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ABSTRACT
The Edgebreaker is an efficient scheme for compressing
triangulated surfaces. A surprisingly simple implementation
of Edgebreaker has been proposed for surfaces homeomorphic
to a sphere. It uses the Corner-Table data structure, which
represents the connectivity of a triangulated surface by two
tables of integers, and encodes them with less than 2 bits per
triangle. We extend this simple formulation to deal with
triangulated surfaces with handles and present the detailed
pseudocode for the encoding and decoding algorithms (which
take one page each). We justify the validity of the proposed
approach using the mathematical formulation of the
Handlebody theory for surfaces, which explains the
topological changes that occur when two boundary edges of a
portion of a surface are identified.

Keywords
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1. INTRODUCTION
The Edgebreaker compression and decompression algorithms
[13] may be used to encode the connectivity of any simply
connected manifold triangle mesh with a guaranteed worst case
code of 1.80 bits per triangle [4]. In practice, the Edgebreaker
encoding may often be further compressed  to less than one bit
per triangle through the use of Entropy codes [14]. But the true
value of Edgebreaker lies in the efficiency and surprising
simplicity of the algorithms [15], which fit in a couple of
pages and use only a few arrays of integers as sole data
structure. Because of its simplicity, Edgebreaker is viewed as
the emerging standard for 3D compression [17] and may
provide an alternative for the current MPEG-4 standard that i s
based on Rossignac's previous work with Gabriel Taubin [19].
This simple implementation of Edgebreaker, as a state
machine, is publicly available through the web [3] and has
been recently enhanced to support meshes with an arbitrary
number of handles (also called through-holes). We provide in
this paper a detailed description of this extension, imbedding
it in a theoretic setting of the Handlebody theory, and
including formal proofs.

An important topological property of boundary
representations (abbreviated B-Reps) [1] is the Euler-Poincaré
formula, dated from the turn of the century [11], which states
that an orientable connected triangulated surface S without
boundary is uniquely identified by its Euler characteristic
χ(S)=|V|−|E|+|F|, where |V|,|E| and |F| indicate respectively the
number of vertices, edges and faces of S. The Euler
characteristic classifies S according to the Euler formula that i s
χ(S)= 2 − 2g (where g is the genus of the surface, or in other
words, the number of through-holes). From this two equations,

the genus of a connected triangulated surface without
boundary may be expressed as  g = 1 – (|V|–|E|+|F|)/2.

The Handlebody theory [10,16] refines the traditional
Euler-Poincaré theory [11] by bringing several new
topological invariant for n-dimensional smooth manifolds. Its
fundamental problem is to study the topological changes
generated by handle attachments to manifolds with boundary.

The paper is organized as follows. Section 2 describes the
Handlebody Theory. Section 3 presents some definitions of
combinatorial topology to precisely establish our notation.
Section 4 presents the Handle Operators for triangulated
surfaces, which consists in a set of topological operators to
build and un-build surfaces with or without boundary. Section
5 describes the Corner-Table data structure. Section 6 and 7
introduce, respectively, the Edgebreaker simplified
compression and decompression algorithm for surfaces with
handles.

2. HANDLEBODY THEORY
In classical Handlebody theory, the object of study is taken to
be a compact n-dimensional manifold with or without
boundary. The main purpose of this section is to give a brief
introduction to this theory, in particular for the 2-dimensional
case.

A set V ⊂  
mR is an n-dimensional manifold with

boundary if each point in V has an open neighborhood

homeomorphic to either 
nR or 

nR+ .

Let Di be the i-dimensional disk. The boundary of a set P
is denoted by ∂P. Notice that D0, D1, and D2 correspond,
respectively, to a point, to a line, and to a disk. Moreover, the
set ∂D0 is an empty set, the set ∂D1 consists in two points, and

the set ∂D2 is a circle. Let R and S be two topological spaces,

then  R×S corresponds to the set obtained by the usual

Cartesian product, which means that R×S is the set of all pairs

elements (r,s) such that r∈ R and s∈ S.

There are three types of handles for 2-manifold and they
will be distinguished by an index λ  that varies from 0 to 2.

Definition 2.1:  A  handle  of  index λ, denoted by Hλ, is  a

pair of  topological  spaces (Aλ , Bλ) such that Bλ ⊆  ∂Aλ , ,

Aλ=Dλ×D2-λ and Bλ=∂Dλ×D2-λ.

According to this definition, one can observe that for λ=0, the

set A0=D0×D2  is a 2-disk and B0=∂D0×D2
  is the empty space,

since ∂D0 is ∅ . The set A1=D1×D1
 is a square (Cartesian product

of two intervals) and B1=∂D1×D1 is defined to be two opposite

sides on the boundary of A1, since ∂D1 is composed by two



points and D1 is an interval. Finally,  in the case where λ=2, the

set A2=D2×D0 
 is a 2-disk and  B2=∂D2×D0 is the circle that i s

exactly the boundary of A2.
To attach a handle Hλ=(Aλ, Bλ) to the boundary of a 2-

manifold S means to identify by a homeomorphism the set Bλ⊆
∂Aλ with a subset I contained in the boundary of S.

The next theorem is the main mathematical tool in which
this work is based [16].
Theorem 2.2 (Handlebody Decomposition): For every
manifold S there is a finite sequence of surfaces {Si}i=1..N

such that S0=∅ , SN=S and the manifold Si is obtained by

attaching a handle Hλ=(Aλ,Bλ) to the boundary of Si-1. This
sequence is called the Handlebody Decomposition of S.

Figure 1 illustrates the handlebody decomposition of a
torus.

S0=∅

S1= S0+ H0  =

S2= S1+ H1 =  ≈

S3= S2+ H1 = ≈

S4= S3+ H2 =

Figure 1: Handlebody decomposition of a torus   .
Handles can be attached to an orientable 2-manifold with
boundary in such a way to preserve its orientability, i.e., the
identification has to be coherent. If one starts with an
orientable 2-manifold, then after attaching a handle it is again
orientable, that is, it doesn’t contain a Moebius strip [16]. The
test to know if the handle is attached coherently is simple:
check the number of boundary curves, if this number i s
changed, then it is coherent; if else, a Moebius strip has been
added to the previous manifold.

