
Diss. ETH No. 16664

Representation and Rendering
of Implicit Surfaces

A dissertation submitted to

ETH Zurich

for the Degree of

Doctor of Sciences

presented by

Christian Sigg
Dipl. Rechn. Wiss. ETH Zurich, Switzerland
born 4. March 1977
citizen of Switzerland

accepted on the recommendation of

Markus Gross, examiner
Mark Pauly, co-examiner

2006

ii

Abstract
Implicit surfaces are a versatile representation of closed manifolds for modeling,
simulation and rendering. They are defined as the isocontour of a volumetric
scalar function, which allows intuitive handling of complex topology. Surfaces
deformed by physics-based simulation or modeling operations can undergo large
changes including tearing and merging without loosing their consistent definition
or producing self-intersections or holes. Implicit surfaces can be rendered directly
from their volumetric representation with a ray-casting approach, or they can be
converted to a parametric representation like triangle meshes for display.

This thesis focuses on different approaches for representing the scalar func-
tion which defines the implicit surface and methods to render the surface directly
from those representations with real-time performance. A fundamental concept
of the algorithms presented in this thesis is to harness the computational power
of consumer graphics hardware. Their highly parallel design provides the work-
ing ground for very efficient processing and rendering of implicit surfaces. The
main obstacle for such algorithms is to comply with the rendering APIs and hard-
ware restrictions of current generation hardware, which are designed for triangle
rasterization.

In computer graphics, arbitrary functions are most commonly discretized as a
regular grid of sample values. Sampling and reconstruction of a continuous func-
tion have been studied extensively in signal processing theory. One fundamental
result that can also be applied to implicit surfaces, specifies the sampling fre-
quency required to faithfully capture fine detail in the input data. For intricate
objects, a dense regular grid of sufficient resolution can become challenging in
terms of memory requirement and processing power.

However, for the small reconstruction kernels commonly used, most of the sam-
ples do not contribute to the actual surface shape, but only serve as a binary inside-
outside classification. Adaptive sampling can be used to reduce the sampling den-
sity in those regions where accurate reconstruction is not required. The octree
provides a semi-regular sampling that can significantly reduce storage require-
ments without sacrificing accuracy in critical areas containing fine surface detail.
The semi-regular structure was employed to develop a hashed octree which can
be more efficient in terms of performance and memory footprint than the common
pointer-based variant.

To increase numerical stability, the surfaces deformed by the levelset method
are represented by a field with constant gradient length. The signed distance

iii

Abstract

transform computes such a field from a triangle mesh and comes in two different
varieties. For random or semi-regular sampling, a kD-tree is used to accelerate
the closest triangle search. A slight variation of the tree construction is presented
which allows more efficient proximity queries and could be beneficial for many
other kD-tree applications. For regular sampling in a neighborhood of the surface,
an algorithm based on scan conversion of geometric primitives which bound the
Voronoi cells of the triangle mesh has proven to be competitive. The rasterization-
hardware of graphics cards provides potential to speed up the process. To employ
its full performance, an alternative construction of the bounding volumes is pre-
sented which avoids the transfer bottleneck of geometry data.

Reconstruction of a continuous function from a regular set of samples is a fun-
damental process in computer graphics, for example in texture filtering. A tradeoff
between performance and quality has to be made, because higher order reconstruc-
tion kernels require larger reconstruction filters. Cubic filters provide sufficient
quality for offline rendering, but are usually considered too slow for real-time ap-
plications. Building on hardware-accelerated linear filtering, a fast method for
cubic B-Spline filtering is presented which evaluates large filter kernels with a
moderate amount of texture fetches.

The performance of graphics hardware can be leveraged to perform real-time
ray-casting of implicit surfaces directly from their volumetric representation. A
two-level hierarchical representation is used to circumvent memory limitations of
graphics cards and to perform empty space skipping. By using the higher order re-
construction filters, smooth geometric properties of the isosurface, such as normal
and curvature can be extracted directly from the volumetric representation. These
local shape descriptors can be used to compute a variety of non-photorealistic ren-
dering effects. Due to the deferred shading pipeline, even complex shading modes
can be evaluated in real-time.

Quadratic surfaces are a common rendering primitive and have a very compact
implicit definition. However, they are usually tessellated for rendering because
graphics cards lack support for non-linear rasterization. A hardware-accelerated
rendering method based on the implicit surface definition is presented, which uses
a mixture between rasterization and ray-casting. The efficiency of the approach is
demonstrated by a molecule renderer which employs smooth shadows and silhou-
ette outlining to improve the spatial perception of the molecular structure.

iv

Kurzfassung
Implizite Flächen sind eine vielfältige Repräsentation von geschlossenen Man-
nigfaltigkeiten für Modellierung, Simulation und Rendering. Sie sind definiert
als Isokontur einer volumetrischen skalaren Funktion, welche eine intuitive Be-
handlung von komplexen Topologien erlaubt. Flächen, die mittels physikalisch
basierter Simulationen oder Modellierungsoperationen deformiert werden, kön-
nen sich stark verändern – einschliesslich Zerreissen und Zusammenschmelzen –,
ohne dabei ihre konsistente Definition zu verlieren oder Selbstdurchdringungen
oder Löcher zu produzieren. Implizite Flächen können mit einem Ray-Casting-
Ansatz direkt aus der volumetrischen Repräsentation gerendert werden, oder sie
können für die Darstellung in eine parametrische Repräsentation wie zum Beispiel
Dreiecksnetze überführt werden.

Die vorliegende Dissertation konzentriert sich auf verschiedene Ansätze für
die Repräsentation der skalaren Funktion, welche die implizite Fläche definiert,
sowie die Methoden, die Flächen direkt aus dieser Repräsentation in Echtzeit
darzustellen. Ein grundlegendes Konzept der hier präsentierten Algorithmen ist
die Nutzbarmachung der Rechenleistung von Grafikhardware. Ihre hochparal-
lele Architektur ermöglicht die effiziente Bearbeitung und Darstellung von im-
pliziten Flächen. Das grösste Hindernis für die Implementation derartiger Algo-
rithmen stellen die bestehenden APIs und die Restriktionen der heutigen Hard-
ware dar, welche primär für das schnelle Rasterisieren von Dreiecksnetzen ent-
worfen wurde.

In der Computergrafik werden beliebige Funktionen meistens auf einem reg-
ulären Gitter von Funktionswerten diskretisiert. Sampling und Rekonstruktion
von kontinuierlichen Funktionen sind in der Theorie der Signalverarbeitung ex-
tensiv studiert worden. Ein fundamentales Resultat, welches auch für implizite
Flächen angewendet werden kann, spezifiziert die Samplingdichte, welche für die
wahrheitsgetreue Erfassung feiner Details der Eingabedaten notwendig ist. Bei
komplexen Objekten kann ein reguläres Sampling in ausreichender Auflösung je-
doch die Grenzen von Arbeitsspeicher und Prozessorleistung überschreiten.

Allerdings hat bei den verbreiteten kompakten Rekonstruktionsfiltern nur eine
geringe Anzahl an Samples einen Einfluss auf die Form der Oberfläche, während
der grösste Teil lediglich der binären Innen-aussen-Klassifikation dient. In den
Regionen, welche keine genaue Rekonstruktion erfordern, kann mittels eines
adaptiven Samplings die Samplingdichte reduziert werden. Der Octree bietet

v

Kurzfassung

ein semireguläres Sampling, das den Speicherbedarf signifikant verringert, ohne
dass kritische Regionen mit feinen Oberflächendetails an Genauigkeit verlieren.
Die semireguläre Struktur wurde dabei eingesetzt, um einen gehashten Octree
zu implementieren, welcher in Bezug auf den Speicherbedarf und die Leistung
effizienter ist als herkömmliche, Pointer-basierte Varianten.

Um die numerische Stabilität zu erhöhen, werden Flächen bei einer Levelset-
Deformation mit einer Funktion konstanter Gradientenlänge repräsentiert. Die
Distanz-Transformation berechnet ein solches Feld aus einem Dreiecksnetz. Für
die Berechnung eines semiregulären Samplings der Distanzfunktion wird in der
Regel ein kD-Baum benutzt, um die Suche nach dem nächsten Primitiv im Drei-
ecksnetz zu beschleunigen. In der vorliegenden Arbeit wird eine Variation dieser
Baumkonstruktion präsentiert, welche eine effizientere Nachbarschaftssuche er-
möglicht und auch für andere kD-Baum-Anwendungen von Nutzen sein könn-
te. Für die Evaluation eines regulären Samplings in der Nähe der Oberfläche
hat sich ein Algorithmus als effizient erwiesen, der auf der Scan-Konvertierung
von geometrischen Primitiven basiert, welche die Voronoi-Zellen des Dreiecks-
netzes umschliessen. Die Rasterisierungseinheit von Grafikkarten birgt das Poten-
zial, diesen Algorithmus zu beschleunigen. Um die Beschränkung der Trans-
ferrate zu umgehen, wird ein alternativer Konstruktionsansatz der Hüllgeometrie
beschrieben.

Die Rekonstruktion einer kontinuierlichen Funktion aus einem regulären Git-
ter von Funktionswerten ist ein fundamentaler Prozess in der Computergrafik,
zum Beispiel für die Texturfilterung. Dabei muss immer ein Kompromiss zwi-
schen Geschwindigkeit und Qualität eingegangen werden, weil Rekonstruktions-
filter höherer Ordnung einen breiteren Filterkernel benötigen. Kubische Filter
bieten zwar ausreichende Qualität für Offline-Rendering, sind aber meistens zu
aufwendig für Echtzeit-Anwendungen. Aufbauend auf der Hardware-beschleu-
nigten linearen Filterung wird hier eine schnelle Methode für kubische B-Spline-
Filterung vorgestellt, welche die Faltung mit dem Filterkernel mit wenigen Tex-
turzugriffen auswerten kann.

Die Geschwindigkeit von Grafikhardware kann genutzt werden, um ein Echt-
zeit-Ray-Casting von impliziten Flächen direkt aus der volumetrischen Repräsen-
tation auszuführen. Für die Repräsentation wird eine zweistufige Hierarchie ver-
wendet, um Speicherbeschränkungen von Grafikkarten zu umgehen und leere Re-
gionen beim Samplingprozess zu überspringen. Die Verwendung von kubischen
Rekonstruktionsfiltern erlaubt es, glatte geometrische Eigenschaften der Fläche
wie Normale und Krümmung direkt aus der volumetrischen Repräsentation zu
extrahieren. Diese wichtigen Grössen der lokalen Oberflächenform können für
eine Vielzahl von Effekten benutzt werden. Dank einem Deferred-Shading-Ansatz
können auch komplexe Effekte in Echtzeit berechnet werden.

Quadratische Flächen sind verbreitete Bausteine von komplexeren geometri-
schen Objekten und besitzen eine kompakte implizite Definition. Weil Grafikkar-
ten keine nichtlineare Rasterisierung unterstützen, werden sie jedoch für die Dar-
stellung normalerweise zu Dreiecksnetzen tesseliert. Hier wird eine Hardware-

vi

beschleunigte Methode präsentiert, welche basierend auf der impliziten Definition
eine Kombination aus Rasterisieren und Ray-Tracing anwendet. Die Effizienz des
Ansatzes wird mit einem Algorithmus zur Darstellung von Molekülen demon-
striert, welcher weiche Schatten und Konturen benutzt, um den plastischen Ein-
druck der molekularen Struktur hervorzuheben.

vii

Kurzfassung

viii

Acknowledgments
I would like to thank Professor Markus Gross for giving me the opportunity
to work in such an inspiring and challenging environment and for guiding me
through the development of my Ph.D.

Thank you to my examiner, Professor Markus Gross and co-examiner, Professor
Mark Pauly for taking their time to read this dissertation.

A special thanks to Steven Assa, Christoph Ramshorn, Wendel Wiggins and
Dustin Lister at Schlumberger for the many fruitful discussions about surface rep-
resentation and for the camaraderie during my time at Schlumberger Research in
Cambridge, England.

I am also grateful to all of my colleagues in the Computer Graphics Lab for their
support and friendship, in particular my office-mates Martin Wicke and Richard
Keiser.

This project has benefited from the work of several students. I would like to
extend my thanks to Philipp Schlegel, Michael Sauter, and Oliver Staubli for their
contributions.

I would like to express my gratitude to my colleague and collaborator Markus
Hadwiger, with whom I enjoy sharing ideas the most. This thesis would not have
contained so many nice colorful images without his help.

I would also like to thank my family and my friends who have been a constant
source of support and motivation.

Finally, a very big thank-you goes to my wife Kristi for providing a loving,
supportive and inspiring environment for me in every moment.

This work has been supported in part by Schlumberger Cambridge Research
(SCR).

ix

Acknowledgments

x

Contents
Abstract iii

Kurzfassung v

Acknowledgments ix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Organization . 5

2 Fundamentals and State of the Art 7
2.1 Implicit Surfaces . 7

2.1.1 Definition . 8
2.1.2 Signed Distance Fields . 8
2.1.3 Differential Surface Properties . 10

2.2 Representation . 11
2.2.1 Analytic Functions . 11
2.2.2 Basis Function Approach . 12
2.2.3 Sampling Grids . 14

2.3 Modeling . 16
2.3.1 Constructive Solid Geometry . 17
2.3.2 Levelset . 17
2.3.3 Fast Marching Method . 19

2.4 Construction and Conversion . 20
2.4.1 Surface Reconstruction . 21
2.4.2 Signed Distance Transform . 21
2.4.3 Sweeping Method . 22

2.5 Rendering . 22
2.5.1 Ray Tracing . 23
2.5.2 Triangulation . 24
2.5.3 Direct Volume Rendering . 25
2.5.4 Quadric Rendering . 28

3 Hashed Octree 31
3.1 Data Structure . 32

xi

Contents

3.2 Storage Requirement . 34
3.3 Basic Operations . 34

3.3.1 Cell Access . 34
3.3.2 Neighbor Access . 35
3.3.3 Node Access . 35

3.4 Construction . 36
3.4.1 Subdividing a Cell . 37
3.4.2 Cell and Node Cache . 37
3.4.3 Blocking . 38

3.5 Discussion . 38

4 Distance Transform 41
4.1 Closest Point Acceleration Structure . 43

4.1.1 kD-Tree Point Query . 43
4.1.2 Construction . 45
4.1.3 Discussion . 46

4.2 Scan Conversion Based Algorithm . 47
4.2.1 Generalized Voronoi Diagram . 48
4.2.2 Characteristics/Scan-Conversion Algorithm 48
4.2.3 Prism Scan Conversion Algorithm 50
4.2.4 Hardware Accelerated Scan Conversion 54
4.2.5 Performance Evaluation . 57

4.3 Meshless Distance Transform . 61
4.3.1 Moving Least Squares . 61
4.3.2 Radial Basis Function . 62
4.3.3 Partition of Unity . 63
4.3.4 Distance Field Approximation . 64
4.3.5 Far Field Approximation . 65
4.3.6 Discussion . 66

5 High Order Reconstruction Filters 69
5.1 Higher Order Filtering . 69
5.2 Fast Recursive Cubic Convolution . 71
5.3 Derivative Reconstruction . 74
5.4 Applications and Discussion . 78

6 Isosurface Ray-Casting 81
6.1 Pipeline Overview . 81
6.2 Hierarchical Representation . 85

6.2.1 Empty Space Skipping . 85
6.2.2 Brick Caching . 86
6.2.3 Adaptive Brick Resolution . 87

6.3 Ray-Casting Approach . 87
6.3.1 Bounding Geometry Approach . 88

xii

Contents

6.3.2 Block-Level Ray-Casting . 89
6.3.3 Adaptive Sampling . 91
6.3.4 Intersection Refinement . 92

6.4 Deferred Shading . 93
6.4.1 Differential Surface Properties . 93
6.4.2 Shading Effects . 96
6.4.3 Applications . 101
6.4.4 Performance Evaluation and Discussion 102

7 Quadric Rendering 105
7.1 Overview . 106
7.2 Splatting of Quadratic Surfaces . 106

7.2.1 Implicit Definition in Homogeneous Coordinates 108
7.2.2 Perspective Projection . 109
7.2.3 Bounding Box Computation . 110
7.2.4 Ray-Quadric Intersection . 111

7.3 Molecule Rendering . 113
7.3.1 Deferred Shading . 115
7.3.2 Soft Shadow Maps . 115
7.3.3 Post Processing Filters . 117

7.4 Results . 117

8 Conclusion 121
8.1 Summary of Contributions . 121
8.2 Discussion and Future Work . 123

Bibliography 125

A Complete Prism Covering 139

B Quadric Shader Programs 143

Copyrights 145

Curriculum Vitae 147

xiii

Contents

xiv

Chapter 1

Introduction
This chapter gives an overview of the background and motivation of this thesis, as
well as the contribution of this research to the current state of the art in represen-
tation and rendering of implicit surfaces. It concludes with an overview in which
the organizational structure of the thesis is summarized.

Implicit surfaces have proven to be a versatile representation for a wide spec-
trum of graphics disciplines, including computer vision, geometric modeling, an-
imation, levelset-simulation, and visualization. Evolving surfaces with compli-
cated and changing topology are handled with simple algorithms while the rep-
resentation guarantees a continuous, hole-free manifold. Several concrete repre-
sentations of implicit surfaces have been presented, some of them very general
and applicable to many problems, others tailored for a specific task. Like any
other type of surface representation, an efficient rendering method is required to
complete a successful workflow pipeline.

1.1 Motivation
Finding an appropriate digital representation for real-world objects has challenged
many researches and a variety of approaches have been presented throughout re-
cent decades. Different requirements and constraints have lead to a range of rep-
resentations for different applications. For example, 3D object acquisition devices
produce a discrete sampling of the object’s surface. However, there is still no sam-
pling theory for manifolds and thus no criterion for sufficiently dense sampling to
reconstruct a continuous surface exists. In CAD and digital media production, ob-
jects are commonly constructed from higher order surfaces such as NURBS, but
are then converted to triangle meshes for further processing and display. In gen-
eral, triangle meshes are probably the most common data structure for represent-
ing surfaces and a significant amount of algorithms from modeling to rendering
take advantage of their compact and efficient nature. However, triangle meshes
also have a few drawbacks. Fine tessellation is required to overcome the coarse

1

Chapter 1 Introduction

piecewise linear approximation. Because a triangle mesh is only C0-continuous,
normals and curvature of a tessellated surface are usually interpolated between
values estimated at the vertices. With a general mapping from the plane to 3D
space, parametric surfaces do not need to be manifolds. Thus, they can contain
self-intersections and holes that are not found in surfaces of real-world objects.

The volumetric representation of implicit surfaces, on the other hand, naturally
classifies space into inside and outside regions. The interface between the two is
inherently a closed manifold. The topological information is contained in the vol-
umetric definition and does not require explicit control as needed for parametric
surfaces. Thus, implicits can handle complex and even time-dependent topology
without effort and lend themselves to simulate natural phenomena, for example
multi-phase flow of splashing water or fire flames. However, the advantages of
the volumetric representation also incurs some problems. For one, volumetric
representations have a much higher memory requirement than triangle meshes
with the equivalent amount of surface detail. With increased memory usage, also
more computational power is required to process the surface. In fact, the volumet-
ric representations actually contains an infinite amount of isosurfaces, and all of
them are processed concurrently. Finally, efficient rendering is difficult because
the surface has to be extracted from the underlying representation for display. The
goal of this thesis is to address some of these problems and advance the state of
the art in representation and rendering of implicit surfaces.

Most of the algorithms presented harness the computational power and pro-
grammability of current generation consumer graphics hardware, also called
graphics processing units (GPU). GPUs were introduced in 1996 to speed up the
rasterization of textured triangles for computer games. The tremendous growth
of the gaming industry during the last decade allowed fast-paced development
of new GPUs in an annual cycle from several hardware vendors. In addition
to increasing performance at much higher rates than for CPUs, more and more
features were included in the chips. First, fixed-function transform and lighting
(T&L) and extended texturing modes were incorporated in 1999. Two years later,
programmable vertex and pixel shading units were presented and have become
increasingly flexible with each generation. Currently, these units can be pro-
grammed with high-level shading languages and provide floating point precision.
The most current graphics hardware unifies vertex shaders and pixel shaders in
one single array of arithmetic-logic units (ALUs). Although a considerable part
of the die area is still spent on fixed function features such as rasterization, texture
filtering and fragment blending, the development will clearly push future GPUs
closer and closer to general stream processors [KDR+02]. Already, graphics hard-
ware is employed to increase performance of a number of algorithms not related
to computer graphics, for example direct solvers for linear systems [KW03b] or
rigid body physics for games.

2

1.2 Contributions

Figure 1.1: Overview of the field of implicit surfaces. The areas of contribution are marked
in red.

1.2 Contributions
The field of implicit surfaces (see Figure 1.1) has evolved rapidly over the years as
researchers developed compact implicit representations as well as the levelset ap-
proach for intuitive modeling of surface evolution. At the same time, performance
and flexibility of graphics hardware has improved enormously, outperforming the
CPU for many computational tasks which fit the streaming architecture of GPUs.
The focus of this thesis was to develop a range of algorithms to represent, process
and render implicit surfaces, comprising of the following main contributions:

Hashed octree: Adaptive sampling is a method for adjusting the sampling rate
to allow fine local detail without wasting memory in smooth areas. Adaptive
distance fields [FPRJ00] use an octree subdivision to perform adaptive sampling
of the distance field representing an implicit surface. Octrees are a common semi-
regular data structure that usually employ pointers to represent the recursive space
subdivision, i.e. a linked tree maps position and size to the corresponding node.
However, such sorted associative maps are less efficient than hash maps when
no specific order of the nodes is required. Therefore by replacing pointers with
hashing smaller and more efficient octrees can be produced.

Hardware accelerated signed distance transform: For the initial state of a
levelset simulation, the implicit representation comprising of the distance to the
surface is needed as a dense sampling in a close proximity of the surface, called
the narrow band. The signed distance transform computes this initial state from
a triangle mesh. The characteristics/scan conversion algorithm [Mau00] is a fast
variant that computes the distance field by rasterizing a bounding volume of the
Voronoi cell of each mesh primitive. An algorithm is presented which performs
both rasterization and distance evaluation very efficiently using graphics hard-

3

Chapter 1 Introduction

ware. An alternative construction method of the bounding polyhedra is derived
which reduces the amount of geometry data transferred to the graphics card and
deals with incomplete coverage that can occur around saddle vertices.

kD-Tree with node overlaps: For irregular or adaptive sampling of the distance
field, the computation is performed per sample instead of per object as for the
approach based on scan conversion. To speed up the search of the triangle closest
to the sample position, the mesh is stored in a kD-Tree acceleration structure. A
variation of the tree construction is presented which allows sibling nodes of the
tree to overlap slightly. Thus, the bounding hierarchy can better fit the triangles,
which results in more efficient proximity queries and could also be beneficial for
many other kD-tree applications.

Distance field extrapolation: When no closed, oriented mesh is available, the
distance is extrapolated from discrete samples of the surface. A method that
is based on Gaussian-weighted linear fields is presented which produces very
smooth interpolation. Similar to compactly supported radial basis function inter-
polation, a sparse linear system needs to be solved. As in other methods, the ex-
trapolation fidelity degrades when moving away from the surface samples. Thus,
the extrapolation is smoothly blended with the distance to the closest point. A
simple blend function is derived from quantities already computed by the extrap-
olation method.

Tri-cubic texture filtering: Reconstruction of a continuous function from
a regular sampling is performed by convolving the sample pulses with a filter
kernel. General convolution filters can be evaluated in the fragment shader of
programmable graphics hardware, but the number of texture lookups required
for high-quality cubic filtering significantly degrades performance, especially in
higher dimensions. The linear filter modes built into the texture units is employed
to considerably reduce the number of texture samples. The method can also be
extended to reconstruct continuous first-order and second-order derivatives.

Direct isosurface rendering on graphics hardware: By employing these fil-
ters, a direct renderer for implicit surfaces was developed. The surface is recon-
structed on-the-fly using a ray-casting approach on graphics hardware. The scalar
field is resampled along the viewing rays until a surface intersection has been de-
tected. High-quality intersection positions are achieved by adaptive sampling and
iterative intersection refinement. A two-level hierarchical representation of the
regular grid is employed to allow empty space skipping and circumvent memory
limitations of graphics hardware. Two methods are presented to initiate a frag-
ment program that casts a ray through the volume, which differ in the granularity
of empty space skipping and the texture indirection required to access a sample
value. Smooth local shape descriptors (e.g. normal and curvature) of the isosur-
face are extracted from the volumetric definition using the tri-cubic B-Spline fil-
ter. They are then used to perform advanced deferred shading using high-quality
lighting and non-photorealistic effects in real-time. Sample effects include ac-
cessibility shading, curvature color mapping, flow along curvature direction and
on-the-fly evaluation of CSG operations.

4

1.3 Organization

Rendering of quadratic surface primitives: Some classes of simple implicit
shapes can be represented by a compact closed formula instead of sample data.
Quadratic surfaces are a common basic building block for more complicated ob-
jects and are widely used in many applications. On current graphics hardware,
quadrics such as ellipsoids, cylinders and cones can be rendered with a mixture
of rasterization and ray-casting. A tight bounding box of the quadric is computed
in the vertex program and subsequently rasterized, where the ray-isosurface in-
tersection is computed analytically in the fragment program. Both bounding box
and ray hit position can be stated as the root of a bilinear form, corresponding to
the implicit surface definition in screen space. Using homogeneous coordinates,
the rendering approach presented also supports perspective projections. Quadratic
rendering primitives can be mixed seamlessly with standard primitives, such as
triangles. The approach is applied to illustrative molecule rendering with high-
quality soft shadows and post-processing effects in real-time.

1.3 Organization
Chapter 2 presents fundamentals of implicit surfaces and reviews state of the art
techniques. Several representations and methods for constructing them from point
samples or triangle meshes are explained. Additionally, approaches for simulation
and modeling are introduced and common rendering algorithms are presented.
The following four chapters present the main contributions of this thesis. Chap-
ter 3 describes a hashed version of the well known octree. A hardware-accelerated
distance transform for triangle meshes is described in Chapter 4. The fast tri-cubic
filtering approach presented in Chapter 5 is used in the following chapter to ren-
der high-quality isosurfaces with non-photorealistic effects. Chapter 7 shows how
hardware-accelerated quadratic surface primitives can improve the spatial percep-
tion of molecule rendering. The thesis concludes with a summary of the main
results and a discussion of the implications of this work. The appendix includes a
proof from Chapter 4 and the source code from Chapter 7 as well as an extensive
bibliography.

5

Chapter 1 Introduction

6

Chapter 2

Fundamentals and
State of the Art

This chapter introduces the methodology of implicit surfaces and discusses state
of the art approaches for representation, modeling and rendering.

Implicit surfaces are closed manifolds defined as the isocontour of a scalar func-
tion. They provide intuitive handling of complex topology. The signed distance
field is a special form of implicit surface definition which provides increased ac-
curacy and stability for the numerical simulation of surface deformation. Differ-
ent approaches are available to represent the continuous scalar function. Analytic
functions provide a compact and efficient representation but can only define a lim-
ited set of surface shapes. Basis function approaches are well suited for compos-
ing complex surfaces from smoothly blended basic shapes. Surface deformation is
modeled with a partial differential equation discretized on a volumetric represen-
tation, i.e. a regular grid of function values. Adaptive or sparse sampling has to be
employed in order to overcome the storage requirement of volumetric grids. Con-
version to an implicit representation can be addressed with several algorithms,
depending on the representation of the input surface. For display, the implicit
surface needs to be extracted from the representation, either by conversion to a
triangle mesh in a pre-process or on-the-fly with a ray-surface intersection search
per pixel.

2.1 Implicit Surfaces
Several approaches are available to represent a continuous two-dimensional sur-
face in R3. Explicit surfaces (or height fields are defined as a graph over the xy-
plane; i.e. each point on the surface is expressed as x = [x,y, f (x,y)]T . The shapes
that can be represented as a height field are limited because overhanging ledges
cannot be described by a graph. Parametric surfaces are defined by a function

7

Chapter 2 Fundamentals and State of the Art

f : Ω ⊂ R2 → R3 which maps the parameter space Ω into 3D space. As surface
self-intersections are possible, parametric surfaces like triangle meshes or NURBS
surfaces do not generally need to be manifolds. For a surface with complex topol-
ogy that may even split or merge during some simulated deformation, a consistent
definition without self-intersections is difficult to obtain. In such cases, implicit
surfaces have been used successfully because their volumetric definition implies
a consistent, closed manifold. This chapter will present the theory of these meth-
ods and review state of the art techniques to represent, model, deform and render
implicit surfaces.

2.1.1 Definition
A general implicit surface S is defined as the isocontour of a scalar function f :
R3 → R.

S = {x ∈ R3| f (x) = ρ} (2.1)

The set of points S is also called isosurface [BW97]. The scalar function f actu-
ally defines an infinite number of isosurfaces, one for each isovalue ρ. Throughout
the thesis, the isocontour of ρ = 0 will be referred to as the zero-contour. Gener-
ally, the isocontour of f at level ρ is equivalent to the zero-contour of f −ρ. In
order for the isosurface to be well defined, it is sufficient that the function f does
not have any critical points, i.e. the gradient ∇ f must be defined everywhere and
must not be zero. In this case, the surface can also be defined as the image of the
isovalue under the inverse function.

S = f−1(ρ) (2.2)

The isosurface partitions space into two sets, the interior and the exterior of the
surface. We follow the convention that the interior is the area where the function is
negative, the exterior where the function is positive. All isosurfaces are manifolds.
Mathematically, a manifold is characterized by the fact that around every point,
there is a neighborhood that is homeomorphic to a disc. Thus, the isosurface does
not contain any self-intersections. Also, isosurfaces are always closed and the
notion of interior and exterior naturally establishes a consistent orientation.

2.1.2 Signed Distance Fields
A special class of scalar functions to represent the implicit surface has proven to
be advantageous for many applications: the gradient is enforced to always have a
length of one, which is described by the Eikonal equation

‖∇ f‖= 1 (2.3)

8

2.1 Implicit Surfaces

Together with the boundary condition of the zero-set f |S = 0, the Eikonal equa-
tion 2.3 uniquely defines the function f in R3. Hence, the two are equivalent
definitions. At any point in space, f is the Eucledian distance to the closest point
on S, with a negative sign on the inside and a positive sign on the outside of the
surface. A few intermediate steps are required to understand why the Eikonal
equation implies a signed distance field.

Consider two points x and y on a path γ of deepest descent (i.e. the path along
the gradient ∇ f). The path cannot be shorter than the distance between the two
points.

‖x−y‖ ≤ |γ|=
∣∣∣∣∫

γ

∇ f (x) ·ds
∣∣∣∣= | f (x)− f (y)| (2.4)

On the other hand, the path integral along a straight line ζ connecting the two
points x and y is bound by the distance.

‖x−y‖= |ζ|=
∫

ζ

‖∇ f (x)‖︸ ︷︷ ︸
=1

‖ds‖ ≥
∣∣∣∣∫

ζ

∇ f (x) ·ds
∣∣∣∣= | f (x)− f (y)| (2.5)

Hence, γ is equivalent to ζ and ‖x−y‖= | f (x)− f (y)|. The boundary condition
assures that the function is indeed a distance field.

From the triangle equality, it follows that the distance field is a continuous func-
tion. Yet, the derivative is only defined almost everywhere. The derivative is not
defined at points without unique closest surface points. The set of these points is
called the cut locus or medial axis. The set with two closest surface points is called
skeleton, the one with three closest points is called centerline. Both skeleton and
centerline are compact representations of the abstract surface shape and are used
for feature description [Blu67], shape recognition, object navigation [WDK01]
and animation.

In addition to the cut locus, other properties can be extracted from the distance
field. In collision detection and handling for example, penetration depth and di-
rection can be easily extracted from the distance field. The distance field is closely
related to the Voronoi diagram, which is the partitioning of space with points into
cells such that each cell consists of the region which is closest to the point associ-
ated with the cell. If a surface is divided into sites (e.g. the triangles of a mesh),
an equivalent Generalized Voronoi Diagram (GVD) can be defined.

A good survey of distance fields, their construction and applications, can be
found in [JBS06].

9

Chapter 2 Fundamentals and State of the Art

2.1.3 Differential Surface Properties
Differential properties of the isosurface can be extracted directly from the implicit
representation. The surface normal is the normalized gradient g = ∇ f of the
volume:

n =
∇ f
‖∇ f‖

=
g
‖g‖

(2.6)

While the surface normal defines the orientation of the tangent plane, the cur-
vature measures the amount by which a surface deviates from a plane. The curva-
ture of a sphere is the inverse of its radius everywhere: smaller spheres bend more
sharply and have higher curvature [Car76]. Thus, curvature is a measure for the
size of local surface detail. A minimum sampling frequency for faithful surface
and normal reconstruction from discrete representations can also be stated in terms
of surface curvature [Gib98, Bær02]. Curvature information of the isosurface can
be computed from second order derivatives [MBF92]. The normal curvature in
any tangent space direction v is defined as

κn(v) =
II(v,v)
I(v,v)

=
vT (∇n)v
‖v‖2 (2.7)

where I and II are the first and second fundamental forms [Car76]. The gradient of
the normal ∇n (also called the shape matrix S) is the projection of the normalized
Hessian matrix H =∇g =∇2 f onto the tangent plane.

S =∇n =∇ g
‖g‖

=
H
‖g‖

− g
=Hn︷ ︸︸ ︷

(∇‖g‖)T

‖g‖2 =
1
‖g‖

(1−nnT)H (2.8)

The maxima and minima of all normal curvatures are called principal curva-
tures, denoted with κ1 and κ2. The corresponding tangent vectors are called prin-
cipal curvature directions. They can be computed by an eigen-analysis of the
shape matrix S. Two eigenvalues (eigenvectors) correspond to the principal curva-
tures (directions). The third eigenvalue is zero, with the normal as the correspond-
ing eigenvector. Other quantities have been derived from the principal curvatures,
for example Gaussian curvature (K = κ1κ2) or mean curvature (H = (κ1 +κ2)/2).
A color-coded plot of these quantities on the surface allows very intuitive depic-
tion of the local geometric shape [KWTM03, HKG00]. A color mapping of the
principal curvature magnitudes can be used for non-photorealistic volume render-
ing [RE01] such as ridge and valley lines [IFP95]. Curvature directions can be
effectively visualized by advecting dense noise textures [Wij03], which can be
done entirely in image space [LJH03] on a per-pixel basis.

