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Abstract 
CAD systems have become parametric, basing shape design on constraints and design 
feature operations.  We review the development of constraint-based parametric CAD, 
explaining some of the foundational issues as well as giving an outlook on possible future 
directions of development. 
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1. Introduction and Historical Development 
Computer-Aided Design (CAD) began in the mid 1970's with two competing approaches. 
 
The Constructive Solid Geometry (CSG) approach by Requicha and Voelcker, then at the 
University of Rochester, conceptualized a CAD model as an expression; [1].  The operations of 
expressions were rigid-body motions and regularized Boolean set operations (union, intersection 
and difference), and whose operands were instantiated simple primitives. Initially the primitives 
were block, cylinder, cone and sphere, with the subsequent addition of the torus as primitive.  The 
primitives were parameterized, for example the cylinder by diameter and height. 
 
The Boundary Representation (Brep) approach by Braid, then in Cambridge, England, 
conceptualized a CAD model as a quilt of surface patches; [2]. The patches were joined at edges 
and vertices and enclosing a solid shape by a 2-manifold without boundary.  The patches could 
be, in the simplest case, polygons.  Building complex shapes could be done by regularized 
Boolean operations on two Brep solids, suitably positioned by rigid-body motions. 
 
Both approaches sought to represent solids.  Early on, a key application considered was modeling 
objects for discrete manufacturing, hence early papers restricted to shapes that were 
manufacturable and excluding solids such as the one shown in Figure 1. 
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Figure 1: Nonmanifold solid considered not manufacturable 

 
Other considerations included extending the allowed operations on solids, such as rounding, 
chamfering, shelling, and so on. 
 
Some extending operations, such as rounding and filleting, are easily stipulated and 
straightforwardly implemented for Brep solids, but they are not so easy to deal with for CSG 
solids.  Uniform radius rounding and filleting was considered by Rossignac [3] who 
approximated the surfaces that arise in this context by CSG primitives. 
 
The semantics of representing, manipulating and reasoning about solids was also considered early 
on.  Tech memo 28 by Requicha [4] set forth a rigorous semantics for CSG.  Comparable 
attempts at providing a rigorous semantics for Breps fell short in that it would have required exact 
arithmetic and representational convention for parametric patches that even to-date are not used.  
Nevertheless, the greater flexibility of Breps in accommodating new operations and ultimately 
offering greater (practical) flexibility for shape representation persuaded applications to go with 
Breps and live with the semantic shortcomings of that representation.  Inroads into converting 
between the two representations were made, in particular by Shapiro and Vossler [5].   They give 
rise to profound mathematical issues when converting Brep to CSG.  The opposite conversion, 
CSG to Brep, was accomplished early-on and is a solved problem (subject to numerical issues); 
[6]. 
 
Summarizing, the two initial approaches to CAD differed in practical expressiveness and in the 
ease with which to prove rigorously properties of the solids so represented.  Applications 
employed the approaches to model specific solids, with fixed dimensions, i.e., to create instance 
models; [7].   Although over time Brep became the dominant representation for CAD models, the 
CSG methodology of creating the bulk of the shape by CSG operations remained a core of the 
user-interface for many years, even in the commercial Brep systems. 
 
In principle it is possible using CSG to create parameterized models. Two tools are available.  
The PADL language with which to create CSG models can be embedded into a general purpose 
programming language, thus allowing users to write programs to create CSG models from input 
parameter values.  Moreover, the primitives are parameterized by specific dimensions, and thus 
can be resized if those dimensions are used as design parameters.  However, CAD models 
remained primarily instance designs until the 1990s and the arrival of Parametric Technology's 
Pro/Engineer (ProE) CAD system. 
 
ProE started as another Brep system but the innovation was a sketch-based graphical user 
interface (GUI) that allowed constraint and dimensional annotations to the sketches.  Sketches 
were then automatically instantiated by solving geometric constraints.  Furthermore, the 
traditional CSG operations (union, intersection, difference) were replaced by operations such as 
extrude, revolve, protrude, and cut, using the sketches to define profiles with which to carry out 
these operations.   Extrude and revolve are easily recognized as creating primitive shapes, but 



protrude and cut are not immediately seen as CSG operations.  However, as Chen showed, they 
can be mapped to CSG operations, thereby giving a firm semantic basis to those operations; [8]. 
 
