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Running ‘‘Fsck’’ in the Background

Marshall Kirk McKusick

Author and Consultant

Abstract

Traditionally, recovery of a BSD fast filesystem after an uncontrolled system crash such as a power failure or a
system panic required the use of the filesystem checking program, ‘‘fsck’’. Because the filesystem cannot be used
while it is being checked by ‘‘fsck’’, a large server may experience unacceptably long periods of unavailability after
a crash.

Rather than write a new version of ‘‘fsck’’ that can run on an active filesystem, I have added the ability to take
a snapshot of a filesystem partition to create a quiescent filesystem on which a slightly modified version of the tradi-
tional ‘‘fsck’’ can run.

A key feature of these snapshots is that they usually require filesystem write activity to be suspended for less
than one second. The suspension time is independent of the size of the filesystem. To reduce the number and types
of corruption, soft updates were added to ensure that the only filesystem inconsistencies are lost resources. With
these two additions it is now possible to bring the system up immediately after a crash and then run checks to
reclaim the lost resources on the active filesystems.

Background ‘‘fsck’’ runs by taking a snapshot and then running its traditional first four passes to calculate the
correct bitmaps for the allocations in the filesystem snapshot. From these bitmaps, ‘‘fsck’’ finds any lost resources
and invokes special system calls to reclaim them in the underlying active filesystem.

1. Background and Introduction
Traditionally, recovery of the BSD fast filesys-

tem [McKusick, et al., 1996] after an uncontrolled
system crash such as a power failure or a system panic
required the use of the ‘‘fsck’’ filesystem checking
program [McKusick & Kow alski, 1994]. ‘‘Fsck’’
would inspect all the filesystem metadata (bitmaps,
inodes, and directories) and correct any inconsisten-
cies that were found. As the metadata comprises
about three to five percent of the disk space, checking
a large filesystem can take an hour or longer. Because
the filesystem is inaccessible while it is being checked
by ‘‘fsck’’, a large server may experience unaccept-
ably long periods of unavailability after a crash.

Many methods exist for solving the metadata
consistency and recovery problem [Ganger et al, 2000;
Seltzer et al, 2000]. The solution selected for the fast
filesystem is soft updates. Soft updates control the
ordering of filesystem updates such that the only
inconsistencies in the on-disk representation are that
free blocks and inodes may be claimed as ‘‘in use’’ in
the on-disk bitmaps when they are really unused.

Soft updates eliminates the need to run ‘‘fsck’’
after a system crash except in the rare event of a hard-
ware failure in the disk on which the filesystem
resides. Since the only filesystem inconsistency is
lost blocks and inodes, the only ill effect from running
on the filesystem after a crash is that part of the
filesystem space that should have been available will
be lost. Any time the lost space from crashes reaches
an unacceptable level, the filesystem must be taken
offline long enough to run ‘‘fsck’’ to reclaim the lost
resources.

Because many server systems need to be avail-
able 24x7, there is never an available multi-hour time
when a traditional version of ‘‘fsck’’ can be run.
Thus, I have been motivated to develop a filesystem
check program that can run on an active filesystem to
reclaim the lost resources.

The first approach that I considered was to write
a new utility that would operate on an active filesys-
tem to identify the lost resources and reclaim them.
Such a utility would fall into the class of real-time
garbage collection. Despite much research and



literature, garbage collection of actively used
resources remains challenging to implement. In addi-
tion to the complexity of real-time garbage collection,
the new utility would need to recreate much of the
functionality of the existing ‘‘fsck’’ utility. Having a
second utility would lead to additional maintenance
complexity as bugs or feature additions would need to
be implemented in two utilities rather than just one.

To avoid the complexity and maintenance prob-
lems, I decided to take an approach that would enable
me to use most of the existing ‘‘fsck’’ program.

‘‘Fsck’’ runs on the assumption that the filesys-
tem it is checking is quiescent. To create an appar-
ently quiescent filesystem, I added the ability to take a
snapshot of a filesystem partition [McKusick &
Ganger, 1999]. Using copy-on-write, a snapshot pro-
vides a filesystem image frozen at a specific point in
time. The next section describes the details on how
snapshots are taken and managed.

As lost resources will not be used until they
have been found and marked as free in the bitmaps,
there are no limits on how long a background reclama-
tion scheme can take to find and recover them. Thus, I
can run the traditional ‘‘fsck’’ over a snapshot to find
all the missing resources even if it takes several hours
and the filesystem is being actively changed.

Snapshots may seem a more complex solution
to the problem of running space reclamation on an
active filesystem than a more straight forward
garbage-collection utility. Howev er, their cost (about
1300 lines of code) is amortized over the other useful
functionality: the ability to do reliable dumps of active
filesystems and the ability to provide back-ups of the
filesystem at several times during the day. This func-
tionality was first popularized by Network Appliance
[Hitz et al, 1994; Hutchinson et al, 1999].

