Rossignac Blist CSG Pipeline page 1

Blist: A Boolean list formulation of CSG trees

Jarek Rossignac
GVU Center
Georgia Institute of Technology

Abstract

Set membership classification algorithms visit nodes of a CSG tree through a recursive divide-and-conquer proce:
which stores intermediate results in a stack, whose depth equals the height, H, of the tree. During this process, 1
candidate sets is usually subdivided into uniform cells, whose interior is disjoint from primitives’ boundaries. Cells
inside the CSG object are identified by combining the binary results of classifying them against the primitives. |
parallel systems, which allocate a different process to each leaf of the tree, and in algorithms that classify larg
collections of regularly spaced candidate sets (points, pixels, voxels, rays, or cross-sections) against the primitiv:
using forward differences, a separate stack is associated with each candidate or cell. Our new representation f
CSG trees, called Blist, distributes the merging operation to the primitives and reduces the storage requirement fi
each cell to log(H+1) bits. Blist can represent any Boolean expression as a list of primitives, each containing i
reference to the primitive's description (type, parameter, transformation), a sign, a stamp, and a hame. During s
membership classification, a label is attached to each cell and passed to the successive primitives in the Blist. Wt
the name written on the label matches the primitive’s name, the cell is classified against the primitive. If the resu
matches the primitive’s sign, the name stored in the primitive’s stamp is put on the label—if not, a zero name
used. The elimination of the intermediate CSG nodes and of the recursive merging operations make the BI
architecture particularly well suited for parallel hardware configurations. We provide a simple algorithm for
converting CSG expressions to Blists. It uses rotations on the positive form of the tree to reduce the number of t
needed for each label.

Introduction

Various representations of solids are surveyedRimsfignac9¥ We focus here on CSG representations, which combine prim
shapes through regularized Boolean expressions. The primitive shapes define regularizeBemlidt480, Mantylag8which
may be represented as parameterized primitives, such as cylinders or blocks, or as more general boundary or |
representations. With each primitive is associated a transformation, often restricted to be a rigid body motion or linear may
follows, primitives’ descriptions, which may involve the primitive type, parameters, and transformation coefficients, are stc
table indexed an integer, p, identifying a primitive. The Boolean expression combines the primitive shapes throudh),ur
regularized intersectiom(), and regularized difference)(operations. It may be represented as a binary tree, whose interior
store the Boolean operators and whose leaves store integer references to the primitives in the table.

To make things more precise, we assume that the input CSG model is represented a binary tree. With each node, n, is
structure with several fields. The field n.type specifies the type of the node: leaf or internal.

Internal nodes contain the following fields:

* n.type, which is equal taode

e n.operator, an operatdrl(n, or-)

* n.leftChild, a pointer to the left child

* n.rightChild, a pointer to the right child

e n.parent, a pointer to the parent node (null for the root)

Leaf-nodes contain the following fields:
* n.type, which is equal teaf
e n.parent, a pointer to the parent node

* n.primitiveReference, which identifies the corresponding primitive in a Table of Primitives, which contains a cc

description of the primitive, for example: the primitive's type, parameters, scale, position, orientation, and color.

* n.primitivelD, an integer used during the CSG-to-Blist conversion to identify the corresponding entry in the Blist table.

Many other, popular CSG representation may be converted to this simple format. For instance, rooted adirelitedSG graphs
may be expanded into binary CSG trees. CSG trees with transformation nodes may be converted to trees with only Bool
by composing the transformations that are applied to each primitive and by storing the result in the table of primitives.