The key innovation of ProE which, by market dynamics, was forced on the other CAD vendors, 
has been the passage from an instance design to a design family.  That is, it has become possible 
to alter dimensions and constraints of some or all sketches and operations, with the system 
automatically creating new, related shapes accordingly.  We can thus conceptualize this editing 
process as selecting instances from a parametric family of shapes.  This fact was soon recognized, 
but a generally accepted semantics of the term parametric family remains extant.  Several 
proposal have been made, e.g., [9], but vendors differ in the details of the implemented 
operational semantics of the term, exacerbating CAD interoperability. 

2. Constraints in CAD 
The sketch interface of modern CAD systems allows the user to put down a rough sketch, usually 
composed of lines and circular arcs, and annotate the sketch with dimensions and geometric 
constraints.  An example of such a sketch is shown in Figure 2. 
 

 
Figure 2: Input sketch with constraints to be solved; arc tangencies required but not annotated 

 
Aside from the dimensional constraints of distance, angle, and arc radius, geometric constraints of 
tangency at the arc ends are imposed as well as perpendicularity of the segments at the upper left 
corner. Sketches with constraints can be automatically instantiated, provided a solution exists.  
The result is, in this case, a profile that can be used for a protrusion or a cut.  Using sketches, we 
can build linearly a sequence of increasingly more detailed shapes, culminating in the final shape 
model.  Subsequent model edits can then alter dimensional values, geometric constraints, or, if 
necessary, change the entire constraint schema. 
 
2.1. Graph-Based Constraint Solving 
 
CAD applications of constraint based sketching have inspired a large section of the literature on 
geometric constraint solving; see, e.g., [10].   Of the various techniques to solve geometric 
constraints, some of them quite old, we will concentrate in the following on graph-based solvers, 
a dominant solution strategy. 
 
Assume that the sketch is in the Euclidean plane.  It then consists of individual sketch elements, 
points, lines, and circles, and constraints upon them.  The constraints may be dimensional, 



stipulating specific distances or angles, or they may be geometric, stipulating tangency, 
perpendicularity, and so on.  Not all constraints are explicitly given but may be inferred.  Most 
commonly, incidences are inferred, but sometimes so are tangency and whether segments are 
vertical or horizontal.   
 
Sometimes a distinction is drawn between parametric solvers and variational solvers.  A 
parametric solver is one that solves constraint problems in an explicitly defined sequence.  At 
each step in the sequence, a single geometric element is placed in correct relationship to the 
elements already localized.  In a variational solver the problem is not necessarily solved 
sequentially and there could be steps in the solution that require placing several geometric 
elements simultaneously.  Most solvers of 2D constraint problems are variational. 
 
2.2. Solver Phases 
 
Constrained sketches are solved in two phases.  In the first phase, the problem is translated into a 
graph whose vertices are the geometric elements in the sketch, and whose edges are the 
constraints upon them.  Figure 3 shows the graph constructed from the problem in Figure 2. 
 

 
Figure 3: Constraint graph of phase 1; unlabeled edges represent incidences 

 
A graph algorithm analyzes the problem and formulates a solution plan from it. The second phase 
of the solver then computes actual coordinate values for the geometric elements that satisfy the 
constraints.  The analysis of the first phase usually does not account for specific values of 
dimensional constraints.  For example, assigning lengths to the three sides of a triangle, phase 1 
will not check whether the values satisfy the triangle inequality.  The first phase is thus a 
generalized degree-of-freedom analysis. 
 
In bottom-up solvers [11], phase 1 isolates small subproblems that can be solved separately and 
determines how to put them together recursively into larger parts of the sketch, observing the 
given constraints. Similarly, in top-down solvers [12], phase 1 dissects the graph recursively into 
subgraphs that correspond to subproblems that can be combined observing the constraints.  Both 
decomposition directions have their strengths and weaknesses.  Generally speaking, a top-down 
solver naturally recognizes underconstrained problems, whereas a bottom-up solver recognizes 
overconstrained problems naturally. 



 
If the solver plan calls for solving the subgraph induced by constraint graph vertices2 A, a and B, 
phase 2 would be asked to construct a line segment of a specific length.  Likewise, consider that 
the three subgraphs G1 = {e, A, a, B, b}, G2 = {b, C, c, D, d}, and G3 = {d, E, e} have been 
solved.  Then their combination would require, in phase 2, assembling three geometric structures 
that pair-wise share the elements e, b, and d.  This amounts to finding suitable rigid-body 
transformations aligning the shared shape elements and can be solved in a simple manner. 
 
