A Brief History
of the
BSD Fast Filesystem

Brought to you by

Dr. Marshall Kirk McKusick

EuroBSD Conference
Copenhagen, Denmark
15th September 2007

Copyright 2007 Marshall Kirk McKusick.
All Rights Reserved.

1979 — Early Filesystem Work

e Improved reliability

e staged modifications to critical
filesystem information

e modifications could be either
completed or repaired cleanly by fsck
after a crash

* Increased the block size of the filesystem
from 512 to 1K bytes

e doubled performance because each disk
transfer accessed twice as much data

e climinated the need for indirect blocks
for many files

e still utilized only about 4% of disk
bandwidth

1982 — Birth of the Fast Filesystem

Designed with a hybrid blocksize in which
large blocks could be broken up into as
many as eight fragments

Large files used large blocks

Small files could use as little as a single
fragment

First deployed with default blocksize
4K/512

Still in use today on systems such as
Solaris and Darwin

1986 — Dropping Disk-geometry Calculations

e Originally a cylinder group comprised one
or more consecutive cylinders on a disk

* The filesystem could get an accurate view
of the disk geometry and could compute
the rotational location of every sector

By 1986, disks were hiding this
information and it was too complex to
compute it

e All the rotational layout code was
deprecated in favor of laying out files
using numerically close block numbers
(sequential being viewed as optimal)

e Cylinder group structure was retained only
as a convenient way to manage logically-
close groups of blocks

1987 — Filesystem Stacking

From John Heidemann at The University
of California at Los Angeles

Based on Dave Rosenthal’s original idea
(formerly of Sun Microsystems)

Filesystems easily widened:

e Adding new VOP’s, for example
VOP_STARTTRANS and
VOP_ENDTRANS to add transactions

e Other filesystems need not know about

or respond to new VOP’s (kernel will
automatically return EOPNOTSUPP)

Filesystems easily stacked:
e Umap filesystem for NFS
* Loopback filesystem

Stacking Mounts

Allows filesystem modules to be stacked

When a request 1s not implemented by a
layer it 1s passed down to the next lower
layer.

Requests that reach the bottom of the stack
without being serviced return with
EOPNOTSUPP

Requests may be modified and then passed
on to a lower layer

outside admin exports local admin exports
| | |

P

uid/gid mapping

NN

NFS server

UFS
FES

EOPNOTSUP

Loopback Mounts

Allow arbitrary directories in the
filesystem to be mounted anywhere else

Implemented as a filesystem layer

e Original filesystem has a layer inserted
above it

e This upper layer is mounted at new
mount point

* Lookups through this mount point are
redirected to the starting point in the
original filesystem

Union Mounts

e Allows multiple mounted filesystems to be
simultaneously accessible from the same
mount point

o All filesystems except the topmost one are
treated as 1f they were mounted read-only

e Descent into a directory that exists in a
lower layer filesystem causes creation of
the corresponding directory in the top
layer filesystem

Union Mount Naming

Directory listing shows the sum of all files
in all directories involved in union mount

If the same name appears in multiple
union mounted directories, only the object
from the topmost filesystem in which the
name appears 1s accessible

New files are created in topmost mounted
filesystem

Overwriting of existing files in a lower
layer causes a new writable copy to be
created in the topmost layer

Last filesystem mounted is the first
filesystem unmounted

10

Union Mount Examples

union mount /a on /mnt with files /a/x, /aly, /a/z
union mount /b on /mnt with files /b/v, /b/w, /b/x
Is/mnt=>v,w,X,vy,zZ

File x 1s from /b

Creat t appears in /b/t

Open y for reading operates on /aly

Open y for writing copies /a/y to /bly,
then writes file /b/y

V, W, X,V,Z

Union Mount Issues

File removal in lower layer done using
whiteout in top layer

When creating a directory with the same
name as one in a lower layer, it must be
marked opaque

Duplicate suppression 1s handled in the C-
library

Implication of allowing non-root users to
do their own mounts

11

12

Implementation

Built using stackable vnode framework

Union layer handles namespace
operations; all others are passed to the
lower layers

/a v,w, X

1988 — Raising the Blocksize

Default blocksize raised to 8K/1K

Small files use a minimum of two disk
sectors

Nearly doubled throughput at a cost of
only 1.4% additional wasted disk space

13

14

1990 — Dynamic Block Reallocation

With the advent of disk caches and tag
queueing it became desirable to begin
laying files out contiguously

Size of file unknown when first opened

e [f always assume big and place in
biggest available space, then soon have
only small areas of contiguous space
available

e If always assume small and place in
areas of fragmented space, then
beginning of large files will be poorly
laid out

Implementation of Dynamic Block Reallocation

e Dynamic block reallocation places file in
small areas of free space, then moves them
to larger areas of free space if it grows

e small files use the small chunks of free
space

» large files get laid out contiguously in
the large areas of free space

e Little increase in I/O load as the buffer
cache generally holds the file until its final
location 1s known

* Free space remains largely unfragmented
even after years of use (15% versus 40%
degredation after three years)

15

16

1996 — Soft Updates

e Metadata that must be maintained

directories
modes

bitmaps

e Rules

1)

2)

3)

Never point to a structure before it 1s
initialized
Never reuse a resource before

nullifying all previous pointers to it

Never reset an old pointer to a live
resource before the new pointer has
been set