Snapshots enable the safe backup of live filesys-
tems. When dump notices that it is being asked to
dump a mounted filesystem, it can simply take a snap-
shot of the filesystem and run over the snapshot
instead of on the live filesystem. When dump com-
pletes, it releases the snapshot.

Periodic snapshots can be made accessible to
users. When taken every few hours during the day,
they allow users to retrieve a file that they wrote sev-
eral hours earlier and later deleted or overwrote by
mistake. Snapshots are much more convenient to use
than dump tapes and can be created much more fre-
quently.

To make a snapshot accessible to users through
a traditional filesystem interface, BSD uses the mem-
ory-disk driver, md. The mdconfig command takes a

snapshot file as input and produces a /dev/md0 char-
acter-device interface to access it. The /dev/md0
character device can then be used as the input device
for a standard BSD FFS mount command, allowing the
snapshot to appear as a replica of the frozen filesys-
tem at whatever location in the namespace that the
system administrator chooses to mount it. Thus, the
following script could be run at noon to create a mid-
day backup of the /usr filesystem and make it avail-
able at /backups/usr/noon:

# Take the snapshot
mount -u -o snapshot /usr/snap.noon /usr
# Attach it to /dev/md0
mdconfig -a -t vnode -u 0 -f /usr/snap.noon
# Mount it for user access
mount -r /dev/md0 /backups/usr/noon

When no longer needed, it can be removed with:

# Unmount snapshot
umount /backups/usr/noon
# Detach it from /dev/md0
mdconfig -d -u 0
# Delete the snapshot
rm -f /usr/snap.noon

2. Creating a Filesystem Snapshot

Header

. . .

triple
double
single

not copied

not copied
not used
not used
not used

not copied

not copied
not used
not used

not copied
not copied

Inode

Figure 1: Structure of a snapshot file

A filesystem snapshot is a frozen image of a
filesystem at a given instant in time. Implementing
snapshots in the BSD fast filesystem has proven to be
straightforward. Taking a snapshot entails the follow-
ing steps:

1) A snapshot file is created to track later changes to
the filesystem; a snapshot file is shown in Fig. 1.
This snapshot file is initialized to the size of the



filesystem’s partition, and its file block pointers are
marked as zero which means ‘‘not copied.’’ A few
strategic blocks are allocated, such as those holding
copies of the superblock and cylinder group maps.

2) A preliminary pass is made over each of the cylin-
der groups to copy it to its preallocated backing
block. Additionally, the block bitmap in each
cylinder group is scanned to determine which
blocks are free. For each free block that is found,
the corresponding location in the snapshot file is
marked with a distinguished block number (1) to
show that the block is ‘‘not used.’’ There is no
need to copy those unused blocks if they are later
allocated and written.

3) The filesystem is marked as ‘‘wanting to sus-
pend.’’ In this state, processes that wish to invoke
system calls that will modify the filesystem are
blocked from running, while processes that are
already in progress on such system calls are per-
mitted to finish them. These actions are enforced
by inserting a gate at the top of every system call
that can write to a filesystem. The set of gated
system calls includes ‘‘write’’, ‘‘open’’ (when cre-
ating or truncating), ‘‘fhopen’’ (when creating or
truncating), ‘‘mknod’’, ‘‘mkfifo’’, ‘‘link’’, ‘‘sym-
link’’, ‘‘unlink’’, ‘‘chflags’’, ‘‘fchflags’’,
‘‘chmod’’, ‘‘lchmod’’, ‘‘fchmod’’, ‘‘chown’’,
‘‘lchown’’, ‘‘fchown’’, ‘‘utimes’’, ‘‘lutimes’’,
‘‘futimes’’, ‘‘truncate’’, ‘‘ftruncate’’, ‘‘rename’’,
‘‘mkdir’’, ‘‘rmdir’’, ‘‘fsync’’, ‘‘sync’’, ‘‘unmount’’,
‘‘undelete’’, ‘‘quotactl’’, ‘‘revoke’’, and ‘‘extat-
trctl’’. In addition gates must be added to ‘‘page-
out’’, ‘‘ktrace’’, local domain socket creation, and
core dump creation. The gate tracks activity
within a system call for each mounted filesystem.
A gate has two purposes. The first is to suspend
processes that want to enter the gated system call
during periods that the filesystem that the process
wants to modify is suspended. The second is to
keep track of the number of processes that are run-
ning inside the gated system call for each mounted
filesystem. When a process enters a gated system
call, a counter in the mount structure for the
filesystem that it wants to modify is incremented.
When the process exits a gated system call, the
counter is decremented.

