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Figure 1: Photographs in a low light environment. (a) Blurred image (with shutter speed of 1 second, and ISO 100) due to camera shake. (b) Noisy image
(with shutter speed of 1/100 second, and ISO 1600) due to insufficient light. (c) Noisy image enhanced by adjusting level and gamma. (d) Our deblurred image.

Abstract

Taking satisfactory photos under dim lighting conditions using a
hand-held camera is challenging. If the camera is set to a long ex-
posure time, the image is blurred due to camera shake. On the other
hand, the image is dark and noisy if it is taken with a short expo-
sure time but with a high camera gain. By combining information
extracted from both blurred and noisy images, however, we show
in this paper how to produce a high quality image that cannot be
obtained by simply denoising the noisy image, or deblurring the
blurred image alone.

Our approach is image deblurring with the help of the noisy im-
age. First, both images are used to estimate an accurate blur kernel,
which otherwise is difficult to obtain from a single blurred image.
Second, and again using both images, a residual deconvolution is
proposed to significantly reduce ringing artifacts inherent to im-
age deconvolution. Third, the remaining ringing artifacts in smooth
image regions are further suppressed by a gain-controlled deconvo-
lution process. We demonstrate the effectiveness of our approach
using a number of indoor and outdoor images taken by off-the-shelf
hand-held cameras in poor lighting environments.

1 Introduction

Capturing satisfactory photos under low light conditions using a
hand-held camera can be a frustrating experience. Often the photos

taken are blurred or noisy. The brightness of the image can be in-
creased in three ways. First, to reduce the shutter speed. But with a
shutter speed below a safe shutter speed (the reciprocal of the focal
length of the lens, in the unit of seconds), camera shake will result
in a blurred image. Second, to use a large aperture. A large aper-
ture will however reduce the depth of field. Moreover, the range of
apertures in many cameras is very limited. Third, to set a high ISO.
However, the high ISO image is very noisy because the noise is am-
plified as the camera’s gain increases. To take a sharp image in a
dim lighting environment, the best settings are: safe shutter speed,
the largest aperture, and the highest ISO. Even with this combina-
tion, the captured image may still be dark and very noisy.

Typically, two kinds of degraded image can be taken in the low
light conditions. One is a blurred image which is taken with a slow
shutter speed and a low ISO setting, as shown in Figure 1(a). With
enough light, it has the correct color, intensity and a high Signal-
Noise Ratio (SNR). But it is blurry due to camera shake. The other
is an underexposed and noisy image with a fast shutter speed and a
high ISO setting, as shown in Figure 1(b). It is sharp but very noisy
due to insufficient exposure and high camera gain. The colors of
this image are also partially lost due to low contrast.

Recovering a high quality image from a very noisy image is no easy
task as fine image details and textures are concealed in noise. De-
noising [Portilla et al. 2003] cannot completely separate signals
from noise. On the other hand, deblurring from a single blurred
image is a challenging blind deconvolution problem - both blur ker-
nel (or Point Spread Function) estimation and image deconvolution
are highly under-constrained. Moreover, unpleasant artifacts (e.g.,
ringing) from image deconvolution, even when using a perfect ker-
nel, also appear in the reconstructed image.

Deblurring with blurred/noisy image pair has been proposed by Lim
and Silverstein [2006]1. In this paper, we also use a blurred/noisy
image pair, but describe an approach that estimates a much more
accurate blur kernel and produces a deblurred image with almost
no ringing. Like most previous image deblurring approaches, we

1We thank the reviewers for pointing out Lim and Silverstein [2006]’s
work during the rebuttal phase.



assume that the image blur can be well described by a single blur
kernel caused by camera shake and the scene is static. Inspired by
[Fergus et al. 2006], we convert the blind deconvolution problem
into two non-blind deconvolution problems - non-blind kernel es-
timation and non-blind image deconvolution. In kernel estimation,
we show that a very accurate initial kernel can be recovered from
the blurred image by exploiting the large scale, sharp image struc-
tures in the noisy image. Our approach is also able to handle larger
kernels than those recovered by [Fergus et al. 2006] using a single
blurred image.

To greatly reduce the “ringing” artifacts that commonly result from
the image deconvolution, we propose a residual deconvolution ap-
proach. We also propose a gain-controlled deconvolution to fur-
ther suppress the ringing artifacts in smooth image regions. All
three steps - kernel estimation, residual deconvolution, and gain-
controlled deconvolution - take advantage of both images. The final
reconstructed image is sharper than the blurred image and clearer
than the noisy image, as shown in Figure 1(d).

