated by afile system.

The File Entries for the M etadata File and Metadata Mirror file shall have NULL
Stream_Directory |ICB and Extended_Attribute ICB fields.

UDF 2.50 42 April 15, 2003

2.2.13.2 Metadata Bitmap File

Thisfile shall have avalue of 252 recorded in the Icb Tag File Type field of its File Entry.
The Uniquel D field of this File Entry shall have avalue of zero.

Thisfile contains a Space Bitmap Descriptor describing the utilization of blocks allocated
to the Metadata File (i.e. thisis a bitmap describing allocated space for the Metadata
Partition). Bit zero of the bitmap corresponds to the first block in the aforementioned
file, bit one to the second, and so on. This also applies to the Metadata Mirror File since
contents of the two files are identical (regardless of the Duplicate Metadata Flag in the

M etadata Partition Map Flagsfield).

If abit in this bitmap is set (one) then the corresponding blocks within the Metadata File
and Metadata Mirror File are available for use by new metadata.

NOTE: When the Duplicate Metadata Flag in the Metadata Partition Map Flagsfield is
not set, these blocks are one and the same, since the Allocation Descriptors for the
Metadata Mirror file reference the same blocks as those of the Metadata File.

If abit in thisbitmap is clear (zero) then the corresponding blocks are not available for
use—i.e. they are either in use, or fall within an unallocated region of the Metadata File.

Other requirements for the Metadata Bitmap File:

* Thedescriptor tag fields Descriptor CRC and Descriptor CRCLength for this SBD
shall be set to zero.

» The Allocation Descriptors for the Metadata Bitmap File shall not include any
Allocation Descriptors of type “not allocated”.

* ThelInformation Length field of the File Entry for thisfile shall equal the size of
the SBD (NOTE: SBD size includes the bitmap portion).

* Thereshall be one bit in the bitmap for every block in the M etadata Partition.

* The Access Time and Modification Time fields of the Metadata Bitmap File Entry
shall be set to legal values at format time but need not be updated by afile system.

» The Metadata Bitmap File Entry shall have NULL SreamDirectorylcb (if
extended FE) and ExtendedAttributel CB fields.

* Thedescriptor TagLocation field of this SBD shall be set to the logical block
number of the first block allocated to the Metadata Bitmap File.

2.2.13.3 Procedurefor allocating blocksfor new metadata.

Search for a set (one) bit in the Metadata Bitmap file, and clear it. The corresponding
block within the Metadata Partition (M etadata and Metadata Mirror (if duplicate mode)
files) may then be used for the new data. If there are no set (one) bits then the Metadata

UDF 2.50 43 April 15, 2003

2.2.13.4 Procedurefor de-allocating metadata blocks.
Set (to one) the bit(s) in the Metadata Bitmap file corresponding to the block number(s)
of the data within the Metadata Partition that is being de-all ocated.

2.2.13.5 Recommended procedurefor extending the M etadata Partition
These changes should be written to the device before the new blocks are allocated for use
by metadata. It would be undesirable for such changesto sit in an implementation’s write
cache for so long that new metadata assigned to the blocks being described by the
changes was written to the mediafirst.

1.

UDF 2.50

Verify that there is enough space in the Metadata File and Metadata Mirror File
Allocation Descriptor chains for anew Allocation Descriptor. If not then allocate
anew Allocation Descriptor extent.

Verify that the Metadata Bitmap file allocation is large enough to extend the
bitmap to describe the additional blocks added to the Metadata File, and if not
then allocate block(s) for the Metadata Bitmap file.

Allocate a new extent of blocks (for the Metadata File) observing the size and

If the Duplicate Metadata Flag in the Metadata Partition Map Flagsfield is set,

allocate a second extent of blocks observing the size and alignment requirements
2.2.13.1} idedlly as far away as possible from the first allocation (for

the Metadata Mirror File).

Add anew Allocation Descriptor to the Metadata File, or modify existing

descriptors, to reference the first newly allocated extent. If the Duplicate

Metadata Flag in the Metadata Partition Map Flags field is not set, modify the

Metadata Mirror file ADs to reference the same extent.

If a second extent of blocks was alocated above, add to the Metadata Mirror File

anew Allocation Descriptor, or modify existing ADs, to reference this second

extent.

If the new extents were added at the end of the M etadata File then increase the FE

Information Length for the Metadata File, and Mirror, to include the new blocks.

If the Metadata Bitmap file was extended, increase its FE Information Length

field to include the bits describing the additional blocks allocated to the Metadata

files.

Set (set to one) the bits in the Metadata Bitmap file which correspond to the extent

just added to the Metadatafile, to indicate the blocks are available for use by new

metadata

44 April 15, 2003

2.2.13.6 Recommended procedure for reclaiming space from the M etadata
Partition

Blocks allocated to the Metadata File, and its mirror, shall only be returned to the volume
in one of the following two ways:

» Truncation of the Metadata File and its mirror.

* Marking the AD(s) for aregion of the Metadata file, and it's mirror, as sparse (not
allocated) and setting the corresponding bits in the Metadata Bitmap file to zero,
indicating these blocks are not available for use.

Any region to be removed shall:

» Currently contain no referenced metadata (i.e. all corresponding bitsin the
Metadata Bitmap file shall already be set (one)).
« Match the size/alignment restrictions laid down in section2.2.13.1:

In the truncation case (metadata partition being truncated):

Lo

Update the SBD in the Metadata Bitmap File to reduce the bitmap size.

2. Update the Metadata Bitmap File Entry Information Length to reflect the
decreased bitmap size.

3. Update the Metadata File, and mirror, file entry Information Length fieldsto
‘remove’ the region.

4. Mark the de-allocated blocks as available in the partition unallocated space

bitmap.

In the mark sparse case (region in middle of metadata partition being removed):

Lo

Clear the corresponding bitsin the Metadata Bitmap file to zero.

2. Generate sparse (not alocated) Allocation Descriptor(s) in the Metadata File (and
itsmirror) for the region being de-all ocated.

3. Mark the de-allocated blocks as available in the partition Unallocated Space

Bitmap.

2.2.14 Partition Descriptor

struct PartitionDescriptor { [* ECMA 167 3/10.5*/
struct tag DescriptorTag;
Uint32 V olumeDescriptorSequenceNumber;
Uint16 PartitionFlags;
Uint1l6 PartitionNumber;
struct EntitylD PartitionContents,
byte PartitionContentsUseg[128];
Uint32 AccessType,
Uint32 PartitionStartingL ocation;
Uint32 PartitionL ength;

UDF 2.50 45 April 15, 2003

struct EntitylD | mplementationl dentifier;
byte ImplementationUse[128];
byte Reserved[156];

}

2.2.14.1 Struct Entityl D PartitionContents

For more information on the proper handling of this field see the section on Entity
Identifier.

2.2.14.2 Uint32 AccessType

For some rewritable/overwritable media types there may be confusion between
partition access types 3 (rewritable) and 4 (overwritable).

Rewritable media are media that require some form of preprocessing before re-
writing data (for example legacy MO). Such media shall have a Freed Space
Bitmap or a Freed Space Table and shall use AccessType 3.

Overwritable media are mediathat do not require preprocessing before
overwriting data (for example: CD-RW, DVD-RW, DVD+RW, DVD-RAM).
Such media shall not have a Freed Space Bitmap or a Freed Space Table and shall
use AccessType 4.

2.2.14.3 Uint32 PartitionStartingL ocation

For a Sparable Partition, the value of thisfield shall be an integral multiple of the
Packet Length. The Packet Length is defined in the Sparable Partition Map.

For aphysical partition, the value of this field shall be an integral multiple of

(“ECC Block Size” (divided by) sector size) for the media (Seeil.3.2:for
definition of ECC Block Size).

2.2.14.4 Uint32 PartitionLength

For a Sparable Partition, the value of thisfield shall be an integral multiple of the
Packet Length. The Packet Length is defined in the Sparable Partition Map.

2.2.14.5 Struct EntitylD Implementationl dentifier

UDF 2.50

For more information on the proper handling of this field see the section on Entity
Identifier.

46 April 15, 2003

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { [* ECMA 167 4/7.2*/
Uint16 Tagldentifier;
Uint16 DescriptorVersion,
Uint8 TagChecksum;
byte Reserved,
uintl6 TagSerialNumber;
uint16 DescriptorCRC;
uUint16 Descriptor CRCL ength;
Uint32 TagL ocation;

}

2.3.1.1 Uint16 TagSerialNumber
¢~ Ignored. Intended for disaster recovery.

& Shall be set to the TagSerialNumber vaue for the Anchor Volume
Descriptor Pointers on this volume.

2.3.1.2 Uint16 Descriptor CRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise
noted. The value of thisfield shall be set to: (Size of the Descriptor) - (Length of
Descriptor Tag). When reading a descriptor the CRC should be validated.

NOTE: The Descriptor CRCLength field must not be used to determine the actua
length of the descriptor or the number of bytesto read. These lengths do not
match in all cases; there are exceptions in the standard where the Descriptor CRC
Length need not match the length of the descriptor.

2.3.1.3 Uint32 TagL ocation

For structures referenced via a virtual address (i.e. referenced through the VAT),
this value shall be the virtual address, not the physical or logical address.

UDF 2.50 47 April 15, 2003

2.3.2 File Set Descriptor

UDF 2.50

struct FileSetDescriptor { /* ECMA 167 4/14.1 */

}

Only one FileSet descriptor shall be recorded. On WORM media, multiple
FileSets may be recorded.

struct tag

struct timestamp

uintl6

Uintl6

Uint32

Uint32

Uint32

Uint32

struct charspec
dstring

struct charspec
dstring

dstring

dstring

struct long_ad

struct EntitylD
struct long_ad

struct long_ad

byte

DescriptorTag;
RecordingDateandTime;
Interchangel evel;

M aximuml nter changel evel;
Character SetList;
MaximumChar acter SetList;
FileSetNumber;
FileSetDescriptorNumber;

L ogicalVolumel dentifier Char acter Set;
LogicaVolumeldentifier[128];
FileSetChar acter Set;
FileSetldentifer[32];
CopyrightFileldentifier[32];
AbstractFileldentifier[32];
RootDirectorylCB;
Domainldentifier;
NextExtent;
SystemStreamDirectorylCB,;
Reserved[32];

The UDF provision for multiple File Setsis as follows:

Within aFileSet on WORM, if al files and directories have been recorded with
ICB strategy type 4, then the DomainlID of the corresponding FileSet Descriptor

* Multiple FileSets are only allowed on WORM media.

* Thedefault FileSet shall be the one with the highest FileSetNumber.
* Only the default FileSet may be flagged as writable. All other FileSets

* No writable FileSet shall reference any metadata structures which are
referenced (directly or indirectly) by any other FileSet. Writable
FileSets may, however, reference the actual file data extents.

shall be marked as Har dWriteProtected.

The intended purpose of multiple FileSets on WORM isto support the ability to
have multiple archive images on the media. For example one FileSet could
represent a backup of a certain set of information made at a specific point in time.
The next FileSet could represent another backup of the same set of information

made at alater point in time.

48

2.3.2.1 Uint16 Interchangel evel
¢~ Interpreted as specifying the current interchange level (as specified in
ECMA 167 4/15), of the contents of the associated file set and the
restrictions implied by the specified level.

& Shall be set to alevel of 3.

An implementation shall enforce the restrictions associated with the specified
current Interchange Level.

2.3.2.2 Uint16 Maximumlnterchangel evel
&~ Interpreted as specifying the maximum interchange level of the contents of
the associated file set. This value restricts to what the current Interchange
Level field may be set.

& Shall be set to level 3.
2.3.2.3 Uint32 Character SetL ist
¢~ Interpreted as specifying the character set(s) specified by any field, whose
contents are specified to be a charspec, of any descriptor specified in Part 4
of ECMA 167 and recorded in the file set described by this descriptor.

& Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.4 Uint32 MaximumChar acter SetList
&~ Interpreted as specifying the maximum supported character set in the
associated file set and the restrictions implied by the specified level.
& Shall be set to indicate support for CS0 only as defined in 2.1.2.
2.3.2.5 struct charspec L ogicalVolumel dentifier Char acter Set
&~ Interpreted as specifying the d-characters allowed in the Logical Volume
Identifier field.

& Shall be set to indicate support for CS0 as defined in 2.1.2.
2.3.2.6 struct charspec FileSetChar acter Set
&~ Interpreted as specifying the d-characters allowed in dstring fields defined
in Part 4 of ECMA 167 that are within the scope of the FileSetDescriptor.

& Shall be set to indicate support for CS0 as defined in 2.1.2.

UDF 2.50 49 April 15, 2003

2.3.2.7 struct EntitylD Domainldentifier
¢~ Interpreted as specifying a domain specifying rules on the use of, and
restrictions on, certain fields in the descriptors. If thisfield is NULL then
it isignored, otherwise the Entity Identifier rules are followed.

& Thisfield shall indicate that the scope of this File Set Descriptor conforms
to the domain defined in this document, therefore the
Implementationldentifier shall be set to:

"*QSTA UDF Compliant™

As described in the section on Entity Identifier the Identifier Suffix field of
this EntitylD shall contain the revision of this document for which the

the proper handling of this field see section 2.1.5:
NOTE: The IdentifierSuffix field of this EntitylID contains
SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor

struct PartitionHeaderDescriptor { [* ECMA 167 4/14.3*/
struct short_ad UnallocatedSpaceTable;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionlntegrityTable;
struct short_ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];

}

Asapoint of clarification the logical blocks represented as Unallocated are blocks
that are ready to be written without any preprocessing. In the case of Rewritable
media this would be a write without an erase pass. The logical blocks
represented as Freed are blocks that are not ready to be written, and require some
form of preprocessing. In the case of Rewritable mediathis would be awrite with

classification.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a
Logical Volume. Space Tables and Space Bitmaps shall not both be used at the
same time within aLogica Volume.

2.3.3.1 struct short_ad PartitionlntegrityTable
Shall be set to all zeros since PartitionlntegrityEntrys are not used.

UDF 2.50 50 April 15, 2003

234

File Identifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4*/
struct tag DescriptorTag;
uUint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 Lengthof Fileldentifier;
struct long_ad ICB,;
uint16 L engthOfl mplementationUse;
byte I mplementationUse{];
char Fileldentifier[];
byte Padding[];
}

The File Identifier Descriptor shall be restricted to the length of at most one
Logica Block.

NOTE: All UDF directories shall include a File Identifier Descriptor that
indicates the location of the parent directory. The File Identifier Descriptor
describing the parent directory shall be the first File Identifier Descriptor recorded
in the directory. The parent directory of the Root directory shall be Root, as stated
in ECMA 167 4/8.6

NOTE: On logica volumes where a Metadata Partition Map is recorded, all
directory and stream directory data shall be recorded in the Metadata Partition (see

2.3.4.1 Uintl6 FileVersonNumber

¢~ Thereshall be only one version of afile as specified below with the value
being set to 1.

& Shall be set to 1.

2.3.4.2 Uint8 FileChar acteristics

UDF 2.50

The deleted bit may be used to mark afile or directory as deleted instead of
removing the FID from the directory, which requires rewriting the directory from
that point to the end. If the space for the file or directory is deallocated, the
implementation shall set the ICB field to zero, as all fieldsin aFID must be valid
even if the deleted bit isset. See[4/14.4.3], note 21 and [4/14.4.5].

ECMA 167 4/8.6 requires that the File Identifiers (and File Version Numbers,
which shall always be 1) of all FIDs in adirectory shall be unique. While the
standard is silent on whether FIDs with the deleted bit set are subject to this
requirement, the intent is that they are not. FIDs with the deleted bit set are not
subject to the uniqueness requirement, as interpreted by UDF

51 April 15, 2003

In order to assist a UDF implementation that may have read the standard without
thisinterpretation, implementations shall follow these rules when a FID’ s deleted
bit is set:

If the compression ID of the File Identifier is 8, rewrite the compression ID to
254. If the compression ID of the File Identifier is 16, rewrite the compression ID
to 255. Leave the remaining bytes of the File Identifier unchanged

In thisway a utility wishing to undelete afile or directory can recover the original
name by reversing the rewrite of the compression ID.

NOTE: Implementations should re-use FIDs that have the deleted bit set to one
and ICBs set to zero in order to avoid growing the size of the directory
unnecessarily.

2.3.4.3 struct long_ad ICB

The Implementation Use bytes of thelong_ad in all File Identifier Descriptors
shall be used to store the UDF Unique ID for the file and directory namespace.

The Implementation Use bytes of along_ad hold an ADImpUse structure as
defined by 2.3.10.1. The four impUse bytes of that structure will be interpreted as
aUint32 holding the UDF Unique ID.

ADImpUse structure holding UDF Unique ID

RBP | Length Name Contents
0 2 Flags (see 2.3.10.1) Uint16
2 4 UDF Unique ID Uint32

Section 3.2.1:Logical Volume Header Descriptor describes how UDF Unique ID

field in Implementation Use bytes of the long_ad in the File Identifier Descriptor
and the Uniquel D field in the File Entry and Extended File Entry are set.

2.3.4.4 Uint16 Lengthofl mplementationUse

UDF 2.50

&~ Shall specify the length of the ImplementationUse field.

& Shall specify the length of the ImplementationUse field. This field may

used. Otherwise, thisfield shall contain at least 32 as required by .3.4.5!
When writing a File Identifier Descriptor to write-once media, to ensure that the
Descriptor Tag field of the next FID will never span a block boundary, if there are
less than 16 bytes remaining in the current block after the FID, the length of the
FID shall be increased (using the Implementation Use field) enough to prevent

52 April 15, 2003

this. Remember that in the latter case, the Implementation Use field shall be at
least 32 bytes.

2.3.4.5 byte I mplementationUse[]

¢~ If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of this field shall be interpreted as specifying the implementation
identifier EntitylD of the implementation which last modified the File
Identifier Descriptor.

& If the LengthoflmplementationUse field is non ZERO then the first 32
bytes of thisfield shall be set to the implementation identifier EntitylD of
the current implementation.

NOTE: For additional information on the proper handling of thisfield refer to
the section on Entity Identifier.

Thisfield allows an implementation to identify which implementation last created
and/or modified a specific File Identifier Descriptor.

2.3.4.6 char Fileldentifier|[]

2.35

UDF 2.50

Contains a File Identifier stored in the OSTA Compressed Unicode format, see

not set, then the Unicode representation of the File Identifier shall be uniquein
this directory. This requires not only byte-wise uniqueness as required by ECMA
4/8.6, but also uniqueness of the Unicode identifier resulting from uncompress of
the OSTA Compressed Unicode format.

ICB Tag
struct icbtag { [* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries,
uint16 StrategyType;
byte StrategyParameter[2];
Uintl6 MaximumNumberof Entries,
byte Reserved,
Uint8 FileType;
Lb_addr Parent| CBL ocation;
uint16 Flags,
}
53 April 15, 2003

2.3.5.1 Uint16 StrategyType

¢~ The content of this field specifies the ICB strategy type used. For the
purposes of read access an implementation shall support strategy types 4
and 4096.

& Shall be set to 4 or 4096, see NOTE .
NOTE: Strategy type 4096, defined in section6.6, is intended for use on WORM

media. Strategy type 4096 is allowed only for ICBs in a partition with Access
Type write-once recorded on non-sequential write once media.

2.3.5.2 Uint8 FileType

As a point to clarification a value of 5 shall be used for a standard byte
addressable file, not 0. The value of 248 shall be used for the VAT (refer to

2.2.11). The value of 249 shall be used to indicate a Real-Time file (see

for more details. File types 253 to 255 shall not be used.

2.35.2.1 FileType 249

Files with FileType 249 require special commands to access the data space of this
file. Toavoid possible damage, if an implementation does not support these
commands it shall not issue any command that would access or modify the data
space of thisfile. Thisincludes but is not limited to reading, writing and deleting
thefile.

2.3.5.3 Parentl CBL ocation

For strategy 4 this field shall not be used and contain all zero bytes. For strategy
type 4096 the use of thisfield is optional.

NOTE: In ECMA 167-4/14.6.7 it states, “If thisfield contains O, then no such
ICB is specified.” Thisisaflaw inthe ECMA standard in that an implementation
could store an ICB at logical block address 0. Therefore, if you decide to use this
field, do not store an ICB at logical block address 0.

2.3.5.4 Uint16 Flags

UDF 2.50

Bits 0-2: These hits specify the type of allocation descriptors used. Refer to

type of allocation descriptor to use.

54 April 15, 2003

UDF 2.50

Bit 3 (Sorted):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
directories may be unsorted.

1 Shall be set to ZERO.

Bit 4 (Non-relocatable):

&~ For OSTA UDF compliant media this bit shall indicate (ONE) if thefileis
non-relocatable. If ONE, an implementation shall set the bit to ZERO if a
modification will contravene the definition of this bit in ECMA
167-4/14.6.8.

& Should be set to ZERO unless required.

NOTE: Thisflagisnot alock on thefilein any way. It is used to indicate that an
implementation has arranged the allocation of the file to satisfy specific
application requirements. In these cases, any remapping of a written block (see
UDF sparable partitions) or defragmentation of the file might not be desired. If a
file with this flag set to ONE is copied, then the new copy of the file should have
this bit set to ZERO.

Bit 9 (Contiguous):

&~ For OSTA UDF compliant media this bit may indicate (ONE) that the file
is contiguous. An implementation may reset this bit to ZERO to indicate
that the file may be non-contiguous if the implementation can not assure
that the fileis contiguous.

& Should be set to ZERO.

Bit 11 (Transformed):

&~ For OSTA UDF compliant mediathis bit shall indicate (ZERO) that no
transformation has taken place.

1 Shall be set to ZERO.

The methods used for data compression and other forms of data transformation
might be addressed in afuture OSTA document.

Bit 12 (Multi-versions):
&~ For OSTA UDF compliant mediathis bit shall indicate (ZERO) that multi-
versioned files are not present.

1 Shall be set to ZERO.

55 April 15, 2003

2.3.6 FileEntry

struct FileEntry { [* ECMA 167 4/14.9*/
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 uid;
Uint32 Gid;
Uint32 Permissions;
Uintl6 FileLinkCount;
Uint8 RecordFor mat;
Uint8 RecordDisplayAttributes;
Uint32 RecordL ength;
Uint64 InformationL ength;
uint64 L ogicalBlocksRecor ded;

struct timestamp AccessTime;

struct timestamp ModificationTime;

struct timestamp AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributel CB;
struct EntitylD Implementationl dentifier;

Uint64 Uniquel D,

Uint32 Lengthof ExtendedAttributes,

Uint32 Lengthof AllocationDescriptors;

byte ExtendedAttributeq]];

byte AllocationDescriptord[];
}
NOTE: The total length of a FileEntry shall not exceed the size of one logical
block.

NOTE: If aMetadata Partition Map is recorded in avolume then al FileEntries,
Allocation Descriptor Extents and directory data shall be recorded in the Metadata
Partition —i.e. in logical blocks allocated to the Metadata and/or Metadata Mirror

2.3.6.1 Uint8 RecordFormat;
¢ For OSTA UDF compliant media a value of zero shall indicate that the
structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.

UDF 2.50 56 April 15, 2003

2.3.6.2 Uint8 RecordDisplayAttributes;
¢ For OSTA UDF compliant media a value of zero shall indicate that the
structure of the information recorded in the file is not specified by this
field.

& Shall be set to ZERO.

2.3.6.3 Uint32 RecordL ength;
&~ For OSTA UDF compliant media a value of zero shall indicate that the
structure of the information recorded in the file is not specified by this
field.

1 Shall be set to ZERO.

2.3.6.4 Uint64 InformationL ength
Only the last extent of the file body may have an extent length that is not a
multiple of the block size, see ECMA 167 4/12.1 and 4/14.14.1.1.

2.3.6.5 Uint64 L ogicalBlocksRecor ded
For files and directories with embedded data the value of thisfield shall be ZERO.

