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Abstract
Set membership classification algorithms visit nodes of a CSG tree through a recursive divide-and-conquer process,
which stores intermediate results in a stack, whose depth equals the height, H, of the tree. During this process, the
candidate sets is usually subdivided into uniform cells, whose interior is disjoint from primitives’ boundaries. Cells
inside the CSG object are identified by combining the binary results of classifying them against the primitives. In
parallel systems, which allocate a different process to each leaf of the tree, and in algorithms that classify large
collections of regularly spaced candidate sets (points, pixels, voxels, rays, or cross-sections) against the primitives
using forward differences, a separate stack is associated with each candidate or cell. Our new representation for
CSG trees, called Blist, distributes the merging operation to the primitives and reduces the storage requirement for
each cell to log(H+1) bits. Blist can represent any Boolean expression as a list of primitives, each  containing a
reference to the primitive's description (type, parameter, transformation), a sign, a stamp, and a name. During set
membership classification, a label is attached to each cell and passed to the successive primitives in the Blist. When
the name written on the label matches the primitive’s name, the cell is classified against the primitive. If the result
matches the primitive’s sign, the name stored in the primitive’s stamp is put on the label—if not, a zero name is
used. The elimination of the intermediate CSG nodes and of the recursive merging operations make the Blist
architecture particularly well suited for parallel hardware configurations. We provide a simple algorithm for
converting CSG expressions to Blists. It uses rotations on the positive form of the tree to reduce the number of bits
needed for each label.

Introduction
Various representations of solids are surveyed in [Rossignac94]. We focus here on CSG representations, which combine primitive
shapes through regularized Boolean expressions. The primitive shapes define regularized solids [Requicha80, Mantyla88], which
may be represented as parameterized primitives, such as cylinders or blocks, or as more general boundary or procedural
representations. With each primitive is associated a transformation, often restricted to be a rigid body motion or linear map. In what
follows, primitives’ descriptions, which may involve the primitive type, parameters, and transformation coefficients, are stored in a
table indexed an integer, p, identifying a primitive. The Boolean expression combines the primitive shapes through union (∪),
regularized intersection (∩), and regularized difference (−) operations. It may be represented as a binary tree, whose interior nodes
store the Boolean operators and whose leaves store integer references to the primitives in the table.

To make things more precise, we assume that the input CSG model is represented a binary tree. With each node, n, is associated a
structure with several fields. The field n.type specifies the type of the node: leaf or internal.

Internal nodes contain the following fields:
• n.type, which is equal to node
• n.operator, an operator (∪, ∩, or −)
• n.leftChild, a pointer to the left child
• n.rightChild, a pointer to the right child
• n.parent, a pointer to the parent node (null for the root)

Leaf-nodes contain the following fields:
• n.type, which is equal to leaf
• n.parent, a pointer to the parent node
•  n.primitiveReference, which identifies the corresponding primitive in a Table of Primitives, which contains a complete

description of the primitive, for example: the primitive's type, parameters, scale, position, orientation, and color.
• n.primitiveID, an integer used during the CSG-to-Blist conversion to identify the corresponding entry in the Blist table.

Many other, popular CSG representation may be converted to this simple format. For instance, rooted, directed, acyclic CSG graphs
may be expanded into binary CSG trees. CSG trees with transformation nodes may be converted to trees with only Boolean nodes
by composing the transformations that are applied to each primitive and by storing the result in the table of primitives.
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Let S be an r-set [Requicha80]. Let X be a candidate set: curve, surface, volume, edge-neighborhood [Requicha85, Banerjee96]. A
set membership classification process [Tilove80] segments a candidate set, X, into three subsets: X∩iS; X−S; and X∩bS, where iS
and bS stand respectively for the interior and the boundary of S [Alexandroff61]. All set membership classification algorithms
perform two tasks: (1) subdivide X into cells of uniform classification against primitives and (2) combine the binary results of
classifying these cells against the primitives according to the corresponding Boolean expression. CSG-to-boundary conversion
algorithms are often based on such set-membership classifications [Requicha85, Mantyla86, Hoffmann89, Rossignac86].
Subdivision typically involves computing intersections between the carrier of X (i.e. its supporting manifold [Rossignac98b]) and
the surfaces that bound the primitives. Classification may in general be expressed as a combination of binary values [Rossignac86,
Rossignac89, Banerjee96], which represent the results of classifying the cell against the interior of the primitives. The combination
uses Boolean operators (OR, AND, and AND NOT) for the corresponding CSG operators (∪, ∩, and −).