2.3. Well-Constrained Sketches 
 
A geometric constraint problem can be underconstrained, overconstrained, or well-constrained;  
[13].  Loosely speaking, an underconstrained problem has an infinity of solutions and an 
overconstrained problem has no solution.  The exact definition of these terms involves 
reformulating the problem as a set of algebraic equations and characterizing the dimension of the 
algebraic set so defined.  That is, after formulating all constraints as a system of algebraic 
equations, and fixing the position and orientation of the sketch with respect to a global coordinate 
system, a sketch is well-constrained if the system has a finite number of solutions, and it is 
underconstrained if there is an infinity of solutions.  Finally the problem is inconsistently 
overconstrained if there are no solutions. 
 
This definition of terms would be appropriate for phase 2 of the solver that constructs actual 
solutions.  However, there are approximate counter parts to the three situations that can be 
determined in phase 1 and have been called structurally underconstrained, structurally 
overconstrained, and structurally well-constrained.  The difference is that a structurally well-
constrained problem need not be well-constrained due to particular value configurations of the 
dimensional constraints or due to unrecognized interdependencies among the constraints that 
could arise from geometry theorems.  For precise definitions see [14]. 
 
A problem may be well-constrained, and yet the solver may be unable to find a solution.  This 
situation arises when the constraint pattern is complicated in a technical sense and the solver is 
unable to determine a solution; [15,16].  This solver competency problem arises from the fact that 
the natural complexity of solving geometric constraints is exponential, thus there cannot be 
efficient solvers that find a solution of every well-constrained problem in a reasonable amount of 
time.  Such difficult problems are simple to find using classical constructions in geometry that 
express algebraic relationships.  It is possible to express arithmetic relationships among lengths 
using only circular arcs and line segments, and the resulting problems are often beyond the 
capabilities of geometric constraint solvers, even when the relations so expressed are simple. 
 
2.4. Root Selection 
 
It is well-known, but often not appreciated, that a well-constrained problem has multiple 
solutions.  Which solution is the one that an applications user intended is usually settled by 
deducing heuristically topological properties of the input sketch and seeking to preserve them.  
Practically speaking, this strategy is satisfactory for initial problem formulations.  However, when 
the sketch is edited, it is not at all clear that the previous set of topological properties is 
appropriate.  As example, consider the sketch of Figure 2.  A key topological property is that the 
center of the arc b lies in the interior of the profile.  But reconsider the problem with different 
angles, and require that the two angles are 20 degrees instead of 45 and 68 degrees, respectively.  
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Now one would want a solution in which the arc b is centered outside the profile.  See also Figure 
4. 
 

 
Figure 4: Solutions for different constraint values with different topological properties 

 
The selection of the intended solution of a constrained sketch is known as the root-selection 
problem.  In many situations, navigating the solver from an unintended solution to the intended 
one is a user interface problem that is quite difficult.  There have been attempts at devising good 
user interface dialogues to do this, e.g., [17], but they require that the user understands how the 
solver works, and most users do not. 
 
2.5. Extensions to the Constraints and Shape Elements 
 
2D constraint solvers have been extended to handle simple parametric curves, and/or conic 
sections; [18,19,20,21].  Higher order algebraic curves have not been considered.  So extending 
the geometric coverage complicates in most cases only phase 2 of the solver.  Briefly, these 
elements introduce algebraic equations that are more complicated to solve, and solvers often 
resort to numerical solutions in such situations.  This tends to interfere with the root selection 
problem since in most cases the numerically determined solution cannot be selected based on 
topological properties of the sketch. 
 
More complicated constraints can also be introduced, including parallel curves (this would lead to 
higher algebraic degrees for conics as well) minimum distance constraints between curves, and 
algebraic relations among dimensional constraints.  In the latter case it is natural to consider 
coupling the geometric constraint problem with an equation system in which variables are 
designated as dimensional constraints.  Here the first solver phase has to interleave equation 
solving and constraint solving in phase 2 so that, at each point, progress can be made; [22]. 
 
Applications would also advocate considering soft constraints that are prioritized as to 
importance, or inequalities that should be respected, or semantic constraints that define the 
validity of shapes, such as obtaining a contour that does not self-intersect. Typically such 
additional constraints lead to unsolved problems or to highly complex and potentially inefficient 
algorithms. 
 