10

2.2 Representation

2.2 Representation
In section 2.1 the mathematical definition and properties of an implicit surface
have been explained. In order to perform geometric modeling or just display the
surface on the screen, a concrete representation of the implicit surface is neces-
sary. A wide range of approaches have been presented. Usually, a tradeoff has to
be made amongst accuracy, generality, and efficiency, both in terms of memory
and computational complexity. For some classes of implicit surfaces, the defining
scalar function can be written as an analytic equation, which is a very compact
and exact representation. However, the range of surfaces that can be represented
is rather limited. Multiple analytic functions can be combined by linear combi-
nation or blending to represent more complex functions and surfaces. Several of
these basis function approaches have previously been proposed for a wide range of
applications. However, the placement of basis functions and choice of appropriate
blending weights can be a time-consuming process, regardless of whether they
are performed manually or automatically. Thus, deforming the surface for mod-
eling and animation is often difficult with these representations. In digital signal
processing, sampling is the most common method for capturing virtually any in-
put data. Both regular and adaptive sampling are common means to represent the
scalar function. A reconstruction filter is required to retrieve a continuous defini-
tion from the discrete samples. In the following sections, these possible choices
of representation will be discussed in greater detail.

2.2.1 Analytic Functions
A set of simple shapes can be defined implicitly by an analytic equation of the
position x = (x,y,z)T . For example, the unit sphere S2 can be defined as

x2 + y2 + z2−1 = 0, (2.9)

or a plane can be defined by

ax+by+ cz−d = 0. (2.10)

Both examples belong to the class of algebraic surfaces, which are defined as
the set of roots of a polynomial. The degree of the surface is defined as the de-
gree of the polynomial. Thus, a plane is a linear surface whereas the sphere is a
quadratic surface. A wide range of higher order surfaces with interesting proper-
ties is known in the mathematics community, i.e. the Klein Bottle or Enneper’s
Minimal Surface. However, these surfaces often serve the purpose for understand-
ing the features of the underlying function instead of representing objects.

The ultimate goal of an analytic surface representation would be to design
a class of simple functions which allow a range of surface shapes controllable
through a small set of intuitive parameters. Quadratic surfaces can represent el-
lipsoids, cylinders, cones and paraboloids in any possible orientation with a mere

11

Chapter 2 Fundamentals and State of the Art

set of six variables. Using an implicit definition in homogeneous coordinates,
quadratic surfaces can be rendered efficiently on graphics hardware, which will
be discussed in Chapter 7. Superquadrics [Bar81] provide more flexibility by
adding two parameters to control the polynomial exponent. Their intuitive depic-
tion of rotation and anisotropy lend themselves to tensor visualization [Kin04].
While superquadrics are restricted to quadrilateral rotation-symmetry, the super-
formula [GBB03] allows any n-fold symmetry to represent organic shapes like
starfish (5-fold) or snowflakes (6-fold).

2.2.2 Basis Function Approach
Analytic representations are designed to describe a surface globally by a single
closed formula. Thus, only relatively simple shapes can be represented by analytic
functions and only a small set of parameters are available to adjust the shape. More
complex shapes are designed as a composition of simpler elements. The implicit
definition of the basis elements are composited either by linear combination or
smoothly blended across their region of influence.

Blobs
The Blobby Model [Bli82] is inspired by the electron density distribution of
molecules. The density of one atom is modeled as a Gaussian function e−‖x‖2/σ

2
.

The model is constructed by superposition of many Gaussians that are scaled and
translated to their center. By simple addition, the Gaussian fields (which individ-
ually define an implicit sphere) will interact and define a smooth global shape.
Unfortunately, evaluating the Blobby Model at a single point requires the summa-
tion of all fields because Gaussians extend to infinity. Meta Balls [Gra93] and Soft
Objects [WMW86] replace the Gaussian by piecewise polynomial approximation
with finite extent. The Blobby model has also been used to fit an implicit surface
to range data [Mur91].

RBF
The superposition of translated basis functions is common practice for interpola-
tion and approximation of irregularly sampled data. Thus, it can be employed to
gain an implicit definition of a surface that has been sampled by a laser range scan-
ning device [SPOK95, CBC+01]. The general concept is known as Radial Basis
Functions approach (RBF). In contrast to Blobby Models, where the functions are
designed to locally represent the shape of the surface and can be moved around
freely, the basis functions in the RBF approach are centered at the sample positions
of the input data. A linear system of equations needs to be solved to determine the
appropriate linear combination of basis functions in order to interpolate the input

12

2.2 Representation

data. The basis function itself is a fixed function of the Eucledian distance to the
center point. Common choices include thin-plate (r2 logr), biharmonic (r) and tri-
harmonic (r3) splines, which minimize certain bending energy norms resulting in
smooth interpolation [CBC+01]. Unfortunately, none of these are compactly sup-
ported. The resulting linear system is dense and very expensive to solve. Similar
to the original Blobby Model, evaluation also has to consider all basis functions.
Compactly supported basis functions produce sparse linear systems and can be
evaluated efficiently. However, they do not minimize any variational energy and
a multi-scale approach is required to achieve a global definition [OBS03]. More
details about the RBF approach can be found in [Buh03].

MLS

Moving least squares [Lev98] is another approach to interpolate or approximate a
set of scattered function samples. A polynomial is fitted to the function values in
a weighted least squares sense. The important point is that the weights of the least
squares fit depend on the point of evaluation, i.e. the error weight degrades the
further the distance to the sample position. Instead of using offset points to avoid
a non-trivial solution of the implicit surface definition, the MLS surface is defined
as the stationary set of an projection operator. This projection operator maps each
point in space onto the closest point on the surface. However, the definition of
the projection operator is implicit and needs to be approximated by an explicit
iterative procedure [Lev03].

MPU Implicits

Multi-level partition of unity implicits is an alternative representation tailored to
reconstruct surfaces from very large sets of points [OBA+03]. Instead of radial
basis functions, three different types of local surface approximations are used: a
quadratic polynomial in three dimensions or over a two-dimensional parameter
plane and a piecewise quadratic function to capture sharp features like edges and
corners. Those basis functions are fitted locally by analyzing the surface samples
and solving a small least-squares problem. As the basis functions do not have
any real meaning at distant points, local approximations are blended to a global
definition. The space is adaptively subdivided by an octree according to the local
surface detail, with one basis function per octree cell. If the basis function cannot
adequately represent the samples in one node, the cell is subdivided into eight
smaller cells. Neighboring basis functions are blended across the cell boundary
to achieve a smooth transition. The blending weights are determined by partition
of unity, which is a normalized Gaussian around the center of the octree cell, i.e.
each blending weight is divided by the sum of all blending weights.

13

Chapter 2 Fundamentals and State of the Art

2.2.3 Sampling Grids
A straightforward method to represent arbitrary implicit surfaces is to sample the
scalar function on a regular grid. Although many sample values are required to
capture fine detail, they can be stored without any overhead in a continuous array
that provides fast direct access. Thus, regular grids are a very popular method
for rendering algorithms implemented in hardware, such as texturing or volume
rendering. For complex shapes, the storage requirement for a regular grid can
exceed the memory available on the target platform. The narrow band method or
adaptive sampling can mitigate this requirement at the cost of more complex data
access. A reconstruction filter is required to retrieve a continuous definition from
the discrete samples.

Reconstruction Filters
In signal processing theory, arbitrary continuous data is represented as a discrete
set of samples in the spatial domain. After the sampling process, the continuous
function is only defined at the discrete sampling locations. To retrieve a continu-
ous definition from the samples, one must perform a process known as reconstruc-
tion [Hec89]. The reconstructed function is defined as the convolution of a filter
kernel and the samples, which are interpreted as a series of pulses at the sampling
locations.

The definition of the continuous reconstruction can be used to resample the
function or derive numerical methods, for example stencils for finite difference
operators. The convolution of the sample pulses fi and the filter kernel h can be
written as a convolution sum

(f ∗h)(x) = ∑ fi ·h(x− i) (2.11)

The choice of the filter kernel is crucial for the quality of the reconstruction.
In general, only band limited (i.e. frequency bound) functions can be recon-
structed exactly and only if the sampling frequency is twice as high as the highest
frequency present in the function. Functions containing higher frequencies than
this Nyquist limit need to be low-pass filtered before being sampled. Otherwise,
high frequencies are captured modulo the Nyquist frequency and show up as low-
frequency aliasing patterns in the reconstructed function.

The convolution with the filter kernel to reconstruct such a band limited func-
tion is equivalent to a modulation in frequency domain [RG75]. For an exact
reconstruction, the filter kernel in the frequency domain needs to be 1 below the
Nyquist limit and 0 above. The corresponding ideal filter in the spatial domain is
the sinc filter

sinc(x) =
sin(x)

x
(2.12)

14

2.2 Representation

For efficient evaluation, the size of the filter kernel should be relatively small
and only a few summands in the convolution sum should be non-zero [RG75].
Unfortunately, the sinc filter has infinite extent and every evaluation needs to take
into account all sample values. The box filter on the other hand performs really fast
but low-quality nearest-neighbor interpolation. In between those two extremes,
a wide range of reconstruction filters have been presented, each with a specific
tradeoff between quality and efficiency.

A linear filter interpolates neighboring function samples with straight slopes
and is thus the simplest filter providing continuous interpolation. Linear filters are
probably the most popular filters in computer graphics, especially in real-time ap-
plications. All current graphics hardware natively supports linear filtering of 2D
and 3D textures. Higher order filters are usually restricted to software implemen-
tations, among them several classes of spline filters [RG75] with varying degree
and windowed sinc filters [ML94, MMK+98]. Reconstruction filters are usually
divided into approximating and interpolating classes. Approximating filters like
B-Splines do not interpolate the sample values but produce smooth functions that
suppress noise in the input data. Catmull-Rom Splines are popular for applications
that require value interpolation.

While larger filter kernels can generally achieve a higher reconstruction accu-
racy, large kernels can have a negative effect on sampled distance functions. The
distance function forms shocks at the cut locus, which are not band limited. To
avoid inaccurate surface reconstruction, the distance between shocks and surface
should be larger than the radius of the reconstruction kernel [Bær02]. To achieve
this, the ratio between sampling rate and the filter kernel size should at least match
the maximum surface curvature.

Narrow Band Approach

Storing a full regular grid at sufficient resolution to capture fine surface detail
can exceed the memory available on average workstations. However, only the
values in a vicinity of the surface corresponding to the size of the reconstruc-
tion kernel actually contribute to the definition of the surface. The narrow band
method [AS95] takes advantage of this and only stores a small fraction of all sam-
ples in a thin region around the implicit surface as shown in Figure 2.1, right.
Usually, a band that is six samples thick is enough to faithfully reconstruct the
function and its partial derivative. Outside this band of samples, the value of the
function is unknown. A helper data structure associates the sample positions to
the sample values, incurring an extra indirection during value access. To keep
the overhead per sample low, the narrow band is usually built of small blocks of
densely sampled regions. A disadvantage of the narrow band method is that it
only allows direct evaluation of the inside-outside test in the sampled region.

15

Chapter 2 Fundamentals and State of the Art

Figure 2.1: Semiregular grids such as the octree (left) and the narrow band (right) allow
accurate representation of the isosurface (green) without the overhead of storing a
full resolution grid. The octree allows an inside/outside classification of the object
(yellow) over the entire domain, but managing and accessing cells in the hierarchy
introduces a certain overhead.

Adaptive Sampling
Because the amount of detail is usually spread unevenly across the surface, even
the narrow band approach still leaves room for improved memory usage. With
adaptive sampling, the sampling rate can be adjusted locally to the frequency spec-
trum of the surface. In areas that are smooth, only a small number of samples is
required to reconstruct the surface, whereas highly curved regions need to be sam-
pled with a large number of samples (see the argument of sampling frequency ver-
sus curvature in Section 2.2.3). For the narrow band approach, the sampling rate
can be adjusted per block. Adaptively sampled distance fields (ADF [FPRJ00])
store the distance field at the corners of an octree (see Figure 2.1, left and Chap-
ter 3), yielding a very fine grained sampling rate. A cell is subdivided if the trilin-
ear reconstruction does not approximate the real distance function within a certain
error bound. For practical reasons, the error is calculated from a small number of
test samples, which might miss small features in a region that is generally smooth.
In contrast to the narrow band approach, this allows a complete definition of the
scalar function for inside/outside tests. Yet, accessing nodes in an octree requires
a significant number of memory indirections.

2.3 Modeling
Modeling with implicit surfaces offers several advantages over other surface rep-
resentations [Set98]. Self intersections cannot occur and the surface can naturally
change topology during deformation. The implicit representation of a Construc-
tive Solid Geometry (CSG) operation can be evaluated directly from the implicit

16

2.3 Modeling

representation of the two operands [MBWB02]. Surface deformation is achieved
by solving a partial differential equation (PDE) for the implicit definition known as
the level set equation [Set98]. The deformation is controlled by the speed function,
which specifies the speed of the surface in normal direction. If the deformation
is monotone (i.e. the speed function does not change sign), the level set equation
can be solved with the efficient fast marching method discussed in Section 2.3.3.

2.3.1 Constructive Solid Geometry
Constructive Solid Geometry (CSG) provides cut, copy and paste operations for
volumetric models [Hof89]. The implicit representation provides a natural point
membership classification, i.e. a point is part of the model if the scalar function at
that point is smaller than the isovalue. A CSG operation combines two models by
evaluating a pointwise Boolean operation (union, difference, intersection) of the
membership classification. Table 2.1 lists the implicit representation of the CSG
model as a simple function of its operands.

CSG Operation Intersection Union Difference Difference
Boolean Operation A∧B A∨B A−B B−A
Scalar Operation min(fA, fB) max(fA, fB) min(fA,− fB) min(− fA, fB)

Table 2.1: Constructive Solid Geometry (CSG) operations for implicit surfaces. Due to the
volumetric inside-outside classification, the scalar function defining the result of
a CSG operation can be computed directly from the implicit definition of its two
operands.

The Boolean operation can either be an intrinsic part of the representation or
can be evaluated once the CSG operation has been completed. Volume sculpting
systems employ CSG operations and an intuitive interface to create complex solid
objects from simpler primitives [GH91,WGG99]. Carving and sawing can be sim-
ulated by continuous CSG operation while moving one of the operands [WK95].
Boolean operations produce sharp features at the intersection curve of the two
surfaces, which can be captured well by Adaptive Distance Fields [FPRJ00] or
blended to a smoother curve [DvOG04]. The implicit surface renderer presented
in Chapter 6 supports on-the-fly evaluation of CSG operations.

2.3.2 Levelset
The implicit surface representation allows a very elegant handling of surface de-
formation. The evolution is formulated as a PDE of the scalar function and dis-
cretized on a regular grid using a finite difference scheme. The exact position of
the surface is not required to describe the deformation because the implicit rep-
resentation contains all of the necessary information. Surfaces of complicated

17

Chapter 2 Fundamentals and State of the Art

topology can undergo large changes, form holes, split and merge without destroy-
ing the closed, consistent, and intersection-free definition.

A particle x(t) on the isosurface of a time-varying scalar function f (x, t) fulfills
the following equation:

f (x(t), t) = 0 (2.13)

The derivative with respect to time reveals the fundamental level set equation
of motion [OS88]:

∂ f
∂t

+∇ f · ẋ = 0 (2.14)

where ẋ = dx/dt denotes the velocity of the particle. The velocity of the surface
in its normal direction is determined by the speed function u = n · ẋ. The speed
function is a user-defined scalar function which can depend on a number of vari-
ables like the position x, surface normal n or curvature κ. Due to the fact that
Equation 2.14 is actually defined everywhere in the computational domain, the
definition of the speed function needs to be extended from the surface to the entire
volume. However, this is straightforward because normal and curvature can be
extracted from the isosurface that passes through the point where the speed func-
tion is evaluated. Once the speed function has been defined, the deformation of
the surface can be formulated as a PDE:

∂ f
∂t

=−‖∇ f‖ u(x,n,κ, ...) (2.15)

The solution to the initial value problem of Equation 2.15 can develop shocks,
i.e. gradient discontinuities. Thus, a numerically stable discretization needs to
incorporate the concepts of weak solutions and entropy conditions [Set98]. The
upwind scheme can successfully achieve these prerequisites. Essentially, the up-
wind scheme evaluates derivatives of f as a one-sided difference on the side which
produces the larger derivative. As a result, shocks are effectively damped by nu-
merical diffusion. To speed up the numerical process, Equation 2.15 is usually
solved only in the narrow band around the surface [AS95]. Reinitialization is
needed when the front moves out of the region of defined function values. The set
of grid points that belong to the narrow band is reset so that the zero level lies in
the center of the band. Alternatively, octree subdivision can be used to discretize
the the levelset equation [LGF04].

The levelset approach is a computational approach for a wide range of appli-
cations from image processing to path planning. Only the speed function needs
to be tailored to the deformation requirements of a specific application. Mor-
phing between two volumetric objects can be implemented as a levelset prob-
lem [TO99, BMWM01] as well as surface processing operators like fairing and
sharpening [MBWB02]. Levelsets have also been employed to perform physics-
based modeling of smoke [LGF04], water and solid objects [GSLF05], as well as
fabric draping [BFA02]. Although the automatic handling of changing topology
is one of the main advantages of the levelset approach, some applications require
the surface to preserve the topology during deformation [HXP03].

18

2.3 Modeling

The performance of a levelset solver can be improved by employing the com-
putational power of GPUs, for example in volume segmentation [RS01]. Even
narrow band levelset computations are possible on GPUs [LKHW03].

For numerical and algorithmic purposes it is advantageous to keep the levelset
function close to a signed distance function during the time evolution. It has been
observed that the distance property can be maintained to some degree of accuracy.
To achieve this, the speed function u0 = u| f =0 defined on the zero-contour has to
be extended to the entire domain in a specific fashion. Differentiating the Eikonal
equation 2.3 and the levelset equation 2.15 yields a constraint for the speed func-
tion:

∇ f ·∇
(

∂ f
∂t

)
= 0 and ∇

(
∂ f
∂t

)
=−∇u ⇒ ∇ f ·∇u = 0 (2.16)

Thus, gradients of f and u are orthogonal and the speed function is constant along
the line perpendicular to the interface [AS99]. In other words, the speed function
of the surface is equivalent to the speed function at the closest point on the surface.
As a result, the levelset equation 2.15 can be reformulated to preserve the distance
field as follows:

∂ f
∂t

=−u0(x−u∇u) (2.17)

However, the accuracy decreases with the number of iterations and an occasional
reinitialization is unavoidable. This can either be done by recomputing a distance
field from the zero-level isosurface (e.g. with the fast marching method presented
in the next section) or by performing intermediate iterations with a different speed
function that forces the levelset function to attain a distance field [SSO94].

2.3.3 Fast Marching Method
The fast marching method [Set96] is an optimized approach for solving the lev-
elset equation 2.15 for speed functions that are either strictly positive or strictly
negative only. In this case, the surface only moves in one direction and the time of
arrival can serve as implicit surface definition. Thus, the implicit representation
is no longer time dependent but stores the whole surface propagation in a single
field. Each point stores the time the surface passed through that point and the iso-
surface of level t corresponds to the surface at time t of the evolution. The arrival
time of the surface f is the solution to the Eikonal equation

‖∇ f‖= 1/u (2.18)

where u≥ 0 is the speed of the surface. The boundary condition of Equation 2.18
is given at the initial surface position, where the function value f is set to zero.

The fast marching method determines the sample values in the order in which
the surface passes through them. The upwind scheme propagates information

19

Chapter 2 Fundamentals and State of the Art

from samples with smaller time of arrival to larger ones. A thin layer contains
sample values that are currently being updated. The values of samples with
smaller time of arrival are already known at this point and have been frozen. The
remaining samples have a larger, but unknown time of arrival. In each iteration,
the sample with the smallest value is frozen from the intermediate layer and its
value is likewise frozen. The neighbors of the frozen sample with unknown values
are then initialized and added to the intermediate layer. As this cycle progresses,
more and more grid points are removed and the intermediate layer moves forward,
away from the initial front until all grid points are processed. To quickly find the
current smallest value, the samples in the intermediate layer are kept in a heap
data structure. Sample value are updated with a discretized upwind scheme of
Equation 2.18. After a value has changed, the heap must be updated. Hence,
the fast marching method is a O(n logn) algorithm. However, due to the finite
difference scheme, the fast marching method is not exact.

In addition to the distance, additional information can be stored in the distance
field. Such information can be the vector pointing to the nearest object point,
known as the vector distance transform [Mul92]. Alternatively, the index of the
nearest surface primitive can be attributed to each point, the resulting field is called
a complete distance field representation [HCLL01]. By propagating this type of
additional information, the fast marching method and similar propagation methods
can be turned into exact distance transform algorithms [Nad00, Egg98, Tsa00].

The fast marching method has been successfully applied to several modeling
applications. Most importantly, the distance field is the solution of the Eikonal
equation with a constant speed of u = 1. Thus, all applications involving dis-
tance fields, such as computation of medial axis or Voronoi diagrams and levelset
reinitialization, can benefit from this method. Morphological operations like ero-
sion and dilation can also be implemented efficiently by using the fast matching
method. Erosion removes external parts from a model while dilation adds parts,
corresponding to inset and offset surfaces for constant speed functions. A consec-
utive application of both operations can be used to enlarge cracks and cavities, or
remove cavities and smooth spikes [JBS06]. The fast marching method has also
proven useful in many other fields, for example computer vision [PS05] or motion
path planning [KS98].

2.4 Construction and Conversion
A range of algorithms exist for generating an implicit surface from another rep-
resentation. They can be classified by the type of representation the input model
uses. For point sampled surfaces such as the ones produced by laser range scan-
ners, producing an implicit representation is a good way to retrieve a continuous
surface definition. The associated problem can be seen as an interpolation or ap-
proximation of the point samples. Parametrized surfaces such as triangle meshes

20

2.4 Construction and Conversion

are converted to a signed distance field in order to model a deformation by the
levelset equation, for example based on a physical simulation. If the narrow band
method is used, the distance field needs to only be computed in a neighborhood
of the surface. For constructive solid geometry operations, a binary inside-outside
classification corresponding to the sign of the distance field is sufficient. Finally,
propagation approaches are used if the input model is given as a set of voxels or
a narrow band representation needs to be extended to a full grid. Apart from the
fast marching method discussed in Section 2.3.3, the value propagation can also
be carried out in sweeping order.

2.4.1 Surface Reconstruction
Implicit surfaces are well-suited for retrieving a continuous surface definition from
a point cloud because no explicit handling of topological information is required.
The conversion can be stated as a scattered data interpolation problem [Wen05]
because the point cloud is a sampling of the zero-contour solution. Several meth-
ods have been presented in the past to compute a continuous function which in-
terpolates or approximates these zero-distance samples. For example, the prob-
lem can be formulated as a levelset surface evolution [Whi98, ZO02]. The speed
function is designed to attract the isosurface to the sample points while bend-
ing energy is minimized. The steady state of the evolution is the desired surface
represented on a regular grid. Other implicit representations have been used or
even developed specifically for the task of surface reconstruction from a point
cloud, such as the Blobby Model [Mur91]. The radial basis function approach
can be used to interpolate the distance function at the point cloud and a set of
additional offset points. Global basis functions require a large dense linear sys-
tem to be solved, but construct very smooth surfaces that minimize bending en-
ergy [SPOK95,CBC+01]. The linear system for compact basis functions is sparse
and can be solved with standard numerical methods, but the solution is not guar-
anteed to be optimal. Furthermore, a multi-scale approach is required to achieve
a global definition [OBS03]. The moving least squares approach [Lev98] can
also be used to define an implicit surface as the stationary set of a projection op-
erator [Lev03]. MPU implicits [OBA+03] have been designed to construct an
implicit definition from huge sets of surface samples. The space is adaptively sub-
divided by an octree, and basis functions are fitted to the local sampling. Neigh-
boring basis functions are blended together using the partition of unity approach.
Partition of unity blending has also been used to blend first order approximations
of the distance field defined at the surface samples [Nie04].

2.4.2 Signed Distance Transform
The signed distance transform [Mau00] computes a distance field on a regular grid
from a triangle mesh, for example as the initial state of a levelset computation. The

21

Chapter 2 Fundamentals and State of the Art

samples can be computed either in image space or object space, referring to the
outer loop of the algorithm, which iterates over all samples or all triangles of the
mesh, respectively. Image space methods determine for each sample the corre-
sponding closest point on the triangle mesh. To avoid searching all triangles for
the closest point, a spatial search data structure [Sam90] for the triangles is em-
ployed. On the other hand, object space methods are based on scan conversion. In
this case, the distance field is obtained by scan converting a number of geometric
objects related to the triangle mesh and by conditionally overwriting the computed
voxel values. Methods based on scan conversion can efficiently compute distance
fields in a neighborhood of the surface, e.g. for a narrow band representation. In
Chapter 4, a variant of the algorithm presented by Mauch [Mau03] is reimple-
mented to harness the performance of the rasterization unit of graphics hardware.

2.4.3 Sweeping Method
The fast marching method described in Section 2.3.3 propagates distance values
from initial values in the direction of increasing distance until all samples have
been processed. With this method, only a thin band of distance values are updated
at a time. By using the same upwind scheme, the sweeping methods updates
all values concurrently in scan-line order, e.g. sample-per-sample, row-per-row,
slice-per-slice. One sweep corresponds to a Gauss-Seidel iteration of the Eikonal
equation. The sweeping direction determines the direction of the value propaga-
tion and several sweeps in alternating directions are required for the solution to
converge. Yet, convergence usually takes no more than one cycle of all possible
scan-line directions. Hence, the algorithm has linear complexity in comparison to
the superlinear complexity of the fast marching method. However, the fast march-
ing method is considerably faster in typical setups. An extended version which
computes exact distance values and an overview of previous methods have been
presented in [JQR03].

2.5 Rendering
All surface processing pipelines are comprised of a visualization stage which ren-
ders the surface as a two-dimensional image. Rendering isosurfaces represented
implicitly by a volume of function samples is an important task in visualiza-
tion. In medical applications, the volume data is acquired through CT or MRI
scans and subsequently analyzed by volume or isosurface rendering. Isosurface
rendering is also used to display the operations of surface modeling and anima-
tion [MBWB02], or the surface deformation of a levelset simulation [LKHW03].
High-quality rendering at interactive speeds is a major bottleneck, particularly
when the isosurface changes over time. The rendering approach for implicit sur-
faces is fundamentally different than the one for parametric surfaces because the

22

2.5 Rendering

isosurface has to be extracted from the underlying volumetric representation. Tri-
angulation methods such as Marching Cubes [LC87] do this in a pre-processing
step and render the resulting mesh, for example on rasterization hardware. Implicit
surfaces can also be rendered from surface samples, which can be generated by a
physical-based simulation of particle repulsion [WH94]. Ray-tracing approaches,
on the other hand, determine the intersection of a viewing ray per pixel and extract
the isosurface directly from the implicit definition [Bar86, Lev88]. Another tech-
nique for generating images directly from volume data without any explicit surface
extraction is known as volume rendering [DCH88]. Volume rendering employs a
transfer function to map the volume data to optical material properties such as
color and opacity. The color of a pixel is determined by the volume integral along
the viewing ray. Volume rendering can be implemented on programmable graph-
ics hardware with 3D texture support [WE98]. A ray-tracing pipeline for implicit
surfaces implemented on graphics hardware will be presented in Chapter 6.

2.5.1 Ray Tracing
Ray tracing a very general method to generate synthetic images. It treats light as
set of rays emitting from the light source, traveling through the scene and reflect-
ing at object surfaces and eventually reaching the eye. The process can also be
reversed and viewing rays can be shot from the eye point into the scene [Whi80].
To generate photo-realistic images with global illumination effects, a combina-
tion of both is usually employed. The light energy is transported from the light
source to the surface with a technique like photon mapping [Jen96]. The scene is
then rendered with a viewing ray per pixel that gathers the light from the surface
elements it hits. In both steps, rays are reflected, scattered and refracted at the
surface, which in turn generates new rays. The depth of this recursion determines
the final quality of the image but also the required workload.

The most simple and fastest method uses viewing rays only and evaluates a
local light model when the ray hits a surface, without generating any additional
rays. Thus, the image is generated from primary rays only and the image quality
is similar to the one achieved by rasterization. Usually, this method is called
ray-casting. However, we will use the term ray-casting in the domain of volume
rendering and refer to ray-tracing even though the scene is rendered from primary
rays only.

Finding the closest intersection between a ray and the scene is a central part of
any ray-tracing algorithm. For scenes that are composed of small primitives, test-
ing each primitive for an intersection is infeasible and thus, a spatial data structure
is employed to speed up the process. The primitives are inserted into a bound-
ing volume hierarchy, which allows to skip intersection tests for all members of
a bounding volume that does not intersect the ray. As one is only interested in
the first hit, bounding volumes behind an intersection already detected can also be
skipped. A bounding volume hierarchy for triangle meshes will be presented in

23

Chapter 2 Fundamentals and State of the Art

section 4.1. In Chapter 3, the octree data structure is presented which naturally
represents a hierarchy over the regular sampling domain of the implicit surface.

Once an implicit surface is a candidate for an intersection, the ray equation
x(t) = c+ tv is inserted into the implicit surface definition.

f (c+ tv) = 0 (2.19)

where c is the camera position and v is the direction of the viewing ray. The in-
tersection closest to p corresponds to the smallest t to fulfill the constraint 2.19.
The equation to solve depends on the type of representation for f . For analytical
representation, t is the root of a closed formula which can often be found with
a direct approach. Chapter 7 presents a rendering approach for implicit surfaces
represented by a quadratic polynomial. For sampled representations, the trilinear
interpolation within a grid cell is a third order polynomial along the ray parameter
t, which is difficult to solve directly due to limited precision. Also basis function
approaches lead to expressions which are too complex to search the root analyti-
cally. Thus, a numerical procedure is usually employed, which samples the scalar
function along the ray until a zero crossing has been detected. A guarantee that
no intersection is missed can still be given under the assumption that the scalar
function is Lipschitz continuous [KB89]. However, precise surface intersection
and high-quality reconstruction filters are expensive. Hence interactive rates with
high-quality or analytic ray-surface intersections and gradients have only been
achieved by implementations using multiple CPUs [PSL+98, PPL+99] or clus-
ters [DPH+03]. Different trade-offs have been presented [NMHW02,MKW+04].

2.5.2 Triangulation
Because graphics hardware provides excessive rendering power for polygonal
meshes, it is appealing to extract a mesh from the volumetric representation for
display. The Marching Cubes algorithm [LC87] extracts a triangular approxima-
tion of the isosurface independently for every cell of a regular grid. First, the
values at the eight corners of the cell are examined. For each edge that connects
two corners with different sign, a vertex is placed at the zero-crossing of the linear
interpolation. The sign configuration of all eight corners is then used to lookup the
topological configuration of triangles which connects the vertices. After process-
ing each grid cell, the surface is complete. Marching Cubes has been extended
to work with adaptive grids such as octrees, where the alignment of triangles
of neighboring cells of different size requires special attention [SFYC96]. The
Marching Tetrahedron [Blo94, BW97] algorithm extracts a tessellated isosurface
from an unstructured mesh. However, the size of the triangles produced by these
algorithms is very uneven and sharp features are smoothed out [KBSS01].

Methods that try to overcome these limitations use a dual approach to contour-
ing [JLSW02, VKKM03]. Instead of putting the vertices on the cell edges, the

24

2.5 Rendering

vertices are placed inside the cells. The vertices of neighboring cells are con-
nected by polygons that intersect the cell edges. Thus, these methods produce
meshes that are topologically dual to the ones of Marching Cubes. The position of
the vertex inside the cell can be chosen so that the normals of the adjacent triangles
approximate the gradient field in a least squares sense [JLSW02]. The increased
freedom of vertex position can also be used to reconstruct sharp surface features.
Alternatively, one can also run a variation of the Marching Cubes algorithm on the
dual grid to achieve similar results [SW04].

The number of cells which need to be tested for triangulation can become too
large for interactive changes of the isovalue. The extraction can be accelerated
by storing the function ranges of subvolumes in an interval tree [CMM+97]. By
using this method, for a given isovalue, only subvolumes which are intersected by
the isosurface must be considered.

2.5.3 Direct Volume Rendering
The term direct volume rendering [EHK+06] describes a technique to visualize
volumetric data instead of just a single isosurface. The scalar field is interpreted as
a density distribution of some media, which can be acquired from medical imaging
devices using computer tomography (CT) or magnetic resonance spectroscopy
(MRI). A transfer function maps the density to optical properties such as color
and opacity by classifying different structures in the volume. The volume is then
rendered by solving the volume rendering integral, which integrates the color and
opacity along each viewing ray corresponding to a pixel of the image. In practice,
the volume rendering integral is evaluated by sampling and numerical integration.

For a simple emission-absorption based optical model [Max95], the opacity of
participating media is measured in optical density D or the more commonly used
extinction coefficient τ = Dln(10). The opacity α is the fraction of light lost by
absorption and scattering over a path length L along a viewing ray. Transmit-
tance T = 1−α is the remaining fraction and can be expressed as:

T (s) = 10
−

s∫
0

D(t)dt
= e

−
s∫

0
τ(t)dt

(2.20)

A fraction of the color E emitted at a point in the volume is scattered as diffuse
color C = τE. The volume rendering integral describes the diffuse color accumu-
lated along one viewing ray:

c =
∫

C(s)T (s)ds =
∫

E(s)τ(s)T (s)ds (2.21)

The numerical integration of Equation 2.21 and 2.20 usually assumes piecewise
constant or linear values of τ and E. One or two density values are required to per-
form a lookup into a table which stores the precomputed integrals. The contribu-
tion of the individual segments can be accumulated with simple summation (2.21)

25

Chapter 2 Fundamentals and State of the Art

and multiplication (2.20). Because the transfer function may be discontinuous,
the assumption of piecewise constant density can lead to severe sampling artifacts.
This is especially a problem for isosurface rendering, where the transfer function
consists of a Dirac function at the isovalue. Piecewise linear methods also known
as pre-integration lead to much better results with minimal overhead [EKE01].

Multi-dimensional transfer functions allow to emphasize important areas in the
volume. For example, the gradient magnitude can be used to favor sharp inter-
faces between different densities over uniform regions [Lev88]. The gradient di-
rection can also be used to evaluate a lighting model. Transfer functions in the do-
main of principal curvature magnitudes are helpful for depicting the local shape of
the isosurface or for performing non-photorealistic rendering [HKG00,KWTM03,
HSS+05]. However, the lookup table for multi-dimensional transfer functions can
become very large if the dimensions are not separable or pre-integration has been
used.

