
Representations of Geometry for Computer Graphics

Course 29
       Tuesday / Full Day / Advanced

The latest research on the most important computational representations of
geometry used in computer graphics. The emphasis is on their strengths and
weaknesses and how to build a coherent system that supports multiple
representations.

Schedule & Table of Contents

       8:30 am: Introduction to Computational Representations of Geometry - Naylor
              Course objectives and taxonomy of representations.

       8:45 am: Voxels as Computational Representations of Geometry - Kaufman
        Volume graphics is an emerging subfield of computer graphics concerned
        with the synthesis, manipulation, and rendering of volumetric modeled
        objects, stored as a volume buffer of voxels. Unlike volume visualization
        which focuses primarily on sampled and computed data sets, volume
        graphics is concerned primarily with modeled geometric scenes and
        particularly with those that are represented in a regular volume buffer.
        Volume graphics has advantages over surface graphics by being
        viewpoint independent, insensitive to scene and object complexity, and
        suitable for the representation of sampled and simulated data sets and
        mixtures thereof with geometric objects. It supports the visualization of
        internal structures, and lends itself to the realization of block operations,
        CSG modeling, and hierarchical multi-resolution representations. The
        problems associated with the volume buffer representation, such as
        discreteness, memory size, processing time, and loss of geometric
        representation, echo problems encountered when raster graphics
        emerged as an alternative technology to vector graphics and can be
        alleviated in similar ways.

       10:00 am: Break

       10:15 am: - Specification, Representation, and Construction of Non-Manifolde
Geometric Structures - Rossignac

         We will discuss boundary/topological representations for characterizing
         the topological coverages of CAD system, for comparing the data
         structures they maintain, and for reliably computing boundary models
         from constructive representations. Creating multi-resolution
         representation will be addressed.



       11:15 am: Modeling with Simplicial Complexes - Edelsbrunner
         The main theme of this talk is the idea of using cell decompositions
         (complexes) to model geometric shapes. The complex is what is often
         called a grid or mesh. This approach to modeling allows the instantaneous
         analysis of the created shape. The following specific questions and
              issues will be addressed.

• What are complexes? (definitions and examples)
• How can the geometric integrity of a complex be guaranteed?
• How can complexes be used to model shape?
• How can complexes be manipulated and maintained?

       12:00 noon: Break

       1:30 pm: Polynomial Surface-Patch Representations - Bajaj
       Algebraic curves and surfaces can be represented in an implicit form, and
       sometimes also in a parametric form. We will compare the implicit and
       parametric representations of algebraic surfaces by considering the the
       parametric form either as a mapping or alternatively, an algebraic variety.
       In this course, I shall consider specific geometric operations: scattered
       data fitting and surface display and compare the implicit and parametric
       forms for their superiority (or lack thereof) in optimizing algorithms for
       these operations.

       3:00 pm: Break

       3:15 pm: Binary Space Partitioning Trees - Naylor
        Partitioning Trees, a multi-dimensional generalization of binary search
        trees, provide a computational representation of geometry via recursive
        subdivision with hyperplanes defined by linear equations. Linearity and
        recursive subdivision lead to simple algorithms for visibility (hidden
        surface removal, transparency, shadows) as well as intersections (set
        operations, collision detection, clipping, ray-tracing). We will present a
        review of these capabilities as well as present new results on building
        multi-resolution trees, representing volumetric data, and integrating
        parametric surfaces into Partitioning Trees to permit local non-linear
        deformations.

       4:15 pm: Building a Whole Geometry System - All

          Having presented each of the representational schemes, we will now be
          in a position to focus exclusively on the relation between the various
          representations and how one can build a single coherent geometry
          system that exploits the strengths of each and avoids their weaknesses.
          We will be able to draw upon the experience of several of the speakers
          who have built such integrated systems.
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Computational Representations
of Geometry

Bruce Naylor
Spatial Labs Inc.

I n t r o d u c t i o n 

Computational representations of geometry provide the foundations for all the various a r e a s
of computing that involve geometry. These areas currently include Computer Graphics,
Computer-Aided Geometric Design, Scientific Visualization, Computational Geometry, Finite
Element Analysis,  Robotics, Computer Vision and Image Processing. Yet only a few
representations of geometry have emerged to date. We believe that the reason for this is t h a t
geometric sets are describable in terms of only a few fundamental aspects, e.g. their topology,
or set theoretic structure, etc. Many of the representations, in their purest form, describe
primarily a single fundamental aspect of geometric sets. Each "pure" representation then is
the language for expressing that aspect (it is the syntatic form for which the in tended
semantic interpretation is direct). For example, the topology of a set is expressed directly a n d
exactly by what we naturally call "a topological representation": a graph with a one- to -one
correspondence between graph nodes and topologically connected components, and w h e r e
graph edges indicate incidence between components. In addition to pure representat ions ,
other types of representations may be hybrids, combining multiple aspects simultaneously.

Representatons of geometry have a very strong connection to "traditional" mathematics,
both historically, dating back to Classical Greek civilization, and to modern subjects. These
include Set Theory, Graph Theory, Algebraic Topology, etc., in addition to the var ious
varieties of Geometry: Projective, Analytic, Algebraic, Differential, and Combinatorial.  What
is different, as everyone knows, is that computation is "constructive mathematics", and t h e
primary measure of value is not proveability per se (as much as we might want error f r ee
programs), but rather performance and accuracy. The pursuit of efficiency has led
numerous times to what might initially be considered as a counter-intuitive result: t h a t
computing with many simple pieces can be faster than attempting to process fewer but m o r e
computationally complicated pieces. This is what we call the verbosity/complexity tradeoff: we
trade a relatively small number of complicated operations for many more but simpler
operations. This is a very important consideration in geometric computation, and we h a v e
given a qualitative picture of this for representations of geometry in Figure 1.
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single general functions

Verbosity / Complexity Tradeoff for Geometric Representations

Additionally, we only need, or can only obtain, the desired answer computed to a limited
resolution. If, as in image synthesis, the output of the computation is intended only for direct
human perception, then we need to compute the answer only to a limited resolution, because
humans have limited perceptual descrimination. But the limit on resolution is even true i n
the "non-perceptual" realm of manufacturing, where one of the great advances enabling
mass production was the recognition that manufactured parts need only be produced within
a certain tolerance. This suggests that geometric modeling should only be computing to a n
analogous tolerance, even if we had unlimited precision for representation numbers. But w e
do not, and so exactness is difficult to obtain even if we wanted it (although not impossible o r
even necessarily impractical) due to the finite precision used to represent numbers.

All of this leads us into the realm of approximations, and in particular, to reducing t h e
computational effort by employing approximations of various forms. During the early y e a r s
of Numerical Analysis, it was quickly recognized that finding the roots of polynomials of
modest degree was not only slow, but was often infeasible due to accumulation of numerical
error. An importance solution to this problem was provided by Splines, a term we now use t o
denote the representation of functions (for curves or surfaces) as piecewise polynomials each
of low degree. Any arbitrary function, say one continuous for all derivatives, could b e
approximated arbitrarily well almost everywhere by a set of pieces, each piece being a
computationally appealing function. The only places where unbounded continuity is sacrificed
is where the pieces met, called "joins". However, the polynomials can be constrained so t h a t
the resulting approximation will have any desired but bounded degree of continuity at t h e
joins. The resulting spline representation is then much more attractive computationally t h a n
the original complicated function.
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Spline approximation of a continuous function

Splines are a recent example of employing approximations to achieve a
verbosity/complexity tradeoff: both accuracy and  computational complexity are traded for a
simlper and hopefully faster but more verbose and less accurate computation. This idea is n o t
new. For indeed Archimedes used this idea to approximate PI (the originator of the technique
is thought to be Apollonius, who was famous for his work on the geometric theory of conics).
He knew how to compute the area exactly of certain regular n-sided polygons by, for
example, dividing them into triangles. Given a unit circle, he could then use the area of a n
inscribed n-gon to provide a lower bound on PI, and the area of a circumscribing n-gon t o
produce an upper bound. By increasing n, he could obtain an answer as accurate as desired,
though at greater computational expense. This is a very early example of using piecewise
linear approximations of a non-linear set, and more generally, of the complexity vs.
verbosity tradeoff in geometric computations.

Archimedes/Appollonius piecewise linear approximation of a circle

The simplest and most verbose representation of geometry is the discrete space
representation, familiar to us as pixels and voxels. Pixels, while generally thought of as a n
idea requiring a CRT and a frame-buffer, also have an ancient precursor: mosaics
constructed from many small colored tiles (pixels). Indeed, the Sumarians are known to h a v e
created mosaics as early as the third millennium B.C. This technique was continued by t h e
Romans, especially in the Byzantine Empire after the ascension of Christianity as the s t a t e
religion. It is now the basis for all raster graphics.

The verbosity/complexity tradeoff is a central issue in evaluating the var ious
computational representations of geometry. The central question is: Under which
circumstances is it best to use which representation, and in particular, when should we t r a d e
conciseness and accuracy to gain speed? This is a question that is at the heart of geometric



4

computations, and one that remains very much open and is unlikely to be resolved any t ime
soon. For example, does the current success of hardware texture mapping of polygons imply
that we should also use voxel representations for all 3D geometry? Some people think th i s
could be the case. Or should be retain polygons but dispense with non-linear representa t ions
since for example we have fast polygon renderers? A more likely answer is that each
principal representation will have its place (its niche) if it describes some essential aspect of
geometry. But if so, can we say something now about what these niches will be, and how t h e
representations will be related to one another in a complete system? It is our intention t o
contribute to this objective by bringing a certain degree of clarity to this important issue.

T a x o n o m y  o f  R e p r e s e n t a t i o n s  o f  G e o m e t r y 

In the figure below, we present a partial taxonomy of representations of geometry based o n
fundamental categories. For each leaf of the classification tree, we have given a
representation of geometry that best exemplifies a particular classification.  Not all
representations in use today are presented, either becasue we have not included all of t h e
possible categories, or because they are hybrids combining various aspects, or because w e
feel they belong at a higher semantic level than what we are considering here (e.g. CSG). We
will discuss some of these later.

Discre t e Cont inuous

Combinatoria l Funct iona l

P a r a m e t r i c I m p l i c i tTopolog ica l Set Membership
(Hierarchica l )

Pixels / Voxels

Boundary Representations Partitioning Trees Bezier Algebraic Sets

Basic Taxonomy of Representatons of Geometry

It is our thesis that each of each of these primary representations can represent a n y
geometric set and that all geometric operations can be performed using any of them. They
are then, at this level of abstraction, equivalent. This is analogous to the fact that the var ious
models of computation that were developed during the 1930's through the 1940's w e r e
discovered to be all equivalent in what functions they could compute; in today's vernacula r ,
they were all Turing equivalent. That is, each one of these representations contain enough
expressive power to model the semantics of geometric sets.1

However, since the character of geometric sets is multi-faceted (especially if they a r e
polyhedra :-), any single representation in its pure form will be limited in the range of
operations for which it is ideally suited. Thus, a complete software system for performing
geometric computations efficiently must either incorporate multiple representations wi th
conversions between them, or else develop some integrated approach by constructing a
                                    
1 We define geometric sets as subsets of d-dimensional space (Euclidean, Affine and/or Projective). We are most i n t e r e s t e d

in those sets which are comprised of an uncountable (continuous) number of points, as opposed to finite point sets o r

even countable ones.
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hybrid form with sufficient expressive power. If multiple representation are used, then th i s
fact can be hidden from the user by using Object-Oriented Programming. The class
"Geometric Set" can be defined, and each operation on that class can decide which
representation is best for that operation, maintaining multiple representa t ions
simultaneously and/or initiating data-type conversions as needed. If instead, an in tegrated
approach is employed, only a single representation would be needed; but performing each
operation may be made more difficult and more expensive by this than if pure forms w e r e
used, since more information/properties would need to be maintained during e v e r y
operation. Irregardless of which methodolgy is used, the best pedagogical approach is to first
examine and understand the pure forms; we can then see how hyrids can be const ructed
and why they may be desireable.

D i s c r e t e  v s .  C o n t i n u o u s 

Within the general category of spatial representations, the first distinction is between t h e
discrete vs. continuous. This is the same distinction as between the Integers and the Reals
(not finite vs. infinite). As is familiar from grade school, a discrete space representation of a 1 -
dimensional space is created by discretizing a line into equal intervals marked by integers. A
discrete space representation of a d-dimensional space, d > 1, is simply a regular lattice of
points created by the Cartesian-product of d 1-dimensional spaces, r ep re sen t ed
computationally as a multi-dimensional array. The coordinates of each point is a d-tuple of
integers.

1 2 3 4

1

2

Discrete Space : line segment and its discrete approximation

Discrete space representations, familiar as arrays of pixels or voxels, are at one end of t h e
spectrum in terms of being the simplest representation of geometry, but they are also t h e
most verbose and/or least accurate. They almost seem antithetical to the domain we a r e
dealing with: arbitrary subsets of continuous, not discrete, space. So why is it that we u s e
them? Firstly, it is possible to use discrete space to model continuous space as long as we a r e
willing to accept a limit on the resolution/accuracy of the computations. Since a grid can b e
made as fine as we wish, we can in principal obtain any level of accuracy we desire. However,
the historical entree for discrete space representations was in the context of t r ansduce r s
from the Physical Domain to the Information Domain. Time varying analog signals, such a s
those produced by a TV camera or by a microphone, where digitized by sampling the signal
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at regular intervals using A-to-D converters. The inverse transform could also be produced
with D-to-A converters; this is of course the basis for using frame buffers in image synthesis.

Discrete space is computationally trival to represent (a multi-dimensional array), and its
simplicity can be put to great advantage when designing special purpose hardware. A good
example of this can be found today with graphics hardware for performing texture mapping
of polygons in 3-space; texture maps are, after all, nothing more than a discrete space
representation of a function mapping a finite domain in 2-space to color values. Texture
coordinates at polygonal vertices provide a discrete-to-continuous mapping. However, since
texture mapping is performed as part of the scan-conversion process, which is a cont inuous-
to-discrete mapping, it becomes a discrete-to-discrete mapping.

One of the costs of discrete space representations is the error introduced by quantization.
This is most apparent to the human eye as aliasing artifacts. It must be compensated for b y
performing filtering of various kinds, thereby reducing somewhat the original gains due t o
the simplicity of using discrete space. It is also worth noting that the underlying theory for
mapping one image to another using the proper filtering for anti-aliasing is formulated i n
terms of first reconstructing a continuous signal from samples and then resampling t h e
continuous form to generate the new discrete image. This illustrates quite cleary that w h e n
modeling the continuum, it is necessary to retain the semantics of the continuum even w h e n
the underlying representation is discrete.

The other most obvious cost in using discrete space represenations is verbosity. While i t
is true that memory costs continue to decline, memory speeds have not; and even if m e m o r y
was zero cost, it would still be necessary to spend time processing all elements in the a r r a y .
So verbosity should in all likelihood remain a consideration, especially for 3D. On m o r e
fundamental issues, since space is sampled at a uniform and finite rate, discrete space
representations can only represent a finite region of space (within a finite amount of space,
i.e. within memory). Finiteness is a natural property of images but not as much so of 3D
environments. In addition, the regular grid is completely independent of the contents of
space, and so cannot describe any of the structure induced on the space by an image o r
collection of objects. Computer vision, for example, requires just this structure. Image
systhesis begins with this structure and generates a set of pixels from which the h u m a n
visual system recontructs the structure. And this information is not distributed uniformly
throughout 3-space, as is a 3D lattice. More importantly, humans rarely specify objects
directly in terms of pixels or voxels, but rather use continuous space representations t h a t
correspond to a higher semantic level. So, discrete space representations, while clearly
having an important place is geometric computation, are like all other representations in t h a t
they do not constitute a complete language for expressing every aspect of geometry.

C o n t i n u o u s  S p a c e :  F u n c t i o n a l  v s .  C o m b i n a t o r i a l 

Functional and Combinatoral representations are solving two different problems which, w h e n
taken together, give a complete solution for representing geometry. Functional
representations use continuous (C∞) functions to specify the continuous sets of points
comprising each piece of a geometric set. Combinatorial representations describe how t h e
pieces are related to each other. Functional representations deal with the uncountably
infinite, combinatorial with the finite usually and certainly no more than the countably
inifinte (cardinality of the integers).

Much of Mathematics, motivated by Physics, has been the study of continuous functions;
this characteristic is most evident in the field of Analysis. Despite the wealth of work o n
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continuous functions, the problem of having humans design objects has resulted in a n
important contribution to our understanding of how to represent curves and surfaces using
polynomials, and how to represent the polynomials themselves. This is most evident in t h e
development of the Bezier/Berstein theory and the closely related B-spline theory. The
traditional "power basis" form describes polynomials in terms of a weighted sum of
monomials. This turns out to be a direct specification of the behaviour of the polynomial
exactly at the origin of the coordinate system in terms of its value and derivatives. The Bezier
form instead expresses a polynomial directly as the weighted sum of points (control points)
independent of the coordinate system, and its behaviour in the vacintity of these points is
understandable in terms of these points. So while any polynomial can be expressed in e i t he r
the power or the Berstein basis, the latter has proved to be much more a t t rac t ive
computationally.

In contrast to Analysis, Computer Science has been principally the study of the finite, al
beit in a computational milieu. This is most evident in the use of combinatorial s t ruc tu res ,
such as graphs, that provide the basis in computing for data structures. As discussed earlier,
a strict devotion to using monolithic but complicated functions for representing objects is
much less attractive computationally than using many simpler pieces. It is the problem of
representing "the many" that requires the combinatorial component. This can be used t o
express how the pieces connect to one another or how to organize the pieces hierarchically t o
significantly improve performance. And once we have a combinatorial structure, it is easy t o
introduce the discontinuities absent from the standard representations of continuous
functions which are C∞. This is most readily perceived if, for example, we interpret a 3D
geometric model as a function that maps points in 3-space to some set of attributes, such a s
color; surfaces then correspond to discontinuities in this function. Analysis has always h a d
difficulty with discontinuites, often resorting to such devices as representing a sample as t h e
limit of an inifinite sequence of continuous functions. This is due to the absence in t h e i r
language of adequate means for expressing arbitrary discontinuities. The combinatorial
component provides us with just such a language.

F u n c t i o n a l :  P a r a m e t r i c s   v s .  I m p l i c i t s 

An important distinction for the functional form is between parametrics and implicits. This is
nothing more than the difference between whether the set lies in the range or the domain of
a function, respectively. The computational impact of this distinction manifest in var ious
geometric operations. Parametrics are naturally suited for generating a finite sampling of
points while implicits facilitate computing intersections.

For parametrics, the set lies in the range of a vector valued function P: Tm ⇒ Xn. For
example, if m = 1 and n = 3, one obtains curves lying in 3-space. In general, the set is m -
dimensional lying in an n-dimensional space. Such functions can be specified by n coordinate
functions, which are mostly commonly polynomials, each being a scalar valued function of m
independent variables: Pi: Tm ⇒ Xi. The essence of parametric representations is their power

to enumerate points in the set. By sampling points in the parameter space Tm, one c a n
generate corresponding points in Xn. This property is commonly used in 3D to genera te
polygonal approximations of parametrically defined surfaces: the generated points serve a s
vertices of a polygonal mesh.

In contrast to parametrics, implicit functions are of the form F( Xn ) ⇒  Z1. We a r e

interested in those functions, F( Xn ) = 0, which define curves or surfaces. These part i t ion
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space into a collection of connected regions such that each region is entirely in F( Xn) > 0 or F(
Xn) < 0. We can then use these to define solids in 3D as those points that satisfy F( Xn) <= 0 ( o r
F( Xn) >= 0). This gives us a membership function (also called a characteristic function) for t h e
set. A membership function allows us to determine for any point in space whether it is a
member of the set by evaluating the function. This is the essential computational
characteristic of implicit representations.

Currently, the most popular forms of parametric and implicit functions use polynomials
(with rational coefficients). Sets defined in the implicit form by a single polynomial define t h e
class called Algebraic Sets. Surfaces defined parameterically by (rational) polynomial
coordinate functions are also algebraic sets; but not all algebraic sets admit such a
parameterization. Thus, parametrics are a subset of the implicits when only polynomials a r e
involved. Determining the implicit form of a parametric surface is called implicitization, while
determining a parametric form of an implicit is called parameterization. However, neither of
these is easy to do in general, requiring techniques from Algebraic Geometry. The o n e
notable exception is when only quadratic polynomials are used, in which case both forms a r e
well known; and quadratic rational parametrics and quadratic implicits define exactly t h e
same class of sets.

The distinction between sets for which one has a membership function, as with implicits,
and those for which one has an enumeration function, as with parametrics, lies at the v e r y
foundations of the theory of computation. In order for a (countable) set to be characterized a s
computable, the set must have a computable membership function. Such sets are called
Recursive Sets. Those sets for which there exist computable enumera t ing /genera t ing
functions are called Recursively Enumerable Sets. For any recursive set, there exists, i n
addition to its membership function, a computable generating function for the set, and so t h e
Recursive Sets are also Recursively Enumerable. However, the reverse is not the case, and so
the Recursive Sets are a proper subset of the Recursively Enumerable Sets, the later being
called semi-computable. This strongly suggests that the distinction between implicits a n d
parametrics corresponds to an important difference in methods of defining sets. (The fact t h a t
polynomially define parametrics are a subset of the implicits, rather than the reverse a s
suggested by recursive sets being a subset of the recursively enumerable, may be an artifact
of considering only polynomials.)

The difference in the computational efficacy of the two representations can be largely
understood in terms of the difference between membership and enumeration functions.
Determining set membership is required for performing any intersection operation ( t h e
points of intersection are those which are members of both sets). Such geometric operations
include point classification, ray-surface intersection, clipping to a view-volume, collision
detection, constructive solid geometry, radiosity, shadows, etc. On the other hand ,
enumeration is used directly for polygonalization of a curved surface and scan-conversion of
polygons. However, the parametric form can be use  to compute intersections qui te
effectively if paired with an implicit. This is commonly  done when a parametr ic
representation of a line (ray or edge) is substituted into an implicit equation of a surface.
Various values of the parameter are "enumerated" either analytically if the degree is 1 or 2 ,
or numerically by a iterative technique such as Newton iteration.

C o m b i n a t o r i a l :  T o p o l o g i c a l  v s .  S e t  M e m b e r s h i p 
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Given an object defined by a collection of functionally defined continuous pieces, we m u s t
organize them into a whole using combinatorial structures. Currently, combinatorial
structures, i.e. graphs, have been used primary to express two fundamental relations
between components of a set: the topological structure and the set membership structure.

The topological structure encodes the incidence relations between geometric elements, i.e.
which elements "touch" which other elements. These elements may be of the same dimension,
such as polyhedral faces which share an edge, or they may be of differing dimensions, a s
between a polygon and the edges that bound it. This structure is represented by a g r a p h
where each node corresponds to an element and graph edges correspond to the incidence
relation. It also has a hierarchical structure  in which levels of the hierarchy correspond t o
the various dimensions of the components. Other topological properties, such as number of
connected components and genus of each components, can be computed from this graph. The
topological form is the basis for the many varieties of boundary representations. As a
consequence, for 3D it is most closely associated with surface representations, a l though
volumes be easily included in the schema by adding the appropriate nodes for each 3 -
dimensional connected region of space (such as F1in the figure below).
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V 2 V 3

V 4

V 5 V 6

E1

E2
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2 D - s e t
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E1 E2 E3
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1 D - s e t

0 D - s e t

F 1

1D-man i fo ld

0D-man i fo ld

M2

E4 E5 E6

V 4 V 5 V 6

Topological Representation

Representing set membership is more closely identified with volumetric representa t ions
than with boundary representations, and the collection of elements are usually not the s a m e
as those defined by using the topological properties. Most commonly, the elements are regions
of space created as a consequence of forming a hierarchical search structure whose purpose
is to accelerate intersection and/or visibility calculations. These include octrees, bounding
volume hierarchies, and binary space partitioning trees. They all accelerate intersections
using the same prinicpal: the bounding volume principal. If some geometry entity, such as a
point, ray or object, does not intersect a region/bounding-volume, then the entity cannot
intersect any contents of that region: (B subset of A) & not (C subset of A) ⇒ not (B ∩  C). Thus
the set membership relation confers transitively the non-intersection property. Similarly, if
a region has visibility priority over another region, then the set membership relation confers
visibility priority transitively.

The idea of a search structure based on the membership relation was first used i n
symbolic computation involving finite sets, such as lists of names. By organizing a list into a
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binary search tree, various operations, such as "find", "insert" and "delete", could b e
performed in O( log n) rather than O( n ) time, and even better when the statistical
distribution of the input was known to be other than uniform.
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Binary Search Tree for the set { 0,1,4,5,6,8 }

In geometric computation, there can be thousands or millions of pieces, such as polygons.
For rendering, we need to determine which of these lie within our view and which ones a r e
hidden from view by other polygons. For physical simulation, of even minimal accuracy, w e
need to know which objects collide with each other and where the contacts occur. For t h e s e
and other important operations, a combinatorial structure representing set membership c a n
make an enormous difference. A direct generalization of binary search trees to dimensions
greater than 1D is the Binary Space Partitioning Tree depicted below. This s t r u c t u r e
represents both a hierarchical search of space as well as the contents of the space (e.g.
objects).
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Binary Space Partitioning Tree for two rectangles

Humans perceive connectedness (incidence relation of topology) directly as a p r i m a r y
component of visual cognition, whereas the subset relation is usually perceive only when a
physical container is involved (something is "inside" another thing). Yet both relations a r e
important for geometric computation since both are fundamental aspects of geometric sets.

S p a t i a l  v s .  F r e q u e n c y 
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It is somewhat counter-intuitive that "geometry", which is almost synonymous with the term
"spatial", can be represented in a non-spatial way, in particular, represented in t h e
frequency domain, as is natural to do for something like sound waves. For indeed mos t
geometric features are non-periodic and local, while sine waves are exactly the opposite,
periodic and global (from -inf to +inf). For representing geometry, this incompatibility h a s
required introducing locality into the frequency paradigm to produce something of a h y b r i d
frequency/spatial schema. Initially, this was accomplished by such mechanisms as t h e
"Windowed Fourier Transform".

But more recently, this difficulty has been addresses by the use of "wavelets". This
technique replaces sine and cosine, which are the Fourier Transform basis functions and a r e
non-zero over an infinite domain (possessing "infinite support"), with ones that are non-ze ro
over only a finite domain (possessing local support), such as an isolated square pulse.
However, local support has a price in the frequency domain: the Fourier Transform of such a
function has infinite support in Fourier-space, another form of the uncertainity principle. A
wavelet transform begins with a single generating (mother) wavelet, and then it is scaled,
often by 2-n, n > 0, and translated to create a collection of basis functions. In the typical case,
this scaling and translating of a function with local support results in a hierarchical spatial
subdivision analogous to a quadtree (in 2D). Thus, achieving a truely effective use of t h e
frequency concept for representing geometry has led to the introduction of an increasingly
geometric character. Given the success of frequency domain based operations for
image/video compression and the emerging wavelet theory, we would expect s u c h
frequency/spatial hybrid schemes to become much more widely used for geometric
computation in the future.
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Abstract

This paper is a survey of volume visualization, volume graphics, and volume rendering techniques. It
focuses specifically on the use of the voxel representation and volumetric techniques for geometric
applications.

1. Introduction

Volume data are 3D entities that may have information inside them, might not consist of surfaces and
edges, or might be too voluminous to be represented geometrically .Volume visualizationis a method
of extracting meaningful information from volumetric data using interactive graphics and imaging, and
it is concerned with volume data representation, modeling, manipulation, and rendering [49]. Volume
data are obtained by sampling, simulation, or modeling techniques. For example, a sequence of 2D
slices obtained from Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) is 3D
reconstructed into a volume model and visualized for diagnostic purposes or for planning of treatment
or surgery. The same technology is often used with industrial CT for non-destructive inspection of
composite materials or mechanical parts. Similarly, confocal microscopes produce data which is
visualized to study the morphology of biological structures. In many computational fields, such as in
computational fluid dynamics, the results of simulation typically running on a supercomputer are often
visualized as volume data for analysis and verification. Recently, many traditional geometric computer
graphics applications, such as CAD and simulation, have been exploiting the advantages of volume
techniques calledvolume graphicsfor modeling, manipulation, and visualization.

Over the years many techniques have been developed to visualize 3D data. Since methods for
displaying geometric primitives were already well-established, most of the early methods involve
approximating a surface contained within the data using geometric primitives. When volumetric data
are visualized using a surface rendering technique, a dimension of information is essentially lost. In
response to this, volume rendering techniques were developed that attempt to capture the entire 3D data
in a single 2D image. Volume rendering convey more information than surface rendering images, but at
the cost of increased algorithm complexity, and consequently increased rendering times. To improve
interactivity in volume rendering, many optimization methods as well as several special-purpose volume
rendering machines have been developed.

We begin with an introduction to volumetric data. Section 3 covers briefly surface rendering techniques
for volume data. Section 4 discusses in details volume rendering techniques, including image-order,
object-order, and domain techniques. Optimization methods for volume rendering are discussed in
Section 5, and special-purpose volume rendering hardware is described in Section 6. Section 7
introduces global illumination of volumetric data, including volumetric ray tracing and volumetric
radiosity. Irregular grid rendering is briefly discussed in Section 8. Volume graphics is introduced in

http://www.cs.sunysb.edu
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Section 9, including several volume modeling techniques, such as voxelization, texture mapping,
amorphous phenomena, block operations, constructive solid modeling, and volume sculpting.

2. Volumetric Data

Volumetric data is typically a setS of samples (x, y, z, v), representing the valuev of some property of
the data, at a 3D location (x, y, z). If the value is simply a 0 or a 1, with a value of 0 indicating
background and a value of 1 indicating the object, then the data is referred to as binary data. The data
may instead be multivalued, with the value representing some measurable property of the data,
including, for example, color, density, heat or pressure. The valuev may even be a vector, representing,
for example, velocity at each location.

In general, the samples may be taken at purely random locations in space, but in most cases the setS is
isotropic containing samples taken at regularly spaced intervals along three orthogonal axes. When the
spacing between samples along each axis is a constant, but there may be three different spacing
constants for the three axes the setS is anisotropic. Since the set of samples is defined on a regular grid,
a 3D array (called alsovolume buffer, cubic frame buffer, 3D raster) is typically used to store the values,
with the element location indicating position of the sample on the grid. For this reason, the setS will be
referred to as the array of valuesS(x, y, z), which is defined only at grid locations. Alternatively, either
rectilinear, curvilinear (structured), or unstructured grids, are employed (e.g., [94]). In arectilinear grid
the cells are axis-aligned, but grid spacings along the axes are arbitrary. When such a grid has been
non-linearly transformed while preserving the grid topology, the grid becomescurvilinear. Usually, the
rectilinear grid defining the logical organization is calledcomputational space,and the curvilinear grid
is calledphysical space. Otherwise the grid is calledunstructuredor irregular. An unstructured or
irregular volume data is a collection of cells whose connectivity has to be specified explicitly. These
cells can be of an arbitrary shape such as tetrahedra, hexahedra, or prisms.

The arrayS only defines the value of some measured property of the data at discrete locations in space.
A function f (x, y, z) may be defined overR3 in order to describe the value at any continuous location.
The function f (x, y, z) = S(x, y, z) if ( x, y, z) is a grid location, otherwisef (x, y, z) approximates the
sample value at a location (x, y, z) by applying some interpolation function toS. There are many
possible interpolation functions. The simplest interpolation function is known aszero-order
interpolation, which is actually just a nearest-neighbor function. The value at any location inR3 is
simply the value of the closest sample to that location. With this interpolation method there is a region
of constant value around each sample inS. Since the samples inS are regularly spaced, each region is
of uniform size and shape. The region of constant value that surrounds each sample is known as avoxel
with each voxel being a rectangular cuboid having six faces, twelve edges, and eight corners.

Higher-order interpolation functions can also be used to definef (x, y, z) between sample points. One
common interpolation function is a piecewise function known asfirst-order interpolation, or trilinear
interpolation. With this interpolation function, the value is assumed to vary linearly along directions
parallel to one of the major axes. Let the pointP lie at location (xp, yp, zp) within the regular
hexahedron, known as acell, defined by samplesA throughH . For simplicity, let the distance between
samples in all three directions be 1, with sampleA at (0, 0, 0) with a value ofvA, and sampleH at
(1, 1, 1) with a value ofvH . The valuevP, according to trilinear interpolation, is then:

(1)vP = vA (1 − xp)(1 − yp)(1 − zp) + vE (1 − xp)(1 − yp) zp +
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vB xp (1 − yp)(1 − zp) + vF xp (1 − yp) zp +

vC (1 − xp) yp (1 − zp) + vG (1 − xp) yp zp +

vD xp yp (1 − zp) + vH xp yp zp

In general,A will be at some location (xA, yA, zA), andH will be at (xH ,yH ,zH ). In this case,xp in

Equation 1 would be replaced by
(xp − xA)

(xH − xA)
, with similar substitutions made foryp andzp.

3. Surface Rendering Techniques

Several surface rendering techniques have been developed which approximate a surface contained
within volumetric data using geometric primitives, which can be rendered using conventional graphics
accelerator hardware. A surface can be defined by applying a binary segmentation functionB(v) to the
volumetric data.B(v) evaluates to 1 if the valuev is considered part of the object, and evaluates to 0 if
the valuev is part of the background. The surface is then the region whereB(v) changes from 0 to 1. If
a zero-order interpolation function is being used, then the surface is simply the set of faces which are
shared by voxels with differing values ofB(v). If a higher-order interpolation function is being used,
then the surface passes between sample points according to the interpolation function.

For zero-order interpolation functions, the natural choice for a geometric primitive is the 3D rectangular
cuboid, since the surface is a set of faces, and each face is a rectangle. An early algorithm for
displaying human organs from computed tomograms [35] uses the square as the geometric primitive.
To simplify the projection calculation and decrease rendering times, the assumption is made that the
sample spacing in all three directions is the same. A software Z-buffer algorithm is then used to project
the shaded squares onto the image plane to create the final image.

With continuous interpolation functions, a surface, known as aniso-valued surfaceor an iso-surface,
may be defined by a single value. Several methods for extracting and rendering iso-surfaces have been
developed, a few are briefly described here. The Marching Cubes algorithm [63] was developed to
approximate an iso-valued surface with a triangle mesh. The algorithm breaks down the ways in which
a surface can pass through a cell into 256 cases, reduces by symmetry to only 15 topologies. For each
of these 15 cases, a generic set of triangles representing the surface is stored in a look-up table. Each
cell through which a surface passes maps to one of the 15 cases, with the actual triangle vertex locations
being determined using linear interpolation on the cell vertices. A normal value is estimated for each
triangle vertex, and standard graphics hardware can be utilized to project the triangles, resulting in a
smooth shaded image of the iso-valued surface.

When rendering a sufficiently large data set with the Marching Cubes algorithm, millions of triangles
may be generated many of them map to a single pixel when projected onto the image plane. This fact
led to the development of surface rendering algorithms that use 3D points as the geometric primitive.
One such algorithm is Dividing Cubes [8], which subdivides each cell through which a surface passes
into subcells. The number of divisions is selected such that the subcells project onto a single pixel on
the image plane. Another algorithm which uses 3D points as the geometric primitive is the Trimmed
Voxel Lists method [91]. Instead of subdividing, this method uses only one 3D point per visible surface
cell, projecting that point on up to three pixels of the image plane to insure coverage in the image.
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4. Volume Rendering Techniques

Representing a surface contained within a volumetric data set using geometric primitives can be useful
in many applications, however there are several main drawbacks to this approach. First, geometric
primitives can only approximate surfaces contained within the original data. Adequate approximations
may require an excessive amount of geometric primitives. Therefore, a trade-off must be made between
accuracy and space requirements. Second, since only a surface representation is used, much of the
information contained within the data is lost during the rendering process. For example, in CT scanned
data useful information is contained not only on the surfaces, but within the data as well. Also,
amorphous phenomena, such as clouds, fog, and fire cannot be adequately represented using surfaces,
and therefore must have a volumetric representation, and must be displayed using volume rendering
techniques.