2.3.6.6 struct EntitylD Implementationl dentifier;
Refer to the section on Entity Identifier.

2.3.6.7 Uint64 UniquelD
For the root directory of afile set this value shall be set to ZERO.

Section 3.2.1:Logica Volume Header Descriptor describes how the UDF Unique
ID field in the Implementation Use bytes of the long_ad in the File Identifier
Descriptor and the UniquelD field in the File Entry and Extended File Entry are

Set.

2.3.6.8 FileLinkCount
Hard links to a directory are not allowed. A directory File Entry shall be identified
by:
» for non-root directories: exactly one FID defining the directory name
» zero or more parent FIDs if appropriate. One parent FID in each immediate
child directory, if any.

UDF 2.50 57 April 15, 2003

2.3.7 Unallocated Space Entry

struct UnallocatedSpaceEntry { [* ECMA 167 4/14.11 */
struct tag DescriptorTag;
struct icbtag ICBTag;
Uint32 Lengthof AllocationDescriptors;
byte AllocationDescriptord];
}
NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical
Block.

2.3.7.1 byte AllocationDescriptorq]
Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors specify
an extent type (ECMA 167 4/14.14.1.1). For the allocation descriptors specified
for the UnallocatedSpaceEntry the type shall be set to a value of 1 to indicate
extent allocated but not recorded, or shall be set to a value of 3 to indicate the
extent is the next extent of allocation descriptors. This next extent of allocation
descriptors shall be limited to the length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order.
No overlapping AllocationDescriptors shall exist in the table. For example,
ad.location = 2, ad.length = 2048 (logical block size = 1024) then
nextad.location = 3is not allowed. Adjacent AllocationDescriptors shall not be
contiguous. For example ad.location = 2, ad.length = 1024 (logical block size =
1024), nextad.location = 3 is not allowed and would instead be asingle
AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where
adjacent AllocationDescriptors may be contiguous is when the ad.length of one of
the adjacent AllocationDescriptorsis equal to the maximum
AllocationDescriptors length.

UDF 2.50 58 April 15, 2003

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap { [* ECMA 167 4/14.12 */

struct Tag Descriptor Tag;
Uint32 NumberOfBits;
Uint32 NumberOfBytes;
byte Bitmap[];

}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the DescriptorCRC field of the Descriptor
Tag for the SpaceBitmap descriptor is optional. If the CRC is not maintained then
both the Descriptor CRC and Descriptor CRCLength fields shall be ZERO.

2.3.9 Partition Integrity Entry

(See ECMA 167 4/14.13). With the functionality of the Logical Volume Integrity

descriptor shall not be recorded.

2.3.10 Allocation Descriptors
When constructing the data area of afile an implementation has several types of
allocation descriptors from which to choose. The following guidelines shall be
followed in choosing the proper allocation descriptor to be used:

Short Allocation Descriptor - For aLogical Volume that resideson asingle
Volume with no intent to expand the Logical Volume beyond the single volume
Short Allocation Descriptors should be used. For example aLogical Volume
created for a standalone drive.

NOTE: Refer to section 2.2.2.2 on the Maximuml nterchangelLevel.

Long Allocation Descriptor - For aLogical Volume that resides on asingle
Logical Volume with intent to later expand the Logical Volume beyond the single
volume, or aLogical Volume that resides on multiple Volumes Long Allocation
Descriptors should be used. For example aLogical Volume created for a
jukebox.

NOTE: Thereisabenefit of using Long Allocation Descriptors even on asingle
volume, which is the support of tracking erased extents on rewritable media. See
section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of
the ExtentLength field is 0, then the 2 most significant bits shall be 0.

UDF 2.50 59 April 15, 2003

NOTE: For volumesin which aVirtual Partition Map is recorded:

» Allocation Descriptors identifying virtual space shall have an extent length
of one block size or less. Allocation descriptors identifying file data,
directories, or stream data shall identify physical space. ICBsrecorded in
virtual space shall uselong_ad allocation descriptors to identify physical
gpace. The use of short_ad allocation descriptors would identify file data
invirtual spaceif the ICB werein virtual space.

» Descriptors recorded in virtual space shall have the virtual logical block
number recorded in the Tag Location field.

NOTE: For volumes in which a Metadata Partition Map is recorded:

» Allocation descriptorsidentifying directory or stream directory data shall
identify metadata space.

» Allocation descriptorsidentifying file or stream data shall identify physical
Space.

» Allocation descriptors recorded in metadata space shall use SHORT_ADs
when identifying extents also in metadata space.

» Allocation descriptors having an extent type of 3 (continuation) shall
identify an extent in the same partition in which the type 3 descriptor itself
IS recorded.

» Descriptorsrecorded in metadata space shall have their metadata space
logical block number recorded in their descriptor tag TagLocation field, if

applicable.
2.3.10.1 Long Allocation Descriptor
struct long_ad { [* ECMA 167 4/14.14.2*/
Uint32 ExtentLength;
Lb_addr ExtentLocation;
byte I mplementationUse[6];
}

To alow use of the ImplementationUse field by UDF and aso by
implementations the following structure shall be recorded within the 6-byte
Implementation Use field.

struct ADI npUse
{

Ui nt 16 fl ags;
byte inmpUse[4];
}
/*
*; ADI mpUse Fl ags (NOTE: bits 1-15 reserved for future use by UDF)
#def i ne EXTENTEr ased (0x01)

UDF 2.50 60 April 15, 2003

In the interests of efficiency on Rewritable mediathat benefits from
preprocessing, the EXTENTErased flag shall be set to ONE to indicate an erased
extent. This applies only to extents of type not recorded but allocated.

2.3.11 Allocation Extent Descriptor

struct AllocationExtentDescriptor { [* ECMA 167 4/14.5*/
struct tag Descriptor Tag;
Uint32 PreviousAllocationExtentL ocation;
Uint32 LengthOfAllocationDescriptors;

}

The Allocation Extent Descriptor does not contain the Allocation Descriptors
itself. UDF will interpret ECMA 167, 4/14.5 in such a way that the Allocation
Descriptors will start on the first byte following the
LengthOfAllocationDescriptors field of the Allocation Extent Descriptor. The
Allocation Extent Descriptor together with its Allocation Descriptors constitutes
an extent of alocation descriptors. The length of an extent of allocation
descriptors shall not exceed the logical block size. Unused bytes following the
Allocation Descriptors till the end of the logical block shall have a value of #00.

2.3.11.1 Struct tag Descriptor Tag
The DescriptorCRCLength of the DescriptorTag should include the Allocation
Descriptors following the Allocation Extent Descriptor. The
DescriptorCRCLength shall be either 8 or 8 + LengthOfAllocationDescriptors.

2.3.11.2 Uint32 PreviousAllocationExtentL ocation
&~ The previous alocation extent location shall not be used.

= Shall be set to 0.

UDF 2.50 61 April 15, 2003

2.3.12 Pathname
2.3.12.1 Path Component
struct PathComponent { /* ECMA 167 4/14.16.1 */

Uint8 ComponentType;

Uint8 Lengthof Componentldentifier;
Uint16 ComponentFileVersionNumber;
char Componentldentifier|];

}

2.3.12.1.1 Uint16 ComponentFileVersionNumber
¢~ Thereshall be only one version of afile as specified below with the value
being set to ZERO.

& Shall be set to ZERO.

2.4 Part 5- Record Structure

Record structure files shall not be created. If they are encountered on the media and they
are not supported by the implementation they shall be treated as an uninterpreted stream
of bytes.

UDF 2.50 62 April 15, 2003

3. System Dependent Requirements
3.1 Part 1- General

3.1.1 Timestamp

struct timestamp { [* ECMA 167 1/7.3*/
Uint16 TypeAndTimezone;
Int16 Y ear;
Uint8 Month;
Uint8 Day;
Uint8 Hour,;
Uint8 Minute;
Uint8 Second;
Uint8 Centiseconds,
Uint8 HundredsofMicroseconds;
Uint8 Microseconds;
}
3.1.1.1 Uint8 Centiseconds;
&~ For operating systems that do not support the concept of
centiseconds the implementation shall ignore thisfield.
& For operating systems that do not support the concept of
centiseconds the implementation shall set thisfield to ZERO.
3.1.1.2 Uint8 HundredsofMicroseconds;
&~ For operating systems that do not support the concept of hundreds
of Microseconds the implementation shall ignore thisfield.
& For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set thisfield to
ZERO.
3.1.1.3 Uint8 Microseconds;
&~ For operating systems that do not support the concept of
microseconds the implementation shall ignore this field.
& For operating systems that do not support the concept of
microseconds the implementation shall set thisfield to ZERO.
UDF 2.50

63 April 15, 2003

3.2 Part 3-Volume Structure

321

L ogical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { /* ECMA 167 4/14.15*/
Uint64 Uniquel D,
bytes reserved|24]

}

This structureisinthe LVID Logical Volume Contents Use field.

3.2.1.1 Uint64 Uniquel D

UDF 2.50

Thisfield contains the Next Uniquel D value to be used for the next new objectsin

isinitialized to 16 because the value O is reserved for the root directory and
system stream directory objects and the values 1-15 are reserved for usein
Macintosh implementations. The Next Uniquel D value monotonically increases
with each assignment of anew UDF UniquelD value for a newly created object as
described below. Whenever the lower 32-hits of the Next Uniquel D value reach
#FFFFFFFF, the next increment is performed by incrementing the upper 32-bits
by 1, as would be expected for a 64-bit value, but the lower 32-bits “wrap” to 16
(theinitialization value). After such a“wrap”, the uniqueness of a 32-bits FID
UDF Uniquel D value can no longer be guaranteed. Therefore the UDF UniquelD
Mapping Data Stream shall be removed altogether if the value of Next UniquelD
is higher than #FFFFFFFF.

Uniquel D is used whenever anew file or directory is created, or another nameis
linked to an existing file or directory. During a rename or move operation, the FID
Uniquel D value of an object shall not be changed and the valuesin the
corresponding UDF Unique ID Mapping Entry shall remain consistent, see

object is moved to a different directory. When a FID is deleted, the mapping entry
corresponding to the now unused UDF Unique ID shall not be re-used but be
deleted or marked invalid. The File Identifier Descriptors and File
Entries/Extended File Entries used for a stream directory and named streams
associated with afile or directory do not use UniquelD; rather, the unique ID
fields in these structures take their value from the Uniquel D of the File
Entry/Extended File Entry of the file/directory they are associated with. The same
counts for File Entries/Extended File Entries used to define an Extended
Attributes Space. A parent FID takesits Unique ID value from the 32 lower bits
of the File Entry/Extended File Entry that isidentified by the parent FID.

FIDs and File Entries of the System Stream Directory and of streams associated
with the System Stream Directory shall use a Uniquel D value of zero.

When afile or directory is created, this UniquelD is assigned to the UniquelD

field of the File Entry/Extended File Entry, the lower 32-bits of UniquelD are
assigned to UDFUniquel D in the Implementation Use bytes of the ICB field in the

64 April 15, 2003

UDF 2.50

File Identifier Descriptor (see2.3.4.3), and UniquelD is incremented by the policy
described above.

When anameislinked to an existing file or directory, the lower 32-bits of
NextUniquel D are assigned to UDFUniquel D in the Implementation Use bytes of

incremented by the policy described above.

The lower 32-bits shall be the same in the File Entry/Extended File Entry and its
first File Identifier Descriptor, but they shall differ in subsequent FIDs.

All UDF implementations shall maintain the UDFUniquelD in the FID and
Uniquel D in the FE/EFE as described in this section. The LVHD in aclosed
Logica Volume Integrity Descriptor shall have avalid UniquelD.

For file systemsusing aVAT, the function of the LVHD Uniquel D field in the
LVID istaken over by the VAT ICB File Entry UniquelD field with the addition
that the first Uniquel D value to be used for newly created objects will bethe VAT
ICB Uniquel D value incremented once according to the incrementing policy
described for Next Uniquel D above in this section. In this way, no other object
will have the same Uniquel D value asthe VAT File Entry.

65 April 15, 2003

3.3 Part 4 - File System
3.3.1 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4*/
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics;
Uint8 Lengthof Fileldentifier;
struct long_ad ICB;
uUint16 LengthofmplementationUse;
byte ImplementationUse[];
char Fileldentifier[];
byte Padding[];
}

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under various
operating systems.

3.3.1.1.1 MSDOS, 052, Windows 95, Windows NT, Macintosh
¢~ If Bit Oisset to ONE, thefile shall be considered a"hidden" file.
If Bit 1 is set to ONE, thefile shall be considered a"directory.”
If Bit 2 is set to ONE, thefile shall be considered "deleted.”
If Bit 3isset to ONE, the ICB field within the associated Filel dentifier
structure shall be considered as identifying the "parent” directory of the
directory that this descriptor isrecorded in

& If thefileis designated as a"hidden" file, Bit O shall be set to ONE.
If thefileis designated as a "directory,” Bit 1 shall be set to ONE.
If thefileis designated as "deleted,” Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX and OS/400
Under UNIX and OS/400 these bits shall be processed the same as
specified in 3.3.1.1.1., except for hidden files which will be processed as
normal non-hidden files.

UDF 2.50 66 April 15, 2003

3.3.2 ICB Tag
struct icbtag {

[* ECMA 167 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries,
Uintl6 Strategy Type;

byte StrategyParameter[2];

Uintl6 MaximumNumberof Entries,

byte Reserved,

Uint8 FileType;

Lb_addr ParentlCBLocation;

uint16 Flags,

3.3.2.1 Uint16 Flags

3.3.2.1.1 MSDOS, 052, Windows 95, Windows NT
Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

& In the

interests of maintaining security under environments which do

support these hits; bits 6 and 7 shall be set to ZERO if any one of the

followi

Bit 8 (Sticky):

ng conditions are true :
A fileis created.
The attributes/permissions associated with afile, are modified .

A file is written to (the contents of the data associated with afile
aremodified).

An Extended Attribute associated with thefile is modified.

A stream associated with afile is modified.

& lgnored.

& Shall be set to ZERO.

Bit 10 (System):
¢~ Mapped to the MS-DOS/ OS2 system hit.

& Mapped from the MS-DOS/ OS/2 system bhit.

UDF 2.50

67 April 15, 2003

3.3.2.1.2 Macintosh

Bits6 & 7 (Setuid & Setgid):

&~ lgnored.

& In the interests of maintaining security under environments, which do
support these hits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true:

« Afileiscreated.
+ The attributes/permissions associated with afile, are modified.

« A fileis written to (the contents of the data associated with a file
are modified).

« An Extended Attribute associated with the file is modified.
« A stream associated with afileis modified.

Bit 8 (Sticky):
&~ lgnored.

1 Shall be set to ZERO.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO.
3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

3.3.2.1.4 OS/400
Bits6 & 7 (Setuid & Setgid):
&~ lgnored.

UDF 2.50 68 April 15, 2003

UDF 2.50

& In the interests of maintaining security under environments, which do
support these hits; bits 6 and 7 shall be set to ZERO if any one of the
following conditions are true:

Bit 8 (Sticky):

A fileiscreated.
The attributes/permissions associated with afile, are modified.

A file is written to (the contents of the data associated with a file
are modified).

An Extended Attribute associated with the file is modified.

A stream associated with afileis modified.

&~ lgnored.

1 Shall be set to ZERO.

Bit 10 (System):
&~ lgnored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

69 April 15, 2003

3.33

File Entry
struct FileEntry {
struct tag
struct icbtag
Uint32
Uint32
Uint32
Uintl6
Uint8
uint8
Uint32
uint64
uint64
struct timestamp
struct timestamp
struct timestamp
Uint32
struct long_ad
struct EntitylD
uint64
Uint32
Uint32
byte
byte
}

[* ECMA 167 4/14.9*/
DescriptorTag;

ICBTag;

vid;

Gid;

Permissions,
FileLinkCount;
RecordFormat;
RecordDisplayAttributes;
RecordLength;
InformationLength;
Logica BlocksRecorded;
AccessTime;
ModificationTime;
AttributeTime;
Checkpoint;
ExtendedAttributel CB,;
Implementationldentifier;
Uniquel D,

Lengthof ExtendedAttributes,
Lengthof AllocationDescriptors;

ExtendedAttributed[];
AllocationDescriptord[];

NOTE: The total length of a FileEntry shall not exceed the size of one logical

block.

3.3.3.1 Uint32 Uid

¢~ For operating systems that do not support the concept of auser identifier
the implementation shall ignore thisfield. For operating systems that do
support thisfield avalue of 2% - 1 shall indicate aninvalid UID, otherwise
the field contains avalid user identifier.

& For operating systems that do not support the concept of a user identifier
the implementation shall set thisfield to 2% - 1 to indicate an invalid UID,
unless otherwise specified by the user.

3.3.3.2 Uint32 Gid

&~ For operating systems that do not support the concept of a group identifier
the implementation shall ignore this field. For operating systems that do
support thisfield avalue of 2% - 1 shall indicate an invalid GID, otherwise
the field contains avalid group identifier.

UDF 2.50

70

April 15, 2003

3.3.3.3 Uint32 Permissions

UDF 2.50

& For operating systems that do not support the concept of a group identifier
the implementation shall set thisfield to 22 - 1 to indicate an invalid GID,

unless otherwise specified by the user.

* Defin
Bit

*

*

* Exec
* Wit
* Read
* ChAt
* Dele

#def i ne
#defi ne
#def i ne
#defi ne
#def i ne

#def i ne
#defi ne
#def i ne
#defi ne
#def i ne

#def i ne
#defi ne
#def i ne
#defi ne
#def i ne

itions: */
for

ute My
e May

tr My
te My

a File
execute file
change file contents
May examine file contents
change file attributes My
delete file

OTHER_Execut e 0x00000001

OTHER Wite
OTHER_Read
OTHER_ChAttr

OTHER Del et e
CGROUP_Execut e

GROUP_Wite
GROUP_Read
GROUP_ChAt t r

GROUP_Del et e
OMNER_Execut e

OMER Wite
OMER_Read
OMER _ChAt t r

OMER_Del et e

0x00000002
0x00000004
0x00000008
0x00000010

0x00000020
0x00000040
0x00000080
0x00000100
0x00000200

0x00000400
0x00000800
0x00001000
0x00002000
0x00004000

a Directory

search directory

*/

____________________________ */

create and delete files */
list files in directory */

change dir attributes
delete directory

*/

The concept of permissions that deals with security is not completely portable
between operating systems. This document attempts to maintain consistency
among implementations in processing the permission bits by addressing the

following basic issues:

1. How should an implementation handle Owner, Group and Other
permissions when the operating system has no concept of User and

3.

Group 1ds?
How should an implementation process permission bits when

encountered, specifically permission bits that do not directly map to an
operating system supported permission bit?

What default values should be used for permission bits that do not

directly map to an operating system supported permission bit when
creating anew file?

Owner, Group and Other
In general, for operating systems that do not support User and Group Ids the
following algorithm should be used when processing permission bits:

When reading a specific permission, the logical OR of all three (owner,
group, other) permissions should be the value checked. For example afile

71

April 15, 2003

would be considered writable if the logical OR of OWNER_Write,
GROUP_Write and OTHER_Write was equal to one.

When setting a specific permission the implementation should set all three
(owner, group, other) sets of permission bits. For example to mark afile
as writable the OWNER_Write, GROUP_Write and OTHER_Write
should all be set to one.

Default Permission Values

For the operating systems covered by this document the following table describes
what default values should be used for permission bits that do not directly map to
an operating system supported permission bit when creating a new file.

Permissio | File/Director Description DOS 0S/2 | Win | Win Mac [UNIX &
n y 95 NT OS 0S/400
Read file Thefile may be read 1 1 1 1 1 U
Read directory The directory may be read, only if the 1 1 1 1 1 U
directory is also marked as Execute.
Write file Thefile' s contents may be modified U U U U U U
Write directory Files or subdirectories may be renamed, U U U U U U

added, or deleted, only if the directory isaso
marked as Execute.

Execute file The file may be executed. 0 0 0 0 0 U
Execute directory The directory may be searched for a specific 1 1 1 1 1 U
file or subdirectory.
Attribute [file Thefile's permissions may be changed. 1 1 1 1 1 Note 1
Attribute | directory The directory’ s permissions may be changed. 1 1 1 1 1 Note 1
Delete file Thefile may be deleted. Note2 | Note2 [Note | Note2 | Note2 | Note2
2
Delete directory The directory may be deleted. Note2 | Note2 [Note | Note2 | Note2 | Note2

U - User Specified, 1- Set, 0 - Clear

NOTE 1: Under UNIX only the owner of afile/directory may changeits
attributes. Under OS/400 if afile or directory is marked as writable (Write
permission set) then the Attribute permission bit should be set.

NOTE 2: The Delete permission bit should be set based upon the status of the
Write permission bit. Under DOS, OS/2 and Macintosh, if afile or directory is
marked as writable (Write permission set) then the fileis considered deletable and
the Delete permission bit should be set. If afileisread only then the Delete
permission bit should not be set. This appliesto file create as well as changing
attributes of afile.

Processing Permissions

Implementation shall process the permission bits according to the following table
that describes how to process the permission bits under the operating systems
covered by this document. The table addresses the issues associated with
permission bits that do not directly map to an operating system supported
permission bit.

UDF 2.50 72 April 15, 2003

Permission | File/Directory Description DOS | OS2 Win | Win | Mac | UNIX | OS/400
95 NT (O

Read file The file may be read E E E E E E E

Read directory The directory may be read E E E E [E E

Write file Thefil€' s contents may be modified E E E E E E E

Write directory Files or subdirectories may be created, E E E E E E E
deleted or renamed

Execute file The file may be executed. [| | | [E |

Execute directory The directory may be searched for a E E
specific file or subdirectory.

Attribute file Thefile's permissions may be E E E E E | |
changed.

Attribute directory The directory’s permissions may be E E E E E | |
changed.

Delete file The file may be deleted. E E E E E | |

Delete directory The directory may be deleted. E E E E E | |

E - Enforce, | - Ignore

The Execute bit for adirectory, sometimes referred to as the search bit, has special
meaning. This bit enables a directory to be searched, but not have its contents
listed. For example assume a directory called PRIVATE exists which only has the
Execute permission and does not have the Read permission bit set. The contents
of the directory PRIVATE can not belisted. Assume thereisafile within the
PRIVATE directory caled README. The user can get access to the README
file since the PRIVATE directory is searchable.

To be ableto list the contents of a directory both the Read and Execute permission
bits must be set for the directory. To be able to create, delete and rename afile or
subdirectory both the Write and Execute permission bits must be set for the
directory. To get a better understanding of the Execute bit for a directory reference
any UNIX book that coversfile and directory permissions. The rules defined by
the Execute bit for a directory shall be enforced by all implementations. The
exception to this rule applies to Macintosh implementations. A Macintosh
implementation may ignore the status of the Read bit in determining the
accessibility of a directory

NOTE: To be able to delete afile or subdirectory the Delete permission bit for
the file or subdirectory must be set, and both the Write and Execute permission
bits must be set for the directory it occupies.

3.3.3.4 Uint64 Uniquel D

UDF 2.50

Section B.2.1describes how the value for thisfield is set. For file systems using a

VAT, the function of the LVHD UniquelD field in the LVID istaken over by the

VAT File Entry UniquelD field, see3.2.1.1:

NOTE: For UDF 2.00 and higher, the Unique ID value used in the UDF Unique
ID Mapping Datais taken from the File Identifier Descriptor rather than from the
File Entry.

73 April 15, 2003

3.3.35 byte ExtendedAttributeq]

3.34

Certain extended attributes should be recorded in thisfield of the FileEntry for
performance reasons. Other extended attributes should be recorded in an ICB
pointed to by the field ExtendedAttributel CB. In the section on Extended
Attributes it will be specified which extended attributes should be recorded in this
field.

Extended Attributes
In order to handle some of the longer Extended Attributes (EAS) that may vary in
length, the following rules apply to the EA space.