When a handle Hλ is attached coherently to the boundary
of Si-1 to obtain Si,, a topological change is generated and such
change depends only on the index λ .

The topological change generated by a handle attachment
of index 0 is a creation of a new 2-manifold component (see S1

in Figure 1).
When the handle H1  is coherently attached to a 2-

manifold, three situations can occur:

1. The set B1  may be attached to disjoint intervals on the
same boundary curve component. In this case, the
topological change is an inclusion of a new boundary
curve component (see S2 in Figure 1).

2. The set B1 may be attached to intervals on different
boundary curve components of a 2-manifold component.
The topological change is here characterized by increase
of the genus. In addition, the number of boundary curve
components decreases  (see S3 in Figure 1).

3. The set B1 may be attached to intervals on different surface
components. Here, one boundary curve component and
one surface component are removed.
Handles of index 2 close a boundary curve component

(see S4 in Figure 1).
Thus, there are five different situations in which a handle

can be attached coherently to the boundary of a 2-manifold.
The Edgebreaker encoding/decoding algorithms for

triangulated surfaces with or without genus also defines a
sequence of topological changes that the surface undergoes
during the reconstruction process. In this work, the relation of
these algorithm with the handlebody decomposition will be
clarified. But first, some definitions of combinatorial
topology must be invoked to precisely establish our notation.

3. BASIC CONCEPTS
A simplex σp of dimension p (p-simplex, for short) is the

convex hull of p+1 linearly independent points in 
mR , called

its vertices. A simplex σk  is a face of a simplex τp, k ≤ p,  when

each vertex of σ  is a vertex of τ. This relation is denoted by

σ < τ.  The empty simplex is a simplex.

An n-dimensional simplicial complex K is a finite

collection of i-dimensional simplexes (i = 0,...,n) in  
mR ,

under the following conditions:
1. If σ ∈Κ  and τ <σ then τ∈Κ

2. If σ and τ ∈Κ then (σ ∩ τ) < σ and (σ ∩ τ) < τ.

The underlying polyhedron |K| ⊂  
mR  corresponds to the

union of all points contained in a simplex of K. If a collection
of simplexes L⊂  K is a simplicial complex, then it is called a
subcomplex of K.

Two k-simplexes σ and τ ∈  K  are adjacent when σ ∩
τ ≠∅.  If ξ  is a face of a simplex τ then they are said to be
incident to each other.

A complex K is connected if it cannot be represented as a
union of two non-empty disjoint subcomplexes L and M
without common simplexes. A component of a simplicial
complex K is a connected subcomplex that is not contained in
a larger subcomplex of K.

The star of a vertex v is a subcomplex of K composed by
the union of simplexes that are incident to v, and is denoted
by star(v). The link of a vertex v, denoted by link(v), is the
frontier of star(v). The open star of a vertex v is the set star(v)-
link(v).

An n-dimensional simplicial complex M, |M| ⊂  
mR , is a

combinatorial n-manifold with boundary if the following two
conditions are satisfied:

1. A (n–1)-simplex in M is incident to one or two n-
simplexes of M.



2. The open star of a vertex in M is homeomorphic to an

open subset of either 
nR or 

nR+ .

The subcomplex formed by the (n–1)-simplexes in a
combinatorial n-manifold M incident to only one n-simplex i s
called the boundary of M and is denoted by ∂M. The simplexes

of M that belongs to ∂M are called boundary simplexes
otherwise they are called interior cells. The boundary of a
combinatorial n-manifold is a combinatorial (n–1)-manifold
without boundary.

A combinatorial n-manifold is orientable when it i s
possible to choose a coherent orientation on its n-simplexes,
i.e., two adjacent n-simplexes induce opposite orientations on
their common (n–1)-simplexes.

From now on, a surface and a curve will always mean,
respectively, a 2 and 1 dimensional connected oriented
combinatorial manifold with or without boundary. The set of
2,1 and 0 dimensional simplexes of a surface S will be called,
respectively, triangles, edges and vertices and they are denoted
by T(S), E(S) and V(S).

The Triangle-Edge connectivity graph of a surface S,
denoted by GTE(S) = (N,L), is defined to be the graph whose
nodes and lines are, respectively, their triangles and edges. Let
N(GTE) and L(GTE) be the set of nodes and lines of GTE. Then,
two one-to-one functions nTE: T(S)→N(GTE) and lTE:

E(S)→L(GTE) are defined in such a way that each edge e ∈  E(S)
that is incident to the triangles u and v corresponds to a line
l∈ L(GTE) that connects the nodes nTE (u) and nTE (v).

The Vertex-Edge connectivity graph of a surface S,
denoted by GVE (S), is defined to be the graph whose  nodes
and lines are, respectively,  the surface vertices and edges. Two
other one-to-one functions, named  nVE: V(S)→N(GVE) and lVE:

E(S)→L(GVE), are defined in such a way that each edge e ∈  E(S)
that is incident to the vertices u and v corresponds to a line
l∈ L(GVE) that connects the nodes nVE (u) and nVE (v). Here,
N(GVE) and L(GVE) denote the set of nodes and lines of GVE.

4. HANDLE OPERATORS
Section 2 described the Handlebody theory for 2-manifolds. In
this section, we introduce a set of operators that allows the
implementation of the handlebody decomposition for
triangulated surfaces (for more details, see [9]).

Given a surface S with or without boundary, we would like
to construct a finite sequence of combinatorial surfaces
{Si}i=0...n, in which S0=∅  and Sn=S.  To build such sequence, we
propose a set of operators, called Handle operators, and we
study the topological changes caused by their actions.

In a combinatorial point of view, three types of operators
are now be defined to represent the handle attachments.

4.1 Handle Operator of type 0
This operator creates a new surface component with only one
triangle (see Figure 2).

NIL

Figure 2: Handle operator of type 0 – triangle creator.