Keeping Metadata Consistent 1

e Synchronous writes
e Benefits: simple and effective

* Drawbacks: create/delete intensive
applications run slowly, slow recovery
after a crash

e Non-Volatile RAM

* Benefits: usually runs all operations at
memory speed, quick recovery after a
crash

e Drawbacks: expensive hardware,
somewhat complex recovery

e Atomic Updates (logging)

* Benefits: create/remove do not slow
down under under heavy load, quick
recovery after a crash

e Drawbacks: extra I/O generated, little
speed-up for light loads

17

18

Keeping Metadata Consistent 2

e Partial ordering of buffer writes

e Benefits: 25% reduction in synchronous
writes

e Drawbacks: still disk limited for
create/delete intensive applications,
slow recovery after a crash

e Soft updates

* Benefits: most operations run at
memory speed, reduced system 1/0,
instant recovery after a crash

e Drawbacks: complex code and
increased memory loading

Tracking File Removal Dependencies

Ordering constraints

1) Name in on-disk directory must be
deleted

2) Deallocate (zero out) on-disk inode

3) Release file’s blocks to free-space bitmap

How soft updates maintains this ordering

1) Zero out directory entry in kernel buffer
and hang a dependency structure on
buffer to be notified when buffer 1s
written.

2) When notified that directory buffer is
written, save list of inode’s blocks, then
zero out inode in kernel buffer and hang a
dependency structure (containing the list
of blocks) on buffer to be notified when
buffer 1s written.

3) When notified that inode buffer is
written, release list of saved blocks to

free-space bitmap.
19

20

1999 — Snapshots

e (reate a copy-on-write image of a
filesystem partition

1)

2)

3)
4)

S)

6)

7

Suspend processes initiating system
calls that modify the filesystem

Allow all modifications in progress to
complete

Write out all dirty buffers to disk

Create an empty ‘‘snapshot’’file the
size of the filesystem partition

Mark the blocks that are currently in
use

Resume write operations on the
filesystem

On each disk write, check to see if it
has been copied making a copy if the
write 1s for an in-use block that has
not yet been copied

Snapshot Implementation

Each Inode block pointer represents a disk
block

Copied blocks point to the location of the
copied block

Those marked “‘used’ will read the
underlying block, but cause a copy to be
created if written

Those marked ““‘free’ will read or write

the underlying block
Inode
Header
used
used
free
free used
free j
single used
double free
triple free
used
used

21

2001 — Raising the Blocksize, Again

e Default blocksize raised to 16K/2K

e Small files use a minimum of four disk
sectors

e Nearly doubled throughput at a cost of
only 2.9% additional wasted disk space

22

2002 - Background Fsck

Disk state 1s always valid but behind in-
memory state

Only inconsistencies:
* Blocks marked in use that are free

* Inodes marked in use that are free

It 1s safe to run immediately after a crash
though eventually lost space must be
reclaimed

23

24

Background Block Recovery

e Block recovery on an active system:

1)
2)

3)

Snapshot the filesystem

Run standard filesystem check
program on the snapshot

Add a system call to add lost blocks
and 1nodes to the filesystem map

Other Uses for Snapshots

e Live dumps

1) Snapshot the filesystem

2) Run standard dump on the snapshot

e Mid-day backups

1) Snapshot the filesystem every two
hours

2) Mount each snapshot in a well known
location

3) Users can recover files from earlier in
the day by copying them out of the
snapshot

25

26

2003 — Multi-terabyte support

* Original fast filesystem used 32-bit
pointers to reference a file’s blocks

* The 32-bit block pointers of the original
filesystem run out of space in the 1 to 4
terabyte range

e (Considered other alternatives but chose to

extend the original filesystem

e Allowed reuse of most of existing code
base which allowed quick development
and deployment

* Became stable and reliable rapidly

* Same code base supported both 32-bit
block and 64-bit block filesystem
formats so bug fixes and feature or
performance enhancements usually
applied to both filesystem formats

Extended Attributes

Extended attributes added at the same time
as multi-terabyte support

Extended attributes are a piece of auxiliary
data storage associated with an inode that
can be used to store auxiliary data that 1s
separate from the contents of the file

By integrating the extended attributes into
the inode itself, fsync() can provide the
same integrity guarantees as are made for
the contents of the file itself

27

28

2004 — Access-control Lists

Extended attributes were first used to
support an access control list (ACL)

e specific list of the users that are
permitted to access the file

 a list of the permissions that each user
1s granted

Implementation of Access-control Lists

e Replaced an earlier implementation using
a single auxiliary file per filesystem
indexed by inode number which had two
problems:

* fixed size of the space per inode meant
only short user lists

e difficult to atomically commit changes
to the ACL

e Both problems fixed by using extended
attributes:

» extended attribute can be 32K, so long
list of users possible

e atomic update 1s easy since it can be
updated with one write of inode

29

30

2005 — Mandatory-access Controls

Extended attributes next used for
mandatory access control (MAC)

MAC framework permits dynamically
introduced system-security modules to
modify system security functionality

e MAC framework provides control over
kernel entry points affecting access
control and object creation

e When hit, MAC framework then calls
out to security modules to offer them
the opportunity to modify security
behavior

Filesystem does not codify how the labels
are used or enforced; it just stores the
labels associated and produces them when
a security modules needs to do a
permission check

2006 — Symmetric Multi-processing

e In the late 1990’s, the FreeBSD Project
began the long hard task of converting
their kernel to support symmetric multi-
processing

e Start with giant lock around kernel

* Piece-by-piece add multi-threaded locking
and remove from giant lock

2004 — Vnode interface
2005 — Disk subsystem
2006 — Fast filesystem

31

32

The End

May the Source Be With You!