Rossignac Blist CSG Pipeline page 2

Let S be an r-seRequicha8 Let X be a candidate set: curve, surface, volume, edge-neighbotReqdi¢ha85, BanerjeeP6A
set membership classification procesddve8(segments a candidate set, X, into three subset$SXX-S; and X1 bS, where iS
and bS stand respectively for the interior and the boundary afedndroff6]. All set membership classification algorithmr
perform two tasks: (1) subdivide X into cells of uniform classification against primitives and (2) combine the binary re:
classifying these cells against the primitives according to the corresponding Boolean expression. CSG-to-boundary ¢
algorithms are often based on such set-membership classificaf@mtgiicha85, Mantyla86, Hoffmann89, Rossigndc8
Subdivision typically involves computing intersections between the carrier of X (i.e. its supporting mardssighac98p and
the surfaces that bound the primitives. Classification may in general be expressed as a combination of bingRp ssilglesdd6,
Rossignac89, BanerjegQ6vhich represent the results of classifying the cell against the interior of the primitives. The comb
uses Boolean operators (OR, AND, and AND NOT) for the corresponding CSG opdratorsaqd-).

The standard way of implementing the evaluation of such expres$ieqsifha85js illustrated by the pseudo-code of Procedt
ClassifyAgainstTreehelow, which is invoked using the cell and the root-node of the tree as arguments.

PROCEDURKECIassifyAgainstTregeell,node)
IF node.type = leaf
THEN RETURNInPrimitive(node.primitiveReference, cell)
ELSE RETURNCombinéClassifyAgainstTrggell,node.leftChild),
node.operatoiClassifyAgainstTreeell,node.right.child));

When the set membership classification process implements such a recursive procedure of evaluating the Boolean ex|
requires a stack of binary values, whose length equals the height, H, of the binary tree (see Fig. 1).

(n) (n) (n) (n) (n) (n) (24 (n)
Q@ O© ®© © © © © 0O O 0 © © © 0 @ ©

Figure 1. The classification of a cell against the interior of primitives produces binary values. These values s con
according to a Boolean expression, which may be represented by a binary tree. The combining process uses a stack
the results of previous combine operations. Fat red circles indicate a set of nodes whose value may be contained in tl
at some point of the classification. When the tree is full (as shown here), the depth of the stack is the height of the tree.

Note that the recursive procedure produced above may be improved by avoidiigssié/AgainstTrgeell,node.right.child)) call
when its result is irrelevant. For example, if A returns FALSE, the®As FALSE no matter what B returns. Similarly, when A
TRUE, then AIB returns true, no matter what B returns. The Blist technique proposed here avoids all these unnecessary call

The CSG tree described above could be represented in different ways. For example, using the inverse Polish notatior
expression An(BLIC)) — ((DO(E-F))nG) could be represented by the sequence of operations - #n—, where #
pushes a new value on the stack and where the other operators combine the two top elements of the stack.. The express
evaluated without recursion. Nevertheless, the evaluation would use a stack, whose length would be equal to the height
at least when the CSG tree is full (i.e. when all leaves are at the same depth).

The storage required for this stack is usually not a problem when the cells are classified one at a time against the entire C
However, when the cells form a regular array of points in space or on the boundary of a pritoisisigifiac86, Goldfeathergér

Rossignac Blist CSG Pipeline page 3

when they form a pencil of ray8fonsvoort84, Ellis9]l it may be more efficient to classify all cells against one primitive, bef
classifying them against the next primitive. For example, rasterizatiorh§82 techniques may be used to classify all pixels or
voxels against a single primitive and forward difference techniqgues may be used to compute the intersections of a fami
with an algebraic surfac&KBdem84. In such cases, either all the results of cell-primitive classification must be stored f{
primitives before they are combined, or each step of the combine process may be performed as soon as its arguments a
The latter solution requires storing a stack of intermediate results for each cell.

Parallel implementations of algorithms that classify large amounts of cells (points, voxels, or ray segments) may as
primitive to each processor or thread. A cell may be either classified simultaneously by all thezkisg4h or may be classified
against the primitives one-by-one in a pipeline fashion. The pixel-planes architéatansg§? combines both approaches. In ar
case, these binary classification results for each cell must be combined according to the Boolean expression that define
solid. The combine process requires passing the results of the cell-primitive classifications between processors, an
implemented as a hardware combine-tree, an array of p by log(p) procésstesnB4b, Kedem8Because the array does ni
grow linearly with the number of primitives, it is difficult to extend such architectures to support larger CSG models
performing several passes or breaking the tree into subsets, for which intermediate results must be stored and recycled.