4.2 Handle Operators of type 1
The purpose of this  operator is to  identify two given
boundary edges with no vertices in common. There are three
situations for this group. They are distinguished according to
the answer of the following questions:

•  Are those edges on the same surface ?
If not, the handle operator will attach the two different surfaces
and remove one boundary curve component (see Figure 3(a)).
Otherwise, the next question will identify the remaining two
cases.
•  Are those edges on the same boundary curve component ?
If so, then the operator will split the boundary curve into two
different components (see Figure 3(b)). Otherwise,  it will
increase the number of genus on the surface and reduce in one
the number of boundary curve components of the surface (see
figure 3(c)). Interior edges are drawn in yellow, and different
boundary curves have different colors.

(a) The boundary edges belongs to different surfaces.

(b) The boundary edges belong to the same boundary curve of
a surface.

(c) The boundary edges belong to different boundary curves of
a surface.

Figure 3: Handle operators of type 1.

4.3 Handle Operators of type 2
In this group there are two operators used to identify two
given boundary edges with vertices in common, which could
be one or two. Those operators will be used only in the
Zipping part of the Edgebreaker decompression algorithm.
When they have two vertices in common, the operator closes
one boundary curve component and transform those boundary
vertices into two interior vertices (see Figure 4(a)). Otherwise,
it zips the two boundary edge and generates one interior vertex
on the surface (see Figure 4(b)).

(a) The boundary edges have two vertices in common.



(b) The boundary edges have one vertex in common.
Figure 4: Handle operators of type 2.

4.4 Inverse Handle Operators
The inverse operators are naturally defined by exchanging the
direction of the arrows in Figures 2, 3 and 4.

The inverse action of a Handle Operator of type 0 is the
destruction of a triangle.

The direct Handle Operators of type 1 and 2 identify two
boundary edges to create an interior edge. On the other way
round, an inverse Handle Operator splits an interior edge into
two boundary edges.

The inverse Handle operators of type 2 are distinguished
according to the number of interior vertices incident to a given
interior edge. If the edge to be operated has two interior vertex
then it creates a new boundary curve component on the surface
(invert the arrow in Figure 4(a)). If the edge has only one
incident interior vertex, then the operator adds this vertex to
the boundary (invert the arrow in Figure 4(b)).

Inverse Handle  operators of type 1 are applied when its
two incident vertices are on the boundary. If those vertices are
on different boundary curve components then it joins the two
boundary curves (invert arrow in Figure 3(b)). Otherwise, the
two incident vertices are on the same boundary curve and in
this case  the boundary curve is separated in two components
and after the edge split either the surface disconnects (invert
arrow of Figure 3(c)), or  a genus is removed (invert arrow in
Figure 3(c)).

5. CORNER-TABLE DATA STRUCTURE
The purpose of this section is to describe the data used in the
Edgebreaker compression and decompression algorithms.

The Corner-Table (CT) is a very compact data structure for
triangular surfaces, introduced by Rossignac, Safonova and
Szymczak in [15]. It uses the concept of a corner that
represents the association of a triangle with one of its incident
vertices. In the CT data structure, the corners, the vertices and
the triangles are indexed by non-negative integers.

The frontier of a triangle is implicitly represented by an
oriented cycle of three corners, whose identification is given
by three consecutive indices. By definition, corners with
indexes 0, 1 and 2 correspond to the first triangle frontier, the
corners of indexes 3,4 and 5 correspond to the second triangle
frontier  and  so  on.  As  a  consequence,  a  corner  with  index
c  is  associated with  the  triangle of  index   c.t = (c DIV 3).

In a triangulated surface, every corner has a vertex and an
opposite corner associated to it. This information is stored in
two integer arrays, called the V and O tables. The dimension of
both tables is three times the number of faces, which
corresponds to the number of corners on the surface.

The notation c.v, which is a short for V[c], corresponds to
the value stored in the V table whose entry is c and returns the
id of the vertex associated with corner c.

Assuming that a counter-clockwise orientation has been
opted for the surface, then for a given corner c, the next (c.n)
and previous (c.p) corners on its triangle frontier cycle are

obtained by the use of the following expressions: c.n = 3×c.t +

(c+1) MOD 3, and c.p = 3×c.t + (c+2) MOD 3.

The notation c.o, stands for O[c] and returns the id of the
corner opposite to c. To be precise, c.o is the only integer b for
which: c.n.v = b.p.v and c.p.v = b.n.v.

In practice, the O table needs not be stored, because it may
be easily derived in linear time from the V table using a
hashing sort of triples (min(c.n.v, c.p.v), max(c.n.v, c.p.v), c)
for all corners c. Entries that correspond to opposite corners
are consecutive in the stored list. For convenience, the left and
right corners c.l and c.r are, respectively, defined as c.p.o and
c.n.o. All corner relations and notations are illustrated in
Figure 5.

c.v

c.rc.l

c.o

c.t

c.n c.p

c

Figure 5: Corner notations   .
The coordinates of the vertex with index i are stored in the row
i of a matrix, called G (for geometry). The  dimension of G i s
|V|×Ν, where |V| is the number of vertices and N is the
dimension of the space where the surface is embedded. Usually
N=3.The notation c.v.g is used to access the geometry of the
vertex and stands for G[V[c]].

To illustrate the data structure tables consider the
tetrahedron in Figure 6(a). Table 1 is an example of a CT data
structure for this example considering the corners and vertices
indices in Figure 6(b).

0

1

2

3

     0 1

2 3

0

2

10

2
34

5

7

68

10

11

9

(a) tetrahedron               (b) vertex and corner indices

Figure 6: Tetrahedron example.

Corner O Table V Table

0 3 0

1 10 1

2 7 2

3 0 3

4 6 2

5 11 1



6 4 0

7 2 3

8 9 1

9 8 2

10 1 3

11 5 0

Table 1: Example of a CT data structure for a tetrahedron.

6. EDGEBREAKER COMPRESSION
The Edgebreaker is a state machine that encodes a
combinatorial surface without boundary M. At each state, a
decision is made to move from a triangle Y to an adjacent
triangle X. To perform this decision, all visited triangles and
their incident vertices are marked.

Let Left and Right denote the other two triangles that are
incident upon X. Let v  be the vertex common to X, Left, and
Right. Five situations are distinguished according to the Table
2. Those cases are denoted by the letters C,L,E,R and S
(arranged for the mnemonic “Claire’s”). The arrow in Figure 7
indicates the direction to the next triangle. Previously visited
triangles are filled. The edge that crosses from Y to X will be
called the gate.