The standard way of implementing the evaluation of such expressions [Requicha85] is illustrated by the pseudo-code of Procedure
ClassifyAgainstTree, below, which is invoked using the cell and the root-node of the tree as arguments.

PROCEDURE ClassifyAgainstTree(cell,node)
IF node.type = leaf

THEN RETURN InPrimitive(node.primitiveReference, cell)
ELSE RETURN Combine(ClassifyAgainstTree(cell,node.leftChild),

node.operator, ClassifyAgainstTree(cell,node.right.child));

When the set membership classification process implements such a recursive procedure of evaluating the Boolean expression, it
requires a stack of binary values, whose length equals the height, H, of the binary tree (see Fig. 1).

Figure 1: The classification of a cell against the interior of primitives produces binary values. These values must be combined
according to a Boolean expression, which may be represented by a binary tree. The combining process uses a stack to store
the results of previous combine operations. Fat red circles indicate a set of nodes whose value may be contained in the stack
at some point of the classification. When the tree is full (as shown here), the depth of the stack is the height of the tree.

Note that the recursive procedure produced above may be improved by avoiding the ClassifyAgainstTree(cell,node.right.child)) call
when its result is irrelevant. For example, if A returns FALSE, then A∩B is FALSE no matter what B returns. Similarly, when A is
TRUE, then A∪B returns true, no matter what B returns. The Blist technique proposed here avoids all these unnecessary calls.

The CSG tree described above could be represented in different ways. For example, using the inverse Polish notation, the CSG
expression ( A∩(B∪C) ) − (  (D∪(E−F))∩G ) could be represented by the sequence of operations ###∪∩###−∪#∩−, where #
pushes a new value on the stack and where the other operators combine the two top elements of the stack.. The expression could be
evaluated without recursion. Nevertheless, the evaluation would use a stack, whose length would be equal to the height of the tree,
at least when the CSG tree is full (i.e. when all leaves are at the same depth).

The storage required for this stack is usually not a problem when the cells are classified one at a time against the entire CSG model.
However, when the cells form a regular array of points in space or on the boundary of a primitive [Rossignac86, Goldfeather86] or
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when they form a pencil of rays [Bronsvoort84, Ellis91], it may be more efficient to classify all cells against one primitive, before
classifying them against the next primitive. For example, rasterization [Fuchs82] techniques may be used to classify all pixels or all
voxels against a single primitive and forward difference techniques may be used to compute the intersections of a family of rays
with an algebraic surface [Kedem84]. In such cases, either all the results of cell-primitive classification must be stored for all
primitives before they are combined, or each step of the combine process may be performed as soon as its arguments are available.
The latter solution requires storing a stack of intermediate results for each cell.

Parallel implementations of algorithms that classify large amounts of cells (points, voxels, or ray segments) may assign one
primitive to each processor or thread. A cell may be either classified simultaneously by all threads [Kedem84b] or may be classified
against the primitives one-by-one in a pipeline fashion. The pixel-planes architecture [Fuchs82] combines both approaches. In any
case, these binary classification results for each cell must be combined according to the Boolean expression that defines the CSG
solid. The combine process requires passing the results of the cell-primitive classifications between processors, and may be
implemented as a hardware combine-tree, an array of p by log(p) processors [Kedem84b, Kedem88]. Because the array does not
grow linearly with the number of primitives, it is difficult to extend such architectures to support larger CSG models without
performing several passes or breaking the tree into subsets, for which intermediate results must be stored and recycled.