We propose in this paper a new representation for Boolean expressions. We call it Blist, because it may be represented
primitive, instead of a tree, and may be evaluated in a pipeline fashion, combining at each step the result of classifyin
against the current primitive with the result of the previous classifications. The fundamental breakthrough provided here |
fact that the result of the previous classifications does not require the list of values of cell-primitive classification results, nc
of intermediate results of evaluating sub-expressions. Instead, Blist passes from one primitive to the next a simple label, v
be stored using at modbg(H+1)bits, where H is the height of the CSG tree. Note that log(H) equals log(log(|P|)), where |P
total number of primitives.

Using a Blist representation, we can evaluate any Boolean expression without using recursion or a stack. In fact, the wh
merging process is replaced by a simple comparison between the content of the label that is attached to the cell and the |
primitive.

In the remainder of the paper, we discuss prior art; define the structure of the Blist table; propose a simple algorithm for ¢
CSG trees to a Blist form while minimizing the number of bits needed for each label; and provide an intuitive explanatic
essence of our approach. We demonstrate the conversion process and the evaluation algorithm on an example.

Prior art

Over the last 15 years, an impressive number of techniques were proposed for accelerating the rendering of CSG mode
mentioned here can not be substituted for a comprehensive survey of this area. Images of CSG solids may be computec
one ray at a time against a CSG modglohsvoort84, Ellis9], by processing the primitives one by one and by adapti
classifying points on their boundary against the CSG Resgignac86, Rossignadaf by subdividing space adaptivelyirris85,
Woodwark82. Several hardware architectures have been proposed for rendering CSG rhaodbE3R, Meagher84, Soto8
Jansen86, Goldfeather86, Jansen87, Kedem88, RossighatBep either cast rays against the CSG tree or classify points
boundary of primitives. Many of these approaches could be considerably improved by using our Blist representation.

The work reported here stems from the author’'s attempts to generalize the solid capping approach desRabsidriacPpto
situations where the assembly of solids was clipped by an arbitrary Boolean combination of planar half-spaces.

The number of bits that must be associated with each cell to store the results of the previous Boolean evaluations befo
merged may be significantly reduced by expanding the CSG tree into a disjunctiveRfossighac94por even a more gener:
form, which is the union of listsJoldfeather8B Unfortunately, such expansions generate a large number of primitives’ repet
Although these repetitions can often be reduced by identifying empty products or list, they have a significant impact on t
performance of the rendering algorithms. The number of repetitions may be reduced by pre-computing some geometric in
and by using the fact that a z-buffer rendering architecture renders correctly unions of overlappingReskitm4c86,
Rappoport97]

The Blist method proposed here transforms in some sense the CSG tree into a decision graph. A primitive classifies a cal
and depending on the result, forwards the cell to one or another primitive. The same principle is used in Binary Space
(BSP) TreesNlaylor8q. Such trees may be merged through Boolean operatimgddroJ and used to perform Boolean operatia
on polyhedral setsThibault97. Nevertheless, a BSP tree formulation of a general CSG model with n primitives would réq
nodes, unless geometric test were used to identify which of these nodes correspond to empty sets.

Rossignac Blist CSG Pipeline page 4

Blist representation

Blist represents a CSG expression as a table, called BL, of primitive entries. The entry BL[p] associated with primitive n

contains:

* BL[p].primitiveReference: Theeference to the primitive’'s description, which includes its type, parameters, and asso«
transformation

» BL][p].sign: Thesign (binary value) indicating, when set, that the result of classifying a cell against the primitive sho
complemented

» BL[p].name: Thename associated with the primitive (several primitives may have the same name and many primitives |
name)

» BL][p].stamp: Thestamp, which contains the name of the next primitive in the list that should classify the cell that are ins
current primitive if its sign is positive, or the cells that are outside of the current primitive, if its sign is negative