C L E R S

Vertex
v

Not
Visited

Visited Visited Visited Visited

Left
Tr\iangl

e

Not
Visited

Visited Visited Not
Visited

Not
Visited

Right
Triangle

Not
Visited

Not
Visited

Visited Visited Not
Visited

Table 2: Edgebreaker state machine.

C

Y

V

L

Y

V

R

Y

V

E

Y

V

C

Y

V

S

Y

Figure 7: Edgebreaker clers cases.

6.1 The Algorithm
The compression algorithm (see Appendix 1) is composed of
an initialization InitCompression followed by a call to
Compress. The initial corner c may be chosen randomly. The
initialization encodes and marks the three vertices of the first
triangle, marks the triangle as visited, assigns an Id for each
corner and calls Compress. The “visited” mark flags for
triangles and vertices are, respectively, stored in the arrays U
and M.

Compress is a recursive procedure that traverses the
surface M  in a spiraling spanning tree of triangles. The

recursion starts only at triangles that are of type S and
compresses the branch adjacent to the right edge of such a
triangle. When the corresponding E triangle is reached, the
branch traversal is complete and the routine returns from the
recursion to pursue the left branch. At this point, two
situations are distinguished. If the Left triangle has not been
visited during the right branch traversal (case of normal S), we
move to the left neighbor and continue our encoding of the
left branch. Otherwise  (case of a handle S) the pair of opposite
corners separated by the left edge of the S triangle are stored in
the stream or file called handle and the routine returns. These
edges will have to be attached together during decompression
to form handles.  The encounter of an E that does not match an
S terminates the compression process.

For C, L, E and R triangles, an U array entry stores the flag
that indicates whether a triangle has been visited (1) or not (0).
Since any S triangle is a potential handle S, its U entry stores
an integer that corresponds to the corner id that will be
assigned to the c.p corner in the decompression algorithm. The
value of this integer may be later saved on the handle stream.

The Compress routine starts testing for handle attachment,
i.e., whether the triangles to the left and to the right are
adjacent to a previously visited S triangle. If so, it saves in the
handle stream the pair of opposite corners.

Next, if the tip vertex of a new triangles has not yet been
visited (“IF c.v.m != 1”), we are on a C triangle and we encode
the information necessary for decoding the location of that
vertex. Typically, this information is a residue vertex that the
decoder will add to an estimation of c.v.g computed from
neighboring vertices. Here, we are using the simplest
Edgebreaker code, we encode a 0 in the clers string to indicate
a C triangle and the vertex coordinates are directly stored in
the vertices stream or file.

When the tip of the new triangle has been visited, we
distinguish four  other cases, based on the status of the
neighboring (left and right) triangles. They correspond to the
labels L, R, E and S as indicated in Table 2. To test whether the
left and right adjacent triangles have been visited we use,
respectively, the commands (“IF c.l.t.u > 0”) and (“IF c.r.t.u >
0”). The L,R,E and S labels are each encoded using 3 bits.  For
so, the following convention are defined: 110 for L, 111 for E,
101 for R, and 100 for S (for more details, see [14]).

6.2 The torus example
To illustrate the algorithm, consider the surface given by the
model for a triangulated torus illustrated in Figure 8(a).
Identifying the edges indicated by the arrows on the opposite
sides of the rectangle, one can build a simplicial complex in R3

whose polyhedron is homeomorphic to the torus (see Figure
8(b)).

           
     (a) triangulated rectangle                     (b) torus

Figure 8: Torus example and its triangulation.



Figure 9 shows some stages of the Edgebreaker
compression algorithm. Starting with the gray triangle, one
can easily obtain the sequence CCCCRCCCRCCRCCR for the 15
initial triangles. Notice that the opposite sides of the
triangulated rectangle are identified. To visually percept the
visited vertices, they are represented by black dots. The 16th

triangle is of type S, since its tip vertex has already been
marked (when the algorithm passes through the 7th triangle)
and its left and right adjacent faces have not been visited
yet.

Figure 10 illustrates the labels of all triangles of the
torus defined by the Edgebreaker compression algorithm. At
the end of the algorithm, the clers string obtained for this
surface is CCCCRCCCRCCRCCRSCRSCRSRLSEERSEE.  

As one can observe, in this example, that there are five
triangles labeled with S. In the string sequence, the last three
S are normal, since their right and left branches are traversed
in the compression algorithm. On the other hand, the left
branches of the first and of the second S triangles are not
traversed since their left adjacent triangle have been visited
during their right branch traversal. Therefore, the two red
pairs of opposite corners are saved in the handle file.  

C

C

C

C

C

R

C

C C

C

C

C

R

R

R

S

Figure 9: earlier stages for the torus example.
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R

R

C

C

R

R

R

R

S

S

S

S

L

E E

S

EE

R*
*

Figure 10: clers sequence for the torus example.

6.3 Why does it work?
The Edgebreaker compression algorithm moves from one
triangle to an adjacent one that has not been previously
visited until it passes through all triangles. As a consequence,

it generates a spanning tree on the triangle-edge connectivity
graph GTE(M), which is denoted by TTE(M).

A line l belongs to TTE(M) if and only if its corresponding
edge lTE

-1(l) is a gate for a triangle. Notice that for a tree, the
number of nodes minus the number of lines is equal to one.
Thus, we can assert that the number of triangles minus the
number of gates is equal to one.

Define that an edge e∈ E(M) belongs to a set Γ(M) if

nTE(e)∉  TTE(M), i.e., e is not a gate.

The symbols #C and #G denote, respectively, the number
of C triangles and the number of edges that are gates. And the
operator |A| means the cardinality of a set A.

One can observe that the number of vertices of M is equal
to the #C plus 3 (the three vertices of the starting triangle)
[13].

Let us consider the set Ψ(M) of edges composed by the
two non-gate edges of the starting triangle and all non-gate
edges of a C triangle (black edge of the C triangle in Figure 7).
As an immediate consequence |Ψ(M)| = #C+2. We are now to
study the several other import properties of this set.  

Notice that Ψ(M) is a subset of Γ(M), since an edges in

Ψ(M) is not a gate by definition.