In the next subsections various volume rendering techniques are explored.Volume renderingis the
process of creating a 2D image directly from 3D volumetric data. Although several of the methods
described in these subsections render surfaces contained within volumetric data, these methods operate
on the actual data samples, without the intermediate geometric primitive representations used by the
algorithms in Section 3.

Volume rendering can be achieved using anobject-order, an image-order, or adomain-basedtechnique.
Object-order volume rendering techniques use aforward mappingscheme where the volume data is
mapped onto the image plane. In image-order algorithms, abackward mappingscheme is used where
rays are cast from each pixel in the image plane through the volume data to determine the final pixel
value. In a domain-based technique the spatial volume data is first transformed into an alternative
domain, such as compression frequency, and wav elet, and then a projection is generated directly from
that domain.

4.1. Object-Order Techniques

Object-order techniques involve mapping the data samples on to the image plane. One way to
accomplish a projection of a surface contained within the volume is to loop through the data samples,
projecting each sample which is part of the object onto the image plane. For this algorithm, the data
samples are binary voxels, with a value of 0 indicating background and a value of 1 indicating the
object. Also, the data samples are on a grid with uniform spacing in all three directions.

If an image is produced by projecting all voxels with a value of 1 to the image plane in an arbitrary
order, we are not guaranteed a correct image. If two voxels project to the same pixel on the image plane,
the one that was projected later will prevail, even if it is farther from the image plane than the earlier
projected voxel. This problem can be solved by traversing the data samples in aback-to-frontorder.
For this algorithm, the strict definition of back-to-front can be relaxed to require that if two voxels
project to the same pixel on the image plane, the first processed voxel must be farther away from the
image plane than the second one. This can be accomplished by traversing the data plane-by-plane, and
row-by-row inside each plane. For arbitrary orientations of the data in relation to the image plane, some
axes may be traversed in an increasing order, while others may be considered in a decreasing order. The
traversal can be accomplished with three nested loops, indexing onx, y, andz. Although the relative
orientations of the data and the image plane specify whether each axis should be traversed in an
increasing or decreasing manner, the ordering of the axes in the traversal is arbitrary.
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An alternative to back-to-front projection is afront-to-backmethod in which the voxels are traversed in
the order of increasing distance from the image plane. Although a back-to-front method is easier to
implement, a front-to-back method has the advantage that once a voxel is projected onto a pixel, other
voxels which project to the same pixel are ignored, since they would be hidden by the first voxel.
Another advantage of front-to-back projection methods is that if the axis which is most parallel to the
viewing direction is chosen to be the outermost loop of the data traversal, meaningful partial image
results can be displayed to the user. This allows the user to better interact with the data and terminate
the image generation if, for example, an incorrect view direction was selected. Partial image results can
be displayed to the user during a back-to-front method also, but the value of a pixel may change many
times during image generation. With a front-to-back method, once a pixel value is set, its value remains
unchanged.

Clipping planes orthogonal to the three major axes, and clipping planes parallel to the view plane are
easy to implement using either a back-to-front or a front-to-back algorithm. For orthogonal clipping
planes, the traversal of the data is limited to a smaller rectangular region within the full data set. To
implement clipping planes parallel to the image plane, data samples whose distance to the image plane
is less than the distance between the cut plane and the image plane are ignored. This ability to explore
the whole data set is a major difference between volume rendering techniques and the surface rendering
techniques described in Section 3. In surface rendering techniques, the geometric primitive
representation of the object need to be changed in order to implement cut planes, which could be a time-
consuming process. In a back-to-front method, cut planes can be achieved by simply modifying the
bounds of the data traversal, and utilizing a condition when placing depth values in the image plane
pixels.

For each voxel, its distance to the image plane could be stored in the pixel to which it maps along with
the voxel value. At the end of a data traversal a 2D array of depth values, called a Z-buffer, is created,
where the value. at each pixel in the Z-buffer is the distance to the closest non-empty voxel. A 2D
discrete shading technique can then be applied to the image, resulting in a shaded image suitable for
display. The 2D discrete shading techniques described here take as input a 2D array of depth values and
a 2D array of projected voxel values, and produce as output a 2D image of intensity values. The
simplest 2D discrete shading method is known as depth shading, ordepth-only shading[36, 103], where
only the Z-buffer is used and the intensity value stored in each pixel of the output image is inversely
proportional to the depth of the corresponding input pixel. This produces images where features far
from the image plane appear dark, while close feature are bright. Since surface orientation is not
considered in this shading method, most details such as surface discontinuities and object boundaries are
lost.

A more accurately shaded image can be obtained by passing the 2D depth image to a gradient-shader
[29] which can take into account the object surface orientation and the distance from the light at each
pixel to produce a shaded image. This method evaluates the gradient at each (x, y) pixel location in the
input image by

(2)∇z = 


δ z

δ x
,

δ z

δ y
, −1



wherez = D(x, y) is the depth stored in the Z-buffer associated with pixel (x, y). The estimated gradient
vector at each pixel is then used as a normal vector for shading purposes.

The value
δ z

δ x
can be approximated using a backward differenceD(x, y) − D(x − 1, y), a forward



-6-

difference D(x + 1, y) − D(x, y), or a central difference
1

2
(D(x + 1, y) − D(x − 1, y)). Similar

equations are used for approximating
δ z

δ y
. In general, the central difference is a better approximation of

the derivative, but along object edges where, for example, pixels (x, y) and (x + 1, y) belong to two
different objects, a backward difference would provide a better approximation. A context sensitive
normal estimation method [120] was developed to provide more accurate normal estimations by
detecting image discontinuities. In this method, two pixels are considered to be in the same ‘‘context’’
if their depth values, and the first derivative of the depth at these locations do not greatly differ. The
gradient vector at some pixelp is then estimated by considering only those pixels which lie within a
user-defined neighborhood, and belong to the same context asp. This ensures that sharp object edges,
and slope changes are not smoothed out in the final image.

The previous rendering methods consider only binary data samples where a value of 1 indicates the
object and a value of 0 indicates the background. Many forms of data acquisition (e.g., CT) produce
data samples with 8, 12, or even more bits of data per sample. If these data samples represent the values
at some sample points, and the value vary according to some convolution applied to the data samples
which can reconstruct the original 3D signal, then a scalar field which approximates the original 3D
signal has been defined.

One way to reconstruct the original signal is, as described previously, to define a functionf (x, y, z)
which determines the value at any location in space. This technique is typically employed by backward-
mapping (image-order) algorithms. In forward mapping algorithms, the original signal is reconstructed
by spreading the value at a data sample into space. Westover describes a splatting algorithm [111] for
approximating smooth object-ordered volume rendering, in which the value of the data samples
represents a density. Each data samples = (xs,ys,zs,ρ(s)), s∈S, has a functionC defining its
contribution to every point (x, y, z) in the space:

(3)Cs(x, y, z) = hv(x − xs, y − ys, z − zs)ρ(s)

wherehv is the volume reconstruction kernel andρ(s) is the density of samples which is located at
(xs, ys, zs). The contribution of a samples to an image plane pixel (x, y) can then be computed by
integration:

(4)Cs(x, y) = ρ(s)
∞

−∞
∫ hv(x − xs, y − ys, u)du

where theu coordinate axis is parallel to the view ray. Since this integral is independent of the sample
density, and depends only on its (x, y) projected location, a footprint functionF can be defined as
follows:

(5)F(x, y) =
∞

−∞
∫ hv(x, y, u)du

where (x, y) is the displacement of an image sample from the center of the sample’s image plane
projection. The weightw at each pixel can then be expressed as:

(6)w (x, y)s = F(x − xs, y − ys)

where (x, y) is the pixel location, and (xs, ys) is the image plane location of the samples.

A footprint table can be generated by evaluating the integral in Equation 5 on a grid with a resolution
much higher than the image plane resolution. All table values lying outside of the footprint table extent
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have zero weight and therefore need not be considered when generating an image. A footprint table for
a data samples, can be centered on the projected image plane location ofs, and be sampled in order to
determine the weight of the contribution ofs to each pixel on the image plane. Multiplying this weight
by ρ(s) then gives the contribution ofs to each pixel.

Computing a footprint table can be difficult due to the integration required. Discrete integration
methods can be used to approximate the continuous integral, but generating a footprint table is still a
costly operation. Luckily, for orthographic projections, the footprint of each sample is the same except
for an image plane offset. Therefore, only one footprint table needs to be calculated per view. Since this
still would require too much computation time, only one generic footprint table is built for the kernel.
For each view, a view-transformed footprint table is created from the generic footprint table. The
generic footprint table can be precomputed, therefore, it does not matter how long the computation
takes.

Generating a view-transformed footprint table from the generic footprint table can be accomplished in
three steps. First, the image plane extent of the projection of the reconstruction kernel is determined.
Next a mapping is computed between this extent and the extent that surrounds the generic footprint
table. Finally, the value for each entry in the view-transformed footprint table is determined by mapping
the location of the entry to the generic footprint table, and sampling. The extent of the reconstruction
kernel is either a sphere, or is bounded by a sphere, so the extent of the generic footprint table is always
a circle. If the grid spacing of the data samples is uniform along all three axes, then the reconstruction
kernel is a sphere and the image plane extent of the reconstruction kernel will be a circle. The mapping
from this extent to the extent of the generic footprint table is simply a scaling operation. If the grid
spacing differs along the three axes, then the reconstruction kernel is an ellipsoid and the image plane
extent of the reconstruction kernel will be an ellipse. In this case, a mapping from this ellipse to the
circular extent of the generic footprint table must be computed.

There are three modifiable parameters in this algorithm which can greatly affect image quality. First,
the size of the footprint table can be varied. Small footprint tables produce blocky images, while large
footprint tables may smooth out details and require more space. Second, different sampling methods
can be used when generating the view-transformed footprint table from the generic footprint table.
Using a nearest-neighbor approach is fast, but may produce aliasing artifacts. On the other hand, using
bilinear interpolation produces smoother images at the expense of longer rendering times. The third
parameter which can be modified is the reconstruction kernel itself. The choice of, for example, a cone
function, Gaussian function, sync function or bilinear function affects the final image.

Drebin, Carpenter, and Hanrahan [16] developed a technique for rendering volumes that contain
mixtures of materials, such as CT data containing bone, muscle and flesh. In this method, various
assumptions about the volume data are made. First, it is assumed that the scalar field was sampled
above the Nyquist frequency, or a low-pass filter was used to remove high frequencies before sampling.
The volume contains either several scalar fields, or one scalar field representing the composition of
several materials. If the latter is the case, it is assumed that material can be differentiated either by the
scalar value at each point, or by additional information about the composition of each volume element.

The first step in this rendering algorithm is to create new scalar fields from the input data, known as
material percentage volumes. Each material percentage volume is a scalar field representing only one
material. Color and opacity are then associated with each material, with composite color and opacity
obtained by linearly combining the color and opacity for each material percentage volume. A matte
volume, that is, a scalar field on the volume with values ranging between 0 and 1, is used to slice the
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volume or perform other spatial set operations. Actual rendering of the final composite scalar field is
obtained by transforming the volume so that one axis is perpendicular to the image plane. The data is
then projected plane by plane in a back-to-front manner and composited to form the final image.

4.2. Image-Order Techniques

Image-order volume rendering techniques are fundamentally different from object-order rendering
techniques. Instead of determining how a data sample affects the pixels on the image plane, in an
image-order technique we determine for each pixel on the image plane, the data samples contribute to it
are determined.

One of the first image-order volume rendering techniques, which may be calledbinary ray casting
[101], was developed to generate images of surfaces contained within binary volumetric data without
the need to explicitly perform boundary detection and hidden-surface removal. For each pixel on the
image plane, a ray is cast from that pixel to determine if it intersects the surface contained within the
data. For parallel projections, all rays are parallel to the view direction, where as for perspective
projections, rays are cast from the eye point according to the view direction and the field of view. If an
intersection does occur, shading is performed at the intersection point, and the resulting color is placed
in the pixel. In order to determine the first intersection along the ray a stepping technique is used where
the value is determined at regular intervals along the ray until the object is intersected. Data samples
with a value of 0 are considered to be the background while those with a value of 1 are considered to be
part of the object. A zero-order interpolation technique is used, so the value at a location along the ray
is 0 if that location is not in any voxel of the data, otherwise it is the value of the closest data sample.
For a step sized, thei th point samplepi would be taken at a distancei×d along the ray. For a given ray,
either all point samples along the ray have a value of 0 (the ray missed the object entirely), or there is
some samplepi taken at a distancei×d along the ray, such that all samplespj , j < i , hav e a value of 0,
and samplepi has a value of 1. Point samplepi is then considered to be the first intersection along the
ray. In this algorithm, the step sized must be chosen carefully. Ifd is too large, small features in the
data may not be detected. On the other hand, ifd is small, the intersection point is more accurately
estimated at the cost of higher computation time.

There are several optimizations which can be made to this algorithms. First, the number of steps which
must be made along each ray can be reduced by traversing only the part of the ray contained within the
bounding box of the data. A second optimization involves the representation of the data in memory.
This algorithm was originally developed on a machine with only 32K of RAM, so data compression was
a critical issue. Instead of simply storing the data as a binary array of 0’s and 1’s, a scan-line
representation can be used. For each scan-line in the data, a list of end points can be stored which
represent the segments belonging to the object. This representation is compact, yet does not add too
much time to the intersection calculation.

The previous algorithm deals with the display of surfaces within binary data. A more general algorithm
can be used to generate surface and composite projections of multivalued data. Instead of traversing a
continuous ray and determining the closest data sample for each step with a zero-order interpolation
function, a discrete representation of the ray could be traversed. This discrete ray is generated using a
3D Bresenham-like algorithm or a 3D line scan-conversion (voxelization) algorithm [43, 49] (see
Section 9.1). As in the previous algorithms, for each pixel in the image plane, the data samples
contribute to it need to be determined. This could be done by casting a ray from each pixel in the
direction of the viewing ray. This ray would be discretized (voxelized), and the contribution from each
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voxel along the path is considered when producing the final pixel value. This technique is referred to as
discrete ray casting[122].

In order to generate a 3D discrete ray using a voxelization algorithm, the 3D discrete topology of 3D
paths has to be understood. There are three types of connected paths: 6-connected, 18-connected, and
26-connected, which are based upon the three adjacency relationships between consecutive voxels along
the path. An example of these three types of connected paths is given in Figure 1. Assuming a voxel is
represented as a box centered at the grid point, two voxels are said to be 6-connected if they share a
face, they are 18-connected if they share a face or an edge, and they are 26-connected if they share a
face, an edge, or a vertex. A 6-connected path is a sequence of voxels,v1, v2, ... vN , where for each pair
of voxels vi , vi+1 (1 ≤ i < N), vi and vi+1 are 6-connected. Similar definitions exist for 18- and
26-connected paths.

In discrete ray casting, a ray is discretized into a 6-, 18-, or 26-connected path, and only the voxels
along this path are considered when determining the final pixel value. If a surface projection is
required, the path is traversed until the first voxel which is part of the object is encountered. This voxel
is then shaded and the resulting color value is stored in the pixel. 6-connected paths contain almost
twice as many voxels as 26-connected paths, so an image created using 26-connected paths would
require less computation, but a 26-connected path may miss an intersection that would be detected using
a 6-connected path.

To produce a shaded image, the distance to the closest intersection is stored at each pixel in the image,
and, then this image is passed to a 2D discrete shader, such as those described previously. Howev er,
better results can be obtained by performing a 3D discrete shading operation at the intersection point.
One 3D discrete shading method, known asnormal-based contextual shading[5], can be employed to
estimate the normal when zero-order interpolation is used. The normal for a face of a voxel that is on
the surface of the object is determined by examining the orientation of that face, and the orientation of
the four faces on the surface that are edge connected to that face. Since a face of a voxel can have only
six possible orientations, the error in the approximated normal can be significant. More accurate results
can be obtained using a technique known asgray-level shading[4, 8, 38, 97, 98]. If the intersection
occurs at location (x, y, z) in the data, then the gray-level gradient at that location can be approximated
with a central difference:

6-Connected

18-Connected

26-Connected

Figure 1: 6-, 18-, and 26-connected paths
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Gx =
f (x + 1, y, z) − f (x − 1, y, z)

2Dx
,

(7)Gy =
f (x, y + 1,z) − f (x, y − 1,z)

2Dy
,

Gz =
f (x, y, z + 1) − f (x, y, z − 1)

2Dz
,

where (Gx, Gy, Gz) is the gradient vector, andDx, Dy, andDz are the distances between neighboring
samples in thex, y, andz directions, respectively. The gradient vector is used as a normal vector for
shading calculation, and the intensity value obtained from shading is stored in the image. A normal
estimation can be performed at point samplepi , and this information, along with the light direction, and
the distancei×d can be used to shadepi .

Actually, stopping at the first opaque voxel and shading there is only one of many operations which can
be performed on the voxels along a discrete path or continuous ray. Instead, the whole ray could be
traversed, storing in the image plane pixel the maximum value encountered along the ray. Figure 2 (a)
is a first opaque, or surface, projection of a bullfrog sympathetic ganglion cell, which was reconstructed
from confocal microscope data, while Figure 2 (b) is a maximum projection of the same cell. Figure 2
was generated using the PARC algorithm, which is described in Section 5. As opposed to a surface
projection, a maximum projection is capable of revealing some internal parts of the data. Another
option is to store the sum (simulating X-rays) or average of all values along the ray. More complex
techniques, which are described below, may involve defining an opacity and color for each scalar value,
and then accumulating intensity along the ray according to some compositing function, revealing 3D
structure information and 3D internal features (see Figure 2(c)).

Figure 2(a): A surface projection of a nerve cell.
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Figure 2(b): A maximum projection of a nerve cell.

The previous two rendering techniques, binary ray casting and discrete ray casting, use zero-order
interpolation in order to define the scalar value at any location inR3. One advantage to using zero-order
interpolation is simplicity and speed, since many of the calculations required can be done using integer
arithmetic. One disadvantage though is the aliasing effects in the image. Higher-order interpolation
functions can be used to create a more accurate image, but generally at the cost of algorithm complexity
and computation time. The next three algorithms described in this section all use higher-order
interpolation functions.

When creating a composite projection of a data set, there are two important parameters, the color at a
sample point, and the opacity at that location. An image-order volume rendering algorithm developed
by Levo y [60] states that given an array of data samplesS, two new arraysSc andSα , which define the
color and opacity at each grid location can be generated using preprocessing techniques. The
interpolation functionsf (x, y, z), fc(x, y, z), and fα (x, y, z), which specify the sample value, color, and
opacity at any location inR3, are then defined.fc and fsunxare often referred to as transfer functions.

Generating the arraySc of color values involves performing a shading operation, such as gray-level
shading, at each data sample in the original arrayS. For this purpose, the Phong illumination model, for
example, could be used. The normal at each data sample is the unit gradient vector at that location. The
gradient vector at any location can be computed by partially differentiating the interpolation function
with respect tox, y,andz to get each component of the gradient. If the interpolation function is not first
derivative continuous, aliasing artifacts will occur in the image due to the discontinuous normal vector.
A smoother set of gradient vectors can be obtained using a central differencing method similar to the
one described earlier in this section.

Calculating the arraySα is essentially a surface classification operation. There are different ways to
classify surfaces within a scalar field, and each way requires a new mapping fromS(x, y, z) to
Sα (x, y, z). When an iso-surface at some constant valuev with an opacityα v ought to be viewed,
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Figure 2(c): A composited projection of a nerve cell.

Sα (x, y, z) is simply assigned toα v if S(x, y, z) is v, otherwiseSα (x, y, z) = 0. This would produce
aliasing artifacts, which can be reduced by settingSα (x, y, z) close toα v if S(x, y, z) is close tov. The
best results are obtained when the thickness of the transition region is constant throughout the volume.
This can be approximated by having the opacity fall off at a rate inversely proportional to the magnitude
of the local gradient vector. Multiple iso-surfaces can be displayed in a single image by separately
applying the classification mappings, then combining the opacities.

Once theSc(x, y, z) andSα (x, y, z) arrays have been determined, rays are cast from the pixels, through
these two arrays, sampling at evenly spaced locations. To determine the value at a location, the trilinear
interpolation functions fc and fα are used. Once these point samples along the ray have been
computed, a fully opaque background is added in, and then the values in a back-to-front order are
composited to produce a single color that is placed in the pixel.

Tw o rendering techniques for displaying volumetric data, known as the V-Buffer method, were
developed by Upson and Keeler [102]. One of the methods for visualizing the scalar field is an image-
order ray-casting technique. In this method, rays are cast from each pixel on the image plane into the
volume. For each cell in the volume along the path of this ray, the scalar value is determined at the point
where the ray first intersects the cell. The ray is then stepped along until it traverses the entire cell, with
calculations for scalar values, shading, opacity, texture mapping, and depth cuing performed at each
stepping point. This process is repeated for each cell along the ray, accumulating color and opacity,
until the ray exits the volume, or the accumulated opacity reaches unity. At this point, the accumulated
color and opacity for that pixel are stored, and the next ray is cast.

The goal of this method is not to produce a realistic image, but instead to provide a representation of the
volumetric data which can be interpreted by a scientist or an engineer. For this purpose, the user is
given the ability to modify certain parameters in the shading equations which will lead to an
informative, rather than physically accurate shaded image. A simplified shading equation is used where
the perceived intensity as a function of wav elength,I (λ) is define as:
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(8)I (λ) = Ka(λ)I a + Kd(λ)
j

Σ[(N ⋅ L j )I j ]

In this equation,Ka is the ambient coefficient,I a is the ambient intensity,Kd is the diffuse coefficient,
N is the normal approximated by the local gradient,L j is the vector to thej th light source, andI j is the
intensity of the j th light source. In order to highlight certain features in the final image, the diffuse
coefficient can be defined as a function of not only wav elength, but also scalar value and solid texture:

(9)Kd(λ , S, M) = K (λ) Td(λ , S(x, y, z) M(λ , x, y, z)),

whereK is the actual diffuse coefficient,Td is the color transfer function,S is the sample array, andM
is the solid texture map. The color transfer function is defined for red, green, and blue, and maps scalar
value to intensity. In this method the following intensity integral is approximated when accumulating
along the ray:

(10)I (λ) = ∫w


τ (d)O(s)


Ka(λ)I a + Kd(λ , S, M) Σ 


(N ⋅ L j )I j







+ (1 − τ (d)bc(λ))

du

whereτ (d) represents atmospheric attenuation as a function of distanced, O (s) is the opacity transfer
function, bc is the background color, andu is a vector in the direction of the view ray. The opacity
transfer function is similar to the color transfer function in that it defines opacity as a function of scalar
value. Different color and opacity transfer functions can be defined to highlight different features in the
volume.

The second method for visualizing the scalar field is a cell-by-cell processing technique [Upston Keeler
1988.], where within each cell an image-order ray-casting technique is used, thus making this a hybrid
technique. In this method, each cell in the volume is processed in a front-to-back order. Processing
begins on the plane closest to the viewpoint, and progresses in a plane-by-plane manner. Within each
plane, processing begins with the cell closest to the viewpoint, then continues in order of increasing
distance from the viewpoint. Each cell is processed by first determining for each scan line in the image
plane, which pixels are affected by the cell. Then, for each pixel an integration volume is determined.
Within the bounds of the integration volume, an intensity calculation similar to Equation 10 is
performed according to:

(11)I (λ) = ∫x ∫y ∫z


τ (d)O(s)


Ka(λ)I a + Kd(λ , S, M) Σ 


(N ⋅ L j )I j







+ (1 − τ (d)bc(λ))

dxdydz

This process continues in a front-to-back order, until all cells have been processed, with intensity
accumulated into pixel values. Once a pixel opacity reaches unity, a flag is set and this pixel is not
processed further. Due to the front-to-back nature of this algorithm, incremental display of the image is
possible.

In order to simulate light coming from translucent objects, volumetric data with data samples
representing density values can be considered as a field of density emitters [84]. A density emitter is a
tiny particle that both emits and scatters light. The amount of density emitters in any small region
within the volume is proportional to the scalar value in that region. These density emitters are used to
correctly model the occlusion of deeper parts of the volume by closer parts, but both shadowing and
color variation due to differences in scattering at different wav elengths are ignored. These effects are
ignored because it is believed that they would complicate the image, detracting from the perception of
density variation. Similar to the V-Buffer method, rays are cast from the eye point, through each pixel
on the image plane, and into the volume. The intensityI of light for a given pixel is calculated
according to:
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(12)I =
t2

t1
∫ e

−τ
t

t1
∫ ργ (λ)dλ

ργ (t)dt

In this equation, the ray is traversed fromt1 to t2, accumulating at each locationt the densityργ (t) at

that location attenuated by the probabilitye
−τ

t

t1
∫ ργ (λ)dλ

that this light will be scattered before reaching
the eye. The parameterτ is modifiable, and controls the attenuation, with higher values ofτ specifying
a medium which darkens more rapidly. The parameterγ is also modifiable, and controls the spread of
density values. Lowγ values produce a diffuse cloud appearance, while higherγ values highlight dense
portions of the data. For each ray, three values in addition toI maybe computed. The maximum value
encountered along the ray, the distance at which that maximum occurred, and the center of gravity of
density emitters along the ray. By mapping these values to different color parameters (such as hue,
saturation and lightness), interesting effects can be achieved. Krueger [55] showed that the various
existing volume rendering models can be described as special cases of an underlying transport theory
model of the transfer of particles in inhomogeneous media. The basic idea is that a beam of ‘‘virtual’’
particles is sent through the volume, with the user selecting the particle properties and the laws of
interaction between the particles and the data. The image plane then contains the ‘‘scattered’’ virtual
particles, and information about the data is obtained from the scattering pattern. If, for example, the
virtual particles are chosen to have the properties of photons, and the laws of interaction are governed
by optical laws, then this model essentially becomes a generalized ray tracer. Other virtual particles and
interaction laws can be used, for example, to identify periodicities and similar hidden symmetries of the
data.

Using Krueger’s transport theory model, the intensity of lightI at a pixel can be described as a path
integral along the view ray:

(13)I =
pfar

pnear

∫ Q(p)e
−

p

pnear

∫ σ a(p′)+σ pc(p′)d p′

dp

The emission at each pointp along the ray is scaled by the optical depth to the eye to produce the final
intensity value for a pixel. The optical depth is a function of the total extinction coefficient, which is
composed of the absorption coefficientσ a, and the scattering coefficientσ sc. The generalized source
Q(p) is defined as:

(14)Q(p) = q(p) + σ sc(p) ∫ ρ sc(
→ω ′ → →ω )I (S, →ω ′)d →ω ′

This generalized source consists of the emission at a given pointq(p), and the incoming intensity along
all directions scaled by the scattering phaseρ sc. Typically, a low albedo approximation is used to
simplify the calculations, reducing the integral in Equation 15 to a sum over all light sources.

4.3. Domain Volume Rendering

In domain rendering the spatial 3D data is first transformed into another domain, such as compression,
frequency, and wav elet domain, and then a projection is generated directly from that domain or with the
help of information from that domain. The frequency domain rendering applies the Fourier slice
projection theorem, which states that a projection of the 3D data volume from a certain view direction
can be obtained by extracting a 2D slice perpendicular to that view direction out of the 3D Fourier
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spectrum and then inverse Fourier transforming it. This approach obtains the 3D volume projection
directly from the 3D spectrum of the data, and therefore reduces the computational complexity for
volume rendering from O(N3) to O(N2 log N) [18, 62, 64, 65]. A major problem of frequency domain
volume rendering is the fact that the resulting projection is a line integral along the view direction which
does not exhibit any occlusion and attenuation effects. Totsuka and Levo y [99] proposed a linear
approximation to the exponential attenuation [84] and an alternative shading model to fit the
computation within the frequency-domain rendering framework.

The compression domain rendering performs volume rendering from compressed scalar data without
decompressing the entire data set, and therefore reduces the storage, computation and transmission
overhead of otherwise large volume data. For example, Ning and Hesselink [73, 74] first applied vector
quantization in the spatial domain to compress the volume and, then directly rendered the quantized
blocks using regular spatial domain volume rendering algorithms. Fowler and Yagel [22] combined
differential pulse-code modulation and Huffman coding, and developed a lossless volume compression
algorithm, but their algorithm is not coupled with rendering. Yeo and Liu [123] applied discrete cosine
transform based compression technique on overlapping blocks of the data. Chiueh et al. [6] applied 3D
Hartley transform to extend the JPEG still image compression algorithm [105] for the compression of
subcubes of the volume, and performed frequency domain rendering on the subcubes before
compositing the resulting sub-images in the spatial domain. Each of the 3D Fourier coefficients in each
subcube is then quantized, linearly sequenced through a 3D zig-zag order, and then entropy encoded. In
this way, they alleviated the problem of lack of attenuation and occlusion in frequency domain rendering
while achieving high compression ratios, fast rendering speed compared to spatial volume rendering,
and improved image quality over conventional frequency domain rendering techniques. Figure 3 shows
a CT scan of a lobster that was rendered out of the compressed frequency domain.

Rooted in time-frequency analysis, wav elet theory [7, 15] has gained popularity in the recent years. A

Figure 3: Compression domain volume rendering of a CT scan of a lobster.
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wavelet is a fast decaying function with zero averaging. The nice features of wav elets are that they hav e
local property in both spatial and frequency domain, and can be used to fully represent the volumes with
small number of wav elet coefficients. Muraki [71] first applied wav elet transform to volumetric data
sets, Gross et al. [30] found an approximate solution for the volume rendering equation using
orthonormal wav elet functions, and Westermann [110] combined volume rendering with wav elet-based
compression. However, all of these algorithms have not focused on the acceleration of volume rendering
using wav elets. The greater potential of wav elet domain, based on the elegant multiresolution hierarchy
provided by the wav elet transform, is still far from fully utilized for volume rendering. A possible
research and development is to exploit the local frequency variance provided by wav elet transform and
accelerate the volume rendering in homogeneous area.

5. Volume Rendering Optimizations

Volume rendering can produce informative images that can be useful in data analysis, but a major
drawback of the techniques described above isthe time required to generate a high-quality image. In
this section, several volume rendering optimizations are described that decrease rendering times, and
therefore increase interactivity and productivity. Other optimizations have been discussed briefly earlier
in the paper, along with the original algorithms. Another way to speed up volume rendering is to
employ special-purpose hardware accelerators for volume rendering, which are described in Section 6.

Object-order volume rendering typically loops through the data, calculating the contribution of each
volume sample to pixels on the image plane. This is a costly operation for moderate to large sized data
sets (e.g., 128M bytes for a 5123 sample data set, with one byte per sample), leading to rendering times
that are non-interactive. Viewing the intermediate results in the image plane may be useful, but these
partial image results are not always representatives of the final image. For the purpose of interaction, it
is useful to be able to generate a lower quality image in a shorter amount of time. For data sets with
binary sample values, bits could be packed into bytes such that each byte represents a 2×2×2 portion of
the data [101]. The data would be processed bit by bit to generate the full resolution image, but lower
resolution image could be generated by processing the data byte by byte. If more than four bits of the
byte are set, the byte is considered to represent an element of the object, otherwise it represents the
background. This will produce an image with one-half the linear resolution in approximately one-
eighth the time.

A more general method for decreasing data resolution is to build a pyramid data structure, which for an
original data set ofN3 data samples, consists of a sequence of logN volumes. The first volume is the
original data set, while the second volume is created by averaging each 2×2×2 group of samples of the
original data set to create a volume of one-eight the resolution. The third volume is created from the
second volume in a similar fashion, with this process continuing until all logN volumes have been
created. An efficient implementation of the splatting algorithm, called hierarchical splatting [58], uses
such a pyramid data structure. According to the desired image quality, this algorithm scans the
appropriate level of the pyramid in a back-to-front order. Each element is splatted onto the image plane
using the appropriate sized splat. The splats themselves are approximated by polygons which can
efficiently be rendered by graphics hardware.

Image-order volume rendering involves casting rays from the image plane into the data, and sampling
along the ray in order to determine pixel values. The idea of pyramid can also be used here. Actually,
Wang and Kaufman [108] have proposed the use of multi-resolution hierarchy at arbitrary resolutions.
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In discrete ray casting, the ray would be discretized, and the contribution from each voxel along the path
is considered when producing the final pixel value. It would be quite computationally expensive to
discretize every ray cast from the image plane. Fortunately, this is unnecessary for parallel projections.
Since all the rays are parallel, one ray can be discretized into a 26-connected line and used as a
‘‘template’’ for all other rays. This technique, developed by Yagel and Kaufman [119], is called
template-based volume viewing. If this template were used to cast a ray from each pixel in the image
plane, some voxels in the data may contribute to the image twice while others may not be considered at
all. To solve this problem, the rays are cast instead from abaseplane, that is, the plane of the volume
buffer most parallel to the image plane. This ensures that each data sample can contribute at most once
to the final image, and all data samples could potentially contribute. Once all the rays have been cast
from the base plane, a simple final step of resampling is needed, which uses bilinear interpolation to
determine the pixel values on the image plane from the ray values that have been calculated on the base
plane.

An extension can be made to this template-based ray casting to allow higher-order interpolation [121].
The template for higher-order interpolation consists of connected cells, as opposed to the connected
voxel template used for zero-order interpolation. Since the value varies within a cell, it is desirable to
take multiple samples along the continuous ray inside of each cell. Since these samples are taken at
regular intervals, and the same template is used for every ray, there is only a finite number of 3D
locations (relative to a cell) at which sampling occurs. This fact allows us to precompute part of the
interpolation function and store it in a table, allowing for faster rendering times.

Another extension to template-based ray casting allows for screen space supersampling to improve
image quality [118]. This is accomplished by allowing rays to originate at sub-pixel locations. A finite
number of sub-pixel locations from which a ray can originate is selected, and a template is created for
each. When a ray is cast, its sub-pixel location determines which template is used. For example, to
accomplish a 2×2 uniform supersampling, four rays would be cast per pixel, and therefore four sub-
pixel locations are possible. Stochastic supersampling can also be supported by limiting the possible
ray origins to a finite number of sub-pixel locations, and precomputing a template for each.

Lacroute and Levo y [56] extended the previous ideas in an algorithm called shear-warp factorization. It
is based on algorithm that factors the viewing transformation into a 3D shear parallel to the data-slices, a
projection to form an intermediate but distorted image, and a 2D warp to form an undistorted final
image. The algorithm is extended in three ways. First, a fast object-order rendering algorithm based on
the factorization algorithms with pre-processing and some loss of image quality, has been developed.
Shear-warp factorization has the property that rows of voxels in the volume are aligned with rows of
pixels in the intermediate image. Consequently, a scanline-based algorithm has been constructed that
traverses the volume and the intermediate image in synchrony, taking advantage of the spatial coherence
present in both. Spatial data structures based on run-length encoding for both the volume and the
intermediate image are used. An implementation running on an SGI Indigo workstation renders a 2563

voxel data set in one second. The second extension is shear-warp factorization for perspective viewing
transformations. Third, a data structure for encoding spatial coherence in unclassified volumes (i.e.,
scalar fields with no precomputed opacity) has been introduced. When combined with the shear-warp
rendering algorithm this data structure supports classification and rendering a 2563 voxel volume in
three seconds. The method extends to support mixed volumes and geometry and is parallelizable [57].