CSG-to-Blist conversion

Although the CSG-to-Blist conversion may be performed more efficiently by combining the steps proposed below, '
separated the steps here for sake of simplicity. The CSG-to-Blist conversion process takes as input the root-node of the
T, and produces the corresponding BL table. Both structures have been described above. The conversion performs thi
steps:

1. Convert T into a positive form by applying deMorgan’s laws and propagating complements to the leaves

2. Rotate the tree by switching the left and right children at each node to make the tree left heavy

3. Visit the leaves from left to right and for each leaf, p, fill in the corresponding fields of BL[p]

For unbalanced trees, Step 2 may reduce the total number of bits needed for each label tdleggtha)l

We describe the details of these steps below using as exampla TBOC)) - ((DO(E-F))nG). The literals, A, B...G, denote
integer primitive references. Parsing this expression yields a binary tree shown Fig. 2 (left).

We first convert that tree to its positive form (asRo§signac8Pand in [Goldfeather88. This conversion process traverses the 1
top-down and applies the deMorgan transformation® AAnB’, (AnB)' - A’0OB’, (AnB) - A’0B’, and (A) - A, where X
denotes the complement of set X. The result (Fig.2, right) is a tree with the same structure and no difference operators
some of its leaves (indicated by an apostrophe) have been negated, i.e., replaced by they complement.

Figure 2: The binary tree corresponding to the Boolean expresgidm (BLC)) — ((DL(E-F))nG) is shown leftlts
positive form is shown right. Note the complemented primitives are indicated using apostrophes and a blue color.

Then, we exploit the fact that boflh andn are commutative (AB=BOA and AnB=Bn A) to switch the left and right child o
nodes when the right child is a higher sub-tree (i.e. has a superior maximum path length from its root to its leaves). The
performed during a recursive traversal of the positive tree, switching first the lower-level nodes and reporting their heic
parent node, before we consider switching the parent node. The result is illustrated Fig. 3 (left).

Rossignac Blist CSG Pipeline page 5

Finally, we insert the resulting tree, T, as the left-most leaf of a two level treBt QUT) n IN, as shown Fig. 3 (right) and w
traverse the new tree and assign consecutive integer ID’s, P.primitivelD, to each leaf, P, in left-to-right order.

Now we are ready for the final phase (Fig. 4), which fills in the Blist table BL. During that phase, we initialize the content «
zero and, once more, traverse the rotated positive version of the tree T recursively. At each leaf, P, we invoke the
Match(P,BL) illustrated by the pseudo-code below.

n ouT

E)(F
Figure 3: The binary tree of Fig. 2 has been rotated to make it left heavy (left). The result is inserted as the left-most leaf
a small tree with special IN and OUT nodes marked by rectangles (right).

Procedure Match(P,BL)

(@) p :=P.primitivelD;

(@) IF BL[p].name# 0 THEN releaselntegerName(BL[p].name);

(c) BL[p].sign :=P.sign;

(d) BL[p].primitiveReference := P.primitiveReference;

(e) M:=P;

) WHILE M # M.parent.leftChild DO M := M.parent;

(@) op := M.parent.operator;

(h) IF op =“n”" THEN BL][p].sign := NOT BL][p].sign;

() M := M.parent;

1)) WHILE (M # M.parent.leftChild) ORNl.parent.operator = op) DO M := M.parent;
(k) M := M.parent.rightChild;

(I WHILE M.type # leaf DO M :=M.leftChild;

(m) m :=M.primitivelD;

(n) IF BL[m].name = 0 THEN BL[m].name :tockLowestAvailbleIntegerName;
(0) BL[p].stamp := BL[m].name;

ProceduréMatchis based on the following observation. Consider a sub-tree SBJ(FC)n ((MOE)nF) in T. If we are classifying
the cell c against S and discover that it is outside of primitive P, then we must classify it against primitive B, which is the ne
the Blist representation. Therefore, marking the cell with a zero label will indicate to the next primitive, B, that it should prc
cell. If, however, we discover that(t P, we can skip primitives (or sub-trees) B and C and go directly to M, which is the lefi
leaf of the sub-tree ((ME)nF). Consequently, we must write on the label of ¢ the name used by M.