We propose in this paper a new representation for Boolean expressions. We call it Blist, because it may be represented as a list of
primitive, instead of a tree, and may be evaluated in a pipeline fashion, combining at each step the result of classifying the cell
against the current primitive with the result of the previous classifications. The fundamental breakthrough provided here lies in the
fact that the result of the previous classifications does not require the list of values of cell-primitive classification results, nor a stack
of intermediate results of evaluating sub-expressions. Instead, Blist passes from one primitive to the next a simple label, which may
be stored using at most log(H+1) bits, where H is the height of the CSG tree. Note that log(H) equals log(log(|P|)), where |P| is the
total number of primitives.

Using a Blist representation, we can evaluate any Boolean expression without using recursion or a stack. In fact, the whole binary
merging process is replaced by a simple comparison between the content of the label that is attached to the cell and the name of the
primitive.

In the remainder of the paper, we discuss prior art; define the structure of the Blist table; propose a simple algorithm for converting
CSG trees to a Blist form while minimizing the number of bits needed for each label; and provide an intuitive explanation of the
essence of our approach. We demonstrate the conversion process and the evaluation algorithm on an example.

Prior art
Over the last 15 years, an impressive number of techniques were proposed for accelerating the rendering of CSG models. The few
mentioned here can not be substituted for a comprehensive survey of this area. Images of CSG solids may be computed by casting
one ray at a time against a CSG model [Bronsvoort84, Ellis91], by processing the primitives one by one and by adaptively
classifying points on their boundary against the CSG tree [Rossignac86, Rossignac96] or by subdividing space adaptively [Morris85,
Woodwark82]. Several hardware architectures have been proposed for rendering CSG models [Fuchs82, Meagher84, Soto85,
Jansen86, Goldfeather86, Jansen87, Kedem88, Rossignac90b]. They either cast rays against the CSG tree or classify points on the
boundary of primitives. Many of these approaches could be considerably improved by using our Blist representation.

The work reported here stems from the author’s attempts to generalize the solid capping approach described in [Rossignac92] to
situations where the assembly of solids was clipped by an arbitrary Boolean combination of planar half-spaces.

The number of bits that must be associated with each cell to store the results of the previous Boolean evaluations before they are
merged may be significantly reduced by expanding the CSG tree into a disjunctive form [Rossignac94b] or even a more general
form, which is the union of lists [Goldfeather88]. Unfortunately, such expansions generate a large number of primitives’ repetitions.
Although these repetitions can often be reduced by identifying empty products or list, they have a significant impact on the overall
performance of the rendering algorithms. The number of repetitions may be reduced by pre-computing some geometric intersections
and by using the fact that a z-buffer rendering architecture renders correctly unions of overlapping solids [Rossignac86,
Rappoport97]

The Blist method proposed here transforms in some sense the CSG tree into a decision graph. A primitive classifies a candidate cell
and depending on the result, forwards the cell to one or another primitive. The same principle is used in Binary Space Partition
(BSP) Trees [Naylor86]. Such trees may be merged through Boolean operations [Naylor90] and used to perform Boolean operations
on polyhedral sets [Thibault97]. Nevertheless, a BSP tree formulation of a general CSG model with n primitives would require 2n

nodes, unless geometric test were used to identify which of these nodes correspond to empty sets.
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Blist representation
Blist represents a CSG expression as a table, called BL, of primitive entries. The entry BL[p] associated with primitive number p
contains:
•  BL[p].primitiveReference: The reference to the primitive’s description, which includes its type, parameters, and associated

transformation
•  BL[p].sign: The sign (binary value) indicating, when set, that the result of classifying a cell against the primitive should be

complemented
• BL[p].name: The name associated with the primitive (several primitives may have the same name and many primitives have no

name)
• BL[p].stamp: The stamp, which contains the name of the next primitive in the list that should classify the cell that are inside the

current primitive if its sign is positive, or the cells that are outside of the current primitive, if its sign is negative