4) The filesystem’s status is changed from ‘‘wanting
to suspend’’ to ‘‘fully suspended.’’ This status
change is done by allowing all system calls cur-
rently writing to the filesystem being suspended to
finish. The transition to ‘‘fully suspended’’ is
complete when the count of processes within
gated system calls drops to zero.

5) The filesystem is synchronized to disk as if it were
about to be unmounted.

6) Any cylinder groups that were modified after they
were copied in step two are recopied to their pre-
allocated backing block. Additionally, the block
bitmap in each recopied cylinder group is res-
canned to determine which blocks were changed.
Newly allocated blocks are marked as ‘‘not
copied’’ and newly freed blocks are marked as
‘‘not used.’’ The details on how these modified
cylinder groups are identified is described below.
The amount of space initially claimed by a snap-
shot is small, usually less than a tenth of one per-
cent. Actual snapshot file space utilization is
given in section 4.

7) With the snapshot file in place, activity on the
filesystem resumes. Any processes that were
blocked at a gate are awakened and allowed to
proceed with their system call.

8) Blocks that had been claimed by any snapshots
that existed at the time that the current snapshot
was taken are expunged from the new snapshot for
reasons described below.

During steps three through six, all write activity
on the filesystem is suspended. Steps three and four
complete in at most a few milliseconds. The time for
step five is a function of the number of dirty pages in
the kernel. It is bounded by the amount of memory
that is dedicated to storing file pages. It is typically
less than a second and is independent of the size of
the filesystem. Typically step six needs to recopy
only a few cylinder groups, so it also completes in less
than a second.

The splitting of the bitmap copies between steps
two and six is the way that I avoid having the suspend
time be a function of the size of the filesystem. By
making our primary copy pass while the filesystem is
still active, and then having only a few cylinder
groups in need of recopying after it has been sus-
pended, I keep the suspend time down to a small and
usually filesystem size independent time.

The details of the two-pass algorithm are as fol-
lows. Before starting the copy and scan of all the
cylinder groups, the snapshot code allocates a
‘‘progress’’ bitmap whose size is equal to the number
of cylinder groups in the filesystem. The purpose of
the ‘‘progress’’ bitmap is to keep track of which cylin-
der groups have been scanned. Initially, all the bits in
the ‘‘progress’’ map are cleared. The first pass is
completed in step two before the filesystem is sus-
pended. In this first pass, all the cylinder groups are
scanned. When the clinder group is read, its



corresponding bit is set in the ‘‘progress’’ bitmap.
The cylinder group is then copied and its block map is
consulted to update the snapshot file as described in
step two. Since the filesystem is still active, filesys-
tem blocks may be allocated and freed while the
cylinder groups are being scanned. Each time a cylin-
der group is updated because of a block being allo-
cated or freed, its corresponding bit in the ‘‘progress’’
bitmap is cleared. Once this first pass over the cylin-
der groups is completed, the filesystem is ‘‘sus-
pended.’’

Step six now becomes the second pass of the
algorithm. The second pass need only identify and
update the snapshot for any cylinder groups that were
modified after it handled them in the first pass. The
changed cylinder groups are identified by scanning
the ‘‘progress’’ bitmap and rescanning any cylinder
groups whose bits are zero. Although every bitmap
would have to be reprocessed in the worst case, in
practice only a few bitmaps need to be recopied and
checked.

3. Maintaining a Filesystem Snapshot
Each time an existing block in the filesystem is

modified, the filesystem checks whether that block
was in use at the time that the snapshot was taken
(i.e., it is not marked ‘‘not used’’). If so, and if it has
not already been copied (i.e., it is still marked ‘‘not
copied’’), a new block is allocated from among the
‘‘not used’’ blocks and placed in the snapshot file to
replace the ‘‘not copied’’ entry. The previous contents
of the block are copied to the newly allocated snap-
shot file block, and the modification to the original is
then allowed to proceed. Whenever a file is removed,
the snapshot code inspects each of the blocks being
freed and claims any that were in use at the time of
the snapshot. Those blocks marked ‘‘not used’’ are
returned to the free list.

When a snapshot file is read, reads of blocks
marked ‘‘not copied’’ return the contents of the corre-
sponding block in the filesystem. Reads of blocks that
have been copied return the contents in the copied
block (e.g., the contents that were stored at that loca-
tion in the filesystem at the time that the snapshot was
taken). Writes to snapshot files are not permitted.
When a snapshot file is no longer needed, it can be
removed in the same way as any other file; its blocks
are simply returned to the free list and its inode is
zeroed and returned to the free inode list.

Snapshots may live across reboots. When a
snapshot file is created, the inode number of the snap-
shot file is recorded in the superblock. When a

filesystem is mounted, the snapshot list is traversed
and all the listed snapshots are activated. The only
limit on the number of snapshots that may exist in a
filesystem is the size of the array in the superblock
that holds the list of snapshots. Currently, this array
can hold up to twenty snapshots.