2.6. Spatial Constraint Problems 
 
The simplest 3D constraint problems involve only points and planes. Both points and planes are 
determined by three coordinates.  As they are duals of each other, the algebraic problems they 
generate are often highly symmetric.  Sequential problems involving points and planes are simple 



to formulate and solve.  Nontrivial simultaneous problems include forward solutions to the 
Stewart platform and are algebraically much more demanding.  Unlike in the planar case, there 
appear to be no subclasses of 3D problems that are both simple to solve and practical in 
applications; [23].  
 
When adding lines to the repertoire of 3D solvers, additional difficulties ensue; [24].  They begin 
with the representation of lines.  A line in 3-space has 4 degrees of freedom, yet the various 
coordinate representations in use usually require six coordinates and two constraint equations 
upon them.  Among the difficult sequential problems we name the problem of finding a line at 
prescribed distance from four fixed points in space, leading to an algebraic equation system with 
up to 12 real solutions; [25,26].   Simultaneous problems introduce a combinatorial explosion in 
the number of essential configurations, even without considering the complex algebraic equation 
systems entailed by them; [27]. 
 
For modeling assemblies, it is clearly appropriate to consider 3D geometric constraint problems.  
However, since the technology to solve spatial constraint systems is not very mature applications 
are resorting to coupled 2D constraint problems that are variational in the 2D components and 
sequential in the spatial arrangement of them. 3D constraint solving and assembly modeling 
probably evolve in tandem. At this point it appears that each side is stuck because of limitations 
of the other side. 
 

3. Feature-Based Design 
 
The term feature has a lengthy history in CAD and many different definitions have been given.  
In manufacturing applications, a compelling definition seeks to relate the term to a particular 
view of the product design; [28,29,30].  This leads to separate definitions of design feature, by 
which is meant an idiosyncratic shape or operation used to design product shape, machining 
feature, an idiosyncratic shape of significance to machining processes used to manufacture a 
product, assembly feature, an idiosyncratic shape of significance to assembling parts, and so on.  
In the following we restrict to design feature operations used by CAD systems to define shape. 
 
Recall that the shape operations in CSG were Boolean operations.  Early on, additional operations 
were coined, such as rounding and filleting, creating draft angles, chamfering, and other such 
localized modifications.  Sketch-based design operations replaced CSG operations primarily with 
protrusions and cuts, but soon added global shape operations such as sweeping and shelling.  
Finally, common operations such as creating ribs or circular holes were stereotyped in the user 
interface to reduce the amount of parameters the user would be asked to specify. Group 
operations defining patterns are also used. 
 
3.1. Semantics of Cut and Protrusion 
 
The operations cut and protrusion require a current shape model plus a contour to be used as cross 
section for the cut or for the protrusion.  The cross section must be positioned with respect to the 
current shape, done usually by selecting a reference plane or surface of the current shape to define 
the sketching plane.  The cut or the protrusion is then done either blind, or else to an extent that is 
related to the current shape.  In a blind cut or extrusion, we must specify a length for extruding 
cuts or protrusions, or an angle for revolving cuts and protrusions.  These operations have a 
straightforward meaning easily expressed by CSG operations. 
 



Alternatively, the extent of the cut or the protrusion can be defined by attributes that determine it 
from the current shape.  Thus, a cut through-next considers a cut that removes only one 
contiguous amount of material, whereas through-all removes as much material as can be removed 
by cutting across the entire shape model.  Analogously, an extrusion to-next adds material that 
must be contiguous. Such operations can be mapped algorithmically to the construction of an 
operand that then is used, with the current shape, in a Boolean operation to create the required 
result; [31]. 
 
Semantically, mapping these operations to CSG gives them a firm semantic footing from which 
to judge correctness of an implementation. However, the attributes through-next and to-next entail 
a number of problems that must be clarified to make the operation precise in all situations, and 
typically no such complete specification is given.  Therefore, different CAD systems often differ 
in what such an operation means.  As example, consider Figure 5. 
 

 
Figure 5: Extrusion to-next with uncertain meaning 

 
The operation is initiated by drawing a rectangular contour on a face of the current shape (left in 
the figure).  The to-next extrusion adds a rectangular bridge between the two sides, as shown in 
the center.  But if the rectangular contour is shifted upwards, part of the bridge may miss the other 
side.  In this situation is uncertain whether the bridge should extend to the plane defined by the 
inner face of the right side, or to the plane defined by the outer face, or whether the operation 
should simply fail. 
 
Note that the example of Figure 5 allows the user simply to indicate where to end the extrusion.  
The main point of the example is that even in the simple polyhedral case there arise semantic 
uncertainties.  The situation becomes much more complicated for curved faces where there may 
not be any clearly recognizable termination surface. 
 