1. All EAswith an attribute length greater than or equal to alogical block shall
be block aligned by starting and ending on alogical block boundary. The one
and only exception to thisrule isthe start of the first ECMA 167 EA.

2. Smaller EAs shall be constrained to an attribute length that is a multiple of 4
bytes.

3. Each Extended Attributes Space shall appear as a single contiguous logical
space constructed as follows:

ECMA 167 EAs

Non block aligned Implementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

NOTE: There may exist 2 Extended Attributes Spaces per file, one embeded in
the File Entry or Extended File Entry and the other as a separate space referenced
by the Extended Attribute ICB address in the File Entry or Extended File Entry.
Each Extended Attributes Space, if present, must have its own Extended Attribute
Header Descriptor (see the next section).

3.3.4.1 Extended Attribute Header Descriptor

UDF 2.50

struct ExtendedAttributeHeaderDescriptor { [* ECMA 167 4/14.10.1 */

struct tag DescriptorTag;
Uint32 I mplementationAttributesL ocation;
Uint32 ApplicationAttributesL ocation;

&~ A vauein one of thelocation fields highlighted above equal to or
greater than the length of the EA space shall be interpreted as an indication
that the corresponding attribute does not exist.

&= If an attribute associated with one of the location fields

highlighted above does not exist, then the value of the corresponding
location field shall be set to #FFFFFFFF.

74 April 15, 2003

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { /* ECMA 167 4/14.10.4 */

Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];

Uint32 Attributel ength;
Uint16 Ownerldentification;
Uint16 Groupldentification;
Uint16 Permission;

}

This structure shall not be recorded.

3.3.4.3 FileTimes Extended Attribute

struct FileTimesExtendedAttribute { [* ECMA 167 4/14.10.5*/
Uint32 AttributeType;
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 Attributel ength;
Uint32 Datalength;
Uint32 FileTimeExistence;
byte FileTimes;
}

3.34.3.1 byte FileTimes
s If thisfield contains afile creation time it shall be interpreted as
the creation time of the associated file. If the main File Entry isan
Extended File Entry, the file creation time in this structure shall be
ignored and the file creation time from the main File Entry shall be
used.

& If the main File Entry is an Extended File Entry, this structure shall
not be recorded with afile creation time.

If the main File Entry is not an Extended File Entry and the File Times
Extended Attribute does not exist or does not contain the file creation time
then an implementation shall use the Modification Time field of the File
Entry to represent the file creation time.

UDF 2.50 75 April 15, 2003

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute{ /* ECMA 167 4/14.10.7 */

}

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 Attributel ength;

Uint32 ImplementationUselength; /* (=IU_L) */
Uint32 M ajor Devicel dentification;

Uint32 Minor Devicel dentification;

byte ImplementationUse[IU_L];

The following paradigm shall be followed by an implementation that creates a
Device Specification Extended Attribute associated with afile:

UDF 2.50

If and only if afile has a DeviceSpecificationExtendedAttribute associated
with it, the contents of the FileType field in the icbtag structure shall be set
to 6 (indicating a block specia devicefile), OR 7 (indicating a character
special devicefile).

If the contents of the FileTypefield in the icbtag structure do not equal 6
or 7, the DeviceSpecifi cationExtendedAttribute associated with afile shall
be ignored.

In the event that the contents of the FileType field in the icbtag structure
equals 6 or 7, and the file does not have a
DeviceSpecificationExtendedAttribute associated with it, access to the file
shall be denied.

For operating system environments that do not provide for the semantics
associated with ablock specia devicefile, requeststo
open/read/write/close afile that has the
DeviceSpecificationExtendedAttribute associated with it shall be denied.

Asthefirst structure in the ImplementationUse field, an EntitylD shall be
recorded by all implementations. This EntitylD uniquely identifies the

76 April 15, 2003

3.3.4.5 Implementation Use Extended Attribute

struct ImplementationUseExtendedAttribute{ /* ECMA 167 4/14.10.8*/

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributelL ength;

Uint32 I mplementationUsel ength; /* (=IU_L) */
struct EntitylID Implementationl dentifier;

byte ImplementationUse[IU_L]J;

}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Implementation Use
Extended Attribute the Attribute Length field should be large enough to leave
padding space between the end of the Implementation Use field and the end of the
Implementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute
is used under various operating systems to store operating system specific
extended attributes.

The structures defined in the following sections contain a header checksum field.
Thisfield represents a 16-bit checksum of the Implementation Use Extended
Attribute header. The fields AttributeType through Implementationldentifier
inclusively represent the data covered by the checksum. The header checksum
field isused to aid in disaster recovery of the extended attributes space. C source
code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended
attributes encountered on the media. Implementations shall create and support the
extended attributes for the operating system they currently support. For example,
a Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support all Macintosh extended
attributes specified in this document.

3.34.5.1 All Operating Systems

3.3.4.5.1.1 FreeEASpace

UDF 2.50

This extended attribute shall be used to indicate unused space within the
Extended Attributes Space. This extended attributes shall be stored as an
Implementation Use Extended Attribute whose I mplementationl dentifier
shall be set to:

"*UDF FreeEASpace"

77 April 15, 2003

The ImplementationUse area for this extended attribute shall be structured

asfollows:
FreeEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 U _L-2 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete Extended
Attributes Space. The FreeEASpace extended attribute may be
overwritten and the space re-used by any implementation that sees a need
to overwriteit.

3.34.5.1.2 DVD Copyright Management Infor mation
This extended attribute shall be used to store DVD Copyright Management
Information. This extended attribute shall be stored as an I|mplementation
Use Extended Attribute whose Implementationldentifier shall be set to:
"*UDF DVD CGMS Info"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
DVD CGMS Info format
RBP Length Name Contents
0 2 Header Checksum Uintl6
2 1 CGMS Information byte
3 1 Data Structure Type Uint8
4 4 Protection System Information bytes

This extended attribute allows DVD Copyright Management Information
to be stored. The interpretation of this format shall be defined in the DVD
specification published by the DVD Format/Logo Licensing Corporation,

seeb.9.3! Support for this extended attribute is optional.

3.3.4.5.2 MS-DOS, Windows 95, Windows NT
&~ lgnored.

&5 Not supported. Extended attributes for existing files on the media shall be
preserved.

UDF 2.50 78 April 15, 2003

33453 0852

as anamed stream as defined in 3.3.8.2! To enhance performance the following

Implementation Use Extended Attribute will be created.

3.3.45.3.1 OS2EALength
information length. Since this value needs to be reported back to OS/2
under certain directory operations, for performance reasons it should be
recorded in the ExtendedAttributes field of the FileEntry. This extended
attribute shall be stored as an Implementation Use Extended Attribute
whose Implementationldentifier shall be set to:

"*UDF OS/2 EALength"
The ImplementationUse area for this extended attribute shall be structured
asfollows:
OS2EAL ength format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 4 0S/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributelength field shall be
equal to the InformationLength field of the file entry for the OS2EA
stream.

3.34.54 Macintosh OS
The Macintosh OS requires the use of the following extended attributes.

3.3.4.5.4.1 MacVolumelnfo
This extended attribute contains Macintosh volume information which
shall be stored as an Implementation Use Extended Attribute whose
I mplementationldentifier shall be set to:
"*UDF Mac Volumel nfo"

The ImplementationUse area for this extended attribute shall be structured

as follows:
MacVolumel nfo format
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 12 Last Modification Date timestamp
14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

UDF 2.50 79 April 15, 2003

The MacVolumel nfo extended attribute shall be recorded as an extended

attribute of the root directory FileEntry.

3.3.4.5.4.2 MacFinderinfo
This extended attribute contains Macintosh Finder information for the
associated file or directory. Since thisinformation is accessed frequently,
for performance reasons it should be recorded in the ExtendedAttributes

UDF 2.50

field of the FileEntry.

The MacFinderInfo extended attribute shall be stored as an

Implementation Use Extended Attribute whose I mplementationl dentifier

shall be set to:
"*UDF Mac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured

asfollows:
MacFinderInfo format for a directory
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 2 Reserved for padding Uint1l6=0
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo
MacFinderInfo format for afile
RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 2 Reserved for padding Uintl6=0
4 4 Parent Directory ID Uint32
8 16 File Information UDFFInfo
24 16 File Extended Information UDFFXInfo
40 4 Resource Fork Data Length Uint32
44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended
attribute of every file and directory within the Logical Volume.

The following structures used within the MacFinderInfo structure are
listed below for clarity. For complete information on these structures refer
to the Macintosh books called “Inside Macintosh”. The volume and page
number listed with each structure correspond to a specific “Inside
Macintosh” volume and page.

80

April 15, 2003

UDFPoint format (Volume |, page 139)

RBP | Length Name Contents
0 2 V Int16
2 2 H Int16
UDFRect format (Volume I, page 141)
RBP | Length Name Contents
0 2 Top Int16
2 2 L eft Int16
4 2 Bottom Int16
6 2 Right Int16
UDFDInfo format (Volume 1V, page 105)
RBP | Length Name Contents
0 8 FrRect UDFRect
8 2 FrFlags Int16
10 4 FrLocation UDFPoint
14 2 FrView Int16
UDFDXInfo format (Volume 1V, page 106)
RBP | Length Name Contents
0 4 FrScroll UDFPoint
4 4 FrOpenChain Int32
8 1 FrScript Uint8
9 1 FrXflags Uint8
10 2 FrComment Int16
12 4 FrPutAway Int32
UDFFInfo format (Volume Il, page 84)
RBP | Length Name Contents
0 4 FdType Uint32
4 4 FdCreator Uint32
8 2 FdFlags Uint16
10 4 FdL ocation UDFPoint
14 2 FdFldr Int16
UDFF Xl nfo format (Volume IV, page 105)
RBP | Length Name Contents
0 2 FdlconlD Int16
2 6 FdUnused bytes
8 1 FdScript Int8
9 1 FdXFlags Int8
10 2 FdComment Int16
12 4 FdPutAway Int32

NOTE: The above-mentioned structures have their original Macintosh
names preceded by “UDF” to indicate that they are actually different from

UDF 2.50

81

April 15, 2003

the original Macintosh structures. On the media the UDF structures are

stored little endian as opposed to the original Macintosh structures that are
in big endian format.

33455 UNIX

&~ lgnored.

& Not supported. Extended attributes for existing files on the media
shall be preserved.

3.3.4.5.6 05400

0OS/400 requires the use of the following extended attributes.

3.3.4.5.6.1 O400DirInfo

UDF 2.50

This attribute specifies the OS/400 extended directory information. Since
this value needs to be reported back to OS/400 for normal directory
information processing, for performance reasons it should be recorded in
the ExtendedAttributes field of the FileEntry. This extended attribute shall
be stored as an Implementation Use Extended Attribute whose
Implementationldentifier shall be set to:

“* UDF OS/400 Dirlnfo”.

The ImplementationUse area for this extended attribute shall be structured
asfollows:

OS400Dirl nfo format

BP | Length Name Contents
0 2 Header Checksum Uint16

2 2 Reserved for padding Uintl6=0

4 44 Directorylnfo bytes

For complete information on the structure of the Directorylnfo field
recorded in the OS400DirInfo format, refer to the following IBM
document:

IBM OS/400 UDF Implementation
Optical Storage Solutions, Department HTT
IBM

Rochester, Minnesota

82 April 15, 2003

3.3.4.6 Application Use Extended Attribute

struct ApplicationUseExtendedAttribute { [* ECMA 167 4/14.10.9 */
Uint32 AttributeType; /* = 65536 */
Uint8 AttributeSubtype;
byte Reserved[3];
Uint32 AttributelL ength;
Uint32 ApplicationUseLength; /* (=AU_L) */
struct EntitylD Applicationldentifier;
byte ApplicationUsg[AU _LJ;
}

The AttributeLength field specifies the length of the entire extended attribute. For
variable length extended attributes defined using the Application Use Extended
Attribute the Attribute Length field should be large enough to leave padding space
between the end of the ApplicationUse field and the end of the Application Use
Extended Attribute.

The structures defined in the following section contain a header checksumfield.
Thisfield represents a 16-bit checksum of the Application Use Extended Attribute
header. The fields AttributeType through Applicationldentifier inclusively
represent the data covered by the checksum. The header checksumfield is used to
aid in disaster recovery of the extended attributes space. C source code for the
header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended
attributes encountered on the media. Implementations shall create and support the
extended attributes for the operating system they currently support. For example,
a Macintosh implementation shall preserve any OS/2 extended attributes
encountered on the media. It shall also create and support all Macintosh extended
attributes specified in this document.

3.34.6.1 All Operating Systems

3.3.4.6.1.1 FreeAppEASpace
This extended attribute shall be used to indicate unused space within the
Extended Attributes Space reserved for Application Use Extended
Attributes. This extended attribute shall be stored as an Application Use
Extended Attribute whose Applicationldentifier shall be set to:
“*UDF FreeAppEASpace’

UDF 2.50 83 April 15, 2003

The ApplicationUse areafor this extended attribute shall be structured as

follows:
FreeAppEASpace format
RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-2 | Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total
size of other extended attributes without rewriting the complete Extended
Attributes Space. The FreeAppEASpace extended attribute may be
overwritten and the space re-used by any implementation who sees a need
to overwriteit.

3.3.5 Named Streams

Named streams provide a mechanism for associating related data of afile. Itissimilarin
concept to extended attributes. However, named streams have significant advantages
over extended attributes. They are not as limited in length. Space management is much
easier as each stream has its own space, rather than the common space of extended
attributes. Finding a particular stream does not involve searching the entire data space, as
it does for extended attributes.

Named streams are mainly intended for user data. For example, a database application
may store the records in the default or mainstream and indices in named streams. The
user would then see only one file for the database rather than many, and the application
can use the various streams almost as if they were independent files.

Named Streams are identified by an Extended File Entry. Extended File Entries are
required for files with associated named streams. Files without named streams should use
Extended File Entries. Files may have normal File Entries; normal File Entries would be
used where backward compatibility is desired, such as writing DVD Video discs.

Thereisa*“ System Stream Directory” which is the stream directory identified by the File
Set Descriptor. These streams are used to describe data related to the entire medium
instead of datathat relatesto afile. UDF defines severa “system streams” that are to be
identified by the system stream directory.

The parent of the System Stream Directory shall be the system stream directory.

It is recommended that Named Streams be used to store metadata and application data
instead of Extended Attributesin new implementations.

UDF 2.50 84 April 15, 2003

3.3.5.1 Named Streams Restrictions

ECMA 167 3" edition defines a new File Entry that contains afield for identifying a
stream directory. Thisnew File Entry should be used in place of the old File Entry, and
should be used for describing the streams themselves. Old and new file entries may be
freely mixed. In particular, compatibility with old reader implementations can be
maintained for certain files.

Restrictions:

The stream directory ICB field of ICBs describing stream directories or named streams
shall be set to zero. [no hierarchical streams|

Each named stream shall be identified by exactly one FID in exactly one Stream
Directory. [no hard links among named streams or files and named streams]

Each Stream Directory ICB shall be identified by exactly one Stream Directory ICB field.
[no hard links to stream directories]. The sole exception isthat the parent of the system
stream directory shall be the system stream directory.

Hard Links to files with named streams are all owed.

Named Streams and Stream Directories shall not have Extended Attributes.

Entries/Extended File Entries defining Named Streams and Stream Directories are set.

The UID, GID, and permissions fields of the main File Entry shall apply to all named
streams associated with the main stream. At the time of creation of a named stream the
values of the UID, GID and permissions fields of the main file entry should be used as the
default values for the corresponding fields of the named stream. Implementations are not
required to maintain or check these fields in a named stream.

Implementations should not present streams marked with the metadata bit set in the FID
to the user. Streams marked with the metadata bit are intended solely for the use of the
file system implementation.

The parent entry FID in a stream directory points to the main Extended File Entry, so its
reference must be counted in the Link Count field of the Extended File Entry. The sole
exception is that the parent of the system stream directory shall be the system stream
directory.

NOTE: Thereisapotentia pitfall when deleting files/directories: if the link count goes
to one when aFID is deleted, implementations must check for the presence of a stream

UDF 2.50 85 April 15, 2003

directory. If present, there are no more FIDs pointing to this File Entry, so it and all
associated structures must be deleted.

The modification time field of the main Extended File Entry should be updated whenever
any associated named stream is modified. The Access Time field of the main Extended
File Entry should be updated whenever any associated named stream is accessed. The
SETUID and SETGID bits of the ICB Tag flags field in the main Extended File Entry
should be cleared whenever any associated named stream is modified.

The ICB for a Named Stream directory shall have afiletype of 13. All named streams
shall have afile type of 5.

All systems shall make the main data stream available, even on implementations that do
not implement named streams.

3.3.5.2 UDF Defined Named Streams (M etadata)
A set of named streams is defined by UDF for file system use. Some UDF named streams
areidentified by the File Set Descriptor (System Stream Directory) and apply to the entire

file set. These are called UDF Defined System Streams and are defined in section 3.3.7:
Others pertain to individual files or directories and are identified by the Stream Directory
of that particular file or directory. These are called UDF Defined Non-System Streams

and are defined in 3.3.8;

All UDF Defined Named Streams shall have the Metadata bit set in the File Identifier
Descriptor in the Stream Directory, unless otherwise specified in this document. All
streams not generated by the file system implementation shall have this bit set to zero.

The four characters * UDF are the first four characters of al UDF defined named streams
in this document. Implementations shall not use any identifier beginning with * UDF for
named streams that are not defined in this document. All identifiers for named streams
beginning with * UDF are reserved for future definition by OSTA.

3.3.6 Extended Attributesas named streams

NOTE: Because conversion of some types of Extended Attributes to a named stream
appeared to be impossible and because it was never intended to allow automatic
conversion of any EA to anamed stream, this section is amended for UDF revisions after
UDF 2.01. Conversion of any EA to a named stream is not allowed.

UDF 2.50 86 April 15, 2003

3.3.7 UDF Defined System Streams
This section contains the definition of UDF defined system streams.

Stream Name Stream L ocation M etadata Flag
“*UDF Unique ID Mapping Data” | System Stream Directory (File Set Descriptor) 1
“*UDF Non-Allocatable Space” System Stream Directory (File Set Descriptor) 1
“*UDF Power Cal Table’ System Stream Directory (File Set Descriptor) 1
“*UDF Backup” System Stream Directory (File Set Descriptor) 1

Since the streams listed above have the Metadata flag set, the implementation shall not
pass the name of the stream across the “plug-in file system interface” of a platform.

3.3.7.1 UniquelD Mapping Data Stream

The Unigue ID Mapping Data allows an implementation to go directly to the ICB
hierarchy for the file/directory associated with a UDF Unique ID, or to the ICB hierarchy
for the directory that contains the file/directory associated with the UDF Unique ID. Note
that for UDF release 2.00 and higher the UDF Unique ID value used for this purposeis
taken from the File Identifier Descriptor rather than from the File Entry.

Unique ID Mapping Data is stored as a named stream of the System Sream Directory
(associated with the File Set Descriptor). The name of this stream shall be set to:

“*UDF Unique ID Mapping Data”
The Metadata bit in the File Characteristics field of the File Identifier Descriptor for the
stream shall be set to 1 to indicate that the existence of this stream should not be made
known to clients of a platform’ s file system interface.

Rules for the presence and consistency of the Unique ID Mapping Data Stream:

» Shall be created for read-only media
» Shall be created by implementations with batch write (e.g., pre-mastering tools) a
volume on write-once and rewritable media

For implementations which perform incremental updates of volumes on write-once or
rewritable media (e.g., on-line file systems), the following rules apply:

* May be created and maintained if not present
e Shall be maintained if present and volumeis clean
* Should be repaired and maintained, but may be deleted, if present and volumeis dirty

For theserules, avolumeis clean if either avalid Close Logical Volume Integrity
Descriptor or avalid Virtual Allocation Table is recorded.

UDF 2.50 87 April 15, 2003

3.3.7.1.1 UDF UniquelD Mapping Data
The contents of the Unique ID Mapping Stream are described by the tables “UDF Unique
ID Mapping Data” and “UDF Unique ID Mapping Entry”. The mapping data contains
some header fields before an array of mapping entries. The fields of these structures are
described below their corresponding table.

UDF Unique | D Mapping Data

RBP Length Name Contents
0 32 Implementation Identifier EntitylD
32 4 Flags Uint32
36 4 Mapping Entry Count (=MEC) Uint32
40 8 Reserved Bytes (= #00)
48 16*MEC | Mapping Entries I DM appingEntry

Flags are defined as follows:
Bit 0 Index Bit
Bits1-31 Reserved, shall be set to ZERO

Index Bit set to ONE iscalled Index Mode. In Index Mode, the UDF Unique ID,
once decremented by 16 (the value NextUniquelD isinitialized to), can be used as
an index into the array Mapping Entries.

Mapping Entry Count isthe size, in entries, of the array Mapping Entries.
Mapping Entriesis an array of UDF Unique ID Mapping Entry structures. Thereis one
mapping entry for every non-stream, non-parent File Identifier Descriptor. Whenever the
volume is consistent, the array is aways sorted in ascending order of UDF Unique ID.

3.3.7.1.2 UDF Unique D Mapping Entry

UDF Unique ID Mapping Entry

RBP Length Name Contents
0 4 UDFUnique ID Uint32
4 4 Parent Logical Block Number Uint32
8 4 Object Logical Block Number Uint32
12 2 Parent Partition Reference Number Uintl6
14 2 Object Partition Reference Number Uint16

UDF Unique ID isthe value found in the FID identifying the object.

Parent Logical Block Number isthe logical block number of the ICB identifying
the directory that contains the FID identifying the object.

Object Logical Block Number isthe logical block number from the long_ad ICB
field of the FID identifying the object.

UDF 2.50 88 April 15, 2003

Parent Partition Reference Number isthe partition reference number of the ICB
identifying the directory that contains the FID identifying the object.

Object Partition Reference Number isthe partition reference number from the
long_ad ICB field of the FID identifying the object.

In Index Mode, the first entry hasa UDF Unique ID of 16 and subsequent entries are
required to have a UDF Unique ID value of one more than the preceding entry.

If not in Index Mode, invalid entries may be removed in order to shrink the array.
Invalid entries are represented by having avalue of zero in al fields, except the UDF
Unique ID field. Invalid entries are the result of objects that were deleted from the
medium or entries at the end of the Mapping Entries array that are not yet in use.

There shall only be valid entries for non-stream, non-parent FIDs.

NOTE: The UDF Unique ID value of a mapping entry for an object needs not be equal to
the Unique ID value found in the File Entry of the object.

The correctness of a mapping entry can be verified performing the following steps:

1. Read the File Entry of the parent directory of the object using the Parent Logical
Block Number and the Parent Partition Reference Number of the mapping entry.

2. Find in the parent directory a FID with a UDF Unique ID vaue equal to the UDF
Unique ID of the mapping entry.

3. Thelong_ad ICB field of this FID shall contain logical block number and partition
reference number values equal to the Object Logical Block Number and Object
Partition Reference Number values of the mapping entry respectively.

3.3.7.2 Non-Allocatable Space Stream

ECMA 167 does not provide for a mechanism to describe defective areas on media or
areas not usable due to allocation outside of the file system. The Non-Allocatable Space
Stream provides a method to describe space not usable by the file system. The Non-
Allocatable Space Sream shall be recorded only on volumes with a sparable partition
map recorded.

The Non-Allocatable Space Stream shall be generated at format time. All space indicated
by the Non-Allocatable Space Stream shall also be marked as allocated in the free space
map. The Non-Allocatable Space Sream shall be recorded as a named stream in the
system stream directory of the File Set Descriptor. The stream name shall be:

“* UDF Non-Allocatable Space”

The stream shall be marked with the attributes Metadata (bit 4 of file characteristics set to
ONE) and System (bit 10 of ICB flagsfield set to ONE). The stream's allocation

UDF 2.50 89 April 15, 2003

descriptors shall identify all non-allocatable packets. The allocation descriptors shall have
alocation type 1 (allocated but not recorded). This stream shall include both defective
packets found at format time and space allocated for sparing at format time.