Most volume rendering algorithms work on a dense regular grid of function
samples. Thus, the numerical evaluation of the volume rendering integral involves
a resampling process. The choice of the resampling locations has a great impact
on image quality and the efficiency of the algorithm. An overview and evaluation
of different methods has been presented in [MHB+00]. The most simple one,
called ray-casting, resamples the volume along each viewing ray with a constant
sampling rate. A reconstruction filter is applied at each sampling position to obtain
the resampled value, which is then mapped to color and opacity, and composited
along the ray.

Filtering of regular data can be carried out efficiently by texture mapping hard-
ware and thus, most algorithms for volume rendering employ graphics hardware
to achieve interactive rendering speed. Texture filtering is performed for each
fragment that is generated by rasterizing geometric primitives, e.g. triangles. Al-
though volume rendering does not render a triangular surface per se, a proxy geom-
etry is required to specify the resampling positions and perform color accumula-
tion. If the sample volume is stored as a 3D texture, one can compute view-aligned
texture slices that cut the volume parallel to the viewing plane at a regular inter-
val [EKE01]. Texture coordinates specified at the vertices and interpolated across
the slice are used to sample the volume at the corresponding locations. The texture
hardware performs an automatic trilinear interpolation of the eight closest texture
values. Lookup into the transfer function table, pre-integration and evaluation of
a lighting model can all be performed in the fragment shader of programmable
graphics hardware.

26

2.5 Rendering

Even though 3D textures are supported by all current graphics cards, filtering
3D textures is generally slower than filtering 2D textures because of the more
complex trilinear filter. In volume renderers which employ 2D textures [WE98],
the proxy geometry is aligned with the sample grid. All polygons are parallel to
one side of the volume and mapped with one 2D texture of sample values. Thus,
only hardware-native bi-linear interpolation is required to reconstruct the volume
at the sampling positions. However, the sampling can become very uneven and
sparse when the proxy geometry is rendered from grazing angles. Thus, three
different orientations of volume slices along the major axis are stored on graph-
ics memory. Depending on the viewing angle, the one which is closest to facing
the viewing plane is rendered. Unfortunately, there are several drawbacks to this
method. First, storing multiple orientations of the volume takes up three times the
texture memory. Additionally, switching from one orientation to another abruptly
changes the sampling positions, producing visible popping. These errors would be
less noticeable if the sampling rate was relatively high. In contrast to the 3D tex-
ture approach unfortunately, the number of slices cannot be adjusted to increase
the sampling rate because each slice corresponds to one of the 2D textures. In-
terpolation between neighboring slices can mitigate this [RSEB+00], but then the
filtering performance would be even lower than for 3D textures. Finally, there is
another problem that applies to all slicing methods under perspective projections
but is more severe for 2D textures: The sampling rate is not constant and can thus
not generally match the length of the segments for which the integrated color and
opacity are stored in a lookup table. Therefore, the values read from the lookup ta-
ble need to be corrected to account for the local sampling density. Opacity correc-
tion prevents the most prominent artifacts but is only an approximation [LCN98].
Exact methods are only possible for linear transfer functions [SSP+05].

In ray-casting, the sampling rate can be kept constant or even adjusted locally
according to some pre-computed importance volumes [RGW+03]. In addition to
hybrid CPU/GPU ray-casting [WS01], hardware accelerated ray-casting has re-
cently become possible by tracking the sampling position in volume space per
pixel [KW03a, Gre04]. With support for branching in the fragment program (e.g.
loops), the sampling process can even be carried out in a single rendering pass.
Such a ray-casting loop will be employed in Chapter 6 to perform real-time iso-
surface rendering.

In comparison to the size of the CPU’s main memory, memory of graphics
hardware is usually significantly smaller. Fitting the entire volume into the texture
memory can be a challenge for large datasets, which has been addressed by various
means of lossy compression [GWGS02,SW03]. Lossless texture packing has been
used for adaptive texturing [KE02], improved rendering performance [LMK03],
and sparse levelset computations [LKHW03]. Generally, limitations of graphics
hardware do not allow sophisticated compression schemes that have been pre-
sented for software algorithms, e.g. wavelet compression [GLDK95] .

27

Chapter 2 Fundamentals and State of the Art

2.5.4 Quadric Rendering
Quadrics are a higher order rendering primitive, being able to approximate a
curved surface with much fewer primitives than a triangle mesh. Models in com-
puter aided design often consist of an assembly of quadratics, such as ellipsoids,
cylinders and cones. NVIDIA’s first graphics chip (NV1) and Sega Saturn both
employed forward-rendered quadratics as basic primitive. However, the wide suc-
cess of texture mapping and the announcement of Microsoft’s DirectX specifica-
tions based on polygons in 1995 ended the market interest in these products.

Yet, quadratic surfaces still have their own interface in graphics APIs such as
the OpenGL utility library (GLU [WDS99]) and they are still a common class of
shapes to be rendered, for example in scientific visualization. Several attempts
have been made to provide fast rendering of quadratic surfaces. As a special case
of quadrics, spheres lend themselves to sprite rendering, using forward mapping
of a precomputed image of a sphere. Depth sprites [MGAK03] additionally read
depth offsets from a texture for per-pixel depth corrections. While providing a
better approximation than “flat” sprites, this approach is only valid for orthogo-
nal projections and leads, e.g. to incorrect intersection curves between spheres.
Moreover, these approaches do not easily generalize to other types of quadrics.

Gumhold uses programmable pixel shaders to compute ray-ellipsoid intersec-
tions for tensor field visualizations [Gum03]. This method is most similar to our
technique, but computes the bounding box as quadrilateral that contains the sil-
houette ellipse in world space. While the resulting quadrilateral is a tight enclo-
sure, it requires four times as many vertices per splatted quadric as our method.
The rendering method proposed in this thesis uses only a single point primitive for
each splatted quadric, requiring an axis-aligned bounding box to determine the re-
spective point size. A combination of sprites and rasterization has been employed
to render line tubes [SGS05].

Similarly, early point-rendering approaches, where ellipses rather than ellip-
soids are rendered, also use object-space polygons for splat rendering [RPZ02].
However, more efficient methods [BK03] need just one vertex call per splat and
employ programmable shaders for their rasterization: the vertex shader computes
a screen-space bounding square, and during bounding box rasterization the pixel
shader classifies fragments as belonging to the splat or not.

More recently, point-splatting approaches also focused on perspective correct-
ness. The bounding box computation of Zwicker et al. [ZRB+04] is perspectively
correct, but computationally expensive and numerically sensitive due to a required
matrix inversion. Moreover, the splats’ interiors are perspectively distorted in their
method. In contrast, the per-pixel ray-casting of Botsch et al. [BSK04] is perspec-
tively correct, but their bounding box computation is only heuristic and might er-
roneously clip splats. While slightly incorrect bounding boxes are not a problem
for mutually overlapping splats representing a single surface, they cause clearly
visible, hence unacceptable, artifacts for quadric-based molecule visualizations
(see Figure 2.2).

28

2.5 Rendering

Figure 2.2: Previous heuristic bounding box computations might clip quadrics (dashed
box), whereas our homogeneous approach provides perspectively correct results
(solid box).

In comparison to [TL04], the approach presented in Section 7 adopts homoge-
neous coordinates for the implicit definition of the quadric. The resulting bilinear
form can be projected into screen space by a simple linear transformation, which
enables the robust, efficient, and perspectively correct computation of bounding
box and ray intersection, since both can be stated as roots of the homogeneous
bilinear form.

To demonstrate one possible application of our method, we show high-quality
real-time visualization of molecules. Several standard atomic models are used for
the study and dissemination of molecular structure and function. Space-filling rep-
resentations and ball-and-stick models are among the most common ones. The re-
search community uses a number of free and commercial programs to render these
models, each having a specific trade-off between quality and rendering speed.
Real-time rendering approaches that can cope with large models typically use
hardware assisted triangle rasterization [HDS96], while high-quality images are
produced with ray-tracing [DeL02].

Our method exploits programmable graphics hardware to produce real-time vi-
sualization of molecules at a quality comparable to off-line rendering methods.
We implemented per-pixel evaluation and lighting of quadrics, and integrated soft
shadow mapping and silhouette enhancement [MBC02] in order to emphasize the
important aspects of the rendered image and to improve spatial perception. A
good survey of shadowing techniques can be found in [HLHS03]. High-quality
percentage-closer filtering [RSC87] is used to soften shadow edges [Fer05]. The
silhouettes of the molecule are outlined by applying an edge detection filter on the
normal buffer and the depth buffer.

29

Chapter 2 Fundamentals and State of the Art

30

Chapter 3

Hashed Octree
The sampling resolution of an implicit surface representation naturally limits the
amount of detail that can be captured. For example, sheets cannot be thinner
than the sampling distance in general. Also, sharp edges and corners beyond the
Nyquist limit cannot be well-defined.

Storage requirements of a regular grid often prohibit an accurate resolution cap-
turing even the smallest details of an object. Adaptively sampled distance fields
(ADF) change the sampling resolution according to local surface detail [FPRJ00].
The samples are stored in a semi-regular hierarchical data structure, known as an
octree (see Figure 3.1). With an adaptive sampling resolution, the storage require-
ment can be reduced significantly without sacrificing accuracy in critical areas
containing fine detail.

This chapter describes an octree that is based on hashing. According to our
experiments, the hashed octree can be more efficient and use less memory than
the common pointer-based version. Furthermore, a set of optimizations and im-
plementation details for standard operations on an octree designed to represent
implicit surfaces will be described.

Because cells in an octree are always subdivided into eight subcells of equal
size, it is possible to compute a key (or index) of a cell from its coordinates.
Thus, the cell containing a query location can be retrieved efficiently from a
hashmap. While this semi-regular configuration is advantageous to represent
adaptively sampled distance fields, it is a restriction for building a bounding vol-
ume hierarchy of irregular input data. For example, the uniform subdivision is
not able to adapt to the triangle coordinates of a triangle mesh. Therefore, the
less regular kD-tree is discussed Section 4.1 to perform fast distance queries on
triangle meshes. Although some attempts have been made to support higher level
data structures on GPUs [LHN05, LKS+06], current architectures are not well
suited for implementing octrees or kD-trees because they lack efficient pointer
arithmetics. Instead, a relatively simple but effective two-level hierarchy is used
in Chapter 6 to store adaptive sampling grids in texture memory of the GPU.

31

Chapter 3 Hashed Octree

Figure 3.1: Adaptive sampling of the implicit representation. The octree allows to increase
the sampling rate in the proximity of the surface to capture fine detail of the model
without wasting memory in areas that do not contribute to the surface shape.

3.1 Data Structure
An octree consists of a hierarchy of cubic cells. Each cell is potentially split into
eight children of equal size. The sampling domain is defined by the largest cell
at the root of the hierarchy. Sample values of the scalar function are stored at
the corners of the cell, which will be denoted as nodes. Within the cell, trilinear
interpolation of the corner values is commonly used.

Each cell is defined by its position and size. The size of a cell, corresponding
to the edge length, is always half the size of its parent cell. Thus, any cell size
is some power of two of the smallest cell. The corresponding exponent is called
the level of the cell. The smallest cell has level 0, the root cell has level k. This
maximum level (also called depth of the tree) has to be fixed in advance. To
define a position for each cell, a grid of the smallest cell sizes is laid over the
domain of the root cell. Thus, all cell corners will have an integer position in the
range [0,2k]3. The position of the cell is associated with the position of its upper-
left-front corner. Each cell position is aligned with its cell size. This position
scheme can be exploited to determine various relations between cell sizes and
corner positions using simple bitshift operations.

Fast access to function samples from a cell is required for efficient interpolation
and other operations. Therefore, each cell is linked to its eight corner nodes. Note
that more than one cell can reference the same node. When a new cell is inserted
into the octree, one has to check if any corner node already exists in order to
guarantee consistency. Otherwise, the node has to be generated. When a cell is
deleted, all corresponding nodes which are not referenced by any other cell have
to be deleted too.

32

3.1 Data Structure

The cell hierarchy is usually build as a doubly linked tree. Each cell is linked
to its eight children and its parent. A cell can be accessed by traversing down the
tree from the root node. Unfortunately, a significant amount of indirections are
required to access cells at lower levels. On average, access to a random cell has
logarithmic complexity O(logn), corresponding to the depth of the tree.

On the other hand, hash maps provide element access in constant amount of
time. Generally, a hashmap associates keys with values. To lookup a value given
the corresponding key, a hash index of the key is generated to locate the desired
value in a linear array. Because multiple keys hash to the same index, the primary
location to store a new record might already be occupied. Some collision reso-
lution is then employed to find an empty location in the array to store the value.
Later on when looking up the value, the location has to be found again.

We use a hash map to access cells according to their position and size. Colli-
sions are resolved by chaining, which stores multiple records which map to the
same hash index in a linked list. The average number of records per slot, called
load factor α, is not allowed to grow as more records are inserted into the hash
map. Otherwise, access would no longer be possible in amortized constant time.

Less memory is required to store an octree in a hash map instead of in a linked
tree. For rather deep, unbalanced octrees used to represent implicit surfaces, hash-
ing also turns out to be faster than linking.

Figure 3.2: Linked and hashed version of an octree. The linked version (left) employs
pointers to build a doubly linked tree. The hashed version (right) maps a key
consisting of the position and size to the corresponding cell. The hash map uses
collision chaining to resolve elements that map to the same hash index.

33

Chapter 3 Hashed Octree

3.2 Storage Requirement
In order to keep large octrees in memory, the data structure should be as compact
as possible. Different data is stored for the two possibilities of linking cells or
storing them in hash map. In both versions, the node data and the linking of
the nodes from the cells does not change. The hashed version however, does
not require any pointers to child or parent cells, because their size and position
can always be calculated from the current values and the related cell can then be
retrieved from the hash map.

Linked Tree: For a machine using 4 byte memory addresses (32bit), a total of
36 bytes are required to store 9 pointers to parent and child cells.

Hashed Tree: In addition to the actual cell data, each hash records contains a
key as well as one pointer for collision chaining (see Figure 3.2). The key consists
of position and size of the cell. It can be stored in 13 bytes: the position is stored
as a 32bit number per coordinate. Thus, there are at most 32 distinct levels and
sizes, which require less than one byte to store. A hash map also needs to store
a pointer to the head of the collision chain for each hash index. Assuming a load
factor of more than 50%, less than two additional pointers are stored per cell. In
total, 3 pointers and the key are required per cell, summing up to 25 bytes.

Therefore, the hashed version requires 30% less memory than the linked ver-
sion.

3.3 Basic Operations
We will now discuss a few basic operations required to work with the octree data
structure. Normal lookup as well as more complex operations such as octree con-
struction will be discussed. The special properties of the octree can be employed
for optimal performance. The solution for the hashed octree often differs from the
common linked variant.

3.3.1 Cell Access
In the simple case in which position and size of the cell is known, the linked
version traverses down the tree starting at the root. At level i, the i-th bit of each
coordinate of the cell position determines which of the eight children to traverse to.
The smaller the cell, the lower its level and the more traversal steps are required
to reach it. Because any non-degenerate tree of n cells has k = O(logn) levels,
retrieving a cell takes O(k) operations on average.

If the cells are stored in hash map, the cell key (position and size) is transformed
to an index using the hash function. We use a simple sequence of a few shifts,
additions and exclusive ors (XORs) to compute a 32 bit value from the 104 bit
key. The hash index is the remainder of the division by the size of the hash table.

34

3.3 Basic Operations

We use this index to access the head of a list of cells all mapping to this index.
On average, this list has O(α) entries, corresponding to the ratio between the total
number of cells and hash table size. Every time a filling factor of 80% is reached,
the hash table is increased by 50% and the elements are rehashed. Thus, our filling
factor α is always between 2/3 and 4/5 and a cell can be accessed in amortized
constant time [FT01].

To evaluate a trilinear interpolation at an intermediate position, one needs to
find the smallest cell containing this point. The process stays the same for a linked
tree: the tree is traversed top down until the smallest cell containing the point of
interpolation has been hit. With a hashed version, the smallest cell can be found
with a binary search across k levels. As each cell is accessed (or determined to
be non-existent) in constant time, the complexity of the binary search is O(logk).
Therefore, cell access is faster for hashed octrees than for the pointered variant if
the tree contains enough cells. Some sample performance numbers to support this
claim are listed in Table 3.1.

3.3.2 Neighbor Access
Given the position and size of a cell, we can easily compute the corresponding
values for its neighbors and perform a normal search in the hash map. For a
linked tree, there are special algorithms to optimize traversal to the neighbor cell.
The basic concept is to travel upward to the first common super-cell of the two
neighbors and then travel downward again using the opposite path in one of the
coordinates [FP02]. For example, to access the neighbor in the x-coordinate direc-
tion, the opposite path accesses the left node whenever the original path accessed
the right node at the corresponding level and vice-versa. This opposite path can
be computed with a simple XOR operation. Although this optimization does not
improve the complexity class of the neighbor search (which is still O(logn), it
does provide a significant speedup.

3.3.3 Node Access
A sample node can only be accessed indirectly through a cell. By access, we
also mean testing if a node exists. However, there are eight disjoint hierarchies
of cells that link to the same node. It is sufficient to consider the largest cell
of each hierarchy. The size of the largest cell can be computed from the node
position, by using the fact that cells are always aligned to their size. However, it
is unknown which of those cells actually exist. A straightforward approach would
check each position sequentially until one cell is found. Instead, we can utilize
the structure of the octree to optimize the search in many cases and only check a
subset of the positions. The optimization is based on the fact that each cell has
seven siblings which belong to the same parent cell. If one sibling exists, so do
all others (see Figure 3.3). In the best case, all cells which refer to the node are

35

Chapter 3 Hashed Octree

part of one common parent. Thus, only one cell has to be referenced. If it does
not exist, neither does the node. With or without optimization, the complexity of a
node access is equivalent to the complexity of a cell access (O(k) for the pointered
octree, O(logk) for the hashed octree).

Figure 3.3: Optimized access to corner nodes. Up to eight cells of the same size potentially
link to a corner node, but usually only a subset have to be checked. Because the
cell (a) does not exist, none of the sibling cells in A do. On the other hand, as cell
(b) exists, we know that three other cells in B also reference the same corner node.

3.4 Construction
If the octree is designed to represent an implicit surface, the cells intersecting the
surface should be subdivided to capture as much detail of the surface as possible.
Each of the children which is again intersected by the isosurface is subdivided as
well until the minimum level of subdivision is reached. On the other hand, cells
that are not intersected do not affect the surface and should not be subdivided in
order to save memory. The construction process needs to determine which cells
need to be subdivided based on the scalar function that can be evaluated at discrete
locations. Unfortunately, a top-down construction process cannot determine if a
surface intersects a cell. Surface features smaller than the current cell size might
not enclose any cell corner. Thus, all corner values lie on the same side of the
surface and an intersection is not detected (see Figure 3.4). For distance fields, it
is at least known that there is no intersection when distance values in each corner
is larger than half the cell diagonal. For all other cells and non-distance fields,
we have to rely on a look-ahead process, which subdivides each cell for a fixed
amount of levels to check for intersection. If no intersection is detected at the
small scale, one has to assume that this cell really does not need any subdivision.

36

3.4 Construction

If we want to guarantee that no feature larger than the smallest cell is missed, a
bottom-up construction must be performed. For this, the function is first evaluated
on the entire grid of the smallest scale. We then coalesce all cells which contain
nodes on one side of the surface only. Evaluating the distance function on the
entire high-resolution grid is expensive and does not match the idea of adaptive
sampling.

Figure 3.4: Missed features during top-down construction. Small
surface features are not detected in a top-down construc-
tion process when all corners of a cube lie on the same
side of the surface. A look-ahead process is employed to
detect features at the subgrid level (top right).

3.4.1 Subdividing a Cell
Subdividing a cell is straightforward. The new cells are inserted into the octree
or doubly linked with the parent cell, depending on the version. The new corner
nodes on the faces and edges of the parent cell are shared with neighboring cells.
The algorithm of Section 3.3.3 is employed to find the references to those nodes.
If a node does not exist yet, a new one is added to the array of nodes. Those
new nodes are called hanging nodes, because they are not surrounded by eight
cells. Hanging nodes cause discontinuities of the piece-wise trilinear interpolation
across cell borders. To avoid them, the value of a hanging node is not evaluated
from the input function, but from the trilinear interpolation of the parent cell.
Once a node is completely surrounded by cells, we assign the value from the input
function.

3.4.2 Cell and Node Cache
Access to cells and nodes of the octree often occur in temporal clusters. This
locality of reference can be exploited to provide faster access to cells and nodes
through a small cache. We use a simple directly mapped cache, i.e. a cache entry
is evicted as soon as new value uses the same cache line. The hash function can
also be used to determine which cache line an entry is mapped to. We simply use
another divisor for the modulo operation. In our experiments, the construction of
an octree showed around 50% of cache hits for a cache of 100 entries for both
nodes and cells.

37

Chapter 3 Hashed Octree

number average
levels of cells access level linked hashed speedup dataset

5 13,897 2 3.42 3.40 -1%
7 255,753 0.34 20.93 21.54 -3%
9 4,217,417 0.34 39.92 29.51 26%

7 89,545 0.30 15.7 17.6 -11%
9 1,473,373 0.34 32.86 28.9 14%

10 5,912,649 0.33 46.56 27.26 41%

Table 3.1: Random access performance comparison. The time (in seconds) to access 50
million cells in random order was measured for the linked and the hashed version
of the octree. For octrees with sufficient subdivision levels, the constant access
time of the hashed octree can outperform the logarithmic access time of the linked
variant.

3.4.3 Blocking
Besides temporal coherence, the traversal algorithms also imply a strong spatial
coherence, i.e. there is a high chance that a cell is accessed after its parent cell.
Thus, CPU cache lines can be utilized more effectively if small subtrees are stored
in a continuous array. Moreover, the tree structure within such a block is implicit
and thus, no pointers or extra hash entries need to be stored. For example, eight
siblings could be stored in one block and be referenced with one pointer or hash
key. On the other hand, the memory for a full subtree is required even if it only
contains one single cell. On average, this generates an overhead of one third of
the unblocked tree size, because the octree cannot be balanced. Subtree blocking
has not been used in our implementation.

3.5 Discussion
An alternative method has been presented to store the structure of an octree which
represents an implicit surface. Instead of double-linking parent and child cells,
a hash map is employed to map the cell position and size to its data. Similar to
sorted and hashed associative containers, the pointered octree provides a sorting of
its elements according to the cell subdivision, whereas the hashed octree does not
allow an efficient breadth-first traversal of the cells. However, a linear traversal
is not intended for this application. Thus, the advantage of hashed associative
containers can be employed, i.e. random access in constant instead of logarithmic
time. Table 3.1 shows a performance comparison of a random cell access between

38

3.5 Discussion

the linked and the hashed version of the octree. When the octree is deep enough,
the hashed version is significantly faster. Additionally, it has been shown that the
hashed version requires less memory.

Octrees have also been implemented on GPUs by dependent texture look-
ups [LHN05]. However, the large amount of fetches and conditional branching is
not well suited for GPUs, which commonly use very wide pipelines (of more than
100 pixels) and have a small texture cache in comparison to CPU caches (in the
order of 16kB fully associative cache). However, the prominence of hierarchical
data structures in computer graphics seem to make their efficient low-level han-
dling very attractive. Software-manageable caches of highly parallel multimedia
processors might provide a good playground to investigate this subject.

39

Chapter 3 Hashed Octree

40

Chapter 4

Distance Transform
This chapter presents methods for signed distance transform algorithms, which
compute the scalar valued function of the Euclidean distance to a given manifold
of co-dimension one. If the manifold is closed and orientable, the distance can
be assigned a negative sign on one side of the manifold and a positive sign on the
other. Triangle meshes are considered for the representation of a two-dimensional
manifold as well as point clouds which sample a manifold at discrete points. The
distance function is sampled on a semi-regular Cartesian grid. An acceleration
structure for triangle meshes is presented which can speed up distance transforms
for adaptive sampling such as the octree structure presented in Chapter 3.

For a dense sampling in a narrow band around the surface, algorithms based on
scan conversion have proven to be competitive, especially if graphics hardware is
employed to speed up the sampling process per primitive. Here, the distance field
is obtained by scan converting a number of polyhedra related to the triangle mesh
and by conditionally overwriting the computed distance values.

Optical scanning devices sample the surface of an object. The cloud of points
serves as a coarse sampling of the zero-contour of the distance field. In the last
section of this chapter, an extrapolation method is presented to turn these samples
into a continuous function.

The distance u to a manifold S consisting of several elements Si can be defined
as the point-wise minimum of the individual distance fields ui.

u(
⋃

Si) = min(ui) (4.1)

For signed distance fields, minimization must be carried out with respect to ab-
solute values. If S is a triangle mesh, the Si can be chosen to represent the triangle
faces. It is also possible to use a disjoint union, in which case the Si become
the triangles (excluding the edges), the edges (excluding the endpoints) and the
vertices. Collectively, faces, vertices and edges will be denoted as primitives.

In order to sample the distance field on a grid, a brute force algorithm would
compute the distance of each grid point to each primitive. The distance at one
grid point is chosen to be the distance to the closest primitive, thus resulting in the

41

Chapter 4 Distance Transform

shortest distance. If the triangle mesh consists of a large number of triangles, this
approach is impractical. For an efficient algorithm, as few distances as possible
should be computed to find the smallest one. There are two common approaches
to achieve this, which differ in the order of the computation and the data structures
used to accelerate the process.

The first approach computes the distance values sample per sample. The prim-
itives of the triangle mesh are stored in spatial data structure, such as the kD-tree
presented in Section 4.1, to speed up the search of the closest triangle. When com-
puting the distance field value for a given sample, a primitive can be neglected if
it is known that a closer primitive exists. The data structure can be employed to
skip a large number of primitives: while searching the closest primitive, an upper
limit of the final distance is maintained. At the same time, the data structure al-
lows to state a lower bound of the distance for recursive subsets of all primitives.
If the lower bound of a subset is larger than the current upper bound of the final
distance, the subset can be excluded from the search. This leads to an algorithm
logarithmic in the number of primitives of the input mesh. Methods that compute
the distance sample after sample are known as image space methods.

The second approach to compute the distance transform is based on scan con-
version. Although scan conversion is usually considered an image space algo-
rithm, it is actually an object space method in this particular setting. In order
to achieve linear complexity in the number of grid points, a simple polyhedron
is assigned to each primitive. The polyhedron encloses the Voronoi cell of the
primitive. Voronoi cells consist of all points that lay closest to its corresponding
primitive. Thus, the distance to the primitive only has to be computed for grid
points inside its polyhedron. Those sampling points are identified using scan-
line conversion. Graphics cards provide fast hardware implementation of two-
dimensional scan-line conversion. Even the nonlinear distance to the primitive
can be computed directly on hardware using the programmability recently intro-
duced.

An implicit representation can also be computed from a surface that is only
provided as a cloud of surface points. These points can be interpreted as sam-
ples of the distance field at the zero-contour. The conversion of a point cloud to
a distance field can thus be interpreted as a data extrapolation problem. To avoid
a trivial solution, gradients of the distance field estimated from the point cloud
are usually incorporated into the fitting process. Moving Least Squares (MLS)
and Radial Basis Functions (RBF) are standard interpolation approaches that have
been applied to implicit surface generation and will be introduced briefly. Unfor-
tunately, both approaches are computationally very expensive or are difficult to
implement efficiently. More efficient methods have been presented which fit lo-
cal surface approximations and blend them using the Partition of Unity approach.
These methods will be analyzed and extended with respect to distance fields ap-
proximation.

42

4.1 Closest Point Acceleration Structure

4.1 Closest Point Acceleration Structure
Binary space partition (BSP) trees have proven to be effective for many problems
in computational geometry. They provide a very flexible tool for sorting and clas-
sification. A BSP tree defines a recursive partition of space into convex subspaces.
Each node divides its space by a hyperplane into two subspaces, corresponding to
the left and the right child node. Each child node is then recursively partitioned
again using another hyperplane. The recursion continues until some application-
specific condition is met. Each level of the tree provides a non-overlapping parti-
tioning of increasing granularity. This standard definition will be relaxed later to
allow small overlaps between neighboring regions.

The tree hierarchy is used as spatial classification of objects. Each object is
associated with the node that provides the tightest bounding volume. Therefore,
the space defined by one node can be interpreted as the bounding volume of all
objects contained in its subtree. Point objects can always be stored at the leaves of
the tree. BSP trees were initially introduced to perform hidden surface removal.
The static scene geometry is inserted into the BSP tree and during rendering, the
viewpoint is compared with this structure to determine visibility. The traversal of
the tree determines which objects in a scene are furthest from the camera.

While general BSP trees allow arbitrary split-planes, kD-trees only use axis
aligned split planes. Thus, all subspaces are axis-aligned bounding boxes. This
greatly reduces the computational complexity of geometric algorithms involving
kD-rees. Furthermore, the memory required to store a node is reduced slightly.

4.1.1 kD-Tree Point Query
kD-trees [Sam90] can successfully accelerate a variety of common algorithms, for
example collision detection or ray intersection tests [MB90]. In order to measure
the distance to a set of objects, the closest of all objects needs to be found first.
Here, the kD-tree can be used to quickly exclude distant objects from the set of
closest candidates [Sam90]. In comparison to the octree used to represent semi-
regular sampling grids, the kD-tree does not stipulate an equally-sized subdivision
and can therefore adapt better to the irregular configuration of scattered objects.

The algorithm traverses the nodes of the tree in a recursive fashion, starting at
the root. At each node, the distance to the objects stored at that node is mea-
sured. If one of the objects is closer than the ones already tested, the object and
its distance is memorized. The algorithm then recursively calls the subtree closer
to the query point. The recursion stops at leaf nodes. Once the recursion returns,
the distance to the closest object of the entire subtree is known. Depending on
that distance, it is often possible to skip recursion for the second subtree. The
key observation is that the distance to the bounding box is a lower bound for the
distances to all objects it contains. Therefore, a subtree only needs to be traversed
if its bounding box is closer than the distance to the closest object already visited.

43

Chapter 4 Distance Transform

A priority queue can be employed to concurrently search for the k closest ob-
jects. The algorithm is then known as a k nearest neighbor search. A few opti-
mizations to this basic approach are possible. Comparing squared distances avoids
square root extraction and the lower bound distance can be updated incrementally
instead of recomputed from scratch for each node.

The smaller the bounding box of a node, the better the chance that the subtree
and all its objects are skipped during nearest neighbor query. However, an object
that is intersected by a split plane must be stored at the corresponding node. For
objects that are small in comparison to the size of the bounding box, this degrades
performance. Therefore, the placing strategy for the split-planes during tree con-
struction has a great impact on the query efficiency. The general goal for a tree
of some predefined depth is to store objects in nodes that are as small as possible.
However, recursive construction requires an inaccurate a-priori rating of the qual-
ity of a split-plane. For example, surface area heuristic (SAH) is a common local
greedy approach used in ray-tracing applications [MB90].

Two methods exist to push an object further down the tree into smaller nodes,
even if they are intersected by a split-plane. The first one is to simply split the
object along the plane. Unfortunately, objects cannot always be split arbitrarily
or splitting causes undesirable overhead. For example, cutting a triangle mesh
increases the size of the mesh. The second method references the object in both
subtrees without splitting it. While this avoids splitting overhead, some bookkeep-
ing has to be employed to avoid evaluating the distance to the same object twice
if both subtrees are visited during a query.

Instead, we propose to relax the non-overlapping partitioning by the split-planes
and associate each sibling node by its own bounding plane. Thus, two sibling
nodes can overlap or even form a gap. A small object that has previously been
intersected by the split plane can now be bound by one of the two overlapping
nodes. Thus, the object can be associated with a smaller node of the corresponding
subtree. On the other hand, a gap can reduce the size of both subtrees.

The node overlap can be represented by two parallel split planes at each node.
The algorithms which employ kD-trees only need minor modifications to deal
with the additional split plane. For example, the lower bound of a far subtree for
the k nearest neighbor search and the ray-casting traversal can be evaluated from
the split plane of the far node. On average, the traversal of a tree with overlapping
nodes visits fewer nodes and tests fewer objects. However, an additional subtree
needs to be traversed sometimes due to the overlap, because the upper bound of
the near subtree can be slightly larger than the lower bound of the far tree.

In general, an application dependent trade-off between node overlap and the
size of objects stored at the node has to be found. One could also allow gaps or
coinciding plane only, for example for exact visibility sorting.

44

4.1 Closest Point Acceleration Structure

Figure 4.1: kD-tree construction with sibling overlap. An approximate median element is
selected from a coarse random sampling (thick circles) to define the split plane
(green) which partitions the elements into three sets (blue on the left, green in-
tersecting and red on the right of the split plane). If the partition is uneven, the
process is repeated with the larger set (a,b). The elements intersected by the split
plane cannot be assigned to one of the two bounding volumes. If two parallel split
planes are stored per node, the bounding volumes can overlap or form a gap (c,d).
Thus, only big elements (green) are stored at the nodes while smaller ones can be
assigned to one of the two child nodes. The process is then repeated to construct
the two subtrees (d).

4.1.2 Construction
The construction of a kD-tree with node overlaps will now be discussed in more
detail. Several properties have to be optimized concurrently during construction:

• The tree should be well balanced.

• Node overlaps should be minimal.

• Objects should be stored at nodes with a small bounding box.

• Objects stored at the leaves should be evenly distributed.

An optimal solution cannot be found usually, either because of oppositional
goals or because the optimization is computationally too involved. Thus, con-
structing a kD-tree involves a set of heuristics, based on a divide and conquer
approach. First, the entire set of objects is divided into three subsets, one to be
stored at the root node and one for the left and the right subtree respectively. Each
subtree set is then divided again recursively, until the subsets are small enough to
be stored in a leaf. The orientation of the split-planes is usually chosen along the
axis of current maximum variation or in a round-robin fashion.

45

Chapter 4 Distance Transform

The main process of dividing the set into three subsets is based on the median
selection algorithm1. Ideally, the two subsets corresponding to the subtrees would
be of equal size with minimal overlap. In a first step, a median-plane is chosen
at the median position of a coarse random sampling of all objects. The objects
are then partitioned depending on their position to the left, to the right or on the
median-plane (see Figure 4.1). If the partitioning turns out to be uneven, the
smaller set already can be assigned to one of the subtrees. The larger set and the
middle set are merged and partitioned along a new guess of the median-plane. The
working set is reduced in each iteration and the process will eventually converge.
In a final step, the objects of the middle set intersecting the median-plane have to
be assigned to the node or one of the subtrees.