There is no vertex of M that is not incident to an edge in
Ψ(M), since the Edgebreaker visit all vertices through the C
triangles.

There is an theorem [2] in graph theory that asserts an
important property for subgraphs.

Theorem 6.1: Let G be a simple graph with n nodes. If a
subgraph G’ with n nodes satisfies any two of the following
three p, then it satisfies the third as well.

(a) G’ is connected.

(b) G’ has (n-1) edges.

(c) G’ is acyclic.

Notice that this theorem characterizes a spanning-tree in a
graph and we can use it to proclaim the following Lemma.

Lemma 6.2: The edges of Ψ(M) form a spanning tree, denoted
by TVE, on the triangle-edge connectivity graph GVE (M).

Proof: The hypothesis of theorem 6.1 are satisfied, since:

(a) GVE is simple, otherwise M is not a combinatorial
surface.

(b) TVE contains all nodes of GVE, since Edgebreaker visit
all vertices of M.

Thus Theorem 6.1 guarantees that this assertion is true, based
on the following facts:

(a) The number of lines on TVE is equal to the number of
nodes in TVE minus one. Since in TVE there are #C+2
lines and #C+3 nodes.

(b) TVE is acyclic, because a C triangle is created only
when the tip vertex has not been visited yet.                 �

The next lemma calculates the cardinality of Γ(M) − Ψ(M),
which is denoted by the number h.

Lemma 6.3: The number of non-gate edges that are not
incident to a C triangle is twice the number of genus on the
surface M, i.e., |Γ(M)| − |Ψ(M)| = 2g.

Proof: For a resume of the facts observed above, we can write
the following equations:



•  |T(M)| = #G + 1

•  |V(M)| = #C + 3

•  |E(M)| = #G + |Γ(M)|

•  |Γ(M)| = |Ψ(M)| + h

•  |Ψ(M)| = #C + 2

Thus, we can  express the Euler characteristic of M in terms of h
as follows:

χ(M) =|V(M)|−|E(M)|+|T(M)|

         = (#C + 3) − (#G  + #C + 2 + h) + (1 + #G)

         =  2 − h.

Substituting the equation above in the Euler formula
χ(M)=2−2g, we can conclude that h = 2g.         �

When M is homeomorphic to a sphere (g=0) we have Γ(M)

= Ψ(M), which means that the edges in the implicitly defined
spanning-tree TVE of GVE together with the spanning-tree TTE

of GTE contains all edges of M.

To exemplify, let us consider the tetrahedron example of
Figure 6. The clers string obtained starting with the triangle
<0,1,2> is CRE, where <a,...,z> means the the spanning space
generated by the vertices in the brackets. In this example, C i s
the triangle <3,2,1>, R is the triangle <0,3,1>, and E is the
triangle <2,3,0>. The spanning trees TTE and TVE are illustrated
in Figure 11.  The lines of TTE correspond to the edges
<1,2>,<1,3> and <3,0> and the lines of TVE are associated to
the edges <0,1>,<0.2> and <2,3>.
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                      (a) TTE                                         (b) TVE

Figure 11: spanning-trees of a tetrahedron.

Lemma 6.4: If we cut the surface M without boundary along
the edges of the TVE spanning tree by the use of the inverse
handle operators, then the resulted surface has an unique
boundary curve component and has no  interior vertex.

Proof: When the first edge is cut, we have to apply the inverse
handle operator of type 2 which creates a new boundary curve
component by splitting an interior edge with no incident
boundary vertices (see Figure 4(a)). Since TVE is a tree, we can
take the edge incident to one vertex on this boundary curve to
apply the inverse handle operator. In this case, we have to
apply the inverse handle operator of type 2 that split an
interior vertex with one incident boundary vertex (see Figure
4(b)), i.e., it simply “unzips” the boundary. This edge couldn’t
have two incident boundary vertices otherwise TVE is not a
tree. We can continue this process until all edges are cut. Since
the TVE is a spanning tree, it contains all vertices of M, then
after operating all edges with the inverse handle operators,
there will be no interior vertices on the resulted surface.             

       �
Figure 12 illustrates the cut for the tetrahedron example

along the TTE tree. The resulting surface correspond exactly to
the surface (path of faces) defined by the TTE tree (see Figure
11(a)).

0

1

2

3

Figure 12: tetrahedron cut along TVE.

Notice that TTE can be obtained by decoding the clers
sequence and the edges defined on graph TVE can be
completely recovered by the Zip procedure [14], which will be
discussed in the next section. In conclusion, if the surface has
no genus (g=0), the clers string is sufficient for the
Edgebreaker algorithm presented in [15] to reconstruct the
connectivity of the surface.

However, when the surface has g genus (g > 0), Lemma 6.3
affirms that if we consider all edges of TTE and TVE there will be
2g edges missing. In our algorithm we store these 2g edges in
the handle stream, as one can observer in the next Lemma.

Lemma 6.5:. Suppose that M has g genus. An edge belongs to
Γ(M) − Ψ(M) if and only if its corresponding pair of corners
are stored in the handle file.

Proof: (⇐ ) When the left adjacent triangle to an S has been
visited during the right branch traversal, the pair of opposite
corners to the left edge e are stored in the handle stream. In
this case, the left adjacent triangle to the handle S, obviously,
cannot be a C. In addition, e is not a gate in both incident
faces. Thus, e ∈Γ (M) − Ψ(M).

(⇒ ) By definition, if e ∈  Γ(M) − Ψ(M), then e is not a gate and
it couldn’t be incident to a C triangle. Suppose, by
contradiction, that the opposite corners of e are not stored in
the handle file. Thus, e also couldn’t  be incident to an S
triangle. So, one can observe that e has to be a non-gate edge of
an E,R and L triangle,  which must be incident to a C [14] that
is an absurd. �

 The transmittance of the edges that belongs to the set
Γ(M) − Ψ(M) is the main innovation of the compression
algorithm presented in this work. It will allow us to recover
totally the surface connectivity just like we usually do for
surfaces homeomorphic to the sphere, i.e., by the use of the Zip
procedure.

As a consequence of lemmas 6.4 and 6.5, we can proclaim
the following theorem.