Our approach is practical despite that we require two images. We
have found that the motion between two blurred/noisy images,
when taken in a quick succession, is mainly a translation. This
is significant because the kernel estimation is independent of the
translation, which only results in an offset of the kernel. We will
describe how to acquire and align such image pairs in Section 7.

2 Previous Work

Single image deblurring. Image deblurring can be categorized
into two types: blind deconvolution and non-blind deconvolution.
The former is more difficult since the blur kernel is unknown. A
comprehensive literature review can be found in [Kundur and Hatz-
inakos 1996]. As demonstrated in [Fergus et al. 2006], the real ker-
nel caused by camera shake is complex, beyond a simple paramet-
ric form (e.g., single one-direction motion or a gaussian) assumed in
previous approaches [Reeves and Mersereau 1992; Y. Yitzhaky and
Kopeika. 1998; Caron et al. 2002; Jalobeanu et al. 2002]. In [Fer-
gus et al. 2006], natural image statistics together with a sophisti-
cated variational Bayes inference algorithm are used to estimate the
kernel. The image is then reconstructed using a standard non-blind
deconvolution algorithm. Very nice results are obtained when the
kernel is small (e.g. 30× 30 pixels or fewer) [Fergus et al. 2006].
Kernel estimation for a large blur is, however, inaccurate and unre-
liable using a single image.

Even with a known kernel, non-blind deconvolution [Geman and
Reynolds 1992; Zarowin 1994; Neelamani et al. 2004] is still
under-constrained. Reconstruction artifacts, e.g., “ringing” effects
or color speckles, are inevitable because of high frequency loss in
the blurred image. The errors due to sensor noise and quantizations
of the image/kernel are also amplified in the deconvolution process.
For example, more iterations in the Richardson-Lucy (RL) algo-
rithm [H. Richardson 1972] will result in more “ringing” artifacts.
In our approach, we significantly reduce the artifacts in a non-blind
deconvolution by taking advantage of the noisy image.

Recently, spatially variant kernel estimation has also been proposed
in [Bardsley et al. 2006]. In [Levin 2006], the image is segmented
into several layers with different kernels. The kernel in each layer
is uni-directional and the layer motion velocity is constant.

Hardware based solutions [Nikon 2005] to reduce image blur in-
clude lens stabilization and sensor stabilization. Both techniques
physically move an element of the lens, or the sensor, to counter-
balance the camera shake. Typically, the captured image can be as
sharp as if it were taken with a shutter speed 2-3 stops faster.

Single image denoising. Image denoising is a classic problem ex-
tensively studied. The challenge of image denoising is how to com-
promise between removing noise and preserving edge or texture.
Commercial softwares, e.g., “NeatImage” (www.neatimage.com)
and ”Imagenomic” (www.imagenomic.com), use wavelet-based ap-
proaches [Simoncelli and Adelson 1996; Portilla et al. 2003]. Bi-
lateral filtering [Tomasi and Manduchi 1998; Durand and Dorsey
2002] has also been a simple and effective method widely used
in computer graphics. Other approaches include anisotropic dif-
fusion [Perona and Malik 1990], PDE-based methods [Rudin et al.
1992], fields of experts [Roth and Black 2005], and nonlocal meth-
ods [Buades et al. 2005].

Multiple images deblurring and denoising. Deblurring and de-
noising can benefit from multiple images. Images with differ-
ent blurring directions [Bascle et al. 1996; Rav-Acha and Peleg
2000; Rav-Acha and Peleg 2005] can be used for kernel estimation.
In [Liu and Gamal 2001], a CMOS sensor can capture multiple
high-speed frames within a normal exposure time. The pixel with
motion replaced with the pixel in one of the high-speed frames.
Raskar et al. [2006] proposed a “fluttered shutter” camera which
opens and closes the shutter during a normal exposure time with a
pseudo-random sequence. This approach preserves high frequency
spatial details in the blurred image and produces impressive results,
assuming the blur kernel is known. Denoising can be performed by
a joint/cross bilateral filter using flash/no-flash images [Petschnigg
et al. 2004; Eisemann and Durand 2004], or by a spatio-temporal
filter for video sequences [Bennett and McMillan 2005].