One obvious optimization for both discrete and continuous ray casting which has already been discussed
is to limit the sampling to the segment of the ray which intersects the data, since samples outside of the
data evaluate to 0 and do not contribute to the pixel value. If the data itself contains many zero-valued
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data samples, or a segmentation function is applied to the data that evaluates to 0 for many samples, the
efficiency of ray casting can be greatly enhanced by further limiting the segment of the ray in which
samples are taken. One algorithm of this sort is known aspolygon assisted ray casting, or PARC[1].
This algorithm approximates objects contained within a volume using a crude polyhedral representation.
The polyhedral representation is created so that it completely contains the objects. Using conventional
graphics hardware, the polygons are projected twice to create two Z-buffers. The first Z-buffer is the
standard closest-distance Z-buffer, while the second is a farthest-distance Z-buffer. Since the object is
completely contained within the representation, the two Z-buffer values for a given image plane pixel
can be used as the starting and ending points of a ray segment on which samples are taken.

The PARC algorithm is part of theVolVis volume visualization system [1, 2], which provides a multi-
algorithm progressive refinement approach for interactivity. By using available graphics hardware, the
user is given the ability to interactively manipulate a polyhedral representation of the data. When the
user is satisfied with the placement of the data, light sources, and view, the Z-buffer information is
passed to the PARC algorithm, which produces a ray-cast image. In a final step, this image is further
refined by continuing to follow the PARC rays which intersected the data according to a volumetric ray
tracing algorithm [92] in order to generate shadows, reflections, and transparency (See Section 7.1).
The ray tracing algorithm uses various optimization techniques, including uniform space subdivision
and bounding boxes, to increase the efficiency of the secondary rays. Surface rendering, as well as
transparency with color and opacity transfer functions, are incorporated within a global illumination
model.

6. Special-Purpose Volume Rendering Hardware

The high computational cost of direct volume rendering makes it difficult for sequential
implementations and general-purpose computers to deliver the targeted level of performance. This
situation is aggravated by the continuing trend towards higher and higher resolution datasets. For
example, to render a dataset of 10243 16-bit voxels at 30 frames per second requires 2 GBytes of
storage, a memory transfer rate of 60 GBytes per second and approximately 300 billion instructions per
second, assuming 10 instructions per voxel per projection. To address this challenge, researchers have
tried to achieve interactive display rates on supercomputers and massively parallel architectures [70, 86,
104, 124]. However, most algorithms require very little repeated computation on each voxel and data
movement actually accounts for a significant portion of the overall performance overhead. Todays
commercial supercomputer memory systems don’t hav e and will not have in the near future adequate
latency and memory bandwidth for efficiently transferring the required large amounts of data.
Furthermore, supercomputers seldom contain frame buffers and, due to their high cost, are frequently
shared by many users.

The same way as the special requirements of traditional computer graphics lead to high-performance
graphics engines, volume visualization naturally lends itself to special-purpose volume renderers that
separate real-time image generation from general-purpose processing. This allows for stand-alone
visualization environments that help scientists to interactively view their data on a single user
workstation, either augmented by a volume rendering accelerator or connected to a dedicated
visualization server. Furthermore, a volume rendering engine integrated in a graphics workstation is a
natural extension of raster based systems into 3D volume visualization.

Several researchers have proposed special-purpose volume rendering architectures [49, Chapter 6] [27,
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41, 47, 68, 76, 95, 96, 116]. Most recent research focuses on accelerators for ray-casting of regular
datasets. Ray-casting offers room for algorithmic improvements while still allowing for high image
quality. Recent architectures [37] include VOGUE, VIRIM, and Cube.

VOGUE [54], a modular add-on accelerator, is estimated to achieve 2.5 frames per second for 2563

datasets. For each pixel a ray is defined by the host computer and sent to the accelerator. The VOGUE
module autonomously processes the complete ray, consisting of evenly spaced resampling locations, and
returns the final pixel color of that ray to the host. Several VOGUE modules can be combined to yield
higher performance implementations. For example, to achieve 20 projections per second of 5123

datasets requires 64 boards and a 5.2 GB per second ring-connected cubic network.

VIRIM [31] is a flexible and programmable ray-casting engine. The hardware consists of two separate
units, the first being responsible for 3D resampling of the volume using lookup tables to implement
different interpolation schemes. The second unit performs the ray-casting through the resampled dataset
according to user programmable lighting and viewing parameters. The underlying ray-casting model
allows for arbitrary parallel and perspective projections and shadows. An existing hardware
implementation for the visualization of 256× 256× 128 datasets at 10 frames per second requires 16
processing boards.

The Cube project aims at the realization of high-performance volume rendering systems for large
datasets and pioneered several hardware architectures. Cube-1, a first generation hardware prototype,
was based on a specially interleaved memory organization [46], which has also been used in all
subsequent generations of the Cube architecture. This interleaving of then3 voxel enables conflict-free
access to any ray parallel to a main axis ofn voxels. A fully operational printed circuit board (PCB)
implementation of Cube-1 is capable of generating orthographic projections of 163 datasets from a finite
number of predetermined directions in real-time. Cube-2 was a single-chip VLSI implementation of
this prototype [3].

To achieve higher performance and to further reduce the critical memory access bottleneck, Cube-3
introduced several new concepts [78-80]. A high-speed global communication network aligns and
distributes voxels from the memory to several parallel processing units and a circular cross-linked
binary tree of voxel combination units composites all samples into the final pixel color. Estimated
performance for arbitrary parallel and perspective projections is 30 frames per second for 5123 datasets.
Cube-4 [81] has only simple and local interconnections, thereby allowing for easy scalability of
performance. Instead of processing individual rays, Cube-4 manipulates a group of rays at a time. As a
result, the rendering pipeline is directly connected to the memory. Accumulating compositors replace
the binary compositing tree. A pixel-bus collects and aligns the pixel output from the compositors.
Cube-4 is easily scalable to very high resolution of 10243 16-bit voxels and true real-time performance
implementations of 30 frames per second.

The choice of whether one adopts a general-purpose or a special-purpose solution to volume rendering
depends upon the circumstances. If maximum flexibility is required, general-purpose appears to be the
best way to proceed. However, an important feature of graphics accelerators is that they are integrated
into a much larger environment where software can shape the form of input and output data, thereby
providing the additional flexibility that is needed. A good example is the relationship between the needs
of conventional computer graphics and special-purpose graphics hardware. Nobody would dispute the
necessity for polygon graphics acceleration despite its obvious limitations. The exact same argument
can be made for special-purpose volume rendering architectures.
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7. Volumetric Global Illumination

Speed and accuracy of the final image are both important, yet often conflicting aspects of the rendering
process. For this reason, a comprehensive volume rendering system, such asVolVis, includes a rang of
rendering algorithms from the fast, rough approximation of the final image, to the comparatively slow,
accurate rendering within a global illumination model. Also, every rendering algorithm should support
several levels of accuracy, giving the user an even greater amount of control over the speed and accuracy
of the final image.

Standard volume rendering techniques typically employ only a local illumination model for shading,
and therefore produce images without global effects. Including a global illumination model within a
visualization system has several advantages. First, global effects are often desirable in scientific
applications. For example, by placing mirrors in the scene, a single image can show sev eral views of an
object in a natural, intuitive manner leading to a better understanding of the 3D nature of the scene.
Also, complex geometric surfaces are often easier to render when represented volumetrically than when
represented by high-order functions or geometric primitives, and global effects using ray tracing or
radiosity are desirable for such applications called volume graphics applications (see Section 9).
Volumetric ray tracing is described in Section 7.1 and volumetric radiosity is discussed in Section 7.2.

7.1. Volumetric Ray Tracing

A 3D raster ray tracing (RRT) method, developed by Yagel, Cohen and Kaufman [117, 122], produces
realistic images of volumetric data using a global illumination model. The RRT algorithm is a discrete
ray-tracing algorithm similar to the discrete ray-casting algorithm described in Section 4.2. Discrete
primary rays are cast from the image plane, through the data to determine pixel values. Secondary rays
are recursively spawned when a ray encounters a voxel belonging to an object in the data. To sav e time,
the view-independent parts of the illumination equation can be precomputed and added to the voxel
color, thereby avoiding the calculation of this quantity during the ray tracing. Also, two bits per light
source per voxel can be precomputed, indicating whether the light is definitely visible, possibly visible,
or definitely invisible from that voxel. Shadow rays need only be cast during the ray tracing if the bits
indicate that the light is possibly visible through a translucent object. Actually, all view-independent
attributes (including normal, texture, and antialiasing) can be precomputed and stored with each voxel.

There are several advantages to using RRT instead of conventional ray tracing. One such advantage is
that sampled or computed data, possibly intermixed with voxelized geometric data, can be ray traced
directly without having to approximate the sampled data using geometric primitives. Another advantage
is that there is only one primitive to deal with − the voxel, which greatly simplifies ray-object
intersection calculations. Unlike conventional ray tracing that computes expensive continuous ray-
object intersections, RRT traverses discrete rays through discrete data and therefore it is basically
insensitive to scene complexity and object complexity. RRT is also very effective for ray tracing
voxelized geometric models, such as constructive solid geometry (CSG) models. This is an example for
the emerging field of volume graphics [51] in which geometric scenes are modeled using voxelized
objects and efficiently rendered using a volume rendering algorithm such as RRT. Volume graphics is
discussed in Section 9.

A volumetric ray tracer [92] is intended to produce much more accurate, informative images. In
classical ray tracing, the rendering algorithm is designed to generate images that are accurate according
to the laws of optics. A volumetric ray tracer should handle volumetric data as well as classical
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geometric objects, and strict adherence to the laws of optics is not always desirable. For example, a user
may wish to generate an image with no shadows or to view the maximum value along the segment of a
ray passing through a volume, instead of the optically-correct composited value. Figure 4 illustrates the
importance of including global effects in a maximum-value projection of a hippocampal pyramidal
neuron data set which was obtained using a laser-scanning confocal microscope. Since maximum-value
projections do not give depth information, a floor is placed below the cell, and a light source above the
cell. This results in a shadow of the cell on the floor, adding back depth information lost by the
maximum value projection.

In order to incorporate both volumetric and geometric objects into one scene, the standard ray tracing
intensity equation must be expanded. Since the illumination equation in classical ray tracing is
evaluated only at surface locations, volumetric data cannot be incorporated into the scene. This problem
can be solved by extending the standard illumination equation to include volumetric effects. The
intensity of light,I λ (x, →ω ), for a given wav elengthλ , arriving at a positionx, from the direction→ω , can
be computed by:

(16)I λ (x, →ω ) = I vλ (x, x′) + τ λ (x, x′)I sλ (x′, →ω ).

wherex′ is the first surface intersection point encountered along the ray→ω originating atx. I sλ (x′, →ω ) is
the intensity of light at this surface location, and can be computed with a standard ray tracing
illumination equation [112].I vλ (x, x′) is the volumetric contribution to the intensity along the ray from
x to x′, andτ λ (x, x′) is the attenuation ofI sλ (x′, →ω ) by any intervening volumes. These values are
determined using volume rendering techniques, based on a transport theory model of light propagation
[55]. The basic idea is similar to classical ray tracing, in that rays are cast from the eye into the scene,
and surface shading is performed on the closest surface intersection point. The difference is that
shading must be performed for all volumetric data that are encountered along the ray while traveling to

Figure 4: A maximum-value projection of a cell casting a shadow on the floor using theVolVisvolumet-
ric ray tracer.
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the closest surface intersection point.

For photo-realistic rendering, the user typically wants to include the maximum amount of shading
effects that can be calculated within a given time limit. For visualization, however, the user may find it
necessary to view volumetric data with no shading effects, such as when using a maximum-value
projection. For example, in Figure 4 no shading effects were included for the maximum-value
projection of the cell, while all parts of the illumination equation were considered when shading the
geometric polygon. In another example, the user may place a mirror behind a volumetric object in a
scene in order to capture two views in one image, but may not want the volumetric object to cast a
shadow on the mirror. This can be accomplished easily by ‘‘turning off’’ the shadowing calculations for
the mirror, as shown in Figure 5. The head data was obtained using magnetic resonance imaging, with
the brain segmented from the same dataset. The mirror is a voxelized polygon, which was created using
the non-binary voxelization technique described in Section 9.4

7.2. Volumetric Radiosity

The ray tracing algorithm described in the previous section can be used to capture specular interactions
between objects in a scene. In reality, most scenes are dominated by diffuse interactions, which are not
accounted for in the standard ray tracing illumination model, but accounted for by a radiosity algorithm
for volumetric data [93]. In volumetric radiosity, the basic ‘‘patch’’ element of classical radiosity is
replaced by a ‘‘voxel’’. As opposed to previous methods that use participating media to augment
geometric scenes [40, 83], this method moves the radiosity equations into volumetric space, and renders

Figure 5: A ray traced image of a human head. Shadowing effects were not included in this image in or-
der to produce a clear reflection in the mirror.
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scenes consisting solely of volumetric data. Each voxel can emit, absorb, scatter, reflect, and transmit
light. Both isotropic and diffuse emission of light are allowed, where ‘‘isotropic’’ implies directional
independence, and ‘‘diffuse’’ implies Lambertian reflection (i.e., dependent on normal or gradient).
Light is scattered isotropically, and is reflected diffusely by a voxel. Light entering a voxel that is not
absorbed, scattered, or reflected by the voxel is transmitted unchanged.

In order to cope with the high number of voxel interactions required, a hierarchical technique similar to
[32] can be used. The basic hierarchical concept is that the radiosity contribution from some voxelvi to
another voxelv j is similar to the radiosity contribution fromvi to vk if the distance betweenv j andvk is
small, and the distance betweenvi andv j is large. For each volume, a hierarchical radiosity structure is
built by combining each subvolume of eight voxels at one level to form one voxel at the next higher
level. An iterative algorithm [9] is then used to shoot voxel radiosities, where several factors govern the
highest level in the hierarchy at which two voxels can interact. These factors include the distance
between the two voxels, the radiosity of the shooting voxel, and the reflectance and scattering
coefficients of the voxel receiving the radiosity. This hierarchical technique can reduce the number of
interactions required to converge on a solution by more than four orders of magnitude.

After the view-independent radiosities have been calculated, a view-dependent image is generated using
a ray casting technique, where the final pixel value is determined by compositing radiosity values along
the ray. Figure 6 shows a scene containing a volumetric sphere, polygon, and light source. The light
source is isotropically emitting light, and both the sphere and the polygon are diffusely reflecting light.
The light source is above the sphere, and therefore the top half of the sphere is directly illuminated. The
bottom half of the sphere is indirectly illuminated by light diffusely reflected from the red polygon.

Figure 6: A volumetric radiosity projection of a voxelized sphere and polygon.
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8. Irregular Grid Rendering

All the algorithms discussed above handle only regular gridded data. Irregular gridded data comes in a
large variety [94], including curvilinear data or unstructured (scattered) data, where no explicit
connectivity is defined between cells (one can even be giv en a scattered collection of points that can be
turned into an irregular grid by interpolation [66, 72]). For rendering purposes, manifold (locally
homeomorphic toR3) grids composed of convex cells are usually necessary. In general, the most
convenient grids for rendering purposes are tetrahedral grids and hexahedral grids. One disadvantage of
hexahedral grids is that the four points on the side of a cell may not necessarily lie on a plane forcing the
rendering algorithm to approximate the cells by convex ones during rendering. Tetrahedral grids have
several advantages, including easier interpolation, simple representation (specially for connectivity
information because the degree of the connectivity graph is bounded, allowing for compact data
structure representation), and the fact that any other grid can be interpolated to a tetrahedral one (with
the possible introduction of Steiner points). Among their disadvantages is the fact that the size of the
datasets tend to grow as cells are decomposed into tetrahedra. In the case of curvilinear grids, an
accurate (and naive) decomposition will make the cell complex contain five times as many cells.

As compared to regular grids, operations for irregular grids are more complicated and the effective
visualization methods are more sophisticated in all fronts. Shading, interpolation, point location, etc.,
are all harder (and some even not well defined) for irregular grids. One notable exception is isosurface
generation [63], that even in the case of irregular grids is fairly simple to compute given suitable
interpolation functions. Slicing operations are also simple [94].

Volume rendering irregular grids is a hard operation and there are several different approaches to this
problem. The simplest and most inefficient is to resample the irregular grid to a regular grid. In order to
achieve the necessary accuracy, a high enough sampling rate has to be used what in most cases will
make the resulting regular grid volume too large for storage and rendering purposes, not mentioning the
time to perform the re-sampling.

Extending the simple volumetric point sampling ray tracing to irregular grids is a challenge. For ray
tracing, it is necessary to depth-sort samples along ray emanating from each screen pixel. In the case of
irregular grids, it is not trivial to perform this sorting operation. Garrity [24] proposed a scheme where
the cells are convex and connectivity information is available. He proposed to pre-process the grid
finding the external cells to help locating the boundary elements during ray tracing, and using the
connectivity information for cell skipping. The actual resampling and shading, that is simple in the
regular grid, is not trivial here and has to be carefully considered, usually taking into account the
specific application at hand (actually the development of accurate illumination models for volume
rendering has irregular grid rendering as one of its main uses [67]). Simple ray casting is too inefficient,
as there is a large amount of inter-pixel and inter-scanline coherency in ray casting. Giertsen [25]
proposed a sweep-plane approach to ray casting that uses different forms of "caching" to speed up ray
casting irregular grids.

Another approach for rendering irregular grids is the use of feed-forward (or projection) methods, where
the cells are projected onto the screen one by one accumulating their contributions incrementally to the
final image [66, 89, 113, 114]. One major advantage of these methods is the ability to use the graphics
hardware on graphics workstations to compute the volumetric lighting models (usually simplified) in
order to speed up rendering. Another advantage is that the user can see the rendering as it progresses.
One problem with this method is generating the ordering for the cell projections. In general, such
ordering does not even exist and cells have to be partitioned into multiple cells for projection. The
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partitioning is (in general) view dependent, but some types of irregular grids (like delaunay
triangulations in space) are acyclic and do not need any partitioning.

9. Volume Graphics

The 3D raster representation seems to be more natural for empirical imagery then for geometric objects,
due to its ability to represent interiors and digital samples. Nonetheless, the advantages of this
representation are also attracting traditional surface-based applications that deal with the modeling and
rendering of synthetic scenes made out of geometric models. The geometric model isvoxelized (3D
scan-converted)into a set of voxels that ‘‘best’’ approximate the model. Each of these voxels is then
stored in the volume buffer together with the voxel pre-computed view-independent attributes. The
voxelized model can be either binary (see [10, 43-45]) or volume sampled [106] which generates alias-
free density voxelization of the model. Some surface-based application examples are the rendering of
fractals [75], hyper textures [77], fur [42], gases [20], and other complex models [90] including CAD
models and terrain models for flight simulators [11, 51, 115]. Furthermore, in many applications
involving sampled data, such as medial imaging, the data need to be visualized along with synthetic
objects that may not be available in digital form, such as scalpels, prosthetic devices, injection needles,
radiation beams, and isodose surfaces. These geometric objects can be voxelized and intermixed with
the sampled organ in the voxel buffer [48].

Volume graphics[51], which is an emerging subfield of computer graphics, is concerned with the
synthesis, modeling, manipulation, and rendering of volumetric geometric objects, stored in a volume
buffer of voxels. Unlike volume visualization which focuses primarily on sampled and computed
datasets, volume graphics is concerned primarily with modeled geometric scenes and commonly with
those that are represented in a regular volume buffer. As an approach, volume graphics has the potential
to greatly advance the field of 3D graphics by offering a comprehensive alternative to traditional surface
graphics.

In the next sub-sections we describe the volumetric approach to several common volume graphics
modeling techniques. We describe the generation of object primitives (voxelization), 3D antialiasing,
texture and photo mapping, solid-texturing, modeling of amorphous phenomena, modeling by block
operations, constructive solid modeling, and volume sculpting. Then, volume graphics is contrasted
with surface graphics, and the corresponding advantages are discussed.

9.1. Voxelization

An indispensable stage in volume graphics is the synthesis of voxel-represented objects from their
geometric representation. This stage, which is calledvoxelization, is concerned with converting
geometric objects from their continuous geometric representation into a set of voxels that ‘‘best’’
approximates the continuous object. As this process mimics the scan-conversion process that pixelizes
(rasterizes) 2D geometric objects, it is also referred to as3D scan-conversion. In 2D rasterization the
pixels are directly drawn onto the screen to be visualized and filtering is applied to reduce the aliasing
artifacts. However, the voxelization process does not render the voxels but merely generates a database
of the discrete digitization of the continuous object.

Intuitively, one would assume that a proper voxelization simply ‘‘selects’’ all voxels which are met (if
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only partially) by the object body. Although this approach could be satisfactory in some cases, the
objects it generates are commonly too coarse and include more voxels than are necessary. For example,
when a 2D curve is rasterized into a connected sequence of pixels, the discrete curve does not ‘‘cover’’
the entire continuous curve, but it is connected and concisely and successfully ‘‘separates’’ both ‘‘sides’’
of the curve [12].

One practical meaning of separation is apparent when a voxelized scene is rendered by casting discrete
rays from the image plane to the scene. The penetration of the background voxels (which simulate the
discrete ray traversal) through the voxelized surface causes the appearance of a hole in the final image of
the rendered surface. Another type of error might occur when a 3D flooding algorithm is employed
either to fill an object or to measure its volume, surface area, or other properties. In this case the
nonseparability of the surface causes a leakage of the flood through the discrete surface.

Unfortunately, the extension of the 2D definition of separation to the third dimension and to voxel
surfaces is not straightforward since voxelized surfaces cannot be defined as an ordered sequence of
voxels and a voxel on the surface does not have a specific number of adjacent surface voxels.
Furthermore, there are important topological issues, such as the separation of both sides of a surface,
which cannot be well-defined by employing 2D terminology. The theory that deals with these
topological issues is called3D discrete topology. We sketch below some basic notions and informal
definitions used in this field.

9.2. Fundamentals of 3D Discrete Topology

The 3D discrete space is a set of integral grid points in 3D Euclidean space defined by their Cartesian
coordinates (x, y, z). A voxel is the unit cubic volume centered at the integral grid point. The voxel
value is mapped onto {0,1}: the voxels assigned ‘‘1’’ are called the ‘‘black’’ voxels representing opaque
objects, and those assigned ‘‘0’’ are the ‘‘white’’ voxels representing the transparent background. In
Section 9.4 we describe non-binary approaches where the voxel value is mapped onto the interval [0,1]
representing either partial coverage, variable densities, or graded opacities. Due to its larger dynamic
range of values, this approach supports 3D antialiasing and thus supports higher quality rendering.

Tw o voxels are26-adjacentif they share either a vertex, an edge, or a face (see Figure 1). Every voxel
has 26 such adjacent voxels: eight share a vertex (corner) with the center voxel, twelve share an edge,
and six share a face. Accordingly, face-sharing voxels are defined as6-adjacent, and edge-sharing and
face-sharing voxels are defined as18-adjacent. The prefixN is used to define the adjacency relation,
whereN = 6, 18, or 26. A sequence of voxels having the same value (e.g., ‘‘black’’) is called anN-path
if all consecutive pairs areN-adjacent. A set of voxelsW is N-connectedif there is anN-path between
ev ery pair of voxels inW. An N-connected componentis a maximalN-connected set.

Given a  2D discrete 8-connected black curve, there are sequences of 8-connected white pixels
(8-component) that pass from one side of the black component to its other side without intersecting it.
This phenomenon is a discrete disagreement with the continuous case where there is no way of
penetrating a closed curve without intersecting it. To avoid such a scenario, it has been the convention
to define ‘‘opposite’’ types of connectivity for the white and black sets. ‘‘Opposite’’ types in 2D space
are 4 and 8, while in 3D space 6 is ‘‘opposite’’ to 26 or to 18.

Assume that a voxel space, denoted byΣ, includes one subset of ‘‘black’’ voxelsS. If Σ − S is not N-
connected, that is,Σ − S consists of at least two whiteN-connected components, thenS is said to beN-
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separatingin Σ. Loosely speaking, in 2D, an 8-connected black path that divides the white pixels into
two groups is 4-separating and a 4-connected black path that divides the white pixels into two groups is
8-separating. There are no analogous results in 3D space.

Let W be anN-separating surface. A voxelp ∈ W is said to be anN-simple voxelif W − p is still N-
separating. AnN-separating surface is calledN-minimal if it does not contain anyN-simple voxel. A
coverof a continuous surface is a set of voxels such that every point of the continuous surface lies in a
voxel of the cover. A cover is said to be aminimal coverif none of its subsets is also a cover. The cover
property is essential in applications that employ space subdivision for fast ray tracing [26]. The
subspaces (voxels) which contain objects have to be identified along the traced ray. Note that a cover is
not necessarily separating, while on the other hand, as mentioned above, it may include simple voxels.
In fact, even a minimal cover is not necessarilyN-minimal for anyN [12].

9.3. Binary Voxelization

An early technique for the digitization of solids was spatial enumeration which employs point or cell
classification methods in either an exhaustive fashion or by recursive subdivision [59]. However,
subdivision techniques for model decomposition into rectangular subspaces are computationally
expensive and thus inappropriate for medium or high resolution grids. Instead, objects should be
directly voxelized, preferably generating anN-separating,N-minimal, and covering set, whereN is
application dependent. The voxelization algorithms should follow the same paradigm as the 2D scan-
conversion algorithms; they should be incremental, accurate, use simple arithmetic (preferably integer
only), and have a complexity that is not more than linear with the number of voxels generated.

The literature of 3D scan-conversion is relatively small. Danielsson [14] and Mokrzycki [69] developed
independently similar 3D curve algorithms where the curve is defined by the intersection of two implicit
surfaces. Voxelization algorithms have been developed for 3D lines, 3D circles, and a variety of
surfaces and solids, including polygons, polyhedra, and quadric objects [43]. Efficient algorithms have
been developed for voxelizing polygons using an integer-based decision mechanism embedded within a
scan-line filling algorithm [44], for parametric curves, surfaces, and volumes using an integer-based
forward differencing technique [45], and for quadric objects such as cylinders, spheres, and cones using
‘‘weaving’’ algorithms by which a discrete circle/line sweeps along a discrete circle/line [10]. Figure 7
consists of a variety of objects (polygons, boxes, cylinders) voxelized using these methods. These
pioneering attempts should now be followed by enhanced voxelization algorithms that, in addition to
being efficient and accurate, will also adhere to the topological requirements of separation, coverage,
and minimality.

9.4. 3D Antialiasing

The previous sub-section discussed binary voxelization, which generate topologically and geometrically
consistent models, but exhibit object space aliasing. These algorithms have used a straightforward
method of sampling in space, calledpoint sampling. In point sampling, the continuous object is
evaluated at the voxel center, and the value of 0 or 1 is assigned to the voxel. Because of this binary
classification of the voxels, the resolution of the 3D raster ultimately determines the precision of the
discrete model. Imprecise modeling results in jagged surfaces, known asobject space aliasing(see
Figure 7). In this section, a 3D object-space antialiasing technique is presented. It performs antialiasing
once, on a 3D view-independent representation, as part of the modeling stage. Unlike antialiasing of 2D
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Figure 7: A volumetric model of terrain enhanced with photo mapping of satellite images. The build-
ings are synthetic voxel models raised on top of the terrain. The voxelized terrain has been mapped with
aerial photos during the voxelization stage.

scan-converted graphics, where the main focus is on generating aesthetically pleasing displays, the
emphasis in antialiased 3D voxelization is on producing alias-free 3D models that are stored in the
view-independent volume buffer for various volume graphics manipulations, including but not limited to
the generation of aesthetically pleasing displays.

To reduce object space aliasing, avolume samplingtechnique have been developed [106], which
estimates the density contribution of the geometric objects to the voxels. The density of a voxel is
attenuated by a filter weight function which is proportional to the distance between the center of the
voxel and the geometric primitive. To improve performance, precomputed lookup tables of densities for
a predefined set of geometric primitives can be used to select the density value of each voxel. For each
voxel visited by the binary voxelization algorithm, the distance to the predefined primitive is used as an
index into a lookup table of densities.

Since the voxelized geometric objects are represented as volume rasters of density values, they can
essentially be treated as sampled or simulated volume datasets, such as 3D medical imaging datasets,
and one of many volume rendering techniques for image generation can be employed. One primary
advantage of this approach is that volume rendering or volumetric global illumination carries the
smoothness of the volume-sampled objects from object space over into its 2D projection in image space
[107]. Hence, the silhouette of the objects, reflections, and shadows are smooth. Furthermore, by not
performing any geometric ray-object intersections or geometric surface normal calculations, the bulk of
the rendering time is saved. In addition, CSG operations between two volume-sampled geometric
models are accomplished at the voxel level after voxelization, thereby reducing the original problem of
evaluating a CSG tree of such operations down to a fuzzy Boolean operation between pairs of non-
binary voxels [108] (see Section 9.7). Volume-sampled models are also suitable for intermixing with
sampled or simulated datasets, since they can be treated uniformly as one common data representation.
Furthermore, volume-sampled models lend themselves to alias-free multi-resolution hierarchy
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construction [108].

9.5. Texture Mapping

One type of object complexity involves objects that are enhanced with texture mapping, photo mapping,
environment mapping, or solid texturing. Texture mapping is commonly implemented during the last
stage of the rendering pipeline, and its complexity is proportional to the object complexity. In volume
graphics, however, texture mapping is performed during the voxelization stage, and the texture color is
stored in each voxel in the volume buffer.

In photo mapping six orthogonal photographs of the real object are projected back onto the voxelized
object. Once this mapping is applied, it is stored with the voxels themselves during the voxelization
stage, and therefore does not degrade the rendering performance. Te xture and photo mapping are also
viewpoint independent attributes implying that once the texture is stored as part of the voxel value,
texture mapping need not be repeated. This important feature is exploited, for example, by voxel-based
flight simulators (see Figure 7) and in CAD systems (see Figure 8).

A central feature of volumetric representation is that, unlike surface representation, it is capable of
representing inner structures of objects, which can be revealed and explored with appropriate
manipulation and rendering techniques. This capability is essential for the exploration of sampled or
computed objects. Synthetic objects are also likely to be solid rather than hollow. One method for
modeling various solid types is solid texturing, in which a function or a 3D map models the color of the
objects in 3D (see Figure 8). During the voxelization phase each voxel belonging to the objects is
assigned a value by the texturing function or the 3D map. This value is then stored as part of the voxel
information. Again, since this value is view independent, it does not have to be recomputed for every
change in the rendering parameters.

9.6. Amorphous Phenomena

While translucent objects can be represented by surface methods, these methods cannot efficiently
support the modeling and rendering of amorphous phenomena (e.g., clouds, fire, smoke) that are
volumetric in nature and lack any tangible surfaces. A common modeling and rendering approach is
based on a function that, for any input point in 3D, calculates some object features such as density,
reflectivity, or color. These functions can then be rendered by ray casting, which casts a ray from each
pixel into the function domain. Along the passage of the ray, at constant intervals the function is
evaluated to yield a sample. All samples along each ray are combined to form the pixel color. Some
examples for the use of this or similar techniques are the rendering of fractals [33], hypertextures [77],
fur [42], and gases [20].

The process of function evaluation at each sample point in 3D has to be repeated for each image
generated. In contrast, the volumetric approach allows the pre-computation of these functions at each
grid point of the volume buffer. The resulting volumetric dataset can then be rendered from multiple
viewpoints without recomputing the modeling function. As in other volume graphics techniques,
accuracy is traded for speed, due to the resolution limit. Instead of accurately computing the function at
each sample point, some type of interpolation from the precomputed grid values is employed.
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Figure 8: Volume-sampled bolt and nut generated by a sequence of CSG operations on hexagonal,
cylindrical, and helix primitives, reflected on a volume-sampled mirror.

9.7. Block Operations and Constructive Solid Modeling

The presortedness of the volume buffer naturally lends itself to grouping operations that can be
exploited in various ways. For example, by generating multi-resolution volume hierarchy that can
support time critical and space critical volume graphics applications can be better supported. The basic
idea is similar to that of level-of-detail surface rendering which has proliferated recently [21, 39, 82, 87,
100], in which the perceptual importance of a given object in the scene determines its appropriate level-
of-detail representation. One simple approach is the 3D "mip-map" approach [61, 85], where every
level of the hierarchy is formed by averaging several voxels from the previous level. A better approach
is based on sampling theory, in which an object is modeled with a sequence of alias-free volume buffers
at different resolutions using the volume-sampled voxelization approach [34]. To accomplish this, high
frequencies that exceed the Nyquist frequency of the corresponding volume buffer are filtered out by
applying an ideal low-pass filter (sinc) with infinite support. In practice, the ideal filter is approximated
by filters with finite support. Low sampling resolution of the volume buffer corresponds to a lower
Nyquist frequency, and therefore requires a low-pass filter with wider support for good approximation.
As one moves up the hierarchy, low-pass filters with wider and wider support are applied. Compared to
the level-of-detail hierarchy in surface graphics, the multi-resolution volume buffers are easy to generate
and to spatially correspond neighboring levels, and are free of object space aliasing. Furthermore,
arbitrary resolutions can be generated, and errors caused by a non-ideal filter do not propagate and
accumulate from level to lev el. Depending on the required speed and accuracy, a variety of low-pass
filters (zero order, cubic, Gaussian) can be applied.

An intrinsic characteristic of the volume buffer is that adjacent objects in the scene are also represented
by neighboring memory cells. Therefore, rasters lend themselves to various meaningful grouping-based
operations, such asbitblt in 2D, or voxblt in 3D [50]. These include transfer of volume buffer
rectangular blocks (cuboids) while supporting voxel-by-voxel operations between source and
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destination blocks. Block operations add a variety of modeling capabilities which aid in the task of
image synthesis and form the basis for the efficient implementation of a 3D ‘‘room manager’’, which is
the extension of window management to the third dimension.

Since the volume buffer lends itself to Boolean operations that can be performed on a voxel-by-voxel
basis during the voxelization stage, it is advantageous to use CSG as the modeling paradigm.
Subtraction, union, and intersection operations between two voxelized objects are accomplished at the
voxel lev el, thereby reducing the original problem of evaluating a CSG tree during rendering time down
to a 1D Boolean operation between pairs of voxels during a preprocessing stage.

For two point-sampled binary objects the Boolean operations of CSG orvoxblt are trivially defined.
However, the Boolean operations applied to volume-sampled models are analogous to those of fuzzy set
theory (cf. [17]). The volume-sampled model is a density functiond(x) over R3, whered is 1 inside the
object, 0 outside the object, and 0 <d < 1  within the "soft" region of the filtered surface. Some of the
common operations, intersection, complement, difference, and union, between two objectsA andB are
defined as follows:

(17)dA∩ B(x) ≡ min ( dA(x), dB(x))

(18)dA(x) ≡ 1 − dA(x)

(19)dA−B(x) ≡ min (dA(x), 1 − dB(x))

(20)dA∪ B(x) ≡ max (dA(x), dB(x))

The only law of set theory that is no longer true is the excluded-middle law (i.e.,A ∩ A ≠ φ and
A ∪ A ≠ Universe). The use of the min and max functions causes discontinuity at the region where the
soft regions of the two objects meet, since the density value at each location in the region is determined
solely by one of the two overlapping objects.