Multiple snapshot files can exist concurrently.
As described above, earlier snapshot files would
appear in later snapshots. If an earlier snapshot is
removed, a later snapshot would claim its blocks
rather than allowing them to be returned to the free
list. This semantic means that it would be impossible
to free any space on the filesystem except by remov-
ing the newest snapshot. To avoid this problem, the
snapshot code goes through and expunges all earlier
snapshots by changing its view of them to being zero
length files. With this technique, the freeing of an ear-
lier snapshot releases the space held by that snapshot.

When a block is overwritten, all snapshots are
given an opportunity to copy the block. A copy of the
block is made for each snapshot in which the block
resides. Overwrites typically occur only for inode and
directory blocks. File data is usually not overwritten.
Instead, a file will be truncated and then reallocated as
it is rewritten. Thus, the slow and I/O intensive block
copying is infrequent.

Deleted blocks are handled differently. The list
of snapshots is consulted. When a snapshot is found
in which the block is active (‘‘not copied’’), the
deleted block is claimed by that snapshot. The traver-
sal of the snapshot list is then terminated. Other snap-
shots for which the block are active are left with an
entry of ‘‘not copied’’ for that block. The result is
that when they access that location, they will still ref-
erence the deleted block. Since snapshots may not be
modified, the block will not change. Since the block
is claimed by a snapshot, it will not be allocated to
another use. If the snapshot claiming the deleted
block is deleted, the remaining snapshots will be
given the opportunity to claim the block. Only when
none of the remaining snapshots wants to claim the
block (i.e., it is marked ‘‘not used’’ in all of them) will
it be returned to the freelist.

4. Snapshot Performance
The experiments described in this section and

the background ‘‘fsck’’ performance section used the
following hardware/software configuration:

Computer: Dual Processor using two Celeron
350MHz CPUs. The machine has 256Mb of main
memory.



O/S: FreeBSD 5.0-current as of December 30, 2001

I/O Controller: Adaptec 2940 Ultra2 SCSI adapter

Disk: Two <IBM DDRS-39130D DC1B> Fixed
Direct Access SCSI-2 device, 80MB/s transfers,
Tagged Queuing Enabled, 8715MB, 17,850,000 512
byte sectors: 255H 63S/T 1111C

Small Filesystem: 0.5Gb, 8K block, 1K fragment,
90% full, 70874 files, initial snapshot size 0.392Mb
(0.08% of filesystem space).

Large Filesystem: 7.7Gb, 16K block, 2K fragment,
90% full, 520715 files, initial snapshot size 2.672Mb
(0.03% of filesystem space).

Load: Four continuously running simultaneous
Andrew benchmarks that create a moderate amount of
filesystem activity intermixed with periods of CPU
intensive activity [Howard et al, 1988].

Filesystem Elapsed CPU Suspend
Size Time Time Time

0.5Gb 0.7 sec 0.1 sec 0.025 sec
7.7Gb 3.5 sec 0.4 sec 0.034 sec

Table 1: Snapshot times on an idle filesystem

Table 1 shows the time to take a snapshot on an
idle filesystem. The elapsed time to take a snapshot is
proportional to the size of the filesystem being snap-
shotted. However, nearly all the time to take a snap-
shot is spent in steps one, two, and eight. Because the
filesystem permits other processes to modify the
filesystem during steps one, two, and eight, this part
of taking a snapshot does not interfere with normal
system operation. The ‘‘suspend time’’ column shows
the amount of real-time that processes are blocked
from executing system calls that modify the filesys-
tem. As Table 1 shows, the period during which write
activity is suspended, and thus apparent to processes
in the system, is short and does not increase propor-
tionally to filesystem size.

Filesystem Elapsed CPU Suspend
Size Time Time Time

0.5Gb 3.7 sec 0.1 sec 0.027 sec
7.7Gb 12.1 sec 0.4 sec 0.036 sec

Table 2: Snapshot times on an active filesystem

Table 2 shows the times to snapshot a filesystem
that has four active concurrent processes running.
The elapsed time rises because the process taking the
snapshot has to compete with the other processes for
access to the filesystem. Note that the suspend time
has risen slightly, but is still insignificant and does not

increase in proportion to the size of the filesystem
under test. Instead, it is a function of the level of
write activity present on the filesystem.

Filesystem Elapsed CPU
Size Time Time

0.5Gb 0.5 sec 0.02 sec
7.7Gb 2.3 sec 0.09 sec

Table 3: Snapshot removal time on an idle filesystem

Table 3 shows the times to remove a snapshot
on an idle filesystem. The elapsed time to remove a
snapshot is proportional to the size of the filesystem
being snapshotted. The filesystem does not need to be
suspended to remove a snapshot.