3.2. Fillets and Rounds 
 
Adding fillets and rounds to edges of a shape is a common operation. Many papers on the subject 
have considered the mathematics of surfaces that are needed to smoothly connect two (curved) 
faces, or multiple faces meeting in a common vertex.  The surface constructed achieving the fillet 
or round is commonly called blending surface. 
 
The most natural interpretation of the edge rounding or filleting operation is to consider 
identifying one or more edges, specifying the radius of the blending surface and then expect a 
blending surface that is from a suitably bent tube of fixed radius.  The cross sections should be 
approximately circular, in a direction perpendicular to the axis or spine of the tube.  More 
complex surfaces are also possible, for example variable-radius blending surfaces where the 
radius variation is suitably defined. 
 
The description already makes it clear that the mathematical specification of the surface requires 
many parameters and conventions that are rarely spelled out unambiguously.  Customarily, 



constant-radius blending surfaces are obtained by approximating the envelope of a rolling ball of 
constant radius that moves along the edge touching both adjacent surfaces.  The definition of 
constant-radius blends as envelope of a rolling ball of constant radius is precise, but it runs into 
some local and global problems that are not readily resolved.  The local problems include how to 
end the vertex or edge blend.  In the case of edge blends, the problem may require filling gaps 
(for concave edges) or extending surfaces for edges ending at nonconvex vertices. 
 
The global problems of blending are less often discussed; [32].  They include interactions of 
different blending surfaces.  Consider Figure 6.  A circular hole is close to a circular peg.  We 
wish to fillet the base of the peg and round the top edge of the hole.  The dashed curves indicate 
where the fillet and round would end on the top face of the block given a suitable radius for the 
blend.  Clearly, both blends can be constructed individually, but they cannot coexist as specified 
since this would create a gap in the area where the dashed curves overlap. 
 

 
Figure 6: Overlapping blends that would create gaps in the solid surface 

 
In the example of Figure 6, the gap must be closed.  How this is done exactly depends on whether 
the blends are inserted simultaneously, possibly arguing for a symmetric solution, or serially, 
possibly arguing that the later blend adapt shape to the already existing one. 
 
A different example is shown in Figure 7, reconstructed from [32].  Here the issue is how to 
combine two interacting blends at a vertex. The situation is complicated by the fact that two of 
the surfaces become tangential at the vertex.  These examples show clearly that a complete 
semantics of blending solid shapes, as opposed to blending two or more surface patches in 
isolation, remains an open problem fraught with difficulties that arise from the interactions due to 
the global geometry of the solid. 
 



 
Figure 7: Different joins of a fillet and round at a vertex; see [32] 

 
 
3.3. Persistent Naming 
 
A CAD shape model is constructed step-by-step using design features and constraints, as 
discussed before.  Editing the model consists of selecting a design feature and deleting it, or 
changing its parameters (including potentially the cross section).  When committing the edit, the 
system then updates the shape and re-executes the subsequent feature operations automatically.  
Consider some of the complications this entails. 
 
In the construction of a blend one identifies visually one or more edges of the current shape and 
then selects and valuates attributes describing the blending surface to be constructed.  Since an 
edge so identified is present only on the current shape instance, the operation of editing the shape 
may have to reinterpret the user selection on a different shape that arises from modifying one of 
the earlier design features.  That is, we have to find the edge on the changed shape.  This requires 
a description of the selected edge that is independent of the current shape instance.  A similar 
statement can be made about selected vertices and faces.  The identification problem has been 
called the persistent naming problem; [33].   
 
Persistent naming is exacerbated by the fact that some selected items arise from the interaction of 
different design features which, in some shape instances, do not interact at all.  That is, the 
selected edge may be absent after an editing operation and reappear again after another editing 
operation, or it may be cut into several segments. Other complications include faces that are 
merged or split by an editing operation.  We therefore speak of a parametric family of designs, 
each design constructed from a sequence of design features that may differ in some of the 



attributes or parameters.  A particular algorithm for persistent naming, e.g., [34,35,36], is a 
procedural semantics of the term parametric family. 
 
Many examples can be given that show that to-date persistent naming schemes by vendors and 
researchers can behave counter-intuitive.  For example, the sequence dependence of feature 
operations may lead to unexpected results; e.g., [37,9].  An example is shown in Figure 8. 
 