Hybrid imaging system [Ben-Ezra and Nayar 2003] consists of a
primary sensor (high spatial resolution) and a secondary sensor
(high temporal resolution). The secondary sensor captures a num-
ber of low resolution, sharp images for kernel estimation. Our ap-
proach estimates the kernel only from two images, without the need
for special hardware. Another related work [Jia et al. 2004] also
uses a pair of images, where the colors of the blurred image are
transferred into the noisy image without kernel estimation. But this
approach is limited to the case that the noisy image has a high SNR
and fine details.

The work most related to ours is [Lim and Silverstein 2006] which
also makes use of a short exposure image to help estimate the ker-
nel and deconvolution. The kernel is estimated in the linear least-
squares sense using two images. Their works has also suggested
an application for defocus using large/small aperture images. How-
ever, their work does not show any results or analysis. In this paper,
we demonstrate that our proposed techniques can obtain much ac-
curate kernel compared with Lim and Silverstein’s approach, and
produce almost artifact-free image by a proposed de-ringing ap-
proach in deconvolution.

3 Problem Formulation

We take a pair of images: a blurred image B with a slow shutter
speed and low ISO, and a noisy image N with high shutter speed
and high ISO. The noisy image is usually underexposed and has a
very low SNR since camera noise is dependent on the image inten-
sity level [Liu et al. 2006]. Moreover, the noise in the high ISO
image is also larger than that in the low ISO image since the noise
is amplified by camera gain. But the noisy image is sharp because
we use a fast shutter speed that is above the safe shutter speed.

We pre-multiply the noisy image by a ratio ISOBΔtB
ISON ΔtN to compensate

for the exposure difference between the blurred and noisy images,
where Δt is the exposure time. We perform the multiplication in
irradiance space then go back to image space if the camera response
curve [Debevec and Malik 1997] is known. Otherwise, a gamma



(γ = 2.0) curve is used as an approximation.

3.1 Our approach

Our goal is to reconstruct a high quality image I using the input
images B and N

B = I ⊗K, (1)

where K is the blur kernel and ⊗ is the convolution operator. For
the noisy image N, we compute a denoised image ND [Portilla et al.
2003] (See Section 7 for details). ND loses some fine details in
the denoising process, but preserves the large scale, sharp image
structures. We represent the lost detail layer as a residual image ΔI:

I = ND +ΔI. (2)

Our first important observation is that the denoised image ND is a
very good initial approximation to I for the purpose of kernel esti-
mation from Equation (1). The residual image ΔI is relatively small
with respect to ND. The power spectrum of the image I mainly lies
in the denoised image ND. Moreover, the large scale, sharp image
structures in ND make important contributions for the kernel esti-
mation. As will be shown in our experiments on synthetic and real
images, accurate kernels can be obtained using B and ND in non-
blind convolution.

Once K is estimated, we can again use Equation (1) to non-blindly
deconvolute I, which unfortunately will have significant artifacts,
e.g, ringing effects. Instead of recovering I directly, we propose to
first recover the residual image ΔI from the blurred image B. By
combining Equations (1) and (2), the residual image can be recon-
structed from a residual deconvolution:

ΔB = ΔI ⊗K, (3)

where ΔB = B−ND ⊗K is a residual blurred image.

Our second observation is that the ringing artifacts from residual
deconvolution of ΔI (Equation (3)) are smaller than those from de-
convolution of I (Equation (1)) because ΔB has a much smaller
magnitude than B after being offset by ND ⊗K.

The denoised image ND also provides a crucial gain signal to con-
trol the deconvolution process so that we can suppress ringing arti-
facts, especially in smooth image regions. We propose a de-ringing
approach using a gain-controlled deconvolution algorithm to fur-
ther reduce ringing artifacts.

The above three steps - kernel estimation (Section 4), residual de-
convolution (Section 5), and de-ringing (Section 6) - are iterated to
refine the estimated blur kernel K and the deconvoluted image I.

4 Kernel Estimation

In this section, we show that a simple constrained least-squares op-
timization is able to produce a very good initial kernel.

Iterative kernel estimation. The goal of kernel estimation is to
find the blur kernel K from B = I ⊗K with the initialization I =
ND. In vector-matrix form, it is b = Ak, where b and k are the
vector forms of B and K, and A is the matrix form of I. Lim and
Silverstein [2006] compute the kernel k by solving b = Ak in the
linear least-squares. However, the estimated kernel by this simple
approach may be poor, as shown in Figure 2 (f). To obtain a better
kernel, we use Tikhonov regularization and hysteresis thersholding
in scale space.