Filesystem Elapsed CPU
Size Time Time

0.5Gb 1.4 sec 0.03 sec
7.7Gb 4.9 sec 0.10 sec

Table 4: Snapshot removal time on an active filesystem

Table 4 shows the times to remove a snapshot on
a filesystem that has four active concurrent processes
running. The elapsed time rises because the process
removing the snapshot has to compete with the other
processes for access to the filesystem. The filesystem
does not need to be suspended to remove a snapshot.

5. Implementation of Background ‘‘Fsck’’
Background ‘‘fsck’’ runs by taking a snapshot

then running its traditional algorithms over the snap-
shot. Because the snapshot is taken of a completely
quiescent filesystem, all of whose dirty blocks have
been written to disk, the snapshot appears to ‘‘fsck’’
to be exactly like an unmounted raw disk partition.
‘‘Fsck’’ runs in five passes that can be summarized as
follows:

1) Scan all the allocated inodes to accumulate a list
of all their allocated blocks. The fast filesystem
preallocates all the inodes that the filesystem will
ev er be able to use at the time that the filesystem
is created. The superblock contains information
on where all the preallocated inodes can be found.
Thus, ‘‘fsck’’ can find all of them without need of
any additional information such as an index-of-
inodes file or any of the filesystem directory struc-
ture. As part of scanning all the allocated inodes,
‘‘fsck’’ also identifies all the inodes that are allo-
cated as directories for use in the next three
passes. When the first pass completes, ‘‘fsck’’
has a list of all the allocated blocks and inodes.



2) Scan all the directories found in pass one. For
each entry found in a directory, increment the ref-
erence count in the inode that it references. If the
referenced inode is a directory, verify that its dot-
dot entry points back properly. Also note that an
entry to the directory has been found. The one
exception to the dot-dot rule is for the root of the
filesystem (inode two) whose dot-dot entry should
point to itself.

3) Check that every directory (except the root) was
found during the second pass. If any directories
were not found, they hav e been somehow lost
from the main tree. In traditional ‘‘fsck’’ any lost
directories would be placed into the lost+found
directory. When running with soft updates, unref-
erenced directories only occur if they were in the
process of being deleted. So, if any turn up in
pass three, ‘‘fsck’’ marks them for deletion in pass
four.

4) If any inodes have a higher reference count than
the number of directory entries that reference
them, their reference count is adjusted to reflect
the correct number of references. Such errors
occur when a directory entry has been deleted but
the system crashed before updating the on-disk
reference count in the inode. The reference count
should never need to be increased; if such a condi-
tion is found, ‘‘fsck’’ marks the filesystem as
needing manual intervention and exits. There is a
special case in which no entries for an inode were
found. When running with soft updates, an unref-
erenced inode can only happen if the file was in
the process of being deleted. Thus, background
‘‘fsck’’ requests the kernel to decrement the refer-
ence count on the inode to zero. The kernel then
follows the usual code path for inodes with a zero
reference count that releases the inode’s claimed
blocks and then releases the inode itself. The
freed inode and any blocks that it claimed are
removed from the list of valid inodes and blocks
found in the first pass. In traditional ‘‘fsck’’ run-
ning on a filesystem that is not using soft updates,
unreferenced inodes are placed in the lost+found
directory.

5) The list of valid inodes and blocks determined in
the first pass and updated in the fourth pass is
compared against the bitmaps in the cylinder
group maps. If there are any disagreements, the
bitmaps in the cylinder groups are updated with
the correct entries.

The new background version of ‘‘fsck’’ cannot update
the on-disk image of the filesystem as the filesystem

state will be different from that of the snapshot. Addi-
tionally, a user-level program cannot obtain the ker-
nel-level locks needed to provide consistent updates
of filesystem data structures. To ensure that the
filesystem state is set using the appropriate locking
protocol, a set of system calls was added to enable
‘‘fsck’’ to pass the resource-update requests to the ker-
nel so that they can be made under the appropriate
lock.