If M does not yet have a name, we use the procddakdowestAvailbleintegerName (line to) obtain the lowest strictly positiv
integer that is not yet in use as the name of any primitive coming after P in the Blist table. Note that when later we reac

Rossignac Blist CSG Pipeline page 6

integer is released using procedweteaselntegerNam@ine b), so that it can be used as a name for another primitive that ¢
after M. The same name is often used multiple times. This strategy helps reduce the maximum number of bits needed for lat

Given the current primitive, P, we locate its match, M, by moving up the tree (line f), until we reach the left child of a Ndee
detect this situation because it is the first time that M is the left child of its parent. We save the operatoitiod Mariable: op. In
the above example of the sub-tree S, the operator,fisr

However, if it wasn, as for example in the sub-tree S={@®) n C)J((MOE)n F), we would jump to M, only if €1 P, or would
continue to the next primitive, if & P. To distinguish between these two situations, we toggle the sign associated with P |
when the variable op is\"”.

Then, we keep walking up the tree, until we reach a nogethhit is the left-child of a node, whose operator is different fron
(line j). The desired “match” leaf, M, is the left-most leaf in the sub-tree that is the right child \WeNmove to the right child firs
(line k), and then walk down the tree, always turning left (line I). M is the leaf where this journey ends.

n ouT

NY

NY
[SEY

O
!

Figure 4: The leaves of right tree of Fig. 3 are visited in the left-to-right order. We number the leaves with incree
strictly positive integers. For each leaf, numbered p, we compute its match, M, indicated by the red and blue arrows
Note that each arrow first traces a path upwards, first reaching a ngdeorsing from its left child, then reaching a node N
with a different operator still coming from the left child. if dperator=L7, the sign of p, Blist[p].sign, is inverted (see leaves
where blue lines start in the left figure). Then, the arrows follow the pointey.tighChild and then take the left-most child
at each internal node, until they reach the matching leaf M.. Then, if M does not yet have a name, it grab the lowest a\
strictly positive integer and use it as its name. We also store that name as the stamp, Blist[p].stamp, of p. On the ri¢
show the resulting names for the leaves (inside the circles) and their stamps (under the green arrows). Note that thret
do not have a name and that only two names were needed here for the entire tree.

If the name attributed to the IN node was not 1, but x, we simply switch all uses of x'es and 1's in the names and stamps sto
BL, so as to follow the convention that all cells marked 1 at the end of the classification process are in.

TheBlist table resulting from the conversion process for the example of Fig. 4 is:

p | BL[p].name | BL[p].sign | BL[p].PrimitiveReference | BL[p].stamp
110 - E 1
2 |0 - F 2
3 |1 - D 1

Rossignac Blist CSG Pipeline page 7

4 2 + G 2
5 |1 + B 1
6 |0 - C 2
7 |1 + A 1

Cell classification using Blist

During set membership classificationlahdl is attached to each cell and passed to the successive primitives in the Blist. Wt
label matches the primitive’s name, the cell is classified against the primitive. If the result of this classification matc
primitive’s sign, the name on the primitive’s stamp is put on the label—if not, a zero name is put on the label of the cell.

The following procedure describes how a single cell, c, is classified against a CSG model represented by a Blist arre
defines the total number of primitives in BL.

PROCEDURECIassifyAgainstBligt,BL)
c.label :=0;
FORp:=1TO |P| DO
IF (c.label = 0) OR (c.label = BL[p].name)
THEN IF InPrimitive(BL[p].primitiveReference , ¢) = BL[p].sign
THEN c.label := BL[p].stamp
ELSE c.label := 0;

At the end of this process, if the label on the cell is 1 the cell is inside the CSG solid. Otherwise, it is out.

To illustrate how this classification works, consider for example a cell whose classification against the sequence of p
ABCDEFG, yields the following pattern of bits: 1010101, where a 1 (short for true) indicates that the cell lies ins<
corresponding primitive. Classifying the cell against the CSG(&kegBC))-((DO(E-F))nG) yields: (1 AND (0 OR 1)) AND
NOT ((0 OR (1 AND NOT 0)) AND 1), which evaluates to 0 and indicates that the cell is out.