CSG-to-Blist conversion
Although the CSG-to-Blist conversion may be performed more efficiently by combining the steps proposed below, we have
separated the steps here for sake of simplicity. The CSG-to-Blist conversion process takes as input the root-node of the binary tree,
T, and produces the corresponding BL table. Both structures have been described above. The conversion performs the following
steps:
1. Convert T into a positive form by applying deMorgan’s laws and propagating complements to the leaves
2. Rotate the tree by switching the left and right children at each node to make the tree left heavy
3. Visit the leaves from left to right and for each leaf, p, fill in the corresponding fields of BL[p]

For unbalanced trees, Step 2 may reduce the total number of bits needed for each label to less than log(H+1).

We describe the details of these steps below using as example T= ( A∩(B∪C) ) − ( (D∪(E−F))∩G ). The literals, A, B…G, denote
integer primitive references. Parsing this expression yields a binary tree shown Fig. 2 (left).

We first convert that tree to its positive form (as in [Rossignac89] and in [Goldfeather88]). This conversion process traverses the tree
top-down and applies the deMorgan transformations: A−B→A∩B’ , (A∩B)’→A’∪B’ , (A∩B)’→A’∪B’ , and (A’ )’→A, where X’
denotes the complement of set X. The result (Fig.2, right) is a tree with the same structure and no difference operators. Note that
some of its leaves (indicated by an apostrophe) have been negated, i.e., replaced by they complement.

Figure 2: The binary tree corresponding to the Boolean expression: ( A∩(B∪C) ) − ( (D∪(E−F))∩G ) is shown left. Its
positive form is shown right. Note the complemented primitives are indicated using apostrophes and a blue color.

Then, we exploit the fact that both ∪ and ∩ are commutative (A∪B=B∪A and A∩B=B∩A) to switch the left and right child of
nodes when the right child is a higher sub-tree (i.e. has a superior maximum path length from its root to its leaves). The switch is
performed during a recursive traversal of the positive tree, switching first the lower-level nodes and reporting their height to the
parent node, before we consider switching the parent node. The result is illustrated Fig. 3 (left).
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Finally, we insert the resulting tree, T, as the left-most leaf of a two level tree: ( T ∪ OUT ) ∩ IN, as shown Fig. 3 (right) and we
traverse the new tree and assign consecutive integer ID’s, P.primitiveID, to each leaf, P, in left-to-right order.

Now we are ready for the final phase (Fig. 4), which fills in the Blist table BL. During that phase, we initialize the content of BL to
zero and, once more, traverse the rotated positive version of the tree T recursively. At each leaf, P, we invoke the procedure
Match(P,BL) illustrated by the pseudo-code below.

Figure 3: The binary tree of Fig. 2 has been rotated to make it left heavy (left). The result is inserted as the left-most leaf into
a small tree with special IN and OUT nodes marked by rectangles (right).

Procedure Match(P,BL)
(a) p := P.primitiveID;
(a)  IF BL[p].name ≠ 0 THEN releaseIntegerName(BL[p].name);
(c)  BL[p].sign := P.sign;
(d)  BL[p].primitiveReference := P.primitiveReference;
(e)  M := P;
(f)  WHILE M ≠ M.parent.leftChild DO M := M.parent;
(g)  op := M.parent.operator;
(h)  IF  op = “∩” THEN BL[p].sign := NOT BL[p].sign;
(i)  M := M.parent;
(j)  WHILE (M ≠ M.parent.leftChild) OR (M.parent.operator = op) DO M := M.parent;
(k)  M := M.parent.rightChild;
(l)  WHILE M.type ≠ leaf DO M := M.leftChild;
(m)  m := M.primitiveID;
(n)  IF BL[m].name = 0 THEN BL[m].name := lockLowestAvailbleIntegerName;
(o)  BL[p].stamp := BL[m].name;