Five operations were implemented in the kernel:

1) set/clear superblock flags

2) adjust an inode block count

3) adjust an inode reference count

4) free a range of inodes

5) free a range of blocks/fragments

The background version of ‘‘fsck’’ is derived from the
traditional disk-based ‘‘fsck’’ by augmenting the tra-
ditional ‘‘fsck’’ with calls to the kernel functions in
place of writes to the filesystem partition. If at any
time, ‘‘fsck’’ finds any inconsistencies other than lost
blocks and inodes or high block or reference counts,
then either a hardware or software error has occurred
and a traditional execution of ‘‘fsck’’ needs to be run.
‘‘Fsck’’ sets a superblock flag (using operation 1) to
force this check to be done before the next time that
the filesystem is mounted. Optionally, it can forcibly
downgrade a corrupted filesystem to read-only. In
more detail, the changes to each pass of ‘‘fsck’’ are as
follows:

1) After scanning each allocated inode, ‘‘fsck’’ com-
pares the number of blocks that it claims with its
count of the number of blocks that it is using. If
these values differ, the traditional ‘‘fsck’’ would
write back the inode with the updated value.
Incorrect block counts typically occur when a par-
tially truncated inode is encountered. The back-
ground ‘‘fsck’’ uses operation 2 to have the kernel
adjust the count. As the file may be actively
growing, the adjustment is done as an increment
or decrement to the current value rather than set-
ting an absolute value. No other changes to pass
one are required.

2) No changes to pass two are required.

3) If any orphaned directories are found in pass three,
they are assumed to have been in the process of
being deleted. Thus they are marked for deletion
in pass four.

4) In the traditional ‘‘fsck’’, inodes with high but
non-zero reference counts need to have their refer-
ence counts adjusted. Inodes with zero reference



counts need to be zeroed out on disk. With the
background ‘‘fsck’’ these two operations can be
subsumed into a single system call (operation 3)
that adjusts the reference count on an inode. If the
count is reduced to zero, the kernel will deallocate
and zero out the inode as part of its normal course
of operation. So, no additional work is required of
‘‘fsck’’. As with the adjustment of the block
count in pass one, the reference count on the inode
may have changed since the snapshot because of
ongoing filesystem activity. Thus, the adjustment
is given as a delta rather than as an absolute value
to ensure that the inode retains the correct refer-
ence count.

5) The final pass taken by the traditional ‘‘fsck’’ is to
rewrite the filesystem bitmaps to reflect the alloca-
tions that it has found. As an active filesystem
will have continued to allocate and free resources,
the state of the bitmaps calculated in the snapshot
by the background ‘‘fsck’’ will not be correct, so it
cannot write them back in their entirety. Howev er,
it can figure out which blocks and inodes are lost
by doing an exclusive-or of the bitmaps in the
snapshot with the bitmaps that it has calculated.
The resulting non-zero bits will be the lost
resources. Having determined which resources
are lost, ‘‘fsck’’ must cause the live bitmaps to be
repaired.

If an inode has been zeroed on the disk, but has
not been marked free in the bitmaps, then it is so
marked (using operation 4). If there were any
unclaimed blocks that were not released when
adjusting the inode reference counts, they are
freed (using operation 5). These unclaimed blocks
arise from an inode that was zeroed on disk, but
whose formerly claimed blocks were not freed
before the system crashed.

The final step after a successful background ‘‘fsck’’
run is to update the filesystem status in the
superblock. There are two flags in the superblock that
track the state of a filesystem. The first is the ‘‘clean’’
flag that is set when a filesystem is unmounted (by the
system administrator or at system shutdown) and
cleared while it is mounted with writing enabled. The
second is the ‘‘unclean-at-mount’’ flag that is
described below.

The ‘‘clean’’ flag is used by the traditional
‘‘fsck’’ to decide which filesystems need to be
checked. Those filesystems with the flag set are
skipped; those filesystems with the flag clear are
checked. Following a successful check, the ‘‘clean’’
flag is set. Before soft updates, the kernel did not

allow unclean filesystems (e.g., filesystems with the
‘‘clean’’ flag cleared) to be mounted for writing as the
corruption could cause the system to panic.

The ‘‘unclean-at-mount’’ flag was added as part
of soft updates. Unclean filesystems running with soft
updates are safe to mount with writing permitted.
However, the system needs to remember that some
cleanup may be required. Thus, the ‘‘unclean-at-
mount’’ flag gets set when an unclean filesystem is
mounted (e.g., mounted with writing enabled without
the ‘‘clean’’ flag having been set). The ‘‘unclean-at-
mount’’ flag serves two purposes. First, when a
filesystem with the ‘‘unclean-at-mount’’ is
unmounted, the ‘‘clean’’ flag is not set to show that
cleaning is still required. Second it tracks the filesys-
tems that need cleaning. By the time that background
‘‘fsck’’ is run, all the filesystems are mounted so none
will have their ‘‘clean’’ flag set. Thus, the ‘‘unclean-
at-mount’’ flag is used by the background ‘‘fsck’’ to
distinguish which filesystems need to be checked.
Those filesystems with the flag set are checked; those
filesystems with the flag clear are skipped.

So, the final step after a successful run of a
background ‘‘fsck’’ is to clear the ‘‘unclean-at-
mount’’ bit in the superblock (using operation 1) so
that the filesystem will be marked ‘‘clean’’ when it is
unmounted by the system administrator or at system
shutdown.