Regularization. To stabilize the solution, we use Tikhonov regu-
larization method with a positive scalar λ by solving mink ||Ak−
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Figure 2: Kernel Estimation. Two blurred images are synthesized from a
true image (also shown in Figure 4(e)). (d) Matlab’s deconvblind routine
results. (e) Fergus’s result at finest 4 levels. (f) Lim and Silverstein’s result.
(g) estimated kernels without hysteresis thresholding. (h) our result at the
finest 4 levels. (i) true kernels.

b||2 + λ 2||k||2. The default value of λ is set at 5. The solution
is given by (AT A + λ 2I)k = AT b in closed-form if there are no
other constraints on the kernel k. But a real blur kernel has to be
non-negative and preserve energy, so the optimal kernel is obtained
from the following optimization system:

min
k

||Ak−b||2 +λ 2||k||2, subject to ki ≥ 0, and ∑
i

ki = 1. (4)

We adopt the Landweber method [Engl et al. 2000] to iteratively
update as follows.

1. Initialize k0 = δ , the delta function.

2. Update kn+1 = kn +β (AT b− (AT A+λ 2I)kn).

3. Set kn+1
i = 0 if kn+1

i < 0, and normalize kn+1
i = kn+1

i /∑i kn+1
i .

β is a scalar that controls the convergence. The iteration stops when
the change between two steps is sufficiently small. We typically run
about 20 to 30 iterations by setting β = 1.0. The algorithm is fast
using FFT, taking about 8 to 12 seconds for a 64×64 kernel and a
800×600 image.



(a) blurred/noise pair (b) zoom in (c) 

Figure 3: Blurred and noisy images from the light-blue box in (a) are
zoomed-in in (b). The top image in (c) is a zoomed-in view of the light-
orange box in (a), revealing the true kernel. The middle image in (c) is the
estimated kernel using only image patches in (b). The bottom image in (c)
is the estimated kernel using the whole image.

Hysteresis thresholding in scale space. The above iterative al-
gorithm can be implemented in scale space to make the solution to
overcome the local minimal. A straightforward method is to use the
kernel estimated at the current level to initialize the next finer level.
However, we have found that such initialization is insufficient to
control noise in the kernel estimation. The noise or errors at coarse
levels may be propagated and amplified to fine levels. To suppress
noise in the estimate of the kernel, we prefer the global shape of the
kernel at a fine level to be similar to the shape at its coarser level.
To achieve this, we propose a hysteresis thresholding [Canny 1986]
in scale space.

At each level, a kernel mask M is defined by thresholding the kernel
values, Mi = 1 if ki > tkmax, where t is a threshold and kmax is the
maximum of all kernel values. We compute two masks Mlow and
Mhigh by setting two thresholds tlow and thigh. Mlow is larger and
contains Mhigh. After kernel estimation, we set all elements of Kl

outside the mask Mhigh to zero to reduce the noise at level l. Then,
at the next finer level l +1, we set all elements of Kl+1 outside the
up-sampled mask of Mlow to zero to further reduce noise. This hys-
teresis thresholding is performed from coarse to fine. The pyramids
are constructed using a downsampling factor of 1/

√
2 until the ker-

nel size at the coarsest level reaches 9× 9. We typically choose
tlow = 0.03, and thigh = 0.05.

Results and discussion. We first compare our estimated kernel
with the true kernel using a synthetic example. Figures 2(a-c) show
two blurred images, a noisy image, and a denoised image. The
blurred images are synthesized with two 41× 41 known kernels.
Figure 2(d) shows kernels estimated by Matlab’s deconvblind rou-
tine (a blind deconvolution) using the denoised image ND as ini-
tialization. Figure 2(e) shows coarse-to-fine kernels (the finest 4
levels) estimated by Fergus’s algorithm only using the blurred im-
age [Fergus et al. 2006]. The Matlab code is released by Fergus
(http://people.csail.mit.edu/fergus/). We exhaustively tune all op-
tions in Fergus’s algorithm and select different regions in the im-
age to produce the best results. Fergus’s algorithm recovers much
better kernels than those using Matlab’s blind deconvolution. Fig-
ure 2(f) is result from [Lim and Silverstein 2006]. In comparison,
our estimated kernels in Figure 2(h) are very close to the true ker-
nels in in Figure 2(i) because we solve a non-blind kernel estima-
tion problem. The fine details and thin structures of the kernels are
recovered. Figure 2(g) also shows our kernel estimation without
hysteresis thresholding, which is very noisy.