Procedure Match is based on the following observation. Consider a sub-tree S=((P∪B)∪C)∩((M∪E)∩F) in T. If we are classifying
the cell c against S and discover that it is outside of primitive P, then we must classify it against primitive B, which is the next one in
the Blist representation. Therefore, marking the cell with a zero label will indicate to the next primitive, B, that it should process the
cell. If, however, we discover that c ⊂ P, we can skip primitives (or sub-trees) B and C and go directly to M, which is the left-most
leaf of the sub-tree ((M∪E)∩F). Consequently, we must write on the label of c the name used by M.

If M does not yet have a name, we use the procedure lockLowestAvailbleIntegerName (line n) to obtain the lowest strictly positive
integer that is not yet in use as the name of any primitive coming after P in the Blist table. Note that when later we reach M, that
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integer is released using procedure releaseIntegerName (line b), so that it can be used as a name for another primitive that comes
after M. The same name is often used multiple times. This strategy helps reduce the maximum number of bits needed for labels.

Given the current primitive, P, we locate its match, M, by moving up the tree (line f), until we reach the left child of a node N1. We
detect this situation because it is the first time that M is the left child of its parent. We save the operator of N1 in the variable: op. In
the above example of the sub-tree S, the operator for N1 is ∪.

However, if it was ∩, as for example in the sub-tree S=((P∩B)∩C)∪((M∪E)∩F), we would jump to M, only if c ⊄ P, or would
continue to the next primitive, if c ⊂ P. To distinguish between these two situations, we toggle the sign associated with P (line h),
when the variable op is “∩”.

Then, we keep walking up the tree, until we reach a node, N2, that is the left-child of a node, whose operator is different from op
(line j). The desired “match” leaf, M, is the left-most leaf in the sub-tree that is the right child of N2. We move to the right child first
(line k), and then walk down the tree, always turning left (line l). M is the leaf where this journey ends.

Figure 4: The leaves of  right tree of Fig. 3 are visited in the left-to-right order. We number the leaves with increasing
strictly positive integers. For each leaf, numbered p, we compute its match, M, indicated by the red and blue arrows (left).
Note that each arrow first traces a path upwards, first reaching a node N1  coming from its left child, then reaching a node N2

with a different operator still coming from the left child. If N2.operator=∪, the sign of p, Blist[p].sign, is inverted (see leaves,
where blue lines start in the left figure). Then, the arrows follow the pointer to N2.rightChild and then take the left-most child
at each internal node, until they reach the matching leaf M.. Then, if M does not yet have a name, it grab the lowest available
strictly positive integer and use it as its name. We also store that name as the stamp, Blist[p].stamp, of p. On the right, we
show the resulting  names for the leaves (inside the circles) and their stamps (under the green arrows). Note that three leaves
do not have a name and that only two names were needed here for the entire tree.

If the name attributed to the IN node was not 1, but x, we simply switch all uses of x’es and 1’s in the names and stamps stored in
BL, so as to follow the convention that all cells marked 1 at the end of the classification process are in.

The Blist table resulting from the conversion process for the example of Fig. 4 is:

p BL[p].name BL[p].sign BL[p].PrimitiveReference BL[p].stamp
1 0 − E 1
2 0 − F 2
3 1 − D 1
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4 2 + G 2
5 1 + B 1
6 0 − C 2
7 1 + A 1

Cell classification using Blist
During set membership classification, a label is attached to each cell and passed to the successive primitives in the Blist. When the
label matches the primitive’s name, the cell is classified against the primitive. If the result of this classification matches the
primitive’s sign, the name on the primitive’s stamp is put on the label—if not, a zero name is put on the label of the cell.

The following procedure describes how a single cell, c, is classified against a CSG model represented by a Blist array BL. |P|
defines the total number of primitives in BL.