Complex geometric models can be generated by performing the CSG operations in Equations 17-20
between volume-sampled primitives. Volume-sampled models can also function as matte volumes [16]
for various matting operations, such as performing cut-aways and merging multiple volumes into a
single volume using the union operation. However, in order to preserve continuity on the cut-away
boundaries between the material and the empty space, one should use an alternative set of Boolean
operators based on algebraic sum and algebraic product [17, 28] :

(21)dA∩ B(x) ≡ dA(x) dB(x)

(22)dA(x) ≡ 1 − dA(x)

(23)dA−B(x) ≡ dA(x) − dA(x) dB(x)

(24)dA∪ B(x) ≡ dA(x) + dB(x) − dA(x) dB(x)

Unlike the min and max operators, algebraic sum and product operators result inA ∪ A ≠ A, which is
undesirable. A consequence, for example, is that during modeling via sweeping, the resulting model is
sensitive to the sampling rate of the swept path [108].

Once a CSG model has been constructed in voxel representation, it is rendered in the same way any
other volume buffer is. This makes, for example, volumetric ray tracing of constructive solid models
straightforward [92] (see Figure 8).
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9.8. Volume Sculpting

Surface-based sculpting has been studied extensively (e.g., [13, 88]), while volume sculpting has been
recently introduced for clay or wax-like sculptures [23] and for comprehensive detailed sculpting [109].
The latter approach is a free-form interactive modeling technique based on the metaphor of sculpting
and painting a voxel-based solid material, such as a block of marble or wood. There are two
motivations for this approach. First, modeling topologically complex and highly-detailed objects are
still difficult in most CAD systems. Second, sculpting has shown to be useful in volumetric
applications. For example, scientists and physicians often need to explore the inner structures of their
simulated or sampled datasets by gradually removing material.

Real-time human interaction could be achieved in this approach, since the actions of sculpting (e.g.,
carving, sawing) and painting are localized in the volume buffer, a localized rendering can be employed
to reproject only those pixels that are affected. Carving is the process of taking a pre-existing volume-
sampled tool to chip or chisel the object bit by bit. Since both the object and the tool are represented as
independent volume buffers, the process of sculpting involves positioning the tool with respect to the
object and performing a Boolean subtraction between the two volumes. Sawing is the process of
removing a whole chunk of material at once, much like a carpenter sawing off a portion of a wood
piece. Unlike carving, sawing requires generating the volume-sampled tool on-the-fly, using a user
interface. To prevent object space aliasing and to achieve interactive speed, 3D splatting is employed.

9.9. Surface Graphics vs. Volume Graphics

Contemporary 3D graphics has been employing an object-based approach at the expense of maintaining
and manipulating a display list of geometric objects and regenerating the frame-buffer after every
change in the scene or viewing parameters. This approach, termedsurface graphics, is supported by
powerful geometry engines, which have flourished in the past decade, making surface graphics the state-
of-the-art in 3D graphics.

Surface graphics strikingly resembles vector graphics that prevailed in the sixties and seventies, and
employed vector drawing devices. Like vector graphics, surface graphics represents the scene as a set of
geometric primitives kept in a display list. In surface graphics, these primitives are transformed,
mapped to screen coordinates, and converted by scan-conversion algorithms into a discrete set of pixels.
Any change to the scene, viewing parameters, or shading parameters requires the image generation
system to repeat this process. Like vector graphics that did not support painting the interior of 2D
objects, surface graphics generates merely the surfaces of 3D objects and does not support the rendering
of their interior.

Instead of a list of geometric objects maintained by surface graphics, volume graphics employs a 3D
volume buffer as a medium for the representation and manipulation of 3D scenes. A 3D scene is
discretized earlier in the image generation sequence, and the resulting 3D discrete form is used as a
database of the scene for manipulation and rendering purposes, which in effect decouples discretization
from rendering. Furthermore, all objects are converted into one uniform meta-object − the voxel. Each
voxel is atomic and represents the information about at most one object that resides in that voxel.

Volume graphics offers similar benefits to surface graphics, with several advantages that are due to the
decoupling, uniformity, and atomicity features. The rendering phase is viewpoint independent and
insensitive to scene complexity and object complexity. It supports Boolean and block operations and
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constructive solid modeling. When 3D sampled or simulated data are used, such as that generated by
medical scanners (e.g., CT, MRI) or scientific simulations (e.g., CFD), volume graphic is suitable for
their representation too. It is capable of representing amorphous phenomena and both the interior and
exterior of 3D objects. These features of volume graphics as compared with surface graphics are
discussed in detail in Section 9.10. Several weaknesses of volume graphics are related to the discrete
nature of the representation, for instance, transformations and shading are performed in discrete space.
In addition, this approach requires substantial amounts of storage space and specialized processing.
These weaknesses are discussed in detail in Section 9.11.

Table 1 contrasts vector graphics with raster graphics. A primary appeal of raster graphics is that it
decouples image generation from screen refresh, thus making the refresh task insensitive to the scene
and object complexities. In addition, the raster representation lends itself to block operations, such as
bitblt and quadttree. Raster graphics is also suitable for displaying 2D sampled digital images, and thus
provides the ideal environment for mixing digital images with synthetic graphic. Unlike vector graphics,
raster graphics provides the capability to present shaded and textured surfaces, as well as line drawings.
These advantages, coupled with advances in hardware and the development of antialiasing methods,
have led raster graphics to supersede vector graphics as the primary technology for computer graphics.
The main weaknesses of raster graphics are the large memory and processing power it requires for the
frame buffer, and the discrete nature of the image. These difficulties delayed the full acceptance of
raster graphics until the late seventies when the technology was able to provide cheaper and faster
memory and hardware to support the demands of the raster approach. In addition, the discrete nature of
rasters makes them less suitable for geometric operations such as transformations and accurate
measurements, and once discretized the notion of objects is lost.

The same appeal that drove the evolution of the computer graphics world from vector graphics to raster
graphics, once the memory and processing power became available, is driving a variety of applications
from a surface-based approach to a volume-based approach. Naturally, this trend first appeared in

Table 1: Comparison between vector graphics and raster graphics
and between surface graphics and volume graphics.

2D Vector Graphics Raster Graphics

Scene/object complexity − +
Block operations − +

Sampled data − +
Interior − +

Memory and processing + −
Aliasing + −

Transformations + −
Objects + −

3D Surface Graphics Volume Graphics
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applications involving sampled or computed 3D data, such as 3D medical imaging and scientific
visualization, in which the datasets are in volumetric form. This diverse empirical applications of
volume visualization still provide a major driving force for advances in volume graphics.

The comparison in Table 1 between vector graphics and raster graphics strikingly resembles a
comparison between surface graphics and volume graphics. Actually Table 1 itself is used also to
contrast surface graphics and volume graphics. Section 9.10 discusses the features of volume graphics
while Section 9.11 discusses the weaknesses of volume graphics relative to surface graphics.

9.10. Volume Graphics Features

One of the most appealing attributes of volume graphics is its insensitivity to the complexity of the
scene, since all objects have been pre-converted into a finite size volume buffer. Although the
performance of the pre-processing voxelization phase is influenced by the scene complexity [10, 43-45],
rendering performance depends mainly on the constant resolution of the volume buffer and not on the
number of objects in the scene. Insensitivity to the scene complexity makes the volumetric approach
especially attractive for scenes consisting of a large number of objects.

In volume graphics, rendering is decoupled from voxelization and all objects are first converted into one
meta object, the voxel, which makes the rendering process insensitive to the complexity of the objects.
Thus, volume graphics is particularly attractive for objects that are hard to render using conventional
graphics systems. Examples of such objects include curved surfaces of high order and fractals which
require the expensive computation of an iterative function for each volume unit [75]. Constructive solid
models are also hard to render by conventional methods, but are straightforward to render in volumetric
representation (see below).

Anti-aliasing and texture mapping are commonly implemented during the last stage of the conventional
rendering pipeline, and their complexity is proportional to object complexity. Solid texturing, which
employs a 3D texture image, has also a high complexity proportional to object complexity. In volume
graphics, however, anti-aliasing, texture mapping, and solid texturing are performed only once, during
the voxelization stage, where the color is calculated and stored in each voxel. The texture can also be
stored as a separate volumetric entity which is rendered together with the volumetric object, as in the
VolVissoftware system for volume visualization [1].

The textured objects in Figures 7 and 8 have been assigned texture during the voxelization stage by
mapping each voxel back to the corresponding value on a texture map or solid. Once this mapping is
applied, it is stored with the voxels themselves during the voxelization stage, which does not degrade the
rendering performance. In addition, texture mapping and photo mapping are also viewpoint
independent attributes, implying that once the texture is stored as part of the voxel value, texture
mapping need not be repeated.

In anticipation of repeated access to the volume buffer (such as in animation), all viewpoint independent
attributes can be precomputed during the voxelization stage, stored with the voxel, and be readily
accessible for speeding up the rendering. The voxelization algorithm can generate for each object voxel
its color, its texture color, its normal vector (for visible voxels), antialiasing information [106], and
information concerning the visibility of the light sources from that voxel. Actually, the viewpoint
independent parts of the illumination equation, can also be precomputed and stored as part of the voxel
value.
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Once a volume buffer with precomputed view-independent attributes is available, a rendering algorithm
such as a discrete ray tracing or a volumetric ray tracing algorithm can be engaged. Either ray tracing
approach is especially attractive for complex surface scenes and constructive solid models, as well as 3D
sampled or computed datasets (see below). Figures 4, 5 and 8 show examples of objects that were ray
traced in discrete voxel space. In spite of the complexity of these scenes, volumetric ray tracing time
was approximately the same as for much simpler scenes and significantly faster than traditional space-
subdivision ray tracing methods. Moreover, in spite of the discrete nature of the volume buffer
representation, images indistinguishable from the ones produced by conventional surface-based ray
tracing can be generated by employing, accurate ray tracing, auxiliary object information, or screen
supersampling techniques.

Sampled datasets, such as in 3D medical imaging (see Figures 5 and 9), volume microscopy (see
Figures 2 and 4), and geology, and simulated datasets, such as in computational fluid dynamics,
chemistry, and materials simulation are often reconstructed from the acquired sampled or simulated
points into a regular grid of voxels and stored in a volume buffer. Such datasets provide for the majority
of applications using the volumetric approach. Unlike surface graphics, volume graphics naturally and
directly supports the representation, manipulation, and rendering of such datasets, as well as provides
the volume buffer medium for intermixing sampled or simulated datasets with geometric objects [48], as
can be seen in Figures 4-6 and 8-9. For compatibility between the sampled/computed data and the
voxelized geometric object, the object can be volume sampled [106] with the same, but not necessarily
the same, density frequency as the acquired or simulated datasets. In volume sampling the continuous
object is filtered during the voxelization stage generating alias-free 3D density primitives. Volume
graphics also naturally supports the rendering of translucent volumetric datasets (see Figure 9).

A central feature of volumetric representation is that, unlike surface representation, it is capable of
representing inner structures of objects, which can be revealed and explored with the appropriate

Figure 9: Intermixing of a volume-sampled cylinder with an MRI head using a union operation.



-36-

volumetric manipulation and rendering techniques. Natural objects as well as synthetic objects are
likely to be solid rather than hollow. The inner structure is easily explored using volume graphics and
cannot be supported by surface graphics (see Figures 2(b), 2(c), 3-6 and 9). Moreover, while translucent
objects can be represented by surface methods, these methods cannot efficiently support the translucent
rendering of volumetric objects, or the modeling and rendering of amorphous phenomena (e.g., clouds,
fire, smoke) that are volumetric in nature and do not contain any tangible surfaces [20, 42, 77].

An intrinsic characteristic of rasters is that adjacent objects in the scene are also represented by
neighboring voxels. Therefore, rasters lend themselves to various meaningful block-based operations
which can be performed during the voxelization stage. For example, the 3D counterpart of thebitblt
operations, termedvoxblt (voxel block-transfer), can support transfer of cuboidal voxel blocks with a
variety of voxel-by-voxel operations between source and destination blocks [50]. This property is very
useful for voxblt and CSG. Once a CSG model has been constructed in voxel representation, it is
rendered like any other volume buffer. This makes rendering of constructive solid models
straightforward.

The spatial presortedness of the volume buffer voxels lends itself to other types of grouping or
aggregation of neighboring voxels. For example, the terrain image shown in Figure 7 was generated by
the voxel-based Hughes Aircraft Co. flight simulator [115]. It simulates a flight over voxel-represented
terrain enhanced with satellite or aerial photo mapping with additional synthetic raised objects, such as
buildings, trees, vehicles, aircraft, clouds and the like. Since the information below the terrain surface is
invisible, terrain voxels can be actually represented as tall cuboids extending from sea level to the terrain
height. The raised and moving objects, however, hav e to be represented in a more conventional voxel-
based form.

Similarly, voxels can be aggregated into super-voxels in a pyramid-like hierarchy. For example, in a
voxel-based flight simulator, the best resolution can be used for takeoff and landing. As the aircraft
ascends, fewer and fewer details need to be processed and visualized, and a lower resolution suffices.
Furthermore, even in the same view, parts of the terrain close to the observer are rendered at high
resolution which deceases towards the horizon. A hierarchical volume buffer can be prepared in advance
or on-the-fly by subsampling or averaging the appropriate size neighborhoods of voxels (see also [34]).

9.11. Weaknesses of Volume Graphics

A typical volume buffer occupies a large amount of memory. For example, for a medium resolution of
5123, two bytes per voxel, the volume buffer consists of 256M bytes. However, since computer
memories are significantly decreasing in price and increasing in their compactness and speed, such large
memories are becoming common place. This argument echoes a similar discussion when raster
graphics emerged as a technology in the mid-seventies. With the rapid progress in memory price and
compactness, it is safe to predict that, as in the case of raster graphics, the memory will soon cease to be
a stumbling block for volume graphics.

The extremely large throughput that has to be handled requires a special architecture and processing
attention (see [49] Chapter 6).Volume engines, analogous to the currently available geometry (polygon)
engines, are emerging. Because of the presortedness of the volume buffer and the fact that only a simple
single type of object has to be handled, volume engines are conceptually simpler to implement than
current geometry engines (see Section 6). We predict that, consequently, volume engines will
materialize in the near future, with capabilities to synthesize, load, store, manipulate, and render
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volumetric scenes in real time (e.g., 30 frames/sec), configured possibly as accelerators or co-systems to
existing geometry engines.

Unlike surface graphics, in volume graphics the 3D scene is represented in discrete form. This is the
cause of many of the problems of voxel-based graphics, which are similar to those of 2D rasters [19].
The finite resolution of the raster poses a limit on the accuracy of some operations, such as volume and
area measurements, that are based on voxel counting.

Since the discrete data is sampled during rendering, a low resolution volume yields high aliasing
artifacts. This becomes especially apparent when zooming in on the 3D raster. When naive rendering
algorithms are used, holes may appear "between" voxels. Nevertheless, this can be alleviated in ways
similar to those adopted by 2D raster graphics, such as employing either reconstruction techniques, a
higher-resolution volume buffer, or volume sampling.

Manipulation and transformation of the discrete volume are difficult to achieve without degrading the
image quality or losing some information. Rotation of rasters by angles other than 90 degrees is
especially problematic since a sequence of consecutive rotations will distort the image. Again, these
can be alleviated in ways similar to the 2D raster techniques.

Once an object has been voxelized, the voxels comprising the discrete object do not retain any
geometric information regarding the geometric definition of the object. Thus, it is advantageous, when
exact measurements are required (e.g., distance, area), to employ conventional modeling where the
geometric definition of the object is available. A voxel-based object is only a discrete approximation of
the original continuous object where the volume buffer resolution determines the precision of such
measurements. On the other hand, several measurement types are more easily computed in voxel space
(e.g., mass property, adjacency detection, and volume computation).

The lack of geometric information in the voxel may inflict other difficulties, such as surface normal
computation. In voxel-based models, a discrete shading method is commonly employed to estimate the
normal from a context of voxels. A variety of image-based and object-based methods for normal
estimation from volumetric data has been devised (see [120], [49, Chapter 4]) and some have been
discussed above. Most methods are based on fitting some type of a surface primitive to a small
neighborhood of voxels.

A partial integration between surface and volume graphics is conceivable as part of an object-based
approach in which an auxiliary object table, consisting of the geometric definition and global attributes
of each object, is maintained in addition to the volume buffer. Each voxel consists of an index to the
object table. This allows exact calculation of normal, exact measurements, and intersection verification
for discrete ray tracing [122]. The auxiliary geometric information might be useful also for re-
voxelizing the scene in case of a change in the scene itself.

10. Conclusions

Many of the important concepts and computational methods of volume visualization have been
presented. Surface rendering algorithms for volume data were briefly described in which an
intermediate representation of the data is used to generate an image of a surface contained within the
data. Object order, image order, and domain volume rendering techniques were presented for
generating images of surfaces within the data, as well as volume rendered images that attempt to capture
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all three dimensions of information in the 2D image. Several optimization techniques that aim at
decreasing the rendering time for volume visualization as well as realistic global illumination rendering
were also described.

Although volumetric representations and visualization techniques seem more natural for sampled or
computed data sets, their advantages are also attracting traditional geometric-based applications. This
trend implies an expanding role for volume visualization, and it has thus the potential to revolutionize
the field of computer graphics, by providing an alternative to surface graphics, called volume graphics.
We hav e introduced recent trends in volume visualization that brought about the emergence of volume
graphics. As summarized in Table 1, volume graphics has advantages over surface graphics by being
viewpoint independent, insensitive to scene and object complexity, and it lends itself to the realization of
block operations, CSG modeling, and hierarchical representation. It is suitable for the representation of
sampled or simulated datasets and their intermixing with geometric objects, and it supports the
visualization of internal structures. The problems associated with the volume buffer representation,
such as memory size, processing time, aliasing, and lack of geometric representation, echo problems
encountered when raster graphics emerged as an alternative technology to vector graphics and can be
alleviated in similar ways.

The progress so far in volume graphics, in computer hardware, and memory systems, coupled with the
desire to reveal the inner structures of volumetric objects, suggests that volume visualization and
volume graphics may develop into major trends in computer graphics. Just as raster graphics in the
seventies superseded vector graphics for visualizing surfaces, volume graphics has the potential to
supersede surface graphics for handling and visualizing volumes as well as for modeling and rendering
synthetic scenes composed of surfaces.
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Abstract

Geometric modelling is central to many applications. Representation schemes that are specialized for a
particular application may impose topological and geometric limitations on the domain and thus consid-
erably restrict future extensions. Selective Geometric Complexes (SGCs) provide a practical yet general
framework for representing general objects of mixed dimensionality having internal structures and in-
complete boundaries. SGCs and their decomposition into regions (i.e., features of interests for a particular
applications) may be specified and edited in terms of Constructive Non-Regularized Geometry (CNRG)
trees, which define how primitive shapes should be combined through a variety of set-theoretic and
topological operators. CNRG operators preserve the structure imposed by their arguments on the under-
lying set. The combination of CNRG specification and of SGC representation and the associated
conversion/evaluation algorithms provide a generalized environment for non-manifold modeling in any
dimension. These notes focus on the topological concepts, on the representation and specification schemes,
and on the associated algorithms for non-manifold structures, independently of any particular geometric
domain (i.e., restriction on the shapes or surfaces) and of the dimension of the underlying space.
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1.0 FORWARD

Computerized models of three-dimensional shapes are central to many applications: manufacturing,
geoscience, entertainment, architecture, and medicine are obvious examples. Natural or man-made shapes
may be modeled electronically in a variety of ways and with different degrees of accuracy. The choice
of a particular modeling scheme and of the associated data-structures often depends on the data acquisition
process, on requirements imposed by the application, and of course on the skills, number, ambitions, and
preoccupations of the developers.

Four types of representations interplay in many geometric modeling scenarios.

In Computer-Aided Design systems, an intentional model may be used to capture, in an unevaluated form,
some of the functional requirements of a product or the designer's intent. One may use a procedural model
(programming language, Constructive Solid Geometry, or more general creation history graphs which in-
clude Boolean, blending, and deformation operators) or a declarative form (geometric constraints, shape
grammars, construction rules). Such models may in general be easily edited or parameterized.

Real or computed shapes may be captured in a sample model derived from physical measurements (seis-
mic data, slices of a medical scan, depth maps from a range finder) or from the results of numeric simu-
lations. Sample models provide shape information only over a set of discrete sample points placed either
on the surfaces of the model or distributed in space. Shape between the samples is not well defined and
various algorithmic techniques have been proposed to construct continuous interpolations between samples
and to decide which neighboring samples should be used for evaluating a given point.

A continuous extensional (i.e. evaluated) model is typically derived algorithmically from an intentional
model, a sample model, or both. For example, an operator may design a multi-surface object using crude
approximations for each surface and subsequently force each surface to pass through or near a set of
sample points measured off a real object or computed via numeric optimization. Most representation
schemes for extensional models are enumerative in nature. The most popular representations are dimen-
sionally homogeneous partition of space (voxels, octrees, 3D meshes, BSP trees) or recursive boundary
formulations (BReps), where volumes are defined in terms of their bounding faces and where faces are
defined in terms of their supporting surfaces and bounding edges.

An abstraction model provides mechanisms for selecting, identifying, or iconifying those subsets of the
extensional model's interior or boundary that are appropriate for a particular operation or relevant to a
particular annotation. Typical examples include surface features for machining, entities used in the defi-
nition of geometric constraints stored in intentional models, or tumors in a segmented 3D medical dataset.
Abstraction models may impose an internal structure on the point set of the model.

This lecture focuses on the extension of traditional intentional models (Constructive Solid Geometry) and
continuous extensional models (Boundary Representations) to arbitrary topological domains and to
pointsets with internal structure. The theoretical underpinnings supporting these extensions are independ-
ent of the particular choice of a representation for the individual geometric entities, and hence of the ge-
ometric coverage of the modeler. The algorithms developed for constructing and for processing such
representation assume however the reliable support of a small set of geometric queries, such as the inter-
section and ordering of geometric entities.

1
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2.0 INTRODUCTION

The primary schemes for representing three-dimensional geometric objects may be grouped into three
broad categories: constructive, boundary, and enumerative representations. By storing a recipe (process)
for creating a model from primitive entities and operations, constructive representations capture the de-
signers' intent and provide a powerful design model that is easy to edit and to parameterize. Enumerative
representations represent or approximate the desired regions as a collection of primitive entities that are
simpler to represent. Enumerative schemes may require that the primitives be mutually disjoint (or at least
that their relative interiors be disjoint) and often restrict the primitives to be regularly spaced. Most
popular schemes use cubical cells (called voxels), parallelepipeds of uniform cross-section (Ray repres-
entations [12]), or constant-thickness slices (cross-sections). These representations may be constructed
directly from physical measures or from simulation results or evaluated from other representations. Al-
though often approximate, they have recently gained popularity, because their simplicity is well suited for
parallel hardware implementation (see papers in [20]). Boundary representations exploit the fact that a
simple enumeration of the bounding (hyper)faces of a bounded region suffices to unambiguously distin-
guish it from its complement. Most boundary models, however, store additional connectivity information
between the geometric boundary elements (vertices, edges, and faces) and exploit it to speed up the
boundary traversal parts of fundamental algorithms that build the model from a constructive represen-
tation, display it, or extract its topological or geometric properties.

Practitioners often distinguish between the topology and the geometry of a model. While a geometric
representation captures the precise shape of each face, or curve of an object, a topological representation
focuses on properties that are invariant under continuous deformations, i.e. that are independent of the
precise shape of the geometric components. This lecture notes address precise representations of contin-
uous three-dimensional geometric models, because these are important for precise design, visualization,
and analysis. Therefore we focus primarily on the topological, representational, and computational aspects
of constructive and boundary representation that are independent of any particular geometric domain (i.e.
of the nature of the surfaces represented or even of the dimensionality of the problem). Enumerative re-
presentations are addressed elsewhere in this course.

Geometric modelling is central to many design, simulation, visualization, analysis, and manufacturing
applications. Different applications deal with different geometric and topological entities and thus require
different geometric and topological coverages. The geometric coverage of a modeler is characterized by
the nature of the geometric entities (such as points, curves, surfaces) it supports and by the ways in which
these entities may be created, combined, and manipulated. Topological limitations of a modeler are more
subtle to assess. For example, the solid modeling technology is based on a precise definition of solids
leading to a complete and unambiguous representation that permits to distinguish between the interior, the
boundary, and the exterior of the represented solid [29]. This definition played an essential role in the
development of correct algorithms for Boolean operations on solids [30], but has somewhat confined the
domain of applications. Indeed, until recently, solid modelers did not explicitly support internal structures
nor lower-dimensional (dangling) entities. Surfaces have been extensively used for car body design and
are required for representing regions of contacts between solids. Interior faces are used to decompose
solids into finite elements or into subsets exhibiting different physical properties. They may also represent
cracks in three dimensional sets. Curves may be used as design aides. Although solids, curves, and sur-
faces can be grouped (overlayed) in the same model and moved or displayed together as a single entity,
Boolean and other operations on such groupings have not been implemented, nor even formally defined.

Selective Geometric Complexes (abbreviated SGC) introduced by Rossignac and O'Connor [33] provide
a common framework for representing objects of mixed dimensionality possibly having internal structures
and incomplete boundaries. SGCs are composed of finite collections of mutually disjoint cells. A cell is
an open connected subset of some n-dimensional manifold. The concept of a cell generalizes the concepts
of edges, faces, and vertices used in most solid modelers. The connectivity between the cells of an SGC
is captured in a very simple incidence graph, whose links indicate boundary-of relations between cells.
By choosing which cells of an object are active one can associate various pointsets with a single collection
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of cells. These pointsets need not be homogeneous in dimension, nor even be closed or bounded. Although
most geometric manipulations that are necessary to support SGCs (at least in three dimensions) are
available in many existing geometric modellers, data structures and high-level operations provided with
these modellers are not designed to represent and process such complex objects. Therefore, to support
useful operations on SGCs, Boolean and other set-theoretic operations (closure, interior, boundary) have
been decomposed into combinations of three fundamental steps for which we have developed
dimension-independent algorithms: a subdivision step, which makes two objects compatible by subdivid-
ing the cells of each object at their intersections with cells of the other object, a selection step, which
defines active cells, and a simplification step, which, by deleting or merging certain cells, reduces the
complexity of an object's representation without changing the represented pointset and without destroying
useful structural information. Furthermore, combinations of these steps may produce a variety of special-
purpose operations, whose effect is controlled by simple predicates, or filters, for cell selection.

Solids may be conveniently specified in CSG (Constructive Solid Geometry) by a construction tree that
has solid primitives as leaves and rigid body motions or regularized Boolean operations as internal nodes.
Algorithms for classifying sets with respect to CSG trees and for evaluating the boundaries of the corre-
sponding solids are known, at least for simple geometric domains. Emerging CAD applications require
that we extend the CSG simplification to support more general and more structured geometric objects.
The concept of a Constructive Non-Regularized Geometry (abbreviated CNRG) was introduced by
Rossignac and Requicha [34] to support a convenient specification of dimensionally non-homogeneous,
non-closed pointsets with internal structures. These cover non-manifold structures possibly composed of
several mixed-dimensional regions with dangling or missing boundary elements. CNRG trees extend the
domain of CSG by supporting non-regularized primitive shapes as leaves and by providing more general
set-theoretic and topological operators at interior nodes. Filtering operations construct CNRG objects from
aggregates of selected regions of other CNRG objects. The resulting structures may be evaluated and re-
presented in terms of SGC, where references to individual cells are grouped into CNRG regions.

The combination of CNRG specification and of SGC representation and the associated
conversion/evaluation algorithms provide a generalized environment for non-manifold modeling in any
dimension. However, most of the concepts are introduced using two or three dimensional instantiations
for sake of clarity.

These notes are organized as follows. Section 2 introduces the concepts of topological domains and
representation validity through the case study of 2-D polygons. It argues that the correct rephrasing of
the question “What is a valid polygon?” leads to a precise definition of a polygon and to a natural
canonical representation scheme. Section 3 introduces the fundamental concepts of non-manifold mod-
eling and the diversity of topological domains that fall under this imprecise denomination. The discussion
starts with an introduction of a decomposition of space into a collection of disjoint cells induced by a given
set of primitives (for example, surfaces and curves). Then it discusses the identification of particular cell
in such a decomposition. A variety of topological domains may be obtained by restricting which cells
of a decompositions should be active (i.e. contributing to the pointset). Section 4 reviews boundary
modeling schemes. It introduces the fundamental entities and the topological and ordering relations be-
tween these entities. It overviews several popular data structures, including SGCs. Section 5 reviews the
main CNRG concepts and the semantics of CNRG operators for specifying and computing non-manifold
sets with structures. The appendix contains a short (informal) review of the topological concepts used
elsewhere in these notes.

3.0 WHAT IS A VALID POLYGON?

The naive question: “What is a valid polygon?” should lead to a mathematical definition of validity for
polygonal representations accepted, processed, or produced by a particular application or algorithm. Nu-
merous definitions have been published in research papers or user manuals. The reader may be puzzled
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by the diversity of such definitions and struggle when asked to establish if two definitions are equivalent,
if a particular definition is complete, or even if a specific case satisfies a particular definition.

It is helpful to decompose this questions as follows:

1. “What is a polygon?”
2. “What representation scheme (abstract data structure) are we using?”
3. “How do we semantically interpret the representation (for example when testing whether a point lies

inside the represented polygon?”
4. “When is a model expressed using that representation scheme valid (i.e., corresponds to a polygon

according to the chosen definition)?”

For the sake of elegance, we propose here a definition that is restrictive, but leads naturally to a simple
and canonical (i.e. unique) representation scheme.

A polygon is a connected and bounded s-regular subset of E2 having for boundary a finite union of mu-
tually disjoint cells. Cells are either crossings: (i.e., non-manifold points), vertices: (i.e. non-smooth
manifold points), or edges: (i.e., relatively open connected line segments free of crossings).

A set is s-regular if it is equal to the interior of its closure. Such a set is open and thus does not contain
its boundary (i.e. its edges, vertices, or crossings).

According to this definition the following statements hold.

A polygon is open (does not contain its boundary) and connected. It may have holes but no islands.

A polygon has no dangling edges, isolated vertices, interior cracks or missing points.

The boundary of a polygon needs not be manifold. Its vertices, crossings, and edges of a polygon are
pairwise disjoint. The vertices, crossings, and edges of any given polygon are always unambiguously
defined.

Each edge of a polygon separates the inside of the polygon from the outside. The orientation of each edge
(following the convention that the inside is on the left) is thus well defined. Each edge is incident on
exactly two points (vertices or crossings) and its orientation defines which is the start point and which is
the end point.

Each vertex is the start point of exactly one edge and the end point of exactly one other edge. Each
crossing has 2k (k positive integer) edges incident on it. It is the start point of exactly k of these.

The successor of an edge E having vertex V as its end point is defined as the only edge having V as its
start point. The successor of an edge E having crossing C as its end point is defined as the first edge that
has C as its start point as we circle C clockwise in its immediate vicinity starting from E. The successor
of an edge is uniquely defined

A loop is defined as a maximally connected subset of the boundary of a polygon. The loops of a polygon
are uniquely defined and pairwise disjoint.

Each edge and each vertex or crossing belong to exactly one loop. The successor of an edge belongs to
the same loop.

The successor operator (which returns the successor of the argument edge) induces a unique cyclic or-
dering for all the edges in a loop.

Edges may be uniquely defined by the references to their start and end points. Since the end point of an
edge is equal to the start point of its successor, one reference per edge in a loop suffices for defining the
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edges. Thus, a loop is completely represented by an ordered circular list of references to the start points
of its edges

Each loop has at least 3 references to different points. The starting points of two consecutive edges in a
loop are always different (i.e. consecutive point-references in a loop must be different).

These properties lead to a simple and canonical representation:

A polygon may be represented by the set of its points (vertices and crossings) and the set of its loops.
Each point is represented by its coordinates. Each loop is represented by a circularly ordered list of ref-
erences to its points.

Note that given any polygon (i.e. a pointset that meets the proposed definition), its representation in the
above scheme (data structure) is unique. (We do not take into account the possible permutations and
various representations for sets and list, which can be addresses by imposing the appropriate lexicographic
orderings.) For processing convenience, one could also require that the outer loop (which is also always
well defined in the plane and the holes (all other loops) be explicitly identified in the data structure.

The opposite assumption is unfortunately not true. A dataset organized in the above data-structure (sets
of points and loops) does not necessarily correspond to a valid polygon. Validity violations may be of
different nature: geometric, ordering, or topological. Geometric violations correspond to the wrong choice
of point coordinates (for example, a point may coincide with another point or with an edge, or two edges
may intersect). Ordering violations may simply correspond to the wrong orientation of the edges in a loop
or to the wrong branch taken at a crossing (inconsistent with the definition of a successor). Topological
violations may correspond to empty edges (two consecutive references to the same point), to degenerate
loops (less than three point references), or to loops with non-manifold parts (for example, the multiple
use of an edge).

Imposing additional constraints on the representation further restricts the set of representable polygons.
For example, if each vertex is used only once in a loop, the polygon has a manifold boundary. If the
polygon has a single loop, it is simply connected.

A number of other schemes for representing polygons are popular in CAD and graphics systems. They
include:

• Decompositions into simpler disjoint regions (triangles, trapezoids)
• CSG or BSP trees,
• Possibly overlapping trimming loops

These do not easily lead to canonical representations.

4.0 TOPOLOGICAL BACKGROUND

Any set of geometric primitives may be used to impose a decomposition of the underlying three-
dimensional Euclidean space into cells of an SGC structure from which one can select a subset of interest
(the “active” cells). We describe here informally several ways of defining such a decompositions.

A single primitive decomposes space into three disjoint parts:

• the primitive's interior
• its boundary
• the interior of its complement

These sets may be recursively decomposed into dimensionally homogeneous subsets (i.e. fully three-
dimensional volumes, isolated points, dangling curves, and dangling faces). From each subset, one may
extract singular points (cusps and self-crossings where some geometric continuity or topological manifold
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properties of the supporting geometry vanish) and boundary points (vertices bounding edge segments and
edges bounding dangling faces). The sets of singular points may be further (recursively) decomposed in
this manner into singularity-free, dimensionally homogeneous sets. Finally, the maximally connected
components. of this decomposition may be identified. For example, a cone primitive may decompose
space into: the complement of the cone, the three-dimensional interior of the cone, the circular edge at the
base, the disk-like base-face (without its bounding circular edge), the apex (tip of the cone), and the
conical face (without the bounding edge nor the apex).

The atomic entities defined by this decomposition process correspond to the cells of a geometric complex.
They are connected relatively open subsets of some n-dimensional manifold (the 3-D space or a smooth
portion of a surface or of a curve). Any two different cells of such a decomposition are mutually disjoint.
The boundary of the set of a cell C lying in a manifold M is the union of other cells in the decomposition,
which are either entirely in the manifold M, or entirely out if it. For example the boundary of the conical
face of a cone primitive is composed of a circular curve (part of the manifold surface supporting the face)
and of the apex (singular point, not in the manifold supporting the face).

When several primitives overlap, the space decompositions induced by each primitive must be combined
into a single (finer) decomposition. An algorithm for performing such a merging operation is called
subdivision (or refinement) and is outlined in [33]. It basically requires that intersections of each cell of
one decomposition with each other cell of each other decomposition be computed and further decomposed
into dimensionally homogeneous singularity-free connected components.