Figure 3 shows our result on real images. Light-blue trajectories
caused by highlights in the scene clearly reveal the accurate shape

(e) true image(d)  gain map

(a)  standard RL decovolution

(b)  residual deconvolution

(c) residual deconvolution + de-ringing

Figure 4: Deconvolution using true kernels. All results are generated after
20 iterations. Note that standard RL results contain unpleasant “ringing”
artifacts - dark and light ripples around strong image features.

of the kernel. One such trajectories is shown in Figure 3(c). We also
compare two kernels using selected image patches and the whole
image. The recovered kernels have very similar shape to the light-
blue trajectory, as shown in Figure 3(c). Kernel estimation is in-
sensitive to the selected regions. The kernel size is very large, with
92×92 pixels.

5 Residual Deconvolution

Given the blur kernel K, the true image can be reconstructed from
B = K ⊗ I. Figure 4(a) shows the deconvolution results using a
standard Richardson-Lucy (RL) algorithm after 20 iterations with
the true kernels. The resulting images contain visible “ringing” ar-
tifacts, with dark and light ripples around bright features in the im-
age. The ringing artifacts often occur with iterative methods, such
as the RL algorithm. More iterations introduce not only more im-
age details but also more ringing. Fergus et al. [2006] also observed
this issue from their results.



(a) B (b) ND

(d) ΔB = B−ND ⊗K (e) ΔI (f) I = ND +ΔI

(c)

Figure 5: Residual deconvolution. (a-b) are the blurred signal and de-
noised signal. The blur kernel is a box filter. (c) is the standard deconvo-
lution result from (a). (d-e) are the blurred residual signal and its decon-
volution result. (f) is the residual deconvolution result. Notice that ringing
artifact in (f) is smaller than that in (c).

The ringing effects are due to the well-known Gibbs phenomena in
Fourier analysis at discontinuous points. The discontinuities could
be at image edge points, boundaries or are artificially introduced by
the inadequate spatial sampling of the images or the kernels. The
larger the blur kernel, the stronger the ringing artifacts are.

The Gibbs oscillations have an amplitude independent of the cut-
off frequencies of the filter, but are always proportional to the sig-
nal jump at the discontinuous points. The key to our approach is
that we perform the deconvolution on relative image quantities to
reduce the absolute amplitude of the signals. Instead of doing the
deconvolution directly on the image B, we perform deconvolution
on the residual blurred image ΔB = ΔI ⊗K to recover the residual
image ΔI. The final reconstructed image is I = ND +ΔI.

The standard RL algorithm is one of ratio-based iterative ap-
proaches. It enforces the non-negativity of pixel values. When us-
ing RL algorithms, the residual images should be offset by adding
the constant 1, ΔI �→ ΔI + 1 and ΔB �→ ΔB + 1, as all images are
normalized to range [0,1]. After each iteration, the residual image
is offset back by subtracting the constant 1:

ΔIn+1 = (K ∗ ΔB+1
(ΔIn +1)⊗K

) · (ΔIn +1)−1, (5)

where ’∗’ is the correlation operator. Figure 4(b) shows the de-
convolution results using the residual RL algorithm with the same
number of iterations. Compared with the standard RL results (Fig-
ure 4(a)), the ringing effects are reduced.

Figure 5 shows a 1D example of the residual deconvolution. The
ringing artifacts from ΔI are significantly weaker than those in I
because the magnitude of ΔB (after subtracting ND ⊗K from B) is
much smaller than that of B.

6 De-ringing with Gain-controlled RL

The residual deconvolution lessened the ringing effects, but cannot
fully eliminate them, as shown in Figure 4(b). Another example
is shown in Figure 7(b). We observe that the ringing effects are
most distracting in smooth regions because human perception can
tolerate small scale ringing in highly textured regions. We have
also found that the mid-scale ringing effects are more noticeable
compared with the fine details and large scale sharp structures in
the image. Note that the strong ringing is mainly caused by high
contrast edges and the magnitude of ringings is proportional to the
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Figure 6: Gain-controlled RL. (a-c) blurred signal, denoised signal, and
gain map. The kernel is estimated using B and ND. (d-f) deconvolution
results by standard RL (green), residual RL(blue), and gain-controlled RL
(red), after iteration 1, 10, and 20. The plot at the bottom-right are blown-
up views. Notice that the ringing effects are amplified and propagated in
standard RL and residual RL, but suppressed in gain-controlled RL.

magnitude of image gradient. Based on these observations, we pro-
pose a de-ringing approach with a gain-controlled RL algorithm as
follows.