3.3.7.3 Power Calibration Stream

One of the potential limitations on the effective use of the packet-write capabilities of
CD-Recordable drives is the limited number (100) of power calibration areas available on
current CD-R media. These power calibration areas are used to establish the appropriate
power calibration settings with which data can be successfully and reliably written to the
CD-R disc currently in the drive. The appropriate settings for a specific drive can vary
significantly from disc to disc, between two different drives of the same make and model,
and even using the same disc, drive and system configuration, but under different
environmental conditions.

Because of this, most current CD-R drives recalibrate themselves the first time awriteis
attempted after a media change has occurred. Thisimposes no restriction on recording to
discs using the disc-at-once or track-at-once modes, since in each of these modes the disc
will fill (either by consuming the total available data capacity or total number of
recordable tracks) in less than 100 separate writes. When using packet-write though, the
disc could be written to thousands of times over an extended period before the disc is full.

Suppose, for instance, one wanted to incrementally back-up any new and/or modified
files at the end of each work day (though the drive might also be used intermittently to do
other projects during the day). These back-ups may require writing as little as a megabyte
(or even less) each day. If one of the power calibration areasis used to calibrate the drive
before writing to the disc every day, within five months the power calibration areas will
all have been used, but only asmall fraction of the total disc capacity will have been
consumed. Itislikely that such aresult would be both unexpected and unacceptable to
the user of such a product.

The industry is attempting to provide ways to reduce the frequency with which the power
calibration area of a CD-Recordable disc must be used. At least one current CD-R drive
model tries to remember the power calibration values last used for recording data on each
of asmall number of recently encountered discs. Most CD-Recordable drives provide a
mechanism for the host software to retrieve from the drive the most recent power
calibration settings used by the drive to record data on the current disc, and to restore and
use such information at some future time.

The Power Calibration Table described herein would be used to store on the disc the
power calibration information thus obtained for future use by compatible
implementations. The table consists of a header followed by alist of records containing
power calibration settings which have been used by various drives and/or hosts, under
various conditions, to record data on this disc, as well as other relevant information which
may be used to determine which of the recorded calibration settings may be appropriate
for usein afuture situation. While every effort has been made to anticipate and include

UDF 2.50 90 April 15, 2003

all necessary information to make effective use of the recorded power calibration
information possible, it is up to the individual implementation to determine if, when and
how such information will actually be used.

The Power Calibration Table may be recorded as a system stream of the File Set

Descriptor according to the rules of 3.3.5: The name of the stream shall be as follows:

“*UDF Power Cal Table”

Implementations that do not support the Power Calibration Table shall not delete this
stream. Further, any implementation which supports and/or uses the Power Calibration
Table shall not delete or modify any records from such table which the implementation,
through its use thereof, did not clearly and specifically obsolete or update.

UDF 2.50 91 April 15, 2003

The stream shall be formatted as follows:

3.3.7.3.1 Power Calibration Table Stream

RBP Length Name Contents
0 32 Implementation Identifier EntitylD [UDF
2.1.5]
32 4 Number of Records Uint32 [1/7.1.5]
36 * Power Calibration Table Records bytes

Implementation Identifier:
See UDF section 2.1.5.

Number of

Records;

Shall specify the number of records contained in the power calibration table

Power Calibration Table Records:

A series of power calibration table records for drives which have written to this disc.
The length of thistableisvariable, but shall be amultiple of four bytes. Recording of
datain any unstructured field shall be left justified and padded on the right with #20

bytes.
Power Calibration Table Record L ayout
RBP Length Name Contents
0 2 Record Length Uint16 [1/7.1.3]
2 2 Drive Unique Area Length [DUA_L] Uint16 [1/7.1.3]
4 32 Vendor ID bytes
36 16 Product ID bytes
52 4 Firmware Revision Level bytes
56 16 Serial Number/Device Unique ID bytes
72 8 Host ID bytes
80 12 Originating Time Stamp Timestamp [1/7.3]
92 12 Updated Time Stamp Timestamp [1/7.3]
104 2 Speed Uint16 [1/7.1.3]
106 6 Power Calibration Values bytes
112 [DUA_L] | Drive Unique Area bytes

Record Length — The length of this Power Calibration Table Record in bytes, including

the optional variable length Drive Unique Area. Shall be a multiple of four bytes.

Drive Unique Area Length — The length of the optional Drive Unique Arearecorded at

the end of thisrecord in bytes. Shall be a multiple of four bytes.

UDF 2.50

92

April 15, 2003

Vendor ID — The Vendor ID reported by the drive.
Product ID — The Product ID reported by the drive.
Firmware Revision Level — The Firmware Revision Level reported by the drive.

Serial Number/Device Unique ID — A serial number or other unique identifier for the
specific drive, of the model specified by the vendor and product Ids given, which has
successfully used the power calibration values reported herein to record data on this disc.

Host ID — The host serial number, ethernet ID, or other value (or combination of values)
used by an implementation to identify the specific host computer to which the drive was
attached when it successfully used the power calibration values reported herein to record
dataon thisdisc. Animplementation shall attempt to provide a unique value for each
host, but is not required to guarantee the value' s uniqueness.

Originating Time Stamp — The date and time at which the power calibration values
recorded herein were initially verified to have been successfully used.

Updated Time Stamp — The date and time at which the power calibration values recorded
herein were most recently verified to have been successfully used.

Soeed — The recording speed, as reported by the drive, at which power calibration values
recorded herein were successfully used. Thisvalueisthe number of kilobytes per second
(bytes per second / 1000) that the data was written to the disc by the drive (truncating any
fractions). For example, a speed of 176 means data was written to the disc at 176
Kbytes/second, which isthe basic CD-DA (Digital Audio) datarate (a.k.a. “1X” for
CD-DA). A speed of 353 means data was written to the disc at 353 Kbytes/second, or
twice the basic CD-DA datarate (a.k.a. “2X” for CD-DA). CD-ROM recording rates
should be adjusted upward (roughly 15%) to the corresponding CD-DA rates to determine
the correct speed value (e.g. A “1X” CD-ROM datarate should be recorded asa*“1X”
CD-DA, which isa speed of 176). Note that these are raw data rates and do not reflect al
overhead resulting from (additional) headers, error correction data, etc.

Power Calibration Values— The vendor-specific power calibration values reported by the
drive.

Drive Unique Area — Optional areafor recording unrestricted information unique to the
drive (such as drive operating temperature), which certain implementations may use to
enhance the use of the recorded power calibration information or the operation of the

UDF 2.50 03 April 15, 2003

associated drive. The drive manufacturer shall define recording of datain thisfield. This
area shall be an integral multiple of four bytesin length.

3.3.7.4 UDF Backup Time
The name of this stream shall be set to:

“*UDF Backup”

This stream shall have the following contents, which should be embedded in the

ICB:
UDF Backup Time
RBP Length Name Contents
0 12 Backup Time timestamp

Backup Timeisthe latest time that a backup of this volume was performed.

3.3.8 UDF Defined Non-System Streams
This section defines the following non-system streams:

Stream Name Stream L ocation M etadata Flag

“*UDF Macintosh Resource Fork” Any file 0

“*UDF OS/2 EA” Any file or directory 0
“*UDF NT ACL” Any file or directory 0
“*UDF UNIX ACL” Any file or directory 0

3.3.8.1 Macintosh Resource Fork Stream
Because the Resource Fork is referenced by an explicit interface, UDF implementations
are not provided the authoritative name for this stream. For the purpose of interchange,

the name shall be set to:

“* UDF Macintosh Resource Fork”

The Metadata bit in the File Characteristics field of the File Identifier Descriptor shall be
set to O to indicate that the existence of this file should be made known to clients of a
platform’ sfile system interface.

3.3.8.2 OS2 EA Stream
All OS/2 definable extended attributes shall be stored as a named stream whose name
shall be set to:

“*UDF OS2 EA”

UDF 2.50 94 April 15, 2003

The OS2EA Stream contains atable of OS/2 Full EAs (FEA) as shown below.

FEA format
RBP | Length Name Contents
0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L_V) Uint16
4 L N Name bytes
4+L N LV Value bytes

For a complete description of Full EAs (FEA) please reference the following IBM
document:

“Installable File System for OS2 Version 2.0”
OS2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.8.3 AccessControl Lists

Certain operating systems support the concept of Access Control Lists (ACLS) for
enforcing file accessrestrictions. In order to facilitate support for ACL’s UDF has
defined a set of system level named streams, whose purpose is to store the ACL
associated with agiven file object.

ACLs under UDF are stored as named streams, following the rules of section 8.3.5! The

contents of the named stream ACL shall be opaque and are not defined by this document.
Interpretation of the contents of the named ACL shall be left to the operating system for
which the ACL isintended. The following names shall be used to identify the ACLs and
shall be reserved. These names shall not be used for application named streams.

“*UDF NT ACL”

This name shall identify the named stream ACL for the Windows NT operating system.

“*UDF UNIX ACL”

This name shall identify the named stream ACL for the UNIX operating system.

UDF 2.50 95 April 15, 2003

4. User Interface Requirements
4.1 Part 3—Volume Structure

Part 3 of ECMA 167 contains various ldentifiers which, depending upon the
implementation, may have to be presented to the user.

* Volumeldentifier

* VolumeSetldentifier

* LogicalVolumelD

These identifiers, which are stored in CS0, may have to go through some form of
translation to be displayable to the user. Therefore when an implementation must
perform an OS specific trangation on the above listed identifiers the
implementation shall use the algorithms described in section 4.2.2.1.

C source code for the translation algorithms may be found in the appendices of
this document.

4.2 Part 4 —File System

42.1 ICB Tag

struct icbtag { [* ECMA 167 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries,
uUint16 Strategy Type;
byte StrategyParameter[2];
Uintl6 MaximumNumberof Entries,
byte Reserved; /* ==#00*/
Uint8 FileType;
Lb_addr ParentlCBLocation;
Uint16 Flags,

}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the following
values in this field shall result in an Access Denied error condition under non-
UNIX operating system environments:

FileType values — 0 (Unknown), 6 (block device), 7 (character device), 9
(FIFO), and 10 (C_ISSOCK).

Any open/close/read/write requests to a file of type 12 (SymbolicLink) shall access
the file/directory to which the symbolic link is pointing.

UDF 2.50 96 April 15, 2003

4.2.2 Fileldentifier Descriptor

struct FileldentifierDescriptor { [* ECMA 167 4/14.4*/
struct tag DescriptorTag;
Uint16 FileVersionNumber;
Uint8 FileCharacteristics,
Uint8 Lengthof Fileldentifier;
struct long_ad ICB;
uint16 LengthofmplementationUse;
byte ImplementationUse[];
char Fileldentifier[];
byte Padding[];

}

4.2.2.1 char Fileldentifier[]
Since most operating systems have their own specifications as to characteristics of
alegal Fileldentifier, this becomes a problem with interchange. Therefore since
all implementations must perform some form of Fileldentifier trandation it would
be to the users advantage if all implementations used the same algorithm.

The problems with Fileldentifier trandations fall within one or more of the
following categories:

Name Length —-Most operating systems have some fixed limit for
the length of afileidentifier.

Invalid Characters— Most operating systems have certain
characters considered as being illegal within afileidentifier name.

Displayable Characters — Since UDF supports the Unicode
character set standard characters within afile identifier may be
encountered which are not displayable on the receiving system.

Case Insensitive — Some operating systems are case insensitive in
regards to fileidentifiers. For example OS/2 preserves the original
case of thefile identifier when the fileis created, but uses a case
insensitive operations when accessing the file identifier. In OS/2
“Abc” and “ABC” would be the same file name.

Reserved Names — Some operating systems have certain names that
cannot be used for afileidentifier name.

The following sections outline the Fileldentifier translation algorithm for each
specific operating system covered by this document. This algorithm shall be used

UDF 2.50

97 April 15, 2003

UDF 2.50

by all OSTA UDF compliant implementations. The algorithm only applies when
reading anillegal Fileldentifier. The origina Fileldentifier name on the media
should not be modified. This algorithm shall be applied by any implementation
that performs some form of Fileldentifier translation to meet operating system file
identifier restrictions.

All OSTA UDF compliant implementations shall support the UDF tranglation
algorithms, but may support additional algorithms. If multiple algorithms are
supported the user of the implementation shall be provided with a method to
select the UDF trandation algorithms. It is recommended that the default
displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithms is to produce a unique file name that meets
the specific operating system restrictions without having to scan the entire
directory in which the file resides.

C source code for the following algorithms may be found in the appendices of this
document.

NOTE: In the definition of the following algorithms anytime a d-character is
specified in quotes, the Unicode hexadecimal value will aso be specified. The
following algorithms reference “ CS0 Hex representation”, which corresponds to
using the Unicode values #0030 - #0039, and #0041 - #0046 to represent avalue
in hex. In addition, the following algorithms reference “ CSO Base41
representation”, which corresponds to augmenting the CSO Hex representation to
use #0047 - #005A, #0023, #005F, #007E, #002D and #0040 to represent digits
16-40.

The following algorithms could still result in name-collisions being reported to
the user of an implementation. However, the rationale includes the need for
efficient access to the contents of a directory and consistent name translations
acrosslogical volume mounts and file system driver implementations, while
allowing the user to obtain access to any file within the directory (through
possibly renaming afile).

Some name transformations in section 4.2.2.1 result in two namespaces being
visible at once in a given directory — the space of primary names, those which are
physically recorded in adirectory; and the space of generated names, those which
are derived from the primary names. Thisis distinct from transformations that
take an otherwise illegal name and render it into alegal form, theillegal name not
being considered part of the namespace of the directory on that system. For UDF
implementations using such transforms, the implementation should search a
directory in two passes. pass one should match against the primary namespace and
pass two should match against the generated namespace. A match in the primary
namespace should be preferred to a match against the generated namespace.

98 April 15, 2003

Definitions:
A Fileldentifier shall be considered as being composed of two parts, afile name
and file extension.

The character *." (#002E) shall be considered as the separator for the Fileldentifier
of afile; characters appearing subsequent to thelast *.” (#002E) shall be
considered as constituting the file extension if and only if it isless than or equal to
5 charactersin length, otherwise the file extension shall not exist. Characters
appearing prior to thefile extension, excluding the last *.” (#002E), shall be
considered as constituting the file name.

NOTE: Even though OS2, Macintosh, and UNIX do not have an officia
concept of afilename extension it is common file naming conventions to
end afilewith “.” Followed by a1 to 5 character extension. Therefore the
following algorithms attempt to preserve the file extension up to a
maximum of 5 characters.

42211 MSDOS

UDF 2.50

Due to the restrictions imposed by the MS DOS operating system environments
on the Fileldentifier associated with afile the following methodol ogy shall be
employed to handle Fileldentifier (s) under the above-mentioned operating system
environments.

Exception: Implementations on non-M S-DOS systems that may normally provide
dual namespaces (8.3 and non-8.3) using this transformation may omit or provide
amechanism for disabling its use.

Restrictions: The file name component of the Fileldentifier shall not exceed 8
characters. The file extension component of the Fileldentifier shall not exceed 3
characters.

1. Fileldentifier Lookup: Upon request for a*“ lookup” of aFileldentifier,
a case-insensitive comparison shall be performed.

2. Vadlidate Fileldentifer: If the Fileldentifier isavaid MS-DOSfile
identifier then do not apply the following steps.

3. Remove Spaces: All embedded spaces within the identifier shall be
removed.

4. Invalid Characters: A Fileldentifier that contains characters considered
invalid within afile name or file extension (as defined above), or not
displayable in the current environment, shall have them translated into
“ " (#OOS5F). (thefile identifier on the mediais NOT modified).
Multiple sequential invalid or non-displayable characters shall be
trandated into asingle“ " (#005F) character. Reference the appendix
on invalid characters for a complete list.

99 April 15, 2003

Leading Periods. In the event that there do not exist any characters
prior to thefirst “.” (#002E) character, leading “.” (#002E) characters
shall be disregarded up to the first non “.” (#002E) character, in the
application of this heuristic.

Multiple Periods: In the event that the Fileldentifier contains multiple
“.” (#002E) characters, al characters appearing subsequent to the last
‘. (#002E) shall be considered as constituting the file extension if and
only if it islessthan or equal to 5 charactersin length, otherwise the
file extension shall not exist. Characters appearing prior to thefile
extension, excluding the last *." (#002E), shall be considered as
constituting the file name. All embedded “.” (#002E) characters
within the file name shall be removed.

Long Extension: In the event that the number of characters constituting
the file extension at this step in the processis greater than 3, thefile
extension shall be regarded as having been composed of the first 3
characters amongst the characters constituting the file extension at this
step in the process.

Long Filename: In the event that the number of characters constituting
the file name at this step in the processis greater than 8, the file name
shall be truncated to 4 characters.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the origina Fileldentifier.
The file name shall be composed of the first 4 characters constituting
the file name at this step in the process, followed by the separator *#
(#0023), followed by the 3 digit CS0 Base41 representation of the 16-
bit CRC of the UNICODE expansion of the original filename.

10. The new file identifier shall be trandated to all upper case.

42212 0S/2
Due to the restrictions imposed by the OS/2 operating system environment, on the
Fileldentifier associated with afile the following methodology shall be employed
to handle Fileldentifier(s) under the above-mentioned operating system
environment:

UDF 2.50

1.

2.

Fileldentifier Lookup: Upon request for a“ lookup” of aFileldentifier,
a case-sensitive comparison may be performed. If the case-sensitive
comparison is not done or if it falls, a case-insensitive comparison
shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid OS2 file
identifier then do not apply the following steps.

100 April 15, 2003

3.

Invalid Characters: A Fileldentifier that contains characters considered

invalid within an OS2 file name, or not displayable in the current
environment shall have them trandated into “_" (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into
a single “ 7 (#005F) character. Reference the appendix on invalid
characters for acomplete list.

Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)
shall be removed.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the origina Fileldentifier.

If thereis afile extension then the new Fileldentifier shall be
composed of up to thefirst (254 — (length of (new file extension) + 1
(for the‘.”)) — 5 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator ‘# (#0023);
followed by a4 digit CS0 Hex representation of the 16-bit CRC of the
original CSO Fileldentifier, followed by *." (#002E) and the file
extension at this step in the process.

Otherwiseif there is no file extension the new Fileldentifier shall be
composed of up to thefirst (254 — 5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘# (#0023); followed by a4 digit CS0 Hex representation of
the 16-bit CRC of the original CSO Fileldentifier.

4.2.2.1.3 Macintosh

Due to the restrictions imposed by the Macintosh operating system environment,
on the Fileldentifier associated with afile the following methodol ogy shall be
employed to handle Fileldentifier (s) under the above-mentioned operating system
environment:

UDF 2.50

1.

2.

3.

Fileldentifier Lookup: Upon request for a“ lookup” of aFileldentifier,
a case-sensitive comparison may be performed. If the case-sensitive
comparison is not done or if it falls, a case-insensitive comparison
shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid Macintosh file
identifier then do not apply the following steps.

Invalid Characters. A Fileldentifier that contains characters considered
invalid within a Macintosh file name, or not displayable in the current
environment, shall have them trandated into “_ " (#005F). Multiple
sequential invalid or non-displayable characters shall be translated into

101 April 15, 2003

a single “ 7 (#005F) character. Reference the appendix on invalid
characters for acomplete list

4. Long Fileldentifier — In the event that the number of characters
constituting the Fileldentifier at this step in the process is greater than
31 (maximum name length for the Macintosh operating system), the
new Fileldentifier will consist of the first 26 characters of the
Fileldentifier at this step in the process.

5. Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the origina Fileldentifier.

If thereis afile extension then the new Fileldentifier shall be
composed of up to thefirst (31 — (Ilength of (new file extension) + 1
(for the‘.”)) — 5 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator ‘# (#0023);
followed by a4 digit CS0 Hex representation of the 16-bit CRC of the
original CSO Fileldentifier, followed by *." (#002E) and the file
extension at this step in the process.

Otherwiseif there is no file extension the new Fileldentifier shall be
composed of up to thefirst (31 — 5(for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘# (#0023); followed by a4 digit CS0 Hex representation of
the 16-bit CRC of the original CSO Fileldentifier.

42214 Windows95 & Windows NT

UDF 2.50

Due to the restrictions imposed by the Windows 95 and Windows NT operating
system environments, on the Fileldentifier associated with afile the following
methodology shall be employed to handle Fileldentifier(s) under the above-
mentioned operating System environment:

1. Fileldentifier Lookup: Upon request for a*“ lookup” of a Fileldentifier,
a case-sensitive comparison may be performed. If the case-sensitive
comparison is not done or if it falls, a case-insensitive comparison
shall be performed.

2. Vadldate Fileldentifer: If the Fileldentifier isavalid file identifier for
Windows 95 or Windows NT then do not apply the following steps.

3. Invalid Characters. A Fileldentifier that contains characters considered
invalid within a file name of the supported operating system, or not
displayable in the current environment shall have them translated into
“ " (#005F). Multiple sequential invalid or non-displayable characters
shall be trandated into a single “_” (#005F) character. Reference the
appendix on invalid characters for acomplete list.

102 April 15, 2003

4.2.2.1.5 UNIX

UDF 2.50

4.

5.

Trailing Periods and Spaces. All trailing “.” (#002E) and “ “ (#0020)

shall be removed.
Fileldentifier CRC: Since through the above process character

information from the original Fileldentifier islost the chance of
creating a duplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the origina Fileldentifier.

If thereis afile extension then the new Fileldentifier shall be
composed of up to thefirst (255 — (length of (new file extension) + 1
(for the‘.”)) — 5 (for the #CRC)) characters constituting the file name
at this step in the process, followed by the separator ‘# (#0023);
followed by a4 digit CS0 Hex representation of the 16-bit CRC of the
original CSO Fileldentifier, followed by *." (#002E) and the file
extension at this step in the process.

Otherwiseif there is no file extension the new Fileldentifier shall be
composed of up to thefirst (255 -5 (for the #CRC)) characters
constituting the file name at this step in the process. Followed by the
separator ‘# (#0023); followed by a4 digit CS0 Hex representation of
the 16-bit CRC of the original CSO Fileldentifier.

Dueto the restrictions imposed by UNIX operating system environments, on the
Fileldentifier associated with afile the following methodology shall be employed
to handle Fileldentifier (s) under the above-mentioned operating system
environment:

1.

2.

Fileldentifier Lookup: Upon request for a“lookup” of a Fileldentifier,
a case-sensitive comparison shall be performed.

Validate Fileldentifer: If the Fileldentifier isavalid UNIX file
identifier for the current system environment then do not apply the
following steps.

Invalid Characters: A Fileldentifier that contains characters considered
invalid within aUNIX file name for the current system environment,

or not displayable in the current environment shall have them
translated into “_" (#005E). Multiple sequential invalid or non-
displayable characters shall be trandated into asingle” " (#005E)
character. Reference the appendix on invalid characters for a complete
list

Long Fileldentifier — In the event that the number of characters
constituting the Fileldentifier at this step in the process is greater than
MAXNameLength (maximum name length for the specific UNIX
operating system), the new Fileldentifier will consist of the first

103 April 15, 2003

MAXNamelLength-5 characters of the Fileldentifier at this step in the
process.

5. Fileldentifier CRC Since through the above process character
information from the original Fileldentifier islost the chance of
creating aduplicate Fileldentifier in the same directory increases. To
greatly reduce the chance of having a duplicate Fileldentifier thefile
name shall be modified to contain a CRC of the origina Fileldentifier.

If thereis afile extension then the new Fileldentifier shall be
composed of up to the first (MAXNameLength — (length of (new file
extension) + 1 (for the*.’)) — 5 (for the #CRC)) characters constituting
the file name at this step in the process, followed by the separator *#
(#0023); followed by a4 digit CSO Hex representation of the 16-bit
CRC of the original CS0 Fileldentifier, followed by ‘. (#002E) and
the file extension at this step in the process.