The space partition induced by a set of planes is a simple example of decomposition. It cells are: points
where three or more planes cross, relatively open (and possibly unbounded) line segments where two or
more planes cross, relatively open convex polygonal faces induced on each plane by all other non-
coincident planes, and the open convex polyhedra (maximally connected components of the complement
of the union of all the planes).

4.1 Identifiable sets of cells

A set of primitives used to induce a decomposition of space provides the means for characterizing specific
subsets of these cells. Any cell of such a linear partition may be expressed using a Boolean formula which
combines the half-spaces bounded by the original planes and involves only set theoretic intersection and
complement operators. Yet, the characterization of the union of several cells may be more conveniently
expressed in terms of a filter operator. The filters may use the geometric or topological properties of a
cell's set or the relation of a cell to any particular primitive. Filters may be categorized as follows.

• Boolean combinations of primitives half-spaces through set theoretic union, intersection, difference,
and complement operators are the most popular filters.

• Dimensionality, adjacency, and incidence may also be used for discriminating cells. For example,
given a sphere and its center point, the complement of the sphere may be characterized (among many
other ways) as the only 3-cell that is not adjacent to a 0-cell.

• Topological operators, such as relative closure, interior, boundary, may be applied to sets of cells and
are unambiguously defined in terms of the union of the point-sets represented by the cells [34].

• Geometric filters, which for example extract the one-dimensional singularities, are also important.

These filters and operators may be composed into expressions that may uniquely identify specific sets of
cells. However, they may be insufficient for differentiating between specific pairs of cells: the connected
components of the result of filtering expressions. A simple example is an infinite line subdivided by a
point. It is impossible to distinguish the two half-lines using only combinations of the above operators.
The orientation notions discussed in the next section may help in some cases, but the problem remains
unsolved in general, and leads to serious complications for picking faces and defining features in
parametric models.
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Note that arbitrary subsets of the cells of a decomposition do not necessarily correspond to a geometric
complex (the boundaries of some cells may be missing). Therefore, to represent the result of a selection
(filtering) process, one should construct a Selective Geometric Complex that includes not only the selected
cells, but also all the cells in the closure of the desired set. The added boundary cells will simply be in-
active.

Since the above decomposition process often introduces unnecessary subdivisions of the desired set, it
may be desirable to simplify the representation, i.e. to produce a simpler SGC representing the same set.
A systematic simplification process which preserves the validity of the SGC is described in [33]. The
simplification process visits each cell only once (by order of decreasing dimensionality) and applies, if
appropriate, one of the following three operations: (1) remove inactive cells that are not bounding other
active cells, (2) remove active cells that separate two active cells in the same manifold and are not
bounding any other cell, and (3) remove active cells that are interior boundaries of only one active cell.
The simplification of [33] provides the means of generating a unique SGC for a given set. That is, if two
SGCs, A and B, represent the same sets, their simplifications will be identical SGCs.

4.2 Topological characterization

Developers of geometric modeling systems have often restricted the topological domains in various ways.
We characterize such restrictions using topological concepts, regardless of the geometric domain or as-
sociated data structures, which are discussed in the following section. The characterization is based on the
topological properties of the sets (or collections of sets) that can be represented. We use 2-D terminology
to and examples illustrate the differences.

• R-set with manifold boundary: Each vertex is adjacent to exactly two edges.
• R-set with non-manifold boundary: A vertex may bound more than two edges, but the set is equal

to the closure of its interior. (Note that regions whose interior are disjoint may share common
vertices, but not common edges.)

• S-sets: Open-regularized regions composed of open subsets that are disjoint, but whose boundaries
need not be disjoint. Edges bounding two subsets are called “interior”. However, each region is equal
to the interior of its closure (i.e. does not contain dangling edges nor cracks).

• Non-regular open sets: Extensions of s-sets that may contain non-separating interior boundary ele-
ments, but no dangling lower dimensional entities.

• Inhomogeneous closed sets: Extensions of r-sets with non-manifold to possibly include dangling
edges or isolated vertices.

• One-dimensional non-manifold set: Union of edges and vertices that may separate its complement
into more than two connected cells. (Such sets are typically called “non-manifold boundaries”, al-
though there does not necessarily exist a bounded and closed or open 2-D region having such a set
for boundary.)

• Partially closed sets: Extensions of non-regular open sets to include subsets of their boundaries.
• Disconnected non-regularized set: Extensions of partially closed sets to include dangling edges and

vertices. Interior edges are not part of the set.
• Closed non-manifold structures: Subdivisions of closed non-manifold sets into distinguishable sub-

sets. (The boundary of each cell is included in the set.)
• Selective Geometric Complex: Combinations of closed non-manifold structures and disconnected

regularized sets. (Interior edges need not be in the set.) SGCs are collections of disjoint relatively
open cells—here, 2-cells, edges, and vertices.

Another important characterization addresses restrictions that force the decomposition of natural
topological entities into collections of simpler ones. SGCs require that each cell be connected. Thus, the
volumes, faces, and edges of a model represented as an SGC must be broken into connected components,
each represented by a separate cell.

Restrictions on faces imposed by representations inspired by CW-complexes require that faces with holes
be artificially converted into simply connected faces by adding “bridges” (i.e. pairs of edges with opposite
orientations that join loops) to merge the various loops into a single loop. Similarly, closed curves and
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surfaces that are not homeomorphic to a disk (2-ball) must be artificially split by adding “cuts” (i.e.
vertices or edges). Faces are often assumed to be regular (i.e. equal to the interior of their closure). Such
a restriction avoids internal face-boundaries, but makes it impossible to represent correctly certain non-
manifold r-sets. Restrictions on the face-bounding loops may require that loops be mutually disjoint and
1-manifold. They also lead to serious limitations.

5.0 BOUNDARY REPRESENTATION SCHEMES

We briefly review in this section the most popular data structures for boundary models. A more detailed
analysis may be found in [1, 4, 22, 31, 32, 39].

5.1 Fundamental entities

Schemes discussed here use standard data structures, such as a doubly linked list, to store lists of primary
entities corresponding to cells and organized by dimension (list of vertices, lists of edges...). The ge-
ometric information describing the supporting manifolds, such as the equation of a surface that supports
a face or of a curve that supports an edge, are accessible from these primary entities.

Grouping entities (such as loops, shells, vertex cones) are sometimes introduced for grouping and or-
dering primary entities. These grouping entities improve the performance of application algorithms by
facilitating the traversal of the cells. For example, certain commands in standard graphics libraries require
that polygonal faces be represented a sorted list of vertices along a single loop.

Incidence entities are also used to combine incidence and ordering information in a more compact and
regular data structure. Incidence entities are associations of two or three cells of consecutive dimension
and having an incidence relation. For example, loops of edges may be represented by associating with
each edge-face pair a “next edge” pointer. Because an edge is bounding two faces in manifold models,
such a combined entity is sometimes referred to as “half-edge”.

5.2 Incidence orientation and neighborhoods

A great circle splits a spherical surface into two 2-cells (the two connected components of the difference
between the sphere and the curve). Given an orientation of the circular curve and an orientation of the
“outer” normal to the surface, we can define a “left”  and a “right”  side to the curve within the surface.
Each one of the 2-cells (faces) is adjacent to a different side of the curve. Such a relative orientation is
often used to dissociate connected components of a decomposition. We can for example speak of the face
that lies “on the left” of the circle (provided that the orientations of the curve and surface are well defined).
The relative orientation between a (k+1)-cell (for example a face) and one of its bounding a k-cells (for
example a curve) is called a neighborhood in [33] and takes three possible values: “left”, “right”, or
“both”. The latter value is used for internal boundaries, such as a small disk inside a large ball or a
bridge-edge connecting two loops of a face. If the face-edge neighborhood between a face F and an edge
E is “left” we will say that “F is incident on E from the left”.

When the boundary cell is not in the manifold containing the higher-dimensional cell, the orientation of
the manifold cannot be used to define a relative left and right orientation, and it may not always be pos-
sible to define a neighborhood. For instance, consider a self-intersecting surface that exhibits a singular
edge where four branches of the surface meet. There is no easily defined “left” of the edge, even if the
curve supporting the edge is oriented and if the surface is oriented everywhere except at the self-
intersection edge.

Branch numbers could be used to distinguish the surface branches in the neighborhood of the edge. The
branches may be defined as the connected components of the portion of the surface (without the self-

TOPOLOGICAL BACKGROUND 8



Siggraph 96 course: Computational Representations of Geometry

intersection curve) that lies inside a sufficiently small tube along the edge. However, the identification
of these branches may prove extremely difficult, even for implicit surfaces.

5.3 Circular ordering of incident geometries

Several types of topological ordering relations may be established between cells.

Points on a curve are implicitly ordered by the orientation of the curve. For closed curves, this ordering
is cyclic, unless an artificial singularity is introduced (for example the starting and ending point of a
parameterization of the curve or a vertex), which permits to treat closed curves as if they were open. (Here
the terms “closed” and “open” are not used with the topological meaning defined above, but simply to
distinguish curves that form a “closed” loop from curves that do not.) By extension, such an ordering is
used for the vertices and edges in a loop bounding a face. A loop is a alternating succession of edges
and vertices. The ordering may in fact be used to represent the loop, especially for polyhedral models,
where the edges are implicitly defined in terms of their end-vertices.

In the plane or on a manifold surface, edges may be ordered around their common vertex. To be more
precise, when the vertex is the starting and ending point of the same edge, the two branches of the edge
leaving the vertex appear as distinct entries in the ordering

Consider a sufficiently small circle around the vertex and assume that each edge lies on an oriented curve.
We can induce an ordering of the curves around their common vertex by storing the cyclic sequence in
which the small circle cuts the curves and, for each curve entry in this sequence, storing a binary flag
indicating whether the curve was oriented left-to-right or right-to-left, as seen by an observer traveling
on the circle. (The terms left and right may be precisely defined by an orientation of the supporting
manifold surface. The circle must be sufficiently small such that there is only one point of contact between
the curves in the disc enclosed by the circle.)

The geometric calculations involved in the computation of this ordering may prove very complex and
numerically instable. For instance, ordering conic sections around a common point may require computing
higher order derivatives, because tangent and curvature values at the contact point are insufficient. (An
ellipse and a circle may be tangent to each other and exhibit the same curvature at the contact point.)

The order of faces around an edge, sometimes used to established what is called the “edge neighborhood”
is very similar in nature to the order of edges around a vertex. However, the ordering of surfaces around
a common intersection curve may change as one travels along the curve. The points where such an or-
dering changes correspond to zero-dimensional singularities which split the curve into cells (edges) of
constant surface-ordering. Except for simple geometries, such as planar surfaces, the numeric computation
of the ordering of surface branches around an edge-cell is far more delicate than ordering edges around
a vertex.

5.4 Inclusion ordering

A sets of lower-dimensional cells may separate a manifold into two components. For example, a loop of
edges and vertices may separate a plane into two parts (the interior and the exterior). Similarly, a shell
of faces, edges, and vertices may separate the Euclidean 3-space into an interior and and exterior parts.
Finally, a vertex cone of faces and edges may separate the neighborhood of a vertex into two parts. (The
neighborhood of a vertex may be viewed as a sufficiently small ball around the vertex, not including the
vertex itself.)

A set of nested loops separates a surface into several faces (connected open cells). Each one of these faces
is incident on one or more loops and each loop separates exactly two adjacent faces incident upon the loop.
A face-adjacency graph whose nodes correspond to faces and whose arcs correspond to loops separating
adjacent faces is sufficient for capturing the nesting. When the graph is acyclic (i.e. when loops are
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mutually disjoint), the graph may be represented as a face-adjacency tree by simply picking a root face
and by propagating arc orientations away from the root.

In the plane, when loops are bounded, each loop separates the plane into a bounded interior and an un-
bounded exterior. The loops may then be ordered by saying that a loop A lies inside a loop B if A is
contained in the interior side of B. The ordering may be captured in a loop nesting tree having the outer
loop as root (i.e. the loop that is not contained inside any other loop). Nodes of the nesting tree are loops.
The children of a loop L are all the other loops bounding the interior face of L. The nesting tree may be
directly derived from the face-adjacency tree when the root face has only one bounding loop.

On a closed surface (a sphere for example), there is no a priori outer loop and in fact any face may be
chosen as the root, yielding a different tree each time. It is thus preferable to use the face adjacency graph
for capturing the acyclic nature of the partial ordering of loops.

Sets of shells and sets of vertex cones may be ordered in the same way as loops by replacing the nodes
of the face adjacency graph by volume nodes that refer to 3-D cells (for ordering shells) or by solid cones
of a vertex neighborhood (for ordering vertex cones).

Lower-dimensional elements (isolated vertices in the boundary of a face; dangling faces, edges, or vertices
in the boundary of a volume; and dangling edges emanating from a vertex) may also be ordered using the
face adjacency graph, the solid adjacency graph, or the vertex cone adjacency graph.

Note that since the connected components of a surface may be represented as genuine cells, the corre-
sponding face adjacency graph is readily imbedded in the more general face-edge-vertex incidence graph,
as discussed in the next section. Similarly, the shell nesting is directly available from the general
volume-face-edge-vertex incidence graph. On the other hand, the vertex-cone nesting is not explicitly
stored in a general adjacency graph since there may not be a unique cell corresponding to each vertex-
cone.

5.5 Notation

We use the symbols V, E, F, and R to denote the (vertex, edge, face, and solid region) types of primary
entity nodes in the incidence graph. The additional grouping entities for loops and shells are denoted L
and S. Incidence types will be written using the concatenation of the letters of the basic types in lower
case listed in decreasing order of dimension. For example, the type fe denotes all the associations between
faces and their bounding edges.

Arrows indicate incidence relations (or their inverse) and may carry their cardinality (i.e. the number of
referenced elements). Simple arrows denote variable number of incident elements. For example, F→E
implies that faces point to a variable number of edges. A superscript over the arrow indicates the number
of these references when it is constant. For example, E→

2

V indicates that each edge points to exactly two
vertices.

Sometimes, incidence references are organized by couples. For example, a face may have one reference
to its bounding face-edge couples. We indicate such coupling with parentheses, as in F→(E,V).

Many data structures associate to each node of a particular type one or several pointers to other adjacent
nodes of the same type. For example, consider pointers from an edge E to a subset of its neighboring
edges. The number of such pointers is in general not constant. If we need only one such pointer per face,
we can use the notation: E→

F

E. Extending the superscript notation even further, E→
F × V

E, indicates that from
each edge E there are pointers to other edges, one for each face-vertex pair such that the vertex is bounding
E and the face is bounded by E.

When the multiple arcs emanating from a node are ordered (possibly in cyclic fashion), we use a double
arrow “⇒ ” instead of “→”. For example, F⇒ V indicates that to each face is associated a list of links to
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vertices that are ordered in a circular fashion around the face. (This ordering is often used for simply-
connected faces.) For a face with several loops, we write: F→L⇒ V, ignoring, for simplicity, the fact that
nested loops may also be partially ordered.

A entire graph will be described by a syntax that first lists all the node-types used in the graph and then
all the types of arcs between these nodes. It is illustrated by the following example:

{R, F, L, V : R→F→L⇒( F,V)},

which indicates that the graph has nodes of type R, F, L, and V, and has a variable number of links from
R to F and from F to L. It also has a variable number of link-pairs from L to V and to F that are ordered.
(Regions are defined by a variable number of faces; each face is defined by a variable number of loops;
each entry in the loop is a double reference to a vertex and to another face.)

5.6 Manifold models
We describe in this sub-section several data-structures for representing manifold models of polyhedra and
of curved solids.

5.6.1 Face-vertex structure
For polyhedral models with simply connected faces, the edges are defined implicitly in terms of vertices
and are thus not necessary (provided that vertices be ordered along loops). For faces without holes we
may use an incidence graph based on face-vertex adjacency:

{R,F,V : R→F⇒ V},

and for multiply connected faces:

{R,F,L,V : R→F→L⇒ V}.

5.6.2 Delta
The face-vertex structure may be enhanced with vertex-edge and edge-face back pointers to improve
boundary traversal at a small storage cost [1]:

∆ = {R,V,E,F : R→F→V→E→
2

F} or reverse-∆ = {V,E,F : F→E→
2

V→F},

and further extended for representing 3D triangulations:

3D-∆ = {V,E,F,R : R→
4

F→
3

E→
2

V→R}.

5.6.3 Edge-centered structure
Using edges as the stem of the representation, [40] proposes a different structure targeted at an optimal
compromise between space and time efficiency:

{F,E,V : V⇒ E⇒
2

(V,F) , F⇒ E}

Each edge points to a next edge around each abutting face. A face points to an ordered list of edges. This
data structure only captures manifold topologies with simply-connected faces.
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5.6.4 Winged-edge
The pioneering winged-edge representation developed by Baumgart [5, 6] is a bi-directional incidence
graph to which ordering information is added as links between edges. The graph can only represent
orientable manifold shells. Each edge-node points to four other edge-nodes that share with it a vertex and
a face.

winged-edge= {F,E,V : F→E ⇒
2

V, E ⇒
4

E , V→E ⇒
2

(F, E)}.

The winged-edge data structure was extended by adding loops and shells ordering information [11]. In the
late seventies a version of it was used by Braid, Eastman, Weiler, and Henrion in the development of
GLIDE and another by Braid, Hillyard and Stroud in Cambridge, UK, in the development of BUILD,
which later evolved into the ROMULUS system. A comparative analysis of the space and time costs
associated with the different data structures for these extensions may be found in [1, 39].

5.6.5 FAHs
A FAH (Face-Adjacency Hypergraph) was used for modeling two-manifold boundaries [2]. The arcs of
a FAH define face-face adjacency and simply correspond to edges. Hyperarcs are connecting a vertex to
all of its edges. Thus, using E as a symbol for an arc, we have:

FAH = {F,E,L,V : F→L⇒( E,V) , E⇒
2

F , V⇒ E}

FAH's were subsequently extended for modeling objects at multiple levels of details, reflecting an iterative
design process of incrementally adding features and details [14].

5.6.6 Half-edge
Since, in manifold shells, an edge is bounding two faces, it may be convenient to use two fe-nodes to
represent each edge. To each fe-node corresponds a different orientation of the edge and is associated
one of the two vertices that bound the edge. These fe-nodes have been used in many data structures and
have been called “split-edges”, “half-edges”, “edge-uses”, and so on. These half-edges are usually linked
to each other half-edges, either directly or through an edge-node so as to capture face-face adjacency
[19, 24].

As shown in [1] half-edge data structures correspond to:

Half-edge = {R,F,L,fe,E,V : R→F→L→fe→
1

(V,E), E→
2

fe, V→
1

fe→
1

L→
1

F→
1

R},

plus redundant pointers from R to all the L, V, E, and S nodes. The half-edge structure was used by
Mäntylä and Sulonen in the GWB system.

5.6.7 Quad-edges
The winged-edge representation was extended by Guibas and Stolfi to subdivisions of orientable surfaces
using a quad-edge data structure [15]. Simple primitive operators were provided to move from edge to
edge around face loops and around vertices. Each edge refers to four of its neighbors.

5.6.8 Cell-tuples and V-maps
Brisson [7, 8] uses cell-tuples to extend the face-edge data structure [10, 21] and the quad-edge data
structures [15] to higher dimensions. A cell-tuple is a combination of cells of all the dimensions, such that
each cell (except the full-dimensional one) is in the boundary of the cell of the next dimension in the
cell-tuple. For example, in 3D a cell tuple is defined by selecting a region, one of its faces, one of the
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edges bounding the face, and a vertex bounding that edge. The switch(k) operator parameterized by the
dimension k produces the other tuple that has the same elements, except for the element of dimension k,
which is uniquely defined. For example, switch(0) exchanges the two vertices of the edge and switch(1)
exchanges the two edges that bound the face and share the vertex. switch is its own inverse. A permu-
tation of switch operators for dimension k and k+1. may be used to order k-cells and (k+1)-cells around
(k—1)-cells on a (k+2)-cells. For example, an alternation of switch(1) and switch(2) may be used to visit
the edges and faces of the cone of a shell formed around a vertex. Independently, Lienhardt [22, 23]
defines n-dimensional generalized maps. For manifold objects, both Lienhardt's and Brisson's representa-
tions are equivalent.

5.7 Non-manifold structures
A technique for extending boundary graphs to non-manifold cases, where the solids have internal struc-
tures is based on the use of 3D region nodes, Ri, in the delimitation graphs. Each 3D regions is associated
with a well defined subset of the boundary that forms a valid shell, or set of shells. (Typically, for sim-
plicity, the solids are restricted to be connected, although not necessarily simply connected. More than
one shell may be needed when the solids have internal holes.)

5.7.1 Edge-Less Adjacency Graph
The lack of face-face adjacency information in the simple face-vertex structure may be overcome by ex-
tending it into an ELAG (Edge-Less Adjacency Graph) for polyhedra.

In an ELAG, each pair of consecutive vertices in a loop define an edge. (The loop implies a circular or-
dering and thus the last vertex is followed by the first one. If the loop is non-manifold, several entries in
the loop may refer to the same vertex.) We can arbitrarily associate this edge with the first one of the two
vertex-entries, in the order of their appearance in the loop. Thus each vertex in a loop implicitly defines
a face-edge pair, i.e. an element of type fe. Given a face F and an edge E in the boundary of a solid region
R, the pair fe unambiguously defines at most two faces F1 and F2, that have E in their boundary and that
are adjacent to F in the circular ordering around E of all the faces of R bounded by E. Thus, one can
associate two face-pointers with each vertex-entry in each loop. We obtain the following specification:

ELAG = {R,F,L,V : R→F→L⇒( V, 2F)},

where the notation “L⇒( V, 2F)” indicates that each loop has a variable number of entries, each pointing
to one vertex and two faces.

Given the orientations of the faces and of the edges and their neighborhood information with respect to
R, we can add to the loop-face links neighborhood information that will enable us to traverse the boundary
of a region R by walking from one face to the next in such a manner that the sector specified by these
two faces in the vicinity of the edge is inside R and is not intersected by any other face adjacent to E.

Note that for manifold boundaries F1 = F2, and only one pointer is necessary:

Manifold ELAG = {R,F,L,V : R→F→L⇒( V, F)}.

When, in addition, faces are simply connected, we can merge the face-nodes with the loop-nodes alto-
gether:

Manifold ELAG with simply connected faces= {R,F,L,V : R→F⇒( V, F)}.

When restricted to manifolds shells, the ELAG concept was used in [26] for representing 2D triangulations
by associating with each triangular face three pointer-pairs:
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Triangulation = {F,E : F⇒
3

(V,F)}.

The concept was further extended in [9, 13] to higher dimensional triangulations.

5.7.2 Facet-edges
Dobkin and Laszlo extend the approach of [15] to a subdivision of E3. They define a facet-edge data
structure [10, 21] in which each face F points to other adjacent faces that bound the two regions bounded
by F.

The two-cycle requirement for shells of regularized solids, does not allow the use of “non-manifold”
boundaries in the larger sense of the word, i.e., boundaries that are not two-cycles, because they have
dangling faces or edges or because they define a partitioning of the solid into several connected regions.
Internal structures may be specified by superimposing on the solid the internal dangling faces and edges.

5.7.3 Half-edges and hybrid-edges
Mantyla's Half-Edge and Kalay's Hybrid-Edge [19, 24] data structures may be used to represent dangling
faces together with shells of 3D regions, and are thus useful for extending the topological domain beyond
dimensionally homogeneous sets, and even to a limited class of non-manifold boundaries.

5.7.4 Radial-edge
In the winged-edge representation, to each face-edge-vertex and each edge-vertex incidence link is asso-
ciated a link to a face. Thus, the winged-edge data structure has implicit ev→

1

E and fe→
1

E links. Using
these auxiliary fe and ev entities as nodes in the graph, Weiler has defined the vertex-edge and the face-
edge data structures [37], leading to the radial-edge data structure [38].

5.7.5 Vertex-based structure
The radial-edge data structure explicitly captures how faces are ordered around an edge and how edges
are ordered around a face. It does not however provide any information on the vertex-cone nesting, which
is important for a consistent traversal of the object's boundary at non-manifold vertices and is addressed
in the NOODLES system by Gursoz, Choi, and Prinz [16, 17].

5.7.6 SGCs with NAILs
In a Selective Geometric Complex, introduced by Rossignac and O'Connor, each cell points to all of its
bounding and incident cells. When the dimension of two incident cells differs by exactly one, and the
lower-dimensional cell is in the manifold supporting the higher-dimensional one, the link is augmented
with the (left, right, or both) neighborhood. Cells are tagged as active or inactive.

In addition to the incidence graph used for SGCs, to each edge and to each face node one can associate
a two-dimensional table called “NAIL” (for Next cell Around a cell In a cell List). For an edge e, the
table is indexed by a reference to a vertex v bounding e and by a reference to a face f incident upon the
edge. The corresponding entry e.NAIL(v,f) in the table contains a reference to the next edge around v in
f. Where “around” is defined with respect to the orientation of the surface supporting f. For a face f, the
table is indexed by a reference to an edge e bounding f and by a reference to a 3-cell r incident upon f.
The corresponding entry f.NAIL(e,r) in the table contains a reference to the next face around e bounding
r.
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6.0 CONSTRUCTIVE NON-REGULARIZED REPRESENTATIONS

A Constructive Solid Geometry (CSG) representation defines a recipe for a solid as a selection of 3-D
cells from a decomposition of space induced by the CSG primitives (half-spaces or volume primitives).
The operations used to control the selection are the regularized Boolean union, intersection, and difference.
A regularized operation returns the closure of the interior of its set theoretic counterpart [27, 28, 36].
Note that, if the arguments are regular, then the result of a set-theoretic union is identical to the result of
the regularized union. Furthermore, if the primitives are regular, then the result of an expression involving
regularized Booleans is identical to the closure of the interior of the same expression composed of the
corresponding set-theoretic operators.

Using this recipe as a fundamental representation instead of a boundary representation has many advan-
tages. The non-evaluated (CSG) representation is always valid and can be easily parameterized. Editing
a non-evaluated representation is simple and very efficient; it suffices to change the expression. Non-
evaluated representations are less verbose than their evaluated counterparts and lead to considerable stor-
age savings. Finally, many solid modeling algorithms work directly on CSG representations through
divide-and-conquer and are numerically more reliable than their counterparts that work on evaluated
boundary representations. We discuss in this section several variations of the traditional CSG represen-
tation models.

A representation scheme that covers a rich set of inhomogeneous geometric objects and operations was
proposed in [34]. It is called Constructive Non-Regularized Geometry (CNRG). CNRG trees represent
objects that are aggregates (i.e., unions) of mutually disjoint regions. Each region is a set in Rn and needs
not be connected, regular, or even dimensionally homogeneous. The leaves of a CNRG tree correspond
to parameterized primitive shapes such as volumes, faces, curve segments, or points. Internal nodes cor-
respond to intermediate CNRG objects and are associated with topological and Boolean operations.

SGCs provide a model for representing non-regularized internally-segmented sets as a collection of con-
nected open cells defined recursively in terms of their boundaries. CNRG trees yield an alternate repre-
sentation for these sets as a collection of regions defined in terms of original primitive sets. Regions of
CNRG objects need not be open nor connected and typically correspond to unions of SGC cells of various
dimensions. CNRG models should be viewed as a primary model for user interaction because they support
a high level vocabulary for expressing operations and regions, and because the CNRG trees are, similarly
to CSG trees, easy to edit and archive. SGC models should be automatically derived from CNRG re-
presentations, as boundary representations are derived from CSG trees.

The scheme proposed in [34] extends CSG in several ways:

1. It uses standard (non-regularized) Boolean operations and topological operations—boundary, closure
and interior. The regularized Boolean operations can be implemented in this scheme as three-operator
sequences: standard Boolean, followed by interior and closure.

2. It admits as primitives non-solid objects such as points, curves, or surfaces, and higher-dimensional
objects.

3. It introduces a new operator, called aggregation, which constructs structured objects composed of
several regions. The aggregation operator is a formally-defined and more sophisticated version of the
“assembly” operator provided by modelers such as PADL-2. Structured objects are not sets. They
are collections of sets, much like the cell complexes of algebraic topology [29]. Structured objects,
also called CNRG objects, or simply objects, also have underlying sets, as cell complexes do. The
underlying set of a CNRG object is the union of all the regions of the object, and therefore it is a
set with no structure or “internal boundaries”.

4. It defines Boolean and topological operations on structured objects.
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6.1 Semantics of CNRG operators

A CNRG object is a set of pairwise disjoint possibly non-regular or disconnected sets, called regions.

The set, pA, of a CNRG object, A, is the union of the sets of its regions.

A CNRG tree is a rooted directed acyclic graph that represents a CNRG object. Leaves of the tree are
CNRG primitives, which may be composed of more than one region. For simplicity, we assume that each
primitive is given in its absolute position, although in practice, rigid body transformation nodes may be
used. Internal nodes represent intermediate CNRG objects obtained by applying Boolean, topological,
simplification, or filtering operators to the CNRG objects represented by their child-nodes.

To simplify the following discussion, we use “|” to denote a “gluing” or aggregation binary operator that
takes two disjoint regions, aggregates of regions (all of which are pairwise disjoint), or disjoint CNRG
objects and produces a CNRG object that aggregates all the regions. Note that expressions involving only
aggregate operators are order-independent.

An uppercase letter denotes a CNRG object, and each of the object's regions is denoted by the same letter
with a subscript. For example, A1 and A2 are two regions of the same CNRG object, A. If A is composed
of only these two regions, we write, A= {A 1|A2}. By definition, Ai and Aj are disjoint for i≠ j. A single-
region object, A, is considered distinct from its region A1. We write A= {A 1}. Note that A1 = pA for single
region objects.

In the following, we assume that S, A, B, C and D are CNRG objects. Furthermore, we often use C or
S to denote the objects produced by applying to A (and to B) a Boolean or topological CNRG operator.

A and B are disjoint, if and only if the intersection of their sets, pA and pB, is empty.

Given two regions, Ai and Bj, Ai Bj denotes their intersection and Ai − Bj their difference in the standard
set-theoretical sense. Note that Ai Bj and Ai − Bj are single regions that may be empty, disconnected,
dimensionally inhomogeneous, and not closed.

A region is said to be contained in an object if it is contained in the set of the object. It need not corre-
spond to the union of any subset of the object's regions.

Given n disjoint sets, Ai, the aggregation operation, denoted “|”, creates the corresponding CNRG object:
A = {A 1 

 
A2 . . .

 
An}.

The simplification, sA, of A is a CNRG object with a single region: the set pA. Thus, sA= {pA}.

The complement, cA, of A is an object composed of a single region that is the set complement of pA.
Hence, cA = {pA}.

The union, A + B, is an aggregate of regions of the following three types: Ai Bj, Ai − pB, and
Bj − pA, for all combinations of regions, Ai, of A and regions, Bj, of B. Potentially each region of A is
split into two sets: the part in B and the part outside of B. The second set is a single region. The first
set may be decomposed according to the decomposition of B into regions. Union produces a subdivision
of (pA)  (pB) that is compatible with the decomposition of A and B into regions. We call it “union”
because the set p(A + B) equals the set theoretic union, pA pB.

The intersection, A∗ B, of A and B is the aggregate of all regions of the type Ai Bj. A region, Ai, of
A is truncated to Ai pB, and is subdivided according to the subdivision of B into regions. Consequently,
p(A∗ B) = (pA)  (pB), which justifies the name for this operator.

The difference, A\B, is the aggregate of all regions of the type Ai − pB. Clearly, p(A\B) = (pA) − (pB).
It follows from the definition of union, intersection, and difference that
A + B = { (A\B) (A∗ B) (B\A)}.

The topological interior,  iA, of A in Rn is the aggregate of regions, Ai interior(pA), that are the inter-
section of the regions of A with the topological interior of A in Rn. Note that, although iA is always
full-dimensional, regions of iA need not be full-dimensional. Thus the interior operator returns a subset
of the original object and preserves its internal decomposition into regions. The set, piA, of the interior
of A equals the topological interior of pA.
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The closure, kA, of A, is the aggregate composed of all the regions of A plus a single new region defined
as the difference between the topological closure of pA and pA itself. Thus, we can write:
k{A 1, ..., An}  = {A 1, ..., An, | (closure(pA) − pA)}, and pkA equals the topological closure of pA.

The topological boundary, ∂A, of A is defined as:∂A = kA\iA. The boundary operator does not neces-
sarily return a single-region object. Note that p(∂A) equals the topological boundary of pA.

The regularized version, rA, of A is defined as kiA. The set, prA, spanned by rA corresponds to a reg-
ularized solid as defined in [27] and equals rpA. Note that regularization does not imply simplification
(i.e., a regularized object may be composed of many non-regularized regions). However, taking the
boundary, C, of a regularized object, A, will produce a lower-dimensional object whose set, pC, is the
topological boundary of the set of the regularized object, prA.

6.2 Evaluation
CNRG graphs may be evaluated directly or converted into an expanded SGC form, where SGC cells are
grouped to form sets that represent CNRG regions.

Point inclusion test for a particular CNRG region may be carried out using an extension of the divide-
and-conquer techniques popular with CSG trees (see [34] for details). On the other hand, it may be ad-
vantageous to compute and store the SGC representation of the non-manifold structure defined by a CNRG
expression. The computation may be simply carried out as an incremental (bottom-up) execution of the
CNRG operations.

Each one of these operations may be constructed from combinations of the primitive SGC operations:

• Subdivision, which takes two SGCs and adds to the boundary of each cell of each SGC its lower-
dimensional intersections with cells of the other SGC. This addition may result in splitting the cell
into separate connected components.

• Selection, which activates or deactivates cells based logical predicated involving topological, ge-
ometric, connectivity filters and inclusion in specific regions, and which also assigns cells to the re-
gions of the resulting SGC.

• Simplification, which simplifies the representation of each region by deleting or merging its cells.

The algorithms for these operations have been described in more detail in [33] without limitations to any
particular geometric domain.

7.0 CONCLUSION

These notes present the key concepts for analyzing the topological limitations of geometric representation
schemes independently of the geometric domain. They also overview a number popular data structures for
manifold and non-manifold boundary representations and an extension of CSG representations to non-
regularized sets. They promote CNRG expressions for designing and editing non-manifold geometric
structures and SGC representations and associated algorithms for computing and storing a boundary rep-
resentation of these structures.

8.0 APPENDIX: REVIEW OF KEY TOPOLOGICAL CONCEPTS

This appendix provides an informal summary of the key topological notions relevant to this notes. Formal
and complete definitions may be found in many textbooks on Algebraic and Combinatorial Topology
([18, 25, 35]).
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A topological space is a set W with a choice of a class of subsets of W (its open sets), each of which
is called a neighborhood of its points, such that every point of W is in some neighborhood and that the
intersection of any two neighborhoods of a point contains a neighborhood of that point. The three-
dimensional Euclidean space, in which the models discussed here are constructed, is so “topologized”.

The interior  of a set S is the set of points having a neighborhood in S. (Intuitively the interior of a 3-D
set is is the whole set except for points on its surface, or more precisely on its boundary, defined later.).
A set is open if it contains a neighborhood for each one of its points.

The complement of a set S in R is the set of points of R that are not in S. The closure of S is the com-
plement of the interior of S. (Intuitively, the closure of a set 3-D includes the bounding surfaces, whether
they were part of the original set or not.) S is closed if its complement is open. (Intuitively, a 3-D set is
closed if it includes its surface.)

The boundary of S is the difference between its closure and its interior. (Intuitively, for a 3D set, it is
the surface. However, if S is the result of subtracting the center point from a ball, then the boundary of
S is not only the spherical surface, but also the missing point.)