To achieve this, the objects of the middle set are sorted according to their start-
ing position along the split-coordinate. Each starting position is a candidate for the
bounding plane of the right subtree. The best candidate is chosen by a final sweep
over the sorted objects. Initially, the large objects of the middle set are assigned
to the node, all other objects are assigned to the right subtree. The position of the
bounding planes for this configuration has been maintained during the partition
process. Then, one object after the other is removed from the right subtree and
assigned to the left subtree. For each possible configuration, the position of the
two bounding planes and the amount of overlap can be determined. The best of all
configurations is then chosen for that node. The process is depicted in Figure 4.1.

The complexity of the partitioning process for one node is linear. The random
sampling method during median selection guarantees that only a constant amount
of iterations are required on average. Also, the number of objects which intersect
the median-plane is independent of the problem size. Therefore, the superlinear
complexity of sorting has no impact on the complexity class. Overall, the kD-tree
construction has complexity O(n logn).

4.1.3 Discussion

kD-trees are a versatile data structure that can accelerate many algorithms in com-
puter graphics. In contrast to the octree presented in the last chapter, there is no di-
rect mapping of position to tree nodes and thus, node hashing cannot be employed.
However, subtree blocking and node caching are also applicable to kD-trees.

1The median selection algorithm divides a set into two subsets of half the size, so that all elements of
the first subset are smaller than the ones of the second subset. The very general predicate “smaller”
needs to define a strict weak ordering [FT01]. However, the position of the objects along the axis
of the median-plane only defines a partial ordering: Because objects can overlap, equivalence is
not transitive, i.e. x overlaps y and y overlaps z does not imply x overlaps z.

46

4.2 Scan Conversion Based Algorithm

For optimal performance, a kD-tree should store its objects in the leaf nodes.
Splitting or multiple references has been employed to achieve this for objects that
are intersected by a splitting plane. Instead, a relaxed splitting property has been
suggested, which allow sibling nodes to overlap. As a result, objects can always
be stored in nodes with a bounding box of similar size. Only small changes are
required to adapt kD-tree algorithms to overlapping nodes, but are expected to
be more efficient in most cases. The kD-tree construction requires an additional
sorting of small subsets but has the same algorithmic complexity as the standard
construction process. The relaxed splitting criterion also provides the possibility
for gradual updates in dynamic scenes. Instead of re-assigning elements when
they move across a split plane, the volume can be dilated so that it still bounds
the element. A lazy update procedure can then be employed to rebalance subtrees
when their increased overlap has rendered them inefficient.

4.2 Scan Conversion Based Algorithm
Computing the distance field based on a Voronoi diagram is a simple task. For
each given sample point, one would first identify the Voronoi cell in which it is
contained and then calculate the distance to the associated site. If a full grid of
samples is required, one would use an object-space approach, i.e. loop over the
cells and identify all points inside one cell. However, the computation of Voronoi
diagrams is not easier than the computation of distance fields.

A different approach to compute distance fields was presented in [Mau03]. His
Characteristics/Scan-Conversion (CSC) algorithm computes the signed distance
field for triangle meshes on a regular grid up to a maximum distance d. The CSC
algorithm does not try to find exact Voronoi cells, but instead computes bounding
volumes of the Voronoi cells using the connectivity of the triangle mesh. There-
fore, only a small part of the distance field has to be calculated for each primitive.
The algorithm will be outlined in Section 4.2.2.

The process of identifying all samples contained in the bounding volume is
known as scan conversion. In computer graphics, scan conversion is a key oper-
ation in the rasterization-based rendering pipeline and is efficiently performed by
standard graphics cards. By reading back the frame buffer data, the computing
power of graphics cards becomes available for more purposes than just rendering.
A hardware implementation of the CSC algorithm is presented in Section 4.2.4. In
addition, the method has been revised such that it correctly handles vertices where
both convex and concave edges are adjacent.

Although the scan conversion runs faster on the graphics hardware, the overall
speed up gained is minimal because of the large amount of geometry that has to be
sent to the graphics card. In Section 4.2.3, an optimized type of bounding polyhe-
dra is presented which greatly reduces the geometric complexity of the algorithm.

47

Chapter 4 Distance Transform

4.2.1 Generalized Voronoi Diagram
The Voronoi diagram of a finite set of points is a partitioning of space into
cells [HKL+99]. Each site (i.e. point) is associated with a cell containing all
points for which this site is the nearest one. Points on cell boundaries have more
than one nearest site. Voronoi diagrams can be constructed with a graphical
method by drawing the graphs of the sites’ distance fields. For each single point
site, the graph is a vertical circular cone which opens downwards at a fixed angle.
By definition, the lower envelope of the graph, i.e. the point-wise minimum, is
the Voronoi diagram.

To compute a regular sampling of the Voronoi diagram, the graph of each site
is tessellated and rasterized using graphics hardware. The point-wise minimum is
naturally determined using the z-test. If the graphs are drawn in distinct colors, the
frame buffer contains a sampling of the Voronoi diagram [HKL+99]. The depth
buffer contains the distance field.

In three dimensions, the same approach can be used to obtain the distance field
and the Voronoi diagram on graphics hardware. However, the rasterization has to
be done slice by slice. On a slice, the graphs of the distance field are a hyperboloid
of revolution of two sheets. A disadvantage of this method is that it requires
accurate rendering of curved surfaces, requiring tessellations in the order of 100
triangles per cone. The 3D version even requires doubly curved surfaces which
strongly limits the number of primitives that can be handled.

A straightforward extension is to allow sites to be manifolds instead of just
points, leading to generalized Voronoi diagrams (GVD). For this purpose, sites
will be restricted to the points, edges and faces of a closed and oriented triangle
mesh. For a line segment e.g. the graph is a ’tent’ consisting of two rectangles
and two half cones. Hoff et al. [HKL+99] presented algorithms to render GVDs
in two and three dimensions. Because the GVD algorithm does not restrict the
configuration of Voronoi sites, it is more general than needed for signed distance
transforms of triangle meshes. Each primitive of the input surface produces a
large number of triangles to render. Thus, the method becomes inefficient for
large meshes.

4.2.2 Characteristics/Scan-Conversion Algorithm
Ideally, the distance graph would only be computed for all points inside the
Voronoi cell of the primitive. However, the geometric complexity of Voronoi cells
is related to the complexity of the triangle mesh. Nevertheless, if a point is known
to lie outside of a Voronoi cell, the distance to its base primitive does not need to
be calculated. This led to the idea of constructing bounding volumes of Voronoi
cells. The local configuration of a mesh around a primitive can be employed to
construct such a bounding volume. The first such algorithm was presented by
Mauch [Mau03].

48

4.2 Scan Conversion Based Algorithm

Figure 4.2: Sample Generalized Voronoi cells and slices generated by the hardware-based
Characteristics/Scan-Conversion algorithm.

As bounding volumes, he used polyhedra which are possibly larger but of sim-
pler geometric shape than the cells. The distance field can again be calculated by
looping over the polyhedra. To correctly treat regions where two or more polyhe-
dra overlap, it is sufficient to take the minimum of all computed values.

The algorithm computes the signed distance field up to a given maximum dis-
tance d, i.e. within a band of width 2d extending from both sides of the surface.
The set of Voronoi sites is chosen as the open faces (triangles), the open edges,
and the vertices of the mesh. According to the three types of sites, three types of
polyhedra are constructed such that they contain the Voronoi cell as a subset.

Polyhedra for the faces: 3-sided prisms (hereafter called towers) built up or-
thogonally to the faces (Figure 4.3, light blue).

Polyhedra for the edges: 3-sided prisms (hereafter called wedges) filling the
space between towers (Figure 4.3, dark blue). Wedges contain an edge and
extend only to one side of the mesh.

Polyhedra for the vertices: n-sided pyramids (hereafter called cones) which fill
the gaps left by towers and wedges (Figure 4.3, red). Cones contain the
vertex and extend to one side of the mesh.

Both wedges and cones lie on the convex side of the edges and vertices, re-
spectively. The vertices of a closed and oriented triangle mesh can be classified
into convex, concave and saddle vertices, depending on their incident edges. If

49

Chapter 4 Distance Transform

all of them are convex (concave), the vertex is convex (concave), if both types
occur, it is a saddle. Because convex edges become concave and vice-versa when
the orientation of the surface is flipped, only convex/concave vertices and saddle
vertices are distinguished. If the vertex is a saddle, the polyhedron is no longer
a cone and now has a more complex shape. The case of the saddle vertex is not
mentioned in [Mau03]. However, a possible solution would be to construct an n-
sided pyramid in the same way as for a convex/concave vertex, but on both sides
of the surface, and then taking the convex hull of each pyramid.

Besides the topological consistency, a geometric regularity requirement for the
mesh has been assumed: At saddle points, all incident faces must keep their orien-
tation when viewed from the normal direction. The normal direction in a vertex is
defined simply by averaging all incident face normals. Failure of this assumption
would indicate a poor triangulation, which can be fixed by subdividing triangles.

In Figure 4.3, one can see that each polyhedron contains at least the general-
ized Voronoi cell of its primitive (i.e. face, edge or vertex). Therefore, by scan
converting each polyhedron, every voxel lying within the band of width 2d will
be assigned a distance value. Regions of intersection are scan converted once for
each intersecting polyhedron and the minimum value is taken at each voxel.

4.2.3 Prism Scan Conversion Algorithm
Unfortunately, the CSC algorithm produces a large number of bounding polyhe-
dra for complex meshes. Therefore, each polyhedra contains only a few sam-
pling points on average. As a result, the setup-cost of the scan conversion process
becomes predominant and makes the method inefficient. For a hardware-based
implementation the situation is even worse because the polygons need to be trans-
ferred to the graphics card for rasterization.

We propose a modified method that only uses one single bounding polyhedra
per triangle, thereby reducing the number of polyhedra to less than a third. More-
over, the average fraction of overlap is reduced. These modified bounding poly-
hedra result in a significantly speedup over the original algorithm.

Instead of constructing a polyhedra independently per triangle by extrusion,
neighboring triangles are incorporated to construct prism-shaped polyhedra. The
union of all prisms completely cover the space around the surface, eliminating the
need for wedges and pyramids. The price to pay is a slightly more complicated
distance field computation: Each polyhedron no longer represents a single site,
but seven sites, namely a face, its three boundary edges, and its three vertices.
In principle, the minimum of the distances to the seven sites must be calculated.
However, this can be done quite efficiently, requiring little more operations than a
single distance calculation.

The angle bisector plane between two neighboring triangles forms one of the
three lateral boundaries of the new polyhedron. Adding two planes parallel to the
face at distances d (the limiting distance used for the distance field computation),

50

4.2 Scan Conversion Based Algorithm

Figure 4.3: Polyhedra constructed on one side of a
(yellow) one-ring of the mesh: (cyan) tow-
ers, (blue) wedges, and a (red) cone. The
polyhedra are moved away from the surface
for better visibility.

Figure 4.4: Optimized bounding polyhedra for a
one-ring of the mesh. Some non-adjacent
pairs of polyhedra overlap. The polyhedra
extend to the other side of the surface too,
which is not shown in this figure.

Figure 4.5: Example of a saddle vertex with eight incident triangles. Bounding polyhedra
are outlined (left) and filled (right). A gap in the shape of an eight-sided double-
pyramid is visible in the center.

51

Chapter 4 Distance Transform

a three-sided pyramid frustum is obtained (see Figure 4.4). This bounding poly-
hedron has the advantage of having a single topological type and only five faces,
all of them planar.

While the bounding polyhedra match along the edges of the mesh, this is not
true near the mesh vertices in general. Near mesh vertices, the polyhedra can
overlap. This is not a problem, it just leads to repeated distance calculations.
However, polyhedra can also leave a gap. An example is shown in Figure 4.5.
In such cases, the gap must be closed by making some of the polyhedra slightly
larger. Appendix A shows that gaps can only occur for saddle vertices.

In order to study the situation near a mesh vertex, a few notations are intro-
duced, see Figure 4.6. Let c denote the vertex, x0, · · · ,xn−1 its neighbor vertices,
Fi =< c,xi,xi+1 > the incident faces (all indices are meant modulo n), and Pi the
polyhedron constructed for the face Fi. That means that Pi−1 and Pi are separated
by the angle bisector plane of Fi−1 and Fi which is denoted by Ai. F denotes the
union of the Fi and by P the union of the Pi (for i = 0, · · · ,n−1).

Figure 4.6: A vertex c with neighbor ver-
tices xi, faces Fi, angle bisector
planes Ai, and polyhedra Pi.

If P completely covers a neighborhood of c, this means that any test point y
near c is contained in at least one of the Pi. The point y is contained in Pi if it lies
on the right hand side of Ai and on the left hand side of Ai+1.

In the reverse case (i.e. left of Ai and right of Ai+1), it can also be observed that
the antipodal point 2c−y is contained in Pi. Because in the cycle A0,A1, · · · ,An =
A0 there are as many left-right transitions as right left transition, it follows, per-
haps surprisingly, that the covering is point-symmetric w.r.t. the center c. The
point symmetry holds for the multiplicity of the covering, not for each single
polyhedron.

Therefore, it can be verified that if y lies neither on the left hand side of all Ai
nor on the right hand side of all Ai, it follows that both y and its antipodal point
are covered by P. For the practical test of a complete covering, it is sufficient to
use one point on each intersection line Ai∩Ai+1. Each test point must lie at least
once on the left and on the right side of two other planes. Points lying exactly
on a plane should pass the test, too. Also, it has to be noted that, due to point

52

4.2 Scan Conversion Based Algorithm

mesh vertices saddles gaps
sphere6 16386 0 0
torus 3000 1788 0
knot 1440 1378 674
seashell 915 843 148
bunny 34834 30561 516

Table 4.1: Number of vertices, saddle vertices and vertices with incomplete covering by
the unmodified bounding polyhedra.

symmetry, full planes can be used for the test, thus there is no need to bother with
half-planes.

If the test fails for some of the test points, this means that the corresponding
polyhedra must be made larger to avoid a gap. A possible way to do this is to take
the centroid of the test points. Polyhedra must be enlarged just as much that they
contain this centroid and its antipodal point. In order to ensure that the polyhedra
remain pyramid frusta, the modifications have been restricted to parallel shifts of
edges.

By looking at a few typical triangle meshes, it can be noticed that there are
often more saddle vertices than convex/concave vertices. This can be caused by
the geometry itself, but also by the triangulation. Especially, if a quadrilateral
mesh is subdivided to a triangle mesh, the diagonals can turn a convex vertex into
a saddle vertex. This is why the torus mesh has more than the expected 50% of
saddle vertices.

Figure 4.7: Datasets used for experiment.
A number of meshes were used
to analyze the number of vertices
where complete covering fails for
the standard prism construction al-
gorithm. The results are listed in
Table 4.1.

As mentioned, saddle vertices can lead to gaps between the bounding polyhedra
and some extra effort to fill them. However, experiments showed that gaps occur
only for some of the saddle vertices. Depending on the mesh characteristics, the
percentage of saddle vertices leading to gaps can be quite small (see Table 4.1).

53

Chapter 4 Distance Transform

4.2.4 Hardware Accelerated Scan Conversion
The computations for the Characteristics/Scan-Conversion algorithm described in
Section 4.2.2 can be divided into two parts. First, all polyhedra are constructed.
The rest of the algorithm consists of scan converting these polyhedra and calculat-
ing the distances for each grid point inside the polyhedra. For standard mesh and
grid resolutions, scan conversion and distance calculation are much more expen-
sive than setting up the polyhedra, especially if the bounding prisms presented in
the last section are used.

Therefore, a version that transfers the main workload to the graphics card was
implemented. In order to display scenes with a large number of triangles at in-
teractive rates, current generation graphics hardware permit SIMD parallelism for
high-speed scan conversion of two-dimensional polygons. The GPU can perform
simple operations on a per-fragment basis. To reap the benefits of this computa-
tional power, 3D scan conversion was implemented as a series of 2D scan con-
versions. The programmability of the GPU is crucial for a hardware-based im-
plementation of CSC because the necessary operations exceed standard bilinear
interpolation and texture lookup.

The overall slicing process will be described first. Then, an explanation of how
each individual slice is rendered will be given.

Slicing Process

The bounding polyhedra are constructed in a setup step. The edges and vertices
of the polyhedra are stored in a directed graph. During slice iteration, the graph
is traversed along the z-coordinate of the vertices. An active edge table stores
all edges intersected by the current slice. When a vertex is passed during slice
iteration, all incoming edges of the graph node are deleted from the active edge
table and replaced with the outgoing edges.

After sorting all polyhedra according to their first slice intersection, the slice
iteration process is initiated. All polyhedra that are intersected by the first slice are
copied to an active polyhedra table. Only active polyhedra need to be considered
for the current slice.

After rendering all polyhedra intersections, the distance field of the slice stored
in the color buffer is read from the graphics card memory. The slice can now be
advanced. For all active edges of all active polyhedra, both local and world coor-
dinates of the intersection are incrementally updated. When the advancing slice is
moved across a corner of a polyhedron, the active edge table of that polyhedron
needs to be updated. All incoming edges of the graph node corresponding to the
polyhedron corner are removed and replaced by the outgoing edges, where in and
out is defined by the z-direction of the edge. Once the active edge table of a poly-
hedron is empty, the polyhedron is deleted from the table of active polyhedra. The
distance field is computed by repeating these steps until all slices are processed.

54

4.2 Scan Conversion Based Algorithm

Computing one Slice
For each xy-slice of the grid, the cross sections of all polyhedra intersected by
that slice are computed. These cross sections are sent to the graphics card, which
handles the remainder of the algorithm for that slice. That is, the graphics card
computes the distance to the primitive for all points inside its corresponding poly-
gon. The z-test is used for the minimization process in regions where polygons
overlap. Similar to the GVD algorithm, the distance graph within one polygon is
a doubly curved surface, which need to be approximated by piecewise linear ele-
ments. Due to the vast amount of geometry data that would need to be transferred
to the graphics card per slice, fine tessellation to approximate the graph has to be
avoided.

Instead, one can use the observation that the vector to the closest point on the
primitive is indeed a trilinear function within one polyhedron. A fragment pro-
gram is then employed to calculate the distance to the triangle from a bilinearly
interpolated vector on a per-fragment basis. The operations available in a frag-
ment program include normalization of vectors and dot products. Therefore, it
is possible to compute the distance value for all grid points inside a polyhedron
slice without further tessellation. At each polygon edge, the vector to the closest
point on the primitive is passed to the graphics card as a texture coordinate. The
graphics card performs a bilinear interpolation of the texture coordinates within
the polygon. For each pixel, the GPU computes the dot product of the texture
coordinate and its normalized version. The resulting signed distance is written
to a floating point color buffer. The absolute distance is used as the z-value for
that pixel. If the z-value is smaller than the current value in the z-buffer at the
corresponding location, the signed distance value is written to the color buffer.

Figure 4.8: Bounding volume of the Voronoi cell of an edge. The distance field within a
wedge type polyhedron (left) shows that standard linear interpolation cannot be
used draw graphs of the distance field. Instead, the vector to the closest point
(right) is interpolated and its length is computed in a fragment program.

The large number of polyhedra which need to be sliced and scan converted
significantly contribute to the overall computing time. For each polyhedron slice
that has to be processed, rendering calls must be issued to define the geometric
shape of the slice. The amount of time required for this operation is independent
of the resolution of the slice. If the grid resolution is small in comparison to the
triangle size, only a few distance values are calculated per polyhedron slice. Thus,

55

Chapter 4 Distance Transform

sending the geometric information to the graphics hardware becomes the bottle
neck and parallelism of CPU and GPU cannot be fully exploited. Therefore, the
hardware version proves to be faster than the original software algorithm only if
the input mesh is relatively small in comparison to the voxel size.

The bounding prism approach greatly reduces the total number of polyhedra.
Instead of computing one polyhedron per face, edge and vertex, only one polyhe-
dron per face is computed. Thus, the overall number of polyhedra is reduced to
less than one third, thereby reducing the data transfer to the graphics card per slice.
The drawback of this approach is that the information about the closest primitive,
i.e. face, edge, or vertex, is lost. Consequently, generalized Voronoi diagrams are
no longer computed. Additionally, the vector to the closest point on the surface
is no longer a trilinear function within the polyhedron. Hence, the approach of
interpolating the distance vector within one polyhedron slice and computing the
vector length on the GPU fails.

Instead of interpolating the vector to the closest point, the position of the frag-
ment in a local coordinate frame of the triangle is interpolated. The fragment
program then searches for the closest corresponding point on the triangle and com-
putes the distance between the two points. The local coordinate frame is defined
by three orthogonal axis aligned with the triangle. The r-axis is laid through the
longest triangle side such that the three triangle vertices lie on the positive and the
negative r-axis and on the positive s-axis orthogonal to it (see Figure 4.9). Their
distances from the origin are denoted by a, b and h. The t-axis is parallel to the
triangle normal. For each vertex of a polyhedron slice, the texture coordinate is
used to define the position of the vertex in this local coordinate system. Texture
coordinates are bilinearly interpolated within the polygon and therefore, the tex-
ture coordinate of a fragment always holds the position of the fragment in the local
coordinate frame.

Figure 4.9: Planar distance to a triangle in the plane. To avoid
slow conditional branching, the distance to the trian-
gle is computed using two concurrent bases (r,s) and
(r′,s′). The bases are initialized depending on the
sign of the r-coordinate and the vector to the closest
point is evaluated depending on regions I-V using
conditional writes.

Given these texture coordinates r, s and t, the task of the fragment program is
to compute the unsigned distance D(r,s, t) to the triangle. The triangle itself is
uniquely described in the same coordinate frame by the three constants a, h and
b, as shown in Figure 4.9. These constants are passed to the fragment program
as second texture coordinates. This was found to be faster than passing the val-
ues as fragment program environment variables, although it involves unnecessary

56

4.2 Scan Conversion Based Algorithm

interpolation of constant values during rasterization.
First, the distance calculation is split into a parallel and an orthogonal part of

the triangle plane. Since

D(r,s, t) =
√

D(r,s,0)2 + r2, (4.2)

the main task is to compute D(r,s,0) which is a two-dimensional problem. The
fragment program performs this computation by partitioning the triangle plane
into several regions. If r is negative, the coordinate system is reflected at the s-
axis. Thus, it is sufficient to treat the six regions labeled I through V I in Figure 4.9.
For regions with a positive s-coordinate, the problem is transformed to a second
coordinate frame to simplify the location of the closest point on the triangle. Un-
fortunately, branching is limited in fragment programs. Therefore, the fragment
program computes the distance in both coordinate frames and then chooses the
appropriate distance depending on the values of r and s. The fragment program in
pseudo-code is given in listing 4.1.

// Reflect to half-space r>=0 if necessary
if (r<0) { r = -r; a = b; }
// Transform to a 2nd coordinate frame
lenSqr = a^2 + h^2;
r’ = (a*r - h*s + h^2) / lenSqr;
s’ = (h*r - a*s - a*h) / lenSqr;
// Clamp components of the distance vector
r’ = max(-r’,r’-1,0); // regions IV, V, VI
s’ = max(s’,0); // regions I, V
r = max(r-a, 0); // regions II, III
// Compute the distance
if(s<0) // regions II, III
dist = sqrt(r^2 + s^2 + t^2);
else // regions I, IV, V, VI
dist = sqrt((r’^2 + s’^2) * lenSqr + t^2);
// Place sign
dist = copysign(dist, t);

Listing 4.1: Fragment program pseudo-code which computes the distance to a triangle in
local coordinates on a per-fragment basis.

4.2.5 Performance Evaluation
As a basis for comparison of performance, the software scan conversion algo-
rithm, which can be downloaded from the author’s website [Mau00] was used.

57

Chapter 4 Distance Transform

This algorithm was re-implemented such that the scan conversion part was done
on the GPU. The performance was measured on a 2.4 GHz Pentium 4 equipped
with 1 GB of RAM and an ATI Radeon 9700 PRO graphics card. Only a negli-
gible speedup could be obtained by using this hardware-based variant. In addi-
tion, the range of parameters (resolution, width of computational band) where a
speedup could be measured, was rather narrow. This performance problem could
be tracked down to the overhead caused by rendering too many small polygons.

When using the optimized bounding polyhedra, the speedup delivered on the
same machine was significant for a wide range of resolutions and widths. When
choosing a band of 10 % of the model extent and a resolution of 2563 samples,
an average speedup close to 5 for the sphere6, knot and bunny models was mea-
sured (Table 4.2. For higher resolution as well as for wider bands, the speedup
improved (Table 4.5 and 4.4). But also for extremely low sample grid resolu-
tions, the hardware-assisted program performed well. For instance, in the case
of a mesh with 131,072 triangles of average area less then 2 on the voxel scale, a
speedup of 3.30 was measured. However, it is obvious that the the scan conversion
approach, with or without hardware support, is no longer an efficient strategy if
sampling density is further decreased. For such problems, an image space method
combined with a spatial data hierarchy such as the kD-tree presented in the last
section would obviously be more efficient.

The software version from [Mau00] has not been extended to support our op-
timized bounding polyhedra. However, we assume that one could also measure a
performance gain due to the reduced number of prism setup and sample overlap.
Nevertheless, the hardware version is expected to achieve a higher speed up when
the optimized polyhedra are used, because the geometry needs to be transferred to
the graphics hardware slice by slice.

The advantage of the scan conversion approach degrades when the narrow band
is large in comparison to the volume the surface encloses. Because the bounding
polyhedra for one triangle is computed using only its neighboring triangles, the
bounding volumes tend to overlap on the convex side of the surface. The amount
of overlap grows superlinearly with the thickness of the narrow band. In order to
compute the distance transform in a dense volume around the surface, the fastest
solution would be a combination the CSC and the FMM approach. While the
CSC algorithm is faster in computing the distance in the narrow band, the FMM
algorithm can then be used to compute the distance in regions further away from
the surface.

The results prove that current graphics hardware is suitable for supporting the
signed distance field computation. A GPU implementation has a larger overhead
per polyhedron while sampling the distance field using scan conversion is faster.
By reducing the amount of polyhedra to approximately one third, a significant
speed up in comparison to the CPU implementation was observed. It was proven
that the polyhedra cover the area around triangles, edges and convex or concave
vertices up to a user-definable distance. However, the polyhedra can leave a hole
in special configurations at saddle vertices. These holes are filled by shifting the

58

4.2 Scan Conversion Based Algorithm

Software Hardware
Model Triangles Algorithm (s) Algorithm (s) Speedup

Sphere6 32,768 6.162 1.346 4.58
Bunny 69,451 19.408 3.737 5.19
Knot 2,880 6.437 1.176 5.47

Table 4.2: Timings (in seconds) for Bunny and Knot data sets. The band width is set to
10% of the model extent, the grid resolution is set to 2563.

Mesh Size Software Hardware
(#triangles) Algorithm (s) Algorithm (s) Speedup

2,048 5.506 0.796 6.92
8,192 5.177 0.918 5.64

32,768 6.162 1.346 4.58
131,072 10.387 3.151 3.30

Table 4.3: Timings (in seconds) with variable input mesh size for 0.1 band width and a
2563 grid.

Width Software Hardware
of Band Algorithm (s) Algorithm (s) Speedup

0.1 6.162 1.346 4.58
0.2 11.701 1.785 6.56
0.4 21.009 2.546 8.25
0.8 34.489 3.724 9.26

Table 4.4: Timings (in seconds) with variable band width for a tessellated sphere with
32,768 triangles 2563 grid.

Grid Software Hardware
Resolution Algorithm (s) Algorithm (s) Speedup

643 0.901 0.244 3.69
1283 1.638 0.482 3.40
2563 6.162 1.346 4.58
5123 109.400 6.534 16.7

Table 4.5: Timings (in seconds) with variable grid resolution for a tessellated sphere with
32,768 triangles and 0.1 band width. The speedup factor grows slowly with in-
creasing resolution up to the point where the memory size becomes an issue. In
contrast to the software CSC algorithm, the Prism algorithm does not have to keep
the full grid in memory.

59

Chapter 4 Distance Transform

Figure 4.10: Distance transforms of the knot and the bunny model. The distance transform
computes an implicit representation of a triangle mesh. The resulting distance
field is the scalar valued function of the Eucledian distance to the closest point
on the triangle mesh. The image shows several slices of the regularly sampled
distance field together with the input model.

60

4.3 Meshless Distance Transform

sides of the polyhedra outward until they cover the normal of the saddle vertex.
This procedure increases the amount of overlap and therefore introduces a certain
overhead. However it was shown that gaps do not appear very often for common
meshes. For an implementation using graphics hardware, the speed up gained by
the reduced amount of geometry outweighs the extra cost of additional distance
samples.

4.3 Meshless Distance Transform
All methods presented so far in this chapter relied on a closed triangulated mani-
fold as input of the distance transform. However, surface scanning devices usually
produce point clouds without connectivity. Furthermore, the point clouds are of-
ten too noisy and incomplete to be triangulated consistently using a Delaunay
approach. Instead, implicit representations are much better suited for repairing
incomplete data because no topological constraints are required.

The conversion from a set of surface samples to an implicit representation
can be stated as a scattered data interpolation problem. Indeed, the point cloud
samples the zero-contour of the signed distance field. Thus, a continuous func-
tion which interpolates or approximates these zero-distance samples is desirable.
Mathematically, the fitting problem [Wen05] can be stated in the following way:
From a function f (x), a set of values fi are given at locations xi. The goal is to
find an approximation s(x) to f (x). Three common data interpolation approaches
have been used to gain an implicit definition from point samples: Radial Basis
Functions (RBF [CBC+01]), Moving Least Squares (MLS [Lev03]) and Parti-
tion of Unity (PU [Nie04]). These approaches will be summarized in the fol-
lowing three sections. Due to the fact that all sample values vanish, the original
interpolation problem has to be extended to avoid a trivial solution. Preferably,
the solution should approximate a distance field to the surface. The different ap-
proaches proposed for each approximation method will be discussed and analyzed
in Section 4.3.4. A natural problem of all methods is that although a high-quality
distance field can be achieved near the surface samples, the accuracy degrades
further away from the surface. Further away from the samples, the distance field
can be approximated well by the distance to the closest sample. Thus, a smooth
blending between the distance field interpolation near the samples, and the dis-
tance to the closest point further away is performed. A scale invariant method to
compute the blending weights independent of the sampling density is introduced
in Section 4.3.5.

4.3.1 Moving Least Squares
MLS [Lev98] approximates the function values by a polynomial function up to
degree n. The polynomial is chosen so that a weighted sum of squared errors are

61

Chapter 4 Distance Transform

minimized.

min
p∈Pn

∑
i

wi · (p(xi)− fi)2 (4.3)

The polynomial which minimizes the quadratic function can be found by QR
factorization of a set of linear equations. The key design choice of the MLS ap-
proach is that the error weights wi depend on the position where the function is
evaluated. The weights are a function of the Eucledian distance to the sampling
location x: wi = φ(‖x−xi‖). Thus, the MLS approximation s(x) can be stated as

s(x) = {px(x)|px ∈ Pn,∑
i

φ(‖x−xi‖) · (p(xi)− fi)2 →min} (4.4)

This implies that the quadratic minimization problem to find the best polyno-
mial has to be solved for each evaluation of the MLS approximation. To reduce
the problem size, one usually chooses a weighting function with compact support.
Thus, most of the terms in the sum of Equation 4.4 drop out.

Some applications require the approximating function to interpolate the sam-
pled values. Interpolation can be achieved with a weighting function which grows
to infinity around 0, i.e. φ(r) = 1/r or φ(r) = 1/r2.

4.3.2 Radial Basis Function
RBF [CBC+01] is a weighted sum of radial functions around the sample positions.
Additionally, the sum is augmented by a polynomial of degree at most k.

s(x) = p(x)+∑
i

λi ·φ(‖x−xi‖) (4.5)

The polynomial p and the coefficients λi are chosen so that the RBF interpolates
the function values.

s(xi) = fi (4.6)

The polynomial is used to guarantee an optimally smooth solution to the inter-
polation problem [CBC+01]. Additional constraints are required to obtain a fully
determined linear system of equations. Thus, orthogonality of polynomial and
radial coordinates is imposed.

∑
i

λi p(xi) = 0 (4.7)

In contrast to the MLS, the solution of this one linear system fully determines
the RBF interpolation function across the whole domain of definition. However,
the problem size grows linearly with the number of function samples, where as
the fit of the MLS approach only considers a constant amount of closest samples.

62

4.3 Meshless Distance Transform

Large linear systems can be solved efficiently only if they are sparse, corre-
sponding to a radial function φ of compact support. Unfortunately, only global
functions (such as φ(r) = r, φ(r) = r3 in R3 or φ(r) = r2 log(r) in R2) can guaran-
tee smooth data interpolation. Numerical methods to solve this dense linear sys-
tem are very involved. One such method is called fast multipole expansion. The
basic idea is to use a pre-conditioner that approximates clusters of radial bases
that are far away by a polynomial. We will not go into further details but refer
to [BG97] for a discussion of this method.

4.3.3 Partition of Unity
The partition of unity approach [FN80] is another method of data interpolation. It
is a combination between polynomial fitting of MLS and a weighted sum of bases
of RBF. A MLS polynomial is fitted at each sampling location to locally approxi-
mate the function values. To obtain a global approximation, these polynomials are
weighted according to their distance to the point of evaluation. Partition of unity
refers to the fact that the weighting is normalized.

s(x) = ∑
i

φ(‖x−xi‖)
∑i φ(‖x−xi‖)

pi(x) (4.8)

An approach similar to the one of MLS to achieve value interpolation is known
as Shepard’s method. The weighting function φ(r) is chosen to have a singu-
larity around zero. When evaluating Equation 4.8 at a sample location x j, all
weights vanish, except for the one corresponding to p j, which is one. Thus, if
the polynomial fit p j is interpolating, so is s(x). However, weighting by inverse
or squared inverse radius do not work well in practice. Here, the infinite support
of the weighting function does not only make a practical implementation difficult,
but also has an adverse effect on the shape of the interpolation (see Figure 4.11).
The Modified Quadratic Shepard’s (MQS [FN80]) multiplies the inverse radius by
a hat-function to produce a weighting function of compact support.

φ(r) =
max(rcuto f f − r,0)2

r2 (4.9)

In [Nie04], the cutoff radius is chosen per basis to include at least 18 neigh-
boring sampling locations. Unfortunately, a fixed compact support will leave the
approximation undefined in areas where all weights vanish. Moreover, the weights
are no longer monotone with respect to the distance if a different cutoff radius per
basis is used. As an alternative, the cutoff radius has been chosen to include a
fixed number of sampling points from the location of evaluation. Therefore, the
interpolation is defined anywhere and the monotonicity is reestablished.