Theorem 6.6: If the surface has g genus, the Edgebreaker
clers string together with the 2g pairs of corners in the
handle file are sufficient to reconstruct the connectivity of the
surface.

Section 7 will talk about the decompression algorithm.
There,  an analysis based on the Handlebody theory will be
done to explain the topological meaning of the edges in Γ(M)

− Ψ(M).  Such analysis (section 7.3) can be used as a sketch of
the proof for the above theorem.

6.4 Compression analysis
Since in a zero-genus surface there are twice more triangles
than vertices and since each vertex is associated with a
different C triangle, half of the triangles are labeled with a C.
Consequently, the Edgebreaker cost for encoding the



connectivity of a mesh with no handles is guaranteed not to
exceed two bits per triangle, regardless of the simplicity or
irregularity of the mesh. With slightly more complex codes, a
tighter bounds of 1.80 bits per triangle can be guaranteed [3].
For large meshes, entropy codes yield less than 1.0 bits per
triangle [13]. When the mesh is sufficiently regular, i.e., has a
large number of vertices with exactly six incident triangles, we
can guarantee an encoding of  0.811 bits per triangle [17].

When the mesh has g genus, we must encode, in addition
to the clers string, 2g entries according to Theorem 6.6. Each
entry identifies the pair of opposite corners that cannot be
identified from the clers string alone. Each identifier requires
log(3T) bits.

7. EDGEBREAKER DECOMPRESSION
The decompression algorithm (see Appendix 2) builds the  V
and O arrays of the corner Corner-Table and the G table of
vertex locations, by reading the data stored in the clers,
vertices and handle files.

7.1 The Algorithm
The InitDecompression routine initializes the first triangle and
reads all pairs of corners in the handle file and store them in a
queue (H array). Each pair of opposite corner are then assigned
in the O table. The decompression starts when the recursive
procedure Decompress is called with corner 1 as parameter. To
completely build all topological connectivity, the Zip routine
is called starting with the corner with index 0.

In the Decompress routine, Edgebreaker appends a new
triangle to a previously visited triangle at each iteration of the
loop, it reads the binary encoding of the next symbol from the
clers string. The steps necessary to attach this new triangle
based on its type are now to be described.

1.      C       triangle     (binary code 0): Edgebreaker associates the
label –1 with the corner opposite the left edge. This
temporary marking is stored in the O table. It will be
replaced with the correct reference to the opposite corner
by a subsequent Zip operation that will be later discussed.
Finally, the coordinates of the new vertex are read from the
vertices file.

2.     L       triangle     (binary code 110): Edgebreaker tests the value
stored in O table entry for the corner opposite to the left
edge. When this value is equal to –3, a different label –2 is
than stored. Otherwise, it means that this corner has been
previously assigned, i.e., it is one of the corners in the
handle file.

3.      R       triangle     (binary code 101): the O table entry for the
corner opposite to the right edge is assigned –2 only when
the opposite right edge is not part of a handle. Than,
Edgebreaker goes to the left triangle.

4.     E       triangle     (binary code 111): both of its boundary edges
are labeled –2 if they are not part of a handle.

5.     S       triangle     (binary code 100): this case forks a recursive
call to Decompress, which will construct and zip a subset
of the mesh that is incident to the right edge of the current
triangle. If the corner associated to the left edge is not part
of a handle, then the reconstruction proceeds to decode and
build the branch attached to the left edge of the current

triangle. Otherwise, the routine returns to continue the
surface decoding.

The corners in the O table whose value –1, are the two
opposite corners to the non-gate edges of  the starting triangle
plus all non-gate edges of a C triangle. Notice that all those
corners have already the information about their incident
vertices. Moreover, their opposite edges form the TVE tree. On
the other hand, the corners in the O table marked with –2 have
no information about its incidence. These corners should be
associated with an corner whose opposite is marked as –1.

The Zip routine starts by finding consecutive pairs of
edges in the boundary curve whose labels are in order equal to
–1 and  -2. The initial edge in the zipping process is the
opposite edge of the 2 corner and it will continue as long as
exists a pair of free edges. To find the next pair, the
NextCWBoundaryEdge is called. This procedure performs a
walk over the surface until a CW oriented boundary edge (O
entry equal to –1) is found.

To illustrate the Zip procedure action, let consider the
tetrahedron decodification. Notice that its clers string is  CRE.
At the moment just after the Decompress call, Table 3 shows
the information available in the O and V tables and Figure 13
illustrates this configuration. The first edge that is zipped i s
the one opposite to the corners 2 and 7. The
NextCWBoundaryEdge  is than called, and the next available
boundary edge with O entry equal to –1 is the corner 1. Thus,
the identification of the opposite boundary edges to the
corners 1 and 10 form the second edge zipped. Finally,  the
third edge represented by the corners 5 and 11 is zipped.
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Figure 13: Tetrahedron corner assignment after Decompress.

Corner O Table V Table

0 3 0

1 -1 1

2 -1 2

3 0 3

4 6 2

5 -1 1

6 4 -1

7 -2 3

8 9 1

9 8 -1

10 -2 3

11 -2 -1

Table 3:  V and O tables for a tetrahedron just afterDecompress.



7.2 The torus example
To illustrate the algorithm, consider the compressed
triangulated torus illustrated in Figure 10. After updating the
O table with two pairs of opposite corners saved on the handle
file, the resulted surface obtained after decoding the clers
string is shown Figure 14. In this figure the boundary edges are
in green and the edges that have been identified by a handle are
in red. The next step is to perform the Zip operation, to close
the unique boundary curve component. Figure 15 shows the
resulted surface after two zip operations, the zipped edges are in
yellow. In this Figure, we indicate by the use of  some symbols
the orientation of the boundary curve.
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Figure 14: Torus surface decoded before Zipping.
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Figure 15: Earlier two steps of Zip.

7.3 Edgebreaker Handlebody Decomposition
In resume, the Edgebreaker decompression algorithm decodes
the compressed surface adding a new triangle one by one until
all symbols stored in the clers file are read. In addition, the
InitDecompression updates the O table by assigning the
opposite corners of the 2g edges saved in the handle file. The
surface generated by the Decompress call is homeomorphic to
the original surface M inverse handle operated over the edges
in the spanning tree TTE(M). The next decompression step i s
the Zip process, which closes the unique boundary curve to
finalize the reconstruction of the surface connectivity and
geometry.