Two sets are homeomorphic if one is the image of the other through a bijective map that is continuous
and has a continuous inverse. (Intuitively, we can map each point of any one of these two sets into a
unique point of the other set in such a way that they have topologically identical neighborhoods. It does
not necessarily mean that we can deform one object in a continuous manner to produce the other object.)

An open k-ball of radius r around a point s in a k-dimensional Euclidean space is the set of points at a
distance less than r from s, where the distance between two points is defined as the Euclidean norm of
the vector separating the two points.

The dimension of a set is the minimum dimension of the topological spaces containing the set. A set is
full-dimensional (with respect to some topological set) if its interior is not empty. An open set is thus
always full-dimensional. In a topological space of dimension n, a set of dimension k lower than n is
relatively open if it is homeomorphic to an open k-ball as a subset of some topological space of dimension
k. (A relative topology for a set S as a subset of a topological space W may be inherited from W by
considering as the open sets of S as the intersections of S with the open sets of W.) For example, a face
F has no interior in three-space. However, the relative interior  of F, defined as F without its bounding
edges and vertices is relatively open. This “relativity” concept may be also applied to the boundary: the
relative boundary of F is its bounding edges and vertices (i.e., the boundary of F in the relative topology
of the two-manifold, or surface, supporting it).

A set is regular if it is equal to the closure of its interior. A regular set is thus closed and does not contain
boundary elements that do not have in their neighborhood any interior point of the set. A set is s-regular
if it is equal to the interior of its closure. An s-regular set is therefore open and does not contain cracks
or lower-dimensional holes. The complement of an s-regular set is regular. S-regular sets were used in
[3] for modeling assemblies of sets that share faces.

Two sets are disjoint  if their intersection is empty, i.e.: if no point belongs to both sets. A set is con-
nected if any two of its points may be joined by a continuous curve inside the set. A connected set cannot
be divided into two sets, such that the closure of one be disjoint from the other. The (maximally) con-
nected components of a set are uniquely defined. A set is interior-connected if its interior is connected.
Two sets are quasi-disjoint if their intersection is not empty, but is not full-dimensional. (For example,
two cubes touching at a vertex for a connected set that is not interior-connected. The two cubes are
quasi-disjoint.)

A closed k-ball of strictly positive radius r around a point s is the set of points at a distance from s less
or equal to r. A k-sphere is the boundary of the corresponding k-ball. A k-half-ball  is the intersection
of a k-ball with a planar half-space containing s. A half-space is a full-dimensional set of points usually
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assumed to be connected and regular, and defined by an algebraic or analytic inequality. (A strict ine-
quality defines an open half-space.) The set of points where the first coordinate is positive or null is a good
example of closed a planar half-space through the origin.

A k-manifold  is a set of points whose neighborhoods are homeomorphic to an open k-ball. A k-manifold
with boundary is a set of points whose neighborhoods are homeomorphic to an open k-ball or to a
half-k-ball.

An open set is simply connected if it is homeomorphic to an open ball.

A cavity in a bounded (i.e. non infinite) set S is a bounded connected component of the complement of
S. In two dimensions, cavities correspond to the intuitive notion of holes. In three dimensions, the term
hole is ill-defined. We prefer to use the term cavity (such as the one found inside a soccer ball) and the
term handle, which denotes a tunnel or “way through” the set (such as the handle of a tea cup). The
number of holes through a set is important for assessing whether two sets are homeomorphic, but does
not reflect how they are embedded in in three-space.

The zero Betti number, b0, denotes the number of connected components in a set. The first Betti num-
ber, b1, (also called 1-connectivity) specifies the number of handles in a 3D set. It may be defined as the
maximum number of “cuts” through the set that may be made without disconnecting it (i.e. producing two
separate pieces). A cut through a set may be thought of as the surface swept by drawing a closed curve
on the boundary of the solid and contracting it to a single point while maintaining it inside the set. For
example the 1-connectivity is 0 for a ball, and 1 for a solid torus, and 2 for the surface of a torus (the zero
Betti number for a closed surface is twice the zero Betti number for the solid bounded by the surface).
The second Betti number, b2, denotes the number of cavities.

The genus of a surface is the maximum number of closed curves (contained in it) that may be subtracted
from it without disconnecting it. The genus, also denotes the number of handles, H. One closed surface
may be mapped into another by a continuous bijection if they have the same genus. The genus of a closed
surface is half its first Betti number and is also equal to the Betti number of the 3D set bounded by the
surface.

A k-simplex is the convex hull of k+1 linearly independent points in R. An m-face of a k-simplex is the
convex hull spanned by m of the k points of the k-simplex and is an m-simplex. All k-simplices are closed
and homeomorphic to a closed k-ball. The boundary of a k-simplex is homeomorphic to a k-sphere. A
simplicial complex is a finite union of simplices glued together such that for any pair (A,B) of these
simplices: either A and B are disjoint, or A and B share a common m-face, or A is an m-face of B, or
B is an m-face of A (for some m). The polytope of a simplicial complex is the union of the sets of all
of its simplices.

A CW complex is a finite union of mutually disjoint relatively open cells, each being homeomorphic to
an open ball and having for boundary the union of the sets of other cells in the complex. The intersection
of the closure of two cells is either empty or is the union of other cells in the complex. CW complexes
generalize the notion of simplicial complexes because their cells are not restricted to simplices (i.e. points,
line segments, triangles, and tetrahedra), but may include relatively open sets of arbitrary shape and of
an arbitrary finite number of bounding simplices (k-faces), provided that the 2-D cells have no holes and
that the 3-D cells have no handles.

Two distinct k-cells of a (simplicial, CW, or geometric) complex are adjacent if they share one or more
bounding cells. A (k+1)-cell c is incident on a k-cell b if b is a bounding cell of c.

For a two-dimensional two-manifold closed surface without boundary made of F faces, E edges, and V
vertices, the Euler characteristic (or Euler number) is equal to V− E + F.
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For a 3-D manifold CW complex (a set bounded by a two-manifold surface) made of R 3-D cells, F faces,
E edges, V vertices, the Euler characteristic is a topological invariant independent of the subdivision
subdivision and is equal to V− E + F − R. The Euler equation states that the Euler characteristic is equal
to b0 − b1 + b2. Since b0 + b2, the number of connected components plus the number of cavities is the
number of shells, S, in the surface bounding the 3D set, we have for a 3D set:

V − E + F − R = S − H,

where H is the number of handles through the entire 3-D set.

The Euler characteristic of a surface in 3-D is twice the Euler characteristic of the solid bounded by the
surface. Since b0, the number of shells is equal to the number of cavities, b2, and since the maximum
number of non-separating cuts in the surface is twice the number of handles (b1 = 2H), the Euler equation
for a surface is: 

V − E + F = 2(S − H).

Since V, E, F, R are readily available and S may be easily computed by constructing connected compo-
nents, the above formulae yield a practical means for computing H! The formulae are restricted to mani-
fold sets, although they can be extended to non-manifold CW complexes by incorporating the counts of
various on-manifold situations, such as the additional cones of faces incident upon a vertex.

We can verify the Euler equation for a solid torus represented as a CW complex. We need to introduce
a vertex and two curves that will split the surface of the torus into a single face whose relative interior
is homeomorphic to an open disk (2-D ball). Furthermore, we need to introduce a cut-face through the
interior of the torus, so that the 3-D interior be homeomorphic to an open ball. The Euler equation for the
resulting complex has: V= 1, E= 2, F= 2, e= 0, R= 1, f = 0, S= 1, H= 1.

The popular geometric primitives, such as cylinders or cones, cannot be represented directly as simplicial
complexes nor even as CW complexes if their faces, edges, and vertices are not simply connected. Arti-
ficial bridge-edges and cut-faces may have to be introduced. Geometric Complexes [33] generalize the
concept of CW complexes allowing cells to be open sets of arbitrary genus (rather than being restricted
to be homeomorphic to open balls). For example, a torus may be represented as a geometric complex by
only two cells: its 3-D interior and its 2-D boundary.

Simplicial complexes, CW complexes, and Geometric Complexes are closed, i.e.: they contain the
boundaries of all of their cells. A Selective Geometric Complex (also called SGC) developed in [33]
further extends the notion of a geometric complex by associating with each cell an attribute stating
whether the cell is active (i.e. contributes to the final set) or not. For example, an open sphere without
its center point may be modeled by an SGC with three cells: the 3-D interior without the point, the 2-D
bounding sphere, and the central vertex. Only the interior is active.
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Specification, representation, and 
construction of non-manifold 

geometric structures

Jarek Rossignac
IBM Research

Context  

 INPUT
Sample surface points
Space meshes (FEM, voxels)
Slices, ray-reps
CAD construction steps
Procedural models

REPRESENTATION
Geometric primitives (surfaces, curves, points)
Topological relations (adjacency, boundary of)
Ordering (next vertex, edge, face,  branch)
Pointsets and structures (non-manifold, features)

Content   

Linear decomposition
Hierarchical specification
Constructive Non-Regular Geometry
Boundary representations
Selective Geometric Complexes
SGC operations
Curved geometry

Lines decompose space into simplices

A

B C

D
v=A   B

E

F

e=connected 
segment of 
subdivision of 
A by other lines

f=connected
subset of 
the rest

How to identify a set of simplices?



Half-spaces Operators

cH

bH=line

iH

H = iH   bH

   = union
   = intersection
   = difference
b = boundary
i  = interior
c = complement
k = closure
0 = zero cells
1 = one cells...

Two operators suffice,    and c, but all are convenient

Use Boolean expressions Convention

vertex in S

edge in S

face in S

vertex NOT in S

edge NOT in S

face NOT in S

Simplices NOT in S may be omitted

Topological set operators

interior

boundary

closure

interior

bC   bD 

A

B
C

bC   iD   iA

D

Any collection of simplices

bA   bC

iA   iC   iD

may be expressed using half-space combinations,
which should be computed from higher-level input



Hierarchical construction graph

A

C

B

A

B

C bi

Internal structure

A
C

B

A+B+C

"+" does union of
sets but preserves
internal structures

Here 5 regions:
B  -  A  -  C
A     B  -  C
A  -  B  -  C
A     C  -  B
C  -  A  -  B

out of the 7 possible

Regions are broken into simplices

Boolean CNRG operators

B
C

S=      (B+C)

S1

S2

S3

+ yields 3 regions

Boolean CNRG operators

A

B
C

S=(A&(B+C))
S1

S2S3

& trims down these 3 regions to the interior of A



Boolean CNRG operators

A

B
D

C

S=(A&(B+C))+D
S11

S21S31

S?2
S13

S33
S23

S?2 S?2 S?2
S?2

+ splits each one of the 3 regions: iD and cD
+ adds a 7th region: S?2 (the rest of D)

S23
S?2

D - (A&(B+C))
don't care for

A I = iA

B = bA K = kA

Topological CNRG operators

A1

B11

I1

K11

A2 I2

B12 K12
B2? K2?

2 regions 2 regions (trimmed)

2 regions (trimmed)
+ new 3rd region

2 original regions
+ new 3rd region

Constructive Non-Regular Geometry

Aggregation
Simplification
Complement
Interior
Exterior
Boundary
Closure
Intersection
Difference
Union
k-cells

Operators on aggregates of disjoint regions:

combines disjoint objects
returns single region
set complement
restricts each region 
interior of complement
restricted region + one
old regions + one
pairwise combinations
restricted regions
3 combinations
only cells of dimension k

Features of CNRG objects

A A A

B B B
C C C

S = (A - B) - C

S33 = A&B&C
Extended  signature semantics: treat - as a +

The feature of interest here is in cS:



CNRG summary

Compact specification
Hierarchical (bottom-up) design
Full topological coverage
Preserves internal structure
Signature identifies each region
Regions have arbitrary topology
Region existence and connectivity can 
only be assessed through evaluation

What is a valid polygon?

Wrong question! First, ask: "What is a polygon?"
Then select a representation scheme.

?

A definition

connected
bounded
subset of the plane
equal to the interior of its closure
having as boundary a finite union
of pairwise disjoint cells:

crossings
vertices
edges

A polygon is a:
BRep of a polygon

 loop = max connected subsets of Bdry

Geometry defines:
crossings
vertices
edges
loops

orientation = first left

crossing = non manifold

vertex = non smooth

edge = connected



Possible representation of a polygon

List of points (coordinates)
List of loops (external + holes)

Each loop = cyclic list of point uses 

This representation is completely defined for a 
given geometry (provided that we choose an 
ordering scheme for points and uses).

Representation schemes

constructive
simplicial

discretized boundary

A B
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Tricky

polygon 2-cell

Topological generalization of a polygon



Generalized 2-cell
connected
bounded
relatively open
subset of manifold
bounded by a finite union 
of pairwise disjoint 1-cells and 0-cells

reference to supporting surface
list of bounding vertices
list of bounding edges (with nbhd)

Representation:

Selective Geometric Complex

Object = list of pairwise disjoint cells
Cell = connected, relatively open,

  bounded, subset of a manifold
Boundary of each cell = union of 

other cells in the object

Selection of  "active" cells

Features = different selections

Internal structure in SGCs

Add the 2 vertices and the edge to the 
boundary of cell A

A

This removes them from cell A, but they may still 
be active in the object or in a feature

A

Splitting an SGC cell

Adding the new edge splits the face

A

A new 2-cell (B) is created. 
Both A and B may retain the attributes of A.

BA



Representation of SGCs

F2F1

E1 E2

V1 V2

F2

F1

E1
E2

V1

V2

E3

E4

E3E4

V3

V3 ...

...

...

...

V4

V4

Orientation and neighborhood side

a
b

c

F

F is on the right of a
F is on both sides of b
F is on the left of c

F

a b c

R B L

Orientation and neighborhood side

a
b

c

F

F is on the right of a
F is on both sides of b
F is on the right of c

F

a b c

R B R

Neighborhoods in SGCs

F2F1

E1 E2

F2

F1

E1

E2

BL
R



Ordering incidence relations

edges around verticesfaces/branches around edges

nesting loops and shells vertex cones

1
2

3
4

NAILs: Order in SGCs

e
fv

e' = e.NAIL(v,f)

e'

f'

f' = f.NAIL(e,r)

r
(Next cell Around cell In cell List)

Store NAIL table with each cell of SGC

Putting it all together
Users manipulate CNRG objects

primitives
operators
regions signatures
features

CNRG regions and features are 
represented as lists of SGC cells

An SGC model is derived from CNRG
SGC cells are (unions of) connected components 
of simplices induced by primitives' cells

CNRG-to-SGC conversion

subdivision

selection
(A+B)-C

simplification

(optional)



Subdivision

Insert lower-dimensional cells of other
primitives into the boundary of each cell

A B

Subdivision

Add vertices of A to boundaries of cells 
of B and vice versa.

A B

Subdivision

Subdivide edges of both by inserting
their pairwise intersections

A B

Subdivision

Insert edges of A in the boundaries 
of the faces of B and vise versa

A\B B\A



Selection

Combines sells from both and select
which cells should be ACTIVE

A-B

Could apply any filter 
using CNRG operators 
and features

A different selection

Combines sells from both and select
which cells should be ACTIVE

A+B

Simplification

Merge cells without changing the
pointset nor the structure

s(A+B)

Vertex required to preserve
the validity of SGC models

Properties of simplification

sA=ssA

Produces a unique rep for a pointset

One pass algorithm:
For each cell by decreasing dimension

Delete if non-active and not needed
Absorb inside a single higher dim cell
Join with other cells of same dim

Preserves desired structure



Issues for curved geometries
Cost and reliability of geometric intersections
Geometric singularities (cusps)
Identification of branches and components
Multiple representations (trimmed patch)
Computing order and inclusion

Software architecture issues
Geometry independent API
Interface between geometry and topology

Intersection returns a complex
Bidirectional links

Robustness (floating point errors)
Persistent references to user selected cells
Merge objects from different modellers
Capture and resolve constraints
Editing the structure or the creation steps

CONCLUSIONS

Design/edit in CNRG terms
Interrogate / mark using features
Algorithmic conversion to SGCs
Efficient editing of feature selection
No topological restrictions 
No geometric or dimension restrictions
Independent of  geometric reps
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Abstract. Geometric modeling often refers to forming and deforming geometric shape. This paper considers

the use of simplicial complexes as a general representation of shapes supporting algorithmic solutions to a variety

of geometric modeling problems. At this moment, rather little of the potential of simplicial complexes has been

exploited algorithmically, and we concentrate on mathematical results that seem most promising to lead to novel

algorithmic methods and ideas.
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1 Introduction and Motivation

Unstructured grids in �nite element analysis, triangulations in computational geometry, and simplicial complexes

in combinatorial topology are one and the same concept. We study this concept from the point of view of using

it as a general representation of geometry in solid modeling. The terminology in topology is most advanced and

standardized, and it is the one we will mostly use.

Grid generation. In �nite element analysis, grids are used to decompose shapes or work-pieces to facilitate the

numerical analysis through approximation. The classical approach uses hexahedral elements. Each element has the

structure of a cube, with 6 facets, 12 edges, and 8 vertices. These elements are arranged the same way as the cubes

in a regular packing, 4 elements around an edge and 8 around a vertex. Indeed, a 3-dimensional array is commonly

used as a data structure representing this so-called structured grid. This grid implies a homeomorphism between

the decomposed shape and a �nite portion of a 3-dimensional array. For complicated shapes the construction and

maintenance of such a homeomorphism becomes exceedingly di�cult [2].

An alternative approach to decomposing shapes uses tetrahedral elements, and the resulting grids are usually

referred to a unstructured because the number of elements is no longer the same around every interior edge and

vertex. In other words, there is no static logical address space that represents the adjacencies between the elements.

As a consequence, such a decomposition does not imply any homeomorphism between two possibly very di�erent

shapes, and in this respect simpli�es the problem. The new challenge is to e�ciently handle the less intuitive and

less regular structure of a tetrahedral grid. We argue the latter is a challenge that can be met.

Protein structures. Fairly recently, simplicial complexes have been used in the study of proteins and other

molecules [5]. The connection between proteins and complexes is less direct than that between shapes and approx-

imating grids. The protein is modeled as a union of balls, one ball per atom, and the complex used is dual to this

union [4]. The vertices of the complex are the locations of the atoms in space. Edges, triangles, and tetrahedra are

selected on the basis of proximity information. The selection criteria guarantee the dual complex is a subcomplex

of the Delaunay simplicial complex of the points, see below. This particular complex plays an important role in

our general approach to modeling shapes. It forms a bridge between the globally uniform view of the world using

geometry and Euclidean distance and the local view based on decompositions and local neighborhoods.

Dynamical systems. Mechanical systems with several degrees of freedom are commonly mapped to manifolds

representing all possible states of the system [1]. Each point of the manifold corresponds to a state. Dynamic

change corresponds to a curved traced out on the manifold, which typically lives in a space whose dimension is

low but exceeds 3. The intrinsic dimension of the manifold is often much less than that of the embedding space.

Such manifolds can be represented by simplicial complexes, which are not restricted to any particular number of

dimensions. Simplicial complexes can even model shapes whose intrinsic dimension varies locally.

A particular 3-dimensional modeling problem related to this discussion of dimension is the reconstruction of

surfaces. Here the goal is to build a 2-dimensional shape in a 3-dimensional space. With simplicial complexes,

there is no principle di�erence between constructing 3-dimensional grids and 2-dimensional surfaces. In the former

problem tetrahedra are �t along triangles, and in the latter triangles are �t along edges. The dimension independent

aspect of simplicial complexes makes it possible to generate grids and surfaces with the same tool and format thus

bridging the traditional separation between these two problems [8, 14].

Outline. The goal of this paper is to demonstrate the versatility of simplicial complexes as a general representation

of geometry. At this moment, limitations of this approach are not well understood and additional research is required

to apply this representation to new and old geometric modeling problems.
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2 Geometry: Concrete and Abstract

The technical terminology related to decompositions of space and pieces of space is most developed in topology,

and in particular in the subarea concerned with combinatorial and algebraic structures within topology [10, 13].

We introduce a few concepts from combinatorial topology relevant to the discussions in this paper. We make an

e�ort to provide intuitive explanations whenever appropriate and possible. The discussion begins with simplices

and complexes made up of simplices. Both concepts are geometric in nature, and it is useful to develop abstract

counterparts in the form of sets and set systems. The connection between the geometric and the abstract concepts

is provided by geometric realizations that map abstract elements to points and sets of elements to simplices.

Simplices. A 2-dimensional simplex is a triangle; it is the simplest 2-dimensional geometric object. A 3-dimensional

simplex is a tetrahedron. The author likes to claim the tetrahedron is the simplest 3-dimensional geometric object.

It is curious though that a typical high-school curriculum teaches everything about the triangle, and a lot of things

about the cube, but little if anything about the tetrahedron. Indeed, mathematical encyclopedia favor a complete

treatment of the cube over the discussion of tetrahedra [9]. This is certainly an erroneous path of history.

In general, a k-dimensional simplex, or k-simplex, is the convex hull of k + 1 points in general position. A

k-simplex is inherently k-dimensional and requires at least k dimensions to be embedded. We will primarily be

concerned with 3-dimensional real space, R3, though we would like to remind the reader that there are geometric

modeling problems beyond 3 dimensions. In R3 we have four types of proper simplices: vertices or 0-simplices, edges

or 1-simplices, triangles or 2-simplices, and tetrahedra or 3-simplices. For convenience, the empty set is referred to

as a (�1)-simplex. The dimension of a simplex � is denoted by dim�; it is one less than the number of vertices.

A subset of the vertices spans a lower-dimensional simplex, � , called a face of �. For example, a tetrahedron � is

spanned by 4 vertices, there are four subsets of size 3 and thus 4 triangle faces. A tetrahedron has also 6 edges and

4 vertices as faces. We consider � itself and ; as improper faces of �.

Simplicial complexes. A collection of simplices forms a proper decomposition of a geometric object or shape if

the simplices have no improver overlap. This means if two simplices overlap then they overlap in a face of both.

For example, two triangles may share an edge, or a vertex, or they are disjoint. In the latter case we say they share

the empty set, which is considered a face of both and also of all other simplices. Technically, such a collection is

referred to as a simplicial complex, K. The formal requirements are (i) if � 2 K and � is a face of � then � 2 K, and

(ii) if �1; �2 2 K then �1 \ �2 is a face of both. By condition (i), �1 \ �2 is also a simplex in K. A subcomplex is a

simplicial complex L � K. The underlying space of K is
S
K =
S
�2K �. Note that

S
K is a subset of space and thus

a geometric object, while K is a collection of simplices, and thus a combinatorial object. Loose language ignoring

the di�erence between a simplicial complex and its underlying space is however often convenient and frequently

used.

Abstract view. There are several reasons why one would want to develop a view that describes simplicial com-

plexes in abstract terms. One is the computational representation of simplices and complexes, which is necessarily

symbolic. For example, it is natural to represent a tetrahedron as a set of 4 vertices, or maybe 4 vertex indices.

The fact that the tetrahedron is really the convex hull of the 4 points is implicitly understood. This leads to the

notions of abstract simplices and abstract simplicial complexes. Let V be a �nite set of elements, called vertices.

The power set or collection of all subsets of V is denoted by 2V . A subset � � V is an abstract simplex, and its

dimension is dim� = card� � 1. A collection A � 2V of abstract simplices is an abstract simplicial complex if

� 2 A and � � � implies � 2 A. The vertex set of A is vertA =
S
�2A �.

Abstract simplicial complexes can be constructed directly from �nite sets. A particularly important such

construction is called the nerve of the set, A. It consists of all subcollections of sets in A with non-empty common

intersection. Formally,

nerveA = fU � A j

\

u2U

u 6= ;g:

nerveA is an abstract simplicial complex. To see this note that the sets in U 2 nerveA have a non-empty intersec-

tion, by de�nition. The intersection of the sets in T � U contains the intersection of the sets in U and is thus also
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non-empty. It follows that T 2 nerveA, which implies nerveA is indeed an abstract simplicial complex. For example,

ifA consists of 3 overlapping disks, b1; b2; b3, then nerveA = f;; fb1g; fb2g; fb3g; fb1; b2g; fb2; b3g; fb3; b1g; fb1; b2; b3gg.

This is an abstract representation of a triangle, fb1; b2; b3g, together with all its faces.

Geometric realization. It is easy to go from a simplicial complex to its abstract counterpart: just replace each

simplex by its set of vertices. The other direction is more cumbersome and requires mapping abstract elements to

points in some space. Once such a mapping is speci�ed, the other simplices are given as convex hulls of the relevant

points. Formally, a map " : vertA ! R
d de�nes a simplicial complex if

conv "(�1) \ conv "(�2) = conv "(�1 \ �2)

for all abstract simplices �1; �2 2 A. Given an abstract simplicial complex, a natural question is how many

dimensions are needed for a geometric realization. A special case of this problem is to decide whether or not a

graph, which is an abstract simplicial complex consisting of vertices and edges, can be drawn in the plane. A

realization of a graph in R3 is always possible simply by placing the vertices so no 4 are coplanar. This way no two

edges can cross. In general, the dimension of the space must be at least the largest dimension of any simplex, k,

and a general position argument can be used to show that 2k + 1 dimensions are always su�cient.

There is little incentive in topology to develop methods that use as few dimensions as possible. Still, this

question is essential when computing is involved. The complexity of algorithms typically explodes with increasing

dimension. General methods that limit the number of dimensions required for geometric realizations are essential

in any e�ort to make topological ideas and results useful in geometric modeling.

3 Grids from Proximity

We use proximity information to obtain geometric realizations of topological concepts. The emphasis is on dis-

creteness and on limiting the number of dimensions. Simplicial complexes seem like the most obvious candidate

for discrete encodings of continuous topological information. To limit the number of dimensions we use Voronoi

diagrams [17] and Delaunay simplicial complexes [3]. They are based on point set data and proximity in terms

of Euclidean distance. After introducing both concepts, we consider a general method for triangulating possibly

complicated shapes.

Voronoi cells. Let S � R
3 be a �nite set of points. We use Euclidean distance to measure proximity. For points

x = (�1; �2; �3) 2 R
3 and p = (�1; �2; �3) 2 S,

jxpj = (

3X

i=1

(�i � �i)
2)

1

2

is the distance between x and p. For any x 2 R3, we are interested in the point in S nearest to x, or all nearest

points in case of a tie. If the points of S are in general position there are at most 4 points of S equidistant from

x. Indeed, for any �nite set there is an arbitrarily small perturbation so this is the case. Such perturbations can

be e�ciently simulated, as demonstrated in [6, 18]. For a point p 2 S, de�ne its Voronoi cell as the set of points

x 2 R3 so p is nearest to x, that is,

Vp = fx 2 R3 j jxpj � jxqj; q 2 Sg:

The collection of Voronoi cells is V = VS = fVp j p 2 Sg. Clearly, the cells in VS cover the entire space. Assuming

general position, at most 4 Voronoi cells share a commonpoint, namely the point x equidistant from all 4 generators.

Two Voronoi cells are either disjoint or they intersect along a 2-dimensional face common to both cells. Similarly,

the intersection of three Voronoi cells is either empty or a common edge. The intersection of four Voronoi cells

is either empty or a common vertex. Figure 3.1 shows the the Voronoi cells of �nitely many points in the plane.
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Figure 3.1: The Voronoi cells of a �nite set in the plane intersect in pairs and triplets. No higher order intersections
occur if general position is assumed.

Delaunay simplicial complexes. Consider the points generating the Voronoi cells, and connect 2 such points

by an edge if their cells intersect. Recall that general position implies they intersect along a common 2-dimensional

face. Similarly, connect 3 points by a triangle if their cells meet along a common edge, and connect 4 points

by a tetrahedron if their cells meet in a common point. The result is a collection of simplices known as the

Delaunay simplicial complex or Delaunay triangulation, D = DS , of S, see �gure 3.2. A more formal de�nition can

be given using nerves and geometric realizations. The nerve of the set of Voronoi cells, nerve V , contains every

subcollection of Voronoi cells with non-empty common intersection. Assuming general position, these subcollections

will be of size 1, 2, 3, and 4. nerve V is an abstract simplicial complex. A geometric realization is obtained by

mapping each Voronoi cell, Vp, to p 2 S, see again �gure 3.2. This is the Delaunay simplicial complex of S.
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Figure 3.2: The Delaunay simplicial complex of the points generating the Voronoi cells in �gure 3.1. The triangles are
not shaded although they are genuine elements of the complex.

It is not immediately obvious that the thus realized nerve of V is indeed free of improper intersections and

forms a simplicial complex in R3. To see this is so, one can use the fact that a simplex belongs to D i� there is

a sphere through its vertices so all other points of S lie outside the sphere. There is a long list of nice properties

satis�ed by Delaunay simplicial complexes, which is the reason they are popular in generating unstructured grids,

see e.g. [16].

Restricted cells and complexes. The Delaunay simplicial complex decomposes the entire convex hull of S into

tetrahedra. In most applications it is desirable to decompose only a subset X � R
3, or to �nd a simplicial complex

approximating X. We propose the following mechanism to construct such a simplicial complex.

Let S � R
3 be a �nite point set with Voronoi cells V = VS . S will be the vertex set of the simplicial complex

for X, so it makes sense S be a subset of X, but this is not necessary for the construction. Each Voronoi cell, Vp,

meets X in a set Vp;X = Vp \X, called the restricted Voronoi cell of p and X. The same way unrestricted Voronoi

cells de�ne the Delaunay simplicial complex of S, we can use the restricted Voronoi cells to de�ne the restricted

Delaunay simplicial complex, DX = DX;S , of S and X. Let VX = fVp;X j p 2 Sg and consider the nerve,

nerve VX = fU � VX j

\

Vp;X2U

Vp;X 6= ;g:

Again we use the natural geometric realization, which maps a cell Vp;X to the generator, p 2 S. The result is DX ,

see �gure 3.3.

Homeomorphism theorem. The question arises how well the restricted Delaunay simplicial complex represents

or approximates the shape X. Somewhat surprisingly, it is possible to specify local conditions on how the Voronoi
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(a) (b)

X1

X3

X2

Figure 3.3: By restricting the Voronoi cells to a subset of space, we can specify a subcomplex of the Delaunay simplicial
complex suitable to represent the subset. In (a), the Voronoi cells of 10 points decompose 3 shapes, X1; X2; X3. In (b),
the corresponding restricted Delaunay simplicial complexes consist of an edge, two triangles sharing an edge, and a cycle
of 3 edges, respectively.

cells intersect X that imply that X and
S
DX are homeomorphic. This means there is a bijective map ' : X !S

DX so ' and '�1 are both continuous. The existence of a homeomorphism is about the strongest topological

requirement between topological spaces such as X and
S
DX . For example, it implies X and

S
DX are connected

the same way (same number and structure of components, tunnels, and voids) and they are locally of the same

dimension.

We state the condition under which X and
S
DX are homeomorphic only for manifolds X. The extension

to more general spaces can be found in [7]. X is a k-manifold if the neighborhood of every point x 2 X is

homeomorphic to an open k-dimensional ball. In case X has boundary, the neighborhood of every point y 2 bdX

is homeomorphic to the intersection of an open k-dimensional ball with a closed k-dimensional half-space whose

bounding hyperplane passes through the center of the ball. Examples of 2-manifolds are the torus and the sphere,

and if open patches with disjoint closures are removed we have 2-manifolds with boundary. An example of a shape

X � R
3 that is not a manifold consists of an edge common to 3 or more triangles. This shape \branches" at the

edge, and manifolds are shapes without branching.

We state the condition assuming general position of various kinds. There are arbitrarily small perturbations

of S satisfying these assumptions. Intuitively, X and
S
DX are homeomorphic if all Voronoi cells and common

intersections of Voronoi cells meet X and bdX in closed balls. Formally, if all sets of the form
\

p2T

Vp \X and
\

p2T

Vp \ bdX;

T � S, are closed balls of the appropriate dimension then X and
S
DX are homeomorphic. See �gure 3.3 for

examples of homeomorphic and non-homeomorphic restricted Delaunay simplicial complexes.

Alpha complexes. In cases where a shape is speci�ed only by a �nite set of points, S, sampled from an object,

we can get good triangulations by growing a ball around each point. In other words,

X� =
[

p2S

b(p; �);
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plays the role of the shape. � � 0 is a parameter and b(p; �) is the closed ball with center p and radius �.

The Delaunay simplicial complex restricted by X� is also known as the �-complex of S, K�, see �gure 3.4.

Figure 3.4: The Voronoi cells decompose the union of disks into convex cells. The nerve of the collection of such cells,
naturally realized by mapping cells to their generators, is the �-complex. The shaded area in this picture is the underlying
space of the �-complex.

Each simplex in the �-complex is also in the Delaunay simplicial complex. In other words, K� is a subcomplex

of D. More generally, K�1 � K�2 if �1 � �2. By � growing continuously from 0 to +1, we obtain a nested

sequence of complexes, the last one being the Delaunay simplicial complex itself.

An important application of �-complexes is the study of proteins as 3-dimensional structures. Each atom is

modeled as a sphere or ball [11, 15]. The size of the sphere depends on the question of interest. For example, the

interaction between the protein and a solvent, modeled as a single sphere, can be studied by in
ating the atom

spheres by the radius of the solvent.

Homotopy equivalence. The decomposition of X� by Voronoi cells does not always satisfy the closed ball

property su�cient for the existence of a homeomorphism. However, all sets of the form

\

p2T

Vp \X�;

T � S, are convex. The nerve theorem of algebraic topology [12] implies that X� and
S
K� are homotopy

equivalent. This is weaker than being homeomorphic. Intuitively, it means X� and
S
K� are connected the same

way, but locally their intrinsic dimension may not agree. For example, a solid torus is homotopy equivalent to a

circle in space. It can be shrunk continuously to the circle, but by doing so it loses its 3-dimensionality and is

squeezed to a single dimension.
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4 Conclusions

The purpose of this paper is to argue and partially demonstrate that simplicial complexes can serve as a general

geometric representation for a broad spectrum of modeling problems. This approach has tradition in combinatorial

topology, computational geometry, and grid generation. Indeed, the terms `triangulation' and `unstructured grid'

are often used as synonyms to `simplicial complex'. The study of simplicial complexes for modeling problems

is relatively recent, which is one of the reasons why this paper concentrates on the geometric and topological

fundamentals.
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1 INTRODUCTION

Our approach to the design and analysis of geometric algorithms for operations on polynomial (algebraic) curves

and surfaces is to take the view of abstract data types, that is, a data representation coupled together with

the operations on them [7, 8]. In this framework, the choice of which representation of the polynomial curve or

surface patch to use is determined by the desired optimality of the geometric algorithms for the operations.

Polynomial curves and surfaces can be represented in an implicit form, and sometimes also in a parametric

form. The implicit form of a real polynomial surface in IR3 is

f(x; y; z) = 0 (1)

where f is a polynomial with coe�cients in IR. The parametric form, when it exists, for a real polynomial surface

in IR3 is

x =
f1(s; t)

f4(s; t)

y =
f2(s; t)

f4(s; t)

z =
f3(s; t)

f4(s; t)
(2)

where the fi are again polynomials with coe�cients in IR. The above implicit form describes a two dimensional

real algebraic variety (a surface) with a single polynomial equation in IR3. The parametric form also describes a

real two dimensional algebraic variety (a surface), however with a set of three independent polynomial equations

in IR5, with coordinate variables x; y; z; s; t. Alternatively, the parametric form of a real surface may also

be interpreted as a rational mapping from IR2 to IR3. We can thus compare the implicit and parametric

representations of polynomial surfaces by considering the the parametric form either as amapping or alternatively,
an algebraic variety.