63

Chapter 4 Distance Transform

4.3.4 Distance Field Approximation
All the approximation methods discussed so far can be used to compute a distance
field from a set of surface samples. Because the surface samples all lie on the zero
contour of the distance field, a straightforward application of the interpolation
methods would return a trivial solution (a function which is zero everywhere).
Each method uses its very specific technique to avoid a trivial solution.

The MLS approach uses a projection operator [Lev03] to find the closest point
on the surface and then evaluates the distance to this point. The projection operator
performs the following procedure: First, a plane is fitted through the sample points
in a least squares sense (Eq.4.3) using a normal equation. This plane is used as
a parametrization to fit a polynomial through the sampling points (Eq.4.4). The
starting point is then projected onto this polynomial. The whole procedure is
repeated until the point converges.

In the RBF approach [CBC+01], the most common approach to obtain a non-
trivial solution is to generate a set of additional distance samples. For each original
surface sample, an approximated surface normal is computed. For example by
using the least squares plane fitting approach of MLS. Then, two offset samples
in the direction of the normal are generated, at a fixed distance on each side of the
surface. The function values are set to the positive and negative offset distance,
respectively. These offset points establish a gradient in normal direction at the
surface positions. Unfortunately, the dense linear system which is already hard to
solve grows by a factor of three during this process.

Partition of unity [Nie04] takes a similar approach. But instead of adding addi-
tional samples, the gradient of the local polynomial fit is enforced to coincide with
the surface normal. With the weighting function of Equation 4.9 used in [Nie04],
the interpolation is first order accurate. Thus, the method is able to match the sur-
face normals, if they are provided by the input data. Interpolation does not even
require the solution of a linear system. However, a common undesired effect of
higher order interpolating filters is overshoot, which produces unsmooth surfaces.
The squared inverse distance weighting cannot even produce a valid surface from
the five circular samples shown in Figure 4.11.

To avoid overshoot, a non-interpolating filter has been implemented. A polyno-
mial approximation of the Gaussian with compact support as weighting function
has been chosen.

φ(r) = max(1− r2

r2
cuto f f

,0)3 (4.10)

To achieve interpolation of the surface samples, a sparse linear system must
be solved for the constant coefficient of the polynomial fits. Fortunately, sparse
linear problems can be solved using iterative or direct methods which are effective
even for large systems. First order polynomials have been chosen for the local
surface approximation. Their gradient is fixed to the approximated surface normal
extracted from the point cloud.

64

4.3 Meshless Distance Transform

4.3.5 Far Field Approximation
Unfortunately, the methods presented can only provide a good approximation of
the distance field in a neighborhood of the surface. In areas further away from the
surface samples, the approximation quality decreases. Without monotone weight-
ing functions, spurious zero crossings of the distance field were detected, which
produce artificial surfaces not present in the input data.

Obviously, the interpolation methods are lacking distance samples away from
the surface to guide the approximation process. However, the distance field away
from the surface can be approximated well by the distance to the closest sample.
Thus, a smooth blending between the distance field interpolation near the samples,
and the distance to the closest point further away is performed. If fnear denotes
the distance approximation of one of the scattered data interpolation methods and
f f ar is the distance to the closest sample, we seek a blending weight w to define
the global function

f = w · fnear +(1−w) · f f ar (4.11)

The blending weight should be one near the surface samples and smoothly de-
cay to zero further away. Thus, the blending weight is a function of the distance to
the samples, which is denoted d. Note that d is only used to compute the blending
weight w and has nothing to do with the signed distance approximation f . The
distance d to the samples should be scale-invariant, i.e. it should be measured rel-
ative to the sampling density. We will now derive a formula for d that is based on
statistical analysis of the distances to a fixed number of closest surface samples.
These distances ri = ‖x− xi‖ are already computed to evaluate the interpolation
function fnear according to Equation 4.4, 4.5 or 4.8. The statistical analysis of the
vector of distances r = {r0,r1, ...} uses the relative variance

σ(r) =
σ(r)
µ(r)

=

√
µ(r2)
µ(r)2 −1 (4.12)

where σ is the variance and µ is the mean value. The relative variance σ turns
out to only depend on the scale-invariant distance d to the sampled surface and is
independent of the number of surface samples. For a dense regular sampling on
the other hand, the relative variance σ at scale-invariant distance d can shown to
be

σ(d) =
√

1/8 ·

√
9+18d2−8

(
(1+d2)3/2−d3

)2

(1+d2)3/2−d3
(4.13)

Using Equation 4.12 and 4.13, the scale-invariant distance d can be computed
from the first and second order moments of the distances to a fix number of clos-
est sample points. However, the sampling is generally not regular and only a few
closest samples are used for the calculation. Therefore, an approximation for the

65

Chapter 4 Distance Transform

inverse function can be used, which can be evaluated efficiently. The following ap-
proximate linear correlation is actually very accurate for a dense regular sampling
(see Figure 4.12).

d ∼
√

σ(r)−1−
√

8 (4.14)

Eventually, the scale-invariant distance d will only be used to compute a smooth
blending weight between two accurate distance functions. We use the polynomial
Gauss approximation with a cutoff radius of 5. To summarize, the blending weight
is computed from the distance vector r of the closest surface samples by the fol-
lowing formula

w(r) = max

(
1− µ(r)2/(µ(r2)−µ(r)2)−

√
8

25
,0

)3

. (4.15)

This weight is then used to compute the implicit surface definition from the near
and far distance approximation according to Equation 4.11.

4.3.6 Discussion
A method which combines three common data interpolation methods to approx-
imate a distance field from a set of surface samples has been presented. The
distance is approximated by a normalized weighted sum of polynomial functions
fitted through the surface samples. The weights are a Gaussian-like function of
the sample distance with compact support. In comparison to weighting functions
based on the inverse distance, this prevents the surface to overshoot between the
samples. However, a sparse linear system of equations needs to be solved for
the surface to interpolate the input samples. The support radius of the Gaussian-
like function is adjusted so that at least a few polynomials have non-zero weights.
Thus, the area of definition is not bound by a fixed support radius. Finally, the
approximation is smoothly blended with the distance to the closest sample. The
distance to the closest sample is a better approximation of the distance field in
areas away from the surface.

66

4.3 Meshless Distance Transform

Figure 4.11: Distance field extrapolation from a set of surface samples with normal infor-
mation. From top left to bottom right: Shepard’s method (linear fields blended
by partition of unity with inverse quadratic distance weights), extended Shepard’s
method used in [Nie04] (truncated inverse quadratic distance weights), Radial Ba-
sis Functions approach (thin-plate spline), method proposed in this chapter.

Figure 4.12: Scale invariant distance to samples. The
distance to the surface relative to the average
sampling density can be approximated from the
relative variance σ(r) of the distances to the
closest set of samples. The graph shows the ap-
proximation (up to a scaling factor) under the
assumption of a dense regular sampling.

67

Chapter 4 Distance Transform

68

Chapter 5

High Order
Reconstruction Filters

For implicit surfaces that are represented as a grid of sample values, a continuous
definition of the scalar function needs to be retrieved to obtain a closed surface
definition. Reconstruction of a continuous function from a regular sampling is
performed by convolving the sample pulses with a filter kernel [Hec89]. The
choice of the filter kernel is crucial for the quality of the reconstruction.

Current programmable graphics hardware makes it possible to implement gen-
eral convolution filters in the fragment shader for high-quality texture filtering.
However, a major performance bottleneck of higher order filters is the high num-
ber of input texture samples that are required, which are usually obtained via re-
peated nearest neighbor sampling of the input texture [SH05]. This issue will be
mitigated in this chapter for filtering with a cubic B-Spline kernel and its first
and second derivatives. In order to reduce the number of input samples, cubic
filtering is built on linear texture fetches instead, which reduces the number of
texture accesses considerably, especially for 2D and 3D filtering. Specifically, a
tri-cubic filter with 64 summands can be evaluated using just eight trilinear tex-
ture fetches. Often, high-quality derivative reconstruction is required in addition
to value reconstruction. The proposed basic filtering method has been extended to
reconstruction of continuous first and second order derivatives.

5.1 Higher Order Filtering
OpenGL and DirectX provide two types of texture filtering: nearest neighbor sam-
pling and linear filtering, corresponding to zeroth and first order filter schemes.
Both types are natively supported by all GPUs. However, higher order filtering
modes often lead to superior image quality. Moreover, higher order schemes are
necessary to compute continuous derivatives of texture data.

69

Chapter 5 High Order Reconstruction Filters

Figure 5.1: The cubic B-Spline and its derivatives. (a) Illustrates convolution of input sam-
ples fi with filter weights wi(x). (b) and (c) show the first and second derivatives
of the cubic B-Spline filter for direct reconstruction of derivatives via convolution.

The implementation of efficient third order texture filtering on current pro-
grammable graphics hardware described here primarily considers the one-dimen-
sional case, but extends directly to higher dimensions.

In order to reconstruct a texture with a cubic filter at a texture coordinate x, see
Figure 5.1(a), the convolution sum

w0(x) · fi−1 +w1(x) · fi +w2(x) · fi+1 +w3(x) · fi+2 (5.1)

of four weighted neighboring texels fi has to be evaluated. The weights wi(x)
depend on the filter kernel used. Although there are many types of filters, this
chapter will be restricted to B-Spline filters. If the corresponding smoothing of
the data is not desired, the method can also be adapted to interpolating filters such
as Catmull-Rom Splines.

The filter weights wi(x) for cubic B-Splines are periodic in the interval x∈ [0,1]:
wi(x) = wi(α), where α = x−bxc is the fractional part of x. Specifically,

w0(α) = 1
6(−α3 +3α2−3α+1) w1(α) = 1

6(3α3−3α2 +4)

w2(α) = 1
6(−3α3 +3α2 +3α+1) w3(α) = 1

6α3
(5.2)

Note that cubic B-Spline filtering is a natural extension of standard nearest
neighbor sampling and linear filtering, which are zeroth and first degree B-Spline
filters. The degree of the filter is directly connected to the smoothness of the
filtered data. Smooth data becomes especially important when it is necessary
to compute derivatives. For volume rendering, where derivatives are needed for
shading, it has become common practice to store pre-computed gradients along
with the data. Although this leads to a continuous approximation of first order
derivatives, it uses three times more texture memory, which is often constrained
in volume rendering applications. Moreover, this approach becomes impractical
for second order derivatives because of the large storage overhead. On the other
hand, on-the-fly cubic B-Spline filtering yields continuous first and second order
derivatives without any storage overhead.

70

5.2 Fast Recursive Cubic Convolution

5.2 Fast Recursive Cubic Convolution
This section presents an optimized evaluation of the convolution sum that has been
tuned for fundamental performance characteristics of graphics hardware, where
linear texture filtering is evaluated using fast special purpose units [SH05]. Hence,
a single linear texture fetch is much faster than two nearest-neighbor fetches, al-
though both operations access the same number of texel values. When evaluating
the convolution sum, this extra performance should be exploited.

The key idea is to rewrite equation (5.1) as a sum of weighted linear interpo-
lations between every other pair of function samples. These linear interpolations
can then be carried out using linear texture filtering, which computes convex com-
binations denoted in the following as

fx = (1−α) · fi +α · fi+1 (5.3)

Where i = bxc is the integer part and α = x− i is the fractional part of x. Building
on such a convex combination, any linear combination a · fi +b · fi+1 with general
a and b can be rewritten as

(a+b) · fi+b/(a+b) (5.4)

as long as the convex combination property 0 ≤ b/(a + b) ≤ 1 is fulfilled. Thus,
rather than performing two texture lookups at fi and fi+1 and a linear interpolation,
a single lookup at i+b/(a+b) can be multiplied by (a+b).

The combination property is exactly the case when a and b have the same sign.
The weights of Equation 5.1 with a cubic B-Spline do meet this property. There-
fore the periodic convolution sum can be rewritten as

w0(α) · fi−1 +w1(α) · fi +w2(α) · fi+1 +w3(α) · fi+2 =
g0(α) · fx−h0(α) +g1(α) · fx+h1(α)

(5.5)

introducing new functions g0,g1 and h0,h1 as follows:

g0(α) = w0(α)+w1(α) h0(α) = 1− w1(α)
w0(α)+w1(α) +α

g1(α) = w2(α)+w3(α) h1(α) = 1+ w3(α)
w2(α)+w3(α) −α

(5.6)

Using this scheme, the 1D convolution sum can be evaluated using two linear
texture fetches plus one linear interpolation in the fragment program which is
faster than a straightforward implementation using four nearest neighbor fetches.
But most importantly, this scheme works especially well in higher dimensions, and
for filtering in two and three dimensions the number of texture fetches is reduced
considerably, leading to much higher performance.

Some implementation details will now be discussed, including (1) transform-
ing texture coordinates between lookup and color texture and (2) computing the

71

Chapter 5 High Order Reconstruction Filters

weighted sum of the texture fetch results. The Cg code of the fragment program
for one-dimensional cubic filtering is shown in Listing 5.1. The schematic is
shown in Figure 5.2.

As aforementioned, the functions are stored in a lookup texture (called tex_hg
below) in order to reduce the amount of operations in the fragment program. In
practice, a 16-bit texture of 128 samples is sufficient. Note that the functions are
periodic in the sample positions of the input texture. Therefore, a linear trans-
formation is applied to the texture coordinate and a texture wrap parameter of
GL_REPEAT is used for the lookup texture. The linear transformation is incorpo-
rated into the fragment program for completeness (see Listing 5.1). However, a
separate texture coordinate would normally be computed in the vertex shader.

After fetching the offsets and weights from the lookup texture, the texture co-
ordinate for the two linear texture fetches from the source color texture are com-
puted. Note that the offset needs to be scaled by the inverse of the texture resolu-
tion, which is stored in a constant shader parameter.

The rest of the program carries out the two color fetches and computes their
weighted sum. Note that B-Splines fulfill the partition of unity ∑wi(x) = 1, and
so do the two weights g0(x)+g1(x) = 1. Therefore, it is not necessary to actually
store g1(x) in addition to g0(x) in this case, and the final weighting is again a
convex combination carried out with a single lerp() instruction.

The fragment shader parameters of Listing 5.1 would be initialized as follows
for a 1D source texture with 256 texels:

e_x = float(1/256.0f);
size_source = float(256.0f);

The e_x parameter corresponds to the size of a single source texel in texture
coordinates, which is needed to scale the offsets fetched from the filter texture
to match the resolution of the source texture. The size_source parameter
simply contains the size of the source texture, which is needed to compute filter
texture from source texture coordinates so that the size of the entire filter texture
corresponds to a single texel of the source texture.

Due to the separability of tensor-product B-Splines, extending this cubic fil-
tering method to higher dimensions is straightforward. Actually, the linear filter
optimization works even better in higher dimensions. Using bi- or trilinear tex-
ture lookups, four or eight summands can be combined into one weighted convex
combination. Therefore, a tri-cubic filter with 64 summands can be evaluated by
just eight trilinear texture fetches.

The offset and weight functions for multi-dimensional filtering can be computed
independently for each dimension using Equation 4.2. In the implementation, this
relates to multiple fetches from the same one-dimensional lookup texture. The
final weights and offsets are then computed in the fragment program using

gi(x) = ∏gik(xk) hi(x) = ∑ek ·hik(xk) (5.7)

where the index k denotes the axis and ek are the basis vectors. Listing 5.2 shows

72

5.2 Fast Recursive Cubic Convolution

Figure 5.2: Cubic filtering of a one-dimensional texture. In order to reconstruct a color
texture of size N, the reconstruction position x is first transformed linearly to the
texture coordinate ∗ for reading offsets hi(x) and weights gi(x) from a lookup
texture. Then, two linear texture fetches of the color texture are carried out at the
offset positions (•). Finally, the output color is computed by a linear combination
of the fetched colors using the weights gi(x).

float4 bspline_1d_fp(
float coord_source : TEXCOORD0
uniform sampler1D tex_source, // source texture
uniform sampler1D tex_hg, // filter offsets and weights
uniform float e_x, // source texel size
uniform float size_source // source texture size

) : COLOR
{

// calc filter texture coordinates where [0,1] is a
// single texel (can be done in vertex program instead)
float coord_hg = coord_source * size_source - 0.5f;

// fetch offsets and weights from filter texture
float3 hg_x = tex1D(tex_hg, coord_hg).xyz;

// determine linear sampling coordinates
float coord_source1 = coord_source + hg_x.x * e_x;
float coord_source0 = coord_source - hg_x.y * e_x;

// fetch two linearly interpolated inputs
float4 tex_source0 = tex1D(tex_source, coord_source0);
float4 tex_source1 = tex1D(tex_source, coord_source1);

// weight linear samples
return lerp(tex_source0, tex_source1, tex_hg_x.z);

}

Listing 5.1: Cubic B-Spline filtering of a one-dimensional texture.

73

Chapter 5 High Order Reconstruction Filters

an implementation that minimizes the number of dependent texture reads by com-
puting all texture coordinates at once.

The fragment shader parameters of Listing 5.2 would be initialized as follows
for a 2D source texture with 256x128 texels:

e_x = float2(1/256.0f, 0.0f);
e_y = float2(0.0f, 1/128.0f);
size_source = float2(256.0f, 128.0f);

The special way the source texel size is stored in the e_x and e_y parame-
ters allows to compute the coordinates of all four source samples with a minimal
number of instructions, as shown in Listing 5.2. In three dimensions, the same
approach makes it possible to compute all eight source coordinates with only four-
teen multiply-add instructions. Filtering in three dimensions is a straightforward
extension of Listing 5.2.

5.3 Derivative Reconstruction
In addition to reconstructing the values in a texture map, the reconstruction of its
derivatives also has many applications. The gradient g of a scalar field f , in this
case a 3D texture, is comprised of its first partial derivatives:

g =∇ f =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)T

(5.8)

The most common method for approximating gradient information is to use a
simple central differencing scheme. However, for high-quality derivatives we can
also use convolution filters and apply the scheme illustrated above for fast eval-
uation on GPUs. Figure 5.4 shows the quality improvement using higher order
gradients for Phong shading of isosurfaces. In order to reconstruct a derivative via
filtering, we convolve the original data with the derivative of the filter kernel. Fig-
ure 5.1(b) illustrates the first and second derivatives of the cubic B-Spline. Com-
puting the derivative becomes very similar to reconstructing the function value,
just by using a different filter kernel.

The fast filtering scheme outlined above can also be applied to derivative re-
construction, by using a derived cubic B-Spline kernel. The convolution weights
stated in Equation 5.2 are simply replaced by their derivatives:

w0(α) = 1
2(− α2 +2α−1) w1(α) = 1

2(3α2−2α)

w2(α) = 1
2(−3α2 +2α+1) w3(α) = 1

2α2
(5.9)

In this case the filter kernel weights sum up to zero instead of one: ∑wi(x) = 0.
Now, in comparison to Listing 5.1 where the two linear input samples were
weighted using a single lerp(), the second weight is the negative of the first

74

5.3 Derivative Reconstruction

float4 bspline_2d_fp(
float2 coord_source : TEXCOORD0,
uniform sampler2D tex_source, // source texture
uniform sampler1D tex_hg, // filter offsets and weights
uniform float2 e_x, // texel size in x direction
uniform float2 e_y, // texel size in y direction
uniform float2 size_source // source texture size

) : COLOR
{

// calc filter texture coordinates where [0,1] is a
// single texel (can be done in vertex program instead)
float2 coord_hg = coord_source * size_source - 0.5f;

// fetch offsets and weights from filter texture
float3 hg_x = tex1D(tex_hg, coord_hg.x).xyz;
float3 hg_y = tex1D(tex_hg, coord_hg.y).xyz;

// determine linear sampling coordinates
float2 coord_source10 = coord_source + hg_x.x * e_x;
float2 coord_source00 = coord_source - hg_x.y * e_x;

float2 coord_source11 = coord_source10 + hg_y.x * e_y;
float2 coord_source01 = coord_source00 + hg_y.x * e_y;

coord_source10 = coord_source10 - hg_y.y * e_y;
coord_source00 = coord_source00 - hg_y.y * e_y;

// fetch four linearly interpolated inputs
float4 tex_source00 = tex2D(tex_source, coord_source00);
float4 tex_source10 = tex2D(tex_source, coord_source10);
float4 tex_source01 = tex2D(tex_source, coord_source01);
float4 tex_source11 = tex2D(tex_source, coord_source11);

// weight along y direction
tex_source00 = lerp(tex_source00, tex_source01, hg_y.z);
tex_source10 = lerp(tex_source10, tex_source11, hg_y.z);

// weight along x direction
tex_source00 = lerp(tex_source00, tex_source10, hg_x.z);

return tex_src00;
}

Listing 5.2: Bi-cubic B-Spline filtering of a two-dimensional texture.

75

Chapter 5 High Order Reconstruction Filters

Figure 5.3: Texture filter quality comparison using bi-linear (left) and bi-cubic (right) re-
construction filters.

Figure 5.4: Phong shading quality comparison of a torus isosurface using tri-linear (a) and
tri-cubic (b) reconstruction filters for both function value and gradient, respec-
tively.

76

5.3 Derivative Reconstruction

float4 bspline_d_1d_fp(...

// unchanged from Listing 5.1

// weight linear samples
return hg_x.z * (tex_source0 - tex_source1);

}

Listing 5.3: First-derivative cubic B-Spline filtering of a one-dimensional texture.

one, i.e. g1(x) =−g0(x), which can be written as a single subtraction and subse-
quent multiplication, as shown in Listing 5.3.

In order to compute the gradient in higher dimensions, the corresponding filter
kernels are obtained via the tensor product of a 1D derived cubic B-Spline for
the axis of derivation, and 1D (non-derived) cubic B-Splines for the other axes. In
addition to first partial derivatives, second partial derivatives can also be computed
very quickly on GPUs. All these second derivatives taken together comprise the
Hessian matrix H, shown here for the 3D case:

H =∇g =∇2 f =

∂

2 f
∂x2

∂
2 f

∂x∂y
∂

2 f
∂x∂z

∂
2 f

∂y∂x
∂

2 f
∂y2

∂
2 f

∂y∂z
∂

2 f
∂z∂x

∂
2 f

∂z∂y
∂

2 f
∂z2

 (5.10)

The mixed derivatives in H (the off-diagonal elements) can be computed using
the fast filtering approach for first derivatives which was described above, because
the 1D filter kernels are only derived once in this case. For the diagonal ele-
ments of H, however, the derivative of the filter kernel itself has to be taken two
times. Figure 5.1(c) shows the second derivative of the cubic B-Spline, which is
a piecewise linear function. The convolution sum with this filter is very simple to
evaluate. Listing 5.4 shows how to do this using three linearly interpolated input
samples. In this case, no filter texture is needed due to the simple shape of the
filter. The three input samples are simply fetched at unit intervals and weighted
with a vector of (1,−2,1).

For any of the partial derivatives, the weights and offsets are built with the
tensor product formula of Equation 5.7. For the axis of derivation, the terms are
read from the lookup texture computed with the derived B-Spline filter, whereas
for all other axis the texture of the non-derived filter is used. Thus, evaluating all
partial derivatives at once requires only one access per dimension into each of the
two lookup textures, e.g. a total of six lookups for 3D.

77

Chapter 5 High Order Reconstruction Filters

float4 bspline_dd_1d_fp(
float coord_source : TEXCOORD0
uniform sampler1D tex_source, // source texture
uniform float e_x, // source texel size

) : COLOR
{

// determine additional linear sampling coordinates
float coord_source1 = coord_source + e_x;
float coord_source0 = coord_source - e_x;

// fetch three linearly interpolated inputs
float4 tex_source0 = tex1D(tex_source, coord_source0);
float4 tex_sourcex = tex1D(tex_source, coord_source);
float4 tex_source1 = tex1D(tex_source, coord_source1);

// weight linear samples
tex_source0 = tex_source0 - 2 * tex_sourcex + tex_source1;

return tex_source0;
}

Listing 5.4: Second-derivative cubic B-Spline filtering of a one-dimensional texture.

5.4 Applications and Discussion
This chapter has presented an efficient method for third order texture filtering with
a considerably reduced number of input texture fetches. Building on the assump-
tion that a linear texture fetch is as fast or not much slower than a nearest neighbor
texture fetch, filtering with a third order filter kernel such as a cubic B-Spline has
been optimized to build on a small number of linear texture fetches. A cubic out-
put sample requires two instead of four input samples, a bi-cubic output sample
can be computed from 4 instead of 16 input samples, and tri-cubic filtering is pos-
sible with 8 instead of 64 fetches from the input texture. In fact, the corresponding
fragment programs are more similar to "hand-coded" linear interpolation than to
cubic filtering. Another advantage of this method is that all computations that de-
pend on the filter kernel are pre-computed and stored in small 1D lookup textures.
This way, the actual fragment shader can be kept independent from the filter kernel
in use [HTHG01]. The extension of higher order filters for mip-mapped textures
has been presented in [SH05].

The performance penalty of cubic texture filtering is moderate: bi-cubic B-
Spline filtering as shown in Figure 5.3 runs at 36% of the performance of bi-linear
filtering.

78

5.4 Applications and Discussion

The approach can also be employed for other filter operations in order to reduce
the number of texture lookups and value interpolations as long as the neighboring
convolution weights have equal signs. For example, possible applications include
discrete cosine transform, non-power-of-two mipmap creation, shadow map filter-
ing, depth of field and other effects that can be implemented as a post-processing
image filter. In the next chapter, differential isosurface properties are reconstructed
on-the-fly from first and second order partial derivatives of the scalar function. In
Chapter 7, the technique is used to implement a fast edge detection filter.

A disadvantage of building on linear input samples is that it may require higher
precision of the input texture for high-quality results. On current GPUs, linear
interpolation of 8-bit textures is also performed at a similar precision, which is
not sufficient for tri-cubic filtering where a single trilinearly interpolated sample
contains the contribution of eight input samples. 16-bit textures provide sufficient
precision of the underlying linear interpolation. Many current-generation GPUs
also support filtering of floating-point textures, which would provide even higher
precision.

79

Chapter 5 High Order Reconstruction Filters

80

Chapter 6

Isosurface Ray-Casting
This chapter presents a real-time rendering pipeline for implicit surfaces stored as
a regular grid of samples. A ray-casting approach on current graphics hardware
is used to perform a direct rendering of the isosurface. A two-level hierarchical
representation of the regular grid is employed to allow object-order and image-
order empty space skipping and circumvent memory limitations of graphics hard-
ware [HSS+05]. Adaptive sampling and iterative refinement lead to high-quality
ray-surface intersections. All shading operations are deferred to image space,
making their computational cost independent of the size of the input data. The
continuous third-order reconstruction filter presented in the previous chapter al-
lows on-the-fly evaluation of smooth normals and extrinsic curvatures at any point
on the surface without interpolating data computed at grid points. With these local
shape descriptors, it is possible to perform advanced shading using high-quality
lighting and non-photorealistic effects in real-time.

The algorithm is generally independent of specific hardware but support for vol-
umetric textures, render-to-texture and looping in fragment programs is assumed
(e.g. ShaderModel 3.0). Several shortcomings in existing GPU isosurface ren-
dering approaches are addressed, particularly the lack or inefficiency of advanced
shading, and texture memory usage. Modern GPUs are able to perform standard
ray-casting of small regularly sampled data sets [KW03a]. However, advanced
shading, e.g. curvature-based transfer functions [HKG00, KWTM03], is still the
domain of off-line rendering. The amount of texture memory significantly limits
data sizes. This problem is aggravated by the demand of high-quality rendering
for voxel data of 16-bit precision or more and lossless compression.

6.1 Pipeline Overview
From a high-level perspective, the rendering pipeline is divided into two major
stages. The first stage performs ray-casting through the volume in order to com-
pute the ray-isosurface intersection positions per pixel. Empty space skipping is

81

Chapter 6 Isosurface Ray-Casting

Figure 6.1: Overview of the rendering pipeline. The top row operates with object space
complexity until the refinement of ray-isosurface intersection positions. The mid-
dle row stages compute differential surface properties with image space complex-
ity, and the bottom row stages perform deferred shading in image space.

employed to perform ray sampling only in areas that contain parts of the isosur-
face. On-demand caching techniques are employed to dynamically download data
to the graphics card that is needed for the sampling process. Because only a small
fraction of the grid samples contribute to the definition of the isosurface, this leads
to significant reduction of texture memory usage without the need for lossy com-
pression. See Figure 6.3 for an example. Even better memory utilization can be
achieved when the grid resolution is adapted to the local amount of detail.

The intersection positions computed in the first stage drive the following stage,
which renders the shaded surface using several effects that may also incorpo-
rate normal and curvature of the surface. In contrast to direct volume render-
ing, for isosurfaces only one sample position contributes to the color of a single
pixel. Therefore, the method employs a ray-casting pass only for determining ray-
surface intersections, and defers the shading computations to image space, where
they are evaluated once per visible surface sample only. Thus, the ray-casting
stage is the only component of the pipeline that has object space complexity. All
other computations have image space complexity [ST90].

As a central component of the rendering pipeline, tri-cubic filtering (Chapter 5)

82

6.1 Pipeline Overview

Figure 6.2: High-quality implicit surfaces are rendered on regular grids, e.g. distance fields
or medical CT scans, in real-time without pre-computing additional per-voxel in-
formation. Gradients with C1 continuity, second-order derivatives, and surface
curvature are computed exactly for each output pixel using tri-cubic filtering. Ap-
plications include surface interrogation and visualizing levelset computations by
color mapping curvature measures (top), and ridge and valley lines (bottom left
and right).

has been employed throughout. Cubic filters allow for precise evaluations of dif-
ferential operators of the scalar volume, such as first and second partial derivatives
components of the gradient and Hessian matrix. These derivatives are computed
at the exact positions of ray-isosurface intersections specified by the intersection
image. They are then used to compute differential properties of the isosurface,
such as the normal and curvature, which both play a vital role in visualization,
modeling and simulation.

The output image is generated with a variety of effects that build on the dif-
ferential surface properties previously computed. The gradients can be used
for all shading models that require a surface normal, such as standard Blinn-
Phong [Bli77], tone shading [GGSC98], or high-quality reflections and re-
fractions. Curvature measures can be mapped to colors via 1D or 2D transfer

83

Chapter 6 Isosurface Ray-Casting

Figure 6.3: Michelangelo’s David extracted and shaded with tri-cubic filtering as isosurface
of a 576x352x1536 16-bit distance field at 10 fps. The distance field is subdivided
into two levels: a fine level for empty space skipping during ray-casting (blue) and
a coarse level for texture caching (green).

functions, which are well-suited for shape depiction [KWTM03]. For example,
accessibility shading [Mil94], or ridge and valley lines without generating actual
line primitives. Pixels that correspond to ridge or valley areas are identified on a
per-pixel basis via a curvature transfer function [KWTM03]. Curvature directions
are also effective shape cues, and the curvature field on the isosurface is illustrated
with image space flow advection [Wij03]. Modeling operations for implicit sur-
faces, such as Constructive Solid Geometry (CSG) and morphing [COSL98], can
be incorporated directly into the rendering pipeline.

In summary, the combination of real-time performance and high-quality yields
a general-purpose rendering front-end for many powerful applications of implicit
surfaces. The major contribution is a system that integrates the following:

• High-quality shading with non-photorealistic effects using on-the-fly com-
putation of smooth second-order geometric surface properties.

84

6.2 Hierarchical Representation

• Object space culling and empty space skipping without any per-sample cost
during ray-casting.

• Adaptive grid resolution and a simple 3D brick cache to significantly alle-
viate GPU memory limitations.

• Precise ray-surface intersections, by combining adaptive resampling and it-
erative refinement of intersections.

6.2 Hierarchical Representation
Although a fully hierarchical data structure like the octree presented in Chapter 3
can compactly represent a single isosurface, a change of the isovalue to display
would require a time-consuming update procedure. Furthermore, octrees imple-
mentations on GPUs are relatively inefficient on current architectures due to the
lack of point arithmetic. Instead, a relatively simple but effective two-level hier-
archy [HBH03] is used to store adaptive sampling grids in texture memory of the
GPU.

The volume is subdivided into two regular grid levels: a fine level to facilitate
empty space skipping (Section 6.2.1), and a coarse level to circumvent memory
limitations of graphics hardware (Section 6.2.2). We call the elements of the fine
subdivision level blocks, and those of the coarse level bricks. The blocks for empty
space skipping are chosen smaller to fit the isosurface tightly, and the bricks for
memory management are bigger to avoid excessive storage overhead.

6.2.1 Empty Space Skipping
In order to facilitate object-order empty space skipping without per-sample over-
head, min-max values of a regular subdivision are maintained, e.g. the volume
is subdivided into small blocks of 43 or 83 voxels. Thus, it can quickly be deter-
mined if a block contains part of the isosurface for a given isovalue. If a block is
empty, the sampling process can be skipped for the corresponding ray segment.
These blocks do not actually re-arrange the volume. For each block, a min-max
value is simply stored in an additional structure for culling. Whenever the isovalue
changes, blocks are culled against it using their min-max information and a range
query [CSS98], which determines their active status. Because no isosurface inter-
section can occur in ray segments corresponding to empty blocks, those segments
do not need to be sampled during ray-casting. Two possible methods for empty
block skipping will be presented in section 6.3.1 and 6.3.2.

85

Chapter 6 Isosurface Ray-Casting

6.2.2 Brick Caching
The brick subdivision serves to reduce graphics memory consumption in two
ways. Firstly, one can use the same argument as for block culling: a brick does not
need to be downloaded to the graphics card if it is not intersected by the isosur-
face. Secondly, the brick with the lowest amount of details can be downsampled
to further reduce memory consumption.

For any possible isovalue, many of the blocks do not contain any part of the
isosurface. In addition to improving rendering performance by skipping empty
blocks, this fact can also be used for significantly reducing the effective mem-
ory footprint of relevant parts of the volume. Whenever the isovalue changes, the
corresponding range query also determines the active status of bricks of coarser
resolution, e.g. 323 voxels. The colored squares in Figure 6.5 depict these bricks
with a size of 2x2 blocks per brick for illustration purposes. In contrast to blocks,
bricks re-arrange the volume and include neighbor samples to allow filtering with-
out complicated look-ups at the boundaries, i.e. a brick of resolution n3 is stored
with size (n + 1)3 [KE02]. This overhead is inversely proportional to the brick
size, which is the reason for using two levels of subdivision.

In order to decouple the volume size from restrictions imposed by GPUs on
volume resolution (e.g. 5123 on NVIDIA GeForce 6) and available video mem-
ory (e.g. 256MB), ray-casting can be performed directly on a re-arranged brick
structure. Similar to the idea of adaptive texture maps [KE02], we maintain an
additional low-resolution reference texture (e.g. 163 for a 5123 volume with 323

bricks) storing texture coordinate offsets of bricks in a single brick cache texture
that is always resident in GPU memory (e.g. a 512x512x256 texture). However,
both the reference and the brick cache texture are maintained dynamically and are
not generated in a pre-process. Figure 6.4 illustrates the use of the reference and
brick cache textures.