6. Operation of Background ‘‘Fsck’’
Traditionally, ‘‘fsck’’ is inv oked before the

filesystems are mounted and all checks are syn-
chronously done to completion at that time. If back-
ground checking is available, ‘‘fsck’’ is inv oked twice.
It is first invoked at the traditional time, before the
filesystems are mounted, with the −F flag to do check-
ing on all the filesystems that cannot do background
checking. Filesystems that require traditional check-
ing are those that are not running with soft updates
and those that will not be mounted at system startup
(e.g., those marked ‘‘noauto’’ in /etc/fstab). It is then
invoked a second time, after the system has completed
going multiuser, with the −B flag to do checking on all
the filesystems that can do background checking.
Unlike the foreground checking, the background
checking is started asynchronously so that other sys-
tem activity can proceed even on the filesystems that
are being checked.

The ‘‘fsck’’ program is really just a front end
that reads the /etc/fstab file and determines which
filesystems need to be checked. For each filesystem
to be checked, the appropriate back end is invoked.



For the fast filesystem, ‘‘fsck_ffs’’ is inv oked. If
‘‘fsck’’ is inv oked with neither the −F nor the −B flag,
it runs in traditional mode and checks every listed
filesystem. Otherwise it is invoked with the −F to
request that it run in foreground mode. In foreground
mode, the check program for each filesystem is
invoked with the −F flag to determine whether it
wishes to run as part of the boot up sequence, or if it
is able to do its job in background after the system is
up and running. A non-zero exit code indicates that it
wants to run in foreground and it is invoked again
with neither the −F nor the −B flag so that it will run in
its traditional mode. A zero exit code indicates that it
is able to run later in background and just a deferred
message is printed. The ‘‘fsck’’ program attempts to
run as many checks in parallel as possible. Typically
it can run a check on each disk in parallel.

After the system has gone multiuser, ‘‘fsck’’ is
invoked with the −B flag to request that it run in back-
ground mode. The check program for each filesystem
is invoked with the −F flag to determine whether it
wishes to run as part of the boot up sequence, or if it
is able to do its job in background after the system is
up and running. A non-zero exit code indicates that it
wanted to run in foreground that is assumed to have
been done, so the filesystem is skipped. A zero exit
code indicates that it is able to run in background so
the check program is invoked with the −B flag to indi-
cate that a check on the active filesystem should be
done. When running in background mode, only one
filesystem at a time will be checked. To further
reduce the load on the system, the background check
is typically run at a nice value of plus four.

The ‘‘fsck_ffs’’ program does the actual check-
ing of the fast filesystem. When invoked with the −F
flag, ‘‘fsck_ffs’’ determines whether the filesystem
needs to be checked immediately in foreground or if
its checking can be deferred to background. To be
eligible for background checking it must have been
running with soft updates, not have been marked as
needing a foreground check, and be mounted and
writable when the background check is to be done. If
these conditions are met, then ‘‘fsck_ffs’’ exits with a
zero exit status. Otherwise it exits with a non-zero
exit status. If the filesystem is clean, it will exit with
a non-zero exit status so that the clean status of the
filesystem can be verified and reported during the
foreground checks. Note that, when invoked with the
−F flag, no checking is done. The only thing that
‘‘fsck_ffs’’ does is to determine whether a foreground
or background check is needed and exit with an
appropriate status code.

When ‘‘fsck_ffs’’ is inv oked with the −B flag, a
check is done on the specified and possibly active
filesystem. The potential set of corrections is limited
to those available when running in preen mode (as
further detailed in the previous section). If unex-
pected errors are found, the filesystem is marked as
needing a foreground check and ‘‘fsck_ffs’’ exits
without attempting any further checking.

7. Background ‘‘Fsck’’ Performance
Over many years of tuning and refinement,

‘‘fsck’’ has been optimized to minimize and cluster its
I/O requests. Further, its data structures have been
tuned to the point where it consumes little CPU time
and thus its running time is totally dominated by the
time that it takes to do the needed I/O. The perfor-
mance of background ‘‘fsck’’ is almost identical to
that of the traditional ‘‘fsck’’. Since it is using the
same algorithms, the number and pattern of its I/O
requests are identical to the traditional program.
Though the update requests are done through kernel
calls rather than direct writes to the disk, the kernel
calls typically execute the same (or through the bene-
fits of soft updates) slightly fewer disk writes. The
main added delay of background ‘‘fsck’’ is the time
required to take and remove a snapshot of the filesys-
tem. The time for the snapshot operation has already
been covered in section 4 above.