Gain-controlled Richardson-Lucy (RL). We modify the residual
RL algorithm by introducing a gain map IGain:

ΔIn+1 = IGain ·
{

(K ∗ ΔB+1
(ΔIn +1)⊗K

) · (ΔIn +1)−1
}

, (6)

where IGain is a multiplier (≤ 1) to suppress the contrast of the
recovered residual image ΔI. Since RL is a ratio-based algo-
rithm, the ringing effects are amplified at each iteration by the ratio
K ∗ ΔB+1

(ΔIn+1)⊗K in (6). Multiplying a factor less than one at each it-
eration will suppress the propagation of the ringing effects. Notice
that multiplying a factor will not decrease the overall magnitude of
the signal but decrease the contrast of the signal because the ratio
K ∗ ΔB+1

(ΔIn+1)⊗K will increase the magnitude of the signal in each it-
eration. At the last iteration, we do not multiply the gain map IGain.
We denote the image reconstructed by gain-controlled RL as Ig.

Since we want to suppress the contrast of ringing in the smooth
regions while avoiding suppression of sharp edges, the gain map
should be small in smooth regions and large in others. Hence, we
define the gain map using the gradient of the denoised image as:

IGain = (1−α)+α ·∑
l
||∇Nl

D||, (7)

where α controls the influence of the gain map, and ∇Nl
D is the gra-

dient of the denoised image at the lth level of the Gaussian pyramid
with standard deviation 0.5. The parameter α controls the degree of
suppression. In all the results shown in this paper, we set the value
of α to 0.2. Aggregated image gradients at multiple scales have
also been used in HDR compression [Fattal et al. 2002; Li et al.
2005]. Here, the gradients of denoised image provide a gain signal
to adaptively suppress the ringing effects in different regions.

Figure 6 shows a 1D example of gain-controlled RL. As we can
see, the residual RL can reduce the magnitude of ringing com-
pared with the standard RL. In both standard RL and residual RL,
the magnitude of ringing increases and the spatial range of ring-
ing spreads gradually, after each iteration. With the control from
the gain map, the ringing effects are suppressed at each iteration



(a) blurred/noisy image (b) I, by residual RL

(c) Ig, by gain-controlled RL (d) detail layer Id

(e) final image (f) ringing layer

Figure 7: De-ringing. The gain-controlled RL effectively suppresses the
ringing artifacts and produces de-ringing image Ig in (c). The detail layer
Id in (d) is extracted from the residual RL result in (b) with the guidance of
the Ig using a joint/cross bilateral filter. Our final image in (e) is obtained
by adding (c) and (d) together.

(e.g., IGain = 0.8 in flat region). Most importantly, the propagation
of ringing is greatly prevented so that the ringing is significantly
reduced.

Figure 7(c) shows a gain-controlled RL result Ig. It is a clean de-
convolution result with large scale sharp edges, compared with the
residual RL result I in Figure 7(c). However, some fine details are
inevitably suppressed by gain-controlled RL. Fortunately, we are
able to add fine scale image details for the residual RL result I us-
ing the following approach.

Adding details. We extract the fine scale detail layer Id = I − I
from the residual RL result I, where I(x) = F(I(x)) is a filtered
image and F(·) is a low-pass filter. In other words, the details layer
is obtained by a high-pass filtering. We use joint/cross bilateral
filtering [Petschnigg et al. 2004; Eisemann and Durand 2004] as it
preserves large scale edges in Ig:

F(I(x); Ig) =
1
Zx

∑
x′∈W (x)

Gd(x−x′)Gr(I(x)− Ig(x′)) · Ix′ ,

where σd and σr are spatial and signal deviations of Gaussian ker-
nels Gd and Gr. W (x) is a neighboring window and Zx is a nor-
malization term. The default values of σd and σr are 1.6 and 0.08.
Figure 7(d) shows the extracted detail layer.

DSRL CameraCompact Camera
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Figure 8: Top left: image pattern. Four corners in red boxes are extracted
in two shots as corresponding point pairs. Top right: in-plane rotation
correction using two manually specified lines. Bottom: The experiment was
repeated by four users (A,B,C,D). In each cell (a 4x4 grid), one color dot
represents a difference vector between one of corresponding point pairs in
two shots. The grid unit is 0.5 pixel and cell center is the coordinate origin.