Figure 6.4: A low-resolution brick reference texture (left) stores references from volume
coordinates to texture cache bricks (right). The reference texture is sampled in the
fragment shader to transform volume coordinates into brick cache texture coordi-
nates. White bricks denote null references for bricks that are not resident in the
cache.

86

6.3 Ray-Casting Approach

For a function reconstruction at an arbitrary position, a nearest neighbor lookup
is first performed on the reference texture. If the returned value does not indicate
a null reference, it is added to the texture coordinate to perform the lookup in the
brick cache texture. Unfortunately, this process adds an extra texture indirection
to every lookup.

When the isovalue changes, bricks that potentially contain a part of the isosur-
face are downloaded into the brick cache texture. Inactive bricks are removed
with a simple LRU (least recently used) strategy when the storage space which
they occupy is required for active bricks. Bricks that are currently not resident
in the cache texture are specially marked as null reference at the corresponding
position in the reference texture (shown as white squares in Figure 6.4). During
ray-casting, samples in such bricks are simply skipped.

6.2.3 Adaptive Brick Resolution
For large data sets, the cache can be too small to fit all bricks that intersect the
isosurface. If this happens, selected bricks are downsampled until all bricks fit
into the cache texture. Based on an error metric, bricks with small amount of fine
surface detail are downsampled first. The error is measured as sum of squared
residuals at the sampling positions. At the interface between bricks of different
resolution, hanging nodes (see Section 3.4.1 can lead to discontinuities in the re-
constructed function. To avoid holes in the isosurface, the hanging nodes of the
high-resolution brick are assigned the reconstructed values of the low-resolution
brick.

For data sets which require adaptive brick resolution, the reference texture also
needs to store the corresponding resolution of each brick. The coordinate of the
brick cache texture lookup is then computed as a (per-brick) scale and offset of
the volume coordinate.

6.3 Ray-Casting Approach
The basic idea of GPU-based ray-casting is to drive a fragment program that
casts rays into the volume. Each pixel corresponds to a single ray x(t,x,y) =
c + t d(x,y) in volume coordinates. Here, the normalized direction vector d(x,y)
can be computed from the camera position c and the screen space coordinates
(x,y) of the pixel. For each fragment, a ray segment corresponding to the depth
range [tin(x,y), tout(x,y)] has to be searched for an isosurface intersection. In or-
der to do this, a fragment program loop is employed to sample the ray segment
until a surface intersection is detected. In the simplest case, tin is computed per
frame during initialization by rasterizing the front faces of the volume bounding
box with the corresponding distance to the camera. Rendering the back faces of
the bounding box yields the depths tout of each ray exiting the volume.

87

Chapter 6 Isosurface Ray-Casting

Figure 6.5: Ray-casting with object-order empty space skipping. The bounding geometry
(black) between active and inactive blocks that determines start and exit depths
for the intersection search along rays (white) encloses the isosurface (yellow).
Colored bricks of 2x2 blocks reference bricks in the cache texture (Figure 6.4).
White bricks are not in the cache. Actual ray termination points are shown in
yellow and red, respectively.

However, this range also includes empty blocks and would therefore not employ
empty space skipping. In the following two sections, we are going to present two
different strategies for empty block skipping. The first one computes the union of
all block segments per pixel during frame initialization. The entire range between
the first and the last block is then checked for intersection, even if there are empty
segments in between. The second version renders each active block individually.
Thus, all empty blocks are indeed skipped. The increased amount of ray segments
produce some additional setup cost, but the sample lookup is simplified because
segments do not cross brick boundaries.

Once a ray-isosurface intersection has been detected, its position is refined by an
iterative bisection procedure, which yields quality identical to much higher con-
stant sampling rates except at silhouette edges (Section 6.3.4). A simple adaptive
approach described in Section 6.3.3 improves the quality of silhouette edges.

6.3.1 Bounding Geometry Approach
In order to obtain ray start depths tin for each pixel, the front faces of the block
bounding geometry are rendered with their corresponding distance to the camera.
The front-most points of ray intersections are retained by enabling a corresponding
depth test (e.g. GL_LESS). For obtaining ray exit depths tout we rasterize the
back faces with an inverted depth test that keeps only the farthest points (e.g.
GL_GREATER). The geometry of active block bounding faces that are adjacent to
inactive blocks is kept in GPU memory for fast rendering.

Because each segment can cross several brick boundaries, each sample per-

88

6.3 Ray-Casting Approach

Figure 6.6: Computing block ray segments in a single pass. While only the back faces
of the cube are rendered (left), the front face positions can be reconstructed from
back face interpolants. The view vector (yellow, right) is interpolated on the back
faces of the cube. Additional scale factors are interpolated to reconstruct the po-
sitions (blue and green, right) on planes aligned with the front faces. The position
furthest from the camera corresponds to the front face.

forms first a lookup in the reference texture to read the offset in the brick cache
texture. To avoid this texture indirection, we do not use brick caching when the
whole volume fits into the texture memory.

Figure 6.5 shows that this approach does not exclude inactive blocks from the
search range if they are enclosed by active blocks with respect to the current view-
ing direction. Yet, the fragment shader skips to the next sample immediately when
a sample is contained in a brick marked as inactive in the brick reference texture
(section 6.2.2). Fortunately, most rays hit the isosurface soon after being started
and are terminated quickly (yellow points in Figure 6.5, left). Only a small number
of rays on the outer side of the isosurface silhouette are traced for a larger distance
until they hit the exit position of the block bounding geometry (red points in Fig-
ure 6.5, left). The right side of Figure 6.5 illustrates the worst case scenario, where
rays are started close to the view point, miss the corresponding part of the isosur-
face, and sample inactive blocks until they enter another part of the isosurface
bounding geometry and are terminated or exit without any intersection.

6.3.2 Block-Level Ray-Casting
In the approach presented in the last section, a single ray segment is sampled
per pixel, which crosses both active block and brick boundaries. As a direct im-
plication, empty block skipping is not fully effective and a texture indirection is
introduced per sample. To avoid these performance issues, the segments should
be sampled on a per-block basis. Unfortunately, the bounding geometry approach
cannot be employed because each block would require two rendering passes, one

89

Chapter 6 Isosurface Ray-Casting

for the front face and one for the back face. Fortunately, it is possible to compute
the front face position of a cube efficiently while rendering the back faces.

The rasterization process performs perspective linear interpolation of vertex
values in screen space. For any linear function f in object space, f

w is a linear
function in screen space, where w is the homogeneous clip coordinate. Internally,
the rasterization process linearly interpolates f

w and 1
w , from which the function f

is reconstructed for every pixel and passed to the fragment shader. Two different
homogeneous clip coordinates win and wout are required concurrently to interpo-
late the ray segment range [tin, tout], because tin is linear on the front faces while
tout is linear on the back faces. Furthermore, the front faces and back faces do not
generally coincide in screen space.

With a few tricks, it is still possible to reconstruct the ray segment solely from
values interpolated on the back faces of the block. The back face view vector
v = x−c points in the same direction as the front face view vector (see Figure 6.6).

vout = f ·vin (6.1)

The scale factor f = wout
win

can be interpolated correctly when rasterizing the back
face: because 1

win
is a linear function in screen space, the scale factor is a linear

function on the back face in object coordinates. However, there are up to five
back faces and up to three front faces on a cube under perspective projection. As
the front and back faces are not aligned, three scale factors fi are interpolated
concurrently across every back face. Each scale factor corresponds to an infinite
plane aligned with one of the front faces (Figure 6.6). The ambiguity is resolved
in the fragment program on a per-pixel basis: The plane furthest from the camera
is the one that corresponds to the front face. In combination with the view vector
interpolated on the back face, the front face view vector can thus be reconstructed
using

vin = max(1/ fi) ·vout (6.2)

In the vertex program, the scale factor fi per front face is computed from the
view vector v to the back face in block coordinates. The scale factor at a vertex
opposite of the front face can be computed from the view coordinate vi. Vertices
adjacent to the front face always have a corresponding scale factor of 1. Adjacency
can be detected with a simple test based on the face normal ni. The scale factor
can thus be calculated using the following formula:

fi =
{

1 : v ·ni < 0
vi

vi−1 : otherwise (6.3)

After reconstructing the ray segment, the fragment program needs to sample the
corresponding range. For volume rendering, a constant sampling density along the
ray is desired to avoid expensive opacity correction [WWH+00]. Thus, the sam-
ples would need to be aligned to a global grid. For isosurface rendering however,

90

6.3 Ray-Casting Approach

the sampling density does not need to be constant. Per ray segment, the range
[tin, tout] is sampled at a constant rate that is guaranteed not to fall below a user-
specified density.

To employ early ray termination once an isosurface has been hit, the blocks need
to be rendered in front to back order. The early z-culling mechanism could then
query the depth buffer for an isosurface intersection. If the depth value indicates
an intersection in front of the current segment, it does not need to be processed by
the fragment shader. Unfortunately, the early-z buffer on current hardware is in-
dependent of the full resolution z-buffer and there is no synchronization between
the two. The early-z mechanism cannot reflect surfaces rendered with one of the
fragment tests enabled. However, the alpha test has to be used to kill fragments of
segments that did not intersect the isosurface. Thus, the standard early-z mecha-
nism is not effective in this setting.

However, a manual test can be performed at the very beginning of the fragment
program and terminate processing immediately if a segment does not need to be
sampled. The segment depth is compared with the current value of the full reso-
lution depth buffer. For this, the depth buffer is concurrently bound as a texture.
Texture and frame buffer cache are not synchronized and binding the depth buffer
as a texture can lead to inconsistent texture values. However, the early fragment
program termination is a performance optimization and as such, a conservative
depth test (due to delayed synchronization) does not hamper correctness of the
algorithm.

Overall, sampling each ray on a segment-per-block basis introduces some setup
overhead. On the other hand, no texture indirection is required to read the cache
brick offset and resolution. Empty blocks are fully skipped but early ray termina-
tion is not straightforward. Thus, the bounding geometry approach shows better
performance when the whole volume fits into the graphics memory and no cache
bricks are required. For large data sets that require brick packing and down sam-
pling, block-level ray-casting is the method of choice.

6.3.3 Adaptive Sampling
In order to find the position of the intersection for each ray, the scalar function
is reconstructed at discrete sampling positions pi(x,y) = c + ti d(x,y) for increas-
ing values of ti in [tin, tout]. The intersection is detected when the first sample lies
behind the isosurface, e.g. when the sample value is smaller than the isovalue.
Note that in general the exact intersection occurs somewhere between two suc-
cessive samples. Due to this discrete sampling, it is possible that an intersection
is missed entirely when the segment between two successive samples crosses the
isosurface twice. This is mainly a problem for rays near the silhouette (see Fig-
ure 6.7). Guaranteed intersections even for thin sheets are possible if the gradient
length is bounded by some value L [KB89]. Note that for distance fields, L is
equal to 1. For some sample value f , it is known that the intersection at isovalue ρ

91

Chapter 6 Isosurface Ray-Casting

cannot occur for any point closer than h = | f −ρ|/L. Yet, h can become arbitrarily
small near the isosurface, which would lead to an infinite number of samples for
guaranteed intersections.

Figure 6.7: Upper error bound of missed features on the silhouette of
an object. Given the maximum curvature magnitude κ1 of the
isosurface, the maximal error is given by the thickness h of a
circular segment: error≤ h = R−

√
R2− c2/4 where R = 1/κ1

is the radius of a circle with curvature magnitude κ1 and the
chord length c is the sampling distance. Thus, it is possible to
state the sampling distance required to fulfill a given silhouette
error bound.

Adaptive sampling has been used to improve intersection detection. The ac-
tual position of an intersection that has been detected is then further refined using
the approach described in Section 6.3.4. It has been found that completely adap-
tive sampling rates are not well suited for implementations on graphics hardware.
These architectures use multiple pipelines where small tiles of neighboring pixels
are scan-converted in parallel using the same texture cache. With a completely
adaptive sampling rate, the sampling positions of neighboring pixels diverge dur-
ing parallel execution, leading to under-utilization of the cache. Therefore, only
two different discrete sampling rates have been used. The base sampling rate r0
is specified directly by the user where 1.0 corresponds to a single voxel. It is the
main tradeoff between speed and minimal sheet thickness with guaranteed inter-
sections. In order to improve the quality of silhouettes (see Figure 6.8), a second
maximum sampling rate r1 as a constant multiple of r0 has been used: r1 = nr0.
The implementation currently uses n = 8. However, silhouettes are not detected
explicitly at this stage, because it would be too costly. Instead, we automatically
increase the sampling rate from r0 to r1 when the current sample’s value is closer
to the isovalue ρ by a small threshold δ. In our current implementation, δ is set by
the user as a quality parameter, which is especially easy for distance fields where
the gradient magnitude is 1.0 everywhere. In this case, a constant δ can be used
for all data sets, whereas for CT scans it has to be set according to the data.

6.3.4 Intersection Refinement
Once a ray segment containing an intersection has been detected, the next stage
determines an accurate intersection position using an iterative bisection procedure.
In one iteration, we first compute an approximate intersection position assuming
a linear field within the segment. Given the sample values f at positions x for the
near and far ends of the segment, the new sample position is

xnew = (x f ar−xnear)
ρ− fnear

f f ar− fnear
+xnear (6.4)

92

6.4 Deferred Shading

Figure 6.8: The left image illustrates a small detail of the asian dragon model with a sam-
pling rate of 0.5. On the right, adaptive sampling increases the sampling rate to
4.0 close to the isosurface. Note that with the exception of the silhouettes, there is
no visible difference due to iterative refinement of intersections.

Then the value fnew is fetched at this point and compared to the isovalue ρ.
Depending on the result, the ray segment is updated with either the front or the
back sub-segment. If the new point lies in front of the isosurface (e.g. fnew > ρ),
xnear is set to xnew, otherwise x f ar is set to xnew and repeated. We have found
empirically that a fixed number of four iteration steps is enough for high-quality
intersection positions.

6.4 Deferred Shading
While the last section explained how to compute accurate ray-surface intersections
for each pixel, this section describes how to turn the position image into a high-
quality rendering using deferred shading. All algorithms described in this section
have image space complexity, which means that they are independent of the size
of the grid data.

6.4.1 Differential Surface Properties
Chapter 5 described how to quickly evaluate cubic reconstruction filters and their
partial derivatives. This section shows that these basic capabilities can be ex-
ploited to calculate differential properties of isosurfaces from the scalar volume.

Partial derivatives. The first differential property of the scalar volume that
needs to be reconstructed is its gradient g = ∇ f , which can be used as implicit
surface normal and for curvature computations. The surface normal is the nor-
malized gradient of the volume, or its negative, depending on the notion of being
inside/outside the object: n = ±g/|g|. A tri-cubic B-spline convolution sum is
evaluated to compute each of the partial derivatives via eight texture fetches from
the 3D volume texture. The Hessian H = ∇g is comprised of all second partial

93

Chapter 6 Isosurface Ray-Casting

Figure 6.9: Color mapping of maximum principal curvature magnitude using a 1D color
look-up table (dragon data set with 512x512x256 samples).

derivatives of the volume. For mixed derivatives (e.g. ∂2/∂x∂y), eight 3D texture
fetches are used. For the three diagonal elements of H (e.g. ∂2/∂x2), twelve 3D
fetches are necessary. The offsets and weights for the fast convolution described
in Chapter 5 can be fetched once for all derivatives with six lookups into a 1D tex-
ture. In total, computing all first partial derivatives amounts to 30 texture fetches.
Another 60 texture fetches are required to additionally compute all second order
partial derivatives. A total of 90 texture fetches seems to be quite excessive. Fortu-
nately, the texture cache is fully effective and the ratio between texture fetches and
program instructions is still below the number most current hardwares have been
designed for (usually 2 program instructions per texture fetch for both NVIDIA
and ATI, except for the most current ATI chip (Radeon X1900) which uses a ratio
of 6).

Extrinsic curvature. The first and second principal curvature magnitudes (κ1,
κ2) of the isosurface can be estimated directly from the gradient g and the Hessian
H [KWTM03], whereby tri-cubic filtering in general yields high-quality results.
The principal curvature magnitudes amount to two eigenvalues of the shape oper-
ator S, defined as the tangent space projection of the normalized Hessian:

94

6.4 Deferred Shading

Figure 6.10: Curvature Mapping of a 643 synthetic data set. Principle curvatures (top),
mean curvature (κ1 + κ2)/2 (bottom left), and Gaussian curvature κ1κ2 (bottom
right). Our renderer is capable of reproducing images from [KWTM03] at inter-
active rates.

S = PT H
|g|

P, P = I− ggT

|g|2
(6.5)

where I denotes the identity matrix. The eigenvalue corresponding to the eigen-
vector g vanishes, and the other two eigenvalues are the principal curvature mag-
nitudes. As one eigenvector is known, it is possible to solve for the remaining
two eigenvectors in the two-dimensional tangent space without ever computing S
explicitly. This results in a reduced amount of operations and improved accuracy
compared to the approach given in [KWTM03]. The transformation of the shape
operator S to some orthogonal basis (u,v) of the tangent space is given by

A =
(

a11 a12
a21 a22

)
= (u,v)T H

|g|
(u,v) (6.6)

Eigenvalues of A can now be computed using the direct formulas for 2x2 matri-
ces. The two eigenvectors of the shape operator S corresponding to the principal
curvature directions are computed by transforming the eigenvectors of A back to
three-dimensional object space.

95

Chapter 6 Isosurface Ray-Casting

κ1,2 =
1
2

(
trace(A)±

√
trace(A)2−4det(A)

)
(6.7)

ei = a12u+(κi−a11)v (6.8)

This amounts to a moderate number of vector and matrix multiplications, and
solving a quadratic polynomial.

6.4.2 Shading Effects
After the computation of differential surface properties, the results can be used
for deferred shading in image space. Hence, all shading is decoupled from the
volume and only calculated for actually visible pixels. This section outlines some
of the example shading modes that have been implemented.

Shading from gradient image. The simplest shading equations depend on
the normal vector of the isosurface. We have implemented standard Blinn-Phong
shading [Bli77] and tone shading [GGSC98] (Figure 6.14), as well as reflection
and refraction mapping (Figure 6.13) that index an environment map with vectors
computed from the view vector and the normal vector.

Solid texturing. The position image that contains ray-surface intersection po-
sitions can be used for application of a solid texture onto the isosurface. The
object is parametrized by specifying an affine transformation from object space
to texture space coordinates. We also use tri-cubic B-spline filtering instead of
trilinear interpolation for improved texture quality (a comparison is depicted in
Figure 6.15).

Curvature color mapping. The extrinsic curvature can be visualized on the
isosurface by mapping curvature measures to colors via lookup textures. First
and second principal curvatures, mean curvature (κ1 +κ2)/2 and Gaussian curva-
ture κ1κ2 can be visualized using a 1D lookup texture (see Figures 6.9 and 6.10)
and provide a good understanding of the local shape of the isosurface. Using a
two-dimensional lookup texture for the (κ1,κ2) domain allows to highlight dif-
ferent structures on the surface. Figure 6.11 shows approximated accessibility
shading [Mil94]. In this case, a simple 1D curvature transfer function has been
used to darken areas with large negative maximum curvature. Alternatively, a 2D
curvature function could also be employed for this purpose, which would provide
finer control over the appearance.

Curvature-aligned flow advection. Direct mappings of principal curvature di-
rection vectors to RGB colors are hard to interpret, see Figure 6.1 (curvature direc-
tions). Instead of showing curvature directions directly, they have been visualized
with an approach based on image-based flow visualization [Wij03]. In particular,
we are advecting flow on the surface entirely in image space [LJH03] by com-
puting advection on a per-pixel basis according to the underlying vector field of
principal curvature directions. Image-based flow advection methods can be used

96

6.4 Deferred Shading

Figure 6.11: Asian dragon data set (512x256x256). Left: tone shading. Right: tone shad-
ing blended with accessibility shading, thereby allowing better depiction of local
surface details.

Figure 6.12: Dense flow advected in the direction of maximum principal curvature (head
of the David data set with 5123 samples).

97

Chapter 6 Isosurface Ray-Casting

Figure 6.13: High-quality surface reflection mapping. The reflection vector is used to
perform a lookup into an environment cube map. Cubic gradient reconstruction
filter provides smooth normals for alias-free reflection mapping.

on surfaces without parametrization by projecting a 3D flow field to the 2D image
plane and advecting entirely in the image [Wij03]. This can be done by simply
projecting each 3D curvature direction vector stored in the corresponding float-
ing point image to the image plane immediately before performing advection for
a given pixel. Image-based flow advection easily attains real-time rates, which
complements the capability of our pipeline to generate the underlying, potentially
unsteady, flow field in real-time (see Figure 6.12). A problem with advecting flow
along curvature directions is that their orientation is not uniquely defined and thus
seams in the flow cannot be entirely avoided [Wij03]. Although these seams are
visible when looking closely, they have not been found to be very disturbing in
practice. Even though the flow field we are computing from curvature directions
contains clearly visible patches (Figure 6.1: curvature directions), the resulting
flow has much higher quality (Figure 6.12).

Non-photorealistic effects. Curvature information can be used for a variety of
non-photorealistic rendering modes. We have implemented silhouette outlining,
taking curvature into account, in order to control thickness, and depicting ridge
and valley lines specified via colors in the (κ1,κ2) domain [KWTM03]. See Fig-
ures 6.16 and 6.10. In our pipeline, rendering modes such as these are simple
operations that can be carried out in the final shading pass, usually in combination
with other parts of a larger shading equation, e.g. tone shading or solid texturing.
The combination of curvature magnitude color maps and curvature-directed flow
proves to be especially powerful for visualizing surface shape, e.g. as guidance
during modeling.

98

6.4 Deferred Shading

Figure 6.14: A wide range of rendering styles are possible in a deferred shading pipeline.
Per pixel phong shading (left) of a CT scan of the bunny model as well as non-
photorealistic rendering (right) including tone shading and silhouette outlining of
the dragon model.

Figure 6.15: Comparison between linear (left) and cubic (right) reconstruction filters. The
top row shows reflection lines produced by reflection mapping in a synthetic en-
vironment with horizontal stripes. The bottom row shows solid texturing. The
superior quality of the cubic reconstruction filter produces uniformer reflection
lines and smoother texture mapping.

99

Chapter 6 Isosurface Ray-Casting

Figure 6.16: Contours modulated with curvature in view direction, and ridges and valleys
on an isosurface of a 512x512x333 CT scan of a human head.

Figure 6.17: Real-time evaluation of CSG operators to cut a knot out of a sphere. The
implicit definition of the CSG model is computed from the implicit definition of
the two operands. The simple formula (fcsg = max(fsphere,− fknot)) is evaluated
on-the-fly per sample during the ray-casting process.

100

6.4 Deferred Shading

6.4.3 Applications

This section illustrates several powerful example applications of our rendering
pipeline.

Modeling. The high-quality and real-time performance of our rendering
pipeline make it ideal for rendering front-end for modeling with implicits, e.g.
level-set methods [MBWB02]. As a simple example modeling application, we
have implemented CSG operations on distance fields. See Figure 6.17 for an
example. For the intersection and subtraction of two objects A and B, the implicit
definition is given as min(fA − ρA, fB − ρB) and min(dA − ρA,ρB − fB), respec-
tively. When sampling the volume of one operand, the combined distance field is
computed on-the-fly. For each pixel we track which object it belongs to, according
to the comparison of the two distance values. The generated object map allows the
computation of accurate surface properties and sharp edges on the object resulting
from the CSG operation in real-time.

Figure 6.18: Morphing two objects represented as signed distance fields. For this example,
simple linear interpolation between the two fields was used. However, all methods
that can update a distance field in real-time can be combined with our rendering
pipeline.

Morphing. As an example application of morphing one object into another,
we simply interpolate linearly between two distance fields and display the result
on-the-fly, see Figure 6.18. Higher-quality morphing techniques, e.g. variational
implicit surfaces [TO99], can be combined with our technique by establishing a
distance field prior to rendering.

Volume rendering. Since the input to our rendering pipeline is an arbitrary
scalar field, it is naturally applicable to the rendering of isosurfaces in CT scans.
We have integrated our renderer into an existing volume rendering framework as
high-quality isosurface rendering front-end. In particular, real-time curvature esti-
mation can be used to guide volume exploration, e.g. visualizing isosurface uncer-
tainty, as has been proposed previously for off-line volume rendering [KWTM03]
(see Figure 6.16). Time-dependent volume data can immediately be handled as
well.

101

Chapter 6 Isosurface Ray-Casting

6.4.4 Performance Evaluation and Discussion
The performance numbers of our rendering pipeline corresponding to the figures
shown in this chapter are found in Table 6.1. Except for very small volumes, the
overall performance is dominated by the initial volume sampling step that com-
putes approximate intersection positions. Although differential surface properties
are expensive to compute in general, the fact that all of these computations have
image space complexity combined with fast filtering significantly decrease their
impact on the overall frame rate. More importantly, the time spent on these com-
putations is constant with respect to sampling rate and volume resolution. The
same is true for intersection optimization via bisection. Table 6.2 illustrates the
performance impact of different sampling rates. With respect to adaptive sam-
pling, we compare constant sampling rates with the same rates for the maximum
sampling rate r1 that is used close to the isosurface (Section 6.3.3). For global ray
segments, the overhead of the texture indirection introduced by bricking is signif-
icant. The indirection is not required for the blocked rendering approach, because
the texture offset can be calculated per ray segment. The overhead introduced by
the ray segment computation is mitigated by fully effective empty space skipping.

data set grid size figure fps
asian dragon 512x256x256 6.2 20.3
asian dragon 512x256x256 6.11 24.0
david head 512x512x512 6.2 15.3
david head 512x512x512 6.12 14.9
david 576x352x1536 6.3 10.3
cube 64x64x64 6.10 29.6
dragon 512x512x256 6.9 11.7

Table 6.1: Performance of the renderings shown in the figures. Frame rates are given in
frames per second for a 512x512 viewport. Four bisection steps have always been
used, since they do not influence overall performance significantly.

A problem that can be seen in Figure 6.16, is that even when cubic filters are
used, the curvature computed on actual scanned data contains visible noise. How-
ever, the quality of cubic filters is almost indistinguishable from filters up to order
seven [KWTM03]. In any case, it is important to use full 32-bit floating point
precision for all GPU computations.

A limitation of our bisection approach for intersection is that in compari-
son to an analytic root search [DPH+03] or isolation of exactly one intersec-
tion [MKW+04], our discrete sampling with fixed step size does not guarantee
correct detection of segments with multiple intersections. Furthermore, our
bisection search might not find the intersection closest to the camera in such
configurations.

102

6.4 Deferred Shading

adaptive brick sampling rate (adaptive: r1)
sampling size 0.25 0.5 1 2 4 8

no none 33.2 29.0 22.7 16.9 12.4
no 32 23.8 19.5 16.1 11.7 7.2

r1 = 8r0 none 34.6 27.4 20.3 15.2
r1 = 8r0 32 19.2 13.8 10.2 6.9

Table 6.2: Rendering performance in frames per second corresponding to different sam-
pling rates for the asian dragon rendering found in Figure 6.2. Brick caching
introduces an additional texture indirection per sample (Section 6.2.2). Adaptive
sampling (Section 6.3.3; n = 8) with bricking reduces this overhead compared to
constant sampling.

Another consideration is whether to use an interpolating filter, such as trilinear
interpolation or Catmull-Rom cubic splines, or a smoothing filter such as the cubic
B-spline for reconstruction purposes. Possibly, a very good combination would
be to use an interpolating filter for value reconstruction, and a smoothing filter for
reconstructing derivatives.

103

Chapter 6 Isosurface Ray-Casting

104

Chapter 7

Quadric Rendering

The geometric complexity of implicit surfaces represented by a grid of function
values is only limited by the sampling resolution. On the other hand, quadratic
surfaces are a simple basic building block to construct more complicated objects.
Due to their compact and simple definition, they are widely used in many ap-
plications, for example in CAD systems or constructive solid geometry, and are
frequently employed for scientific visualization of tensor fields, particle systems
and molecular structures.

While high visual quality can be achieved using sophisticated ray tracing tech-
niques, interactive applications typically use either coarsely tessellated polygonal
approximations or pre-rendered depth sprites, thereby trading off visual quality
and perspective correctness for higher rendering performance. However, the im-
plicit definition of quadratic surfaces allows efficient GPU-accelerated splatting.
A tight bounding box of the quadric is computed in the vertex program. This
bounding box is rasterized and for each fragment, the ray-isosurface intersection
is computed in the fragment program. Both bounding box and ray hit position can
be stated as the root of a bilinear form, corresponding to the implicit surface def-
inition in screen space. Using homogeneous coordinates, the rendering approach
also supports perspective projections.

We developed a small library to support hardware accelerated quadratic sur-
faces within OpenGL. Spheres, ellipsoids, cylinders and cones are available as an
additional primitive, which can be rendered using just one vertex call. To demon-
strate the usefulness of such a library, we implemented a molecule renderer for
the common balls-and-sticks and space-filling representations. To prove the sim-
ple incorporation into existing designs, shadow maps and post processing filters to
enhance silhouettes have been used. These enhanced rendering effects can greatly
improve the spatial perception of the molecule.

105

Chapter 7 Quadric Rendering

7.1 Overview
Quadrics are very well-suited for ray-casting because intersections between a line
and a quadric are evaluated efficiently by solving a quadratic equation [TL04].
Although quadric surfaces are featured by many graphics APIs, such as OpenGL
utility library [WDS99], they are tessellated for rendering because current graph-
ics hardware is optimized solely for triangle-based rasterization. For high-quality
surface rendering, a fine tessellation is required to reduce the error of the piece-
wise linear approximation. However, small triangles produce disproportionate
workload at the vertex shader and triangle setup stage.

Employing the programmability of current graphics hardware, it is possible to
implement a ray-casting algorithm for quadrics [TL04], thereby enabling hard-
ware acceleration for this basic primitive type. In the transformation stage of the
pipeline, the implicit definition is projected into screen space. This allows the
computation of a tight bounding box for the rasterization process. The implicit
definition in screen space is also used to efficiently evaluate the quadratic equa-
tion per pixel in the fragment shader to determine the ray-surface intersection.
Once the ray hit position is known, a standard phong shading model [Bli77] can
be evaluated to achieve smooth high-quality shading.

By using our simple interface, quadric rendering primitives can be mixed seam-
lessly with standard primitives, such as triangles. To demonstrate one possible
application of this method, the approach has been applied to illustrative molecule
rendering to prove its simple integration into a more complex rendering pipeline
as well as its superior quality and performance. Several standard atomic mod-
els are used for the study and dissemination of molecular structure and function.
Space-filling representations and ball-and-stick models are among the most com-
mon ones. The research community uses a number of free and commercial pro-
grams to render these models, each having a specific trade-off between quality
and rendering speed. Real-time rendering approaches that can cope with large
models typically use hardware assisted triangle rasterization [HDS96], whereas
high-quality images are produced with ray-tracing [DeL02]. Hand drawn illus-
trations are used to emphasize certain regions of the model [Goo05], but are very
time consuming to produce and require artistic talent.

7.2 Splatting of Quadratic Surfaces
This section will explain all steps necessary to render exact per-pixel shaded
quadric surfaces under perspective projections. We will first look at one spe-
cific implicit definition of the quadric surface, which can be transformed to screen
space even under perspective projections. Namely, we can write the quadratic
equation as a bilinear form in homogeneous coordinates. The screen space pro-
jection of the bilinear form in homogeneous coordinates is equivalent to a basis

106

7.2 Splatting of Quadratic Surfaces

Figure 7.1: Molecular representation of a plant seed protein and human insulin rendered
with hardware accelerated sphere and cylinder primitives. Our rendering approach
is fast enough to employ silhouette outlining and soft shadows for improved spatial
perception at interactive rates.

transformation. This insight will allow the derivation of formulas to compute
screen-space bounding boxes, solve ray intersections and evaluate surface nor-
mals.

The goal to exert the computation power of GPUs is the main reason to support
quadric rendering primitives on this type of hardware. Additionally, it also avoids
the tradeoff between rendering quality and excessive triangulation of quadrics in
mixed scenes. However, a rendering approach needs to comply with the pipeline
of current rasterization APIs [WDS99]. Rendering a triangle with these APIs,
such as OpenGL or DirectX, is divided into the following stages: In the vertex
shader, each vertex of a triangle is transformed to screen space independently.
The rasterization process determines which pixels are covered by the triangle.
The color of each of these pixels is then computed in the fragment shader, and
written to the frame buffer using the blending stage.

While vertex shader and fragment shaders are fully programmable on current
generation graphics cards, all other stages carry out fixed operations. The rasteri-
zation process exhibits the biggest limitations for quadric rendering: for triangles,
both coverage test and interpolation of vertex attributes are computed using lin-
ear functions. For quadratic surfaces however, the coverage test would require a
quadratic edge function to be evaluated. The fragment depth is the solution of
a quadratic equation. Rasterization hardware is highly optimized for triangles to
deal with the impressive throughput of the fragment shaders. Therefore, we can-

107

Chapter 7 Quadric Rendering

not expect to see programmable rasterization supporting quadratic functions in the
near future. Instead, we rasterize a bounding polygon of the quadric and execute
the exact coverage test in the pixel shader [BK03].

As previously mentioned, vertices are transformed to screen space indepen-
dently. Therefore, it is not possible to share the transformation of the quadric
surface across multiple vertices of the bounding polygon. To avoid recalculation,
we would like to use as little vertices as possible for a tight bounding polygon
of the quadratic surface. The point sprite, which is a square in screen space de-
fined by a single vertex, provides the best tradeoff of all standard rendering prim-
itives [BK03]. The position and size of the point sprite can be computed in the
vertex program to tightly fit the projected quadric.

7.2.1 Implicit Definition in Homogeneous
Coordinates

In general, quadratic surfaces are defined as the set of roots of a polynomial of
degree two:

f (x,y,z) = Ax2 +2Bxy+2Cxz+2Dx+Ey2

+2Fyz+Gy+Hz2 +2Iz+ J = 0
(7.1)

The shape of the quadric is solely determined by the coefficients A through J.
The first step is to simplify this longish equation to a compact form. The quadratic
equation can be written as a bilinear form in homogeneous coordinates with the
conic matrix Q:

xT Qx = 0 Q =

A B C D
B E F G
C F H I
D G I J

 x =

x
y
z
1

 (7.2)

This form is not only much shorter, it is also invariant under perspective projec-
tions. The key observation is that perspective projections become a linear trans-
formation in homogeneous coordinates. Therefore, the quadric can still be defined
in the same form when it is projected to screen space. In general, the implicit def-
inition can be transformed to other coordinate systems by a basis transformation
of the bilinear form.