In these notes, we consider speci�c geometric operations of display/�nite element mesh generation and data

�tting, and compare the implicit and parametric polynomial forms for their superiority (or lack thereof) in

optimizing algorithms for operations in these categories.

�Supported in part by NSF grant CCR 92-22467, AFOSR grant F49620-94-1-0080 and ONR grant N00014-94-1-0370
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Section 2 sets the terminology and introduces some well known facts about polynomial curves and surfaces

and their patch representations. Section 3 compares the implicit and parametric surface representations for

graphics display and triangular mesh generation operations. Here the rational mapping gives an advantage to

the parametric form, though the algorithms to solve this problem in this representation are still non-trivial.

Section 4 considers the tradeo� between implicit and parametric surface splines for interactive design and data

�tting operations.

2 PRELIMINARIES

2.1 Mathematical Terminology

In this section we review some basic terminology from algebraic geometry that we shall use in subsequent sections.

These and additional facts can be found for example in [64, 68].

The set of real and complex solutions (or zero set Z(C)) of a collection C of polynomial equations

f1(x1; :::; xd) = 0

...

fm(x1; :::; xd) = 0 (3)

with coe�cients over the reals IR or complexes IC, is referred to as an algebraic set. The algebraic set de�ned

by a single equation (m = 1) is also known as a hypersurface. A algebraic set that cannot be represented as the

union of two other distinct algebraic sets, neither containing the other, is said to be irreducible. An irreducible

algebraic set Z(C) is also known as an algebraic variety V .
A hypersurface in IRd, some d dimensional space, is of dimension d�1. The dimension of an algebraic variety

V is k if its points can be put in (1; 1) rational correspondence with the points of an irreducible hypersurface

in k + 1 dimensional space. In IRd, a variety V1 of dimension k intersects a a variety V2 of dimension h, with

h � d� k, in an algebraic set Z(S) of dimension at least h+ k � d. The resulting intersection is termed proper
if all subvarieties of Z(S) are of the same minimum dimension h + k � n. Otherwise the intersection is termed

excess or improper. Let the algebraic degree of an algebraic variety V be the maximum degree of any de�ning

polynomial. A degree 1 hypersurface is also called a hyperplane while a degree 1 algebraic variety of dimension

k is also called a k-
at. The geometric degree of a variety V of dimension k in some IRd is the maximumnumber

of intersections between V and a (d � k)-
at, counting both real and complex intersections and intersections

at in�nity. Hence the geometric degree of an algebraic hypersurface is the maximum number of intersections

between the hypersurface and a line, counting both real and complex intersections and at in�nity.

The following theorem, perhaps the oldest in algebraic geometry, summarizes the resulting geometric degree

of intersections of varieties of di�erent degrees.

[Bezout] A variety of geometric degree p which properly intersects a variety of geometric degree q does so in an

algebraic set of geometric degree either at most pq or in�nity. 3

The normal or gradient of a hypersurface H : f(x1; :::; xn) = 0 is the vector rf = (fx1 ; fx2 ; : : : ; fxn). A point

p = (a0; a1; : : :an) on a hypersurface is a regular point if the gradient at p is not null; otherwise the point is

singular. A singular point q is of multiplicity e for a hypersurface H of degree d if any line through q meets

H in at most d � e additional points. Similarly a singular point q is of multiplicity e for a variety V in IRn of

dimension k and degree d if any sub-space IRn�k through q meets V in at most d � e additional points. It is

important to note that even if two varieties intersect in a propermanner, their intersection in general may consist

of sub-varieties of various multiplicites. The total degree of the intersection, however is bounded by Bezout's

theorem. Finally, one notes that a hypersurface f(x1; :::; xn) = 0 of degree d has K =
�
n+d
n

�
coe�cients, which

is one more than the number of independent coe�cients. Hypersurfaces f(x1; :::; xn) = 0 of degree d form K � 1

dimensional vector spaces over the �eld of coe�cients of the polynomials.

Finally, two hypersurfaces f(x1; : : : ; xn) = 0 and g(x1; : : : ; xn) = 0 meet with Ck-continuity along a common

subvariety V if and only if there exist functions �(x1; : : : ; xn) and �(x1; : : : ; xn) such that all derivatives upto

order k of �f � �g equals zero at all points along V , see for e.g., [36].
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Figure 1: A Classi�cation of Low Degree Algebraic Curves

2.2 Polynomial Curves and Surfaces

We cast our real implicit and parametric curves and surfaces, in the terminology of the previous subsection.

A real implicit algebraic plane curve f(x; y) = 0 is a hypersurface of dimension 1 in IR2, while a parametric

plane curve [f3(s)x � f1(s) = 0; f3(s)y � f2(s) = 0] is an algebraic variety of dimension 1 in IR3, de�ned

by the two independent algebraic equations in the three variables x; y; s. Similarly, a real implicit algebraic

surface f(x; y; z) = 0 is a hypersurface of dimension 2 in IR3, while a parametric surface [f4(s; t)x � f1(s; t) =

0; f4(s; t)y � f2(s; t) = 0; f4(s; t)z � f3(s; t) = 0] is an algebraic variety of dimension 2 in IR5, de�ned by three

independent algebraic equations in the �ve variables x; y; z; s; t.

A plane parametric curve is a very special algebraic variety of dimension 1 in x; y; s space, since the curve lies

in the 2-dimensional subspace de�ned by x; y and furthermore points on the curve can be put in (1; 1) rational

correspondence with points on the 1-dimensional sub-space de�ned by s. Parametric curves are thus a special

subset of algebraic curves, and are often also called rational algebraic curves. Figure 1 depicts the relationship

between the set of parametric curves and non-parametric curves at various degrees.

Example parametric (rational algebraic) curves are degree two algebraic curves (conics) and degree three

algebraic curves (cubics) with a singular point. The non-singular cubics are not rational and are also known

as elliptic cubics. In general, a necessary and su�cient condition for the rationality of an algebraic curve of

arbitrary degree is given by the Cayley-Riemann criterion: a curve is rational i� g = 0, where g, the genus of the

curve is a measure of the de�ciency of the curve's singularities from its maximumallowable limit [66]. Algorithms

for computing the genus of an algebraic curve and for symbolically deriving the parametric equations of genus 0

curves, are given for example in [1, 2, 3].

Similarly, a parametric surface is a very special algebraic variety of dimension 2 in x; y; z; s; t space, since the

surface lies in the 3-dimensional subspace de�ned by x; y; z and furthermore points on the surface can be put in

(1; 1) rational correspondence with points on the 2-dimensional sub-space de�ned by s; t. Figure 2 depicts the

relationship between parametric and non-parametric surfaces.

Example parametric (rational algebraic) surfaces are degree two algebraic surfaces (quadrics) and most degree

three algebraic surfaces (cubic surfaces). The cylinders of nonsingular cubic curves and the cubic surface cone
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Figure 2: A Classi�cation of Low Degree Algebraic Surfaces

are of not rational. Other examples of rational algebraic surfaces are Steiner surfaces which are degree four

surfaces with a triple point, and Pl�ucker surfaces which are degree four surfaces with a double curve. In general,

a necessary and su�cient condition for the rationality of an algebraic surface of arbitrary degree is given by

Castelnuovo's criterion: Pa = P2 = 0, where Pa is the arithmetic genus and P2 is the second plurigenus [67].

Algorithms for symbolically deriving the parametric equations of degree two and three rational surfaces are given

in [1, 2, 3, 4, 62].

2.3 Degree & Singularities

For implicit algebraic plane curves and surfaces de�ned by polynomials of degree d, the maximum number

of intersections between the curve and a line in the plane or the surface and a line in space, is equal to the

maximum number of roots of a polynomial of degree d. Hence, here the geometric degree is the same as the

algebraic degree which is equal to d. For parametric curves de�ned by polynomials of degree d, the maximum

number of intersections between the curve and a line in the plane is also equal to the maximumnumber of roots

of a polynomial of degree d. Hence here again the geometric degree is the same as the algebraic degree. For

parametric surfaces de�ned by polynomials of degree d the geometric degree can be as large as d2, the square

of the algebraic degree d. This can be seen as follows. Consider the intersection of a generic line in space

[a1x + b1y + c1z � d1 = 0; a2x + b2y + c2z � d2 = 0] with the parametric surface. The intersection yields two

implicit algebraic curves of degree d which intersect in O(d2) points (via Bezout's theorem), corresponding to

the intersection points of the line and the parametric surface.

A parametric curve of algebraic degree d is an algebraic curve of genus 0 and so have
(d�1)(d�2)

2
= O(d2)

singular (double) points. This number is the maximum number of singular points an algebraic curve of degree

d may have. From Bezout's theorem, we realize that the intersection of two implicit surfaces of algebraic degree

d can be a curve of geometric degree O(d2). Furthermore the same theorem implies that the intersection of two

parametric surfaces of algebraic degree d (and geometric degree O(d2)) can be a curve of geometric degree O(d4).

Hence, while the potential singularities of the space curve de�ned by the intersection of two implicit surfaces



de�ned by polynomials of degree d can be as many as O(d4), the potential singularities of the space curve de�ned

by the intersection of two parametric surfaces de�ned by polynomials of degree d can be as many as O(d8).

2.4 Polynomial Patch Representations

The popular polynomial bases amongst interactive geometric designers are the Bernstein-B�ezier and the B-Spline

basis. These bases are de�ned for restricted subdomains of the deining space as opposed to the power basis which

is de�ned for all points of the space. The example formulations given below are de�ned for values of each of the

variables x, y and z in the unit interval [0,1].

Bernstein-B�ezier Basis (BB)

Univariate:

P (x) =

mX
j=0

wjB
m
j (x)

where

Bm
i (x) =

�
m

i

�
xi(1� x)m�i

Bivariate:

(1) Tensor:

P (x; y) =

mX
i=0

nX
j=0

wijB
n
i (x)B

n
j (y)

(2) Barycentric:

P (x; y) =

mX
i=0

m�iX
j=0

wijB
n
ij(x; y)

where

Bm
ij (x; y) =

�
m

ij

�
xiyj (1� x� y)m�i�j

Trivariate:

(1) Tensor:

P (x; y; z) =

mX
i=0

nX
j=0

pX
k=0

wijkB
n
i (x)B

n
j (y)B

n
k (z)

(2) Mixed:

P (x; y; z) =

mX
i=0

m�iX
j=0

pX
k=0

bijkB
n
ij(x; y)B

n
k (z)

(3) Barycentric:

P (x; y; z) =

mX
i=0

m�iX
j=0

m�i�jX
k=0

wijkB
m
ijk(x; y; z)

where

Bm
ijk(x; y; z) =

�
m

ijk

�
xiyjzk(1� x� y � z)m�i�j�k

The B-spline basis over the unit interval [0,1] is easily generated by a fractional linear recurrence as given

below for the univariate case. The bivariate and trivariate forms can also be similarly generated from this in

either tensor product or barycentric form, as given for the BB form above.



B-Spline Basis

Univariate:

Pn =

mX
l=0

plN
n
l (x)

where

N1
l (x) =

n
1 for xl � xl+1
0 otherwise.

and knot sequence 0 = u0 � u1 < : : : < um+1 = 1

Nn
l (x) =

x� xl�1

xl+n�1 � xl�1
Nn�1
l

(x) +
xl+n � x

xl+n � xl
Nn�1
l+1 (x)

Both the parametric and the implicit representation of algebraic curve segments and algebraic surface patches

can be represented in either of the above BB or B-spline bases. Note that the canonical representation of a

parametric plane curve segment and surface patch in x; y; z space are given by Curve:8<
:
x = P1(t);

y = P2(t);

w = P3(t):

Surface: 8><
>:
x = P1(s; t);

y = P2(s; t);

z = P3(s; t);

w = P4(s; t):

where the Pi are polynomials in any of the above appropriate bases and the variables/parameters s, and t range

over the unit interval [0,1].

An implicit curve segment and surface patch can be de�ned in x; y; z space by Curve:

z = P (x; y) ^ z = 0

Surface:

w = P (x; y; z)^w = 0

where the P is a polynomial in any of the above appropriate basis and the variables x; y; z range over the unit

interval [0,1].

The work of characterizing the BB form of polynomials within a tetrahedron such that the zero contour of the

polynomial is a single sheeted surface within the tetrahedron, has been attempted in the past. In [60], Sederberg

showed that if the coe�cients of the BB form of the trivariate polynomial on the lines that parallel one edge,

say L, of the tetrahedron, all increase (or decrease) monotonically in the same direction, then any line parallel

to L will intersect the zero contour algebraic surface patch at most once. In [39], Guo treats the same problem

by enforcing monotonicity conditions on a cubic polynomial along the direction from one vertex to a point of the

opposite face of the vertex. From this he derives a condition a��e1+e4 � a� � 0 for all � = (�1; �2; �3; �4)
T with

�1 � 1, where a� are the coe�cients of the cubic in BB form and ei is the i-th unit vector. This condition is

di�cult to satisfy in general, and even if this condition is satis�ed, one still cannot avoid singularities on the zero

contour. In[9, 12] su�cient conditions of a smooth, single sheeted zero contour generalizes Sederberg's condition

and provides with an e�cient way of generating nice implicit surface patches in BB-form (called A-patches for

algebraic patches). See Figures 3 and 4.



A

B

C

D

3000

2100

1200

0300

0210

0120

0030

0021

0012

0003

1002

2001

2010

1020 0102

0201

1011
1110

0111

1101

negative control point

free control point

positive control points

zero control point

negative control point

free control point

positive control points

zero control point

p

p

p

p

4

3

2

1

0300

0210

0120

0030

3000

2100

1200

2001

1002

0003

0012

0021

0102

0201
2010

1020

1101

1011 0111

1110

(a) (b)

Figure 3: (a) A three sided patch tangent at B;C;D (b) A degenerate four sided patch tangent to face [p1p2p4]

at p2 and [p1p3p4] at p3
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Figure 4: (a) A three sided patch interpolating the edge CD (b) A three sided patch interpolating edges BD

and CD



3 DISPLAY & MESH GENERATION

We present two algorithms for computing planar triangular approximations (triangulations) of real algebraic

surfaces, one specialized to the implicit representation[19], and the other for the rational parametric[15]. These

are easily adaptable to di�erent implicit and parametric surface patch representations. Modern day computer

graphics hardware accept such triangulations and accurately render the complicated surfaces with sophisticated

lighting and shading models. Similar planar triangular meshes of surfaces are required for �nite element methods

of solving systems of partial di�erential equations. See also [17, 20, 19, 21] for higher order, curved �nite element

approximations of implicit polynomial curves and surfaces with piecewise parametric splines.

3.0.1 Implicit Surfaces

To compute real points on implicit polynomial surfaces requires the solution of polynomial equations. Further-

more, the problem of constructing a polygonal approximation, especially for �nite element meshes, is complicated

by the need for a correct topology of the mesh even in the presence of singularities and multiple sheets of the

real polynomial surface. Direct schemes which work for arbitrary implicit polynomial surfaces are based on

the entire enclosing space: either the regular subdivision of the cube [23], a �nite subdivision of an enclosing

simplex [43], uniform re�nement [49] or enclosing simplicial continuation [6] or enclosing cube continuation [25].

However, such spatial sampling methods fail in the presence of point and curve singularities of the polynomial

surface, or yield ambiguous topologies in neighborhoods where multiple sheets of the surface come close together.

Symbolic methods are necessary to disambiguate or calculate the correct topology for general polynomial curves

and surfaces.

Our algorithm uses a triangular surface patch expansion scheme and works directly on the surface instead of

a spatial subdivision. It requires a seed point for each real component of the polynomial surface. Compared to

the above approaches the patch expansion is centered on points on the surface, and fully uses the polynomial

and its derivatives to construct local neighborhoods of convergence. The point selection and hence the �nal

triangulation is adaptive to the kth order of derivatives (e.g. k = 2 implies curvature adaptive) selected for each

expansion. By its very nature the triangulation generalizes to arbitrary analytic function surfaces and not just

algebraic (polynomial) surfaces.

We begin with a few notational de�nitions

Expansible edge. During the process of expansion of the triangular mesh, an edge is called expansible if we can

go further from this edge to obtain a new triangle on the surface. That is

(a) this edge is on the boundary of the presently constructed mesh

(b) this edge is inside the given boundary box.

The directional expansion, expansion point and the T -plane.

Let p0 = (px0 ; p
y

0; p
z
0) be a point on the surface f(x; y; z) = 0. If����@f(p0)@z

����
�
or

����@f(p0)@x

���� ;
����@f(p0)@y

����
�
= jjrf(p0)jj1

then the surface f(x; y; z) = 0 can be expressed locally as a power (Taylor) series z = �(x; y) (or x = �(y; z),

y = �(x; z)). We call this a z-direction expansion. The point p0 is referred to as the expansion point. The
@f(p0)

@x
(x� pxo ) +

@f(p0)

@y
(y � pyo) +

@f(p0)

@z
(z � pzo) = 0 the tangent plane of f = 0 at p0, denoted by T -plane.

The projection of a space point p onto the T -plane is denoted by T (p).

The following algorithm constructs a triangular mesh on each real component of a real polynomial surface,

within a given bounding box. We assume that we have a starting seed point on each real component of the

surface in this bounded region. Several numeric and symbolic methods exist to compute such seed points [19, 28]
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Figure 5: Expansion Steps for the Surface Triangulation



1. Initial Step: For a given seed point p0 on a real component of the surface f(x; y; z) = 0, we �rst compute

a directional expansion, say z = �(x; y). On the T -plane, �nd a circle with center p0 such that �(x; y)

is convergent within the circle. The computation of the radius of convergence, based on the k coe�cient

terms of a power series expansion are well known and given for example in [44]. Take three points on the

circle uniformly, say q0; q1; q2, and re�ne the points (qi; z(qi)) by a Newton iteration such that the resulting

points Vi are on the surface. The triangle [V0; V1; V2] is the �rst one we want. Each edge of this triangle

is expansible except perhaps if the seed point was chosen such that one edge is on the boundary of the

surface with respect to the bounding box.

2. General Step: Suppose we have constructed several space triangles that form a connected mesh. Assume at

least one edge (Vi; Vj) of a boundary triangle [Vi; Vj; Vk] is expansible. Then the general step is to construct

one or more triangles that connects to the edge (Vi; Vj)

(a) Start from the expansion point Pijk of the triangle [Vi; Vj; Vk] and directional expansion, say z =

�(x; y). Choose one point Q on the T -plane at Pijk within the convergence radius, such that Q is on

the middle-perpendicular line of [T (Vi); T (Vj)] and as far as possible from T (Pijk).

(b) Re�ne the point (Q; z(Q)) to a point on the surface, say Q1. The point Q1 becomes a new expansion

point. Compute directional expansion at Q1, say z = �1(x; y), and its circle of convergence. The

triangulation around Q1 is reconstructed as follows.

� Let [Vi; Vl] and [Vj; Vm] be the neighboring edges of [Vi; Vj]. Then on the T -plane at point Q1, if

the angle < T (Vj)T (Vi)T (Vl) �
�

2
and < T (Vi)T (Vj)T (Vm) �

�

2
or the convergence circle has no

intersection points with [T (Vi); T (Vl)] and [T (Vj); T (Vm)], then choose the intersection point Q2

of the circle and the perpendicular line of [T (Vi); T (Vj)] passing through T (Q1). If (T (Q1); Q2)

intersects a previous edge or the bounding box, then Q2 is chosen to be this intersection point.

Re�ne (Q2; �1(Q2)) and obtain a new vertex Vn and form the new triangle [Vi; Vj; Vn]. Also see

top part of Figure 5.

� If the angle< T (Vj)T (Vi)T (Vl) <
�

2
and (T (Vi); T (Vj)) intersect the circle (or, angle< T (Vi)T (Vj)T (Vm) <

�

2
and (T (Vj); T (Vm)) intersects the circle), (see middle part of Figure 5, then take Q1 as this

intersection point. Otherwise take Q1 = T (Vl). In the �rst case, we add a point on the edge

[Vi; Vl] and divide it into two edges, [Vi; V] and [V5; V4]. The [V2; V4] is expansible and [V2; V5]

is not. A new expansible edge [V1; V5] is produced. In the second case, edge [Vi; Vj] and [Vi; Vl]

become non-expansible and a new expansible edge [Vj; Vl] is generated. A related case is shown

in the bottom part of Figure 5 and is handled in much the same fashion.

3. Final Step. We iterate the General Step, until every edge is non-expansible for that real component.

Figure 6 shows the triangulation of implicitly de�ned polynomial surfaces.

3.0.2 Rational Parametric Surfaces

A well-known strength of the parametric representation (its mapping from IR2 to IR3) is the ease by which real

points can be generated on the parametric curve or surface. However the problem of constructing triangulations

with consistent topology is still highly non-trivial. Arbitrary rational parametric surfaces have real pole curves
in their domain, where the denominators of the parameter functions vanish, domain real base points for which
all four numerator and denominator polynomials vanish simultaneously, and other features that cause naiive

polygonal approximation algorithms to fail. These are ubiquitous problems occurring even among the natural

quadrics. See examples shown in Figures 7 and 8.

In geometric design and graphics, where rational Bezier and B-spline surfaces have become popular, the

above problems have so far been avoided by a restriction to smooth rational surface patches with denominator

polynomials having all positive coe�cients [32, 58] (i.e. no real poles or real base points). Sophisticated but

unsuspecting triangulation techniques which accept arbitrary rational parametric input (e.g. those implemented



Figure 6: Surface Triangulations of a Cubic Elbow Surface and a Torus

Figure 7: A Quadratic Parametric Surface with Domain Poles

in MapleV, Mathematica, Macsyma) produce completely unintelligible results. Our second algorithm provides a

complete and general solution to this problem.

We �rst illustrate the topological problems that arise if one naively mapped a triangulation from the (s; t)

domain to the surface in (x; y; z) space, using the rational parametric equations.

1. [Finite Parameter Range] To fully cover the parametric curve or surface, one must allow the parameters

to somehow range over the entire parametric domain, which is in�nite. For example, the unit sphere

f(x; y; z) = x2 + y2 + z2 � 1 = 0 has the standard rational parametric representation (x = 2s
1+s2+t2

; y =
2t

1+s2+t2
; z = 1�s2�t2

1+s2+t2
) In this parameterization the point (0; 0;�1) can only be reached by the parameter

values s = t =1.

2. [Poles] Even when restricting the surface to a bounded real part of the parametric domain, the rational

functions describing the surface may have poles over that domain. A hyperboloid of two sheets, with

implicit equation z2 + yz + xz � y2 � xy � x2 � 1 = 0, has the parametric representation (x(s; t) =



Figure 8: A Cubic Parametric Surface with Seam Curves Due to Base Points

4s
5t2+6st+5s2�1

; y(s; t) = 4t
5t2+6st+5s2�1

; z(s; t) = 5t2+6st�2t+5s2�2s+1
5t2+6st+5s2�1

) then problems arise because of the

pole curve described by 5t2 + 6st+ 5s2 � 1 = 0 in the parameter domain. See Figure 7.

3. [Base Points] The rational parameter functions describing curves and surfaces are generally assumed to be

reduced to lowest common denominators, i.e., the numerator and denominator of each rational function

are relatively prime. Thus for a curve, there is no parameter value that can cause both numerator and

denominator of a rational parameter function to vanish. For surfaces, the situation is di�erent. For the

general parametric representation stated earlier, even if f1; f2; f3; f4 are relatively prime polynomials, it

is still possible that there are a �nite number of points (a; b) such that f1(a; b) = f2(a; b) = f3(a; b) =

f4(a; b) = 0. Each such point is called a base point of the parametric surface and is a value for which the

parametric mapping is unde�ned (0
0
). There may also be base points at in�nity in the parameter domain,

and the base points can be complex as well as real-valued. Information about base points can be found

in books on algebraic geometry such as [64, 67]. Base points are problematic since there is no one surface

point for the corresponding domain point. To each base point there actually corresponds a curve on the

surface [64], and since there is no parameter value for surface points on such a curve, the entire curve will

be missing from the parametric surface. Such a curve is called a seam curve. See the right side of Figure 8

which corresponds the cubic parametric surface x = t
3
�t+s3�s2+1
t3+s3+1

; y = 2t3�t2�s2t+2s3+2
t3+s3+1

; z = �st�s
3

t3+s3+1
. Thus

for a valid triangulation of a parametric surface, one should also consistently triangulate the gaps caused

by the seam curves.

Finite Parameter Range Solution

In [16], the in�nite parameter value problem is solved for rational varieties in any dimension using projective

linear transformations of the domain. We reproduce without proof the key results, which are necessary for the

triangulation algorithm.

Lemma 3.1 Consider a rational algebraic variety of dimension n in Rm, n < m, given by parametric equations

V (s) =

0
B@

x1(s1; : : : ; sn)
...

xm(s1; : : : ; sn)

1
CA ; si 2 [�1;+1]

Let the 2n octant cells in the parameter domain Rn be labelled by the tuples < �1; : : :�n > with �i 2 f�1; 1g.
Then the projective reparameterizations V (t<�1;:::;�n>) given by

si = �i
ti

1� t1 � t2 � : : :� tn
; i = 1; : : : ; n (4)

together map the entire rational variety using only ti � 0 such that 0 � t1 + t2 + : : :+ tn � 1.



Figure 9: A Complete Triangulation of the Steiner Parametric Surface

Corollary 3.1 Rational curves C(s) = (x1(s); : : : ; xm(s))
T , s 2 [�1;+1] are covered by C(

t

1� t
),C(

�t

1� t
),

using only 0 � t � 1.

Corollary 3.2 Rational surfaces S(s1; s2) = (x1(s1; s2); : : : ; xm(s1; s2))
T , s1; s2 2 [�1;+1] are covered by

S(
t1

1� t1 � t2
;

t2

1� t1 � t2
), S(

�t1

1� t1 � t2
;

t2

1� t1 � t2
),

S(
�t1

1� t1 � t2
;

�t2

1� t1 � t2
), S(

t1

1� t1 � t2
;

�t2

1� t1 � t2
),

using only ti � 0 ^ 0 � t1 + t2 � 1.

The projective reparameterizations are shown here as fractional a�ne domain transformations for convenience.

In practice, the parametric equations of the rational variety would be homogenized using an additional variable

and the numerator and common denominator substituted separately as polynomials, thus avoiding rational

function manipulation.

For the Steiner surface (x = 2st
1+s2+t2

; y = 2s
1+s2+t2

; z = 2t
1+s2+t2

), and the cubic elbow surface (x =
4t2+(s2+6s+4)t�4s�8

2t2�4t+s2+4s+8
; y =

4t2+(�s2�6s�20)t+2s2+8s+16

2t2�4t+s2+4s+8
; z =

(2s+6)t2+(�4s�12)t�s2�4s

2t2�4t+s2+4s+8
), four di�erent projective reparameterizations yield a

complete covering of the rational parametric surface. See Figure 9.

Solution for Domain Poles

The main idea behind the solution is as follows: The (s; t) domain is triangulated in such a way that triangles

contain pole points only at their vertices. A domain triangle with a pole at a vertex maymap onto an in�nite-area

surface patch, which may lie partly inside the bounding region. If we determine this to be the case, we binary

search on the edges of the surface triangle for points that intersect the bounding box, clip it with respect to the

box and re-triangulate the resulting four or �ve sided convex polygon on the surface.

The algorithm[14] is as follows.

1. Perform the projective reparameterizations so the entire surface is mapped in four pieces. Perform the

next steps for each piece.

2. Generate points on the pole curve that lies inside the unit simplex.



Figure 10: A Domain Triangulation over Unit Simplexes for a Hyperboloid of Two Sheets

3. Generate points in the rest of the unit simplex according to some scheme. The two kinds of points are

distinguished from each other.

4. Compute a triangulation of the points thus generated. If an edge of any such triangle intersects the pole

curve, insert the intersection point and recompute the triangulation.

5. Every triangle will then have 0, 1, or 2 pole points. A triangle with 3 pole points is split by inserting

a simple point in its interior. See also Figure 10. If a triangle has no pole points, it can be mapped

immediately to the surface. Suppose it has one pole point and two regular points. Let the pole point be

called p and the regular points q1;q2. We denote the surface point corresponding to a point x as S(x).

We assume that S(p) is a point at in�nity, which is likely since p is a pole. If S(q1); S(q2) both lie outside

the bounding region, this triangle will not be mapped. If both lie inside the region, then a binary search

is performed along the edges from p to q1 and p to q2, for the intersection points S(q̂1); S(q̂2) with the

bounding box. Then mapped surface triangle is thus replaced by a polygon using the two new vertices. By

a similar process a a domain triangle with two pole points, and one simple point is either discarded, or the

two pole points in the triangle are replaced by regular points whose images are the intersection of the the

bounding box and the mapped triangle. Each resulting four or �ve sided polygon on th surface is convex

and easily triangulated.

Pole curve points with the unit simplex are generated for example by the subdivision method of [37]. In the

the second setup, we just generate a constant-size triangular grid on the unit simplex. The grid points are merged

with the pole curve points in a special data structure that allows them to be marked as pole or regular points,

and an incremental Delaunay triangulation of the entire set of points is constructed [33, 35]. See Figures 10 and

??.

Solution to Base Points

First an important fact about the image of a base point: Base points blow up to curves on the surface ([64],
Chapter VI, section 2.1, Theorem III, p. 107). Let O be a base point of multiplicity q, and each of the curves



Figure 11: Complete Triangulations and Display of Rational parametric surfaces

f1(s; t) = 0; : : : ; f4(s; t) = 0 have q distinct tangents at O. Furthermore, let the curves have no common tangents

at O. Then the image of the base point O is a curve of degree q on the surface S.

In [15] we show how to compute a parameterization of the seam curve, from the original parameterization

and for any base point. For a better correspondence of the surface parameterization to the seam curve parame-

terization we rede�ne X = X(s; t) = f1(s; t)Y = Y (s; t) = f2(s; t); Z = Z(s; t) = f3(s; t);W = W (s; t) = f4(s; t):

Theorem 3.1 Let (a; b) be an a�ne base point of multiplicity q. Then for any m 2 R, the image of a domain
point approaching (a; b) along a line of slope m is given by

(X(m); Y (m); Z(m);W (m)) =

 
qX

i=0

�
@qX

@sq�i@ti
(a; b)

�
mi; : : : ;

qX
i=0

�
@qW

@sq�i@ti
(a; b)

�
mi

!
(5)

The points (X(m); Y (m); Z(m);W (m)) form a one-dimensional family or curve on the surface S, of degree at

most q, called the seam curve of the base point (a; b).

Corollary 3.3 If the curves X(s; t) = 0; : : : ;W (s; t) = 0 share t tangent lines at (a; b), then the seam curve
(X(m); Y (m); Z(m);W (m)) has degree q�t. In particular, if X(s; t) = 0; : : : ;W (s; t) = 0 have identical tangents
at (a; b), then for all m 2 R the coordinates (X(m); : : : ;W (m)) represent a single point.

Knowing the parameterization (X(m); Y (m); Z(m);W (m)), with parameter m of each real seam curve it is

quite straightforward to sample this curve at distinct values of m, and stitch the triangulation together.

4 DATA FITTING

Consider the problem of constructing a Ck mesh of smooth surface patches or splines that interpolate or approx-
imate scattered data in IR3. Computations which we would like to optimize by our choice of curve and surface

representation include:

� solution requiring a small number of surface patches

� reduction of the �tting problem to solving small linear systems



Figure 12: C1 Implicit Splines over a Spatial Triangulation

� low geometric degree of the solution surfaces

There are several possible variants of the problem depending on the nature of the interpolation problem

on hand: local versus non-local patch interpolation, splitting v.s. non-splitting of the surface patches per

triangulation face, the convexity versus non-convexity of the given triangulation, etc. In each of these cases,

the comparison between the implicit versus parametric representation does not yield a clear winner. While the

implicit representation yields lower geometric degree solutions (for reasons relating to degrees of freedom and

the number of constraints, the parametric surfaces shows a clear advantage when suitable surfaces need to be

selected from an in�nite family of interpolatory solutions. Straightforward conditions on the parameter domain

can yield parametric surface solutions which are free of poles and base points.

The generation of a C1 mesh of smooth surface patches or splines that interpolate or approximate triangulated
space data is one of the central topics of geometric design. Alfeld [5], Chui [26], Dahmen and Michelli [31] and

Hollig [46] summarize much of the history of scattered data �tting and multivariate splines. Prior work on

splines have traditionally worked with a given planar triangulation using a polynomial function basis [5, 57, 63].

More recently surface �tting has been considered over closed triangulations in three dimensions using parametric

surface patches [22, 19, 24, 34, 38, 42, 45, 47, 51, 53, 54, 55, 59, 65]. Little work has been done on spline

bases using implictly de�ned algebraic surface patches. Sederberg [60, 61] showed how various smooth implicit

algebraic surfaces in trivariate Bernstein basis can be manipulated as functions in Bezier control tetrahedra with

�nite weights. Patrikalakis and Kriezis [52] extended this by considering implicit algebriac surfaces in a tensor

product B-spline basis. However the problem of selecting weights or specifying knot sequences for C1 meshes of

implicit algebraic surface patches which �t given spatial data, was left open. Dahmen [29] presented a scheme

for constructing C1 continuous, piecewise quadric surface patches over a data triangulation in space. In his

construction each triangular face is split and replaced by six micro quadric triangular patches, similar to the

splitting scheme of Powell-Sabin [56]. More on this later. Moore and Warren [50] extend the marching cubes

scheme of [48] and compute a C1 piecewise quadratic approximation (least-squares) to scattered data. They too

use a Powell-Sabin like split, however over subcubes.

In paper [13] the authors consider an arbitrary spatial triangulation T consisting of vertices p = (xi; yi; zi)

in IR3 (or more generally a simplicial polyhedron P when the triangulation is closed), with possibly \normal"

vectors at the vertex points. An algorithm is given to construct a C1 continuous mesh of low degree real algebraic

surface patches Si over T or P. The algorithm �rst converts the given triangulation T or simplicial polyhedron
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Figure 13: Adjacent Tetrahedra, Cubic Functions and Control Points for two Non-Convex Adjacent Faces

P into a curvilinear wireframe (with at most cubic parametric curves) which C1 interpolates all the vertices,

followed by a 
eshing of the wireframe with low degree algebraic surface patches. See Figure 12. The technique

is completely general and uses a single implicit surface patch of degree at most 7, for each triangular face of

T of P, i.e. no local splitting of triangular faces. Furthermore, the C1 interpolation scheme is local in that

each triangular surface patch has independent degrees of freedom which may be used to provide local shape

control. Extra free parameters may be adjusted and the shape of the patch controlled by using weighted least

squares approximation from additional points and normals, generated locally for each triangular patch. Similar

techniques exist for parametrics [24, 34, 38, 54, 59] however the geometric degree of the solution surfaces tend

to be prohibitively high.

In papers [9, 12] we show how to join a collection of cubic A-patches of x2 to form a C1 smooth surface

interpolating scattered data points and respecting the topology of a given surface triangulation T of the points.

For this problem, prior approaches have been given by [29] using quadric patches, [30, 39, 40] using cubic patches

and [13] using quintic for convex triangulations and degree seven patches for arbitrary surface triangulations T .

All these papers provide heuristics to overcome the multiple sheeted and singularity problems of implicit patches.

In this paper our cubic A-patches are guaranteed to be nonsingular and single sheeted within each tetrahedron.