Because of ‘‘fsck’’’ s I/O clustering, it is capable
of using nearly all the bandwidth of a disk. Although
background ‘‘fsck’’ only checks one filesystem parti-
tion at a time (as compared to traditional ‘‘fsck’’ that
checks all separate disks containing filesystems in par-
allel), even a single instance of ‘‘fsck’’ can cause seri-
ously increased latency to processes trying to access
files on the filesystem (or anything else on the same
disk) that is being checked.

As there is no urgency in completing the space
reclamation, background ‘‘fsck’’ is usually run at
lower priority than other processes. The usual way to
reduce priority is to nice the process to some positive
value which results in it getting a lower priority for
the CPU. Because ‘‘fsck’’ is nearly completely I/O
bound, giving it a lower CPU priority has almost no
effect on the time in which it runs and hence in its rate
of issuing I/O requests.

As a general solution to reducing the resource
usage of I/O bound processes such as background
‘‘fsck’’, a small change has been made to the disk
strategy routine. When an I/O request is posted, the
disk strategy routine first checks whether the process
is running at a positive nice. If it is, and there are any



other outstanding I/O requests for the disk, the process
is put to sleep for nice hundredths of a second. Thus,
a process running at a nice of four will sleep for forty
millisecond each time it makes a disk I/O request.
Such a process will be able to do at most twenty-five
disk I/O requests per second − about a third of the
bandwidth of a current technology disk. At the maxi-
mum nice value of twenty, a process is limited to five
I/O requests per second which is low enough to be
almost unnoticeable by other processes competing for
access to the disk. Because the slow-down is imposed
only when there are other outstanding disk requests,
I/O bound processes can run at full speed on an other-
wise idle system.

Filesystem Elapsed CPU
Size Time Time

0.5Gb 5.8 sec 1.1 sec
7.7Gb 50.9 sec 8.3 sec

Table 5: Tr aditional fsck times on an idle filesystem

Table 5 shows the times to run the traditional
‘‘fsck’’ on a filesystem that is otherwise idle. It is
running with a nice value of zero. It is the only pro-
cess active on the system, so represents a lower bound
on the time that a traditional disk check can be done.

Filesystem Elapsed CPU Suspend
Size Time Time Time

0.5Gb 8.1 sec 2.5 sec 0.025 sec
7.7Gb 61.5 sec 14.9 sec 0.050 sec

Table 6: Background fsck times on an idle filesystem

Table 6 shows the times to run background
‘‘fsck’’ on a filesystem that is otherwise idle. It is run-
ning with a nice value of zero. It is the only process
active on the system, so represents a lower bound on
the time that a background disk check can be done.
Note that its running time is only slightly greater than
would be expected by adding the time to take and
remove a snapshot (see Table 1 and Table 3) to the run-
ning time of the traditional ‘‘fsck’’ shown in Table 5.

Filesystem Elapsed CPU Suspend
Size Time Time Time

0.5Gb 122 sec 2.9 sec 0.025 sec
7.7Gb 591 sec 16.2 sec 0.050 sec

Table 7: Background fsck times on an active filesystem

Table 7 shows the times to run background
‘‘fsck’’ on a filesystem that has four processes concur-
rently writing to it. It is running with a nice value of

four. Note that its running time increases by a factor
of ten as it is yielding to the other running processes.
By contrast, its effect on the other processes is mini-
mal as their aggregate throughput is slowed by less
than ten percent.

8. Conclusions and Future Work
This paper has described how to take snapshots

of the fast filesystem with suspension intervals typi-
cally less than one second and independent of the size
of the filesystem being snapshotted. When running
with soft updates, the only filesystem corruption that
occurs is the loss of inodes and data blocks. Using
snapshots together with a slightly modified version of
the traditional ‘‘fsck’’ it is possible to recover the lost
inodes and data blocks while the filesystem is in
active use. While a background ‘‘fsck’’ can run in
about the same amount of time as a traditional
‘‘fsck’’, it is generally desirable to run it at a lower
priority so that it causes less slowdown on other pro-
cesses on the system.

Snapshots may seem a more complex solution
to the problem of running space reclamation on an
active filesystem than a more straight forward
garbage-collection utility. Howev er, their cost (about
1300 lines of code) is amortized over the other useful
functionality: the ability to do reliable dumps of active
filesystems and the ability to provide back-ups of the
filesystem at several times during the day.

For the future, I need to gain experience with
using background ‘‘fsck’’, to gain confidence in its
robustness, and to find the optimal priority to mini-
mize its slowdown on the system while still finishing
its job in a reasonable amount of time.

9. Current Status
Snapshots and background ‘‘fsck’’ hav e been

running on FreeBSD 5.0 systems since April 2001.
All the relevant code including snapshots, the gating
functions, the system call additions for the use of
‘‘fsck’’, and the changes to ‘‘fsck’’ itself are available
as open-source under a Berkeley-style copyright.
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