108

7.2 Splatting of Quadratic Surfaces

Figure 7.2: The OpenGL vertex transformation sequence is preceded by an additional
transformation from parameter coordinates to object coordinates. In parameter
coordinates, the conic matrix defining the quadric surface is a diagonal matrix.

7.2.2 Perspective Projection
In OpenGL terminology, the quadric is defined in object space and then subse-
quently transformed to window coordinates by the transformation sequence de-
noted in Figure 7.2. Each linear transformation in the sequence is determined by a
matrix M, expressing the basis of the previous coordinates in the new coordinate
system. In order to transform the bilinear form to the new basis, its corresponding
conic matrix Q needs to be multiplied by the inverse transformation matrix from
both sides.

x′T Q′x′ = x′T (M−TQM−1)x′ = (x′T M−T)Q(M−1x′) = xT Qx (7.3)

Indeed, transforming the conic matrix to a new basis is equivalent to transform-
ing its operands back to the old basis. This allows the bilinear form to be expressed
in any coordinate system of the transformation sequence.

For each quadric surface, there is one distinct basis which has been used to sim-
plify the formulas for bounding boxes and equations of ray-surface intersection.
Due to the fact that the conic matrix Q is symmetric, it can be put into diagonal
form by a basis transformation. Each non-zero matrix element can be normalized
by scaling the basis.

TT QT = D D diagonal, dii ∈ {0,±1} (7.4)

The coordinate system where the bilinear form of a quadric has this diagonal
normalized form will be denoted parameter space. The transformation matrix T,
called variance matrix, expresses the basis of the parameter space in object coor-
dinates. The columns contain the axis u,v, t and center c of the quadric, according
to Table 7.1.

109

Chapter 7 Quadric Rendering

T =
[

u v t c
0 0 0 1

]
(7.5)

In the transformation sequence of Figure 7.2, the parameter space is placed in
front of the object coordinates. Therefore, every quadric can be defined as an
affine transformation of one of the basic classes of quadrics in parameter space.
The class of the quadratic surface is determined by the normalized diagonal form.

7.2.3 Bounding Box Computation
As explained in Section 7.2, the rendering approach needs to comply with the
graphics pipeline implemented on graphics cards. Rasterization hardware only
supports primitives with piecewise linear edges. Therefore, a bounding polygon of
the quadric in screen space needs to be computed. Pixels which are rasterized but
are not covered by the quadric are culled during fragment shading by evaluating
the correct quadratic edge function.

Obviously, the smaller the number of pixels culled in the fragment shader the
better. On the other hand, complex bounding polygons should be avoided, because
computations cannot be shared across the vertices of the polygon. Therefore, the
conic matrix needs to be transformed for each vertex, for example. The point sprite
primitive provides the best tradeoff between vertex count and pixel overdraw for
most quadrics rendered. Point sprites are rendered with one single vertex call,
which completely avoids re-computations. The ratio of culled pixels is usually
acceptable. Unfortunately, for thin shapes such as long cylinders, point sprites are
not quite optimal.

Note that only ellipsoids are naturally bound by their implicit definition. All
other quadrics, such as cylinders or cones, are clipped by the unit cube in param-
eter space. Bounding box computation will be explained for ellipsoids first and
then be generalized for other classes of quadrics. We will use the notion from
Figure 7.2 to denote the coordinate systems of vectors and the transformation ma-
trices between them.

To define the parameters of the point sprite, the vertex program needs to com-
pute the center position in clip coordinates and the point sprite radius in window
coordinates. A tight bounding box of the projected quadric in clip coordinates
is computed first. An axis aligned bounding box in clip coordinates is defined
by four intersecting half spaces. Each halfspace is defined by an equation of the
following form:

xT
c nc ≤ 0 (7.6)

For example, the halfspace to the left of bx is given by xc ≤ bx, corresponding
to nc = [1 0 0 −bx]T . For the bounding box to be tight, the bounding plane of the
halfspace needs to touch the quadric. This condition can be enforced in parame-
ter space, where the quadric is defined by the normalized diagonal matrix D. In
parameter space, the ellipsoid coincides with the S2 sphere, and each point on the

110

7.2 Splatting of Quadratic Surfaces

sphere is also the normal of a tangent plane. Therefore, the touching condition in
parameter space becomes

nT
p Dnp = 0. (7.7)

Transforming this condition to clip space is slightly different than transforming
the conic equation, because we are dealing with planes instead of points. Plane
normals are transformed with the inverse-transposed matrix.

xT
p np = xT

p (P ·MV ·T)T nc ≤ 0
⇒ np = (P ·MV ·T)T nc = r1−bxr4

(7.8)

with ri being the i-th row of the compound transformation matrix P ·MV ·T.
Substitution into the constraint 7.7 yields a quadratic equation for the horizon-
tal bounding box coordinate bx.

(rT
4 Dr4)b2

x −2(rT
1 Dr4)bx +(rT

1 Dr1) = 0. (7.9)

The two solutions of the quadratic equation correspond to the position of the
left and right border of the bounding rectangle. For the vertical borders, we have
to replace r1 with r2 in Equation 7.9.

The vertex position of the point sprite in clip coordinates coincides with the
center of the bounding box. In homogeneous coordinates, the center position can
be stated without division as

vc = [rT
1 Dr4,rT

2 Dr4,0,rT
4 Dr4]T (7.10)

The z-coordinate can be set arbitrarily because the depth value is overwritten in
the fragment program anyway. The bounding box size has to be defined in terms
of the point sprite radius. This term is misleading, because the point sprite is a
square, and the radius corresponds to half the edge length in pixel units. Therefore,
we apply the viewport transformation to the bounding box size and set half of the
larger value to the point size radius.

Point sprite parameters for cylinders and cones can be computed with a similar
approach. Those quadrics are culled at the unit cube in parameter space and thus,
they are cut off by ellipsoidal caps. One bounding box is computed per elliptic
cap and the point sprite is constructed to cover both bounding boxes. Overall, the
vertex program for cylinders and cones is slightly larger.

7.2.4 Ray-Quadric Intersection
The rasterization process initiates a fragment shader call for each pixel inside the
point sprite. The task of the fragment shader is to kill fragments which are not
covered by the quadric and evaluate a lighting model for all others. In order to
combine quadrics with standard primitives, the depth value of the surface needs to
be computed per pixel as well. For the corresponding ray intersection problem, we

111

Chapter 7 Quadric Rendering

need to find the root of a quadratic equation. If the equation has no real solution,
the ray is not intersecting the quadric and the fragment can be killed.

We use the unknown depth value zw of the intersection to parametrize the view-
ing ray corresponding to the pixel [xw,yw] in window coordinates:

xw =

xw
yw
zw
1

= x′w + zw

0
0
1
0

 (7.11)

where x′w denotes the front plane position [xw,yw,0,1]T . We take a similar ap-
proach as in the last section by transforming the ray equation to parameter space.

xp = (VP ·P ·MV ·T)−1xw = x′p + zwc3 (7.12)

where x′p is the front plane position in parameter coordinates and c3 is the third
column of the inverse transformation matrix. Inserting the ray equation into the
quadric definition reveals the formula for the intersection depth in window coor-
dinates:

0 = (x′p + zwc3)T D(x′p + zwc3)

= (cT
3 Dc3)z2

w +2(x′Tp Dc3)zw +x′Tp Dx′p
(7.13)

If the discriminant of the quadratic equation is negative, there is no intersection
and the fragment can be killed. If the polynomial has two real roots, the smaller
one corresponds to the closer intersection and is written to the depth buffer.

Note that the matrix in Equation 7.12 as well as the last summand in Equa-
tion 7.13 can be computed per quadric in the vertex program. Several other opti-
mizations are possible to reduce the fragment program length to a small number
of operations. The vertex and fragment programs for rendering spheres are listed
in Appendix B.

The evaluation of the lighting model requires the position and normal of the
surface in eye space. While the position is computed by transformation from
window coordinates, the normal is transformed from parameter space:

pe = (VP ·P)−1 xw , (7.14)

ne = (MV ·T)−T np . (7.15)

Notice that in order to compute Equations 7.12, 7.14, 7.15, only the quadric-
dependent matrix (MV ·T)−1 needs to passed from the vertex shader to the frag-
ment shader, since the matrix VP ·P is constant. Passing too many parameters to
the fragment shader reduces performance of the rasterization process. Based on pe
and ne, any lighting model can be evaluated on a per-pixel basis. We implemented
standard phong shading to prove the rendering quality of our method. Figure 7.3
shows a screen shot of three simple quadratic surfaces.

112

7.3 Molecule Rendering

Figure 7.3: A handle consisting of two spheres and a cylinder. Note the smooth highlights
as a result of per pixel lighting, as well as the sharp intersection curve due to per-
pixel depth correction. In the right image, the near plane has been adjusted to cut
off the tip of the right sphere.

7.3 Molecule Rendering
The previous section explained the approach of hardware accelerated quadratic
surface rendering. In this section, we are going to present molecule rendering as
one application where this technique proves to be advantageous. Illustrations are
widely used for the study of molecular structure and function. In order to create
these illustrations, several metaphors have been employed.

Balls-and-sticks models are highly effective for displaying the covalent struc-
ture of the molecule. Each atom is represented by a sphere and each pair of bonded
atoms is connected with a cylinder. This metaphor is particularly useful for or-
ganic compounds, because the natural rules of covalent bonding are represented
with consistent bond lengths, angles, and geometries. On the other hand, the prop-
erties of the electrons are best captured with space-filling representation. A sphere
is placed at each atom center with a radius corresponding to the contact distance
between atoms. Additional information may be layered onto these representations
by coloring the bonds, or by varying the size or texture of cylinders and spheres.
Higher level metaphors to capture the topology of biomolecules use ribbons and
tubes to represent protein chains and nucleic acids.

Several effective tools have been developed to render molecules in real time
using these metaphors. For large structures consisting of several thousands of
atoms, real-time visualization of all atoms and covalent bonds poses a challenge
because the models need to be tessellated for rasterization. Usually, visual quality
is sacrificed for mesh sizes which allow real-time rendering. Using our hardware
accelerated algorithm for quadric primitives, tessellation of spheres and cylinders
is no longer necessary. Therefore, we can achieve interactive frame-rates for large
models consisting of hundreds of thousands of atoms.

Perception of form and shape are crucial for gaining insight into the struc-
ture and function of molecules. Several techniques are employed to grasp the
three-dimensional shape of a molecule from a flat image. Real-time rendering ap-

113

Chapter 7 Quadric Rendering

proaches exploit the ability of the human mind to decode temporal coherence of
rotating objects. Illustrations in printed media use shadows and silhouette edges to
improve depth perception. Finally, stereoscopic imaging also creates an artificial
impression of three-dimensional vision. Our rendering approach is able to com-
bine all three of these techniques in order to provide keen insight into a molecule.

Hardware support for quadric rendering primitives allows large models con-
sisting of thousands of spheres and cylinders to be rendered in real-time. We
implemented shadow maps using percentage-closer filtering for smooth shadow
edges. The complexity of expensive per-pixel shading is kept linear with the out-
put resolution using a deferred shading approach. This also allows us to apply post
processing filters for silhouette outlining. The improvement in spatial perception
when using these effects is depicted in Figure 7.4 and 7.7. Finally, support for
stereoscopic rendering is available for most OpenGL drivers.

Figure 7.4: Improved spatial perception with visual effects. In comparison to pure per-
pixel phong shading, silhouette and crease outlining and soft shadows make it
much easier to conceive the structure of the molecule.

114

7.3 Molecule Rendering

7.3.1 Deferred Shading
Similar to the rendering approach presented in Chapter 6, a range of effects are
used to compute the color of a quadric surface fragment, including soft shadows
and silhouette edge detection. To avoid expensive evaluation of the shading equa-
tion for fragments which are subsequently overdrawn by another fragment closer
to the camera, deferred shading [DWS+88] is employed again (see Section 6.4).
The key idea is to write all parameters required to evaluate the shading equation
for a fragment to a screen-sized geometry buffer. When the entire scene for a
frame is drawn, the shading equation is evaluated only once for each pixel using
the parameters of the buffer.

As a result of employing shadow mapping, our pipeline consists of three sepa-
rate rendering passes. In the first pass, the scene is rendered from light view to a
depth map, called shadow map. The light view is defined by the bounding frustum
of the spot light illuminating the scene.

In the second pass, the scene is rendered from the camera view. Instead of eval-
uating the shading equation for each fragment, we write the following parameters
to the geometry buffer: fragment depth in window coordinates, surface diffuse
color and surface normal in eye coordinates.

In the final pass of the pipeline, the color for each pixel is determined using
the parameters of the geometry buffer. The fragment depth read from the buffer
and the implicit pixel position reveal the window coordinates of the fragment.
This position can be transformed to eye space to evaluate the local phong lighting
equation, as well as to light space to perform shadow map lookups. Finally, an
edge detection filter is applied to normal map and depth map to detect silhouette
edges. The outlines are then composited with the shaded scene.

The complete pipeline as well as the buffers of a sample scene are depicted in
Figure 7.5.

7.3.2 Soft Shadow Maps
Shadows provide valuable information about the spatial relationship of groups
of atoms that form a molecule. Unfortunately, shadowing imposes a significant
workload on a rendering algorithm because the scene needs to be rendered mul-
tiple times, once for every light source and once for the final image generation.
Therefore, shadow techniques such as shadow volumes or shadow maps are usu-
ally too slow for real-time rendering of molecules. Our hardware algorithm for
quadric primitives is fast enough to provide room for such visual effects even
for large molecular structures. Soft shadow maps using percentage-closer filter-
ing [RSC87] have been implemented.

Standard shadow map approaches suffer from unnatural hard or aliased shadow
boundaries. Thus, they often overstrain the human eye instead of providing helpful
information about the spatial relationship. Shadows from area lights with soft

115

Chapter 7 Quadric Rendering

Figure 7.5: Different buffers and effects generated for each frame of the deferred rendering
pipeline. Three geometry buffers store the parameters of the shading equation: (a)
diffuse color, (b) fragment depth, (c) surface normal. Per-pixel phong lighting
(d) is then evaluated for each pixel using the geometry buffers. A shadow map
is rendered from light view (e) and filtered to generate smooth shadow edges (f).
Silhouette and crease outlines (g) are extracted by an edge detection filter applied
to (b) and (c). Shadows and outlines are composited with the phong lighting to
generate the final image (h).

edges are much more subtle, but are much harder to compute. Sufficiently large
percentage-closer filters [RSC87] approximate penumbras which are formed when
part of the light source is visible from a surface element.

The basic idea is to convolve the shadow function with a radial box filter to blur
the hard shadows edges [UA04]. Shadow maps cannot be pre-filtered, because
filtering has to occur after comparison of fragment depth and shadow map. The
convolution is approximated by a finite sum using Monte-Carlo sampling. A reg-
ular grid of samples in polar coordinates is jittered using a pseudo-random offset
table. Each pixel, modulo a small tile size, uses a different offset table to achieve
locally unique and constant jittering.

A moderate number of 64 samples is required to avoid visible noise inside the
penumbra region. However, the convolution is useless in areas which are com-
pletely in shadow or completely visible to the light source. Therefore, the first 8
samples are tested to determine whether the current fragment is inside a penumbra
region. Otherwise the sampling process is stopped. In combination with our de-
ferred shading approach, which evaluates the filtered shadow map only once per
pixel, this optimization allows high-quality soft shadows in real-time.

116

7.4 Results

Figure 7.6: Evaluation of Sobel edge detection filter. The stencil of
the gradient filter (black) in vertical direction can be evalu-
ated with four fetches (red, 2:1 ratio between texels) using
linear texture filtering. A rotated weighting of the same val-
ues yields the horizontal derivative.

7.3.3 Post Processing Filters
Object and crease outlines [MBC02] are a non-photorealistic visual cue for dis-
tinguishing neighboring objects of similar color. Silhouettes and creases can be
detected by employing a post processing filter. The gradient magnitude of the
depth map measures the presence of silhouettes. The gradient magnitudes of all
normal map components are interpreted as a vector and its length measures the
presence of creases. Note that the generation of both normal and depth map is
already required for deferred shading.

For each component of the normal map and the depth map, the gradient length is
computed using a standard Sobel edge detection filter. For this, two 3x3 convolu-
tion masks are applied to each pixel, to evaluate horizontal and vertical derivatives.
We use the technique described in Chapter 5 to take advantage of the bi-linear tex-
ture filter mode to reduce the amount of texture samples required to evaluate the
convolution sum. With intermediate sampling positions shown in Figure 7.6, the
gradient length can be evaluated with just four texture samples.

The intensity of silhouettes and creases measured by the edge detection is
mapped to a blending weight using clamped linear ramps. To determine the color
of the final pixel, the outline color is then blended with the diffuse surface color.

7.4 Results
We implemented a simple extension to the OpenGL API to render quadratic sur-
faces. Table 7.1 gives an overview of the primitive that we support and the param-
eters to define their shape. Note that some parameters are redundant with respect
to affine transformations of the standard modelview matrix. For example, trans-
lating a sphere to a new center or stretching it to an ellipsoid is also possible by
corresponding calls to glTranslate, glScale and glRotate. However,
changing the transformation matrix has a large driver overhead or even flushes the
pipeline. Instead, we use vertex attributes to specify scale, translation and rotation
of quadrics, enabling the use of efficient vertex arrays.

The raw vertex and fragment throughput of our implementation is stated in
Table 7.2. The vertex throughput determines how many quadric primitives can
be rendered per second. Note that the rate depends on the quadric type, because

117

Chapter 7 Quadric Rendering

Figure 7.7: A ball-and-stick model consisting of 99k spheres and 198k cylinders. Com-
pared to simple shading (left), our superior quality visualization (right) greatly
improves the spatial perception, and can still be rendered at 13 fps (1024×768
res.).

bounding box evaluation is more involved for cylinders and cones. On the other
hand, the rate of fragment rasterization measures how many pixels of quadric
surface elements can be rendered per second.

Table 7.3 compares the rendering performance of different kinds of shading on
several molecules of varying complexities. Using standard direct shading, the
shading equation is evaluated multiple times for a single pixel when one surface is
rendered on top of another one. In contrast, deferred shading evaluates the shading
equation in a post-processing step exactly once per pixel at the additional cost of
storing the shading parameters in offscreen buffers. While for simple shading
models the direct approach is faster, the deferred technique clearly pays off for
more complex shading including soft shadows and silhouette lines.

We also examined the relative workload of each individual rendering effect in
our deferred shading pipeline: the initial shadow map generation is 12%, the per-
pixel Phong shading 35%. Filtering the shadow map with 64 samples for smooth
shadow edges is clearly the most time consuming element (45%). It is divided
in an 8-sample-test to determine whether pixels lie in the penumbra region (19%)
and the full 64-sample filtering for those pixels that do so (26%). Including the
silhouette and crease lines then adds the missing 8%. Performing full shadow map
filtering only in regions that are tested to lie inside a penumbra region results in
an 31% rendering speed-up on average for our sample scenes.

118

7.4 Results

primitive type sphere ellipsoid cylinder cone
center c c c c
radius r r
axis u,v,t t t

Table 7.1: Quadric primitive types. Each primitive can be rendered with one single vertex
call. The center is specified as the vertex position and the remaining parameters
are stored in the texture coordinates. From these parameters, the vertex program
generates a point sprite which bounds the primitive in screen space. The fragment
program then computes the exact coverage and performs per-pixel lighting of the
quadric.

primitive type sphere cylinder points
primitives (s−1) 43.5M 21.0M 59.3M
fragments (s−1) 178M 162M 266M

Table 7.2: Performance of our quadric primitive rendering algorithm. Both primitive and
fragment rates are measured independently on a NVIDIA GeForce 6800GT. The
right column states the values for OpenGL points with per-pixel lighting for com-
parison.

direct shading deferred shadingfigure #spheres #cylinders
phong +SM phong +SM+SL

7.8 99k 198k 37 fps 3.9 fps 34 fps 13 fps
7.7 52k – 31 fps 2.6 fps 26 fps 15 fps

7.4, right 15k – 79 fps 5.5 fps 51 fps 22 fps
7.1, right 1712 – 94 fps 7.2 fps 67 fps 22 fps

Table 7.3: Performance comparison for standard direct shading and deferred shading at a
viewport resolution of 1024×768 on a P4, 2.4GHz, with GeForce 6800GT. While
for simple Phong shading without shadows the direct shading is faster, the deferred
shading is clearly superior when adding soft shadows (+SM) and silhouette and
crease lines (+SL).

119

Chapter 7 Quadric Rendering

Figure 7.8: This complex molecular structure consists of 52k atoms and can be rendered
at 15 fps including soft shadow maps and silhouette contouring (1024×768 reso-
lution).

120

Chapter 8

Conclusion
This chapter consists of a summary of the methods and results presented in the
preceding sections of this thesis. The work is concluded by pointing out possible
directions for future work in this field.

8.1 Summary of Contributions
The focus of this thesis is the representation of implicit surfaces and methods
for real-time rendering using consumer graphics hardware. In this context, the
following contributions have been made:

• A hashed representation of the octree for adaptive sampling has been pre-
sented. As a sorted linear traversal of the hierarchical space subdivision is
not required for processing implicit surfaces, hashing can provide a more
efficient representation in terms of memory consumption and performance.

• The kD-tree used for irregular space subdivision has been extended to pro-
vide finer grained classification of its elements. By using small overlaps
of sibling nodes, elements that would have been intersected by a single
split plane can be assigned to one of the subtrees, thereby allowing tighter
bounding volumes. Only minor modifications are required for algorithms
employing the kD-tree for range and proximity queries but the number of
culled elements can nonetheless be significantly increased.

• An implementation of the signed distance transform employing graphics
hardware has been introduced. A signed distance field in the proximity of
a triangle mesh is computed by scan converting a set of polyhedra associ-
ated with the mesh primitives. The scan conversion is accelerated by the
hardware-native polygon rasterization. The transfer bottleneck of geome-
try data is mitigated by simple polyhedra, which also reduce the average
amount of overlap.

121

Chapter 8 Conclusion

• Various methods for reconstructing a continuous representation from a set
of surface samples have been analyzed. A combination of these methods has
been presented which accurately approximates the distance to a smooth sur-
face interpolating the given point cloud. Smooth blending of local first-order
approximations near the surface has been combined with the distance to the
closest sample in areas where value extrapolation fails. A scale-invariant
formula for the distance to a regular sampling has been used to determine
the blending weight between the two approximations.

• An algorithm for texture filtering with a cubic B-Spline kernel and its first
and second derivatives on graphics hardware has been presented. In order
to reduce the large amount of texture samples required in two and three di-
mensions, cubic filtering has been built on hardware-native linear texture
fetches. Because linear filtering is as fast as nearest neighbor sampling but
can compute a convex combination of up to eight texels, high-quality filter-
ing with a kernel of 64 texels is possible with a moderate number of 8 texture
fetches. The approach can also be employed for other filter operations in or-
der to reduce the number of texture lookups and value interpolations as long
as the neighboring convolution weights have equal signs.

• A pipeline for real-time rendering of implicit surfaces stored as a regular
grid has been developed. A hardware accelerated ray-casting approach was
used to perform direct rendering on a two-level hierarchical representation
which allows to perform empty space skipping and circumvent memory lim-
itations of graphics hardware. Adaptive sampling and iterative refinement
lead to high-quality ray-surface intersections. All shading operations were
deferred to image space, making their computational effort independent of
the size of the input data. Smooth surface normals and extrinsic curvatures
were evaluated on-the-fly to perform advanced shading using high-quality
lighting and non-photorealistic effects in real-time.

• An algorithm for hardware accelerated rendering of quadratic surfaces such
as spheres, ellipsoids, cylinders and cones has been presented. Each primi-
tive is rendered with a single vertex call and rasterized as a point sprite. The
implicit definition of the quadric is transformed to screen space to compute a
tight bounding box and evaluate ray intersections. A molecule renderer em-
ploying soft shadows and silhouette outlining to improve spatial perception
was used to demonstrate performance and flexibility of the approach.

We conclude that the computational power of current generation GPUs allow al-
gorithms for representation and rendering of implicit surfaces that can outperform
pure software implementations in terms of performance. Although programmabil-
ity of GPUs has advanced tremendously with every generation, there are still a few
features that are missing to efficiently implement fully hierarchical data structures.

122

8.2 Discussion and Future Work

8.2 Discussion and Future Work
The intuitive and consistent handling of surfaces with complex topology has
proven to be advantageous for modeling and simulation of natural phenomena
such as fire, liquid and smoke as well as for a variety of geometric problems
like surface reconstruction. However, they are less suited to accurately represent
static surfaces for applications in industrial design and manufacturing. Memory
constraints and high-performance processing and rendering require a careful de-
sign of efficient and compact representations for the scalar function. It has been
demonstrated that memory efficient representation and real-time rendering of im-
plicit surfaces can be achieved, especially if the computational power of graphics
hardware is employed to process the volumetric data.

Adaptive sampling grids and general hierarchical data structures are the base
for a large amount of algorithms in computer graphics with very good perfor-
mance and memory characteristics, for example ray tracing, adaptive textures and
irregular framebuffers, visibility sorting and particle simulation. However, they
do not seem to comply very well with the design of current graphics cards, which
lack efficiency when employing recurring dependent texture fetches and branch-
ing. Several bottlenecks could be responsible, for example the wide pixel pipeline
or the way threads are scheduled. The most promising approach would be to in-
vestigate the potential of application-specific prefetch and cache policies on new
multimedia architectures with software-manageable caches. I expect that many
algorithms for hierarchical data structures could benefit from a small common set
of strategies to improve reference locality and exploit parallelism. Those strate-
gies would have to be identified and their usefulness would need to be proven for
a range of applications. An analysis of the amount of hardware logic required to
support these strategies would indicate the feasibility of GPUs to support hierar-
chical data structures.

Modeling operations for implicit surfaces can be based on Boolean operations
or the levelset formulation. However, modeling packages for parametric surfaces
include a range of tools to perform large free-form deformations in real-time. Ap-
proaches for such modeling operations using implicit surfaces should be investi-
gated since the inconvenient problem of self-intersections could be avoided.

Several methods for processing implicit surfaces employ graphics hardware for
better performance. However, the transfer of data from main memory to texture
memory is relatively slow. Therefore, it would be beneficial to implement a com-
plete framework for implicit surfaces that performs all computations directly on
the graphics card, including surface processing and rendering. Engineering such a
complete framework of algorithms presented in this thesis and published by other
researchers has not been pursued in this dissertation.

The conversion of triangle meshes to an implicit representation generally re-
lies on the triangle mesh to be a consistent manifold. However, triangle meshes
generated by automatic processes often contain small deficiencies such as flipped

123

Chapter 8 Conclusion

or degenerate triangles, which can produce an inconsistent sign in the distance
field generated by scan conversion. A mesh validation or even a method to fix
the triangulation in such cases should be implemented to avoid erroneous distance
fields.

The construction of cubic B-Spline filters based on fast linear filtering could be
applied to other filter kernels and applications which require higher-order filters.
For example, a filter method for semi-regular grids which avoids discontinuities
at hanging nodes would be beneficial for adaptive sampled distance field.

Generalizations of quadratic surfaces can provide an extended range of shapes
through a few additional parameters. These superquadrics and supershapes have
proven to be a valuable primitive for visualization tasks. Hardware-accelerated,
real-time rendering of these primitives could improve the analysis of high-
dimensional time-dependent data.

124

Bibliography
[AS95] David Adalsteinsson and James A. Sethian. A fast level set method for prop-

agating interfaces. J. Comput. Phys., 118(2):269–277, 1995.

[AS99] David Adalsteinsson and James A. Sethian. The fast construction of extension
velocities in level set methods. J. Comput. Phys., 148(1):2–22, 1999.

[Bær02] Jakob A. Bærentzen. Manipulation of volumetric solids with applications to
sculpting. PhD thesis, Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, Richard Petersens Plads, 2800 Kgs. Lyngby,
Denmark, 2002.

[Bar81] Alan H. Barr. Superquadrics and angle-preserving transformations. IEEE
Computer Graphics and Applications, 1(1):11–23, 1981.

[Bar86] Alan H. Barr. Ray tracing deformed surfaces. In Proc. of SIGGRAPH ’86,
pages 287 – 296, 1986.

[BFA02] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of
collisions, contact and friction for cloth animation. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics and interactive
techniques, pages 594–603, New York, NY, USA, 2002. ACM Press.

[BG97] Rick Beatson and Leslie Greengard. A short course on fast multipole meth-
ods. In M. Ainsworth, J. Levesley, W.A. Light, and M. Marletta, editors,
Wavelets, multilevel methods and elliptic PDEs, pages 1–37. Oxford Univer-
sity Press, 1997.

[BK03] Mario Botsch and Leif P. Kobbelt. High-quality point-based rendering on
modern gpus. In PG ’03: Proceedings of the 11th Pacific Conference on Com-
puter Graphics and Applications, page 335, Washington, DC, USA, 2003.
IEEE Computer Society.

[Bli77] James F. Blinn. Models of light reflection for computer synthesized pictures.
In SIGGRAPH ’77: Proceedings of the 4th annual conference on Computer
graphics and interactive techniques, pages 192–198, New York, NY, USA,
1977. ACM Press.

[Bli82] James F. Blinn. A generalization of algebraic surface drawing. ACM Trans.
Graph., 1(3):235–256, 1982.

125

Bibliography

[Blo94] Jules Bloomenthal. An implicit surface polygonizer. In Graphics gems IV,
pages 324–349. Academic Press Professional, Inc., San Diego, CA, 1994.

[Blu67] Harry Blum. A transformation for extracting new descriptors of shape. In
Weiant Wathen-Dunn, editor, Models for the Perception of Speech and Visual
Form, pages 362–380. MIT Press, Cambridge, MA, USA, 1967.

[BMWM01] David E. Breen, Sean Mauch, Ross T. Whitaker, and Jia Mao. 3D metamor-
phosis between different types of geometric models. In Eurographics 2001
Proceedings, pages 36–48. Blackwell Publishers, September 2001.

[BSK04] Mario Botsch, Michael Spernat, and Leif P. Kobbelt. Phong splatting. In Pro-
ceedings Symposium on Point-Based Graphics, pages 25–32. Eurographics,
2004.

[Buh03] Martin D. Buhmann. Radial Basis Functions : Theory and Implementations.
Cambridge Monographs on Applied and Computational Mathematics. Cam-
bridge University Press, 2003. 270 pages.

[BW97] Jules Bloomenthal and Brian Wyvill, editors. Introduction to Implicit Sur-
faces. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1997.

[Car76] Manfredo P. Do Carmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1976. 503 pages.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans. Reconstruction and representation of 3D objects
with radial basis functions. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pages
67–76, New York, NY, USA, 2001. ACM Press.

[CMM+97] Paolo Cignoni, Paola Marino, Claudio Montani, Enrico Puppo, and Roberto
Scopigno. Speeding up isosurface extraction using interval trees. IEEE Trans-
actions on Visualization and Computer Graphics, 3(2):158–170, 1997.

[COSL98] Daniel Cohen-Or, Amira Solomovic, and David Levin. Three-dimensional
distance field metamorphosis. ACM Trans. Graph., 17(2):116–141, 1998.

[CSS98] Yi-Jen Chiang, Cláudio T. Silva, and William J. Schroeder. Interactive out-of-
core isosurface extraction. In Proc. of IEEE Visualization ’98, pages 167–174,
1998.

[DCH88] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering.
In SIGGRAPH ’88: Proceedings of the 15th annual conference on Com-
puter graphics and interactive techniques, pages 65–74, New York, NY, USA,
1988. ACM Press.

126

Bibliography

[DeL02] Warren L. DeLano, 2002. The PyMOL Molecular Graphics System:
http://www.pymol.org.

[DPH+03] D. DeMarle, S. Parker, M. Hartner, Christiaan Gribble, and Charles D.
Hansen. Distributed interactive ray tracing for large volume visualization.
In Proc. of IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, pages 87–94, 2003.

[DvOG04] Daniel Dekkers, Kees van Overveld, and Rob Golsteijn. Combining csg mod-
eling with soft blending using lipschitz-based implicit surfaces. Vis. Comput.,
20(6):380–391, 2004.

[DWS+88] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt. The trian-
gle processor and normal vector shader: a vlsi system for high performance
graphics. In Proc. of ACM SIGGRAPH 88, pages 21–30, 1988.

[Egg98] Hinnik Eggers. Two fast euclidean distance transformations in z2 based on
sufficient propagation. Comput. Vis. Image Underst., 69(1):106–116, 1998.

[EHK+06] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and
Daniel Weiskopf. Real-Time Volume Graphics. A K Peters, Ltd, 2006.

[EKE01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading. In Proc. of
Graphics Hardware 2001, pages 9–16, 2001.

[Fer05] Randima Fernando. Percentage-closer soft shadows. In SIGGRAPH ’05 Pro-
ceedings (sketch), August 2005.

[FN80] Richard Franke and Gregory M. Nielson. Smooth interpolation of large sets of
scattered data. International Journal for Numerical Methods in Engineering,
15(11):1691–1704, 1980.

[FP02] Sarah F. Frisken and Ronald N. Perry. Simple and efficient traversal methods
for quadtrees and octrees. Journal of Graphics Tools, 7(3):1–11, 2002.

[FPRJ00] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones.
Adaptively sampled distance fields: a general representation of shape for
computer graphics. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, pages 249–254,
New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[FT01] William H. Ford and William R. Topp. Data Structures with C++ Using STL.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[GBB03] Johan Gielis, Bert Beirinckx, and Edwin Bastiaens. Superquadrics with ra-
tional and irrational symmetry. In SM ’03: Proceedings of the eighth ACM
symposium on solid modeling and applications, pages 262–265, New York,
NY, USA, 2003. ACM Press.

127

Bibliography

[GGSC98] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-
photorealistic lighting model for automatic technical illustration. In SIG-
GRAPH ’98: Proceedings of the 25th annual conference on Computer graph-
ics and interactive techniques, pages 447–452, New York, NY, USA, 1998.
ACM Press.

[GH91] Tinsley A. Galyean and John F. Hughes. Sculpting: an interactive volumetric
modeling technique. In SIGGRAPH ’91: Proceedings of the 18th annual
conference on Computer graphics and interactive techniques, pages 267–274,
New York, NY, USA, 1991. ACM Press.