 
Figure 8: History dependence can lead to unintuitive edits 

 
The design begins with a block into which a hole is cut.  An extrusion is later added by drawing a 
profile on the top face and extruding it vertically.  Next, the edit operation repositions the hole.  
Since this feature is made prior to the extrusion, the hole now cuts the top face into two parts, 
resulting in the extrusion sketch partially extending into what now is the hole interior.  The top 
extrusion is now added as shown, a logical outcome of the edit but hardly a reasonable one. 
 
In [9], Shapiro and Vossler start a foundational investigation of what constitutes a parametric 
family of solids, an attempt to find standards by which to judge persistent naming algorithms.  
They point out that, based on a boundary representation, two solids could be part of the same 
family if a correspondence is established between the two Breps.  For CSG solids, the same 
question yields instead that the two solids should have trees that correspond.  Clearly, the two 
notions only overlap, neither properly contained in the other.  Thus, the familiar instance 
representations of solids give no clear guidance.   
 
A third approach to finding two instance solids ``related'' is to consider a cell decomposition of 
two instances, by half spaces that are induced by the respective boundaries.  Note that some solids 
require additional half spaces so that the solid can be described as the disjoint union of certain 
cells of a spatial subdivision; [5].  In [38], Raghothama and Shapiro postulate that the mapping of 
the cell complexes should be a continuous map that preserves some orientation criterion of each 
cell, and map cells consistent with the mapping of the adjacent cells.  This framework is derived 
from the very reasonable postulate that a small change of parameter values should entail a small 
change in the solid's boundary topology.  The framework allows many of the desirable editing 
operations and rejects many of the undesirable ones.  But the conditions do not fit exactly. 
 

4. Outlook 
 
Today, CAD is intimately linked with applications in discrete manufacturing.  It is often heard 
from applications experts that CAD systems are very good at creating geometry, but not very 
good at creating designs.  As we have seen, creating geometry with ease is not necessarily 



synonymous with creating and editing geometry in a manner that is both rigorous and intuitive.  
Thus the remark from applications is rooted in a different situation, of integrating CAD models 
with conceptual design and with analyses and manufacturing processes. 
 
Since the beginnings of using CAD in manufacturing, in the 1970s and 1980s, much has changed.  
In the early days, research emphasis was clearly on geometry creation and early pioneers were 
keen on putting this process on sound footing; [41].  The appetite of practice for sophisticated 
shape creation operations, as well as the switch to boundary representations as dominant 
underlying data structure, soon outstripped the semantic.  Indeed, further semantic complications 
arise from the well-known problem of robustness in geometric computations and proposals how 
to overcome them in a practical way are sparse to-date; [42, 43]. 
 
Today, it is inconceivable that large product systems, such as airplanes, cars, and ships, would be 
designed without the use of CAD systems that create the detailed geometry.  CAD is thus a bona-
fide part of the product design and manufacturing process.  However, as soon as electronic 
representations of shape have become available, the applications sought to integrate them with 
other sectors of design and manufacture.  In particular, the finite element analyses that are 
associated with evaluating product performance and manufacturing processes need geometric 
models, albeit in different representations and from different vantage points.  Thus, one speaks of 
views of the model, where each view emphasizes a different conceptualization of the shape 
model; e.g., [39, 40].  Translating between different views ought to be automated but is not at this 
point.  It requires a deeper understanding of shape than we have at this time and which has been 
amply illustrated in this paper.  It would seem, then, that the applications' comments, about 
creating designs, relate in particular to this difficulty of switching between views and editing, 
with ease, a shape -- no matter which view is used. 
 
CAD interoperability is another subject of intense interest to end users.  Despite market 
consolidation that led to the demise of several CAD systems, there are lower-tier suppliers who 
need to service different primes with different CAD systems, thus placing an extra burden on the 
suppliers.  We have argued in the past that the approach of constraint-based, feature-based design 
ameliorates the CAD model exchange, [44], but two obstacles can be identified. The first obstacle 
is the competitive stance of CAD vendors who want to lock in customers with proprietary CAD 
models and operations on them.  The second obstacle is the absence of exact mathematical 
semantics of the operations which largely preclude exchanging design histories and recreating 
congruent geometry models in other systems. As we have explained, this second obstacle relates 
to mathematical difficulties that are not yet overcome.  Nevertheless, there have been serious 
efforts to accomplish CAD system interoperability precisely in this way, by executing the design 
history and reinterpreting the parameters of the operations that created the shape; [45]. 
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