PROCEDURE ClassifyAgainstBlist(c,BL)
c.label := 0;
FOR p := 1 TO |P| DO

IF (c.label = 0) OR (c.label = BL[p].name)
THEN IF InPrimitive(BL[p].primitiveReference , c) = BL[p].sign

THEN c.label := BL[p].stamp
ELSE c.label := 0;

At the end of this process, if the label on the cell is 1 the cell is inside the CSG solid. Otherwise, it is out.

To illustrate how this classification works, consider for example a cell whose classification against the sequence of  primitives,
ABCDEFG, yields the following pattern of bits:  1010101, where a 1 (short for true) indicates that the cell lies inside the
corresponding primitive. Classifying the cell against the CSG tree (A∩(B∪C))−((D∪(E−F))∩G) yields: (1 AND (0 OR 1)) AND
NOT ((0 OR (1 AND NOT 0)) AND 1), which evaluates to 0 and indicates that the cell is out.

We describe below how the Blist table, produced by CSG-to-Blist conversion algorithm for this example, is used to classify the cell.
To help the reader follow the process, we have appended two columns to the table:
• Classification, which indicates whether the cell lies inside (1) or outside (0) of the primitive.
• Label,  which indicates the content of the after the primitive has processed the cell
A “*” after the primitive’s name indicates that it matches the incoming label.

p BL[p].name BL[p].sign BL[p].primitiveReference BL[p].stamp Classification Label
1 0* − E 1 1 0
2 0* − F 2 0 2
3 1 − D 1 0 2
4 2* + G 2 1 2
5 1 + B 1 0 2
6 0 − C 2 1 2
7 1 + A 1 1 2

Originally, the label was 0. The cell lies inside the first primitive (E), but the primitive is inverted in BL (it was a negative primitive
in the positive formulation of T), consequently, we do not jump, but pass the cell to the next primitive in the list. To do this, we set
the label to 0. The cell is out of the second primitive (F) and since the primitive is inverted (BL[2].sign = “−”), we set the label to
contain BL[2].stamp, which is 2. We skip primitive 3, because its name does not match the label. At primitive 4, we have a match
between the label and the name, and the classification of the cell against G yields 1. We write the content of BL[4].stamp into the
label, which is again set to 2. We skip primitives 5, 6, and 7, because their name is not 2. At the end of this process, the label has
value 2, which indicates that the cell is out of the CSG model.

To classify a set C of cells, we propose a simple extension of the above procedure:

PROCEDURE ClassifyCellsAgainstBlist(C,BL)
FOREACH cell c IN C DO c.label := 0;
FOR p := 1 TO |P| DO

FOREACH cell c IN C DO
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IF (c.name = 0) OR (c.label = BL[p].name)
THEN IF InPrimitive(BL[p].primitiveReference , c) = BL[p].sign

THEN c.labe := BL[p].stamp
ELSE c.label := 0;

Conclusions and future work
We have introduced a new representation for CSG trees—and in fact for arbitrary Boolean expressions. This representation, called
Blist, may be evaluated very efficiently by updating a label, when its value matches the primitive’s name. Deciding on how to
update the label requires only one comparison. Consequently, a Boolean expression may be evaluated one primitive at a time. The
combining steps used with the traditional recursive evaluation are not necessary.

Because the label requires at most log(H+1) bits, where H is the height of the tree, the use of a Blist formulation reduces the
storage necessary for evaluating large collections of cells in parallel architectures (for example in SIMD or pipelines) popular in
graphics.

We have provide the details of simple algorithms for converting binary CSG trees into a Blist format and for classifying one or
several cells against this new representation.

We expect the Blist model to be useful in many settings and plan to investigate its applications to a large class of solid modeling and
graphic algorithms that operate on CSG models.

Furthermore, we plan to investigate extensions of Blist formulations to constructive models for a broader class of topological
domains [Rossignac91, Rossignac97].
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