Otherwiseif there is no file extension the new Fileldentifier shall be
composed of up to the first (MAXNameLength — 5 (for the #CRC))
characters constituting the file name at this step in the process.
Followed by the separator ‘# (#0023); followed by a4 digit CS0 Hex
representation of of the 16-bit CRC of the original CSO Fileldentifier.

4.2.2.1.6 0S/400

Due to the restrictions imposed by OS/400 operating system environments, on the
Fileldentifier associated with afile the following methodology shall be employed to
handle Fileldentifier(s) under the above mentioned operating system environment.

1. Fileldentifier Lookup: Upon request for a*“lookup” of aFileldentifier, a case-
sensitive comparison may be performed. If the case-sensitive comparison is not
doneor if it fails, a case-insensitive comparision shall be performed.

2. Vadidate Fileldentifier: If the Fileldentifier isavalid file identifier for OS/400
then do not apply the following steps.

3. Invalid Characters: A Fileldentifier that contains characters considered invalid
within an OS/400 file name, or not displayable in the current environment shall
have them trandlated into “_” (#005F). Multiple sequential invalid or non-
displayable characters shall be trandlated into asingle“_” (#005F) character.

4. Trailing Spaces: All trailing “ “(#0020) shall be removed.

5. Fileldentifier CRC: Since through the above process character information from
the original Fileldentifier islost the chance of creating a duplicate Fileldentifier in
the same directory increases. To greatly reduce the chance of having a duplicate
Fileldentifier the filename shall be modified to contain a CRC of the originad
Fileldentifier.

UDF 2.50 104 April 15, 2003

If there is afile extension then the new Fileldentifier shall be composed of up to
thefirst (255 — (Ilength of (new file extension) + 1 (for the*.”)) — 5 (for the
#CRC)) characters constituting the file name at this step in the process, followed
by the separator “#’ (#0023); followed by a4 digit CS0 Hex representation of the
16 —hit CRC of the origina CS0 Fileldentifier, followed by “.” (#002E) and the
file extension at this step in the process.

Otherwise if there is no file extension the new Fileldentifier shall be composed of
up to thefirst (255 —5 (for the new #CRC)) characters constituting the file name

at this step in the process. Followed by the separator “#’ (#0023); followed by a4
digit CS0 hex representation of the 16-bit CRC of the original CSO Fileldentifier.

NOTE: Invalid characters for OS400 are only the forward slash “ /” (#002F) character.
Non-displayable characters for OS400 are any characters that do not translate to code
page 500 (EBCDIC Multilingual).

UDF 2.50

105 April 15, 2003

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors

described in ECMA 167.

Descriptor Length in bytes
Anchor Volume Descriptor Pointer 512
V olume Descriptor Pointer 512
Implementation Use V olume Descriptor 512
Primary V olume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor Nno max
Unallocated Space Descriptor Nno max
Terminating Descriptor 512
Logica Volume Integrity Descriptor No max
File Set Descriptor 512

File Identifier Descriptor

Maximum of a
Logical Block Size

Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36

File Entry

Maximum of a
Logical Block Size

Extended File Entry

Maximum of a
Logical Block Size

Extended Attribute Header Descriptor

24

Unallocated Space Entry

Maximum of a
Logical Block Size

Space Bit Map Descriptor

No Max

Partition Integrity Entry

N/A

5.2 Using Implementation Use Areas

5.2.1 Entity Identifiers

Refer to section 2.1.5:0n Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space

Orphan space may exist within alogical volume, but it is not recommended since
some type of logical volume repair facility may reallocateit. Orphan spaceis

UDF 2.50 106

April 15, 2003

defined as space that is not directly or indirectly referenced by any of the non-
implementation use descriptors defined in ECMA 167.

NOTE: Any allocated extent for which the only reference resides within an
implementation use field is considered orphan space.

5.3 Boot Descriptor
T.B.D.

5.4 Clarification of Unrecorded Sectors
ECMA 167 section 3/8.1.2.2 states

Any unrecorded constituent sector of alogical sector shall be interpreted as containing all
#00 bytes. Within the sector containing the last byte of alogical sector, the interpretation
of any bytes after that last byte is not specified by this Part.

A logical sector is unrecorded if the standard for recording allows detection that a sector
has been unrecorded and all of the logical sector’s constituent sectors are unrecorded. A
logical sector should either be completely recorded or unrecorded.

For the purposes of interchange, UDF must clarify the correct interpretation of
this section.

This part specifies that an unrecorded sector logically contains #00 bytes.
However, the converse argument that a sector containing only #00 bytesis
unrecorded is not implied, and such a sector is not an “unrecorded” sector for the
purposes of ECMA. Only the standard governing the recording of sectors on the
media can provide the rule for determining if a sector is unrecorded. For example,
a blank check condition would provide correct determination for a WORM
device.

The following additional ECMA 167 sections reference the rule defined 3/8.1.2.2:
3/8.4.2, 3/8.8.2, 4/3.1, 4/8.3.1 and 4/8.10. By derivation, paragraph 6.6:(strategy
4096) is also affected. Since unrecorded sectors/blocks are terminating conditions
for sequences of descriptors, an implementation must be careful to know that the
underlying storage media provides a notion of unrecorded sectors before assuming
that not writing to a sector is detectable. Otherwise, reliance on the incorrect
converse argument mentioned above may result. Explicit termination descriptors

must be used when an appropriate unrecorded sector would be undetectable.

UDF 2.50 107 April 15, 2003

6. Appendices

6.1 UDF Entity Identifier Definitions

Entity | dentifier

Description

“*OSTA UDF Compliant”

Indicates the contents of the specified logical volume or file set
is compliant with domain defined by this document.

“*UDF LV Info” Contains additional Logical Volume identification information.

“*UDF FreeEA Space” Contains free unused space within the implementation extended
attributes space.

“*UDF FreeAppEA Space’ Contains free unused space within the application extended

attributes space.

“*UDF DVD CGMS Info”

Contains DVD Copyright Management Information

“*UDF OS/2 EALength”

Contains OS2 extended attribute length.

“*UDF Mac Volumelnfo”

Contains Macintosh volume information.

“*UDF Mac Finderlnfo”

Contains Macintosh finder information.

“*UDF Virtual Partition”

Describes UDF Virtual Partition

“*UDF Sparable Partition”

Describes UDF Sparable Partition

“*UDF 0S/400 DirInfo”

0S/400 Extended directory information

“*UDF Sparing Table”

Contains information for handling defective areas on the media

“*UDF Metadata Partition”

Describes UDF Metadata Partition

UDF 2.50

108 April 15, 2003

6.2 UDF Entity Identifier Values

Entity | dentifier

Byte Value

"*OSTA UDF Compliant"

#2A, #AF, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,
#6D, #70, #6C, #69, #61, #6E, #74

“*UDF LV Info” #2A, #55, #44, #46, #20, #4C, #56, #20, #49, #6E, #66, #6F

"*UDF FreeEA Space" #2A, #55, #44, #46, #20, #46, #(2, #65, #65, #45, #41, #53,
#70, #61, #63, #65

"*UDF FreeAppEA Space" #2A, #55, #44, #46, #20,

#46, #72, #65, #65, #41, #70, #/0,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info”

#2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #47, #4D, #53, #20, #49, #6E, #66, #6F

“*UDF OS/2 EALength”

#2A, #55, #44, #46, #20, #4F, #53, #2F, #32, #20, #45, #41,
#4C, #65, #OE, #67, #74, #68

“*UDF 0OS/400 DirInfo”

#2A, #55, #44, #46, #20, #4F, #53, #2F, #34, #30, #30, #20,
#44, #60, #72, #49, #O6E, #66, #6F

"*UDF Mac Volumelnfo"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,
#75, #6D, #65, #49, #6E, #66, #6F

"*UDF Mac FinderInfo"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, #6E,
#64, #65, #72, #49, #6E, #66, #6F

“*UDF Virtua Partition”

#2A, #55, #44, #46, #20, #56, #69, #72, #14, #15, #61, #6C,
#20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparable Partition”

#2A, #55, #44, #46, #20, #53, #10, #61, #72, #61, #62, #6C,
#65, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparing Table”

#2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #OE, #67,
#20, #54, #61, #62, #6C, #65

“*UDF Metadata Partition”

#2A, #55, #44, #46, #20, #4D, #65, #74, #61, #64, #61, #74,
#61, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

UDF 2.50

109 April 15, 2003

6.3 Operating System |dentifiers

UDF 2.50

The following tables define the current allowable values for the OS Class and OS

Identifier fieldsin the Identifier Suffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the
specified descriptor was recorded. The valid valuesfor thisfield are asfollows:

Value

Operating System Class

o

Undefined

DOS

0S/2

Macintosh OS

UNIX

Windows 9x

Windows NT

0S/400

O (N[O(O|B]|WIN]|F

BeOS

9

Windows CE

10-255 | Reserved

The OS Identifier field will identify under which operating system the specified
descriptor was recorded. The valid valuesfor thisfield are asfollows:

oS
Class

0S

Identifier

Operating System I dentified

o

Any Value

Undefined

o

DOS/Windows 3.x

0S/2

Macintosh OS 9 and older.

Macintosh OS X and later releases.

UNIX - Generic

UNIX - IBM AIX

UNIX - SUN OS/ Solaris

UNIX - HP/UX

UNIX - Silicon Graphics Irix

UNIX - Linux

UNIX - MKLinux

UNIX - FreeBSD

Windows 9x — generic (includes Windows 98/ME)

o0~ MRIA AP OWIN|E

O|IO(NIO|OR|WIN|F|OFR|O|O

Windows NT — generic (includes Windows
2000,XP,Server 2003, and later releases based on the
same code base)

0S/400

110 April 15, 2003

8

0

BeOS - generic

9

0

Windows CE - generic

For the most up to date list of values for OS Class and OS Identifier please contact OSTA
and request a copy of the UDF Entity Identifier Directory. Thisdirectory will also
contain Implementation Identifiers of ISVswho have provided the necessary information

to OSTA.

NOTE: If you wish to add to thislist please contact the OSTA Technica Committee
Chairman at the OSTA address listed in POINTS OF CONTACT on thefirst page of this

document.

UDF 2.50

111 April 15, 2003

6.4 OSTA Compressed Unicode Algorithm

/***

* OSTA conpliant Uni code conpression, unconpression routines.
* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M Rinn.
* Mcro Design International gives permission for the free use of the
* foll owi ng source code.
*/
#i ncl ude <stddef. h>

/***

* The following two typedef's are to renove conpil er dependanci es.
* pyte needs to be unsigned 8-bit, and unicode_t needs to be

* unsigned 16-bit.

*/

t ypedef unsigned short unicode_t;
t ypedef unsigned char byte;

/***

* Takes an OSTA CSO conpressed unicode name, and converts

* it to Unicode.

* The Unicode output will be in the byte order

* that the local conpiler uses for 16-bit val ues.

* NOTE: This routine only performs error checking on the conpl D
* |t is up to the user to ensure that the unicode buffer is large
* enough, and that the conpressed unicode nane is correct.

*

* RETURN VALUE

*

* The nunber of unicode characters which were unconpressed.

* A -1 is returned if the conpression IDis invalid.

*/

nt UnconpressUni code(

nt nunber O Byt es, [*
byt e *UDFConpressed, /*
uni code_t *uni code) /

(I'nput) nunber of bytes read fromnedia. */
(I'nput) bytes read from nedia. */
* (CQutput) unconpressed uni code characters. */

unsi gned int conpl D
i nt returnVal ue, unicodel ndex, byt el ndex;

/* Use UDFConpressed to store current byte being read. */
conpl D = UDFConpr essed[0] ;

/* First check for valid conmplD. */
if (conpID!= 8 && conplD != 16)

returnVal ue = -1;
el se

{

uni codel ndex = 0;
byt el ndex = 1;

/* Loop through all the bytes. */
whil e (bytel ndex < nunber O Byt es)
{

if (conplD == 16)

/*Move the first byte to the high bits of the unicode char. */
uni code[uni codel ndex] = UDFConpressed[byt el ndex++] << 8;

el se
uni code[uni codel ndex] = O0;
i f (bytelndex < nunber Of Byt es)

/*Then the next byte to the low bits. */
uni code[uni codel ndex] | = UDFConpr essed[byt el ndex++] ;

uni codel ndex++;

UDF 2.50 112 April 15, 2003

returnVal ue = uni codel ndex;

return(returnVal ue);

}

/***

* DESCRI PTI ON:

* Takes a string of unicode wi de characters and returns an OSTA CSO
* conpressed unicode string. The unicode MJST be in the byte order of
* the conpiler in order to obtain correct results. Returns an error
* if the conpression IDis invalid.
*
* NOTE: This routine assunmes the inplenmentation already knows, by
* the local environnent, how many bits are appropriate and
* therefore does no checking to test if the input characters fit
* into that nunber of bits or not.
*
* RETURN VALUE
*
* The total nunber of bytes in the conpressed OSTA CSO string,
* i ncl uding the conpression |D.
* A-1is returned if the conpression IDis invalid.
*/
i nt ConpressUni code(

i nt nunber O Chars, /* (Input) number of unicode characters. */
int conpl D, /* (Input) conpression ID to be used. */
uni code_t *uni code, /* (Input) unicode characters to conpress. */

byte *UDFConpressed) /* (Qutput) conpressed string, as bytes. */
{

i nt bytel ndex, unicodel ndex;
if (conpID!=8 && conplD != 16)
bytel ndex = -1; [/* Unsupported conpression ID! */

el se

{
/* Place conpression code in first byte. */
UDFConpr essed[0] = conpl D

byt el ndex = 1;
uni codel ndex = O;
whil e (uni codel ndex < number O Char s)

if (conplD == 16)

/* First, place the high bits of the char
* into the byte stream
*/
UDFConpr essed[byt el ndex++] =
(uni code[uni codel ndex] & O0xFF00) >> 8;

/*Then place the low bits into the stream */
UDFConpr essed[byt el ndex++] = uni code[uni codel ndex] & OxO00FF;
uni codel ndex++;

}
}

return(byt el ndex) ;

UDF 2.50 113 April 15, 2003

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum
used in the TAG descriptors of ECMA 167.

/*
* CRC 010041
*/
static unsigned short crc_tabl e[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, O0x70E7,
0x8108, 0x9129, OxAl4A, 0xB16B, 0xCl18C, O0xD1AD, OxE1CE, OxF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, OxF3FF, OxE3DE
0x2462, 0x3443, 0x0420, 0x1401, O0x64E6, 0x74C7, 0x44A4, 0x5485
OxA56A, 0xB54B, 0x8528, 0x9509, OxXE5EE, OxF5CF, OxC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, Ox66F6, 0x5695, 0x46B4
OxB75B, OxA77A, 0x9719, 0x8738, O0xF7DF, OxE7FE, 0xD79D, O0xC7BC
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823
OxC9CC, OxDOED, OxE98E, OxF9AF, 0x8948, 0x9969, O0xA90A, 0xB92B
Ox5AF5, 0x4AD4, Ox7AB7, 0x6A96, Ox1A71, O0x0A50, 0x3A33, O0x2A12,
OxDBFD, 0xCBDC, OxFBBF, OxEB9E, 0x9B79, 0x8B58, 0xBB3B, O0xAB1A,
Ox6CA6, 0x7C87, O0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
OxEDAE, OxFD8F, OxCDEC, O0xDDCD, OxAD2A, 0xBDOB, 0x8D68, 0x9D49
Ox7E97, 0Ox6EB6, Ox5ED5, O0x4EF4, O0x3E13, O0x2E32, O0x1E51, OxO0E70
OxFF9F, OxEFBE, OxDFDD, OxCFFC, O0xBF1B, OxAF3A, O0x9F59, O0x8F78,
0x9188, 0x81A9, O0xB1CA, O0xAlEB, 0xD10C, 0xCl2D, OxF14E, OxE16F,
0x1080, 0x00Al1l, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067
0x83B9, 0x9398, OxA3FB, 0xB3DA, 0xC33D, 0xD31C, OxE37F, OxF35E
0x02B1, 0x1290, O0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
OxB5EA, 0xA5CB, 0x95A8, 0x8589, OxF56E, OxE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405
OxA7DB, O0xB7FA, 0x8799, 0x97B8, OxE75F, OxF77E, 0xC71D, 0xD73C
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xDO4C, 0xC96D, OxF90E, OxE92F, 0x99C8, O0x89E9, 0xB98A, O0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, Ox08El, 0x3882, 0x28A3
OxCB7D, 0xDB5C, OxEB3F, OxFB1E, 0x8BF9, 0x9BD8, 0xABBB, O0xBB9A,
Ox4A75, 0x5A54, O0x6A37, 0x7Al16, Ox0AF1, Ox1AD0, 0x2AB3, 0x3A92,
OxFD2E, OxEDOF, OxDD6C, 0xCD4D, OxBDAA, O0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4CA5, 0x3CA2, 0x2C83, 0x1CEO, Ox0CC1
OXEF1F, OxFF3E, OxCF5D, OxDF7C, OxAF9B, OxBFBA, 0x8FD9, O0x9FFS8,
Ox6E17, 0x7E36, Ox4E55, Ox5E74, 0x2E93, Ox3EB2, O0xOED1, Ox1EFO

}s

unsi gned short

cksunm(s, n)
regi ster unsigned char *s;
register int n;

regi ster unsigned short crc=0;

while (n-- > 0)
crc = crc_table[(crc>>8 N *s++) & Oxff] " (crc<<8);

return crc;

}

/* UNI CODE Checksum */

unsi gned short

uni code_cksum(s, n)
regi ster unsigned short *s;
register int n;

regi ster unsigned short crc=0;
while (n-- > 0)
/* Take high order byte first--corresponds to a big endian byte stream */
crc = crc_table[(crc>>8 ~ (*s>>8) & Oxff] "~ (crc<<8);
crc = crc_table[(crc>>8 " (*s++ & Oxff)) & Oxff] ~ (crc<<8);

UDF 2.50 114 April 15, 2003

return crc;

#i f def MAIN
unsi gned char bytes[] = { 0x70, Ox6A, O0x77 };

mai n()
unsi gned short x;
x = cksun(bytes, sizeof bytes);
printf("checksum cal cul at ed=%l. 4x, correct=%. 4x\en", x, 0x3299);
exit(0);

>
#endi f

UDF 2.50 115 April 15, 2003

The CRC table in the previous listing was generated by the following program:

#i ncl ude <stdi 0. h>

/*

* a.out 010041 for CRC-CCITT
*/

nmai n(argc, argv)
int argc; char *argv[];

{
unsi gned | ong crc, poly;
int n, i;
sscanf (argv[1], "% o", &poly);
if(poly & Oxffff0000){
fprintf(stderr, "polynomal is too |arge\en");
exit(1);
printf("/*\en * CRC 0%\en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){
if(n %8 == 0)
printf(" ");
crc = n << 8;
for(i =0; i <8; i++){
if(crc & 0x8000)
crc = (crc << 1) ~ poly;
el se
crc <<= 1;
crc &= OxXFFFF
}
if(n == 255)
printf("0x%®4X ", crc);
el se
printf("0Ox%®4X, ", crc);
if(n %8 ==7)
printf("\en");
}
printf("};\en");
exit(0);
}

All the above CRC code was devised by Don P. Mitchell of AT&T Bell Laboratories and
Ned W. Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols,”

Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.

Copyright isheld by AT&T.

AT&T gives permission for the free use of the above source code.

UDF 2.50 116 April 15, 2003

6.6 Algorithm for Strategy Type 4096

This section describes a strategy for constructing an ICB hierarchy. For strategy type
4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate
that thereis 1 direct entry a1 shall be recorded as a Uint16 in the SrategyParameter field
of the ICB Tag field. A value of 2 shall be recorded in the MaximumNumber OfEntries
field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also contain 1
direct entry and 1 indirect entry, where the indirect entry specifies the address of another
ICB of the sametype. See the figure below:

DE
IE

DE
IE

DE
IE N

NOTE: This strategy builds an ICB hierarchy that is asimple linked list of direct entries.

UDF 2.50 117 April 15, 2003

6.7 ldentifier Translation Algorithms

The following sample source code examples implement the file identifier translation

algorithms described in this document.

The following basic algorithms may also be used to handle OS specific trandations of the

Volumel dentifier, VolumeSetldentifier, LogicalVolumel D and FileSetID.

6.7.1 DOS Algorithm

/* OSTA UDF conpliant file nane translation routine for DOS and */
/* W ndows short nanespaces. */
/* Define constants for nanespace translation

#define DOS_NAME_LEN 8

#define DOS_EXT_LEN 3

#define DOS_LABEL_LEN 11

#defi ne DOS_CRC_LEN 4

#defi ne DOS_CRC_MODULUS 41

/* Define standard types used in exanpl e code. */
typedef BOOLEAN int;

typedef short | NT16;

typedef unsigned short Ul NT16;

typedef U NT16 UNI CODE_CHAR;

#define FALSE O

#define TRUE 1

static char crcChar[] =

"0123456789ABCDEFGHI JKLMNOPQRSTUWNKYZ#_~- @ ;

/* FUNCTI ON PROTOTYPES */

UNI CODE_CHAR Uni codeToUpper (UNI CODE_CHAR val ue) ;

BOOLEAN | sFi | eNameChar Legal (UNI CODE_CHAR val ue) ;

BOOLEAN | sVol uneLabel Char Legal (UNI CODE_CHAR val ue) ;

I NT16 Nati veChar Lengt h(UNI CODE_CHAR val ue) ;

BOOLEAN | sDevi ceNane(UNI CODE_CHAR* nane, U NT16 nanelLen);

/***/

/* UDFDOSNane() */
/* Transl ate udf Nane to dosNane using OSTA conpliant algorithm */
/* dosNanme nmust be a Unicode string buffer at |east 12 characters */
/* in length. */

JEEEEEAEE R EEREEEEEEEEEEEEE R R R EEE R R R R R R LY

Ul NT16 UDFDOSNane(UNI CODE_CHAR* dosNane, UNI CODE_CHAR* udf Nane,
Ul NT16 udf NanelLen)
{

I NT16 i ndex;

I NT16 tar get | ndex;

I NT16 crcl ndex;

I NT16 extLen;

I NT16 naneLen;

I NT16 char Len;

I NT16 overl ayBytes;

I NT16 bytesLeft;

UNI CODE_CHAR current;

BOOLEAN needsCRC;

UNI CODE_CHAR ext [DOS_EXT_LEN] ;

needsCRC = FALSE;

/* Start at the end of the UDF file name and scan for a period
/* ("."). This will be where the DOS extension starts (if
/* any). */
i ndex = udf NanmeLen;
while (index-- > 0) {
if (udfNanme[index] =="'.")
br eak;

}

if (index < 0)
/* There name was scanned to the begi nning of the buffer */
/* and no extension was found. */
extLen = O;

UDF 2.50 118

*/

*/
*/

April 15, 2003

naneLen = udf NaneLen;

el se {
/* A DOS extension was found, process it first. */
ext Len = udf NaneLen - index - 1,
nanelLen = i ndex;

targetlndex = 0;
bytesLeft = DOS_EXT_LEN;

whi |l e (++i ndex < udf NaneLen && byteslLeft > 0)
/* Get the current character and convert it to upper */

/* case. */
current = Uni codeToUpper(udf Name[i ndex]) ;
if (current ==" ") {

/* |If a space is found, a CRC nust be appended to */
/* the mangled file nanme. */
needsCRC = TRUE;

el se {
/* Determne if this is avalid file nane char and */
/* calculate its correspondi ng BCS character byte */
/* length (zero if the char is not |egal or */
/* undi spl ayabl e on this system. */
charLen = (IsFil eNanmeCharlLegal (current)) ?
Nat i veChar Lengt h(current) : O0;

/* |If the char is larger than the avail abl e space */
/* in the buffer, pretend it is undisplayable. */
if (charLen > byteslLeft)

charlLen = 0;

if (charLen ==
/* Undi spl ayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the nmangled */
/* file nane. */
needsCRC = TRUE
charLen
current

/* Skip over any follow ng undipl ayabl e or */
/* illegal chars. */
while (index +1 <udf NameLen &&
(!'1sFi | eNameChar Legal (udf Nane[i ndex + 1]) ||
Nat i veChar Lengt h(udf Name[i ndex + 1]) == 0))
i ndex++;
}
/* Assign the resulting char to the next index in */
/* the extension buffer and determ ne how many BCS */
/* bytes are left. */
ext[target|ndex++] = current;
byt esLeft -= charlen;

}

/* Save the nunber of Unicode characters in the extension */
ext Len = targetlndex;

/* If the extension was too large, or it was zero length */
/* (i.e. the nane ended in a period), a CRC code nust be */
/* appended to the nmangl ed name. */
if (1ndex < udfNaneLen || extlLen == 0)

needsCRC = TRUE;

}

/* Now process the actual file nane. */
index = 0;
targetlndex = 0;
crclndex = 0;
overl ayBytes = -1;
byt esLeft = DOS_NAME_LEN,
while (index < nanelLen & byteslLeft > 0) {
/* Get the current character and convert it to upper case. */
current = Uni codeToUpper (udf Nama[| ndex]) ;
if (current ==" " ||current ==
/* Spaces and periods are Just ski pped, a CRC code */
/* must be added to the mangled file nane. */
needsCRC = TRUE;

}
el se {

UDF 2.50 119 April 15, 2003

/* Determne if thisis avalid file nane char and */
/* calculate its correspondi ng BCS character byte */
/* length (zero if the char is not legal or */

/* undi spl ayabl e on this system. */

charLen = (IsFil eNanmeCharLegal (current)) ?