All those steps are, in fact, defining a handlebody
decomposition for the surface M. The finite sequence {Mi}i=0...n

of combinatorial surfaces, such that M0=∅  and Mn= M,
generated by the Edgebreaker decompression algorithm can
now be analyzed by the use of handle operators. Where n
corresponds to the number of handle operators we shall use to
build the surface. In this section, we will show that this
number is 2|T(M)|+|V(M)|+2g.

Notice that the identification of two boundary edges i s
performed in the Corner-Table data structure by setting in the
O table the corresponding two opposite corners.

The Edgebreaker decompression algorithm initializes
with a triangle. In this case, a Handle operator of index 0 i s
applied to create such triangle that corresponds to M1.

In the next step, the Edgebreaker begins to decode the
clers string. The notation clersi will be used to access the ith

symbol of the clers string. Notice that the clers sequence has
|T(M)|-1 symbols.

When the clersi symbol is read, a new triangle is created
(Handle operator of type 0) and one of the edges of this new
triangle is attached to the gate edge of the surface Mi (Handle
operator of type 1 illustrated in Figure 3(a)). The surface M2i+2

is  defined to be the surface resulted by the  application of
those two Handle operations.

The Euler characteristic of the surface M2i+2 is the same of
M2i, for i in [0...|T(M)|]. Since M2i+2 has one more triangle, two
more edges and one more vertex than Mi. As a conclusion,  the
surface M2|T(M)|+1 is a connected surface homeomorphic to a disk
(with a unique boundary curve component) with no interior
vertex, i.e., χ(M2|T(M)|+1)=1.

If the handle file is empty (g=0), then we can go directly
to the Zip part of the Handlebody decomposition. Otherwise,
we have to identify the 2g pairs of boundary edges represented
by the corners stored in the handle file.

For each genus, we identify the first pair of boundary
edges to generate the surface M2|T(M)|+2 by the use of a Handle
operator of index 1 illustrated in Figure 3(b).  Notice that
those edges have no vertices in common and belong to the
same boundary curve component. Notice that this operator
splits the boundary curve into two components. Next, we
identify the second pair of boundary edges, which belong to
different boundary curves, by the use of the handle operator of
index 1 of Figure 3(c) to generate the surface M2|T(M)|+3. This
operator adds a genus to the surface and concatenates two
boundary curves. The Euler characteristic of M2|T(M)|+3 i s
calculated according to the following expression:  

χ(M2|T(M)|+3) = (|V(M2|T(M)|+1)|-2) – (|E(M2|T(M)|+1)|-1)

+ |T(M 2|T(M)|+1| = χ( M2|T(M)|+1)-1 = 1-2 = -1.
This process is repeated until all pairs of boundary edges

in the handle file are identified. As a consequence, the surface
M2|T(M))|+1+2g is a connected surface with genus g that has an
unique boundary curve component and no interior vertex. Its
Euler characteristic is χ(M2|T(M))|+1+2g) = χ(M2|T(M))|+1)-2g = 1-2g.

Next, the Zip routine is called to identify |V(M)| – 1 pairs
of adjacent boundary edges with indexes –1 and –2. Those
edges, after the identification, will correspond to the TVE

spanning tree. When the first pair is found, a Handle operator
of index 2 is applied  (Figure 4(b)).  This operator identify
those two boundary  edges that have only one vertex in
common to create one interior vertex on the surface
M(2|T(M))|+1+2g)+1. It doesn’t change the Euler characteristic of



surface. Therefore, the resulted surface is homeomorphic to
M2|T(M))|+1+2g.

The Zip routine continues to search recursively and
builds a new surface for each pair found. The recursion will
stop when the last pair of boundary edges with indices –1 and
–2 is reached (notice that all the |V(M)|-2 boundary edges
pairs initially found by the Zip procedure have only one
vertex in common). Thus, the surface M(2|T(M))|+1+2g)+|V(M)|-2 is still
homeomorphic to M2|T(M))|+1+2g, and χ(M2|T(M))|+2g+|V(M)|-1) = 1-2g.

Finally, the last pair of boundary edges existent in the
surface is identified by the Handle operator of type 2 shown in
Figure 4(a), which removes the boundary curve component. We
can conclude that M2|T(M))|+2g+|V(M)| is the original surface without
boundary M whose Euler characteristic is χ(M)=2-2g.

8. CONCLUSIONS
In conclusion, we have extended the simple Implementation of
Edgebreaker to the connectivity graphs of triangle meshes that
represent topological manifolds with handles. The
compression and decompression algorithms use extremely
simple data structures and each require only a couple of pages
of simple code.

In addition to the clers string, the compression produces
a list of pairs of opposite corners, which encode how to turn a
simply connected triangulated polygon into a surface with a
single bounding loop, which, when zipped, will produce a
surface with genus.

We believe that this new implementation of Edgebreaker
is well positioned to become the defacto standard in
transmitting compressed triangle meshes, which may represent
full resolution 3D models, lowest-resolution models to be
followed by resolution refinements in a progressive
transmission scheme, or the coarse polygons that control the
shape of subdivision surfaces.
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Appendix 1: Edgebreaker Compression Algorithm