Composing the gain-controlled RL result Ig and the detail layer Id
produces our final image, as shown in Figure 7(e). The ringing layer
(Figure 7(f)) can also be obtained by subtracting Ig from the filtered
image I. As we expected, the ringing layer mainly contains the
ripple-like ringing effects. In the final result, the ringing artifacts
are significantly reduced while the recovered image details from
deconvolution are well preserved. Figures 4 (c-d) show another
example of results after de-ringing and the computed gain map.

To summarize, our iterative image deblurring algorithm consists of
the following steps: estimate the kernel K, compute the residual
deconvolution image I, compute the gain-controlled deconvolution
image Ig, and construct the final image by adding the detail layer
Id . The iterations stop when the change is sufficiently small.

7 Implementation Details

Image acquisition In practice, we require one image be taken soon
after another, to minimize misalignment between two images. We
have two options to capture such image pairs very quickly. First,
two successive shots with different camera settings are triggered
by a laptop computer connected to the camera. This frees the user
from changing camera settings between two shots. Second, we use
exposure bracketing built in many DSLR cameras. In this mode,
two successive shots can be taken with different shutter speeds by
pressing the shutter only once. Using these two options, the time
interval between two shots can be very small, typically only 1/5
second which is a small fraction of typical shutter speed (> 1 sec-
ond) of the blurred image. The motion between two such shots is
mainly a small translation if we assume that the blurred image can
be modeled by a single blur kernel, i.e., the dominant motion is
translation. Because the translation only results in an offset of the
kernel, it is unnecessary to align two images.

We can also manually change the camera settings between two
shots. In this case, we have found that the dominant motions be-
tween two shots are translation and in-plane rotation. To correct
in-plane rotation, we simply draw two corresponding lines in the
blurred/noisy images. In the blurred image, the line can be speci-
fied along a straight object boundary or by connecting two corner
features. The noisy image is rotated around its image center such



that two lines are virtually parallel. If an advanced exposure brack-
eting allowing more controls is built to future cameras, this manual
alignment will become unnecessary.

To quantitatively measure relative motion between two shots, we
have performed a usability study. We asked four users to continu-
ously take two shots of a pattern on the wall (as shown in the top
right of Figure 8), using laptop control and manual control, with a
compact camera and a DSLR camera. Two shots have no blur and
are taken with the same camera settings. Then, four correspond-
ing points nearby the image corners in two shots are extracted. We
correct the transformation (only translation for laptop control, but
in-plane rotation after translation for manual control) between two
shots. The bottom row of Figure 8 shows registration errors after
the correction. In each cell, a dot represents a difference vector be-
tween a pair of corresponding points. The overall pixel error is less
than 2 pixels at the full image resolution. Not surprisingly, the best
aligned image is obtained using laptop control and a DSLR camera.

Image denoising For the noisy image N, we apply a wavelet-based
denoising algorithm [Portilla et al. 2003] with Matlab code from
http://decsai.ugr.es/∼javier/denoise/. The algorithm is one of the
state-of-art techniques and comparable to several commercial de-
noising softwares. We have also experimented with bilateral fil-
tering but found that it is hard to achieve a good balance between
removing noise and preserving details, even with careful parameter
tuning.

8 Experimental Results

We apply our approach to a variety of blurred/noisy image pairs
in low lighting environments using a compact camera (Canon S60,
5M pixels) and a DSLR camera (Canon 20D, 8M pixels).

Comparison. We compare our approach with denoising [Portilla
et al. 2003], and a standard RL algorithm. Figure 9, from left to
right, shows a blurred image, noisy image (enhanced), denoised
image, standard RL result (using our estimated kernel), and our
result. The kernel sizes are 31× 31, 33× 33, and 40× 40 for the
three examples.

We manually tune the noise parameter (standard deviation) in the
denoising algorithm to achieve a best visual balance between noise
removal and detail preservation. Compared with denoised results
shown in Figure 9(c), our results in Figure 9(e) contain much more
fine details, such as tiny textures on the fabric in the first example,
thin grid structures on the crown in the second example, and clear
text on the camera in the last example. Because the noise image is
scaled up from a very dark, low contrast image, partial color infor-
mation is also lost. Our approach recovers correct colors through
image deblurring. Figure 9(d) shows standard RL deconvoution re-
sults which exhibit unpleasant ringing artifacts.

Large noise. Figure 10 shows a blurred/noisy pair containing thin
hairs and a sweater with detailed structures. The images are cap-
tured by the compact camera and the noisy image has very strong
noises. Most fabric textures on the sweater are faithfully recovered
in our result.