Nat i veChar Lengt h(current) : O;

/* |If the char is larger than the avail able space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > byteslLeft)

charlLen = 0;

if (charLen ==
/* Undi spl ayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the nangled */
/* file nane. */
needsCRC = TRUE;
charlLen = 1,
current = '

/* Skip over any follow ng undiplayable or illegal */
/* chars. */
while (index +1 <nanelLen &&
(!'1sFi | eNameChar Legal (udf Nanme[i ndex + 1]) ||
Nat i veChar Lengt h(udf Name[i ndex + 1]) == 0))
i ndex++;

/* Terminate loop if at the end of the file nane. */
if (index >= nameLen)
br eak;

}

/* Assign the resulting char to the next index in the */
/* file nanme buffer and determ ne how many BCS bytes */
/* are left. */

dosNane[t arget | ndex++] = current;

byt esLeft -= charlLen;

This figures out where the CRC code needs to start */
inthe file name buffer. */
(bytesLeft >= DOS_CRC_LEN)
/* If there is enough space left, just tack it */
/* onto the end. */
crclndex = targetlndex;

/*
/*
if

el se {

If there is not enough space left, the CRC */
must overlay a character already in the file */
name buffer. Once this condition has been */
met, the value will not change. */

~——
EE

if (overlayBytes < 0) {
/* Determne the index and save the |length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC m ght overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries |ine up. */
overl ayBytes = (bytesLeft + charLen > DOS_CRC LEN)?1 :0;
crclndex = targetlndex - 1;

}
}
}
/* Advance to the next character. */
i ndex++;

/* |If the scan did not reach the end of the file nane, or the */
/* length of the file name is zero, a CRC code is needed. */
if (index < naneLen || index == 0)

needsCRC = TRUE;

/* |If the name has illegal characters or and extension, it */

/* is not a DOS device nane. */

if (needsCRC == FALSE && extLen == 0) {
/* If this is the name of a DOS device, a CRC code should */
/* be appended to the file name. */
if (1sDevi ceNane(udf Nanme, udf NaneLen))

UDF 2.50 120 April 15, 2003

needsCRC = TRUE;

}

/* Append the CRC code to the file nane, if needed. */

if (needsCRQC)
/* Get the CRC value for the original Unicode string */
U NT16 udf CRCval ue = Cal cul at eCRC(udf Nane, udf NaneLen);
/* Determne the character index where the CRC should */
/* begin. */
targetlndex = crclndex;
/* 1f the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore. */
if (overlayBytes > 0)

dosNane[target|ndex++] ="'_";
/* Append the encoded CRC value with delimter. */
dosNane[t ar get | ndex++] = '#';
dosNane[t ar get | ndex++] =
crcChar [udf CRCVal ue / (DOS_CRC_MODULUS * DOS_CRC _MODULUS)] ;

udf CRCVal ue % DOS_CRC_MODULUS * DOS_CRC_MODULUS;
dosNane[t ar get | ndex++] =
crcChar [udf CRCVal ue / DOS_CRC_MODULUS] ;
udf CRCVal ue % DOS_CRC_MODULUS;
dosNane[t ar get | ndex++] = crcChar[udf CRCVal ue] ;

}

/* Append the extension, if any. */

if (extLen > 0) {
/* Tack on a period and each successive byte in the */
/* extension buffer. */
dosNane[t ar get | ndex++] ="

for (index = 0; index < extlLen; index++)
dosNane[t ar get | ndex++] = ext[i ndex];

}

/* Return the length of the resulting Unicode string. */
return (Ul NT16)target| ndex;

/***/

/* UDFDCOSVol unelLabel () */
/* Transl ate udfLabel to dosLabel using OSTA conpliant algorithm */
/* dosLabel nust be a Unicode string buffer at |east 11 characters */
/* in length. */
/***I
Ul NT16 UDFDOSVol uneLabel (UNI CODE_CHAR* dosLabel , UN CODE_CHAR*
udf Label , Ul NT16 udf Label Len)
{

I NT16 i ndex;

I NT16 t arget | ndex;

I NT16 crcl ndex;

I NT16 charLen;

I NT16 overl ayBytes;

I NT16 bytesLeft;

UNI CODE_CHAR current;

BOOLEAN needsCRC,

needsCRC = FALSE;

/* Scan end of label to see if there are any trailing spaces. */
i ndex = udf Label Len;

while (index-- > 0) {
if (udfLabel[index] !=" ")
br eak;

}
/* If there are trailing spaces, adjust the length of the */
/* string to exclude themand indicate that a CRC code is */
/* needed. */
if (index +1 !=udfLabel Len) {

udf Label Len = index + 1;

needsCRC = TRUE;

}

i ndex = 0;
targetlndex = 0;
crclndex = 0;

UDF 2.50 121

April 15, 2003

overl ayBytes = -1;
bytesLeft = DOS_LABEL_LEN;
whil e (index < udfLabel Len && bytesLeft > 0) {
/* CGet the current character and convert it to upper case. */
current = Uni codeToUpper (udf Label [i ndex]);
if (current =="'.")
/* Periods are just skipped, a CRC code nust be added */
/* to the mangled file nane. */
needsCRC = TRUE;

el se {
/* Determne if thisis avalid file nane char and */
/* calculate its correspondi ng BCS character byte */
/* length (zero if the char is not legal or */
/* undi spl ayabl e on this system. */
charLen = (IsVol uneLabel CharLegal (current)) ?
Nat i veChar Lengt h(current) : O;
/* |If the char is larger than the avail able space in */
/* the buffer, pretend it is undisplayable. */
if (charLen > byteslLeft)
charlLen = 0;
if (charLen == 0)
/* Undi spl ayable or illegal characters are */
/* substituted with an underscore ("_"), and */
/* required a CRC code appended to the mangled */
/* file name. */
needsCRC = TRUE;
charLen = 1,
current ="' _';
/* Skip over any follow ng undiplayable or illegal */
/* chars. */
whil e (index +1 <udflLabel Len &&
(!'IsVol umeLabel Char Legal (udf Label [i ndex + 1]) ||
Nat i veChar Lengt h(udf Label [i ndex + 1]) == 0))
i ndex++;
/* Terminate loop if at the end of the file nane. */
if (index >= udfLabel Len)
br eak;
}
/* Assign the resulting char to the next index in the */
/* file name buffer and determ ne how many BCS bytes */
[* are left. */
dosLabel [t arget| ndex++] = current;
byt esLeft -= charlLen;
/* This figures out where the CRC code needs to start */
/* in the file name buffer. */
if (bytesLeft >= DOS_CRC _LEN)
/* |f there is enough space left, just tack it */
/* onto the end. */
crclndex = targetlndex;
el se {
/* If there is not enough space left, the CRC */
/* must overlay a character already in the file */
/* nane buffer. Once this condition has been */
/* met, the value will not change. */
if (overlayBytes < 0) {
/* Determne the index and save the |length of */
/* the BCS character that is overlayed. It */
/* is possible that the CRC m ght overlay */
/* half of a two-byte BCS character depending */
/* upon how the character boundaries |ine up. */
overl ayBytes = (bytesLeft + charLen > DOS_CRC _LEN)
?1 :0;
crclndex = targetlndex - 1;
}
}
}
/* Advance to the next character. */
i ndex++;

}
/* 1If the scan did not reach the end of the file name, or the */
/* length of the file name is zero, a CRC code is needed. */

UDF 2.50 122 April 15, 2003

if (index < udflLabellLen || index == 0)
needsCRC = TRUE;

/* Append the CRC code to the file nane, if needed. */

if (needsCRQC)
/* Get the CRC value for the original Unicode string */
U NT16 udf CRCval ue = Cal cul at eCRC(udf Nane, udf NaneLen);

/* Determne the character index where the CRC should */

/* begin. */
targetlndex = crclndex;

/* |If the character being overlayed is a two-byte BCS */
/* character, replace the first byte with an underscore.

if (overlayBytes > 0)
dosLabel [target|ndex++] ="'_';

/* Append the encoded CRC val ue with delimter. */
dosLabel [target| ndex++] = '#
dosLabel [t arget | ndex++] =

cr cChar [udf CRCVal ue / (DOS_CRC_MODULUS * DOS_CRC_MODULUS)] ;

udf CRCVal ue % DOS_CRC _MODULUS * DOS_CRC_MODULUS;
dosLabel [t ar get | ndex++] =

crcChar [udf CRCVal ue / DOS_CRC_MCODULUS] ;

udf CRCval ue % DOS_CRC_MODULUS;

dosLabel [target | ndex++] = crcChar [udf CRCVal ue] ;

}

/* Return the length of the resulting Unicode string. */
return (U NT16)t arget | ndex;

/***/

/* Uni codeToUpper () */
/* Convert the given character to upper-case Unicode. */

JEEEEEAEEEEEREEEEEEEEEEEEE R R R EE R R R EE R R EEEY

UNI CODE_CHAR Uni codeToUpper (UNI CODE_CHAR val ue)
{

/* Actual inplenentation will vary to accommopdate the target */
/* operating system APl services. */
/* Just handl e the ASCI | range for the t|ma being. */
return (value >= "a' && value <= "'z"') ?
value - ('a'" - "A) : value;

/***/

/* | sFil eNameChar Legal () */
/* Determine if this is alegal file nane id character. */

JEEEEEAEEEEEREEEEEEEEE SRR RS EEEE R R R R R R R LRy

BOOLEAN | sFi | eNaneChar Legal (UNI CODE_CHAR val ue)

/* Control characters are illegal. */
if (value < ")
return FALSE;

/* Test for illegal ASCII characters. */
switch (value) {
case ' \\' :
case '/':
case ':':
case
case '
case '
case '
case '
case '
case :
case 'N':
case ',':
case '& :
case '+':
[
]

TITIVMATN Y

case '='

case '

case ']':

return FALSE;

defaul t:
return TRUE;

UDF 2.50 123

April 15, 2003

JEEEEEAEEEEEREEEEEEEEEEEEE R EEEEEEEEEEEE R R R R R R LRy

/* | sVol unmeLabel Char Legal () */
/* Determine if this is a legal volunme |abel character. */
/***/

BOOLEAN | sVol uneLabel Char Legal (UNI CODE_CHAR val ue)

/* Control characters are illegal. */
if (value < ")
return FALSE;

/* Test for illegal ASCII characters. */
switch (value) {
case "\\':
case '/':
case ':'
case '*':
case '?':
case '
case '
case '
case '
case '
case '
case '
case '
case '
case '
case '
case '
case '

—— || + o~

r'et urn FALSE;

defaul t:
return TRUE;

LR R R R R E R R R R R R R R R R R LY

/
/* NativeCharLength() */

/* Determnes the correspondi ng native length (in bytes) of the */

/* given Unicode character. Returns zero if the character is */

/* undi spl ayabl e on the current system */
/***/

I NT16 Nati veChar Lengt h(UNI CODE_CHAR val ue)

/* Actual inplementation will vary to accommodate the target */
/* operating system APl services. */

* This is an exanple of a conservative test. A better test */

* will utilize the platform s | anguage/ codeset support to */

* determne how wide this character is when converted to the */
* active variable width character set. */
e

**/

/*
/* | sDeviceNane() */

/* Determine if the given Unicode string corresponds to a DOS */

/* device nane (e.g. "LPT1", "COWM", etc.). Since the set of */

/* valid device names with vary fromsystemto system and */

/* a means for determ ning themm ght not be readily avail able, */

/* this functionality is only suggested as an optional */

/* inplenmentation enhancement. */
/***/

BOOLEAN | sDevi ceNanme(UNI CODE_CHAR* name, Ul NT16 namelLen)
{

/* Actual inplementation will vary to accommodate the target */
/* operating system APl services. */

/* Just return FALSE for the time being. */

return FALSE,

UDF 2.50 124 April 15, 2003

UDF 2.50 125 April 15, 2003

6.7.2 OS2, Macintosh,Windows 95, Windows NT and UNIX Algorithm

/***

* OSTA UDF conpliant file nanme translation routine for OS/ 2,
* Wndows 95, Wndows NT, Maci ntosh and UNI X
* Copyright 1995 Mcro Design International, Inc.
* Witten by Jason M Rinn.
* Mcro Design International gives pernmission for the free use of the
* foll owi ng source code.
*
/

/***

* To use these routines with different operating systemns.

oS/ 2
Defi ne OS2
Defi ne MAXLEN = 254

W ndows 95
Define WN_95
Def i ne MAXLEN = 255

W ndows NT
Define W N_NT
Def i ne MAXLEN = 255

EEE I I S T TR R R R R T R R R

Maci nt osh:
Def i ne MAC.
Def i ne MAXLEN = 31.
UNI X
Defi ne UNI X.
Defi ne MAXLEN as specified by unix version.
/
#defi ne | LLEGAL_CHAR MARK OxO005F
#def i ne CRC_MARK 0x0023
#defi ne EXT_SI ZE 5
#defi ne TRUE 1
#defi ne FALSE 0
#defi ne PERI OD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* pyte needs to be unsigned 8-bit, and unicode_t needs to
* pe unsigned 16-bit.
*/
t ypedef unsigned int unicode_t;
t ypedef unsi gned char byte;

[*** PROTOTYPES ***/
int Islllegal (unicode_t ch);
unsi gned short uni code_cksun{regi ster unsigned short *s, register int n);

/* Define a function or macro which determnes if a Unicode character is

* printabl e under your inplenmentation.
*/

i nt Unicodel sPrint(unicode_t);

/***

* Translates a long file name to one using a MAXLEN and an il l egal

* char set in accord with the OSTA requirenents. Assunes the nane has
* already been translated to Unicode.

*

* RETURN VALUE

*

* Nurmber of uni code characters in translated nane.

*/

nt UDFTr ansNane(
uni code_t *newNane, /*(Qut put) Transl ated nane. Miust be of |ength MAXLEN*/

UDF 2.50 126 April 15, 2003

uni code_t *udf Nane, /* (lnput) Nane from UDF vol une. */
i nt udfLen, /* (Input) Length of UDF Nane. */

int index, newlndex = 0, needsCRC = FALSE;

int extlndex, newkxtlndex = 0, hasExt = FALSE;
#ifdef (OS2 | WN_95 | WN_NT)

int traillndex = 0;
#endi f

unsi gned short val ueCRC;

uni code_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udflLen; index++)

current = udf Narme[i ndex];

if (Islllegal(current) || !UnicodelsPrint(current))
needsCRC = TRUE;
/* Replace Illegal and non-di splayable chars with underscore. */
current = | LLEGAL_CHAR_ MARK;
/* Skip any other illegal or non-displayable characters. */

whi |l e(1 ndex+1 < udfLen && (Isll1egal (udf Name[i ndex+1])
|| !'Unicodel sPrint(udf Nane[index+1])))

i ndex++;
}
}
/* Record position of extension, if one is found. */
if (current == PERIOD && (udflLen - index -1) <= EXT_SI ZE)
if (udflLen == index + 1)
/* Atrailing period is NOT an extension. */
hasExt = FALSE;
el se
hasExt = TRUE;
ext | ndex = i ndex;
neweExt | ndex = new ndex;
}
}

#ifdef (OS2 | WN_95 | WN_NT)
/* Record position of last char which is NOT period or space. */
else if (current !'= PERIOD && current != SPACE)
traillndex = new ndex;
}
#endi f
if (newl ndex < MAXLEN)
newNare[newl ndex++] = current;
el se

needsCRC = TRUE;

}
}

#ifdef (OS2 | WN_95 | WN_NT)
/[* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */

if (traillndex !'= newi ndex - 1)
{
newl ndex = traillndex + 1,
needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not nmake an extension. */
}
#endi f

UDF 2.50 127 April 15, 2003

i{f (needsCRQ)

uni code_t ext[EXT_SI ZE];
int |ocal Extl ndex = O;
if (hasExt)

{

i nt maxFi | enanelLen;
/* Transl ate extension, and store it in ext. */

for(index = 0; index<EXT_SIZE && extlndex + index +1 < udfLen;

i ndex++)
{
current = udf Nanme[extlndex + index + 1];
if (Islllegal (current) || !UnicodelsPrint(current))
needsCRC = 1;
/* Replace Illegal and non-di splayabl e chars
* with underscore.
*/
current = | LLEGAL_CHAR_ MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
whil e(index + 1 < EXT_SI ZE
&& (Islllegal (udf Nane[ext| ndex + index + 2])
| | !Uni codel sPrint (udf Name[extl ndex + index + 2])))
i ndex++;
}
ext [l ocal Ext | ndex++] = current;
}

/* Truncate filename to | eave roomfor extension and CRC.

maxFi | enameLen = ((MAXLEN - 5) - |ocal Extlndex - 1);
i f (newl ndex > maxFil enaneLen)

newl ndex = maxFi | enanelLen;
el se

newl ndex = newExt | ndex;

}
else if (new ndex > MAXLEN - 5)

/*If no extension, nake sure to |leave roomfor CRC */
newl ndex = MAXLEN - 5;

}
newName[newl ndex++] = CRC MARK; /* Add mark for CRC */

/*Calculate CRC fromoriginal filenane fromFileldentifier.

val ueCRC = uni code_cksun(udf Name, udfLen);

/* Convert 16-bits of CRC to hex characters. */

newNane[newl ndex++] hexChar [(val ueCRC & 0xf000) >> 12];
newName[newl ndex++] hexChar [(val ueCRC & 0x0f 00) >> 8];
newNane[newl ndex++] hexChar [(val ueCRC & 0x00f0) >> 4];
newName[newl ndex++] hexChar [(val ueCRC & 0x000f)];

/* Place a translated extension at end, if found. */
if (hasExt)
{

newNare[newl ndex++] = PERI OD;
for (index = 0;index < |ocal Extlndex ;index++)

newNanme[newl ndex++] = ext[i ndex];

}

ret urn(newl ndex) ;

UDF 2.50 128

April 15, 2003

#ifdef (OS2 | WN_95 | W N_NT)

/*****************_********;***
* Decides if a Unicode character nmatches one of a |ist

* of ASClI| characters.

* Used by OS2 version of Islllegal for readability, since all of the

* i1l egal characters above 0x0020 are in the ASCI| subset of Unicode.
* Works very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI| string.
*/

i nt Uni codel nString(

unsi gned char *string, /* (lnput) String to search through. */

unicode_t ch) /* (Input) Unicode char to search for. */

int found = FALSE;
while (*string !'= '\0" && found == FALSE)
{

/* These types shoul d conpare, since both are unsigned nunbers. */
if (*string == ch)

found = TRUE;
string++;
%eturn(found);
;}#endif [* 082 */
/***

* Deci des whether the given character is illegal for a given CS.
*

* RETURN VALUE

*

* Non-zero if char is illegal.
*/
int Islllegal (unicode_t ch)
#i f def MAC
/* Only illegal character on the MAC is the colon. */
if (ch == 0x003A)
return(l);
el se
{
return(0);
}
#elif defined UNI X
/[* Illegal UNI X characters are NULL and sl ash. */
if (ch == 0x0000 || ch == 0x002F)
{
return(l);
el se
return(0);

#elif defined (OS2 | WN_95 | WN_NT)
/* Illegal char's for OS/2 according to WARP tool kit. */
if (ch < 0x0020 || UnicodelnString("\\/:*?2\"<>|", ch))
return(l);
el se

return(0);

UDF 2.50 129 April 15, 2003

#endi f

UDF 2.50 130 April 15, 2003

6.8 Extended Attribute Checksum Algorithm

/
Cal cul ates a 16-bit checksum of the Inplenentation Use

Ext ended Attribute header or Application Use Extended Attribute
header. The fields AttributeType through Inplenmentationldentifier
(or Applicationldentifier) inclusively represent the

data covered by the checksum (48 bytes).

E I B I

~

Ui nt16 ConputeEAChecksun(byte *data)

{
Ui nt 16 checksum = 0;
Ui nt count ;
for(count = 0; count < 48; count++)
checksum += *dat a++;
}
return(checksum);
}

UDF 2.50 131 April 15, 2003

6.9 Requirementsfor DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DV D-ROM
discs.

* DVD-ROM discs shall be mastered with the UDF file system

 DVD-ROM discs shall consist of asingle volume and a single partition.

NOTE:. Thedisc may also include the ISO 9660 file system. If the disc contains both
UDF and ISO 9660 file systems it shall be known as a UDF Bridge disc. ThisUDF
Bridge disc will allow playing DVD-ROM mediain computers, which may only support
SO 9660. As UDF computer implementations are provided, the need for 1SO 9660 will
disappear, and future discs should contain only UDF.

If you intend to do any DV D development with UDF, please make sure that you fill out

operating system, check the Other box and writein DVD.

6.9.1 Constraintsimposed on UDF by DVD-Video

This section describes the restrictions and requirements for UDF formatted DV D-Video
discsfor dedicated DVD content players. DVD-Video is one specific application of
DVD-ROM using the UDF format for the home consumer market. Due to limited
computing resources within aDV D player, restrictions and requirements were created so
that aDVD player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by
ECMA 167 (2™ edition) and UDF 1.02. Thiswill ease playing of DVD-Video in
computer systems. Examples of such datainclude the time, date, permission bits, and a
free space map (indicating no free space). While DVD player implementations may
ignore these fields, a UDF computer system implementation will not. Both entertainment-
based and computer-based content can reside on the same disc.

NOTE: DVD-Video discs mastered according to UDF 2.50 may not be compatible with
DVD-Video players. DVD-Video players expect mediain UDF 1.02 format.

In an attempt to reduce code size and improve performance, all division described is
integer arithmetic; all denominators shall be 2", such that all divisions may be carried out
vialogical shift operations.

* A DVD player shal only support UDF and not 1SO 9660.

« Originating systems shall constrain individual files to be less than or equal to 2%° -
Logical Block Sze bytesin length.

UDF 2.50 132 April 15, 2003

» Thedataof each file shall be recorded as a single extent. Each File Entry shall be
recorded using the ICB Strategy Type 4.

* Fileand directory names shall be compressed as 8 bits per character using OSTA
Compressed Unicode format.

* A DVD player shal not be required to follow symbolic links to any files.

» TheDVD-Video files shall be stored in a subdirectory named "VIDEO_TS" directly
under the root directory. Directory names are standardized in the DVD Specifications
for Read-Only Disc document.