1. PROCEDURE initCompression (c) { # c is a starting corner

2.  GLOBAL M[] = {0...}, U[] = {0...}; # init tables for marking visited vertices and  triangles

3.  GLOBAL T = 0; # id of the last triangle compressed so far

4.  WRITE (vertices, c.v.g); M[c.v] = 1; # store first vertex in vertices file and mark it as visited

5.  WRITE (vertices, c.n.v.g); M[c.n.v] = 1; # store second vertex in vertices file and and mark it as visited

6.  WRITE (vertices, c.p.v.g); M[c.p.v] = 1; # store third  vertex in vertices file and mark it as visited

7.  U[T] = 1; # mark the first triangle as visited

8.  Compress(c.o); # start the compression process

9. } # end of initCompression

10. PROCEDURE Compress(c) { # compress simple triangulated surfaces with genus

11.  REPEAT { # start traversal for TTE spanning tree

12.   U[c.t] = 1; T++; # mark the triangle as visited and increments triangle counts

13.   IF (c.n.o.t.u > 1) THEN { # check for handle from right

14.       WRITE (handles,c.n.o.t.u); WRITE (handles,T*3+1); # encodes pair  of opposite corners to be glued for a handle  

15.   } # end of IF

16.   IF (c.p.o.t.u > 1) THEN { # check for handle from right

17.       WRITE (handles,c.p.o.t.u); WRITE (handles,T*3+2); # encodes pair  of opposite corners to be glued for a handle    

18.   } # end of IF

19.   IF (c.v.m != 1) THEN { # test whether the tip vertex was visited

20.       WRITE (vertices, c.v.g);  M[c.v] =1; # IF WAS, store vertex in vertices file and and mark it as visited

21.       WRITE (clers, 0);  c = c.r; # append encoding of C to clers and moves to the next triangle

22.   } ELSE { # IF WAS NOT,

23.       IF (c.r.t.u > 0) THEN {  # test whether right triangle was visited

24.           IF (c.l.t.u > 0) THEN { WRITE (clers, 111);  RETURN; }# if left  triangle was visited, append encoding of E to clers and pop

25.           ELSE { WRITE (clers,101);  c = c.l; } # otherwise, append encoding of R and moves to the left neighbor; end  of  IF
                

26.       } ELSE {

27.          IF (c.l.t.u > 0) THEN { WRITE (clers, 110);  c = c.r; } # if left  triangle was visited, append encoding of L and moves to the
right neighbor

28.          ELSE { U[c.t] = T*3+2; # otherwise, store corner number in decompression (potential handle)

29.                WRITE (clers,101); # append encoding of S to clers

30.               Compress(c.r); # recursive call to first visit right branch of split

31.                c = c.l;             # upon return, move to the left triangle

32.                IF (c.t.u > 0) THEN RETURN;                               # if the triangle to the left was visited during the right branch traversal, then return

33. }}}}}         # end  of  IF; end  of  IF; end  of  IF; end  of  REPEAT; end  of  Compress



Appendix 2: Edgebreaker Decompression Algorithm

1. PROCEDURE initDecompression  {

2.  GLOBAL V[] = {0,,1,2,-1,-1,-1,...}; # table of vertex Id for each corner

3.  GLOBAL O[] = {-3,-1,-1,-3,-3,-3,...}; # table of opposite corner Ids for each corner

4.  GLOBAL T = 0; # id of the last triangle compressed so far

5.  GLOBAL N = 2; # id of the last triangle visited so far

6.  GLOBAL A = 0; # id of the last handle attached

7.  GLOBAL H = READ(handles); # read handle pairs from handles file into an array H

8.  FOR (i = 0;  i < sizeof (H) ; i += 2) { # for all pair of  cornes in the handle array

9.     O[H[i]] = H[i+1]; O[H[i+1]] = H[i]; # fill opposite cornes in the O table

10. } # end of for

11.  G[0] = READ (vertices); # read first vertex in vertices file

12.  G[1] = READ (vertices); # read second vertex in vertices file

13.  G[2] = READ (vertices); # read third vertex in vertices file

14.  Decompress(0); # start the decompression process

15.  Zip(2); # zip the boundary curve, starting with the corner 2

16. } # end of initDecompression

17. PROCEDURE Decompress(c) { # decompress simple triangulated surfaces with genus

18.   REPEAT { # loop that builds TTE spanning tree and zips it up

19.      T++; # new triangle

20.     O[c] = 3*T; O[3T] = c; # attach new triangle, link opposite corners

21.     V[3*T+1] = c.p.v; V[3*T+2] = c.n.p; # enter vertex Id for shared vertices

22.     c = c.o.n; # move corner to new triangle

23.     SWITCH READ(clers) { # select operation based on next symbol

24.        CASE ‘C’: {O[c.n] = -1; V[3*T] = ++N; G[N] = READ(vertices); } # C triangle: left edge is free, store ref and geometry of new
vertex

25.        CASE ‘L’: {IF (O[c.n] < 0) THEN O[c.n] = -2; } # L triangle: if it is not a handle, orient left edge

26.        CASE ‘R’: {IF (O[c] < 0) THEN {O[c] = -2};  c = c.n;} # R triangle: if it is not a handle, orient right edge; and go left

27.        CASE ‘S’: {Decompress (c); c = c.n; # S triangle: recursion going right, then go left

28.                             IF  (O[c]>=0) THEN RETURN;} #                   if it is a handle, then return

29.        CASE ‘E’: { IF (O[c] < 0) THEN O[c] = -2;  # E triangle: orient free edges checking handles and pop

30.                             IF (O[c.n] < 0) THEN O[c.n] = -2;RETURN;}

31. } }  } # end  of  SWITCH ; end of REPEAT; end of Decompress

32. PROCEDURE Zip(c) { # tries to zip free edges opposite to c

33.   b = c.n; WHILE ((b.o>=0) AND (b.o!=c)) DO b=b.o.n; # search clockwise for free edges

34.   IF (b.o != -2) THEN {c = NextCWBoundaryEdge(c); Zip(c); RETURN;}# if no zip possible, find next C boundary edge ; try to zip again and
pop

35.   O[c] = b; O[b] = c; # link opposite corners

36.   a = b.n; V[a.n] = c.n.v; # assign coincident vertices

37.   WHILE ((a.o>=0) AND (a!=c)) DO {a = a.o.n; V[a.n] = c.n.v;} # update all incident corners to zipped vertex

38.   N-=1; IF (N > 0) THEN { c = NextCWBoundaryEdge(c); Zip(c);} # if there is still C boundary edges, find next free and try to zip it.

39. }

40. FUNCTION INTEGER NextCWBoundaryEdge (c) { # find of next boundary edge on the right

41.   REPEAT { # loop walks along the boundary,

42.       c = c.n; WHILE (O[c] >= 0) DO c = c.o.n; # traversing the star of vertices

43.   } UNTIL (O[c] == -1); RETURN (c); # until it finds an CW oriented edge (-1)

44. } # end of NextCWBoundaryEdge