The last column in the second row of Figure 10 shows the estimated
initial kernel and the refined kernel by the iterative optimization.
The iteration number is typically 2 or 3 in our experiments. The
refined kernel has a sharper and sparser shape than the initial one.

Large kernel. Figure 11 shows an example with a large blur by the
compact camera. The kernel size is 87× 87 at the original resolu-
tion 1200×1600. The image shown here is cropped to 975×1146.
Compared with the state-of-art single image kernel estimation ap-
proach [Fergus et al. 2006] in which the largest kernel is 30 pixels,

blurred image noisy image
art (Fig. 8)
crown (Fig. 8)
camera (Fig. 8)
sweater (Fig. 9)
dragon (Fig. 10)
budda (Fig. 11)

1.0s, ISO 100
1.0s, ISO 100
0.8s, ISO 100
1.3s, ISO 100
1.3s, ISO 100
1.0s, ISO 100

1/200s, ISO 1600
1/90s, ISO 1600

1/320s, ISO 1600
1/80s, ISO 400
1/80s, ISO 400

1/200s, ISO 1600

Table 1: Shutter speeds and ISO settings in Figure 9, 10, 11, and
12.

our approach using an image pair significantly extends the degree
of blur that can be handled.

Small noise and kernel. In a moderately dim lighting environ-
ment, we may capture input images with small noise and blur, as
shown in Figure 12. This is a typical case assumed in Jia’s ap-
proach [2004] which is a color transfer based algorithm. The third
and fourth columns in Figure 12 are color transferred result [Jia
et al. 2004] and histogram equalization result from the blurred im-
age to the denoised image. Note that the colors cannot be accurately
transferred (e.g., Buddha’s golden hat) because both approaches use
global mappings. Our result not only recovers more details (e.g.,
horizontal lines on background) but also has similar colors to the
blurred image for all details.

Table 1 shows the shutter speeds and ISO settings of examples in
Figure 9-12. We are able to reduce exposure time (shutter speed ×
ISO) by about 10 stops.

9 Discussion and Conclusion

We have proposed an image deblurring approach using a pair of
blurred/noisy images. Our approach takes advantage of both im-
ages to produce a high quality reconstructed image. By formulat-
ing the image deblurring problem using two images, we have de-
veloped an iterative deconvolution algorithm which can estimate a
very good initial kernel and significantly reduce deconvolution ar-
tifacts. No special hardware is required. Our proposed approach
uses off-the-shelf, hand-held cameras.

Limitations remain in our approach, however. Our approach shares
the common limitation of most image deblurring techniques: as-
suming a single, spatial-invariant blur kernel. For spatial-variant
kernel, it is possible to locally estimate kernels for different parts
of the image and blend deconvolution results. Most significantly,
our approach requires two images. We envision that the ability to
capture such pairs will eventually move into the camera firmware,
thereby making two-shots capture easier and faster.

In the future, we plan to extend our approach to other image de-
blurring applications, such as deblurring video sequences, or out-
of-focus deblurring. Our techniques can also be applied in a hybrid
image system [Ben-Ezra and Nayar 2003] or combined with coded
exposure photography [Raskar et al. 2006].
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(a) blurred image (b) noisy image (c) denoised image (d) RL deconvolution (e) our result

Figure 9: Comparison. The noisy image is enhanced for display. The estimated blur kernel is shown at the bottom-right corner in the last column. The
second example is taken by the compact camera and the other two by the DSLR camera. Note that our result contains finer details than the denoised image
and less ringing artifacts than the RL deconvolution result. In the last example, ”VEST POCKET KODAK” on the camera can be seen from our result but it is
hard, if not impossible, to be recognized from the blurred image or the noisy image. We encourage the reader to see a close-up view in the electronic version.



Figure 10: Large noise. Top three images: blurred, noisy, and our result. Bottom left four images: zoomed-in views of blurred, noisy, denoised and our
result. Bottom right two images are initial kernel (top) and refined kernel (bottom) using our iterative algorithm. The kernel size is 32×32 .

Figure 11: Large kernel. Left: blurred image, noisy image, denoised image, and our result. Top right: two image patches in the light-orange boxes in
blurred/noisy images reveal the kernel shape. Note that the highlight point in the noisy patch is an ellipse-like shape. Bottom right: estimated 87×87 kernel.

Figure 12: Small noise and kernel. This examples is taken by the DSLR camera. The kernel size is 21×21. From left to right: blurred image, noisy image,
color transferred denoised image, histogram-equalization denoised image, and our result. Our deblurred result has more details and vivid colors.
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