NOTE: The DVD Specifications for Read-Only Disc is a document, published by the
DVD Format/Logo Licensing Corporation, see6.9.3! This document describes the
names of all DVD-Video files and a DV D-Video directory, which will be stored on
the media, and additionally, describes the contents of the DVD-Video files.

» Thefilenamed "VIDEO_TS.IFO" inthe VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files that the DVD player needs
to access. There may be other files and directories on the media which are not intended
for the DVD player and do not meet the above listed constraints. These other files and
directories areignored by the DVD player. Thisiswhat enables the ability to have both
entertainment-based and computer-based content on the same disc.

6.9.2 How toread a UDF DVD-Video disc
This section describes the basic procedures that aDVD player would go through to read a
UDF formatted DVD-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence
Find an ECMA 167 Descriptor in avolume recognition area, which shall start at
logical sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer
The Anchor Volume Descriptor Pointer, which islocated at an anchor point, must be
found. Duplicate anchor points shall be recorded at logical sector 256 and logical
sector n, where n is the highest numbered logical sector on the disc.

A DVD player only needs to look at logical sector 256; the copy at logical sector nis
redundant and only needed for defect tolerance. The Anchor Volume Descriptor
Pointer contains three things of interest:
1. Static structures that may be used to identify and verify integrity of the disc.
2. Location of the Main Volume Descriptor Sequence (absolute logical sector
number)
3. Length of the Main VVolume Descriptor Sequence (bytes)

UDF 2.50 133 April 15, 2003

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be
used for format verification if desired. Verifying the checksum in byte 4 and CRC in
bytes 8-11 are good additional verificationsto perform. MVDS_L ocation and
MVDS _Length are read from this structure.

6.9.2.3 Step 3. Volume Descriptor Sequence
Read logical sectors:

MVDS Location through MVDS Location + (MVDS Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence cannot
be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with atag identifier of 5. The partition
number and partition location shall be recorded in logical sector number.

Partition_Location and Partition_L ength are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with atag identifier of 6. The
location and length of the File Set Descriptor shall be recorded in the Logical
Volume Descriptor.

FSD_Location, and FSD_Length are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor
The File Set Descriptor islocated at logical sector numbers:

Partition_Location + FSD_Location through
Partition_Location + FSD_L ocation + (FSD_Length - 1) / BlockSize

RootDir_Location and RootDir_Length shall be read from the File Set Descriptor in
logical block number.

6.9.2.5 Step 5. Root Directory File Entry
RootDir_Location and RootDir_Length define the location of a File Entry. The File
Entry describes the data space and permissions of the root directory.

The location and length of the Root Directory is returned.

6.9.2.6 Step 6. Root Directory
Parse the data in the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TSFile Identifier Descriptor. The name shall bein 8 bit
compressed UDF format. Verify that VIDEO_TSisadirectory.

UDF 2.50 134 April 15, 2003

Read the File Identifier Descriptor and find the location and length of aFile Entry
describing the VIDEO_TS directory.

6.9.2.7 Step 7. FileEntry of VIDEO_TS
The File Entry found in the step above describes the data space and permissions of
the VIDEO_TS directory.

The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TSdirectory
The extent found in the step above contains sets of File Identifier Descriptors. In this
pass, verify that the entry pointsto afile and isnamed VIDEO_TS.IFO.

6.9.2.9 Step 9. FileEntry of VIDEO_TS.IFO
The File Entry found in the step above describes the data space and permissions of
the VIDEO TS.IFOfile.

The location and length of the VIDEO_TS.IFO fileis returned.

Further files can be found in the same manner asthe VIDEO_TS.IFO file when
needed.

6.9.3 Obtaining DVD Documents
To obtain a copy of the DVD Specifications for Read-Only Disc document as well as
other DVD related material, contact:

DVD Format/Logo Licensing Corporation
Shiba Shimizu Bldg. 5F

2-3-11 Shibadaimon, Minato-ku

Tokyo 105-0012

Japan

TEL: +81-3-5777-2883
FAX: +81-3-5777-2884

UDF 2.50 135 April 15, 2003

6.10 Recommendationsfor CD Media

CD Media (CD-R and CD-RW) requires special consideration due to its nature. CD was
originally designed for read-only applications, which affects the way in which it is
written. The following guidelines are established to ensure interchange.

Each file and directory shall be described by asingle direct ICB. The ICB should be
written after the file data to allow for data underruns during writing, which will cause
logical gapsinthefiledata The ICB can be written afterward which will correctly
identify all extents of the filedata. The ICB shall be written in the data track, the file
system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media

ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and
either N or (N - 256), where N is the last recorded Physical Address on the media. UDF
requires that the AV DP be recorded at both sector 256 and sector (N - 256) when each
and still be interchangeable, but not strictly in compliance with ECMA 167. Inthe
intermediate state, only one AVDP exists. It should exist at sector 256, but if thisis not
possible due to atrack reservation, it shall exist at sector 512.

Implementations should place file system control structuresinto virtual space and file
datainto real space. Reader implementations may cache the entire VAT. The size of the
VAT should be considered by any UDF originating software. Computer based
implementations are expected to handle VAT sizes of at least 64K bytes; dedicated player
implementations may handle only smaller sizes.

The VAT may be located by using READ TRACK INFORMATION (for unfinished
media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See
X3T10-1048D (SCSI-3 Multi Media Commands).

6.10.1.1 Requirements

» Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or
Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on
one disc is not allowed.
NOTE: According to the Multisession CD Specification, all data sessionson adisc
must be of the same type (Mode 1, or Mode 2 Form 1).

* If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

Filenumber =0
Channel number =0
Submode = 08h
Coding information=0

UDF 2.50 136 April 15, 2003

* Anintermediate state is alowed on CD-R mediain which only one AVDP is
recorded; this single AVDP shall be at sector 256 or sector 512 and according to the
multi-session rules below.

» Sequential file system writing shall be performed with variable packet writing. This
allows maximum space efficiency for large and small updates. Variable packet
writing is more compatible with CD-ROM drives, as current models do not support
method 2 addressing required by fixed packets.

» ThelLogica Volume Integrity descriptor shall be recorded and the volume marked as
open. Logical volume integrity can be verified by finding the VAT ICB at the last
recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise
itisdirty.

» The Partition Header descriptor, if recorded, shall specify no Unallocated Space
Table, no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space
Table, and no Freed Space Bitmap. The drive is capable of reporting free space
directly, eliminating the need for a separate descriptor.

» Each surface shall contain O or 1 read only partitions, O or 1 write once partitions, and
0 or 1 virtual partitions. CD-R media should contain 1 write once partition and 1
virtual partition.

6.10.1.2 UDF “Bridge” formats

SO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an 1SO 9660 file
systemis desired, it may contain references to the same files as those referenced by
ECMA 167 structures, or reference a different set of files, or acombination of the two.

It is assumed that early implementations will record some SO 9660 structures but that as
implementations of UDF become available, the need for ISO 9660 structures will
decrease.

If an 1SO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA
extensions for 1ISO 9660 must be used.

6.10.1.3 End of session data

A session is closed to enable reading by CD-ROM drives. The last complete session on
the disc shall conform completely to ECMA 167 and have two AVDPs recorded. This
shall be accomplished by writing data according to End of session data table below.
Although not shown in the following example, the data may be written in multiple
packets.

UDF 2.50 137 April 15, 2003

End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user
data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with ECMA 167.

6.10.2 Use of UDF on CD-RW media

CD-RW mediais randomly readable and block writable. This means that while any
individual sector may be read, writing must occur in blocks containing multiple sectors.
CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing
mechanisms have been defined.

6.10.2.1 Requirements
» Writing which conforms to this section of the standard shall be performed using fixed
length packets.

* Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,
either Mode 1 or Mode 2 Form 1 shall be used.
NOTE: According to the Multisession CD Specification, all data sessionson adisc
must be of the same type (Mode 1, or Mode 2 Form 1).

* If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data
files and by the UDF structures shall have the following value:

Filenumber =0
Channel number =0
Submode = 08h
Coding information=0

UDF 2.50 138 April 15, 2003

» The host shall perform read/modify/write to enable the apparent writing of single 2K
sectors.

» The packet length shall be set when the disc isformatted. The packet length shall be
32 sectors (64 KB).

» Defective packets known at format time shall be allocated by the Non-Allocatable
Space Stream (see 3.3.7.2).

» Sparing shall be managed by the host via the sparable partition and a sparing table.

» Discsshall be formatted prior to use.

6.10.2.2 Formatting

Formatting shall consist of writing alead-in, user data area, and lead-out. These areas
may be written in any order. A verification pass may follow this physical format.
Defective packets found during the verification pass shall be enumerated in the

Non-Allocatable Space Stream (see 8.3.7.2). Finally, file system root structures shall be
recorded. These mandatory file system and root structures include the Volume
Recognition Sequence, Anchor Volume Descriptor Pointers, aVolume Descriptor
Sequence, a File Set Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,
where N isthe Physical Address of the last addressable sector.

Allocation for sparing shall occur during the format process. The sparing allocation may
be zero in length.

The free space descriptors shall be recorded and shall reflect space allocated to defective
areas and sector sparing areas. The format may include all available space on the medium.
However, if requested by the user, a subset may be formatted to save formatting time.
That smaller format may be later “grown” to the full available space.

UDF 2.50 139 April 15, 2003

6.10.2.3 Growing the Format

If the medium is partialy formatted, it may be later grown to alarger size. This operation
consists of:

» Optionaly erase the lead-in of the last session.

* Optionaly erase the lead-out of the last session.

» Write packets beginning immediately after the last recorded packet.
» Update the sparing table to reflect any new spare areas

* Adjust the partition map as appropriate

» Update the free space map to show new available area

* Movethelast AVDPtothe new N - 256

* Writethelead-in (which reflects the new track size)

» Write the lead-out

6.10.2.4 Host Based Defect M anagement

The host shall perform defect management operations. The CD format was defined
without any defect management; to be compatible with existing technology and
components, the host must manage defects. There are two levels of defect management:
Marking bad sectors at format time and on-line sparing. The host shall keep the tables on
the media current.

6.10.2.5 Read Modify Write Operation

CD-RW mediarequires large writable units, as each unit incurs a 14KB overhead. The
file system requires a 2KB writable unit. The differencein write sizesis handled by a
read-modify-write operation by the host. An entire packet is read, the appropriate
portions are modified, and the entire packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levelsof Compliance

6.10.2.6.1 Level 1

The disc shall be formatted with exactly one lead-in, program area, and lead-out. The
program area shall contain exactly one track.

6.10.2.6.2 Level 2

The last session shall contain the UDF file system. All prior sessions shall be contained
in one read-only partition.

UDF 2.50 140 April 15, 2003

6.10.2.6.3 Level 3
No restrictions shall apply.

6.10.3 Multisession and Mixed M ode

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ECMA 167 to be at alocation relative to the beginning of the disc. The
beginning of adisc shall be determined from a base address Sfor the purposes of finding
the VRS and AVDP.

‘S isthe Physical Address of the first data sector in the first recorded data track in the
last existent session of the volume. ‘S isthe same value currently used in multisession
SO 9660 recording. Thefirst track in the session shall be a data track.

‘N’ isthe physical sector number of the last recorded data sector on a disc.

If random write mode is used, the media may be formatted with zero or one audio
sessions followed by exactly one writable data session containing one track. Other
session configurations are possible but not described here. There shall be no more than
one writable partition or session a one time, and this session shall be the last session on
the disc.

6.10.3.1 Volume Recognition Sequence
The following descriptions are added to UDF (see also ECMA 167 Part 2) in order to
handle a multisession disc.

» Thevolume recognition area of the UDF Bridge format shall be the part of the
volume space starting at sector S+ 16.

* The volume recognition space shall end in the track in which it begins. Asaresult of
this definition, the volume recognition area always exists in the last session of adisc.

* When recorded in Random Access mode, a duplicate Volume Recognition Sequence
should be recorded beginning at sector N - 16.

6.10.3.2 Anchor Volume Descriptor Pointer

Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical
sector numbers: S+ 256 and N - 256. The AVDP at sector N - 256 shall be recorded
before closing a session; it may not be recorded while a session is open.

6.10.3.3 UDF Bridge format

The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF multisession Bridge disc shall contain a UDF file system in its last
session. The last session shall follow the rules described in “Multisession and Mixed
Mode” section above. The disc may contain sessions that are based on 1SO 9660, audio,
vendor unique, or acombination of file systems. The UDF Bridge format allows CD
enhanced discs to be created.

A new Main and Reserve Volume Descriptor Sequence may exist in each added session,
and may be different than earlier VDSs.

UDF 2.50 141 April 15, 2003

If the last session on a CD does not contain avalid UDF file system, the disc is not a UDF
disc. Only the UDF structuresin the last session, and any UDF structures and data
referenced through them, are valid.

The UDF session may contain pointers to data or metadata in other sessions, pointersto
data or metadata only within the UDF session, or a combination of both. Some examples
of UDF Bridge discs are shown below.

Multisession UDF disc
Accessto LSN=16+x Accessto LSN=256

- , " \l —
—» \ —»
16 sectors R 16 sectors R
256 sectors - N - 256 / 256 sectors -
LSN=0 _LSN=S
) |Fi rst Session | " 1% Recorded Track in the last session

|:| : Volume recognition area

I : Anchor point

CD enhanced disc

:]_S‘t session an session
UDF Session aup-
Playable by conventional CD-Player Used by UDF

UDF 2.50 142 April 15, 2003

| SO 9660 converted to UDF

1% session 2" session 3" session

9660 Session 9660 Session UDF Session anp-

v

&
<

Written by conventional 9660 formatter software

'
A4

Managed by UDF

Foreign format converted to UDF

1% session 2" session 3" session

Data Session Data Session UDF Session aup-

V' S
v

Written by another file system

V' S
v

Managed by UDF

6.11 Real-TimeFiles

A Real-Timefileisafile that requires a minimum data-transfer rate when writing or
reading, for example, audio and video data. For these files special read and write
commands are needed. For example for CD and DVD devices these special commands
can be found in the Mount Fuji 4 specification.

A Real-Timefile shall be identified by file type 249 in the File Type field of the files ICB
Tag.

UDF 2.50 143 April 15, 2003

6.12 Requirementsfor DVD-R/-RW/RAM inter changeability

This appendix defines the requirements and restrictions on volume and file structures for

between users of both computer systems and consumer appliances. These requirements
do not apply to the discs that are used in a computer system environment only and have
no interchangeability with consumer appliances. The common requirements for these
DVD discs are summarized as follows:

1. Thevolume and file structure shall comply with UDF 2.00.

2. The Minimum UDF Read Revision and Minimum UDF Write Revision shall be
2.00.

3. Thelength of logical sector and logical block shall be 2048 bytes.

4. A Main Volume Descriptor Sequence and a Reserve V olume Descriptor Sequence
shall be recorded.

6.12.1 Requirementsfor DVD-RAM

The requirements for DVD-RAM discs are based on UDF 2.00. The volume and file
structure is simplified as for overwritable discs using non-sequential recording.

For Volume Structure:
1. A partition on aDVD-RAM disc shall be an overwritable partition specified as
access type 4.
2. Virtua Partition Map and Virtual Allocation Table shall not be recorded.
3. Sparable Partition Map and Sparing Table shall not be recorded.

For File Sructure:
4. Unalocated Space Table or Unallocated Space Bitmap shall be used to indicate
a space set. Freed Space Table and Freed Space Bitmap shall not be recorded.
5. Non-Allocatable Space Stream shall not be recorded.

6.12.2 Requirementsfor DVD-RW

The requirements for DVD-RW discs under Restricted Overwrite mode are based on
UDF 2.00. The volume and file structure is ssmplified as for rewritable discs using non-
sequential recording.

For Volume Structure:
1. A discshal consist of asingle volume with a single sparable partition per side.
2. A Sparable Partition Map and Sparing Table shall be recorded.
3. Length of apacket shall be 16 sectors (32 KB) and the first sector number of a
packet shall be an integral multiple of 16.
4. Virtual Partition Map and Virtual Allocation Table shall not be recorded.

UDF 2.50 144 April 15, 2003

For File Sructure:

5. Unallocated Space Bitmap shall be used to indicate a space set. Unallocated
Space Table, Freed Space Table and Freed Space Bitmap shall not be recorded.
Non-Allocatable Space Stream shall be recorded.

7. |1CB Strategy type 4 shall be used.

8. Short Allocation Descriptors or the embedded data shall be recorded in the
Allocation Descriptors field of the File Entry or Extended File Entry. Long
Allocation Descriptors shall not be recorded in thisfield.

o

6.12.3 Requirementsfor DVD-R

The requirements for DVD-R discs under Disc a once recording mode and under
Incremental recording mode are based on UDF 2.00. The volume and file structureis
simplified as for write once discs using sequentia recording.

For Volume Structure:
1. Length of apacket shall be an integral multiple of 16 sectors (32 KB) and the
first sector number of a packet shall be an integral multiple of 16.
2. Sparable Partition Map and Sparing Table shall not be recorded.
3. Under Incremental recording mode, only one Open Integrity Descriptor shall be
recorded in the Logica Volume Integrity Sequence.
4. Under Incremental recording mode, Virtual Partition Map shall be recorded.

For File Structure:
5. Unallocated Space Table, Unallocated Space Bitmap, Freed Space Table and
Freed Space Bitmap shall not be recorded.
6. Only one File Set Descriptor shall be recorded.
7. Non-Allocatable Space Stream shall not be recorded.
8. Under Incremental recording mode, Virtual Allocation Tableand VAT ICB shall
be recorded.
9. Under Incremental recording mode, ICB Strategy type 4 shall be used.
10. Under Incremental recording mode, the VAT entriesin VAT shall be assigned as
follows:
- Thevirtual address 0 shall be used for File Set Descriptor.
- Thevirtual address 1 shall be used for the ICB of the root directory.
- Thevirtual addressesin the range of 2 to 255 shall be assigned for the
File Entry of DVD_RTAYV directory and File Entries of files under the
DVD_RTAYV directory.

6.12.4 Requirementsfor Real-Timefilerecording on DVD discs

DVD Video Recording specification defines the DVD specific sub-directory
"DVD_RTAV" and al DVD specific filesunder the DVD_RTAYV directory. DVD
specific files consist of Real-Time files with the file type 249 and the related information
files.

UDF 2.50 145 April 15, 2003

For Volume Sructure:

1.

For DVD-RAM/RW discs, adisc shall consist of asingle volume with asingle
partition per side. For DVD-R discs, adisc shall consist of a single volume with
awrite once partition and a virtual partition per side.

For DVD-RW discs, First Sparing Table and Second Sparing Table shall be
recorded.

For File Sructure:

3.
4.

5.

UDF 2.50

For DVD-RAM/RW discs, only Unallocated Space Bitmap shall be used.

For DVD-RW discs, the extent of Unallocated Space Bitmap should have the
length of Space Bitmap Descriptor for the available Data Recordable area.
Consumer Content Recorders record all their datain a special subdirectory,
DVD_RTAV, located in the root directory. The DVD_RTAYV directory and its
contents have special file system restrictions which are defined in DVD
Specifications published from DV D Format/Logo Licensing Corporation, see
6.9.3. Animplementation or application should not create or modify filesin this
directory unless it meets the restrictions defined by DVD Specifications
specified above.

146 April 15, 2003

6.13 Recommendationsfor DVD+R and DVD+RW Media

DVD+R and DVD+RW Mediarequire special consideration due to their nature. The
following guidelines are established to ensure interchange.

6.13.1 Useof UDF for incremental writing on DVD+R media

ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and
either N or (N - 256), where n isthe last recorded Physical Address on the media. Thefile
system may be in an intermediate state before closing and still be interchangeable, but not
strictly in compliance with ECMA 167. In the intermediate state, only one AVDP exists.
It should exist at sector 256 or, if not possible due to areserved Fragment, it shall exist at
sector 512. Before the second AV DP has been recorded, the file systemisin an
intermediate state and is not strictly in compliance with ECMA 167.

Implementations should place file system control structuresinto virtual space and file
datainto real space. Reader implementations may cache the entire VAT. The size of the
VAT should be considered by any UDF originating software.

The VAT may be located by using READ TRACK INFORMATION command. See
SCSI-3 Multi Media Commands.

6.13.1.1 Requirements

* Anintermediate state is allowed on DVD+R mediain which only one AVDPis
recorded; this single AVDP shall be at sector 256 or sector 512 and according to the
multisession rules below.

» ThelLogica Volume Integrity descriptor shall be recorded and the volume marked as
open. Logica volume integrity can be verified by finding the VAT ICB at the last
recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise
itisdirty.

» The Partition Header descriptor, if recorded, shall specify no Unallocated Space
Table, no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space
Table, and no Freed Space Bitmap. The driveis capable of reporting free space
directly, eliminating the need for a separate descriptor.

» Each surface shall contain O or 1 read only partitions, O or 1 write once partitions, and
0 or 1 virtual partitions. DVD+R media should contain 1 write once partition and 1
virtual partition.

6.13.1.2 “Bridge” formats

SO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an 1SO 9660 file
system is desired, it may contain references to the same files as those referenced by
ECMA 167 structures, or reference adifferent set of files, or a combination of the two.

UDF 2.50 147 April 15, 2003

6.13.1.3 End of session data

A session is closed to enable reading by DVD-ROM drives. The last complete session on
the disc shall conform completely to ECMA 167 and have two AVDPs recorded. This
shall be accomplished by writing data according to End of session data table below.

End of session data

Count Description
1 Anchor Volume Descriptor Pointer
255 Implementation specific. May contain user
data, file system structures, and/or link areas.
1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.
Compatibility with drives that do not accurately report the location of the last sector will
be enhanced. Implementations shall ensure that enough space is available to record the
end of session data. Recording the end of session data brings a volume into compliance
with ECMA 167.

6.13.1.4 Multisession in DVD+R

The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are
specified by ECMA 167 to be at alocation relative to the beginning of the disc. The
beginning of adisc shall be determined from a base address Sfor the purposes of finding
the VRS and AVDP.

‘S isthelogical sector number of the first data sector in the last existent session of the
volume.

‘N’ isthelogical sector number of the last recorded data sector on adisc.

There shall be no more than one writable partition or session at one time, and this session
shall be the last session on the disc.

6.13.1.4.1 Volume Recognition Sequence

The following descriptions are added to UDF (see also ECMA 167 Part 2) in order to
handle a multisession disc.

» Thevolume recognition area of the UDF Bridge format shall be the part of the
volume space starting at sector S+ 16.

* The volume recognition space shall end in the Session in which it begins. Asaresult
of this definition, the volume recognition area always exists in the last session of a
disc.

UDF 2.50 148 April 15, 2003

6.13.1.4.2 Anchor Volume Descriptor Pointer

The Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following
logical sector numbers: S+ 256 and N - 256. The AVDP at sector N - 256 shall be
recorded before closing a session; it may not be recorded while a session is open.

6.13.1.4.3 UDF Bridge format

The UDF Bridge format allows UDF to be added to a disc that may contain another file
system. A UDF Bridge disc shall contain a UDF file systemin itslast session. The last
session shall follow the rules described in “Multisession in DVD+R” section above. The
disc may contain sessions that are based on 1SO 9660, vendor unique, or a combination of
file systems.

A new Main and Reserve Volume Descriptor Sequence may exist in each added session,
and may be different than earlier VDSs.

If the last session on a CD does not contain avalid UDF file system, the disc is not a UDF
disc. Only the UDF structures in the last session, and any UDF structures and data
referenced through them, are valid.

The UDF session may contain pointers to data or metadata in other sessions, pointersto
data or metadata only within the UDF session, or a combination of both. Some examples
of UDF Bridge discs are shown below.