[Gib98] Sarah F. F. Gibson. Using distance maps for accurate surface representation in
sampled volumes. In VVS ’98: Proceedings of the 1998 IEEE symposium on
Volume visualization, pages 23–30, New York, NY, USA, 1998. ACM Press.

[GLDK95] Markus Gross, Lars Lippert, Andreas Dreger, and Rolf M. Koch. A new
method to approximate the volume rendering equation using wavelets and
piecewise polynomials. Computers and Graphics, 19(1):47–62, 1995.

[Goo05] David S. Goodsell. Visual methods from atoms to cells. Structure, 13:347–
354, 2005.

[Gra93] Gaye Graves. The magic of metaballs. Computer Graphics World, 16(5):27–
32, 1993.

[Gre04] Simon Green. Procedural volumetric fireball effect. In NVSDK samples.
NVIDIA Corp., 2004.

[GSLF05] Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. Cou-
pling water and smoke to thin deformable and rigid shells. ACM Trans.
Graph., 24(3):973–981, 2005.

[Gum03] Stefan Gumhold. Splatting illuminated ellipsoids with depth correction. In
Thomas Ertl, editor, Proceedings of VMV 2003, pages 245–252. Aka GmbH,
November 2003.

[GWGS02] Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Straßer. Interac-
tive rendering of large volume data sets. In Proc. of IEEE Visualization 2002,
pages 53–60, 2002.

[HBH03] Markus Hadwiger, Christoph Berger, and Helwig Hauser. High-quality two-
level volume rendering of segmented data sets on consumer graphics hard-
ware. In VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03),
page 40, Washington, DC, USA, 2003. IEEE Computer Society.

[HCLL01] Jian Huang, Roger Crawfis, Shao-Chiung Lu, and Shuh-Yuan Liou. A com-
plete distance field representation. In Thomas Ertl, Kenneth I. Joy, and

128

Bibliography

Amitabh Varshney, editors, IEEE Visualization. IEEE Computer Society,
2001.

[HDS96] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD – Visual
Molecular Dynamics. Journal of Molecular Graphics, 14:33–38, 1996.

[Hec89] Paul S. Heckbert. Fundamentals of texture mapping and image warping.
Technical report, University of California at Berkeley, Berkeley, CA, 1989.

[HKG00] Jiří Hladuvka, Andreas König, and Eduard Gröller. Curvature-based transfer
functions for direct volume rendering. In Proc. of SCCG 2000, pages 58–65,
2000.

[HKL+99] Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Cul-
ver. Fast computation of generalized Voronoi diagrams using graphics hard-
ware. Computer Graphics, 33(Annual Conference Series):277–286, 1999.

[HLHS03] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François Sil-
lion. A survey of real-time soft shadows algorithms. Computer Graphics
Forum, 22(4):753–774, Dec. 2003. State-of-t.

[Hof89] Christoph M. Hoffmann. Geometric and solid modeling: an introduction.
Morgan Kaufmann Publishers Inc., San Francisco, CA, 1989.

[HSS+05] Markus Hadwiger, Christian Sigg, Henning Scharsach, Katja Bühler, and
Markus Gross. Real-time ray-casting and advanced shading of discrete iso-
surfaces. In Marc Alexa and Joe Marks, editors, Proceedings of Eurographics
’05, volume 24, pages pp303–312, Dublin, Ireland, September 2005. Black-
well Publishing.

[HTHG01] Markus Hadwiger, Thomas Theußl, Helwig Hauser, and Eduard Gröller.
Hardware-accelerated high-quality filtering on pc hardware. In VMV ’01:
Proceedings of the Vision Modeling and Visualization Conference 2001,
pages 105–112. Aka GmbH, 2001.

[HXP03] Xiao Han, Chenyang Xu, and Jerry L. Prince. A topology preserving level set
method for geometric deformable models. IEEE Trans. Pattern Anal. Mach.
Intell., 25(6):755–768, 2003.

[IFP95] Victoria Interrante, Henry Fuchs, and Stephen Pizer. Enhancing transparent
skin surfaces with ridge and valley lines. In Proc. of IEEE Visualization ’95,
pages 52–59, 1995.

[JBS06] Mark W. Jones, Jakob A. Bærentzen, and Milos Sramek. 3D distance fields:
A survey of techniques and applications. Transactions on Visualization and
Computer Graphics, 2006. (accepted for publication).

129

Bibliography

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Proceedings
of the eurographics workshop on Rendering techniques ’96, pages 21–30,
London, UK, 1996. Springer-Verlag.

[JLSW02] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring
of hermite data. In Siggraph 2002, Computer Graphics Proceedings, pages
339–346. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2002.

[JQR03] Calvin R. Maurer Jr., Rensheng Qi, and Vijay V. Raghavan. A linear time al-
gorithm for computing exact euclidean distance transforms of binary images
in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell., 25(2):265–
270, 2003.

[KB89] Devendra Kalra and Alan H. Barr. Guaranteed ray intersections with implicit
surfaces. In Proc. of SIGGRAPH ’89, pages 297 – 306, 1989.

[KBSS01] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel.
Feature-sensitive surface extraction from volume data. In Eugene Fiume, ed-
itor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 57–66. ACM
Press / ACM SIGGRAPH, 2001.

[KDR+02] Ujval J. Kapasi, William J. Dally, Scott Rixner, John D. Owens, and Brucek
Khailany. The imagine stream processor. In Proceedings of the IEEE Inter-
national Conference on Computer Design, pages 282–288, September 2002.

[KE02] Martin Kraus and Thomas Ertl. Adaptive texture maps. In Proc. of Graphics
Hardware 2002, pages 7–15, 2002.

[Kin04] Gordon L. Kindlmann. Superquadric tensor glyphs. In Oliver Deussen,
Charles D. Hansen, Daniel A. Keim, and Dietmar Saupe, editors, VisSym
2004, Symposium on Visualization, pages 147–154, Konstanz, Germany, May
2004. Eurographics Association.

[KS98] Ron Kimmel and James A. Sethian. Computing geodesic paths on manifolds.
Proceedings of National Academy of Sciences, 95(15):8431–8435, 1998.

[KW03a] Jens Krüger and Rüdiger Westermann. Acceleration techniques for GPU-
based volume rendering. In VIS ’03: Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03), pages 287–292, Washington, DC, USA, 2003. IEEE
Computer Society.

[KW03b] Jens Krüger and Rüdiger Westermann. Linear algebra operators for gpu im-
plementation of numerical algorithms. ACM Trans. Graph., 22(3):908–916,
2003.

[KWTM03] Gordon Kindlmann, Ross T. Whitaker, Tolga Tasdizen, and Torsten Moller.
Curvature-based transfer functions for direct volume rendering: Methods and

130

Bibliography

applications. In Proceedings of the 14th IEEE Visualization 2003 (VIS’03),
pages 513–520, Washington, DC, USA, 2003. IEEE Computer Society.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. In Proc. of SIGGRAPH ’87, pages 163–
169, 1987.

[LCN98] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi. Introduction to volume
rendering. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics
and Applications, 8(3):29–37, 1988.

[Lev98] David Levin. The approximation power of moving least-squares. Math. Com-
put., 67(224):1517–1531, 1998.

[Lev03] David Levin. Mesh-independent surface interpolation. In Guido Brunnett,
Bernd Hamann, and Heinrich Müller, editors, Geometric Modeling for Scien-
tific Visualization, pages 37–49. Springer Verlag, Heidelberg, Germany, 2003.

[LGF04] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water and
smoke with an octree data structure. ACM Trans. Graph., 23(3):457–462,
2004.

[LHN05] Sylvain Lefebvre, Samuel Hornus, and Fabrice Neyret. GPU Gems 2 - Pro-
gramming Techniques for High-Performance Graphics and General-Purpose
Computation, chapter Octree Textures on the GPU, pages 595–613. Addison
Wesley, 2005.

[LJH03] Robert S. Laramee, Bruno Jobard, and Helwig Hauser. Image space based
visualization of unsteady flow on surfaces. In Proc. of IEEE Visualization
2003, pages 131–138, 2003.

[LKHW03] Aaron E. Lefohn, Joe M. Kniss, Charles D. Hansen, and Ross T. Whitaker.
Interactive deformation and visualization of level set surfaces using graphics
hardware. In Proc. of IEEE Visualization 2003, pages 75–82, 2003.

[LKS+06] Aaron E. Lefohn, Joe M. Kniss, Robert Strzodka, Shubhabrata Sengupta, and
John D. Owens. Glift: Generic, efficient, random-access gpu data structures.
ACM Transactions on Graphics, 25(1):60–99, January 2006.

[LMK03] Wei Li, Klaus Mueller, and Arie E. Kaufman. Empty space skipping and
occlusion clipping for texture-based volume rendering. In Proc. of IEEE Vi-
sualization 2003, pages 317–324, 2003.

[Mau00] Sean Mauch. A fast algorithm for computing the closest point
and distance transform, 2000. http://www.acm.caltech.edu/
∼seanm/projects/cpt.

131

Bibliography

[Mau03] Sean Mauch. Effcient Algorithms for Solving Static Hamilton-Jacobi Equa-
tions. PhD thesis, California Inst. of Techn., Perdue, CA, 2003.

[Max95] Nelson Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 1(2):99–108, 1995.

[MB90] David J. MacDonald and Kellogg S. Booth. Heuristics for ray tracing using
space subdivision. Vis. Comput., 6(3):153–166, 1990.

[MBC02] Jason L. Mitchell, Chris Brennan, and Drew Card. Real-time image-space
outlining for non-photorealistic rendering. In SIGGRAPH ’02 Proceedings
(sketch), August 2002.

[MBF92] Olivier Monga, Serge Benayoun, and Olivier D. Faugeras. From partial
derivatives of 3-D density images to ridge lines. In Richard A. Robb, edi-
tor, Proceedings of SPIE Visualization in Biomedical Computing ’92, volume
1808, pages 118–129, September 1992.

[MBWB02] Ken Museth, David E. Breen, Ross T. Whitaker, and Alan H. Barr. Level
set surface editing operators. In Proc. of SIGGRAPH 2002, pages 330–338,
2002.

[MGAK03] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.
Cg: a system for programming graphics hardware in a c-like language. ACM
Trans. Graph., 22(3):896–907, 2003.

[MHB+00] Michael Meißner, Jian Huang, Dirk Bartz, Klaus Mueller, and Roger Crawfis.
A practical evaluation of four popular volume rendering algorithms. In Proc.
of ACM Symposium on Volume Visualization, 2000.

[Mil94] Gavin Miller. Efficient algorithms for local and global accessibility shading.
In Proc. of SIGGRAPH ’94, pages 319–326, 1994.

[MKW+04] Gerd Marmitt, Andreas Kleer, Ingo Wald, Heiko Friedrich, and Philipp
Slusallek. Fast and accurate ray-voxel intersection techniques for iso-surface
ray tracing. In Proc. of Vision, Modeling, and Visualization, pages 429–435,
2004.

[ML94] Stephen R. Marschner and Richard J. Lobb. An evaluation of reconstruction
filters for volume rendering. In R. Daniel Bergeron and Arie E. Kaufman,
editors, Proceedings of Visualization ’94, pages 100–107, 1994.

[MMK+98] Torsten Möller, Klaus Mueller, Yair Kurzion, Raghu Machiraju, and Roni
Yagel. Design of accurate and smooth filters for function and derivative re-
construction. In VVS ’98: Proceedings of the 1998 IEEE symposium on Vol-
ume visualization, pages 143–151, New York, NY, USA, 1998. ACM Press.

132

Bibliography

[Mul92] James C. Mullikin. The vector distance transform in two and three dimen-
sions. CVGIP: Graphical Models and Image Processing, 54(6):526–535,
November 1992.

[Mur91] Shigeru Muraki. Volumetric shape description of range data using “blobby
model”. SIGGRAPH Comput. Graph., 25(4):227–235, 1991.

[Nad00] David R. Nadeau. Volume scene graphs. In VVS ’00: Proceedings of the
2000 IEEE symposium on Volume visualization, pages 49–56, New York, NY,
USA, 2000. ACM Press.

[Nie04] Gregory M. Nielson. Radial hermite operators for scattered point cloud data
with normal vectors and applications to implicitizing polygon mesh surfaces
for generalized csg operations and smoothing. In VIS ’04: Proceedings of
the conference on Visualization ’04, pages 203–210, Washington, DC, USA,
2004. IEEE Computer Society.

[NMHW02] Andre Neubauer, Lukas Mroz, Helwig Hauser, and Rainer Wegenkittl. Cell-
based first-hit ray casting. In VISSYM ’02: Proceedings of the symposium
on Data Visualisation 2002, pages 77–ff, Aire-la-Ville, Switzerland, Switzer-
land, 2002. Eurographics Association.

[OBA+03] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter
Seidel. Multi-level partition of unity implicits. In ACM Trans. Graph., Pro-
ceedings of ACM SIGGRAPH 2003, volume 22 (3), pages 463–470, New
York, NY, USA, 2003. ACM Press.

[OBS03] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. A multi-scale
approach to 3D scattered data interpolation with compactly supported basis
functions. In SMI ’03: Proceedings of the Shape Modeling International
2003, page 292, Washington, DC, USA, 2003. IEEE Computer Society.

[OS88] Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi formulations. J. Com-
put. Phys., 79(1):12–49, 1988.

[PPL+99] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles
d. Hansen, and Peter Shirley. Interactive ray tracing for volume visualization.
IEEE Transactions on Visualization and Computer Graphics, 5(3):238–250,
1999.

[PS05] Emmanuel Prados and Stefano Soatto. Fast marching method for generic
shape from shading. In N. Paragios, O. Faugeras, T. Chan, and C. Schnoerr,
editors, Proceedings of VLSM’05 (third International Workshop on Varia-
tional, Geometric and Level Set Methods in Computer Vision), volume 3752
of Lecture Notes in Computer Science, pages 320Ű–331. Springer, oct 2005.

133

Bibliography

[PSL+98] Steven Parker, Peter Shirley, Yarden Livnat, Charles D. Hansen, and Peter-
Pike Sloan. Interactive ray tracing for isosurface rendering. In Proc. of IEEE
Visualization ’98, pages 233–238, 1998.

[RE01] Penny Rheingans and David Ebert. Volume illustration: Nonphotorealistic
rendering of volume models. In Proc. of IEEE Visualization 2001, pages
253–264, 2001.

[RG75] Lawrence R. Rabiner and Bernard Gold. Theory and application of digital
signal processing. Prentice-Hall, Englewood, NJ, 1975.

[RGW+03] Stefan Röttger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl, and Wolfgang
Straßer. Smart hardware-accelerated volume rendering. In Proc. of VisSym
2003, pages 231–238, 2003.

[RPZ02] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space ewa surface
splatting: A hardware accelerated approach to high quality point rendering.
In Proc. of Eurographics 02, pages 461–470, 2002.

[RS01] Martin Rumpf and Robert Strzodka. Level set segmentation in graphics hard-
ware. In IEEE Int. Conf. on Image Processing, ICIP’2001, volume 3, pages
402–405, Thessaloniki, Greece, October 2001.

[RSC87] William T. Reeves, David Salesin, and Robert L. Cook. Rendering antialiased
shadows with depth maps. Computer Graphics (Proceedings of SIGGRAPH
’87), pages 283–291, 1987.

[RSEB+00] Christof Rezk-Salama, Klaus Engel, M. Bauer, Gunther Greiner, and Thomas
Ertl. Interactive volume on standard pc graphics hardware using multi-
textures and multi-stage rasterization. In HWWS ’00: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages
109–118, New York, NY, USA, 2000. ACM Press.

[Sam90] Hanan Samet. The design and analysis of spatial data structures. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[Set96] James A. Sethian. A fast marching level set method for monotonically ad-
vancing fronts. In Proc. Nat. Acad. Sci., volume 93, pages 1591–1595, 1996.

[Set98] James A. Sethian. Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry. Cambridge University Press, 1998.

[SFYC96] Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Cornhill. Octree-
based decimation of marching cubes surfaces. In VIS ’96: Proceedings of the
7th conference on Visualization ’96, pages 335–ff., Los Alamitos, CA, 1996.
IEEE Computer Society Press.

134

Bibliography

[SGS05] Carsten Stoll, Stefan Gumhold, and Hans-Peter Seidel. Visualization with
stylized line primitives. In H.Rushmeier C.T.Silva, E.Groeller, editor, Pro-
ceedings of IEEE Visualization ’05, pages –. IEEE Computer Society Press,
October 2005.

[SH05] Christian Sigg and Markus Hadwiger. Fast third-order texture filtering. In
Matt Pharr, editor, GPU Gems 2, pages 313–329. Addison Wesley, March
2005.

[SPOK95] Vladimir. V. Savchenko, Alexander A. Pasko, Oleg G. Okunev, and
Tosiyasu L. Kunii. Function representation of solids reconstructed from scat-
tered surface points and contours. Technical Report TR 94-1-032, The Uni-
versity of Aizu, Japan, 1995.

[SSO94] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for
computing solutions to incompressible two-phase flow. J. Comput. Phys.,
114(1):146–159, 1994.

[SSP+05] Oliver Staubli, Christian Sigg, Ronald Peikert, Markus Gross, and Daniel
Gubler. Volume rendering of smoke propagation cfd data. In IEEE Visual-
ization Conference (VIS 2005), Minneapolis, MN, USA, October 2005. IEEE
Computer Society.

[ST90] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3D
shapes. In Proc. of SIGGRAPH ’90, pages 197–206, 1990.

[SW03] Jens Schneider and Rüdiger Westermann. Compression domain volume ren-
dering. In Proc. of IEEE Visualization 2003, pages 293–300, 2003.

[SW04] Scott Schaefer and Joe Warren. Dual marching cubes: Primal contouring of
dual grids. In PG ’04: Proceedings of the Computer Graphics and Appli-
cations, 12th Pacific Conference on (PG’04), pages 70–76, Washington, DC,
USA, 2004. IEEE Computer Society.

[TL04] Rodrigo Toledo and Bruno Lévy. Extending the graphic pipeline with new
gpu-accelerated primitives. Technical report, INRIA, 2004.

[TO99] Greg Turk and James F. O’Brien. Shape transformation using variational
implicit functions. In Proc. of SIGGRAPH ’99, pages 335–342, 1999.

[Tsa00] Yen-Hsi Richard Tsai. Rapid and accurate computation of the distance func-
tion using grids. Technical report, Department of Mathematics, University of
California, Los Angeles, CA, 2000.

[UA04] Yury Uralsky and Anis Ahmad. Soft shadows, July 2004. NVIDIA SDK
Whitepaper.

135

Bibliography

[VKKM03] Gokul Varadhan, Shankar Krishnan, Young J. Kim, and Dinesh Manocha.
Feature-sensitive subdivision and isosurface reconstruction. In VIS ’03: Pro-
ceedings of the 14th IEEE Visualization 2003 (VIS’03), page 14, Washington,
DC, USA, 2003. IEEE Computer Society.

[WDK01] Ming Wan, Frank Dachille, and Arie E. Kaufman. Distance-field-based skele-
tons for virtual navigation. In Thomas Ertl, Kenneth I. Joy, and Amitabh
Varshney, editors, Proceedings of IEEE Visualization. IEEE Computer Soci-
ety, October 2001.

[WDS99] Mason Woo, Davis, and Mary Beth Sheridan. OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1999.

[WE98] Rüdiger Westermann and Thomas Ertl. Efficiently using graphics hardware in
volume rendering applications. In SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, pages
169–177, New York, NY, USA, 1998. ACM Press.

[Wen05] Holger Wendland. Scattered data approximation. Cambridge Monographs
on Applied and Computational Mathematics 17. Cambridge University Press,
2005.

[WGG99] Brian Wyvill, Andrew Guy, and Eric Galin. Extending the csg tree - warp-
ing, blending and boolean operations in an implicit surface modeling system.
Comput. Graph. Forum, 18(2):149–158, 1999.

[WH94] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control
implicit surfaces. In SIGGRAPH ’94: Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques, pages 269–277, New
York, NY, USA, 1994. ACM Press.

[Whi80] Turner Whitted. An improved illumination model for shaded display. Com-
mun. ACM, 23(6):343–349, 1980.

[Whi98] Ross T. Whitaker. A level-set approach to 3D reconstruction from range data.
Int. J. Comput. Vision, 29(3):203–231, 1998.

[Wij03] Jarke J. Van Wijk. Image based flow visualization for curved surfaces. In
Proc. of IEEE Visualization 2003, pages 745 – 754, 2003.

[WK95] Sidney W. Wang and Arie E. Kaufman. Volume sculpting. In SI3D ’95:
Proceedings of the 1995 symposium on Interactive 3D graphics, pages 151–
ff., New York, NY, USA, 1995. ACM Press.

[WMW86] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft
objects. The Visual Computer, 2(4):227–234, 1986.

136

Bibliography

[WS01] Rüdiger Westermann and Bernd Sevenich. Accelerated volume ray-casting
using texture mapping. In Proc. of IEEE Visualization 2001, pages 271–278,
2001.

[WWH+00] Manfred Weiler, Rüdiger Westermann, Charles D. Hansen, Kurt Zimmerman,
and Thomas Ertl. Level-of-detail volume rendering via 3D textures. In Proc.
of IEEE VolVis 2000, pages 7–13, 2000.

[ZO02] Hongkai Zhao and Stanley Osher. Visualization, analysis and shape recon-
struction of unorganized data sets. In S. Osher and N. Paragios, editors, Geo-
metric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag,
2002.

[ZRB+04] Matthias Zwicker, Jussi Räsänen, Mario Botsch, Carsten Dachsbacher, and
Mark Pauly. Perspective accurate splatting. In GI ’04: Proceedings of the
2004 conference on Graphics interface, pages 247–254, 2004.

137

Bibliography

138

Appendix A

Complete Prism
Covering

Let c be a convex/concave vertex of a closed and oriented triangle mesh. Using
the notation of Section 4.2.3, we want to show that a small neighborhood of c is
completely covered by the union P of polyhedra. This can be best seen by taking
intersections with a small sphere S centered at c (see Fig. A.1). We use the overbar
symbol to denote the intersection with S. It follows that F̄i are great circles, and
their union F̄ is a convex spherical polygon. Also the Āi are great circles, which
can be oriented consistently toward the interior of F̄ . Finally, P̄i are spherical
lunes, because we can assume that the diameter of S is smaller than all edges.

The conjecture is now that S is completely covered by P̄, the union of the lunes.
By the argument given in Section 4.2.3, it is sufficient to show that the northern
hemisphere is covered.

Let y be a test point on S and on the convex side of the surface, i.e. an interior
point of F̄ . We choose coordinates in such a way that y is the north pole of the
sphere. By connecting the vertices of the spherical polygon with the north pole,
we get n spherical triangles which add up to a full 2π angle at the north pole. For
the i-th triangle, let γi be the angle at the north pole, and αi and βi the angles to
the meridians (see Fig. A.2).

Let us now assume that the north pole lies on the left of all Āi which can be
expressed as

αi+1 > βi (A.1)

Convexity implies that
αi+1 +βi ≤ π (A.2)

From Eq. A.1, Eq. A.2 and 0 < αi+1,βi < π follows that

0 <
sinβi

sinαi+1
< 1 (A.3)

139

Appendix A Complete Prism Covering

Figure A.1: Intersections of faces and angle bisector planes with the sphere.

Taking the product yields

n−1

∏
i=0

sinβi

sinαi
=

n−1

∏
i=0

sinβi+1

sinαi
< 1 (A.4)

On the other hand, we can derive

n−1

∏
i=0

sinβi

sinαi
=

n−1

∏
i=0

sinbi

sinai
=

n−1

∏
i=0

sinbi

sinbi+1
= 1 (A.5)

making use of the spherical law of sines, the fact that ai = bi+1 because triangles
fit together, and finally bn = b0.

Figure A.2: Spherical triangles above mesh triangles.

140

From this contradiction follows that the test point is covered by P̄, and thus also
the interior of the spherical polygon F̄ is covered.

Because of convexity, it is possible to choose an interior point of F̄ as the north
pole such that all of F̄ lies in the northern hemisphere. It remains to show that
P̄ not only covers F̄ but the whole hemisphere. Any spherical lune must have
one of its end points below the equator, and because of convexity, this is the one
on the concave side. But this means that along the equator, the sequence of lunes
{P̄0, · · · , P̄n−1}, P̄0 can’t have any gaps, and therefore the hemisphere is completely
covered, which was the conjecture.

141

Appendix A Complete Prism Covering

142

Appendix B

Quadric Shader
Programs

Listing B.1 and B.2 implement the vertex and fragment program for sphere ren-
dering in OpenGL ARB program assembler. Definition of input and output alias
as well as environment and temporary variables have been omited. The following
coding styles and rules have been adapted for better readibility:

• Input (output) alias are marked with leading (trailing) underscores.

• Transformation matrices and their compounds are written in uppercase.

• cn and rn denote the n-th column and row of a matrix, respectively.

• const is a vector with components [0,0.5,1,2].

The vertex program first computes the coefficients of the two quadratic equa-
tions 7.9 in x and y direction. From these, the vertex position and point size in
clip coordinates can be extracted. The point size needs to be specified in pixels
and is thus scaled by the viewport size. The remainder of the program computes
the inverse of the compound transformation matrix and the constant term in the
quadratic ray equation 7.13, which is then passed to the fragment program. Com-
puting these values once in the vertex program per quadric is faster than recom-
puting them in the fragment program for every pixel.

In the fragment program, the view vector in eye space is first computed from
the window coordinates of the fragment. Applying the inverse transformation
matrix yields the view vector in parameter space, from which the coefficients of
the normalized quadratic equation for the ray intersection can be computed. If
the discriminant is negative, the current pixel is not covered by the quadric and is
culled. In a last step, the surface normal is transformed to eye space and written
to the geometry buffer together with the fragment depth and color for deferred
shading.

143

Appendix B Quadric Shader Programs

screen planes in parameter space # radius (avoid division by zero)
MUL PMVT_c0.xyz, MVP_r0, _radius.x; MADC radius.xy, eqn, eqn, -eqn.zwxy;
DPH PMVT_c0.w, _center, MVP_r0; RSQ tmp.x, radius.x;

RSQ tmp.y, radius.y;
MUL PMVT_c1.xyz, MVP_r1, _radius.x; MUL radius.xy (GT), radius, tmp;
DPH PMVT_c1.w, _center, MVP_r1;

pointsize
MUL PMVT_c3.xyz, MVP_r3, _radius.x; MUL radius.xy, radius, viewport;
DPH PMVT_c3.w, _center, MVP_r3; MAX result.pointsize.x, radius.x, radius.y;

parameter matrix: diag = {1,1,1,-1} # output inverse transformation
MUL PMVTD_c0, diag, PMVT_c0; RCP radius.w, _radius.x;
MUL PMVTD_c1, diag, PMVT_c1; MUL MVT_inv_c0_, MV_inv[0], radius.w;
MUL PMVTD_c3, diag, PMVT_c3; MUL MVT_inv_c1_, MV_inv[1], radius.w;

MUL MVT_inv_c2_, MV_inv[2], radius.w;
solve two quadratic equations (x,y)
DP4 eqn.x, PMVTD_c3, PMVT_c0; # -b_x/2 ADD MVT_inv_c3.xyz, MV_inv[3], -_center;
DP4 eqn.z, PMVTD_c0, PMVT_c0; # c_x MUL MVT_inv_c3.xyz, MVT_inv_c3, radius.w;

MOV MVT_inv_c3_.xyz, MVT_inv_c3;
DP4 eqn.y, PMVTD_c3, PMVT_c1; # -b_y/2 MOV MVT_inv_c3_.w, const.z;
DP4 eqn.w, PMVTD_c1, PMVT_c1; # c_y

output delta_p
DP4 tmp.w, PMVTD_c3, PMVT_c3; MUL PMVT_inv_c2.xyz, MVT_inv_c3, P_inv_c2.w;
RCP tmp.w, tmp.w; MOV PMVT_inv_c2.w, P_inv_c2.w;
MUL eqn, eqn, tmp.w; MOV PMVT_inv_c2_, PMVT_inv_c2;

transformed vertex position # output diag/a
MOV vpos_.xy, eqn; MUL PMVTD_inv_c2, diag, PMVT_inv_c2;
MOV vpos_.zw, const.xxxz; DP4 tmp.w, PMVTD_inv_c2, PMVT_inv_c2;

RCP tmp.w, tmp.w;
MOV result.color, vertex.color; MUL diag_div_a_, tmp.w, diag;

Listing B.1: Vertex program projecting the quadric to screen space and computing the point
sprite parameters.

inverse viewport transformation # discriminant < 0 => kill
DIV view_c.xy, fragment.position, viewport; KIL eqn.w;
MAD view_c.xy, view_c, const.w, -const.z;

view direction in eye space # solve quadratic equation
MAD view_e, P_inv[1], view_c.y, P_inv[3]; RSQ tmp.w, eqn.w;
MAD view_e, P_inv[0], view_c.x, view_e; MAD eqn.w, eqn.w, -tmp.w, -eqn.y;

view direction in parameter space # tranform normal to eye space
MUL view_p, _MVT_inv_c0, view_e.x; MAD view_p.xyz, _PMVT_inv_c2, eqn.w, view_p;
MAD view_p, _MVT_inv_c1, view_e.y, view_p; DP3 nrm.x, view_p, _MVT_inv_c0;
MAD view_p, _MVT_inv_c2, view_e.z, view_p; DP3 nrm.y, view_p, _MVT_inv_c1;
MAD view_p, _MVT_inv_c3, view_e.w, view_p; DP3 nrm.z, view_p, _MVT_inv_c2;

NRM nrm.xyz, nrm;
quadratic equation
MUL tmp, _diag_div_a, view_p; # output depth, color and normal
DP4 eqn.y, tmp, _PMVT_inv_c2; MAD depth_.z, eqn.w, const.y, const.y;
DP4 eqn.z, tmp, view_p; MOV color_, fragment.color;
MAD eqn.w, eqn.y, eqn.y, -eqn.z; MAD normal_, nrm, const.y, const.y;

Listing B.2: Fragment program computing the ray-quadric intersection depth and surface
normal.

144

Copyrights
Several figures published in this thesis reproduce data sets courtesy of the follow-
ing companies and institutions:

• The bunny model used in Figures 4.7, 4.10 and 6.14 is copyright of the
Stanford Computer Graphics Group.

• The horse model used in Figures 3.1 and 6.13 is copyright of Cyberware
Inc.

• The David model used in Figures 6.2, 6.3 and 6.12 are copyright of the Dig-
ital Michelangelo Project and the Soprintendenza ai beni artistici e storici
per le province di Firenze, Pistoia, e Prato.

• The asian dragon model used in Figures 6.2, 6.8 and 6.11 is copyright of
XYZ RGB Inc.

• The dragon model used in Figures 6.9 and 6.14 is copyright of the Stanford
Computer Graphics Group.

• The cube data set and the color mapping functions used in Figure 6.10 are
courtesy of Gordon Kindlmann.

• The medical data set used in Figures 6.2 and 6.16 are courtesy of Tiani
MedGraph.

• The molecules used in Figures 7.1, 7.4, 7.5, 7.7 and 7.8 are courtesy of
wwPDB.

145

Copyrights

146

Curriculum Vitae

Address
Name Christian Sigg

E-Mail sigg@inf.ethz.ch

Office Computer Graphics Laboratory
ETH Zentrum, IFW D28.2
Haldeneggsteig 4
CH-8092 Zurich, Switzerland
++41 44 632 74 76

Home Hardturmstrasse 104
CH - 8005 Zurich, Switzerland
++41 43 300 39 51

Personal Information
Date of Birth March 4, 1977
Nationality Swiss
Civil Status Married

Education
2002 - 2006 ETH Zurich, Department of Computer Science

PhD in Computer Graphics, Computer Graphics Laboratory
Funded by Schlumberger Research, Cambridge UK

2000 - 2001 University of Texas Austin, TX, Computer Science Department
Semester Abroad at Center for Computational Visualization

1999 - 2002 ETH Zurich, Department of Mathematics
Graduate Studies in Computational Science and Engineering

1997 - 1999 ETH Zurich, Department of Mathematics
Undergraduate Studies in Mathematics

147

Curriculum Vitae

Professional Experience
2003 - 2006 ETH Zurich, Computer Graphics Laboratory, System Admin

1999 - 2005 ETH Zurich, Computer Graphics Laboratory, Teaching Assistant

2003 Schlumberger Research Cambridge, Summer Internship

2001 - 2002 Zurich Insurance, Zurich, Software Engineer (50%)

2000 - 2001 University of Texas Austin, TX, Student Researcher

1999 - 2000 MySign AG Aarau, Software Engineer (30%)

1997 - 1998 IBM Switzerland, Zurich, IC-Technician (30-100%)

Publications

Markus Hadwiger, Andrea Kratz, Christian Sigg, Katja Bühler, GPU-Accelerated
Deep Shadow Maps for Direct Volume Rendering, Proceedings of ACM Sig-
graph/Eurographics Conference on Graphics Hardware, 2006.

Christian Sigg, Tim Weyrich, Mario Botsch, Markus Gross, GPU-Based Ray-
Casting of Quadratic Surfaces, Proceedings of Eurographics Symposium on
Point-Based Graphics, 2006.

Ovidio Mallo, Ronald Peikert, Christian Sigg, Filip Sadlo, Illuminated Lines Re-
visited, Proceedings of IEEE Visualization, 2005.

Oliver Staubli, Christian Sigg, Ronnald Peikert, Daniel Gubler, Volume rendering
of smoke propagation CFD dataProceedings of IEEE Visualization, 2005.

Markus Hadwiger, Christian Sigg, Henning Scharsach, Katja Bühler, Markus
Gross: Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces,
Proceedings of Eurographics, 2005.

Christian Sigg, Markus Hadwiger: Fast Third-Order Texture Filtering, GPU
Gems 2, 2005.

Ronny Peikert, Christian Sigg: Optimized Bounding Polyhedra For GPU-Based
Distance Transform, Proceedings of Dagstuhl Seminar 023231 on Scientific Vi-
sualization, 2005.

Christian Sigg, Ronny Peikert, Markus Gross: Signed Distance Transform using
Graphics Hardware, Proceedings of IEEE Visualization, 2003.

Christian Sigg, Framework for Levelset Methods, Diploma thesis, Computer
Graphics Laboratory, ETH Zurich and Schlumberger Research, Cambridge, 2002.

Christian Sigg, Parallel Ray Casting and Isocontouring of Very Large Volume
Data, Semester thesis, Center for Computational Visualization, University of
Austin, TX, 2001.

Christian Sigg, Eigenmeshes for Fairing and Resampling Problems, Semester the-
sis, Computer Graphics Laboratory, ETH Zurich, 2000.

148