We describe below how the Blist table, produced by CSG-to-Blist conversion algorithm for this example, is used to classif
To help the reader follow the process, we have appended two columns to the table:

» Classificationwhich indicates whether the cell lies inside (1) or outside (0) of the primitive.

« Label, whichindicates the content of the after the primitive has processed the cell

A “*" after the primitive’s name indicates that it matches the incoming label.

p | BL[p].name BL[p].sign BL[p].primitiveReference BL[p].stamp Classification | Label
1 | O - E 1 1 0
2 | 0* - F 2 0 2
3 |1 - D 1 0 2
4 | 2* + G 2 1 2
5 |1 + B 1 0 2
6 |0 - C 2 1 2
7 |1 + A 1 1 2

Originally, the label was 0. The cell lies inside the first primitive (E), but the primitive is inverted in BL (it was a negative primi
in the positive formulation of T), consequently, we do not jump, but pass the cell to the next primitive in the list. To do this, wi
the label to 0. The cell is out of the second primitive (F) and since the primitive is inverted (BL[2].siQnwe"set the label to
contain BL[2].stamp, which is 2. We skip primitive 3, because its name does not match the label. At primitive 4, we have a m
between the label and the name, and the classification of the cell against G yields 1. We write the content of BL[4].stamp int«
label, which is again set to 2. We skip primitives 5, 6, and 7, because their name is not 2. At the end of this process, the labe
value 2, which indicates that the cell is out of the CSG model.

To classify a set C of cells, we propose a simple extension of the above procedure:

PROCEDURECIassifyCellsAgainstBIiét,BL)
FOREACH cell c IN C DO c.label := 0;
FORp:=1TO|P| DO

FOREACH cell c IN C DO

Rossignac Blist CSG Pipeline page 8

IF (c.name = 0) OR (c.label = BL[p].name)
THEN IF InPrimitive(BL[p].primitiveReference , c) = BL[p].sign
THEN c.labe := BL[p].stamp
ELSE c.label := 0;

Conclusions and future work

We have introduced a new representation for CSG trees—and in fact for arbitrary Boolean expressions. This representa
Blist, may be evaluated very efficiently by updating a label, when its value matches the primitive’'s name. Deciding or
update the label requires only one comparison. Consequently, a Boolean expression may be evaluated one primitive at
combining steps used with the traditional recursive evaluation are not necessary.

Because the label requires at mdsg(H+1)Obits, where H is the height of the tree, the use of a Blist formulation reduce
storage necessary for evaluating large collections of cells in parallel architectures (for example in SIMD or pipelines) p
graphics.

We have provide the details of simple algorithms for converting binary CSG trees into a Blist format and for classifyinq
several cells against this new representation.

We expect the Blist model to be useful in many settings and plan to investigate its applications to a large class of solid mo
graphic algorithms that operate on CSG models.

Furthermore, we plan to investigate extensions of Blist formulations to constructive models for a broader class of to
domains Rossignac91, Rossignad97

Acknowledgements

The author thanks Ying Chen from Georgia Tech for providing an implementation of this G3i&-tmnversion algorithm and of
a prototypeBlist-based rendering environment for discretized 3D CSG models.

References
[Alexandroff61] P. Alexandroff, Elementary Concepts of Topology, Dover Publications, New York, NY, 1961.

[Banerjee9q R. Banerjee and J. Rossignac, Topologically exact evaluation of polyhedra defined in CSG with loose primitives
appear in Computers Graphics Forum, Vol. 15, No. 4, pp. 205-217, 1996.

[Bronsvoort84] W. Bronsvoort, J. Vaiwijk, and F. Jansen, Methods for Improving the Efficiency of Ray Casting in ¢
Modelling, Computer-Aided Design, Vol. 16, No. 1, pp. 51-55, 1984.