Multisession UDF disc
Accessto LSN=16+x Accessto LSN=256

........... > "l \l —
DR \ «—>
16 sectors R 16 sectors R
256 sectors i N - 256 / 256 sectors i
LSN=0 _LSN=S
) |First Session | g ‘|Last Session

|:| : Volume recognition area

I : Anchor point

UDF 2.50 149 April 15, 2003

| SO 9660 converted to UDF

1% session 2" session 3" session

9660 Session 9660 Session UDF Session anp-

v

&
<

Written by conventional 9660 formatter software

'
A4

Managed by UDF

Foreign format converted to UDF

1% session 2" session 3" session

Data Session Data Session UDF Session amp

'
v

Written by another file system

V' S

v

Managed by UDF

6.13.2 Use of UDF on DVD+RW 4.7 GBytes Basic Format media

DVD+RW 4.7 GBytes Basic Format media are random readable and writable, where
needed the DV D+RW drive performs Read-Modify-Write cycles to accomplish this. For
DVD+RW 4.7 GBytes Basic Format media the drive does not perform defect
management. The DVD+RW 4.7 GBytes Basic Format provides the following features:

* A Physical Sector Size of 2048 Bytes
o 2048 Byte user datatransfer

* Random read and write access

» Background physical formatting

 TheMediaTypeis Overwritable (partition access type 4)

UDF 2.50 150 April 15, 2003

6.13.2.1 Requirements

» The packet length shall be 16 sectors (32 KB).

» Defective packets known at format time shall be allocated by the Non-Allocatable

Space Stream (see 3.3.7.2).

» Sparing shall be managed by the host via the sparable partition and a sparing table.
6.13.2.2 Background Physical For matting

Physical formatting is performed by the drive in background. In implementing the host

applications, the following requirements for the drive should be considered:

o After some minimal amount of formatting has been performed, the operation
continues in background.

» Attheinitiaization of the file system, after the Background Physical Formatting has
been started, the host must record the first AVDP at sector 256. The second AVDP
must be recorded after the Background physical Formatting has been finished. Before
the second AV DP has been recorded, the file system isin an intermediate state and is
not strictly in compliance with ECMA 167. The disc can be gjected before the
background formatting has finished, and in that case only one AVDP exists. Note that
at an early gect the drive must format all non-recorded areas up to the highest sector
number recorded by the host, this could cause a significant delay in the early gject
process. Implementations are recommended to allocate the lowest numbered blocks
available while background physical formatting isin progress.

* Thebackground physical formatting status shall not influence the recording of the
LVID. Atearly gect the LVID shall be recorded in the same way as it will be
recorded on rewritable mediathat do not support background physical formatting.

The physical formating may be followed by a verification pass. Defects found during the
verification pass shall be enumerated in the Non-Allocatable Space Stream, see 3.3.7.2.

Finally, file system root structures shall be recorded. These mandatory file system and
root structures include the V olume Recognition Sequence, the Anchor V olume Descriptor
Pointers, the Volume Descriptor Sequences, a File Set Descriptor and a Root Directory.
Allocation for sparing shall occur during the formatting process. The sparing alocation
may be zero in length.

The unallocated space descriptors shall be recorded and shall reflect the space allocated to
not-spared defective areas and sector sparing areas.

The format may include al available space on the medium. However, formatting may be
interrupted upon request by the user. Formatting may later be continued to the full space.

UDF 2.50 151 April 15, 2003

6.14 Recommendationsfor Mount Rainier formatted media

The following guidelines are established to ensure interchange of Mount Rainier (MRW)
formatted media.

6.14.1 Propertiesof CD-MRW and DVD+MRW media and drives

Thefollowing isalist of key properties of MRW media and drives:
* A Physical Sector Size of 2048 Bytes

* Thedrive performs Read/M odify/Write cycles when needed. Data transfer between
the host and the MRW drive isin multiples of 2048 bytes.

» Random access read and writeis possible

* Driveleve defect management

* Thedrive performs background physical formatting

* TheMediaTypeis Overwritable (partition access type 4)

* A Non-Allocatable Space List, Non-Allocatable Space Stream and Sparing table shall
not be used on MRW formatted media

6.14.2 Background Physical Formatting

At theinitidization of the file system, after the Background Physical Formatting has been
started, the host must record the first AVDP at sector 256. The second AVDP must be
recorded after the Background physical Formatting has been finished. Before the second
AVDP has been recorded, the file system isin an intermediate state and is not strictly in
compliance with ECMA 167. The disc can be g ected before the background formatting is
finished, in that case only one AVDP exists on the MRW disc. Notethat at an early gect
the drive must format all non-recorded areas up to the highest sector number recorded by
the host, this could cause a significant delay in the early gect process. Implementations
are recommended to allocate the lowest numbered blocks available while background
physical formatting isin progress.

The background physical formatting shall not influence the recording of the LVID. At
early gect the LVID shall be recorded in the same way as it will be recorded on
rewritable mediathat do not support background physical formatting.

UDF 2.50 152 April 15, 2003

6.15 UDF Media Format Revision History
The following table shows when changes to the UDF Specification have taken place that
affect the UDF format that can be recorded on a piece of media. The Document Change
Notices (DCNs), which document a specific change, are referenced in the table. The
column Update in UDF Revision describes which revision of the UDF specification that
the change wasincluded. The fields Minimum UDF Read Revision and Minimum UDF

Write Revision relate to the Revision Access Control fields described ini2.2.6.4

]
1

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
Allocation Extent Descriptor 2-002 1.02 1.02 1.02
Path Component File Version Number 2-003 1.02 1.02 1.02
Parent Directory Entries 2-004 1.02 1.02 1.02
Device Specification Extended Attribute 2-005 1.02 1.01 1.02
Maximum Logical Extent Length 2-006 1.02 1.02 1.02
Unallocated Space Entry 2-008 1.02 1.01 1.02
DVD Copyright Management Information 2-009 1.02 1.02 1.02
Logical Volume Identifier 2-010 1.02 1.01 1.02
Extent Length Field of an Allocation Descriptor 2-012 1.02 1.01 1.02
Non-relocatable & Contiguous Flags 2-013 1.02 1.01 1.02
Revision of Requirements for DVD-ROM 2-014 1.02 1.02 1.02
Revision Access Control 2-015 1.02 1.01 1.02
Volume Set Identifier 2-017 1.02 1.01 1.02
Uniquel Ds for Extended Attributes 2-018 1.02 1.02 1.02
Clarification of Dstrings 2-019 1.02 1.01 1.02
Application FreeEA Space Extended Attribute 2-020 1.02 1.02 1.02
Update of Identifier Suffix to 1.02 2-021 1.02 1.02 1.02
Update of Identifier Suffix to 1.50 2-025 1.50 1.50 1.50
Virtual Partition Map Entry 2-026 1.50 1.50 1.50
Allocation of Sparable Partition Map 2-027 1.50 1.50 1.50
Addition of Virtual Allocation Table 2-028 1.50 1.50 1.50
Addition of Sparing Table 2-029 1.50 1.50 1.50
Addition of Non-Allocatable Space List 2-030 1.50 1.02 1.50
Reccommmendations for CD Media 2-031 1.50 1.50 1.50
Change 1.50 to 2.00 2-033 2.00 1.02 2.00
Clarified Domain flags 2-034 2.00 1.02 2.00
Unicode 2.0 Support 2-035 2.00 1.02 2.00
Named Streams 2-036 2.00 2.00 2.00
Unique ID Table asa Named Stream 2-037 2.00 1.02 2.00
Mac Resource Fork as a Named Stream 2-038 2.00 2.00 2.00
Location Field of the Extended Attribute Header 2-043 2.00 1.02 2.00
Access Control Lists 2-044 2.00 2.00 2.00
Descriptor Tags spanning block boundaries 2-047 2.00 1.02 2.00
Power Calibration Stream 2-048 2.00 1.02 2.00
Support for CD-R Multisession Required 2-050 2.00 1.50 2.00
Vaueof fieldsin LVID for virtual partition on CD-R 2-051 2.00 1.50 2.00
System stream to indicate volume backup time 2-055 2.00 2.00 2.00
New VAT 2-056 2.00 2.00 2.00
Restricting Virtual Addresses 2-057 2.00 1.50 2.00
File Times Extended Attribute 2-058 2.00 1.02 2.00
0OS/2 EA Stream 2-061 2.00 2.00 2.00
Non-Allocatable Space Stream 2-062 2.00 1.02 2.00
UDF 2.50 153 April 15, 2003

Desciption DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision

Tag serial number & disaster recovery 5000 201 1.02 1.02
Change to DOS name transform agorithm 5002 201 - 1.02
Directory search order for dual namespaces 5004 201 1.02 1.02
Termination in strategy 4096 clarification 5006 2.01 1.02 1.02
Compression |ds 254/255 clarification 5007 2.01 2.00 2.00
Mac Resource Fork can only bein files 5008 201 2.00 2.00
Requirements for CD media 5009 201 1.50 1.50
AVDP Placement 5013 2.01 1.50 1.50
Non relocatable bit clarification 5014 2.01 1.02 1.02
Various editorial corrections 5015 2.01 - -
PCA stream fix 5018 2.01 2.00 2.00
Parent of system stream directory 5019 2.01 2.00 2.00
0S/400 updates 5020 2.01 2.00 2.00
Missing EntitylD definitions 5021 2.01 2.00 2.00
Various editorial corrections 5024 2.01 - -
New OS types 5025 2.01 2.00 2.00
PVD Application Identifier field clarification 5026 2.01 1.02 1.02
Descriptor CRC length 5027 2.01 1.02 1.02
POSIX permissions clarifications 5029 201 2.00 2.00
Clarification of 3,2,1,1 5030 2.01 2.00 2.00

V olume recognition sequence 5031 2.01 1.02 2.00
Path length 5032 2.01 1.02 1.02
FID LengthOflmplementationUse 5034 2.01 1.02 1.02
Editorial — non-allocatable space stream 5035 201 - -
Allocation extent descriptor CRC length 5036 2.01 2.00 2.00
File types 248 to 255 5037 2.01 2.00 2.00
Real-time files on DVD-RAM 5038 2.01 2.00 2.00
Packet length specification 5039 2.01 2.00 2.00
Overlapping structures with conflicting field 5040 2.01 2.00 2.00
Information length reconstruction 5041 2.01 2.00 2.00
Timezone interpretation 5042 201 1.02 1.02
Missing partition descriptor and sparable partition 5044 2.01 1.02 1.02
Basic restrictions & requirements PD correction 5045 201 1.50 1.50
PVD and LV D volume sequence number 5046 201 1.02 1.02
Additionsto 5.1 informative table 5047 201 2.00 2.00
Clarify uniquel D use for EAg/streams 5048 201 2.00 2.00
UDF 2.50 154 April 15, 2003

Description DCN Updated in Minimum Minimum
UDF UDF Read UDF Write
Revision Revision Revision
FID File Identifier length and Unicode uniqueness 5049 2.50 1.02 201
Disallow overlapping partitions 5061 2.50 1.02 1.02
Strategy 4096 only for WORM media 5062 2.50 1.02 1.02
UDF Unique ID Mapping Data 5063 2.50 2.50 2.50
Extended Attribute block alignment 5064 2.50 1.02 1.02
UDF Defined Named Streams section 5065 2.50 2.00 2.00
File Identifier trandation code repair 5066 2.50 1.02 1.02
Correction of is fileset_soft_protected rule 5069 2.50 2.00 2.00
Disallow hard linked directories 5070 2.50 1.02 2.50
Requirements for DV D-RAM/RW/R interchangeability 5071 2.50 2.00 2.00
Unique ID for System Stream Directory 5072 2.50 2.50 2.50
Shared description for some LVID and VAT fields 5074 2.50 2.01 2.01
Recommendations for Mount Rainier formatted media 5075 2.50 1.02 1.02
Recommendations for DVD+R and DVD+RW 5076 2.50 1.50 1.50
Section 3.3.6 put out of order 5077 2.50 2.00 2.00
UDF Uniquel D clarifications 5078 2.50 2.00 2.00
Clarify partition Access Type 3 and 4 5079 2.50 2.01 2.01
Ichtag Parent ICB Location issue 5081 2.50 1.02 2.50
Clarification of Volume Recognition Sequence 5082 2.50 1.02 2.01
Metadata Partition Map 5086 2.50 2.50 2.50
Partition Alignment & ECC Block Size Definition 5089 2.50 1.02 2.50
Non-all ocatable space stream usage clarifications 5090 2.50 1.50 1.50
UDF 2.50 155 April 15, 2003

6.16 Developer Registration Form

Any developer that plans on implementing ECMA 167 according to this document should
complete the devel oper registration form on the following page. By becoming a
registered OSTA developer you receive the following benefits:

* Youwill receive alist of the current OSTA registered developers and their
associated Developer IDs. The developers on thislist are encouraged to
interchange mediato verify data interchange among implementations.

* Notification of OSTA Technica Committee meetings. You may attend a
limited number of these meetings without becoming an official OSTA
member.

* You can be added to the OSTA UDF email reflector. Thisreflector provides
you the opportunity to post technical questions on the OSTA Universal Disk
Format Specification.

* You will receive an invitation to participate in the development of the next
revision of this document.

For the latest information on OSTA and UDF visit the OSTA web site, see POINTS OF
CONTACT on thefirst page of this document.

UDF 2.50 156 April 15, 2003

NOTA_ OSTA Universal Disk Format Specification

II X,))
Optical Storage Developer Registration Form

Technology Association

Name:

Company:
Address:

City:
State/Province:

Zip/Postal Code:
Country:
Phone: FAX:

Email

Please indicate on which operating systems you plan to support UDF:

O DOS O 0s/2 O Macintosh O Linux

O UNIX/POSIX O 05400 OWindows9x O Windows NT/2000 O Windows XP
O Other

Please indicate which media types you plan to support:

O Magneto Optical O WORM O Phase Change

O CD-ROM O CD-R O CD-RW O CD-MRW

O DVD-ROM O DVD-R O DVD-RW O DVD-RAM

O DVD-Video O DVD-Audio

O DVD+RW O DVD+R O DVD+MRW

O Other

Please indicate what value you plan to use asthe Entityl D “ *Developer ID” to
identify your implementation, see 2.1.5:

NOTE: The Developer 1D should be something that uniquely identifies your company as well as your product.

O Please add my email addressto the OSTA File Interchange Committee email reflector.
O Please send an OSTA Membership kit.

E-mail or fax completed form to OSTA. For address, see POINTS OF CONTACT on the
first page of this document.

UDF 2.50 157 April 15, 2003

4096, 9, 54, 107, 118

A

Access Control Lists, 95

ACL, 95

AD. See Allocation Descriptor

Allocation Descriptor, 9, 54, 59, 60

Allocation Extent Descriptor, 61

Anchor Volume Descriptor Pointer, 8, 24
Application Entity Identifier, 19

AVDP. See Anchor Volume Descriptor Pointer

B
BeOS, 110, 111

C

CD-R, 4, 5, 32, 138, 139, 140, 142, 149, 150
CD-RW, 138, 140, 152

charspec, 12

Checksum, 78, 79, 80, 82, 84, 133

CRC, 21, 47, 59, 115, 117

CS0, 11, 12, 16, 23, 25, 30, 49, 96, 98

D

Defect management, 32, 37, 142

Descriptor Tag, 21, 47, 59

Domain, 1, 14, 15, 17

DOS, 66, 67, 68, 72, 73, 78, 99, 110, 159

Dstrings, 12

DVD, 78, 108, 109, 134, 135, 136, 137, 155

DVD Copyright Management Information, 78, 108,
155

DVD-Video, 134, 135

E

EA. See Extended Attribute

ECMA 167, 1

EFE. See Extended File Entry

Entity Identifier, 8, 14, 15, 22, 24, 25, 26, 28, 30, 48,
50, 53, 56, 57, 70, 77, 83, 108, 109

Extended Attributes, 3, 74, 77, 78, 79, 80, 82, 83, 84,
108

Extended File Entry, 7, 52, 57, 64, 65, 74, 75, 76, 84,
85, 86, 106

Extent Length, 8, 155

F

FE. See File Entry

FID. See File Identifier Descriptor

File Entry, 9, 15, 56, 70

File Identifier Descriptor, 15, 51, 53, 66, 97

UDF 2.50

158

File Set Descriptor, 7, 9, 15, 17, 26, 47, 48, 50, 84,
86, 87, 89, 91, 106, 136, 141

File Set Descriptor Sequence, 26

Free Space, 27, 28, 32, 37, 89, 134, 139, 141, 142

Freed Space Bitmap, 139

Freed Space Table, 139

FSD. See File Set Descriptor

H
HardWriteProtect, 17, 26, 48, 50

ICB, 9, 51, 53, 54, 66, 67, 74, 96, 97

ICB Tag, 9, 53, 67, 96

Implementation Use VVolume Descriptor, 15, 30, 106

Implementationldentifier, 22, 24, 25, 26, 30, 50, 56,
57,70, 77, 78, 79, 80, 83

Information Control Block. See ICB

Information Length, 36, 37

interchange level, 22, 23, 49

IUVD. See Implementation Use V olume Descriptor

L

Logical Block Size, 8, 9, 25

Logical Sector Size, 8

Logical Volume, 6, 8, 9, 25, 26, 28, 32, 37, 98, 106,
108

Logical Volume Descriptor, 9, 15, 25, 26, 29

Logical Volume Header Descriptor, 64

Logical Volume Identifier, 9, 36, 37, 49, 155

Logical Volume Integrity Descriptor, 16, 26, 27, 59

LV. SeeLogica Volume

LVD. SeeLogical Volume Descriptor

LVID. See Logica Volume Integrity Descriptor

M

Macintosh, 3, 66, 68, 72, 77, 79, 80, 81, 82, 83, 99,
101, 102, 108, 110, 128, 159

Metadata, 48, 84, 85, 86, 87, 94, 144

Multisession, 3, 138, 140, 143, 144, 155

N

Named Stream, 86, 155
Non-Allocatable Space, 38, 39, 89, 141, 153

O

Orphan Space, 106

0S/2, 3, 66, 67, 68, 72, 73, 77, 79, 83, 94, 95, 97, 99,
100, 108, 109, 110, 128, 132, 159

0S/400, 66, 68, 72, 73, 82, 83, 104, 105, 108, 109,
110, 159

Overwritable, 8, 9

April 15, 2003

P

packet, 4, 6, 32, 33, 37, 38, 39, 139, 140, 141, 142
Partition Descriptor, 8, 15, 106, 136

Partition Header Descriptor, 50

Partition Integrity Entry, 9, 16

partition map, 5, 6, 32, 33, 34, 35, 37, 38, 142
partition number, 6, 32, 136

partition reference number, 5, 89

Pathname, 62

PD. See Partition Descriptor

power cdibration, 90, 92, 93

Primary Volume Descriptor, 8, 15, 22

PVD. See Primary V olume Descriptor

R

Rea-Timefile, 54, 145
Records, 10, 62
Rewritable, 4, 8, 9, 50, 61

S

session, 4, 5, 138, 139, 140, 142, 143, 144

SizeTable, 27

SoftWriteProtect, 17, 26, 50

Space Bit Map, 106

Sparable Partition Map, 32

sparing, 32, 33, 37, 38, 39, 90, 140, 141, 142

Sparing Table, 16, 33, 37, 38, 108, 109

strategy, 9, 48, 54

Stream, 4, 60, 64, 67, 68, 69, 79, 84, 85, 86, 87, 89,
91, 94, 95

Stream Directory, 64, 84, 85

Symbolic Link, 96

System stream, 155

System Stream Directory, 84, 85, 89

T
TagSerial Number, 21, 47

UDF 2.50

159

Timestamp, 8, 13, 27, 63

U

UDF Bridge, 134, 143, 144

UDF Entity Identifier, 108, 109, 111
UDFUniquelD, 64, 65, 87

Unallocated Space Bitmap, 139
Unallocated Space Descriptor, 9, 27
Unallocated Space Entry, 9, 58, 106, 155
Unallocated Space Table, 139

Unicode, 11, 12, 97, 98, 112

UniquelD, 27, 56, 57, 64, 70, 74, 155
UNIX, 66, 68, 82, 103

unrecorded sector, 107

USD. See Unallocated Space Descriptor
User Interface, 2, 96

\Y

VAT, 6, 32, 73, 138, 139, 140, 149, 150

VDS. See Volume Descriptor Sequence

Virtual Allocation Table, 6

virtual partition, 32, 139, 149

Virtual Partition Map, 32

Volume Descriptor Sequence, 7, 9, 135, 136, 141, 143

Volume Recognition Sequence, 7, 8, 19, 20, 135, 141,
143

Volume Set, 8, 9, 22, 23, 30, 155

VRS. See Volume Recognition Sequence

w

Windows, 66, 67, 68, 78, 99

Windows 95, 66, 67, 68, 102, 110, 159
Windows CE, 110, 111

Windows NT, 66, 67, 68, 78, 102, 110, 128, 159
WORM, 8, 9, 26, 48, 107, 159

April 15, 2003

	Introduction
	Document Layout
	Compliance
	General References
	References
	Definitions
	Terms
	Acronyms

	Basic Restrictions & Requirements
	Part 1 - General
	Character Sets
	OSTA CS0 Charspec
	Dstrings
	Timestamp
	Entity Identifier
	Descriptor Tag Serial Number at Formatting Time
	Volume Recognition Sequence

	Part 3 - Volume Structure
	Descriptor Tag
	Primary Volume Descriptor
	Anchor Volume Descriptor Pointer
	Logical Volume Descriptor
	Unallocated Space Descriptor
	Logical Volume Integrity Descriptor
	Implemention Use Volume Descriptor
	Virtual Partition Map
	Sparable Partition Map
	Metadata Partition Map
	Virtual Allocation Table
	Sparing Table
	Metadata Partition
	Partition Descriptor

	Part 4 - File System
	Descriptor Tag
	File Set Descriptor
	Partition Header Descriptor
	File Identifier Descriptor
	ICB Tag
	File Entry
	Unallocated Space Entry
	Space Bitmap Descriptor
	Partition Integrity Entry
	Allocation Descriptors
	Allocation Extent Descriptor
	Pathname

	Part 5 - Record Structure

	System Dependent Requirements
	Part 1 - General
	Timestamp

	Part 3 - Volume Structure
	Logical Volume Header Descriptor

	Part 4 - File System
	File Identifier Descriptor
	ICB Tag
	File Entry
	Extended Attributes
	Named Streams
	Extended Attributes as named streams
	UDF Defined System Streams
	UDF Defined Non-System Streams

	User Interface Requirements
	Part 3 – Volume Structure
	Part 4 – File System
	ICB Tag
	File Identifier Descriptor

	Informative
	Descriptor Lengths
	Using Implementation Use Areas
	Entity Identifiers
	Orphan Space

	Boot Descriptor
	Clarification of Unrecorded Sectors

	Appendices
	UDF Entity Identifier Definitions
	UDF Entity Identifier Values
	Operating System Identifiers
	OSTA Compressed Unicode Algorithm
	CRC Calculation
	Algorithm for Strategy Type 4096
	Identifier Translation Algorithms
	DOS Algorithm
	OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm

	Extended Attribute Checksum Algorithm
	Requirements for DVD-ROM
	Constraints imposed on UDF by DVD-Video
	How to read a UDF DVD-Video disc
	Obtaining DVD Documents

	Recommendations for CD Media
	Use of UDF on CD-R media
	Use of UDF on CD-RW media
	Multisession and Mixed Mode

	Real-Time Files
	Requirements for DVD-R/-RW/RAM interchangeability
	Requirements for DVD-RAM
	Requirements for DVD-RW
	Requirements for DVD-R
	Requirements for Real-Time file recording on DVD discs

	Recommendations for DVD+R and DVD+RW Media
	Use of UDF for incremental writing on DVD+R media
	Use of UDF on DVD+RW 4.7 GBytes Basic Format media

	Recommendations for Mount Rainier formatted media
	Properties of CD-MRW and DVD+MRW media and drives
	Background Physical Formatting

	UDF Media Format Revision History
	Developer Registration Form