While the details of the methods of [30] and [40] di�er somewhat, they both use the scheme of [29] of building

a surrounding simplicial hull (consisting of a series of tetrahedra) of the given triangulation T . Such a simplicial

hull is nontrivial to construct for triangulations and neither of the papers [29, 30, 39, 40] enumerate the di�erent

exceptional cases (possible even for convex triangulations) nor provide solutions to overcoming them. Paper [9]

also uses the same simplicial hull approach but enumerates the exceptional situations and provide strategies for

rectifying them. See Figure 15 for an example surface triangulation and its simplicial hull.

In [40], Guo uses a Clough-Tocher split[27] and subdivides each face tetrahedron of the simplicial hull, hence

utilizing three patches per face of T . In paper [9], we consider the computed \normals" at the given data points,

and distinguish between \convex" and \non-convex" faces and edges of the triangulation. We use a single cubic

A-patch per face of T except for the following two special cases. For a non-convex face, if additionally the three

inner products of the face normal and its three adjacent face normals have di�erent signs, then in this case one

needs to subdivide the face using a single Clough-Tocher split, yielding C1 continuity with the help of three cubic

A-patches for that face. Furthermore for coplanar adjacent faces of T , we show that the C1 conditions cannot

be met using a single cubic A-patch for each face. Hence for this case we again use Clough-Tocher splits for the

pair of coplanar faces yielding C1 continuity with the help of three cubic A-patches per face. See Figures 15,16

for examples of the C1 interpolation of polyhedra.

The C1 interpolation schemes of [9, 29, 30, 40, 41] all build an outside simplicial hull (consisting of a series

of edge and face tetrahedra) containing the given polyhedron P. As mentioned before, such a simplicial hull is

nontrivial to construct for arbitrary P (even convex P with sharp corners) and can give rise to several exceptional

situations and degeneracies (co-planarity, hull self-intersection, etc). In [10] a new corner-cutting, inner simplicial
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Figure 15: A Surface Triangulation, the Simplicial Hull and some of the interpolatory C1 Cubic A-Patches



Figure 16: The Complete Smoothing of the Surface Triangulation using C1 Cubic A-Patches



(a) (b)

Figure 17: C1 and C2 Smooth Approximations

hull construction is presented and can handle all convex P and also arbitrary polyhedra with non-convex faces.

This new simplicial hull scheme is the three dimensional generalization of the two-dimensional corner-cutting

scheme used to construct Ck continuous bivariate A-splines [18]. Using this new hull construction technique paper

[10] presents e�cient algorithms to construct both a C1 smooth mesh with cubic A-patches and C2 smooth mesh

with cubic and quintic A-patches to approximate a given polyhedron P in three dimensions.

For the construction of smooth patch complexes within the simplicial hull built on two adjacent triangles(see

Figure 13 for C1 and Figure 14 for C2.

See also Figures 17 and 18 for examples of the C1 and C2 approximation of polyhedra and their shape

modi�cation [11].

Acknowledgement: Implementations of the above algorithms (for parametric and implicit surface patches), were

all accomplished in SHASTRA, a distributed and collaborative (multi-user, multi-workstation) free-form geomet-

ric design and visualization environment developed by the author at Purdue University. Information on SHAS-

TRA software availability can be obtained from the author or via anonymous ftp from ftp.cs.purdue.edu:pub/shastra/

and via the world wide web from http://www.cs.purdue.edu/research/shastra/shastra.html.
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A Tutorial on

Binary Space Partitioning Trees

Bruce F. Naylor
Spatial Labs Inc.

I. Introduction

In most applications involving computation with 3D geometric models, manipulating objects

and generating images of objects are crucial operations. Performing these operations r equ i r e s

determining for every frame of an animation the spatial       relations between objects: how t h e y

might    in tersect    each other, and how they may     occlude     each other. However, the objects,

rather than being monolithic, are most often comprised of many pieces, such as by m a n y

polygons forming the faces of polyhedra. The number of pieces may be any where from t h e

100's to the 1,000,000's. To compute spatial relations between n polygons by brute force

entails comparing every pair of polygons, and so would require O(n2). For large scenes

comprised of 10 5 polygons, this would mean 1010 operations, which is much more t h a n

necessary.
The number of operations can be substantially reduced to anywhere from O(n log2 n )

when the objects interpenetrate (and so in our example reduced to ~106), to as little a s

constant time, O(1), when they are somewhat separated from each other. This can b e

accomplished by using Binary Space Partitioning Trees, also called BSP Trees or Partitioning

Trees. They provide a computational representation of space that simultaneouly provides a

search structure and a representation of geometry. The reduction in number of operations

occurs because Partitioning Trees provide a kind of "spatial sorting". In fact, they are a

generalization to dimensions > 1 of binary search trees, which have been widely used for

representing sorted lists. The figure below gives an introductory example showing how a

binary tree of lines, instead of points, can be used to "sort" four geometric objects, as opposed

to sorting symbolic objects such as names.
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Partitioning Tree representation of inter-object spatial relations

Constructing a Partitioning Tree representation of one or more polyhedral objects involves

computing the spatial relations between polygonal faces once and encoding these relations i n

a binary tree. This tree can then be transformed and merged with other trees to v e r y

quickly compute the spatial relations (for visibility and intersections) between the polygons

of two moving objects.
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Partitioning Tree representation of intra-object spatial relations

 As long as the relations encoded by a tree remain valid, which for a rigid body is forever ,

one can reap the benefits of having generated this tree structure every time the tree is u s e d

in subsequent operations.  The return on investment manifests itself as substantially fas ter

algorithms for computing intersections and visibility orderings. And for animation a n d

interactive applications, these saving can accure over hundreds of thousands of frames.

Partitioning Trees achieve an elegant solution to a number of important problems i n

geometric computation by exploiting two very simple properties occurring whenever a single

plane separates (lies between) two or more objects: 1) any object on one side of the plane

cannot intersect any object on the other side, 2) given a viewing position, objects on t h e

same side as the viewer can have their images drawn on top of the images of objects on t h e

opposite side (Painter's Algorithm).
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Plane Power: sorting objects w.r.t a hyperplane

These properties can be made dimension independent if we use the term "hyperplane" t o

refer to planes in 3D, lines in 2D, and in general for d-space, to a (d-1)-dimensional s u b -

space defined by a single linear equation. The only operation we will need for constructing

Partitioning Trees is the partitioning of a convex region by a singe hyperplane into two child

regions, both of which are also convex as a result.
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⇒

⇒

h

R+R -

R / h
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Elementary operation used to construct Partitioning Trees

Partitioning Trees exploit the properties of separating planes by using one very simple b u t

powerful technique to represent any object or collection of objects:     recursive       subdivison        b y

    hyperp lanes   . A Partitioning Tree is the recording of this process of recursive subdivision i n

the form of a binary tree of hyperplanes. Since there is no restriction on what hyperp lanes

are used, polytopes (polyhedra, polygons, etc.) can be represented exactly. Affine a n d

perspective transformations can be applied without having to modify the structure of t h e

tree itself, but rather by modifying the linear equations representing each hyperplane (with

a vector-matrix product as one does with points).

A Partitioning Tree is a program for performing intersections between the hyperp lane ' s

halfspaces and any other geometric entity. Since subdivsion generates increasingly smaller

regions of space,  the order of the hyperplanes is chosen so that following a path deeper into

the tree corresponds to adding more detail, yielding a multi-resolution representation. This
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leads to efficient intersection computations. To determine visibility, all that is required is

choosing at each tree node which of the two branches to draw first based solely on which

branch contains the viewer. No other single representation of geometry inherently answers

questions of intersection and visibility for a scene of 3D moving objects. And this is

accomplished in a computationally efficient and parallelizable manner.

II. Partitioning Trees as a Multi-Dimensional Search Structure

Spatial search structures are based on the same ideas that were developed in Computer

Science during the 60's and 70's to solve the problem of quickly processing large sets of

symbolic data, as opposed to geometric data, such as lists of people's names. It was discovered

that by first sorting a list of names alphabetically, and storing the sorted list in an array, o n e
can find out whether some new name is already in the list in log2 n operations using a b i n a r y

search algorithm, instead of n/2 expected operations required by a sequential search. This is

a good example of extracting structure (alphabetical order) existing in the list of names a n d

exploiting that structure in subsequent operations (looking up a name) to r educe

computation. However, if one wishes to permit additions and deletions of names while

maintaining a sorted list, then a dynamic data structure is needed, i.e. one using pointers. One

of the most common examples of such a data structure is the     binary       search       t r e e     .

A binary search tree is illustrated in the figure below, where it is being used to represent a

set of integers S = { 0, 1, 4, 5, 6, 8 } lying on the real line. We have included both the b i n a r y

tree and the hierarchy of intervals represented by this tree. To find out whether a

number/point is already in the tree, one inserts the point into the tree and follows the p a t h

corresponding to the sequence of nested intervals that contain the point. For a balanced t r ee ,

this process will take no more than O(log n) steps; for in fact, we have performed a b i n a r y

search, but one using a tree instead of an array. Indeed, the tree itself encodes a portion of

the search algorithm since it prescribes the order in which the search proceeds.
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5

0 8
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1

<0

0 - 1 1 - 4

4 - 5 5 - 6 6 - 8

>8

x < 5 x > 5

x < 8x > 0



6

This now bring us back to Partitioning Trees, for as we said earlier, they are a generalization

of binary search trees to dimensions > 1 (in 1D, they are essentially identical). In fact,

constructing a Partitioning Tree can be thought of as a geometric version of Quick Sort.

Modifications (insertions and deletions) are achieve by merging trees, analogous to merging

sorted lists in Merge Sort. However, since points do not divide space for any dimension > 1, w e

must use hyperplanes instead of points by which to subdivide. Hyperplanes always part i t ion

a region into two halfspaces regardless of the dimension. In 1D, they look like points since

they are also 0D sets; the one difference being the addition of a normal denoting the "greater

than" side. Below we show a restricted variety of Partitioning Trees that most clearly

illustrates the generalization of binary search trees to higher dimensions. (You may want t o

call this a k-d tree, but the standard semantics of k-d trees does not include represen t ing

continuous sets of points, but rather finite sets of points.)
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Extension of binary search trees to 2D as a Partitioning Tree

Partitioning Trees are also a geometric variety of Decision Trees, which are commonly u s e d

for classification (e.g. biological taxonomies), and are widely used in machine learning. Decision

trees have also been used for proving lower bounds, the most famous showing that sorting is

Ω( n log n) They are also the model of the popular "20 questions" game (I'm thinking of

something and you have 20 yes/no question to guess what it is). For Partitioning Trees, t h e

questions become "what side of a particular hyperplane does some piece of geometry lie".

III. Visibility Orderings

Visibility orderings are used in image synthesis for visible surface determination (hidden

surface removal), shadow computations, ray tracing, beam tracing, and radiosity. For a given

center of projection, such as the position of a viewer or of a light source, they provide a n
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ordering of geometric entities, such as objects or faces of objects, consistent with the order i n

which any ray originating at the center might intersect the entities. Loosely speaking, a

visibility ordering assigns a priority to each object or face so that closer objects have pr ior i ty

over objects further away. Any ray emanating from the center or projection that intersects

two objects or faces, will always intersect the surface with higher priority first. The simplest

use of visibility orderings is with the "Painters Algorithm" for solving the hidden surface

problem. Faces are drawn into a frame-buffer in far-to-near order (low-to-high priority), so

that the image of nearer objects/polygons over-writes those of more distant ones.

 A visibility ordering can be generated using a single hyperplane; however, each geometric

entity or "object" (polyhedron, polygon, line, point) must lie completely on one side of t h e

hyperplane, i.e. no objects are allowed to cross the hyperplane. This requirement can always

be induced by partitioning objects by the desired hyperplane into two "halves". The objects on

the side containing the viewer are said to have visibility priority over objects on the opposite

side; that is, any ray emanating from the viewer that intersects two objects on opposite sides

of the hyperplane will always intersect the near side object before it intersects the far side

object.
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Left side has priority over right side

A

o 1

o 2

o 3

o 4

Viewer

o3 ,o 2o1 , o 4

Partitioning Tree

Viewer

1 s t2 n d

A

Right side has priority over left side

Total Ordering of a Collection of Objects
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A single hyperplane cannot order objects lying on the same side, and so cannot provide a

total visibility ordering.

A
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o 4

Viewer
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Partitioning Tree

Viewer

? ? ? ? ? ?

Consequently, in order to exploit this idea, we must extend it somehow so that a visibility

ordering for the entire set of objects can be generated. One way to do this would be to create a

unique separating hyperplane for evey pair of objects. However, for n objects this would

require n2  hyperplanes, which is too many.

The required number of separating hyperplanes can be reduced to as little as n by using

the geometric version of recursive subdivision (divide and conquer). If the subdivsion is

performed using hyperplanes whose position and orientation is unrestricted, then the r e su l t

is a Partitioning Tree. The objects are first separated into two groups by some appropriately

choosen hyperplane (as above). Then each of the two groups are    independent ly     part i t ioned

into two sub-groups (for a total now of 4 sub-groups). The recursive subdivision continues i n

a similar fashion until each object, or piece of an object, is in a separate cell of the partitioning.

This process of partitioning space by hyperplanes is naturally represented as a binary tree.
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CB
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Visibility Ordering as Tree Traveral

How can this tree be used to generate a visibility ordering on the collection of objects? For

any given viewing position, we first determine on which side of the root hyperplane t h e

viewer lies. From this we know that all objects in the near-side subtree have higher pr ior i ty

than all objects in the far-side subtree; and we have made this determination with only a

constant amount of computation (in fact, only a dot product).  We now need to order t h e
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near-side objects, followed by an ordering of the far-side objects. Since we have a recusively

defined structure, any subtree has the same form computationally as the whole t ree .

Therefore, we simply apply this technique for ordering subtrees recursively, going left o r

right first at each node, depending upon which side of the node's hyperplane the viewer lies.

This results in a traversal of the entire tree, in near-to-far order, using only O(n) operations,

which is optimal (this analysis is correct only if no objects have been split; otherwise it is > n).
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Intra-Object Visibility

The schema we have just described is only for i n t    e r    -object visibility, i.e. between individual

objects. And only when the objects are both convex and separable by a hyperplane is t h e

schema a complete method for determining visibility. To address the general unres t r i c ted

case, we need to solve int    r a    -object visibility, i.e. correctly ordering the faces of a single object.

Partitioning Trees can solve this problem as well. To accomplish this, we need to change o u r

focus from convex cells containing objects to the idea of hyperplanes containing faces. Let u s

return to the analysis of visibility w.r.t a hyperplane. If instead of ordering objects, we wish to

order faces, we can exploit the fact that not only can faces lie on each side of a hyperplane a s

objects do, but they can also lie     o n     the hyperplane itself. This gives us a 3-way ordering of:

near -> on -> far.
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Viewer

Ordering of polygons: near -> on -> far

If we choose hyperplanes by which to partition space that always contain a face of an object,

then we can build a Partitioning Tree by applying this schema recursively as before, unt i l

every face lies in some partitioning hyperplane contained in the tree.
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Example intra-object Partitioning Tree

To generate a visibility ordering of the faces in this intra-object tree, we use the me thod

above with one extension: faces lying on hyperplanes are included in the ordering, i.e. at each

node, we generate the visibility ordering of near-subtree -> on-faces -> far-subtree.

Using visibility orderings provides an alternative to z-buffer based algorithms. They

obviate the need for computing and comparing z-values, which is very suspectible t o

numerical error because of the perspective projection.  In addition, they eliminate the n e e d

for z-buffer memory itself, which can be substantial (80Mbytes) if used at a sub-pixel

resolution of 4x4 to provide anti-aliasing. More importantly, visibility orderings pe rmi t

unlimited use of    t r a n s p a r e n c y     (non-refractive) with no additional computational effort, since

the visibility ordering gives the correct order for compositing faces using alpha blending. A n d

in addition, if a near-to-far ordering is used, then rendering completely occluded

objects/faces can be eliminated, such as when a wall occludes the rest of a building, using a

beam-tracing based algorithm.

Partitioning Tree as a Hierarchy of Regions
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Another way to look at Partitioning Trees is to focus on the hierarchy of regions creating b y

the recursive partitioning, instead of focusing on the hyperplanes themselves. This view

helps us to see more easily how intersections are efficiently computed. The key idea is to th ink

of a Partitioning Tree region as serving as a     bounding        vo lume    : each node v  corresponds to a

convex volume that completely contains all the geometry represented by the subtree rooted

at v . Therefore, if some other geometric enitity, such as a point, ray, object, etc., is found t o

    n o t    intersect the bounding volume, then no intersection computations need be per formed

with any geometry within that volume.

Consider as an example a situation in which we are given some test point and we want t o

find which object if any this point lies in. Initially, we know only that the point lies somewhere

in space.

o1, o2, o3 ,o4o 1

o 2

o 3

o 4

test point

By comparing the location of the point w.r.t. the first partitioning hyperplane, we can find i n

which of the two regions (a.k.a. bounding volumes) the point lies. This eliminates half of t h e

objects.

A

o1, o2 o3 ,o4o 1

o 2

o 3

o 4

By continuing this process recursively, we are in effect using the regions as a hierarchy of

bounding volumes, each bounding volume being a rough approximation of the geometry i t

bounds, to quickly narrow our search.

A

B C

o 1 o 2 o 3 o 4
o 1

o 2

o 3

o 4



1 2

For a Partitioning Tree of a single object, this region-based (volumetric) view reveals how

Partitioning Trees can provide a multi-resolution representation. As one decends a path of

the tree, the regions decrease in size monotonically. For curved objects, the regions converge

in the limit to the curve/surface. Truncating the tree produces an approximation, ala t h e

Taylor series approximations of functions.
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Tree Merging

The spatial relations between two objects, each represented by a separate tree, can b e

determined efficiently by merging two trees. This is a fundemental operation that can be u s e d

to solve a number of geometric problems. These include set operations for CSG modeling a s

well as collision detection for dynamics. For rendering, merging all object-trees into a single

model-tree determines inter-object visibility orderings; and the model-tree can b e

intersected with the view-volume to efficiently cull away off-screen portions of the scene a n d

provide solid cutways with the near clipping plane. In the case where objects are b o t h

transparent and interpenetrate, tree merging acts as a view independent geometric sort ing

of the object faces; each tree is used in a manner analogous to the way Merge Sort merges

previously sorted lists to quickly created a new sorted list (in our case, a new tree). The

model-tree can be rendered using ray-tracing, radiosity, or polygon-drawing using a f a r - t o -

near ordering with alpha blending for transparency. An even better alternative is mul t i -

resolution beam-tracing, since entire occluded subtrees can be elimanted without visiting t h e

contents of the subtree, and distance subtrees can be pruned to the desired resolution.

Beam-tracing can also be used to efficiently compute shadows.

All of this requires as a basics operation an algorithm for merging two trees. Tree merging

is a recursive process which proceeds down the trees in a multi-resolution fashion, going

from low-res to high-res. It is easist to understand in terms of merging a hierarchy of

bounding volumes. As the process proceeds, pairs of tree regions, a.k.a. convex bounding

volumes, one from each tree, are compared to determine whether they intersect or not. If
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they do not, then the contents of the corresponding subtrees are never compared. This h a s

the effect of "zooming in" on those regions of space where the surfaces of the two objects

intersect. In the 2D example below, representing two convex polygons, tree merging will

require only O(log n) operations.

Merging Partitioning Trees

The algorithm for tree merging is quite simple once you have a routine for partitioning a

tree by a hyperplane into two trees. The process can be thought of in terms of inserting o n e

tree into the other in a recursive manner. Given trees T1 and T2, at each node of T1 t h e

hyperplane at that node is used to partition T2 into two "halves". Then each half is merged

with the subtree of T1 lying on the same side of the hyperplane. (In actuality, the algorithm

is symmetric w.r.t. the role of T1 and T2 so that at each recursive call, T1 can split T2 or T2

can split T1.)

Merge_Bspts : ( T1, T2 : Bspt ) -> Bspt
  Types

BinaryPartitioner : { hyperplane, sub-hyperplane }
PartitionedBspt : ( inNegHs, inPosHs : Bspt )

  Imports
Merge_Tree_With_Cell : ( T1, T2 : Bspt ) ->  Bspt    User defined semantics.
Partition_Bspt : ( Bspt, BinaryPartitioner ) ->  PartitionedBspt

  Definition
 IF T1.is_a_cell OR T2.is_a_cell
 THEN

VAL := Merge_Tree_With_Cell( T1, T2 )
 ELSE

Partition_Bspt( T2, T1.binary_partitioner ) -> T2_partitioned
VAL.neg_subtree :=

Merge_Bspts( T1.neg_subtree, T2_partitioned.inNegHs )
VAL.pos_subtree:=

Merge_Bspts( T1.pos_subtree, T2_partitioned.inPosHs )
 END
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RETURN VAL
END Merge_Bspts

While tree merging is easiest to understand in term of comparing bounding volumes, t h e

actual mechanism uses sub-hyperplanes , which is more efficient. A sub-hyperplane is

created whenever a region is partitioned by a hyperplane, and it is just the subset of t h e

hyperplane lying within that region. In fact, all of the illustrations of trees we have used a r e

drawings of sub-hyperplanes. In 3D, these are convex polygons, and they separate the two

child regions of an internal node. Tree merging uses sub-hyperplanes to simulataneously

determine the spatial relations of four regions, two from each tree, by comparing the two

sub-hyperplanes at the root of each tree. For 3D, this is computed using two applications of

convex-polygon clipping to a plane, and there are three possible outcomes: intersecting, n o n -

intersecting and coincident. This is the only overtly geometric computation in tree merging;

everything else is data structure manipulation.

Intersect ing CoincidentNon-intersecting

Three cases when comparing sub-hyperplanes during tree merging

Good Partitioning Trees

For any given set, there exist an arbitrary number of different Partitioning Trees that c a n

represent that set. This is analogous to there being many different programs for computing

the same function, since a Partitioning Tree may in fact be interpreted as a computation

graph specifying a particular search of space. Similarly, not all programs/algorithms a r e

equally efficient, and not all searches/trees are equally efficient. Thus the question arises a s

to what constitutes a good Partitioning Tree. The answer is a tree that represents the set as a

sequence of approximations. This provides a multi-resolution representation. By pruning t h e

tree at various depths, different approximations of the set can be created. Each p r u n e d

subtree is replaced with a cell containing a low degree polynomial approximation of the s e t

represented by the subtree.
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Tree Pruning for Multi-Resolution Representations

In figure below, we show two quite different ways to represent a convex polygon, only t h e

second of which employs the sequence of approximations idea. The tree on the left subdivides

space using lines radiating from the polygonal center, splitting the number of faces in half a t

each step of the recursive subdivision. The hyperplanes containing the polygonal edges a r e

chosen only when the number of faces equals one, and so are last along any path. If t h e

number of polygonal edges is n, then the tree is of size O(n) and of depth O(log n). In contrast ,

the tree on the right uses the idea of a sequence of approximations. The first t h r e e

partitioning hyperplanes form a first approximation to the exterior while the next three fo rm

a first approximation to the interior. This divides the set of edges into three sets. For each of

these, we choose the hyperplane of the middle face by which to partition, and by doing so

refine our representation of the exterior. Two additional hyperplanes refine the interior a n d

divide the remaining set of edges into two nearly equal sized sets. This process proceeds

recursively until all edges are in partitioning hyperplanes. Now, this tree is also of size O(n)

and depth O(log n), and thus the worst case, say for point classification, is the same for b o t h

trees. Yet they appear to be quite different.
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Illustration of bad vs. good trees

This apparent qualitative difference can be made quantitative by, for example, considering

the expected case for point classification. With the first tree, all cells are at depth log n, so t h e

expected case is the same as the worst case regardless of the sample space from which a point

is chosen. However, with the second tree, the top three out-cells would typically consti tute

most of the sample space, and so a point would often be classified as OUT by, on average, two

point-hyperplane tests.  Thus the expected case would converge to O(1) as the ratio of

polygon-area/sample-area approaches 0. For line classification, the two trees differ not only

in the expected case but also in the worst case: O(n) vs. O(log n). For merging two trees t h e

difference is O(n2) vs. O(n log n). This reduces even further to O(log n) when the objects a r e

only contacting each other, rather overlapping, as is the case for collision detection.

However, there are worst case "basket weaving" examples that do require O(n2) operations.

These are geometric versions of the Cartesian Product, as for example when a checkerboard is

constructed from n horizontal strips and n vertical strips to produce n x n squares. These

examples, however, violate the Principle of Locality: that geometric features are local n o t

global features. For almost all geometric models of physical objects, the geometric features a r e

local features. Spatial partitioning schemes can accelerate computations only when t h e

features are in fact local, otherwise there is no significant subset of space that can b e

eliminated from consideration.

The key to a quantitative evaluation, and also generation, of Partitioning Trees is to u s e

expected case models, instead of worst case analysis. Good trees are ones which have low

expected cost for the operations and distributions of input of interest. This means, roughly,

that high probability regions can be reached with low cost, i.e. they have short paths from the

root the the corresponding node, and similarly low probability regions should have longer

paths. This is exactly the same idea used in Huffman codes. For geometric computation, t h e

probability of some geometric entity, such as a point, line segment, plane, etc., lying in some
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arbitrary region is typically correlated positively to the size of the region: the larger t h e

region the greater the probability that a randomly chosen geometric entity will intersect t h a t

region.

To compute the expected cost of a particular operation for a given tree, we need to know a t

each branch in the tree the probability of taking the left branch, p - , and he probability of

taking the right branch p+ . If we assign a unit cost to the partitioning operation,  then we c a n

compute the expect cost exactly, given the branch probabilities, using the following

recurrence relation:

Ecost[ T ] =
IF T is a cell
  THEN 0
  ELSE 1 + p- * Ecost[ T- ] + p+ * Ecost[ T+ ]

This formula does not directly express any dependency upon a particular operation; those

characteristics are encoded in the two probabilities p -   and p+. Once a model for these is

specified, the expected cost for a particular operation can be computed for any tree.

As an example, consider point classification in which a random point is chosen from a

uniform distribution over some initial region R. For a tree region of r  with child regions r+

and r- , we need the conditional probability of the point lying in r+  and r- given that it lies i n

r . For a uniform distribution, this is determined by the sizes of the two child-regions relat ive

to their parent:

p +  = vol( r+  ) / vol( r )

p -  = vol( r-  ) / vol( r )

Similar models have been developed for line, ray and plane classification. Below we describe

how to use these to build good trees.

Converting B-reps to Trees

Since humans do not see physical objects in terms of binary trees, it is important to know

how such a tree be constructed from something which is more intuitive. The most common

method is to convert a boundary representation, which corresponds more closely to how

humans see the world, into a tree. In order for a Partitioning Tree to represent a solid object,

each cell of the tree must be classified as being either entirely inside or outside of the object;

thus, each leaf node corresponds to either an in-cell or an out-cell. The boundary of the s e t

then lies between in-cells and out-cells; and since the cells are bounded by the partitioning

hyperplanes, it is necessary for all of the boundary to  lie in the partitioning hyperplanes.
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B-rep Tree

B-rep and Tree representation of a polygon

Therefore, we can convert from a b-rep to a tree simply by using all of the face

hyperplanes as partitioning hyperplanes. The face hyperplanes can be chosen in any o r d e r

and the resulting tree will always generate a convex decomposition of the interior and t h e

exterior. If the hyperplane normals of the b-rep faces are consistently oriented to point t o

the exterior, then all left leaves will be in-cells and all right leaves will be out-cells. The

following algorithm summarizes the process.

 Brep_to_Bspt:  Brep b -> Bspt T

IF b == NULL
 THEN

T = if a left-leaf then an in-cell else an out-cell
 ELSE

h = Choose_Hyperplane( b )
{ b+ , b-, b0 } = Partition_Brep( b, h )
T.faces = b0

T.pos_subtree = Brep_to_Bspt( b+ )
T.neg_subtree = Brep_to_Bspt( b- )

 END

However, this does not tell us in what order to choose the hyperplanes so as to produce t h e

best trees. Since the only known method for finding the optimal tree is by exhaust ive

enumeration, and there are at least n! trees given n unique face hyperplanes, we m u s t

employ heuristics. In 3D, we use both the face planes as candidate partitioning hyperplanes ,

as well as planes that go through face vertices and have predetermined directions, such a s

aligned with the coordinates axes .

 Given any candidate hyperplane, we can try to predict how effective it will be using

expected case models; that is, we can estimate the expected cost of a subtree should we choose

this candidate to be at its root. We will then choose the least cost candidate. Given a region r

containing boundary b  which we are going to partition by a candidate h , we can compute
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exactly p+  and p- for a given operation, as well as the size of b+  and b-. However, we can only

estimate  Ecost[ T+ ] and Ecost[ T- ]. The estimators for these values can depend only upon a

few simple properties such as number of faces in each halfspace, how many faces would b e

split by this hyperplane, and how many faces lie on the hyperplane (or area of such faces).

Currently, we use |b+|n for Ecost[ T+ ], where n  typically varies between .8 and .95, a n d

similarly for Ecost[ T - ]. We also include a small penalty for splitting a face by increasing its

contribution to b+ and b -  from 1.0 to somewhere between 1.25 and 1.75, depending u p o n

the object. We also favor candidates containing larger surface area, both in our heurist ic

evalution and by first sorting the faces by surface area and considering only the planes of t h e

top k faces as candidates.

One interesting consequence of using expected case models is that choosing the candidate

that attempts to balance the tree is usually not the best; instead the model prefers candidates

that place small amounts of geometry in large regions, since this will result in high probability

and low cost subtrees, and similarly large amounts of geometry in small regions. Balanced is

optimal only when the geometry is uniformly distributed, which is rarely the case. More

importantly, minimizing expected costs produces trees that represents the object as a

sequence of approximations, and so in a multi-resolution fashion.

.
Balanced Better

Balanced is not optimal for non-uniform distributions

Boundary Representations vs. Partitioning Trees

Boundary Representations and Partitioning Trees can be thought of as competing

alternatives or as complementary representations expressing difference aspects of geometry ,

the former being topological, the later expressing hierarchical set membership. B-reps a r e

well suited for interactive specification of geometry, expressing topological deformations, a n d

scan-conversion. Partitioning Trees are well suited for intersection and visibility calculations.

Their relationship is probably more akin to the capacitor vs. inductor, than the tube vs.

t ransistor .
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The most often asked question is what is the size of a Partitioning Tree representation of a

polyhedron vs. the size of its boundary representation. This, of course, ignores the fact t h a t

expected cost, measured over the suite of operations for which the representation will b e

used, is the appropriate metric. Also, boundary representations must be supplimented b y

other devices, such as octrees, bounding volumes hierarchies, and z-buffers, in order t o

achieve an efficient system; and so the cost of creating and maintaining these s t r u c t u r e

should be brought into the equation. However, given the instrinsic methodological difficulties

in performing a compelling empirical comparision, we will close with a few examples giving the

original number of b-rep faces and the resulting tree using our currently implemented t r e e

construction machinery.

Data Set   brep tree faces r a t i o  nodes r a t i o E[T]  %nodes

hang glider man     189      406 2 . 1 4      390 2 . 0 6 1.7,  3.4,  21.4

space shuttle      575   1,006 1 . 7 5      927 1 . 6 1 1.2,  2.5,  13.2

human head 1      927   1,095 1 . 2 1   1,156 1 . 2 4 1.4,  4.4,  25.0

human head 2   2,566   5,180 2 . 0 1   5,104 1 . 9 9 0.2,  0.8,    9.1

Allosaurous   4,072   9,725 2 . 3 8   9,914 2 . 4 3 NA

Lower Manhattan   4,532   5,510 1 . 2 2   4,273 0 . 9 4 0.3,  0.6,  10.5

Berkeley CS Bldg.   9,129   9,874 1 . 0 8   4,148 0 . 4 5 0.4,  1.3,  14.6

Dungeon 1 4 , 0 6 1 2 0 , 3 2 8 1 . 4 4 1 5 , 7 3 2 1 . 1 2 0.1,   0.1,   1.7

Honda Accord 2 6 , 0 3 3 5 1 , 7 3 0 1 . 9 8 4 2 , 9 6 5 1 . 6 5 NA

West Point terrain 2 9 , 4 0 0   9,208 0 . 3 1    7636 0 . 2 6 0.1,  0.3,    4.2

US destroyer 4 5 , 8 0 2 9 1 , 9 2 8 2 . 0 0 6 5 , 8 4 6 1 . 4 3 NA

The first ratio is number-of-brep-faces/number-of-tree-faces. The second ratio is n u m b e r -

of-brep-faces/number-of-tree-nodes, where number-of-tree-nodes is the number of

internal nodes. The last column is the expected cost in terms of point, line and plane

classification, respectively, in percentage of the total number of internal nodes, and w h e r e

the sample space was a bounding box 1.1 times the minimum axis-aligned bounding box.

These numbers are pessimistic since typical sample spaces would be much larger than a n

object's bounding box. Also, the heuristics are controlled by 4 parameters, and t h e s e

numbers were generate, with some exceptions, without a search of the parameter space b u t

rather using default parameters. There are alos quite a number of ways to improve t h e

conversion process,  so it should be possible to do even better.
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Binary Space Partitioning Tree Summary

A . Primary operations

1.     intersections    : between geometric sets (polyhedra, polygons, lines, points).

Interpret tree as a hierarchy of (bounding) volumes

2.      visibility        order ings    : viewer or light source dependent.

Interpret tree as a hierarchy of separating planes

B.  Secondary operations

1. set operations : union, intersection and difference between solid objects

2. collision detection

3. view-volume clipping : eliminating objects not within current field of view

a. includes solid cutaways

4. visible surface determination

5. shadows

6.  ray-tracing

7.  radiosity

8 . image segmentation

a. reconstruction of objects from video, MRI, CT, etc.

b. compression

C. Efficiency

1. Utilizing temporally invariant spatial properties

a. knowledge of spatial relations encoded in tree structure exploited

over many frames to reduce cost of computation for each frame

b.  tree structure is preserved by affine and perspective transformations; and so 

objects may move without changing the tree structure.     Not    true of octrees.

2.  Multi-resolution representation

Interpret a tree as a  hierarchy of convex bounding volumes.

a. intersections

IF     n o      intersection with bounding-volume

  THEN there can be     n o     intersections with contents of volume, so stop.

  ELSE continue with contents of volume, and so on, recursively.

Reduces O(n2) operation to O(n log n), or O(n)  to O(log n)

b.  rendering

Tree pruning permits discarding detail too small to see in current view

(no manual creation of a levels of detail)

3.  Visibility ordering
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a. comparison to z-buffer

1. no numerical problems created by perspective projection

2. no z-buffer memory

3. unlimited use of transparency

4 anti-aliasing without subpixel color and z buffers: saves ~16X in

 this kind of memory (10Mb vs 160Mb), plus reduces computation.

5. for shadows, no quantization errors, which are amplified by

the inverse perspective projection, plus all of the above points.

b. visibility culling : do not draw objects occluded by closer objects, e.g. wall

occluding rest of a building. Achieved by near-to-far ordering using

multi-resolution beam-tracing.

c. transparency:  visibility ordering solves this for a single tree.

For multiple objects, the required ordering is achieve  by merging trees,

which can be thought of as merging "pre-sorted lists".

4.  Linear equations

Computations involve only linear equations - much cheaper than non-linear.

Curved surfaces are approximated as a sequence of piecewise linear approx.

which converge to the surface.

5.  Parallel ization

A partitioning tree    is    a computation graph (data-flow graph, flow chart),

describing all inherent parallelization available. Tree branches indicate

independent computation while tree paths indicate pipeline-able computation.
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