[Ellis91] J Ellis, G.Kedem, G. TLyerly, D. Thielman, R. Marisa, J. Menon, The Ray Casting Engine and ray representations
Symp. on Solid Modeling Foundations and CAD/CAM Applic., ACM Press, Austin, TX, pp. 255-268, June 5-7, 1991.

[Fuchs83 H. Fuchs, JPulton, et al. Developing Pixel-Planes, A Smart Memory-Based Raster Graphics System, Proc. 82 Con
Advanced VLSI, M.I.T., 1982.

[Goldfeather8€] J.Goldfeather, JHultquist, and HFuchs,. Fast Constructive Solid Geometry Display in the Pixel-Power Graph
System, ACM SIGGRAPH '86 Proc., Computer Graphics, Vol. 20, No.4, August 1986.

[Goldfeather88 J.Goldfeather, SMolnar, G. Turk, and H. Fuchs, Near Real-Time CSG Rendering Using Tree Normalization
Geometric Pruning, IEEE Computer Graphics and Applications, Vol. 9, No. 3, pp. 20-28, May 1989.

[Hoffmann89] C. HoffmannGeometric and Solid Modeling: An introductidviprgan Kaufmann, San Mateo, CA, 1989.

[Jansen86 F. Jansen, A Pixel-parallel Hidden Surface Algorithm for Constructive Solid GeometryERBrograhpics '86, Ed. A.
Requicha, Elsevier Science, North-Holland, Amsterdam, pp. 29-40, 1986

[Jansen8T F. Jansen, Display of Solid Models with a Multi-Processor System, Proc. Eurographics '87, Elseviers Science
Publishers, pp. 377-387, Amsterdam, August 1987.

[Kedem84 G. Kedem and J. Ellis, Computer Structures for Curve-solid Classification in Geometric Modelling, Proc
Automation Project, Univ. Rochester, Tech. Memo 51, May 1984.

[Kedem84H G. Kedem and J. Ellis, The Ray-casting Machine, Proc. ICCCD, pp. 533-538, October 1984.

[Kedem8g G. Kedem and J. Ellis, The Ray-casting Machine Prototype, Interna@onélon Parallel Processing for Computer
Vision and Display, University of Leeds, UK, January 1988.

Rossignac Blist CSG Pipeline page 9

[Mantyla86] M. Mantyla, Boolean Operations of 2-manifold Through Vertex Neighborhood Classification, ACM Trans. on
Graphics, 5(1):1-29, January 1986.

[Mantyla88] M. Mantyla,An introduction to Solid ModelingComputer Science Press, 1988.

[Meagher84 D. Meagher, The Solids Engine: A Processor for Interactive Solid Modeling, Prblicajraph '84, Tokyo, Japar
November 1984.

[Morris85] D. Morris, An Algorithm for Direct Display of CSG Objects by Spatial Subdivisior;undamental Algorithms fo
Computer GraphicEkd. R.A.Earnshaw, Springer-Verlag, Berlin, pp. 725-736, 1985.

[Naylor86] B. Naylor and WThibault, Application of B.S.P. Trees to Ray Tracing and CSG Evaluation, Technical Report GIT-
86/03, Georgia Institute of Technology, Atlanta, GA. February 1986.

[Naylor90] B. Naylor, J. Amanatides, WThibault. Merging BSP trees yields polyhedral set operations. In Proc. ACM Siggra,
Computer Graphigsvol. 24, pp. 115-124, 1990.

[Rappoport97] A. Rappoport and S. Spitz, Interactive Boolean Operations for Conceptual Design of 3-D Solids, ACM Compt
Graphics, Proceedings Siggraph, pp. 269-278, July 1997.

[Requicha8(Representation of Rigid Solids: Theory, Methods, and Systems, A.A.G. Requicha, ACM Computing Surveys, 1
437:464, Dec 1980.

[Requicha83 A. Requicha and H. Voelcker, Boolean operations in solid modeling: boundary evaluation and merging algorith
Proc. IEEE, Vol. 73, No. 1, pp. 30-44, January 1985.

[Rossignac8® J. Rossignac and A. Requicha, Depth Buffering Display Techniques for Constructive Solid Geometry
Computer Graphics and Applications, Vol. 6, No. 9, pp. 29-39, September 1986.

[Rossignac8® J. Rossignac and H. Voelcker, Active Zones in CSG for Accelerating Boundary Evaluation, Redu
Elimination, Interference Detection and Shading Algorithms, ACM Transactions on Graphics, Vol. 8, pp. 51-87, 1989.

[Rossignac89bJ. Rossignac and M. O'Connor, SGC: A Dimension-independent Model for Pointsets with Internal Structures

Incomplete Boundaries, i@eometric Modeling for Product Engineeririgds. M. Wosny, J. Turner, K. Preiss, North-Holland, pp.
145-180, 1989.

[Rossignac9dJ. Rossignac and J. Wu, Shading of Regularized CSG Solids Using a Depth-Interval BAffegrines in
Computer Graphics Hardware V: Rendering, Ray Tracing and Visualization SySignmgjer-Verlag, Eurographics Seminars, Eds
R. Grimsdale and A. Kaufman, Berlin, pp.117-138, 1990.

[Rossignac9]1J. Rossignac, and A. Requicha, Constructive Non-Regularized Geometry, Computer-Aided Design, Vol. 23, N
pp. 21-32, Jan./Feb. 1991.

[Rossignac9?J. Rossignac, A. Megahed, and B.O. Schneider, Interactive Inspection of Solids: Cross-sections and interferer
ACM Computer Graphics, Proc. SIGGRAPH'92, Vol. 26, No. 4, 1992.

[Rossignac92hbJ. Rossignac and J. Wu, Correct Shading of Regularized CSG solids using a Depth-IntervalrBaffeances in
Computer Graphics Hardware ¥ds. R.L. Grimsdale and A. Kaufman, Springer Verlag, pp. 117-138. 1992.

[Rossignac94 J. Rossignac, Through the cracks of the solid modeling milesksne) Object Modelling to Advanced Visu
CommunicationkEds. Coquillart, Strasser, Stucki, Springer-Verlag, pp. 1-75, 1994.

[Rossignac94bJ. Rossignac, Processing Disjunctive forms directly from CSG grapl&S®@ 94: Set-theoretic Solid Modellir
Techniques and Applicationimformation Geometers, pp. 55-70, Winchester, UK, April 1994,

[Rossignac9$J. Rossignac, CSG Formulations for Identifying and for Trimming Faces of CSG Models, CSG 96: Set-theoreti
Solid Modelling Techniques and Applications, Information Geometers, Ed. J. Woodwark, Winchester, UK, April 17-19, 1994,
[Rossignac9YJ. Rossignac, Structured Topological Complexes: A feature-based API for non-manifold topologies, ACM Pres
Hoffman and WBronsvort,Edts., pp. 1-9, 1997.

[Schneider93 B.O. Schneider and J. Rossignac, M-Buffer: A flexible MISD Architecture for Advanced Graphics, Prc
Workshop on Computer Graphics Hardware, Cambridge, UK, September 1992.

[Soto89 H. Soto, M. Ishii, K. Sato, and Nkesaka, Fast Image Generation of Constructive Solid Geometry Using a Cellular An
Processor, ACM Computer Graphics, Proc. Siggraph '85, Vol. 19, No. 3, pp. 95-102, July 1985.

[Thibault87] W. Thibault and B. Naylor, Set operations on polyhedra using binary space partition trees. Proc. ACM Sigg
Computer Graphics, vol. 21, pp. 153-162, 1987.

[Tilove80] R. Tilove, Set Membership Classification: A Unified Approach to Geometric Intersection Problems, IEEE Tre
Computers, vol. C-29, No. 10, pp. 874-883, October 1980.

[Woodwark82] J. Woodwark and KQuinlan, Reducing the Effect of complexity on Volume Model Evaluation, Computer-Aided
Design, Vol. 14, No. 2, pp. 89-95, March, 1982.

